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Abstract

Background: ‘Non-parametric directionality’ (NPD) is a novelethod for estimation of directed
functional connectivity (dFC) in neural data. Thethod has previously been verified in its abiliy t

recover causal interactions in simulated spikingvoeks in Halliday et al. (2015).

Methods: This work presents a validation of NPD in continsameural recordings (e.g. local field
potentials). Specifically, we use autoregressivel@®to simulate time delayed correlations between
neural signals. We then test for the accurate mgouf networks in the face of several confounds
typically encountered in empirical data. We exantime effects of NPD under varying: a) signal-to-
noise ratios, b) asymmetries in signal strengthinsjantaneous mixing, d) common drive, e) data
length, and f) parallel/convergent signal routing/e also apply NPD to data from a patient who

underwent simultaneous magnetoencephalographyeamlatrain recording.

Results: We demonstrate that NPD can accurately recoverctdid functional connectivity from
simulations with known patterns of connectivity.eTperformance of the NPD measure is compared
with non-parametric estimators of Granger causgalfy?G), a well-established methodology for
model-free estimation of dFC. A series of simulagignvestigating synthetically imposed confounds
demonstrate that NPD provides estimates of conngcthat are equivalent to NPG, albeit with an
increased sensitivity to data length. However, wavide evidence that: i) NPD is less sensitive than
NPG to degradation by noise; ii) NPD is more roldaghe generation of false positive identification
of connectivity resulting from SNR asymmetriesy NPD is more robust to corruption via moderate

amounts of instantaneous signal mixing.

Conclusions: The results in this paper highlight that to be pcadly applied to neural data,
connectivity metrics should not only be accuratthiir recovery of causal networks but also reststa
to the confounding effects often encountered ineerpental recordings of multimodal data. Taken
together, these findings position NPD at the stétie-art with respect to the estimation of dieett

functional connectivity in neuroimaging.

Highlights

* Non-parametric directionality (NPD) is a novel dited connectivity measure.
* NPD estimates are equivalent to estimates of Grazagesality but are more robust to signal
confounds.

» Multivariate extensions of NPD can correctly idgnsignal routing.
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Abbreviations

dFC — Directed functional connectivity

EEG - Electroencephalogram

LFP — Local field potential

MEG — Magnetoencephalogram

MVAR — Multivariate autoregressive (model)

NPD — Non-parametric directionality

(mv) NPG — (multivariate) Non-parametric estimatbGranger causality
SMA — Supplementary motor area

SNR - Signal-to-noise ratio

STN — Subthalamic Nucleus

1 Introduction

Questions regarding the causal relationships betveemtomically connected regions of the brain
have become of fundamental importance across mamyaiths of neuroscience (Sporns 2010;
Swanson 2012). A novel method for estimating deedunctional connectivity (dFC), termed non-
parametric directionality (NPD), has been receudscribed in Halliday (2015). This method has
been demonstrated to yield physiological insights ithe connectivity of the cortico-basal-ganglia
network when applied to (continuous) field recogdirmade in rodents (West et al. 2018). In this
work we evaluate NPD’s performance at recoveringwkm patterns of connectivity in the face of
several confounding factors and compare it withtls@ropopularly used measure — the estimation of

Granger causality.

Functional connectivity is based on a descriptibthe statistical dependencies between different
neural signals and is typically estimated througtetor frequency domain correlations (Bastos and
Schoffelen 2016; Friston 2011). Magnitude squagterence, equivalent to a frequency domain

coefficient of correlation, has been widely adopsdhe estimator of choice for functional
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connectivity in the neuroimaging community (Britljer 1975; Halliday et al. 1995). Undirected
measures of functional connectivity (such as cale¥eare symmetrical, giving no indication of the
temporal precedence of correlations, a properterstdod to be a necessary result of causation in
time evolving systems (Wiener 1956), nor the priadhidity of one time series from that of the other.
dFC aims to estimate statistical asymmetries ircthveelated activity of a set of signals in order t
infer the causal influence (or predictability) afeosignal over another. Similar to the role plalggd
coherence in measuring undirected functional camnnig Wiener-Granger causality has emerged as
a first-choice estimator of directed connectivitiedo its well established theoretical basis (Bezss
and Seth 2011; Ding et al. 2006) and its succeagiolication to questions concerning causal

networks inferred from large-scale neural recorglifegg. Brovelli et al. 2004; Richter et al. 2018).

Estimates of dFC are most frequently computedeéritarature using methods estimating Granger
causality (Dhamala et al. 2008a; Geweke 1982; Gnahg69; Kamiski et al. 2001). Granger
causality is expressed in terms of the capacith@information in the past of one signélto predict
the future of another signat, Granger (1969) introduced a straightforward metbestimation
through the comparison of an autoregressive mogdeltich the explained variance %fis compared
between that of a ‘full’ model (i.e. accounting foe past oK andY) with that of a restricted model
(i.e. Y only). If a prediction of the future &fis aided by information from the pastXfthenX s said
to ‘Granger-causeY. The method requires factoring out the autoregrexomponent of the signal
(i.e. the ‘restricted’ model) to avoid trivial cefations that occur simply due to the periodiaityhe

signals.

Efforts to estimate Granger causality without rdagrto autoregressive models have resulted in an
extension of the method termed non-parametric Gnacgusality (NPG), which avoids the estimation
of transfer functions from multivariate autoregresgMVAR) coefficients (Dhamala et al. 2008a). In
NPG, transfer functions and noise covariances stimated through the spectral factorization of
(non-parametrically derived) Fourier coefficierasher from MVAR model parameters. Here, we
directly compare NPG with NPD as an estimator df dBoth methods share the property of being
non-parametric (model-free) approaches which catelb@ed from identical spectral transforms

made either via Fourier or wavelet techniques.

NPD is founded on the same principles of causagyGranger, namely that temporally lagged
dependencies indicate causal direction. NPD works by decompgsthe coherence into three
temporally independent components separated byelhéve lag of the dependencies between the
signals: 1) forward lagged; 2) reverse lagged; @nishstantaneously correlated. Rather than using a
naive cross-correlation estimator that is suscleptit spurious peaks resulting from the individual
signals’ autocorrelations, NPD takes an approaahtakihe factoring out of a ‘restricted’ modeli.

of Y only) used in Granger. This is achieved throughoggss of spectral pre-whitening which acts to
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bring the individual signal's spectra closer to t@kioise but preserves the correlations between.the
In the original paper (Halliday 2015), the methodswralidated using a simple three node network
with each node’s dynamics simulated using a comheet model of a spiking neurone in order to
generate a series of discrete point processesaiitm®rs demonstrated that NPD was successful in
recovering the connectivity from a range of simedatrchitectures. Furthermore, the method was
applied to spike timings (a point process) recordiesn muscle spindle and shown to yield
physiologically plausible estimations of causal@ur recent work has extended the application of
NPD to continuous local field potential (LFP) rediolgs made from am vivo preparation of the

cortico-basal ganglia system (West et al. 2018).

Estimation of empirical dFC in continuous neuralcamlings such as the LFP or
magneto/electroencephalogram (M/EEG) is complicatea number of factors. These include: low
and possibly unequal signal-to-noise ratios (SNRs}antaneous volume conduction, common drive,
signal routing via parallel but disjoint paths, ahé presence of cyclic paths within a network. All
pose potential confounds for the metrics descrime. The failure of Granger causality estimators in
the presence of large amounts of measurement wiaewell-established shortcoming (Newbold
1978) which becomes particularly acute in noisyctetehysiological recordings (Nalatore et al.
2007). Differences in the recording gain betwegmals is also known to confound estimation of
Granger causality, with the most commonly usedregtr demonstrating bias towards favouring the
strongest signal as the driver (Bastos and Sclenff2016; Haufe et al. 2012). This property is kel
to be a nuisance when investigating causation tegtwieultimodal signal sets such as in experiments
involving simultaneous measurements of MEG and kffere significant differences in recording

gain are to be expected (Litvak et al. 2011).

Instantaneous mixing of the electromagnetic siggaiserated by distinct sources in the brain has
long been known to make estimation of functionalrartivity based on recordings such as the EEG
difficult (Haufe et al. 2012; Nunez et al. 1997jn8rasan et al. 2007). Common presynaptic drive
produces correlations in pairs of output spikensajFarmer et al. 1993), and in pairs of evoked
potentials (Truccolo et al. 2002). This problem &zad to spurious estimates of directed connegtivit
if delays in the arrival of the common input inddagged correlations between unconnected neurons
or neuronal populations. When the common presynamgiut is measured, extensions of functional
connectivity metrics built upon partial regressig¢es calledconditioned or partialized estimates) can

be used to remove common input effects and, subs#gu remove the possibility of spurious
inference of directed connectivity between neuromeseceipt of lagged common input. Partial
regression can be used with both NPD and NPG tuceethe influence of common drive. In the case
of NPD, the authors introduced a multivariate egiem that can be used to reduce the influence of
common drive through partial regression of a thieference signal (Halliday et al. 2016). This

method relies upon the reference signal substingatapsulating the activity of the common drive.
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In the case that the recordings are incompleteesgmtations of the propagating neural activity, the
conditioning will only be partially effective. NPBnd NPG conditioned on a third signal can also be
used to infer connectivity patterns where two sigrare correlated through interaction with an

intermediary signal (West et al. 2018).

Statistical aspects of coherence estimation haea bedely studied. Carter et al. (1973a) highlight
that a coherence estimate constructed from avegamjiarn independent segments has an asymptotic
standard deviation proportional #0%°, suggesting that a large number of segments gréreel to
obtain reliable estimates. Carter et al. (1973lg)gest a reasonable range fois 32 to 64 segments.
The directional decomposition in NPD is based om tise of time lag in a correlation or partial
correlation function. As the number of lags is tethto the segment length, using shorter segments
may impact on the reliability of directional estites as fewer time lags are available to infer

directional information.

