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Abstract— The Global Quadrature Phase-Locked-Loop (GQ-
PLL) is a recently-devised PLL-type architecture (based on
Quadrature Signal Generation) able to track a biased sinu-
soidal signal with unknown frequency and amplitude. The
original GQPLL formulation resorted to a non-standard non-
normalized adaptive law, able to guarantee the global conver-
gence of the estimates for arbitrarily large adaptation gains,
thus enabling arbitrarily fast adaptation transients. On the
other side, the non-conventional adaptation law used in the
original formulation makes it difficult to apply robustifying
modifications of adaptive control. In this connection, the present
work presents a new formulation for the PLL internal dynamics
in order to obtain a convenient 1st order linear-in-the parame-
ters error model, which can be dealt with by a conventional non-
normalized adaptive law, to which a robustifying modification
such as projection can be applied. The large-gain global stability
of the adaptive system is proven by Lyapunov arguments. The
overall adaptive PLL is named Robustified GQPLL (RGQPLL).

I. INTRODUCTION AND PROBLEM FORMULATION

The present work concerns the design of an algorithm
for tracking and estimating the unknown frequency of the
following sinusoidal signal

s(t) = A sin(ϑ(t) + ϑ0), t ≥ 0

ϑ̇(t) = ω, t ≥ 0
ϑ(0) = 0,

given the following biased/perturbed measurement

y(t) = s(t) + c,

where c is an unknown scalar constant (usually referred to as
“measurement bias” or “offset”). The fundamental frequency
ω, the amplitude A and the initial angle ϑ0 of the sinusoid are
unknown. We assume that ω is known to belong to the com-
pact intervat: ω ≤ ω ≤ ω, with ω, ω : 0 < ω < ω < +∞
finite bounds known (possibly) conservatively.

The problem of tracking sinusoidal signals with unknown
frequency arises in many engineering domains, such as vibra-
tion attenuation in mechanical systems, acoustics, electrical
power monitoring, signal processing and fault detection.

In the specific realm of power-systems engineering, PLL-
like architectures are undisputedly the most used class of
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algorithms used to track electrical signals, to synchronize
inverters to the electrical grid and to assess the power quality
(stability of voltage amplitude and grid-frequency). In case
the frequency of the sinusoidal signal to be tracked is not
perfectly known, such as in the case of “weak” grids, several
modified PLL have been proposed to estimate the frequency.
The recent work [1] offers a detailed overview of the most
used architectures for single-phase applications, focusing in
particular on those methods involving Quadrature Signal
Generators (QSG). In the literature, QSG units are sometimes
also referred to as Orthogonal Signal Generators (OSG).
The resulting PLL schemes are commonly known as QSG-
PLLs or OSG-PLLs. The Frequency Locked-Loop (FLL) of
[2], [3], that uses a Second Order Generalized Integrator
(SOGI) to implement the OSG, is, for instance, capable of
tracking sinusoidal signals with time-varying frequency and
amplitude. Other methods providing frequency-adaptation
ability to a PLL can be found in [4] and [5]. The Enhanced
PLL (EPLL) of [6], [7] is a successful design that has found
extensive application to the estimation of power-grid signal
parameters. Compared to a conventional PLL, its output
signal is locked both in phase and in amplitude with the
input. While the original EPLL is not robust to the presence
of DC-bias, several further modifications have been proposed
to overcome this limitation. The reader is referred to [8] for
a modified EPLL based on delayed-signal cancellation that
features the rejection of DC-bias. The problem of rejecting
the DC-offset has been addressed also in [9] and [10].

Abstracting from the aforementioned electrical and power
systems applications, several solutions to the sinusoidal
estimation problem outlined above have been conceived
in the system-theoretic and signal processing fields, and
many results are given in terms of adaptive observers (see
[11], [12], [13], [14], [15], [16], [17] among others), or
nonlinear adaptive systems [18], [19], [20]. Notably, all of
these methods formally guarantee the global stability of
the estimator. Despite coming along with appealing global
stability guarantees, these methods are not widely used in
applications, mainly due to their complexity compared to
PLL.

