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Abstract 21 

Background: ‘Non-parametric directionality’ (NPD) is a novel method for estimation of directed 22 

functional connectivity (dFC) in neural data. The method has previously been verified in its ability to 23 

recover causal interactions in simulated spiking networks in Halliday et al. (2015).  24 

Methods: This work presents a validation of NPD in continuous neural recordings (e.g. local field 25 

potentials). Specifically, we use autoregressive models to simulate time delayed correlations between 26 

neural signals. We then test for the accurate recovery of networks in the face of several confounds 27 

typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-28 

noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) data 29 

length, and f) parallel/convergent signal routing.  We also apply NPD to data from a patient who 30 

underwent simultaneous magnetoencephalography and deep brain recording. 31 

Results: We demonstrate that NPD can accurately recover directed functional connectivity from 32 

simulations with known patterns of connectivity. The performance of the NPD measure is compared 33 

with non-parametric estimators of Granger causality (NPG), a well-established methodology for 34 

model-free estimation of dFC. A series of simulations investigating synthetically imposed confounds 35 

demonstrate that NPD provides estimates of connectivity that are equivalent to NPG, albeit with an 36 

increased sensitivity to data length. However, we provide evidence that: i) NPD is less sensitive than 37 

NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification 38 

of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate 39 

amounts of instantaneous signal mixing.   40 

Conclusions: The results in this paper highlight that to be practically applied to neural data, 41 

connectivity metrics should not only be accurate in their recovery of causal networks but also resistant 42 

to the confounding effects often encountered in experimental recordings of multimodal data. Taken 43 

together, these findings position NPD at the state-of-the-art with respect to the estimation of directed 44 

functional connectivity in neuroimaging. 45 

Highlights 46 

• Non-parametric directionality (NPD) is a novel directed connectivity measure. 47 

• NPD estimates are equivalent to estimates of Granger causality but are more robust to signal 48 

confounds. 49 

• Multivariate extensions of NPD can correctly identify signal routing. 50 
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Keywords 51 

functional connectivity; directionality; EEG; MEG; signal-to-noise; volume conduction; neural 52 

networks; computational neuroscience; multimodal data; local field potentials. 53 

Abbreviations 54 

dFC – Directed functional connectivity 55 

EEG – Electroencephalogram 56 

LFP – Local field potential 57 

MEG – Magnetoencephalogram 58 

MVAR – Multivariate autoregressive (model) 59 

NPD – Non-parametric directionality 60 

(mv) NPG – (multivariate) Non-parametric estimator of Granger causality 61 

SMA – Supplementary motor area 62 

SNR – Signal-to-noise ratio 63 

STN – Subthalamic Nucleus 64 

1 Introduction 65 

Questions regarding the causal relationships between anatomically connected regions of the brain 66 

have become of fundamental importance across many domains of neuroscience (Sporns 2010; 67 

Swanson 2012). A novel method for estimating directed functional connectivity (dFC), termed non-68 

parametric directionality (NPD), has been recently described in Halliday (2015). This method has 69 

been demonstrated to yield physiological insights into the connectivity of the cortico-basal-ganglia 70 

network when applied to (continuous) field recordings made in rodents (West et al. 2018). In this 71 

work we evaluate NPD’s performance at recovering known patterns of connectivity in the face of 72 

several confounding factors and compare it with another popularly used measure – the estimation of 73 

Granger causality.  74 

Functional connectivity is based on a description of the statistical dependencies between different 75 

neural signals and is typically estimated through time or frequency domain correlations (Bastos and 76 

Schoffelen 2016; Friston 2011). Magnitude squared coherence, equivalent to a frequency domain 77 

coefficient of correlation, has been widely adopted as the estimator of choice for functional 78 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 4 
 

connectivity in the neuroimaging community (Brillinger 1975; Halliday et al. 1995). Undirected 79 

measures of functional connectivity (such as coherence) are symmetrical, giving no indication of the 80 

temporal precedence of correlations, a property understood to be a necessary result of causation in 81 

time evolving systems (Wiener 1956), nor the predictability of one time series from that of the other. 82 

dFC aims to estimate statistical asymmetries in the correlated activity of a set of signals in order to 83 

infer the causal influence (or predictability) of one signal over another. Similar to the role played by 84 

coherence in measuring undirected functional connectivity, Wiener-Granger causality has emerged as 85 

a first-choice estimator of directed connectivity due to its well established theoretical basis (Bressler 86 

and Seth 2011; Ding et al. 2006) and its successful application to questions concerning causal 87 

networks inferred from large-scale neural recordings (e.g. Brovelli et al. 2004; Richter et al. 2018). 88 