In this paper we will assess the performance of NRibility to recover the connectomes from
several simulated architectures and in the presehtee previously stated confounds. We compare
the accuracy of connectivity estimation with NPDdaNPG under these different conditions.
Furthermore, we also test the efficacy of a multate extension of NPD, the conditioned NPD, as a
means of testing for the effects of common drive igs ability to discriminate between parallel sign
routing. The amount of data required for accuratimation of connectivity will also be assessed.
Finally, we bring the presented methods to theyamalof empirically recorded data from patients
with Parkinson’s disease. Using an example recgrdire examine how artificially imposed changes
in the signals’ SNR and linear mixing can changedktimate of dFC made between signals recorded
from the human cortex and basal-ganglia. Our pynggral is to verify the utility of the proposed

measure in application to real-world neuroimagiatpd

2 Methods
2.1 Approach

In this study we utilize spectral coherence forinestes of undirected FC, and NPD/NPG for
estimates of dFC. We set up models of continuousrahesignals with known connectivity
architectures parameterized in MVAR coefficientsonfdunds such as signal-to-noise and
instantaneous mixing are then introduced followsigulation of the MVAR process using an
observation model. The analyses presented here wgidfr the assumption that any exploratory
analyses of the data are complete, including atefeat rejection and/or preprocessing and that one
or more significant coherence estimates have beentified as a prerequisite for directional

decomposition using NPD. Using coherence, we éssablish the existence of coherent frequencies
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within the modelled data sets. Patterns of conviegtin the models are then recovered using the two
dFC metrics (NPD and NPG). As connectivity in thedels is known (by design) we analyse how the
metrics perform at accurately recovering the knaennectivity profiles. Finally, we look at the
methods’ application to empirical data when useddtimate the directed functional connectivity
between the basal ganglia and motor cortex in déegs made from a patient with Parkinson’s
disease (PD).

2.2 Analysis Software and Data Availability

Data was analysed using a set of custom scriptdewrin MATLAB R2017a (The MathWorks,

Natick, MA, USA). Non-parametric directionality wasiplemented using the Neurospec toolbox

(http://www.neurospec.org/MVAR models were implemented using the BSMAR®BIbox (Cui et
al. 2008). NPG calculations and spectral estimat® implemented in FieldTrip (Oostenveld et al.
2011b). All scripts for the analyses presented hem@ be found in a GitHub repository
(https://github.com/twestWTCN/NPD_ValidateA full list of script dependencies, toolboxesds

their authors, and links to their original sourogle can be found in Appendix I. The example patient

data used in this paper is anonymised and availgiga request.

2.3 Functional Connectivity

2.3.1 Spectra and Coherence

Spectral estimates were made using periodogranmadsts utilizing Hanning tapers. Unless
otherwise stated (see section 3.6 in which we tiy&® the role of data availability), data were
divided into segments®’2amples in length (~1.3 s at 200 Hz). We computednagnitude-squared

coherence via:

2 | frx(w)|?
Rrx (@ = 2 @ e @)

(1)

wherefyy, fyy, frx are theX andY autospectra andY cross-spectrum respectively.

2.3.2 Non-Parametric Directionality

Non-parametric directionality provides a model-fregtimate of directional correlations within a
system through the decomposition of the coheremmedomponents separated by their lags yielding
separate instantaneous, forward-lagging, and revNaggling spectra (Halliday 2015). This is
achieved using pre-whitening of the Fourier tramsf This acts to bring the spectral content of a
signal closer to that of white noise, in this caséng optimal pre-whitening with minimum mean
squared error to compute the whitening filter. Thiscedure is equivalent to generating two new

random processes which have spectra equal tolllfcuencies:
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fx(@) =1,fy(w) =1

(2)
The prewhitening step effectively eliminates th&oaarrelation structure of the respective signais b
retains bivariate correlations between them. The-wdritening brings the denominator of the
coherence, the product of the autospectra (a naatiain factor) equal to 1. Thus, the coherence can
be reduced to the magnitude squared of the minimeain square error (MMSE) pre-whitened cross

spectrum:
IRyx()I? = fik(w).

3)
The overall scalar measure of dependence betXeemlY, denoted agZy, is defined as the integral
over the coherence in equation (1). In line witd pinevious literature, the notation here useRzasto
indicate a scalar measure of overall dependencéRadw)|? to indicate coherence, a function of
frequency.As the coherence loses all terms in the denomin#ter equivalent cross-spectrum can

then be transformed to the time domain to yieldtitme-domain correlation function:
1+ i
pyx(®) = — [T % (w)e“Tdw.

(4)
This measure can be decomposed (in the time domiaiarseval’'s theorem for any desired lag. We

choose to separate into reverse, instantaneou$oawmakd components:

0 0
Rex = [ |lprx(@12dT + |pyx ()% + [T Ipyx () |2dz.

X-Y XoY XeY

()

These components may be abbreviated to:
Rfx = Rjx— + Rixo + Rix+

(6)
where componemy _ yields correlations in whicly lags X, RZx o instantaneous correlations, and
R correlations in whickX lagsY. To create a set of frequency domain measuresvatcompose
coherence into three directional components, theetlterms in equation (6) are each Fourier
transformed using the lag ranges in equation (Bjs Treates three frequency domain measures that
capture reverse, zero-lag and forward directiopaliespectively. Coherence is decomposed by

direction using a ratio of the relative magnitudeared values at each frequency as:
2 _ |p! 2 ' 2 / 2
|Ryx(w)|* = |R YX,—((U)| + |R yx,o(w)| + |R YX,+(w)| -
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(7)
The prime symbol on the RHS of equation (7) is usethdicate that these are not formal coherence
measures, but represent one of three directiomdtibations (reverse, instantaneous and forward) to
the coherence. Thus, from each component we cassaspectrally resolved directional interaction
whilst accounting for the signals’ autocorrelatgtnucture. For a full derivation of the NPD method

and details of its algorithmic implementation pkeasfer to Halliday et al. (2016).

2.3.3 A Multivariate Extension — Conditioned Non-ParanteDirectionality

In addition to bivariate NPD, we used a multivagiaktension that allows the directional components
of coherence to be conditioned upon a third sigHalliday et al. 2016). The conditionalization of
NPD is achieved through a partial regressioiX @ndY conditioned orZ. This analysis decomposes
the partial coherence into the same three diregtioomponents: forward, reverse, and zero-lag. It
can indicate if information in the bivariate intetian shares variance common to signals in other
parts of the network. For example, the partial elatron betweerX andY with Z as predictor can be
used to determine if the flow of information frofn— Y is independent of areg or whether the flow

of information isX — Z — Y, in which case the partial coherence betweamdY with Z as predictor
should be zero. The partial coherence can alss®e to investigate if the flow of information4s—
XandZ— Y, orifitisX—Y—>ZorZ— X—Y, orin the case of common inptit-> Xand Y, in

which cases the partial coherence, and any diredtmmponents, should be zero.

The relationship between the squared coherenceidun®yy(w)|? and the squared correlation
coefficient was the starting point for the derigatiof the non-parametric directionality method in
Halliday (2015). The correlation coefficient is givby:

2 2
Oy — Oy|x

2
Oy

2
RYX_

(8)
where the conditioned varianag?,lx is the variance of the error process followingnaar regression
of Y on X. It then follows that the correlation ¢beient may be conditioned to account for any
common effect that a process Z may have on bothdXYaby also estimating the residuals following
regression with Z:

B2 _ 0-}2|Z - J1g|x,z
Yx\iz—— 2
| 0-}?|Z
(9)
in which the processes X and Y are both conditiofnredressed) against the third process Z. Partial

regression is often useful in situations in whicts ibelieved that the tertiary signal Z can ace¢dan

20/04/2020 CORRECTED MANUSCRIPT 9



271
272

273
274
275

276
277
278
279
280
281
282
283
284

285
286
287
288
289

290

2901
292
293
294
295
296
297

298
299
300
301
302

West et al. (2018): A Novel Non-Parametric Diregtibity Measure v5.3

some or all of the original association betweemd &. Thus, the objective is to distinguish whether
there is a genuine correlati®}, that is distinct from the apparent one inducech;R,Z,XlZ. In the
same manner by which the correlation coefficieny ha conditioned to account for any common
effect that a process Z may have on both X and ¥,can condition the estimated coherence
|Ryx(w)|? on Z:

2 |fYX|Z(w)|2
|Ryx|z(w)| _fxxlz(a))fywz(‘“)

(10)
In this way we can form a so called ‘partial’ codrere to determine the association of the coherence
between X and Y with predictor Z. By using thisnfoof the coherence as the starting step we can
continue with the same decomposition as was mafieebéor bivariate NPD, in order to attain an
estimate of the NPD between X and Y but conditiooedZ. In practice we achieve conditioning of
the respective autospectfgz (w) andfyy z(w) using the approach set out in Brillinger (1988)isT
method has been used successfully in LFP recordingscover known anatomical pathways in the
basal-ganglia (West et al. 2018). For full detailshe derivation and implementation of conditioned
NPD, see Halliday et al. (2016).

Increased levels of additive noise can impact atigta&Zoherence estimates but should not distoyt an
temporal precedence present in the triplets ofadgg(Baccald and Sameshima 2006). Conditioned
NPD uses decomposition by time lag to infer dimwility so should be robust to increased levels of
additive noise in the predictor. We explore theeaktto which this is true in simulations of triadic

networks in results section 3.8.

2.3.4 Non-Parametric Granger Causality and its RelattoNRD

Granger causality is based on the premise thasifjrzal X causes a signal then the past values ¥f
can be used to predict the stateYdbeyond that of the information contained in thetpz Y alone
(Granger 1969). This has conventionally been tegiethe context of multivariate autoregressive
models fit to the data, and in which the explainadance ofY via a ‘restricted’ model based &h
alone is compared to that of a ‘full’ model usimjormation of both the past of andY (Geweke
1982). Frequency domain extensions of Granger haee developed (Geweke 1982; Kashi et al.

2001) and applied widely across many domains afroszience (e.g. Brovelli et al. 2004).

The requirement to fit multiple MVAR models can sauseveral difficulties in analyses, namely: i)
the requirement of large model orders to captureptex spectral features; ii) computational cost of
model inversion; and iii) assumptions as to theetation structure of the data in order to capthee
signal as an MVAR process. In order to avoid tliuimrement for the estimation of MVAR models,

Dhamala et al. (2008) proposed a non-parametrimasir of Granger Causality. This estimator can
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be derived from widely used Fourier or wavelet blaspectral estimation methods which do not
suffer from these complications. The method hingeghe derivation of a spectral matrix directly
from the spectral transforms of the data (i.e. lewwr wavelet) instead of the full transfer andseo
covariance matrices specified in an inverted MVARdeI. Subsequently, the spectral matrix is
factorized to derive the transfer function and eaisvariance matrices of the set of signals (Sayed
and Kailath 2001). Via this technique it is possiltd decompose the total power spectrum of Y
between its intrinsic power and toausal contribution from X. The first term refers to tharinsic
power of Y, the second term to a causal contrilouteothe power of Y from X. For a full derivation

and details of its implementation please refer bauDala et al. (2008).