On the contrary, the modified-PLL methodologies con-
ceived and used in the electrical engineering domain, tailored
for power-electrical applications and supported by strong
experimental evidence, represent the preferred solution by
the practitioners, even if supported just by local or small-
gain stability proofs. Indeed, the formal stability proofs of
SOGI-OSG-FLL and QSG-PLLs are based either on small-
signal analysis (local linearization of the dynamics), or aver-
aging theory. The latter approach calls for unpractical small-
gain assumptions on the adaptation gains. The small-gain



assumption is also invoked by the stability proof of the EPLL
scheme [6], which is based on variational arguments. As a
final result, the adaptation rate for the estimated frequency
must be tuned accurately to guarantee the stability of these
algorithms in all the operating conditions. Typically, boosting
the adaptation gains improves the convergence rate when
the initial guess on the frequency is close to the true one
and for clean measurements, but it may cause instability
for large initialization error or in presence of measurement
perturbations. In other words, global convergence may get
lost in practice. In this connection, the contribution of
the GQPLL scheme proposed in [21] is that of providing
Lyapunov stability certificates by modifying a QSG-type
PLL architecture through the introduction of auxiliary signal
injections within the phase-locked loop.

In this work, the original GQPLL of [21] is modified in a
threefold fashion:
• 1) A further filtered augmentation is introduced.
• 2) The auxiliary injection signals in the adaptive PLL

are reformulated.
• 3) Points 1) and 2) allow to obtain, after non-trivial

manipulations, an error-model of order 1, that permits
to use a conventional adaptation law with parameter
projection.

The obtained frequency-adaptive sinusoid tracking system is
named Robustified Global Quadrature PLL (RGQPLL).

II. RGQPLL EQUATIONS

Consider the equivalent trigonometric expression of the
sinusoidal signal s(t):

s(t) = a sin(ϑ(t)) + b cos(ϑ(t)),

where a, b ∈ R are unknown parameters related to the un-
known amplitude A of the sinusoid by A =

√
a2 + b2. Let-

ting Ω̂(t) be the estimate of the squared-frequency Ω := ω2,
we aim at tracking y(t) = a sin(ϑ(t)) + b cos(ϑ(t)) + c by
an estimated signal ŷ(t) having the following structure:

ŷ(t) = â(t) sin(ϑ̂(t)) + b̂(t) cos(ϑ̂(t)) + ĉ0(t), t ≥ 0,

where ĉ0(t) is a DC-bias compensation term, while the
instantaneous estimated angle Ω̂(t) evolves according to

˙̂
ϑ(t) =

√
Ω̂(t), t ≥ 0,

with initial condition ϑ̂(0) = 0 without loss of generality.
The estimated squared-frequency must verify the lower and
upper bounds Ω ≤ Ω̂(t) ≤ Ω, ∀t ≥ 0, where Ω := ω2 and
Ω := ω2 are known conservatively. The adaptation law for
Ω̂(t) will be presented in the next section.

The tracking objective can be attained by designing
adaptation laws for â(t), b̂(t), ĉ0(t) and Ω̂(t) such that
limt→+∞ |ŷ(t)−y(t)| = 0 and all the internal signals remain
bounded. For the sake of notational simplicity, in the sequel
we will neglect the explicit dependence from time of the
signals and of the time-varying estimated parameters. In this
Section, we provide the complete set of equations needed to
implement the sinusoidal tracker/estimator. The reader can
refer to Figure 1 for a block diagram representation of the
RGQPLL.

Fig. 1. Scheme of the RGQPLL. The dashed lines denote the additional
signal paths compared to a conventional QSG-PLL. The improvements
compared to the GQPLL of [21] are are concerned with the adaptive system,
while the overall PLL-like structure is maintained.