Estimates of dFC are most frequently computed in the literature using methods estimating Granger 89 

causality (Dhamala et al. 2008a; Geweke 1982; Granger 1969; Kamiński et al. 2001). Granger 90 

causality is expressed in terms of the capacity of the information in the past of one signal, X, to predict 91 

the future of another signal, Y. Granger (1969) introduced a straightforward method of estimation 92 

through the comparison of an autoregressive model by which the explained variance of Y is compared 93 

between that of a ‘full’ model (i.e. accounting for the past of X and Y) with that of a restricted model 94 

(i.e. Y only). If a prediction of the future of Y is aided by information from the past of X, then X is said 95 

to ‘Granger-cause’ Y. The method requires factoring out the autoregressive component of the signal 96 

(i.e. the ‘restricted’ model) to avoid trivial correlations that occur simply due to the periodicity in the 97 

signals. 98 

Efforts to estimate Granger causality without resorting to autoregressive models have resulted in an 99 

extension of the method termed non-parametric Granger causality (NPG), which avoids the estimation 100 

of transfer functions from multivariate autoregressive (MVAR) coefficients (Dhamala et al. 2008a). In 101 

NPG, transfer functions and noise covariances are estimated through the spectral factorization of 102 

(non-parametrically derived) Fourier coefficients rather from MVAR model parameters. Here, we 103 

directly compare NPG with NPD as an estimator of dFC. Both methods share the property of being 104 

non-parametric (model-free) approaches which can be derived from identical spectral transforms 105 

made either via Fourier or wavelet techniques. 106 

NPD is founded on the same principles of causality as Granger, namely that temporally lagged 107 

dependencies indicate causal direction. NPD works by decomposing the coherence into three 108 

temporally independent components separated by the relative lag of the dependencies between the 109 

signals: 1) forward lagged; 2) reverse lagged; and 3) instantaneously correlated. Rather than using a 110 

naïve cross-correlation estimator that is susceptible to spurious peaks resulting from the individual 111 

signals’ autocorrelations, NPD takes an approach akin to the factoring out of a ‘restricted’ model (i.e. 112 

of Y only) used in Granger. This is achieved through a process of spectral pre-whitening which acts to 113 
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bring the individual signal’s spectra closer to white-noise but preserves the correlations between them. 114 

In the original paper (Halliday 2015), the method was validated using a simple three node network 115 

with each node’s dynamics simulated using a conductance model of a spiking neurone in order to 116 

generate a series of discrete point processes. The authors demonstrated that NPD was successful in 117 

recovering the connectivity from a range of simulated architectures. Furthermore, the method was 118 

applied to spike timings (a point process) recorded from muscle spindle and shown to yield 119 

physiologically plausible estimations of causality. Our recent work has extended the application of 120 

NPD to continuous local field potential (LFP) recordings made from an in vivo preparation of the 121 

cortico-basal ganglia system (West et al. 2018).  122 

Estimation of empirical dFC in continuous neural recordings such as the LFP or 123 

magneto/electroencephalogram (M/EEG) is complicated by a number of factors. These include: low 124 

and possibly unequal signal-to-noise ratios (SNRs), instantaneous volume conduction, common drive, 125 

signal routing via parallel but disjoint paths, and the presence of cyclic paths within a network. All 126 

pose potential confounds for the metrics described here. The failure of Granger causality estimators in 127 

the presence of large amounts of measurement noise is a well-established shortcoming (Newbold 128 

1978) which becomes particularly acute in noisy electrophysiological recordings (Nalatore et al. 129 

2007). Differences in the recording gain between signals is also known to confound estimation of 130 

Granger causality, with the most commonly used estimator demonstrating bias towards favouring the 131 

strongest signal as the driver (Bastos and Schoffelen 2016; Haufe et al. 2012). This property is likely 132 

to be a nuisance when investigating causation between multimodal signal sets such as in experiments 133 

involving simultaneous measurements of MEG and LFP where significant differences in recording 134 

gain are to be expected (Litvak et al. 2011).  135 

Instantaneous mixing of the electromagnetic signals generated by distinct sources in the brain has 136 

long been known to make estimation of functional connectivity based on recordings such as the EEG 137 

difficult (Haufe et al. 2012; Nunez et al. 1997; Srinivasan et al. 2007). Common presynaptic drive 138 

produces correlations in pairs of output spike trains (Farmer et al. 1993), and in pairs of evoked 139 

potentials (Truccolo et al. 2002). This problem can lead to spurious estimates of directed connectivity 140 

if delays in the arrival of the common input induce lagged correlations between unconnected neurons 141 

or neuronal populations. When the common presynaptic input is measured, extensions of functional 142 

connectivity metrics built upon partial regressions (so called conditioned or partialized estimates) can 143 

be used to remove common input effects and, subsequently, remove the possibility of spurious 144 

inference of directed connectivity between neurones in receipt of lagged common input. Partial 145 

regression can be used with both NPD and NPG to reduce the influence of common drive. In the case 146 