The difference between the way NPG and NPD deterroausal or directional components is that
NPG uses a decomposition of the signal power mmtrinsic and extrinsic components, whereas NPD
decomposes a normalised correlation coefficienbralicg to time lag. Both NPG and NPD use a
frequency domain approach. The frequency appraa®lPiG uses the formulation in Geweke (1982)
in combination with factorization of the spectrahtnix (Wilson, 1972), see Dhamala et al. (2008a,
2008b) for details. NPD is based on the approadbierte (1979) to decompose the product moment
correlation coefficient and coherence summativetg idirectional components. The starting point is
the spectral matrix (as in NPG). The decomposiarchieved by generating an MMSE pre-whitened

spectral matrixF,,, as:

F o= < 1 fYX(fXXfYY)_O'5>
" frr Fxx fry) ™02 1 ’

(11)
wherefyy andfyy are the autospectra, afig, andfyy, are the cross spectra, with frequency argument
omitted. The effect of this pre-whitening allowshecence to be calculated directly from the cross-
spectra. NPD thus decomposes coherence accordiimgetdag in the normalised correlation whereas
NPG decomposes the spectrum into intrinsic andnektrfactors, the presence of non-zero intrinsic

factors is taken as indicative of a causal efiedPG.

2.3.5 Pairwise Versus Multivariate Applications of Megic

Both NPD and NPG can be used in either a biva(awise) or a full multivariate (i.e. greater tha
two signals) framework. As pairwise analyses of dif€ by far the most common approach used in
the current literature we primarily make a comparisf bivariate NPD and NPG computed between
two signals only. However, when investigating isssech as common drive and the influence of
tertiary signals we utilize the multivariate extiemsof NPG (mvNPG; Wen et al. 2013) and compare
it with conditioned NPD. mvNPG extends Geweke’snfalation of Granger beyond pairwise

analyses using spectral matrix factorization. Irmbmation with Dhamala’s approach to obtain
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spectral matrices from Fourier transforms of dhats yields a method by which it is possible to teea
a non-parametric estimator of causality in higheatisional data. mvNPG used here is implemented in
Fieldtrip (Oostenveld et al. 2011a).

Conditioned NPD is indicated by the use of bracketsignify the conditioning signal (e.g. NPD(x)
signifies NPD conditioned on signal X). This apmioas used exclusively in section 3.1 (common

drive) and 3.8 (incomplete signals for conditioning

2.4 Generation of Synthetic Data

2.4.1 Multivariate Autoregressive Modelling

In order to simulate data that models lagged prafaig between simple periodic systems we used
MVAR modelling. MVAR models are an extension toilmdnsional autoregressive models in which
a model variable can be expressed as a linear catido of its previous values plus some stochastic

error term. A P order MVAR model withV number of states is given by:

P
Xt=C+2AlXt—l +Et

=1
(12)

whereX; is a[N x 1] vector of values at time andX,_; are the values at tim@ — i). A4, ..., Ap are
[N x N] matrices of autoregressive coefficients atilag is a vector of constants, aadis
innovation noise (Gaussian) with zero mean andréaveeR. An AR model of ordeP describes the
N values at timeX,, as a linear combination &fprevious valuesy;_;, a set of constants, and a

vector of additional noise values, TheP matricesd; (i = 1, ..., P) specify the linear dependencies
in the model at time lag Simple periodic signals may be engineered irMWAR formulation by
setting of alternating signed coefficients at dif& lags. For example, to obtain a lag two pedibygi
of the system variabl¥ we setA; , = [1 — 1]. The alternating signs of the coefficients sethgp
signal to oscillate with a period equal to theealifince in lags. In order to introduce correlations
between variables we introduced non-zero coeffisieff the diagonal. In this way we simulate
lagged connectivity by setting positive coefficebetween nodes at lags greater than 1. For the
parameters of the simulated MVAR models pleaseappendix Il. Simulations were made using the
BSMART toolbox. All simulations were run with saregengthT, whereT = 5 x 10 data samples
(except in sets of simulations investigating datailability and benchmarking; see below). In ortter
set a time scale of the simulations we chose atrampsampling frequency of 200 Hz which places
simulations around the frequencies typically obsémn neural data. This yields total simulationgim
of 250s (unless otherwise stated). The model actute for each set of figures is outlined using a

ball and stick diagram next to the main result$ MWAR models used were tested for asymptotic
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stability by determining that the absolute valu¢haf eigenvalues of a model’'s companion matrix

were less than 1 (as per Liutkepohl 2005).
2.4.2 Observation Modelling

To introduce the effects of changes in SNR andiimianeous mixing of signals that can arise due to
the practical aspects of experimental recordingseniral signals, we construct an observation model
on top of the model of the dynamics that maps frin@ hidden internal variable$ onto the
externally observed variabl&s This function adds observation noise to the MVsiBgnal and then

applies an instantaneous linear combination ofrtteznal variables:
Y =2z(LX) + Ay

(13)

whereY is a vector of observations created using theovedftinternal variablesf, combined with a
vector of additive observation noise (i.i.d, zeream, unit-variance, white noisey weighted by
scalar factorl which determines the effective SNR of the observadables. The function(-)
indicates z-standardization to zero mean and witamce. AJN x N] mixing matrix L is used to
introduce dependencies between the observed sigiadse is a constraint on the diagonalLafuch
thatL,_; = 1,i = 1,..., N such that the gain of the signals themselves waliared. Thus, we specify
the mixing between signals by specifying the oHgtinal entries of matrik. When applied to z-

normalized, uncorrelated data, the mixing matrixaduces shared variance equal to the square-root

of the off-diagonal coefficients &f (Halliday et al. 2016)

We compute the decibel SNR as the log ratio ofadigariances i.e. 1:1 SNR is equivalent to 0 dB. In
some simulations we investigate the role of asymm&NR and so report the difference of SNRs
between signalASNRyy = SNRyp) — SNRyp)- Assuming one signal is held constant then a
difference in SNRs of 10 dB is equivalent to 10dfmincrease in the noise in the other signal, 20 dB
equivalent to 100 times increase, etc. SNR calouniatare computed from the ratios of the mean
narrowband power within the range of the peak feegy of activities +5 Hz with that of the
background noise, providing good coverage over ékample signals used here. In empirical
neuroimaging data where multiple origins of noigeste this is a much harder quantity to estimate
(Parkkonen 2010). We however uskE? dB as the level for the weakest signal, equitaie a good
quality EEG recording (Goldenholz et al. 2009).

2.5 Benchmarking the Metrics: Data Length, Number of

Connections, and Combined Confounders

To determine the quantity of data required to udeeNPD or NPG for the accurate estimation of

dFC, we setup a benchmark test and then examingh®acore of this benchmark changes with the
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amount of available data and number of conneciiom@sgiven network. We also use this benchmark
to assess how a combination of confounding effeats influence network estimation. First, we
randomly simulate three sets of 24 random diregtaghs with a fixed number of verticas< 3) and
including either one, two, or three edges in totdlese graphs are then simulated as MVAR models
(as detailed above) by placing non-zero autoreyeesefficients with a random lag uniformly
distributed in the interval [1 3]. The simulatedal& then analysed with NPD and NPG. By using a
non-parametric permutation test to form confidentervals (see section 2.7.1 below) for each
measure we determine the detection of a directedezdion if 10% of the spectra for the given pair
of nodes is over the 99.99% confidence limit told/ia predicted adjacency matitk. For every
element of¥ that is equal to that in the actual adjacency imadr(i.e. a true positive or negative) the
score is +1; for every non-equal element (i.e.efgissitive or negative) the score is -1. Thus, the
maximum score in a three-node network is +6 (altexti) and the minimum is -6. We report scores as

percentages of the maximum from -100% to 100%.

In the first set of benchmarks we investigate hibgh role of data availability and the number of
connections in a graph. We perform the benchmatk Wie 24 random graphs using: i) a fixed
amount of data (500s), but variable trial lengtht(22% (such as is the case when deciding how to
epoch data from a ‘steady-state’); and ii) a vdeabmount of data but a fixed number of trials (n =

100) (such is the case when analysing an evertedetiudy with a set number of repetitions).

In the second set of benchmarks we investigate thewcombination of asymmetric SNR and signal
mixing effects act to confound connectivity estimat We make a 12 x 12 design, adding noise to the
target node to achieve a range of narrowband (S8J@SNR; , of -45 dB to 0 dB and then adding
signal mixing to achieve 0% to 100% shared variambe weakest signal is again clamped to 12 dB.
Note that the adjustment of SNR is done beforeasigmxing. The benchmark is then applied for data

simulated from the 24 random graphs described above

2.6 Experimental Data

2.6.1 Experimental Protocol

In the final experiment of this paper, we invesiighow the two dFC metrics (NPD and NPG)
perform when estimating the dFC between the cerebréex (supplementary motor area; SMA) and
the subthalamic nucleus (STN). This connection thesn reported to be predominantly cortically
leading in patients with Parkinsonism (as estimat@ti NPG in Litvak et al. 2011, 2012). In this
paper we use an example recording in which NPGats\ee clear directed component from SMA
STN. This recording was taken from a cohort of &8 with PD who have undergone surgery for
deep brain stimulation (DBS). The experimental dadatains recordings made using whole head

MEG and simultaneous LFP recordings from DBS eteles implanted into the STN. The recordings
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were made for approximately 3 minutes with the grdtiquietly at rest with their eyes open.
Experiments investigated the differences in MEG BR& activity and connectivity when patients
were withdrawn from their usual dose of L-DOPA (QRiersus the L-DOPA treated state (ON).
Patients were not undergoing stimulation with DB$ha time of the recording. The two-time series
analysed were 183s in duration with MEG from a tri§MA virtual sensor recorded simultaneously
with an LFP from the right STN in a PD patient metOFF state at rest. All experiments were
conducted in a study approved by the joint ethm®roittee of the National Hospital of Neurology
and Neurosurgery and the University College Lontimtitute of Neurology. The patient gave their
written informed consent. For full details of thargery, implantation, recording, and experimental

paradigm please see Litvak et al. 2011.

2.6.2 Preprocessing

The MEG and LFP signals were first down-sample@(0 Hz. They were then preprocessed using a
high-pass filter (passband at 4 Hz, finite impulssponse, two-pass, filter order optimized for data
length). Recordings were truncated 1s at either ®ndemove border artefacts arising due to
movement and equipment initialization. Finally, alatere visually inspected to determine the
presence of large abnormalities and high amplitualesients. In the case of the example data used

here, none were found.

We performed estimation of the empirical SNR of #ighals as detailed in section 2.4.2. The
empirical data was first standardized to unit vaa&and then spectral peaks in the 14-31 Hz were
compared with that of a white noise surrogate algb unit variance. The ratio between the peaks is
reported as the estimated empirical SNR, equivélerhe difference of the spectral peak (in beta

band) with that of the noise floor.

Changes to the SNR, asymmetric SNR, and linearngixif the empirically derived signals were
introduced using the same process as listed imoge2t4.2. This treatment ignores the fact that the
data by necessity of empirical recording have diyamdergone observation with a transform similar
in form to that in equation (1®ut with unknown parameters regarding the leadH{elixing matrix)
and observation noise. Instead we take the empirgzardings as a ground-truth and investigate

subsequent changes following artificially inducedifounds.