In the sequel, we will denote by e the tracking error:

e := y − ŷ
= y − â sin θ̂ − b̂ cos θ̂ − ĉ0.

(1)

Letting λ0 > 0 and λ1 > 0 be two arbitrary positive scalars,
we will denote by µ0 and µ1 the scalar constants

µ0 := λ0λ1, µ1 : λ0 + λ1. (2)

The equations for the online adaptation of â and b̂ are given
by the QSG-PLL-like multiplicative stage:

˙̂a = µ1 sin(ϑ̂)e− δa, t ≥ 0,
˙̂
b = µ1 cos(ϑ̂)e+ δb, t ≥ 0,

(3)

with µ1 defined in (2), and where the signals δa and δb
are suitable nonlinear injections aimed at stabilizing the
dynamics of the RGQPLL. These signals are chosen as

δa :=
√

Ω̂ cos(ϑ̂)
(
η0ĉ0+η1

(
ĉ1+

√
Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))
,

δb :=
√

Ω̂ sin(ϑ̂)
(
η0ĉ0+η1

(
ĉ1+

√
Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))
,

(4)
with ĉ0 and ĉ1 obtained through the second-order nonlinear
filter:

˙̂c0 = ĉ1 +
√

Ω̂
(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
, t ≥ 0

˙̂c1 = (µ0 − Ω̂)e− Ω̂ŷ + K̂−y1
˙̂
Ω + λ−1

1
˙̂
K, t ≥ 0

ĉ0(0) = ĉ0, ĉ1(0) = ĉ1,
(5)

with µ0 defined in (2), while the auxiliary signal y1 is
obtained by filtering the output with the following 1st order
filter

ẏ1 = −λ1y1 + y, t ≥ 0,
y1(0) = y1.

(6)

The signals η0 and η1 in (4) are defined as

η0 := 1− µ0
1

Ω̂
,

η1 := −µ1
1

Ω̂
−

˙̂
Ω

2Ω̂2
,

(7)



where ˙̂
Ω is the derivative of the estimated squared-frequency

to be described later on. This particular choice for the
injection signals δa and δb and for the auxiliary signals η0

and η1 will be instrumental to obtain a 1st order error model
for the adaptive system. The initial conditions ĉ0, ĉ1 and y1

of the above filters can be set arbitrarily. Without loss of
generality, we will assume ĉ0 = 0, ĉ1 = 0 and y1 = y(0).

Finally, the estimates for the auxiliary parameter K̂ and for
the squared-frequency Ω̂ are given by the constrained adap-
tation laws (the provided adaptation laws can be interpreted
as a discontinuous projection of the parameter’s derivatives
to enforce the estimates into an admissible convex set):

˙̂
Ω =


−k0y1e,


(Ω < Ω̂ < Ω)

∨((Ω̂ = Ω) ∧ (e > 0))

∨((Ω̂ = Ω) ∧ (e < 0))

0,

{
((Ω̂ = Ω) ∧ (e ≤ 0))

∨((Ω̂ = Ω) ∧ (e ≥ 0))

(8)

and

˙̂
K =


λ−1

1 k0e,


(K < K̂ < K)

∨((K̂ = K) ∧ (e > 0))

∨((K̂ = K) ∧ (e < 0))

0,

{
((K̂ = K) ∧ (e ≤ 0))

∨((K̂ = K) ∧ (e ≥ 0))

(9)

where k0 > 0 is an arbitrary gain used to tune the adaptation
speed, while K ∈ R and K ∈ R are the known (finite)
lower and upper bounds for the angular speed. All in all,
the RGQPLL has a total dynamical order of 8 with states
Ω̂, K̂, ĉ0, ĉ1, â, b̂, ϑ̂ and y1.