2.7 Statistics

2.7.1 Permutation Confidence Intervals

In order to form confidence intervals for the cocthgty metrics we make no assumptions as to the
form of their distributions but instead form periaitin distributions of the metrics estimated from
surrogate data and computed using a non-paramatricorder significance threshold (Theiler et al.

1992). We adopt a phase randomization approachriergte surrogates (Breakspear and Terry 2002;
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Lancaster et al. 2018) which acts to preserve tlagnitudes of the spectral estimates whilst
scrambling the phase and hence disrupting any aictien between signals. For details and a
discussion of the algorithm please see appendixwell as Lancaster et al. (2018). For each test w
generated 1000 realizations of the surrogate psodde obtain the P = 0.001 confidence limit by
taking the 99.9 percentile of the resulting distribution. Limitsegplot in figures as a dashed line with

arrows on the side of the axis to indicate thelues.

2.7.2 Least-Squares Regression

In the case of some confounds the response prefdes found to be sigmoidal functions with a
maximum response, midpoing; and steepness We used a least-squares regression to fit the
logistic function. All reported fits exceeded R0.95 and we report the estimated parametetseof t

curves as summary statistics of the connectivityricg modulation by a confound.

3 Results

3.1 Organization of the Results

In the following section the effects of common drivdegradation of SNR, asymmetric SNR,
instantaneous signal mixing, data availability, aimdultaneous confounders upon estimation of dFC
using NPD and NPG are investigated. In figures dxdmples of the impact of these individual
confounding factors upon the power and connectsfitgctra are presented. In order to summarise the
effects of the confounds across a much larger rahgeales, in figure 5 the effects of SNR, unequal
SNR, and signal mixing are visualized as a plothaf relevant statistic of the connectivity (i.e.
strength or asymmetry) against a scale of valugeeotonfounding factor. In each of the following
sections (3.2-3.5) we inspect first the examplecspedisplayed in figures 1-4, and then go on to
establish the total effect over the full range loé tonfound using the data illustrated in figure 5.
Figures 6 and 7 use a benchmarking approach totifyuéime accuracy of recovery given differing
data lengths and mixed confounds. In the finalisecand figure 9 we look at application of the

metrics to empirically recorded data.

3.2 Effects of Lagged Dependencies and Common Drive

We first demonstrate the efficacy of the metricgestovering simple hierarchical architectures and
establish how common input can act to confound thEarthis end we present results from a simple
3-state, 3 order MVAR model with no signal mixing and zeraosebvation noise. The MVAR model
is imbued with periodic dynamics that are ident@gkach node and are driven by noise with fixed
covariance structure. Non-zero (off-diagonal) mxatroefficients are all fixed at 0.5 and the full
MVAR parameters can be seen in table 1 of appeihdWe design the MVAR model (figure 1A)

such that all edges originate at node X and cdroels are lagged such that an input arriving atenod
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Z lags that at node Y3{< &,). This introduces a deliberate confound as dFChauxt estimating
causality in a way dependent upon temporal lagagiflign spurious causality from Y to Z, due to the
difference in arrival times of input from X. An axale time series of the process is shown in figure

1B and the resulting analyses of the functionaheativity are shown in figure 1C.

This model generates rhythmic activity at ~55 Hamakcated by the peaked autospectrum for each
node. Functional connectivity as measured usindsta coherence shows significant connectivity (>
0.5) between all nodes, albeit reduced for the eotion between Y and Z. We next estimate directed
connectivity using NPD. NPD shows that all conrmdiare in the forward direction for> Y and

X — Z. As the full coherence is equal to the sum ef directional components, the overlap of the
forward NPD (spectra in the top-right panel of figure) with the coherence shows that they are
equivalent in this case. The shorter lag in trassion from node X~ Y compared to X— Z, results

in a spurious estimate of coupling from-¥ Z when estimated with NPD. However, when we

condition the NPD upon the signal that both nodea! Z receive common input from (NPD

conditioned on node X; NRR)), we see that the-¥% Z correlation is abolished.

When pairwise Granger (NPG) was applied to the ksited data, the connectivity from X to Z and Y
was very similar in form to the unconditioned NRiata not shown). However, as the multivariate
estimator of Granger (mvNPG) considers the fullaz@nce across all nodes, its application acted to
remove the spurious-¥ Z correlation that arose due to the common diiVes limitation of pairwise
NPD is readily overcome using the multivariate agten that allows for the conditioning of the
common input. In this way the results between mvNip@ NPD conditioned upon the common input
(NPD(X)) are comparable. Both NPK) and mvNPG give estimates of-¥ Z that are below the P =
0.001 confidence interval indicating the absencarof significant directed connectivity between X
and Y.

3.3 Effects of Low Signal-to-Noise Ratios

Recordings of field activity in the brain are mathethe presence of both endogenous neural
background activity as well as observer noise pating from recording equipment and other sources
outside the brain. In figure 2 we simulate the @Beof signal-to-noise ratio (SNR) upon estimates o
functional connectivity. The variance of the MVARopess was standardized and so was equal in all
simulations. We used additive Gaussian noise irobservation model to simulate an SNR of 1:0 (+
o dB), 4:3 (+ 5.3 dB), and 1:3 (- 1.0 dB). All furartal connectivity metrics were resistant up to
moderate amount of additive noise (SpNR + 5.3 dB), but all estimates were heavily attéaddor

the greatest noise tested in figure 2 i.e. SNR.6 @B. When looking across a wider range of SNRs
(figure 5A) both NPD and NPG approached 0 when the data beabmust entirely noise i.e. SNR
approached 0:1 (s« dB). Responses were sigmoidal for all three metritceasured with half

maximum suppression around 50% signal loss. Naalineast-squares fitting yielded parameter
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estimates of the logistic rise for each FC estimétudpointx, and steepnesq: coherence§°" =
1.12 dBx“" = 0.12; NPDx{'’PP = 1.47 dBxNPP = 0.11; and NPGJP¢ = + 7.1 dBxP¢ = 0.07.
From these estimates and the curves shown in fi§éeit is clear that coherence and NPD
effectively share the same response profile to SNIRG is more sensitive to noise with estimates
becoming degraded at higher SNR§® > xFP). Overall the two metrics have a difference in the
midpoints of the calibration curves of ~8 dB, witf*G being more sensitive to noise by almost an
order of magnitude greater than NPD. However, tfierdnces between the NPG estimator and NPD
result in different SNR thresholds required to detatistically significant connectivity (i.e. grer
than the P = 0.001 confidence threshold) and sartéasures reach significance at different SNR
levels: for NPG at -7 dB (SNR = 1:5), and for NPD1d..5 dB (SNR = 1:14).

3.4 Effects of Differences in Signal-to-Noise Ratiosvibeen Signals

Asymmetries in the SNR of different signals arewndo distort the estimation of dFC when using
methods based upon Granger causality (Bastos andffSien 2016; Nolte et al. 2008). We next
tested whether this was true for NPD. We simplified model to contain just 2 nodes that were
reciprocally connected with the same lag. Agaie, dhtput of the MVAR model was standardized to
have unit variance. We then modified the SNR offtire node (X) via the same process as for the
previous set of simulations but fixing the variawé¢he noise of the second (Y) node to yield aiRSN
of +13 dB. Signals were constructed with a diffeeonf SNRs between X and X{NRyy ) equal to
-17 dB, -7 dB, and 0 dB and calculated with respedhe SNR of Y which was held constant. The
results of the simulations are shown in figuresnd &B. In figure 3 we plot the difference in the
estimates of the directed connection (i.e—XY minus Y — X; AFCyy) to explore any deviation

away from the symmetry in functional connectivigpected from the MVAR model§Cyy = 0).

Our simulations confirm that NPG is biased by défeces in SNR between signals, showing that
even at moderate asymmetriaS§Ryy = -7 dB) the weaker signal is estimated to bearipy the
stronger i.e. ¥> X. NPD suffers far less from this confound and mie&ins estimation of the
difference in coupling as close to zero for all ditions tested. Analysis with NPD shows far less
deviation from the ground truth of symmetrical clingp when the SNRs are unequal. When looking
across a range of SNR asymmetries the responsachf measure is apparent (figure 5B). NPG
spuriously identifies directed coupling, with thdfor Y leading wheASNRyy is in the range -10
dB to -50 dB and peaking around -35 dB (zone Higiire 5B). In contrast, the bias for X leading is
when X has a stronger SNR aASNRyy is in range of +10db to +50 dB, and peaking around
ASNRyy = +35 dB (zone V). At very large (positive) orryesmall (negativeASNRyy the bias in
coupling is diminished and there is a return to mtrical estimate of connectivity as both NPD and
NPG approach 0 for both directions (zones | andHfwever, whilst NPD exhibits a much weaker

bias than NPG it does still demonstrate an abogrifgiant difference in connectivity. However,
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deviations in estimation of symmetrical couplingsizng due to unequal SNR are roughly an order of
magnitude smaller than NPG with a maximAMP Dy, of -0.045 versuANPGyy Of -0.42. In terms

of deviation from the difference in measures WhWRyy, = 0 dB, NPD shows a maximum of 1.5
times inflation in asymmetry. For NPG this biasaignaximum of 20 times larger indicating its

increased susceptibility to unbalanced SNRs.

3.5 Effects of Instantaneous Signal Mixing

Neurophysiologically recorded signals such as MEG(, and LFPs are subject to instantaneous
mixing of the underlying dipole currents as a resilfield spread effects. We next simulate these
effects by multiplication of the simulated MVAR pess with a linear mixing matrix and investigate
the influence of mixing coefficients upon estimatdsdFC. We use an identical model to that in
section 3.2 (3 state,“3order MVAR) but with the addition of the observaendel to model signal
mixing at a range of values &fto yield simulations with 0%, 20%, and 60% sharadance. There

is no observation noise added. The results of tiadyais are shown in figure 4.

The confounding effect of instantaneous mixing veagablished by first estimating the degree to
which it may influence the symmetrical zero-lag gamment of the NPD. As expected, it was found
that the zero-lag NPD is increased by mixing (datshown), particularly at frequencies outside of
the periodic component of the signal. This occuwsnathe case of the unmixed signals, correlation
between processes is dictated by off diagonal M\WaRfficients at lags greater than zero. When
mixing is introduced, common noise from outside thain frequency band of interaction more
readily overcomes the intrinsic noise at each n@ddch is weaker in power than activity at the
interaction frequency) and so results in the largeso-lag correlations outside of the main pedodi

component of the signals.