III. STABILITY ANALYSIS

Let us take the time-derivative of the error e := y − ŷ:

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ̂)− â
√

Ω̂ cos(ϑ̂)

− ˙̂
b cos(ϑ̂) + b̂

√
Ω̂ sin(ϑ̂)− ˙̂c0.

(10)
Substituting the expression for ˙̂c0 then (10) is simplified into

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ̂)− ˙̂
b cos(ϑ̂)− ĉ1.

(11)
Then,substituting the expressions for δa and δb into (3) we
get

˙̂a = µ1 sin(ϑ̂)e−
√

Ω̂ cos(ϑ̂)
(
η0ĉ0 + η1

˙̂c0

)
,

˙̂
b = µ1 cos(ϑ̂)e+

√
Ω̂ sin(ϑ̂)

(
η0ĉ0 + η1

˙̂c0

)
.

Finally, substituting the latter expressions into (11) we get
the following intermediate result

ė = ωa cos(ϑ)− ωb sin(ϑ)− ĉ1
−µ1 sin(ϑ)2e+ sin(ϑ) cos(ϑ̂)

√
Ω̂(η0ĉ0 + η1

˙̂c0)

−µ1 cos(ϑ̂)2e− cos(ϑ̂) sin(ϑ)
√

Ω̂(η0ĉ0 + η1
˙̂c0)

= ωa cos(ϑ)− ωb sin(ϑ)− ĉ1
−µ1 sin(ϑ)2e− µ1 cos(ϑ̂)2e

= ωa cos(ϑ)− ωb sin(ϑ)− µ1e− ĉ1.
(12)

The second time-derivative of the error yields:

ë = −ω2(y − c)− µ1ė− ˙̂c1. (13)

Now, substituting the expression for ˙̂c1 into (13) we obtain:

ë = −Ω(y − c)− µ1ė+ Ω̂e− µ0e+ Ω̂ŷ − K̂ + y1
˙̂
Ω

−λ−1
1

˙̂
K

= −Ωy + Ωc− µ1ė+ Ω̂y − µ0e− K̂ + y1
˙̂
Ω− λ−1

1
˙̂
K

= (Ω̂− Ω)y − (K̂ −K)− µ1ė− µ0e+ y1
˙̂
Ω− λ−1

1
˙̂
K,
(14)

where we have set K := Ωc. In view of this position, it
turns out that the arbitrary bounds K and K can be set
according to the a-priori (possibly) conservative information
on the admissible range for the product Ωc. Defining the
parameter vector θ := [Ω K]>, denoting its estimate by
θ̂ := [Ω̂ K̂]>, and using the notation ξ = [y − 1]> for
the regressors vector and ξ1 := [y1 − λ−1

1 ]> for a vector of
filtered regressors evolving according to:

ξ̇1 = −λ1ξ1 + ξ,

with initial condition ξ1(0) = [y(0)λ−1
1 − λ−1

1 ]>, then
we obtain the following expression for the dynamics of the
tracking error:

ë = −µ1ė− µ0e+ ξ>(θ̂ − θ) + ξ>1
˙̂
θ. (15)

Finally, defining the parameter error vector θ̃ := θ − θ̂, the
tracking-error dynamics (15) can be re-arranged as

ë+ µ1ė+ µ0e = ξ>θ̃ + ξ>1
˙̂
θ. (16)

In order to streamline the notation, in the following we
will use the square-bracket shorthand commonly used in the
adaptive control literature to denote the Laplace transform
of a signal u(·) : R→ R

JuK(s) = L{u(·)} (s).

Transforming by Laplace both sides of (16) we can write

(s2 + µ1s+ µ0)JeK(s) =
q
ξ>θ̃ + ξ>1

˙̂
θ
y
(s), (17)

where we have neglected the contribution of the exponen-
tially fading initial conditions (the polynomial s2 +µ1s+µ0

is Hurwitz by design). Now, in view of (2) we get the identity
s2 + µ1s + µ0 = (s + λ0)(s + λ1), so that we can rewrite
(17) as

JeK(s) =
1

(s+ λ0)(s+ λ1)

q
ξ>θ̃ + ξ>1

˙̂
θ
y
(s). (18)

Letting

Je1K(s) :=
1

s+ λ1

q
ξ>θ̃ + ξ>1

˙̂
θ
y
(s), (19)

in the time domain we get

e1 = ξ>1 θ̃.

The latter expression can be proven either by invoking the
Swapping Lemma or, directly, by differentiating e1:

ė1 = ξ̇>1 θ̃ + ξ>1
˙̂
θ

= −λ1ξ
>
1 θ̃ + ξ>θ̃ + ξ>1

˙̂
θ

= −λ1e1 + ξ>θ̃ + ξ>1
˙̂
θ,



thus obtaining the time-domain equivalent of (19). From (18)
and (19) we obtain the expression

JeK(s) =
1

s+ λ0
Je1K(s),

which finally yields

ė = −λ0e+ e1

= −λ0e+ ξ>1 θ̃,
(20)

that is a conventional 1st order error model that can be deal
with by conventional adaptation laws, such as the projection-
based ones given in (8) and (9).

Studying the stability of equations (8), (9) and (20) alone
is not sufficient, however, to characterize the stability of the
overall adaptive system, which also consists of the linear
filter (6) and of the nonlinear dynamics (5) (in charge of
providing the signals ĉ0 and ĉ1 that are needed to compute
the auxiliary injections δa and δb). In this connection, let us
take the second derivative of ĉ0

¨̂c0 = Ω̂
(
η0ĉ0 + η1

˙̂c0

)
+ (µ0 − Ω̂)e− Ω̂ĉ0 + K̂

+
˙̂
Ω

2
√

Ω̂

(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
− y1

˙̂
Ω + λ−1

1
˙̂
K

= Ω̂
(
η0ĉ0 + η1

˙̂c0

)
+ (µ0 − Ω̂)e− Ω̂ĉ0 + K̂

+
˙̂
Ω
2Ω̂

(
˙̂c0 − ĉ1

)
− y1

˙̂
Ω + λ−1

1
˙̂
K.

(21)
Defining:

v := (µ0 − Ω̂)e+ K̂ −
˙̂
Ω

2Ω̂2
ĉ1 − y1

˙̂
Ω + λ−1

1
˙̂
K (22)

and substituting in (21) the expressions for η0 and η1 given
in (7), we obtain

¨̂c0 = Ω̂
(

(η0 − 1)ĉ0 +
(
η1 +

˙̂
Ω

2Ω̂2

)
˙̂c0

)
+ v

= Ω̂
(

(η0 − 1)ĉ0 +
(
η1 +

˙̂
Ω

2Ω̂2

)
˙̂c0

)
+ v

= −µ1
˙̂c0 − µ0ĉ0 + v.

(23)

The latter differential equation describes the dynamics of the
injection signal ĉ0 and will be instrumental to analyze the
internal stability of the adaptive PLL. The overall stability
analysis will be performed in two steps, considering that
the adaptive system can be viewed as composed by two
subsystems, one cascaded to the other, with the first one
being autonomous, so that it can be analyzed sequentially:
• A) the first autonomous system is made up of the track-

ing error dynamics (20) and the parameter-adaptation
laws (8) and (9) (that correspond to the time-derivatives
of the scalar components of the parameter vector θ̂ and,
in turn, of the parameter error vector θ̃);

• B) the non-autonomous dynamical system (23) fed by
v, defined in (22), that in turn depends on the tracking
error and on the parameter estimates.

Step A): Consider now the following candidate Lyapunov
function for the autonomous adaptive system (8), (9), (20)
(recall that θ̃ incorporates both the squared-frequency error
Ω̃ and K̃):

V =
1

2

(
k0e

2 + θ̃>θ̃
)
. (24)

In this case, the stability analysis will be greatly simplified
compared to the original GQPLL described in [21].