When using NPD to estimate dFC we found that iuestely reconstructs the designed connectivity
up to a moderate degree of signal mixing (45% shamaaiance), albeit with a reduction of the
estimated magnitude of connectivity (e.g. 0.6 # for X — Y). At the highest degree of mixing
(90% shared variance) the spurious connectivityveéen nodes Y and Z (introduced by the lagged
common drive from node X) becomes increasingly sgtnical with an increase in the connectivity
in the reverse direction (i.e. ¥» X) despite the absence of these connections immibel arising
either by design or by lagged common input. Overaith increased signal mixing, the estimate of
NPD is weakened equally across all connectionsly&isawith NPG however shows that mixing has
the effect of introducing spurious connectivity weén Y and Z, exhibiting a small but significant
reversal connectivity at Z» Y at even moderate mixing (45% shared variancé)tha greatest
degree of mixing, NPG determines statistically gigant connections (above P = 0.001 permutation
confidence interval) for ¥Y» X and Z— X, neither of which are in the underlying modehlilde

NPD, which shows a uniform reduction in magnitudehvincreased mixing, the magnitude of NPG
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estimates depends upon the initial SNR of the notteshis instance the X-» Z connection is
weakened whilst the X Y is strengthened. This effect is due to the pse@xplored in section 3.4,

by which unequal SNR biases the NPG estimator.

When testing across a wider range of degrees oiakigixing (figure 5C) the difference in the
response of NPD and NPG is apparent. When using MP€Estimate dFC the magnitude of the
estimate of X-» Y increases to a maximum at around 50% sharedn@iand then quickly collapses
at very high mixing as instantaneous correlatioggirbto predominate. This result is related to the
findings of the section 3.4 in which it was showattsignal leakage acts to modify the effective SNR
of the signals such that leakage from one signalard to bias causality estimates towards another
signal at even moderate amounts of instantaneoxiagniThis effect is apparent when looking at the
trace of the standard (symmetrical) coherence I(ie)bwhich drops to a minimum at ~30% shared
variance but then increases as zero-lag correlatade over. As the NPD explicitly ignores the zero
lag component, it displays simpler behaviour, agdlices in amplitude with increased mixing. This
occurs because zero-lag coherence predominateghandgged components become increasingly

small.

3.6 Effects of Data Availability upon Benchmarks of tketrics’

Accuracy

Application of functional connectivity metrics teal world data are often limited by the amount of
data that is available to estimate them. In the sexes of analyses, we quantify the dependency of
accurate estimation upon the sufficiency of theegidata. We use the benchmarking approach laid
out in the methods and examine the role of datdadiigty in two ways: 1) data which is continuous
but of fixed total length (500s) data which is @hte in length but with a fixed trial length. The
results of this are shown in figure 6. In figureA6and B we compare NPD with mvNPG in the
accurate recovery of known patterns of connectiviing a benchmark score of accuracy (see method
section 2.5) when using a fixed amount of data.ol¥erve a common trend that the overall accuracy
of recovery increases with trial length, reachinmaximum at the highest trial length tested 8t 2
samples (equivalent to 39 trials each ~5s in dumagissuming a 200 Hz sampling rate). The recovery
of denser models required longer trial lengths avetall were estimated less accurately. This effect
occurs due to the introduction of common drive @Hfeinducing false-positive detection of
connections. Sparser networks including just onglsiconnection reached maximum accuracy with
trial lengths as short as 8amples (equivalent to 1250 trials each ~0.16dunation). With a fixed
data length, it was found that NPD required shatriefs than mvNPG to reach similar degrees of
accuracy (figure 6A versus 6B). Accuracy of recgvtalls off with longer duration trials as the

reduced number of repetitions hinders accuratenatitin.
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In figures 6 C and D, the total data availabilite.(100 trials of variable duration) upon estimato
accuracy was investigated. Again, both metricslaigal improved accuracy with increasing trials
lengths. However, with longer trial lengths, mvNR@s able to accurately recover connectivity of
models with denser connectivity than for NPD: ire tbase of networks with three random
connections, and with a long trial length of, 2nvNPG reached ~85% benchmark score versus 65%
for NPD. Sparser models with just one or two cotines showed an optimal trial length arourtd 2
(0.16s at 200 Hz) for mvNPG versus(@.32s at 200 Hz) for NPD.

3.7 Effects of Combined Confounds: Instantaneous Mix@nd

Asymmetric Signal-to-Noise Ratios

Empirically recorded signals are subject to severaultaneous confounding effects. In figure 7 we
present results from a benchmarking analysis irclwhie confound simulated signals by introducing
both asymmetric signal to noise, as well as inataus mixing of sources to a range of combined
degrees. In figure 7A and 7B we compare the pedoga of myvNPG and NPD in the estimation of
connectivity in MVAR models with one random connect We vary instantaneous mixing from 0 to
100% shared variance; and asymmetric SNR at -4%50dB dB. These simulations show that when
estimating connectivity using NPD in sparse netwoskth just a single connection there is a highly
accurate recovery (>95% benchmark scores) unaffdayeasymmetric SNR, and only with high
shared variance (> 50%) is there any significarapdin accuracy. A combination of strong
asymmetry (-30 dB) and high mixing can however cedbenchmark scores to 30%. In comparison,
mvNPG demonstrates poor accuracy across a muclr arda of the conditions tested - with the
benchmark reduced from 100% to 20% in the presefioegative asymmetric SNR greater than -20
dB (i.e. source node is weakest) and at all degoéesixing above 20%. Benchmark scores are

weakened further by the coincidence of strong imateeous mixing of the signals.

In figures 7 C and D we vary instantaneous mixiragnf O to 100% shared variance; and asymmetric
SNR at -45 dB to 0 dB. These tests show that mviNP@ore readily corrupted by both confounds
with scores ranging from 80% to 50% along the asgtnmSNR axis, and from 80% to -10% along
the axis in which instantaneous mixing is variedrtifrermore, the estimation of denser connectivity
with NPD is hindered by asymmetric SNR but is lessceptible to combined signal mixing. Whereas
the negative benchmark scores for mvNPG indicatenoon detection of false positives, scores for

NPD do not drop below 40% for any of the combinedfounds tested.

3.8 Confounds for Conditioned Directed Connectivity gkng from

Incomplete Measurement of Signals.

We next investigate the properties of the multat&riextension to NPD which we teonditioned

NPD. Conditioned dFC provides a more powerful radtlvith which to explore network functional
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connectivity; however, in empirical cases, conditig with a tertiary signal Z may not produce
complete attenuation of the spuriously inferre@cied connection between X and Y arising from the
common input Z. This may arise as a result ofn¢omplete capture of the activity occurring at Z;
and/or ii) difference in the routing of signals;déor iii) because there are other sources of the
spuriously inferred connection than Z alone. Inesaghere structural connectivity is well understood
and the conditioned signal Z is not expected teraunnect the path between nodes X and Y, any
attenuation when conditioning can be assumed &e an information propagated forward in the
network (feedforward). On the other hand, if anatam connectivity is unclear the effect of
conditioning upon directed connectivity may alsoelxplained by conventional serial routing (i.e. X
— Z—Y) but with incompleteness of observed signalg eg¢sulting in only partial attenuation of the
X — Y estimate. In the next set of tests, we ask kdrethere are any differences in how the

measures of dFC behave in the face of incomplgteakbbservation.

For this set of simulations, we use a three s&terder MVAR model, with all nodes generating
identical autonomous dynamics and identical crasfencoefficients at equal model lags. We test
three model connectivities to compare three tyfeignal propagation: a) serial (i.e-XZ— Y); b)
feedforward (i.e. X> Y — 2Z); or c) recurrent (i.,e. X Y —» Z— X). We simulate incomplete
observation of Z by modifying the SNR as was dameseéction 3.2. The model architectures and
results of simulations are shown in figure 8. Wendastrate that in the simplest case of a seridl, pat
the NPD conditioned on signal Z (NBD) behaves as expected: the estimate of conneckvity Y

is attenuated as all information between themusadvia Z. With decreasing SNR of the observation
of Zwe show that conditioning has less and less e#fadtconverges to the estimate yielded by the
unconditioned NPD. Pairwise NPD remains constaatl&8NRs tested as it does not account for any
of the activity at Z. In these simulations, multtede NPG (mvNPG) was also applied as a way to
estimate directed connectivity that accounts fbsighals in the model. We find that mvNPG shows a
small decrease (~0.025) in the estimate e X with increased SNR of Z. This weak attenuation
demonstrates that mvNPG can detect serial rougiegjt is not as suited for discriminating direct

connectivity (i.e. X~ Y) from when there is relay via a secondary nolex(Z— Y).

We next looked at a feedforward network, where dppigates directly to Y, but is then relayed on to
Z. Because some of the information passee>Xy is contained in Z, we expect conditioning to
attenuate the directed connection. Again, we fimat tNPOZ) behaves as expected, although the
attenuation is weaker than in (A) when Z mediatedrouting entirely. In this way the difference in
values between the NPD and NZPyields a measure of how much information of X id ferward

from Y— Z. Thus, decreasing SNR of the observation of Zrefeses the attenuating effect of the
conditioned NPD. mvNPG remains at a constant madeifor all SNRs tested. This demonstrates

that the multivariate estimator of Granger caugdlt not sensitive to feedforward configurations
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whereby the estimation of connectivity between X anis not influenced by activity at the terminal

(receiving) node.

For the third test, we investigated the combinatbmecurrent loops in the network and incomplete
signal observation- two features likely to occuraal recordings from neural systems. We find that
with complete signal observation (i.e. SNR «) the metrics behave similarly to the feedforward
model. A notable difference is the increased NPIXe# Y compared to the feedforward case, as
correlations are reinforced by signals resonatorgss the loop. NP@) behaves in a similar way as
before, showing attenuation of the conditionedneste at low noise levels, but converging back to
the unconditioned NPD as the reference signal ssued by noise and estimation of its confounding
influence is lost. The mvNPG estimate of the cotinecX — Y decreases by 0.1 as the observation
noise of Z is reduced. This finding indicates thathe case of recurrent connectivity, mvNPG is
sensitive to the quality of the signal recordedtla routing node. In the case of recurrent
configurations, this finding shows that mvNPG caadily discriminate between direct—X Y

connectivity and cyclical routing via a secondagnal recorded at Z.

3.9 Example of Estimation of Directed Functional Cortnaty in
Confounded Empirical Data: Cortico-Subthalamic Gegtivity

Using the example dataset described in sectionw2.@xamine how changes in the overall SNR,
differences in SNR between signals, and instantaexagnal mixing may act to confound the
estimation of dFC in empirical data recorded frommudtaneous MEG and LFP in patients with
Parkinson’s disease. We first analyse the origempirical data and then subsequently introduce
synthetic confounding effects as described in teéhods section that outlined observation modelling.

The results of this analysis are presented in &dur

We demonstrate in the original data that there é¢ear asymmetry in coupling with both NPD and
NPG indicating a clear dFC from SMA STN. The zero-lag component (top row figure 9)red
NPD is negligible in the original data. In contrabie instantaneous component of NPG shows above
significance level connectivity at 20-30 Hz. Thepancal SNR of the data was estimated using the
method described in section 2.6.2. We use actiritiie beta band (14-30 Hz) to define the signdl an
then compare with the noise floor. SNR estimatethefMEG virtual electrode and LFP were + 1.9
dB (SNRsma = 3:2) and + 4.0 dB (SN =~ 5:2) respectively. This yields an empiridgINR of -2.1

dB with the LFP measured at the STN having theslstr§NR.

In the first set of experiments we reduced the SNBoth signals equally (figure 9 A-C). We added
noise to the original signals to yield a range NRS: +c dB, + 4.1 dB, and -1.9 dB. These analyses

show that both NPG and NPD estimates of connegtreispond to a uniform reduction in SNR in a
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simple and predictable way by reducing their ovemsgnitude approaching zero as the signals

become mostly noise.

Subsequently, the effect of changing the SNR of onke of the signals upon dFC estimates was also
investigated (figure 9 D-F). Signals were conseddb have a range ASNR: - 3 dB; +16 dB; and +

26 dB. We reduced the SNR of the strongest signl (5TN;SNRSEY), in an attempt to bias the
directionality estimates in the reverse directibe. (ncrease the strength of STN SMA). However,

it was found for both NPD and NPG that this hadhalar effect to reducing the SNR symmetrically
(i.e. when SMA— STN is weakened). This result suggests that ferdataset, it may not be possible
to induce a strong bias in the inferred dFC by mgkone signal weaker than the other (i.e.
SNR3M4>> SNR3EN) as there is no anatomical STNEMA feedback (a situation in contrast with

simulations investigating asymmetric SNR in sec8ch).

In the final column of figure 9 (panels G-I) thdestt of signal mixing was measured. We simulated
several degrees of signal mixidg= 0 (0% shared variance)= 0.075 (7.5% shared variance); and

= 0.15 (15% shared variance). Again, it was foumat the instantaneous component of the NPD
behaves as expected, increasing in magnitude nétleased signal mixing. This is most apparent in
the frequencies outside the main oscillatory bavfdactivity. When using the instantaneous part of
NPG, we found that there was generally an increggethe frequencies around the main component
(of the peak in the lagged connectivity) were niegaind uninterpretable. Furthermore, we show that
even moderate increases in the signal mixing (7.68t)upt the dFC estimation when using NPG.
This is especially apparent at high mixing level$%), where a wide band reverse component
(STN—SMA) arises, as well as large second peak in theASIMSTN at around 4-12 Hz. NPD
estimates are much more stable in comparison alydsbow a reduction in the original peak with

increased mixing, but no spurious peaks emergadeuts this range at any of mixing degrees tested.

4 Discussion

The results presented in this paper further suphertNPD methodology as an accurate and robust
method for the estimation of dFC in continuous aedata. We first provided a face validation of
NPD for estimation of the directed interactionsAmxn MVAR processes. Secondly, we assessed the
performance of the NPD measure in the presencewdral confounding factors that are likely to
arise in experimental recordings of neurophysiaalyinetworks, namely: volume conduction,
common drive, low SNR, unequal SNRs between sigraald recurrent connectivity. Thirdly, we
provided a direct comparison of NPD with a welladdished estimate of dFC based on Granger
causality — NPG. Finally, our results show that #wditional information gained from using a
conditioned, multivariate extension of the NPD noethallows for some of the confounding

influences of common drive, or non-trivial signauting, to be mitigated. The degree to which this i
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achieved is dependent upon the extent to whiclsitireal captures the neural activity at the recaydin

site.

4.1 A Summary of Effects of Signal Confounds

4.1.1 Effects of Common Drive

Common input to two parallel neural populations gy been known to be a confounding factor
when estimating functional connectivity (Aertserakt1989; Farmer et al. 1993; Horwitz 2003). The
limitations of finite sampling over the brain medhat no FC measure is immune to this problem as
there always remains the potential for an unmedstwenmon input to the recorded populations from
which an FC estimate is made. Our simulations detnate this effect where both pairwise NPD and
NPG estimates indicate spurious causality in tise cd lagged common input. However, when using
multivariate extensions of the two methods, in Wwhike common drive signal is factored out, it is
possible to avoid spurious estimation of connetstibetween nodes sharing a common drive. This is
shown to be true when using the multivariate NPGhlaccounts for the total covariance across the
network. On the other hand, NPD in its simplesifds measured in a pairwise manner and cannot
account for the action of a tertiary signal on tiadve estimate. However, we demonstrate that this
issue can be remedied using the multivariate eiieref NPD in which the influence of a common
drive may be regressed out in order to eliminatgrieps connectivity between the driven nodes.
Whilst this is a solution when the common driveoisserved, there still remains the potential
confound of an unobserved common signal, to whieflbNand NPG are equally susceptible. These
issues can be addressed by model based estiméteffeaiive connectivity such as dynamic causal

modelling which allow for the inference of unobsahstates in a causal network (Friston et al. 2013)

4.1.2 Effects of Alsymmetric Signal-to-Noise Ratios

Functional connectivity estimates are subject ® lthits of inference implied by the SNR of the
available recordings. We demonstrate (figure 54 ttoherence, NPD, and NPG are degraded by
poor SNR with similar logistic decays. However, NBxhibits a greater susceptibility to degradation
by noise than NPD. NPG magnitude are reduced atsSPorder of magnitude higher than those that
would elicit an equal reduction in NPD. Despitestliboth measures show a remarkable resistance to
even high levels of noise, with the range of SNRa/fich both NPG and NPD provide statistically
significant estimates of connectivity (i.e. haviagmagnitude exceeding the P = 0.001 confidence
interval) reaching as low as SNR = 1:30 (equivatentl5 dB). This would suggest that both are
robust to the occurrence of false-negative errera gesult of poor SNR in neural recordings. These
findings can also explain the common empirical ifigdof significant functional connectivity in the

absence of obvious peaks in the power spectra.
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A number of authors have noted that estimation @n@er causality is biased by the existence of
unequal SNRs (Bastos and Schoffelen 2016; Haufd. &013; Nolte et al. 2008). Our simulations
reiterate this fact and demonstrate that NPG isebido estimate the driving node as the strongest
signal (section 3.4; figure 5B). This is an impattgroblem as all neurophysiological signals
comprise some unknown mixture of the signal ofredeand background noise on a source by source
basis. As a result, it can rarely be assumed H®SNRs of two signals are balanced. We find that
when investigating the simultaneous effects of uaé@NR and instantaneous mixing, that NPG is

most easily corrupted by the asymmetry in the dggnehereas NPD is most sensitive to mixing.

This is particularly important when looking at dited connectivity between signals recorded from
two different modalities (e.g. MEG and LFP) whdre estimate will be biased in favour of the higher
gain recording (to lead). For instance, in our de¢ashow a difference in empirical SNRs of 4.5 dB
between the LFP and virtual channel signals. Thslad some authors to suggest the usage of time-
reversed data as surrogate comparison for dFC nietttdaufe et al. 2013) because if a true causal
effect is present then time reversal should fligp $ign of the directionality. Future validation®sk
explore whether this approach can reduce the stilsitigp of the NPD method to so called “weak”
data asymmetries. However, the simulations hereodstrate that estimates made using NPD are far
less subject to this confound than NPG. NPD it affiected by decreased SNR (both asymmetric and
symmetric) but shows no bias, as directional eseamaecrease uniformly as the SNR goes down.
This finding leads us to suggest that in futuredigtsi of dFC in multimodal data or in other cases
where the signals are likely to be of differing SNRe NPD method provides a more robust and

readily interpretable result over Granger basedagmhes.

4.1.3 Effects of Simulated Volume Conduction through Sigvixing

The extent to which signals recorded from the baaensubject to the influence of volume conduction
is generally more severe with decreasing distaeteden the recording electrodes. Experiments have
demonstrated that LFPs measured from electrodesated by a distance of 5 cm will typically show
R? values indicating approximately 50% shared vaegafunez et al. 1997) and so analyses of
directed functional connectivity are likely to bmgrsficantly affected by instantaneous mixing at
distances much closer than this (e.g. recordingdenfaom neighbouring contacts of the same
intracranial electrodes). Instead, some authore Iséown that functional connectivity analyses are
better suited to source localized signals due ¢oréduced extent of signal leakage (Schoffelen and
Gross 2009). This is likely to hold true for thephgation of NPD analysis to whole brain recordings

It is difficult to find a limit for when zero-lagfects will corrupt a method such as NPG as this
ultimately depends on the nature of the lagged edtivity present in the data. In our simulations, w
show that the bias on NPG induced by mixing is ddpat upon the original SNR of the signals as a

result of confounding by the mechanism of SNR asginyrdiscussed in the previous section.
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In addition to the benefit of being less suscepttbl corruption by volume conduction, NPD provides
explicit frequency resolved estimation of the zE@-component of coherence, making it possible to
estimate the extent to which coupling is influend®d instantaneous effects. This characteristic
affords NPD an advantage over corrected method®o$uch as imaginary coherence or the phase
locking index (Nolte et al. 2004; Vinck et al. 2QMhich are set up to ignore zero-phase coherence.
In this respect it is important to note that zehage coherence can reflect synchronous physiologica
coupling (Roelfsema et al. 1997). We also noté tblume conduction is manifest not only through
the mixing of known sources of interest, but algtdén sources (Bastos and Schoffelen 2016). This
introduces a confound like that of limited signakervation (see below) in which the influence of a

node can only be estimated if it is directly obséie.

4.1.4 Effects of Data Length on Estimation Accuracy

Estimation of connectivity in empirical data is ited by the availability of recorded data due eaithe
to experimental design or practical limitationsstdrage and acquisition. In figure 6 we presented a
set of tests to determine the sensitivity of the tmethods to data length. Overall, we find that N®G
the most robust of the two and can make accurateeey at trial lengths two orders (to the power of
2) shorter than NPD. As expected, this exact effedependent upon the complexity of the model to
be evaluated. In the case where more dense netaeks be estimated, the required amount of data
is larger than for simpler models with one or tvemiections. These limitations are likely due to the
variance of the spectral estimators from which tilve metrics are decomposed, with coherence

known to be sensitive to having a larger numbesamfiples to restrict estimates.

It is well known that insufficient sampling will hder parametric estimators of Granger causality
(Seth et al. 2015). Simulations here suggest tlidt avgood number of trial repetitions (> 35) at a
sampling rate of 200 Hz, trial lengths from 0.5ltsecond are required for accurate estimation with
NPD. For NPG, this requirement is reduced to amimn of 0.2 seconds, although these guidelines
are likely to depend upon the SNR, as well as feaqy band of the interaction of interest in the

analysed data.