First, let us now make some comments on the saturated pa-
rameter adaptation law. Given the convexity of the admissible
domain for the estimated parameters, the proposed saturated
adaptation corresponds to a regular projection of θ̂ ∈ R2 onto
a closed rectangular domain. Thus, considering the properties
of the projection operator in adaptive control (see [22]) for
the sake of proving the semi-negativeness of the derivative
of V along the system’s trajectory, it is sufficient to analyze
the case in which the projection is non-active. Considering
that ˙̃

θ =
˙̂
θ, the derivative of V along the system’s trajectory

writes:

V̇ ≤ k0eė+ Ω̃
˙̂
Ω + K̃

˙̂
K

= −λ0k0e
2 + k0eξ

>
1 θ̃ − k0Ω̃y1e+ k0K̃e

= −λ0k0e
2.

The convergence of the tracking error and the boundedness
of the estimates can be proven by resorting to standard
arguments of adaptive control based on the Lyapunov-like
(Barbalat’s) Lemma, [23]. Being V bounded from below, non
increasing and being e uniformly continuous (ė is bounded),
we have that limt→∞ e = 0 and θ̃ bounded. Moreover,
considering that y is bounded and that, in turn, y1 is bounded,
then limt→∞

˙̂
θ = 0 (i.e., limt→∞

˙̂
Ω = 0 and limt→∞

˙̂
K =

0). Invoking standard arguments of adaptive control, θ̃ con-
verges to zero (exponentially) in case the regressor’s vector
ξ1 is persistently excited (PE), which is always the case for a
non-degenerate sinusoid (non-zero amplitude and frequency),
which implies that limt→∞ Ω̂ = ω2 and limt→∞ K̂ = K.

Step B): It remains to prove the boundedness of the
auxiliary signals δa, δb, ĉ0 and ĉ1. From equation (20) we can
establish the boundedness of ė (both θ̃ and ξ1 are bounded),
then from (16) we can conclude that also ë is bounded.
Considering that e has a finite limit and ë is bounded (and
therefore ė is uniformly continuous), by Barbalat Lemma
we also have that limt→∞ ė = 0. This in turn implies
(see last identity in (12)) that ĉ1 is bounded and that
limt→∞ ĉ1 − (ωa cos(ϑ)− ωb sin(ϑ)) = 0. This final result
combined with (11) also implies that ˙̂a and ˙̂

b are bounded.
Moreover, the signal v in (22) is bounded (it depends on
bounded signals), then considering that the dynamics (23)
are Hurwitz, we also have that ĉ0 is bounded. Finally from
(1) it follows that also â and b̂ are bounded.

Remark 3.1: Note that the parameter projection is not
mandatory to ensure the boundedness â and b̂: their bound-
edness can be inferred from that of other signals. The only
parameters for which the projection is required (or other
robustifying provisions such as σ-modification or deadzone-
modification) are Ω̂ and K̂, that appear in the Lyapunov
function (24), whose time-derivative along system’s trajec-
tories is only semi-negative definite, in general.

In view of the above analysis, it turns out that the adapta-
tion gain k0 > 0 can be chosen arbitrarily large, enabling
a fast convergence-rate while preserving global stability
properties. The certifiable global stability of the RGQPLL



in the nominal case, out of any small-gain assumption,
represents a key benefit over the existent frequency-adaptive
PLL schemes. Clearly, in case of measurement noise or
unstructured perturbations (such as harmonics), the use of
a large adaptation gain may amplify the disturbance, so that
in practice the parameters should be tuned according to the
specific application scenario.

At this point, we have proven that the estimated signal ŷ(t)
is able to track y(t) with robust global stability guarantees,
since the tracking error e converges to zero even in absence
of PE (corresponding to a degenerate sinusoidal input of
zero amplitude or zero frequency). Now, in case of PE we
would also like to provide an estimated for the unbiased
sinusoid s. If the PE condition holds, have that, besides the
signal boundedness and the asymptotic converge to zero of
all the parameter derivatives to zero, also limt→∞ K̂ = K.
By inspecting (22), it holds that limt→∞ v = K and, since
the non-autonomous dynamics of ĉ0 (see (23)) is a stable LTI
system whose input v tends to a constant limt→∞ v = K,
we have that limt→∞ ĉ0 = K/µ0 = Ωc/µ0. Choosing

ŝ = ŷ − µ0ĉ0/Ω̂,

then we obtain

s− ŝ = y − ŷ + µ0
ĉ0
Ω̂
− c

= e+ µ0
ĉ0
Ω̂
− c,

which finally yields

lim
t→∞

s− ŝ = 0.

We remark that, while the asymptotic convergence to zero
of the tracking error e has been proven also in absence
of excitation, on the other hand the reconstruction of the
unbiased sinusoid is guaranteed only in case of PE (non-
degenerate input sinusoid). Moreover, we have not proven
that â and b̂ converge to a and b, neither that they reach
constant values; therefore these signals can be viewed as
mere internal variables of the algorithm, instead of estimates
of some time-invariant parameters. This is in line with the
requirements of PLL schemes, that are usually required to
track a sinusoid, filtering out noise, and, in this case, to
estimate the its frequency while cancelling any measurement
offset, if present.

IV. SIMULATION RESULTS

The behavior of the proposed RGQPLL is analyzed in
this section through numerical simulations in a noisy sce-
nario. For benchmarking purposes, the RGQPLL is compared
against the EPLL of Kharimi-Garthemani [6], that is one
of the most used architectures in electrical applications, the
Adaptive Observer (AO) developed in [24], which is often
taken as a baseline for comparison by the system-theoretic
literature, and the original QPLL of [21].

The following sinusoidal signal is fed to the tracking
algorithms, subjected to sudden frequency-variations:

s(t) = 320 sin (2πft)

with the measurement y(t) = s(t) + c + d(t) corrupted by
a random noise uniformly distributed in the interval d(t) ∈
[−10, 10] where

f =

{
52.5, 0 ≤ t < 0.4
47.5, t ≥ 0.4

, c =

{
10, 0 ≤ t < 1
15, t ≥ 1

The parameters of the proposed RGQPLL are chosen as
λ0 = 100, λ1 = 400, k0 = 1e9. The admissible frequency
range for the RGQPLL is set to [25, 100] Hz. For the sake
of comparison, all the methods are initialized with the same
guess 50Hz for the frequency. Moreover, both the EPLL
and the AO are tuned as in [21]. As shown in Fig. 2, the
frequency change at t = 0.4s is successfully detected by all
the methods. The robustness of the RGQPLL is evident from
the very small deviation at startup and from the accuracy of
the estimate at steady state, that, on the other side, makes it
recover slower from a frequency-change. Note that the slower
convergence of the frequency estimate does not harm the
signal reconstruction, which is faster than that achieved by
GPLL. Indeed, the RGQPLL competes close to the EPLL in
terms of tracking (that is, sinusoid denoising). A remarkable
feature of the proposed algorithm, shared by GQPLL, can
be appreciated at time t = 1s, when the DC-offset changes
suddenly: while the RGQPLL estimate appears insensitive
to this variation, instead the AO and the EPLL exhibit
some oscillations. The tracking behaviour of each method
is depicted in Fig. 3, from which it emerges clear that the
RGQPLL shows remarkable noise immunity.

V. CONCLUSIONS

This work proposes a robust tracking algorithm for DC-
biased sinusoidal signals with unknown frequency, amplitude
and phase, named RGQPLL, bringing together the PLL-
like architecture of QSG-PLL methods with the stability
certificates of robust adaptive control with projection. The
algorithm permits the complete rejection of the measurement
DC-offset and enjoys the ability to track frequency variations.
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