4.1.5 Effects of Limited Signal Observation

The argument that conditioned metrics of dFC sigchamditioned NPD provide an increased ability
to infer the causal structure of real-world neunatiworks hinges upon the assumption that a recorded
signal truly captures the complete dynamics ofuthéerlying population through which the signal is
routed. In section 3.8 we provide an analysis of hioe incomplete observation of signals acts to
confound the estimates of dFC under several hypetheof signal propagation: A) serial; B)
feedforward; and C) recurrent connectivity (fig@®e In the case of the simplest architecture -aseri
propagation, the metrics behave as expected — thre mpoorly the signal used to perform the

conditioning captures the underlying dynamics, thes the conditioning can inform accurate
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estimation of directed connectivity. In the caseafplete signal capture, the conditioning procedur
(NPD(2)) completely attenuates the directed conordiX — Y), as there is no possibility that any of
the information contained in Y concerning node »xslusive of Z. Therefore, if the signal recorded
at Z completely captures the dynamics of Y therrehis the potential to attenuate the-X Y
connection entirely using a conditioning on Z. lre tcase of feedforward propagation, conditioning
will also act to attenuate the estimate, but unblesial processing (where the reference node Z
provides an intermediate node in the chain of pgapan between X and Y) the attenuation can never
be complete as the variance introduced at Z ishated with X or Y. In case C we show that the re-
entrant connection acts to increase the overakmoite due to cyclical passage of information é th
circuit. Furthermore, conditioning acts to bring tNPD estimate closer to that of the feedforward
model (where the re-entrant connection is missirig)the case of recurrent connectivity, the
multivariate NPG also acts to discount the recotimewia Z. When Z is completely captured (SNR

is high) then the NPG gives an estimated connégt@guivalent again to the feedforward model.

These observations make it clear that if conditigniemoves the inferred connectivity in its entiret
then the conditioned node must be in a relay ligsitipn (i.e. X— Z — Y). For instance, this was
found to be the case in West et al. (2018) wheraitioning of NPD between the striatum and
subthalamic nucleus upon the external segmenteofjtbbus pallidus removed connectivity almost
entirely, leading to the conclusion that informatipropagated serially in the network, a finding in-
line with known anatomical details of the indirqeathway of the basal-ganglia. However, the
findings described in the present paper regardirgcombination of circuit organization and SNR of
conditioned signals introduce ambiguity when intetipg the results of conditioned or multivariate
estimates of directed connectivity in empirical adaFor instance, incomplete attenuation of
conditioning may arise either from poor SNR of tleéerence signal in a serial network or may
indicate that the conditioned signal is placediihez a feedforward or recurrent configurationthis
case it is necessary to combine evidence from pteltonditioning steps (e.g. also conditioning-X

Z onY) in order to determine the exact signal irgyt Previous work has argued that additive noise
only impairs estimation rather than distorts temapstructure of the signals (Baccala and Sameshima
2006), here we show that this disruption is depenhdgon the exact routing of the signals.
Specifically, in networks containing a high degeeciprocity, partialized estimated of coherence
(both directed and undirected) are likely to befoanded. This finding could be used in principle to
further specify the role of a conditioned node leyedmining its effect upon directed connectivity in

response to additive noise.

4.2 Extensions and Final Conclusions

We have presented a validation of NPD, a novel fmothe assessment of dFC, in continuous neural

recordings such as that measured in methods corgraeatl for human neuroimaging. We argue that
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in the face of common practical issues arising fithie physical limitations of many experimental
recording methods, as well as from the complexdgiplof the systems that they aim to explore, NPD
and its conditioned extension provide a useful wettnat builds upon the founding principles of the
more established Granger causality. The NPD megsarditioned and unconditioned) has been
recently demonstrated to provide insights into plagerns of propagating neural activity in animal
electrophysiology in the basal-ganglia (West eP@ll8) and hippocampus (Halliday et al. 2016); as
well as in human motor networks (Halliday 2015; &pen et al. 2019). and is likely to have wide
application across other domains of clinical andegdmental neuroscience. The finding that NPD is
robust to the confounding effects of SNR asymmatgans that it may be readily applied to multi-

modal neural recordings without some of the corsénat may arise with Granger-based methods.

The validation provided here is not extensive: éhisra wide range of other existing dFC metrics to
which we have not made comparison, and so it isiplesthat other metrics may perform better than
NPG (for an extensive comparison of many metried, including NPD, see Wang et al. 2014).
Granger causality-based methods have become @& sihfthe dFC toolbox and form the statistical
foundation for several methods developed sinceaudinl the directed transfer function (Kaminski
and Blinowska 1991) and partial directed coherdBeecala and Sameshima 2001). An adaptation of
the directed transfer function aimed at improvirsgireation of directed connectivity (i.X — )
introduced by Korzeniewska et al. 2003 may perfdseiter at recovering known patterns of
connectivity in the face of common drive than thetmss presented here. Furthermore, the role of
time reversal procedures (Haufe et al. 2013) ievating some of these shortcomings in the metrics
should be the subject of future study. This isljike be important when investigating more complex
networks or high dimensional data such as that anedswith magneto- or electroencephalographic
recordings. However, NPD shows broadly equivalergults to the Granger based measure but
exhibits more robust performance in the recovery complex network topologies in highly
confounded data. The full extent to which thisrigeteither in networks of a greater size or density

will need to be tested.

We conclude that the NPD measure of directed fanati connectivity is inexpensive to compute,
makes limited assumptions of the properties ofdia, is flexible to the form of the original spatt
estimate and is conceptually simple to formuladtesthews the computationally expensive estimation
of model parameters required for parametric esémaif Granger causality or directed transfer
function and doesn’t require iterative binning @dores such as that use in information-based
metrics like transfer entropy. Overall, NPD prowde simple and compact statistical description of
directed dependencies between signals and is yeiatirpretable, providing the basis for testable

hypotheses of causation in real neural systems.
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Figure 1 — Three -node simulation of MVAR model to compare fuetional connectivity

measures (A) A simple three state,3order MVAR model was used to simulate coupling of

autonomous periodic signals. Connectivity was siitad using non-zero coefficients at lag 2 for node

X —Y, and lag 3 for X— Z. Correlations are lagged such that the timeydetaie unequal (i.6; <

3,). (B) Example 5-second realization of the simulated MV@icesseqC) Connectivity matrix of

the coupled signals. Autospectra are shown on tlgodal (black). Undirected functional

connectivity (coherence) is shown in blue. Estimatd directed connectivity are shown for

multivariate non-parametric Granger causality (m@\fPed); Non-parametric Directionality (NPD;

green); and NPD conditioned on signal X (NPD(X)aruge). NPD identifies spurious directional

connectivity between Y and Z due to the laggedetations of X— Y relative to X— Z. Spurious

connectivity is removed partializing the NPD estienapon the signal at the common source at node

X (NPD(X)) which acts to remove all spurious cornety. Permutation confidence intervals (P =

0.001) are shown for NPD and mvNPG by the greerreddiashed lines and arrows respectively.
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1115 Figure 2 — Analysis of the effects of signal-to-noise ratio (8R) upon estimators of directed

1114

1116 functional connectivity. The confounding effects of poor SNR were simuldigdadding Gaussian
1117 noise to the MVAR processes and standardizing Wieeatl variance equal to 1. The MVAR model is
1118 identical in form to that used in figure 1 andstaucture is given by the ball and stick diagranthi@
1119 inset. Simulated narrowband (45-55 Hz) SNRs at:(1:® dB; bold), 4:3 (+ 5.3 dB; ---), and 1:3 (-
1120 1.0 dB; ---). The effects upon coherence (bluel) Kteen), and non-parametric Granger causality
1121 (NPG) were investigated. All estimators were redubg increased levels of noise. Permutation
1122 confidence intervals (P = 0.001) are shown for NdIld NPG by the green and red dashed lines and
1123  arrows respectively.
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Figure 3 — Analysis of the effects of unequal signal-to-nois&tios, measured as a difference of
the SNRs between X and YASNRyy) upon symmetrical directed functional connectivity(dFC).

The confounding effect of connected signals hadifigrent SNRs was simulated by the addition of
Gaussian noise to signal X but fixing the noiseadle Y to yield + 13 dB. A range of differences in
SNR between X and YASNRyy) were simulated at 0 dB (bold), - 7 dB (---), and7 dB (---).
Connectivity was held fixed to be symmetrical. Wesessed dFC by plotting the difference in
magnitudes of the connectivity for each directiadx¥€yy) with AFCyy ~ O as the ground truth.
Results from both non-parametric directionality (NRyreen) and non-parametric Granger causality
(NPG,; red) are shown. In the face of medium amoah&NR asymmetry, NPG spuriously identifies
the strongest signal as the driving node. NPD ssiffiess from this issue and yields approximately

symmetrical estimates for all conditions tested.
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Figure 4 — Analysis of the effects of instantaneous mixing upoestimates of directed functional
connectivity (dFC). The confounding effects of volume conduction weneutated by multiplication

of signals with a mixing matrix with off-diagonabefficientsA. The unmixed signals were first
generated with a three stat&} 8rder MVAR model (identical to that used in figaré and 2). We
simulate three mixing conditions:= 0 (zero mixing; bold line) = 0.45 (45% shared variance; ---),
andi = 1.2 (90% shared variance; ---). dFC is estimas&tg the lagged components of the NPD
(green) or non-parametric Granger (NPG) (red). R&ation confidence intervals (P = 0.001) are

shown for NPD and NPG by the green and red dashesl &nd arrows respectively.
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Figure 5 — Investigating the effects of signal-to-noise ratiogSNR), SNR asymmetries, and
instantaneous linear mixing upon functional connedtity measures: coherence (blue), non-
parametric directionality (NPD; green), and non-parametric Granger causality (NPG; red).All
measures are reported as the peak value for ediefdiml estimate. Permutation confidence intervals
(P = 0.001) are shown for NPD and NPG by the geeehred dashed lines and arrows respectively.
(A) The effect of SNR was tested in the range fromdBQGo +30 dB. All estimators were found to
have a sigmoidal response, with half-maximal suggom around SNR = 0 dBB) The effect of
unequal SNR between nodes X andASNRyy) was varied by addition of observation noise toenod
X or Y separately to yield a range of narrowbas@& Ry, from -60 dB to + 60 dB whilst coupling
strengths were held fixed. NPG incorrectly ideasfiasymmetrical coupling for a wide range of
ASNRyy (within zone 1l from -50 dB to -10 dB as well asne IV from +10 dB to 50 dB). NPD
estimates a weak bias towards one signal leadimgviib differences in directionality remaining
close to zero across the range exami(@j The effect of instantaneous signal mixing was exaahi
across a range of mixing coefficienig {o yield a range of 0% to 100% shared variana@hetence

is shown to increase as zero-lag correlations pngtite with increasing valued The lagged NPD
shrinks to zero as instantaneous component of enberdominates. NPG increases to a maximum at
around 65% signal mixing and then sharply fallzeém. Permutation confidence intervals (P = 0.001)

are shown for NPD and NPG by the green and rededidgies and arrows respectively.
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1171 Figure 6 —Investigating the role of data availability upon the accuracy of connectivity recovery
1172 when using non-parametric directionality (NPD; blug, and non-parametric Granger causality
1173 (NPG; red). The two estimators were benchmarked against trete of 24 MVAR models with
1174 random connectivity comprising either one, twotloee connections respectively. Different amounts
1175 of data were simulated for each model and the acgusf the recovery was scored using the criteria
1176 set out in the methods. Simulated data is samgl@@@&Hz.(A and B) Benchmarks recorded from
1177 analyses of simulated data in which there wasedfexmount of data (500s) but allowing for variable
1178 trial lengths (in samplesjC and D) Benchmarks recorded from analyses of simulated idatdnich
1179 there were a fixed number of trials (n = 100) bariable total data length.
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1180 9.7 Figure 7 (COLOR)
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1182 Figure 7 — Investigating the role of combined data confoundsirfstantaneous mixing and
1183 asymmetric signal-to-noise ratio, ASNRyy) upon the accuracy of connectivity estimation when
1184 using non-parametric directionality, and non-parameric multivariate Granger causality. The
1185 two measures were benchmarked against two setd etdizations of a 3-node MVAR models
1186 comprising either one (top row), or two (bottom jovandomly placed connections. For each
1187 simulation 200s of data was simulated and divided iepochs of 2samples. Simulated data is
1188 sampled at 200 Hz. All data is represented as soapplot when varying first instantaneous mixing
1189 from 0% to 100% shared variance; and then adjustiagapproximate asymmetric narrowband (45-
1190 55 Hz) SNR from -45 dB to 0 dRA) Benchmarking of mvNPG with simulations containingeo
1191 randomly placed connection on a three-node netw@k.Same as for (A) but using NPC)
1192 Benchmarking of mvNPG with simulations containimgptrandomly placed connections on a three-
1193 node network(D) Same as for (C) but using NPD as the estimator.
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9.8 Figure 8 (COLOR)

Feedforward C
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Figure 8 — The effects of incomplete signal observation uporsemation of directed functional
connectivity: non-parametric Granger causality (NPQ; non-parametric directionality (NPD);
and NPD conditioned on reference signal Z (NP@)). Simulations investigate the connectivity of
X — Y and the influence of propagation involving atigey node Z. We simulate incomplete
sampling of Z by modifying its signal-to-noise m{SNR) via the addition of Gaussian white noise
and then standardizing the variance equal tAland D) Serial propagation— signals propagate
from X — Z — Y. The results of changing the SNR of Z are shdwrpanel D. Simulations
demonstrate that dFC estimation with NPD/NPG arestamt. At complete signal observation (SNR
1:0; 40 dB), conditioning removes the estimate of dFC.H\itcreasing SNR, the attenuation is
diminished to the point where conditioning has fleat. (B and E) Feedforward connectivity—
signals propagate to feedforward to the tertiargendX— Y — Z. We find that conditioning has a
weak effect (panel E), and the attenuation of Mor estimation of X- Y is again reduced by
decreasing SNR of ZC and F) Recurrent connectivity —a further connection is added to the model
to complete a cyclic path in the network—XZ — Y — X. Decreasing the SNR of Z results in an
increased estimation of NPG in-X Y (panel F). We again find that that increased pleteness of
observation of Z results in an increase in thecafly of NPQz) in determining tertiary (non-direct)

signal routing.
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1213 9.9 Figure 9 (COLOR)
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1215 Figure 9 — Testing for the confounding effects of symmetric ash asymmetric SNR, and
1216 instantaneous signal mixing upon estimation of direted functional connectivity in experimental
1217 data recorded in patients with Parkinson’'s diseaseEmpirical data is comprised of local field
1218 potentials recorded from the STN and a virtual tetete localized to the SMA, computed from
1219 whole-head magnetoencephalography. Signhals werdysanla for dFC using the instantaneous
1220 components (first row); STN> SMA (second row); and SMA> STN (third row) parts of the NPD
1221 (green) and NPG (redmpirical data is indicated by bold line; low byetdotted (---); and high
1222 degrees by the dashed (-{A-C) The effect of modulating the overall SNR of thensily equally.
1223 We used a range of narrowband (14-31 Hz) SNRs(+:4 dB; bold); 4:3 (+ 4.1 dB; ---); and 1:3 (-
1224 1.9 dB; ---)(D-F) The effect of modulating the SNR of the strongégta (STN) only. We used a
1225 range ofASNR: -3 dB (bold); + 16 dB (---); and + 26 dB (--(({-1) The effect of modulating the
1226 degree of instantaneous mixing between signalssWialated a degree of signal mixirig= 0 (0%
1227 shared variance; bold);= 0.075 (7.5% shared variance; ---); and 0.15 (15% shared variance; - - -).
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10Appendices

10.1List of External Toolboxes Used in Analysis, $tatis, and
Plotting

1. BSMART toolbox- Hualou Liang, Steven Bressler, Mihgu Ding (Cui et al. 2008):
http://www.brain-smart.org/

2. Fieldtrip toolbox- Donders Insitute, Radboud Unaigr (Oostenveld et al. 2011a):
www.fieldtriptoolbox.org/
Linspecer - David Kun: https://github.com/davidKimgpecer
Neurospec 2.11 toolbox- David Halliday, UniversifyYork: http://www.neurospec.org/
SPM 12 toolbox- UCL, Wellcome Centre for Human Nemaience:
https://www.fil.ion.ucl.ac.uk/spm/

10.2 Table of MVAR Coefficients

Simulating Common Drive, Signal-to-noise, instantaeous mixing (figure 1, 2, 4, 5C)

Transfer Matrix Noise Covariance Matrix
0.5 0 0
A;=|0 05 0 ]
0 0 05
03 0 0
—-05 0 0 s:[o 0.3 0]
A; =105 -0.5 0 0 0 03
0 0 -05
05 0 0
A;=|0 05 0 ]
0.5 0 0.5
Simulating Asymmetric Signal-to-noise (figure 3, 5A5B)
Transfer Matrix Noise Covariance Matrix
_[0.5 0
A= [ 0o o 5]
03 0
€=
W _[-05 035 [o 0.3]
27 lo.35 -o0.5
_[0.5 0
A3 = [ 0o o 5]
Simulating Incomplete Signals for Conditioning: Seral (figure 8A, D)
Transfer Matrix Noise Covariance Matrix
03 0 0
05 o0 o e=|l0 03 o0 ]
A4=l0 05 o ] 0 0 03
0 0 05
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0 0 0
A;=103 0 0
0 03 0

Simulating Incomplete Signals for Conditioning: Fedforward (figure 8B, E)

Transfer Matrix Noise Covariance Matrix
05 0 0
A;=[0 05 0 ]
0 o0 05
03 0 0
-05 0 0 e=[0o 03 o
Ay = 0 —-0.5 0 0 0 03
()} 0 -0.5

Simulating Incomplete Signals for Conditioning: Rearrent (figure 68, F)

Transfer Matrix Noise Covariance Matrix
05 0 0
A;=l0 05 0 ]
0 0 05
03 0 0
-05 0 0 e=[0 03 o0
A; = 0 —-0.5 0 0 0 03
()} 0 -0.5

10.3 Permutation Testing for Significance Thresholds

Estimates of interactions between signals can gse to non-zero values in the absence of any
interaction. To check whether an observed valuanoéstimator is statistically significant, its valu
can be compared against a distribution of the dadex estimated from surrogate data (Theiler et al.
1992). This surrogate data must preserve the tatatisf the individual signals whilst removing the
property to be tested, namely the interactions éetwthem. Once a null distribution is obtained,
(rank-order) significance thresholds can be catedladrom the corresponding percentiles of the

surrogate distribution (e.g. a P = 0.01 threshali loe estimated from the"9percentile).

Many possibilities exist for the generation of sgates and methods range from the very simple
permutation of the time series samples, up to asingly complex surrogates that aim to maintain
nonlinear features of the individual signals (feviews see: Lancaster et al. 2018; Pereda et @5)20
All methods will fall short at capturing all confoding properties of the individual generators @& th

signals including the phase randomization methade@ky and Breakspear 2015).
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In this work we use a phase randomization approaEhmaintain the original FFTs of the signals but
randomize the phase of the individual Fourier congms. To do this we generate a vector of random
phasest uniformly sampled on the interval [Gi2for N/2 samples and multiply the first half ofeth

FFT by exp(¥). The remainder of the FFT is then the horizoptlipped complex conjugate of the

first half. This method ensures that the overapested value of the magnitude of the averaged
spectral estimate is equal to zero. See Lancastal €2018) for a discussion of this method and
Breakspear and Terry (2002) for application to ssisg interdependence of neurophysiological

signals.
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1.1 Table of MVAR Coefficients

Simulating Common Drive, Signal-to-noise, instantaneous mixing (figure 1, 2, 4, 5C)

Transfer Matrix

Noise Covariance Matrix

05 0 0
A;=|0 05 0 ]
0 0 05
03 0 0
-05 0 0 e=|0 03 0
AZ =10.5 -0.5 0 0 0 0.3
0 0 -05
05 0 0
Az=|0 05 0 ]
05 0 0.5
Simulating (A)symmetric Signal-to-noise (figure 3, 5A, 5B)
Transfer Matrix Noise Covariance Matrix
_[0.5 0
A= [ 0 o 5]
03 0
€ =
ap =[085 035 o' o3l
27 10.35 -0.5
_[0.5 0
A3 = [ 0o o 5]
Simulating Incomplete Signalsfor Conditioning: Serial (figure 8A, D)
Transfer Matrix Noise Covariance Matrix
05 0 0
A;=[0 05 0 ]
0 0 05
03 0 0
-05 0 0 e=|0 03 0
A= 0 -0.5 0 0 0 03
(i} 0 -05
0 0 0
A;=103 0 o]
0 03 0
Simulating Incomplete Signalsfor Conditioning: Feedforward (figure 8B, E)
Transfer Matrix Noise Covariance Matrix
05 0 0
A;=[0 05 0
0 0 05
03 0 0
-0.5 0 0 e=|l0 03 0
A = 0 -0.5 0 0 0 03
(i} 0 -05
05 0 0
A3=|0 05 0
03 0 0.5

Simulating Incomplete Signals for Conditioning: Recurrent (figure 6C, F)

Transfer Matrix

Noise Covariance Matrix
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