of NPD, the authors introduced a multivariate extension that can be used to reduce the influence of 147 

common drive through partial regression of a third reference signal (Halliday et al. 2016). This 148 

method relies upon the reference signal substantially encapsulating the activity of the common drive. 149 
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In the case that the recordings are incomplete representations of the propagating neural activity, the 150 

conditioning will only be partially effective. NPD and NPG conditioned on a third signal can also be 151 

used to infer connectivity patterns where two signals are correlated through interaction with an 152 

intermediary signal (West et al. 2018). 153 

Statistical aspects of coherence estimation have been widely studied. Carter et al. (1973a) highlight 154 

that a coherence estimate constructed from averaging over n independent segments has an asymptotic 155 

standard deviation proportional to ���.�, suggesting that a large number of segments are required to 156 

obtain reliable estimates. Carter et al. (1973b) suggest a reasonable range for n is 32 to 64 segments. 157 

The directional decomposition in NPD is based on the use of time lag in a correlation or partial 158 

correlation function. As the number of lags is related to the segment length, using shorter segments 159 

may impact on the reliability of directional estimates as fewer time lags are available to infer 160 

directional information.  161 

In this paper we will assess the performance of NPD’s ability to recover the connectomes from 162 

several simulated architectures and in the presence of the previously stated confounds. We compare 163 

the accuracy of connectivity estimation with NPD and NPG under these different conditions. 164 

Furthermore, we also test the efficacy of a multivariate extension of NPD, the conditioned NPD, as a 165 

means of testing for the effects of common drive and its ability to discriminate between parallel signal 166 

routing. The amount of data required for accurate estimation of connectivity will also be assessed. 167 

Finally, we bring the presented methods to the analysis of empirically recorded data from patients 168 

with Parkinson’s disease. Using an example recording, we examine how artificially imposed changes 169 

in the signals’ SNR and linear mixing can change the estimate of dFC made between signals recorded 170 

from the human cortex and basal-ganglia. Our primary goal is to verify the utility of the proposed 171 

measure in application to real-world neuroimaging data. 172 

2 Methods 173 

2.1 Approach 174 

In this study we utilize spectral coherence for estimates of undirected FC, and NPD/NPG for 175 

estimates of dFC. We set up models of continuous neural signals with known connectivity 176 

architectures parameterized in MVAR coefficients. Confounds such as signal-to-noise and 177 

instantaneous mixing are then introduced following simulation of the MVAR process using an 178 

observation model. The analyses presented here start with the assumption that any exploratory 179 

analyses of the data are complete, including any artefact rejection and/or preprocessing and that one 180 

or more significant coherence estimates have been identified as a prerequisite for directional 181 

decomposition using NPD. Using coherence, we first establish the existence of coherent frequencies 182 
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within the modelled data sets. Patterns of connectivity in the models are then recovered using the two 183 

dFC metrics (NPD and NPG). As connectivity in the models is known (by design) we analyse how the 184 

metrics perform at accurately recovering the known connectivity profiles. Finally, we look at the 185 

methods’ application to empirical data when used to estimate the directed functional connectivity 186 

between the basal ganglia and motor cortex in recordings made from a patient with Parkinson’s 187 

disease (PD). 188 

2.2 Analysis Software and Data Availability 189 

Data was analysed using a set of custom scripts written in MATLAB R2017a (The MathWorks, 190 

Natick, MA, USA). Non-parametric directionality was implemented using the Neurospec toolbox 191 

(http://www.neurospec.org/). MVAR models were implemented using the BSMART toolbox (Cui et 192 

al. 2008). NPG calculations and spectral estimates were implemented in FieldTrip (Oostenveld et al. 193 

2011b). All scripts for the analyses presented here can be found in a GitHub repository 194 

(https://github.com/twestWTCN/NPD_Validate). A full list of script dependencies, toolboxes used, 195 

their authors, and links to their original source code can be found in Appendix I. The example patient 196 

data used in this paper is anonymised and available upon request. 197 

2.3 Functional Connectivity 198 

2.3.1 Spectra and Coherence 199 

Spectral estimates were made using periodogram estimates utilizing Hanning tapers.  Unless 200 

otherwise stated (see section 3.6 in which we investigate the role of data availability), data were 201 

divided into segments 28 samples in length (~1.3 s at 200 Hz). We computed the magnitude-squared 202 

coherence via: 203 

|��	(�)|
 = |��	(�)|
�		(�)���(�) 
(1) 204 

where �		, ���, ��	 are the X and Y autospectra and XY cross-spectrum respectively.  205 

2.3.2 Non-Parametric Directionality 206 

Non-parametric directionality provides a model-free estimate of directional correlations within a 207 

system through the decomposition of the coherence into components separated by their lags yielding 208 

separate instantaneous, forward-lagging, and reverse-lagging spectra (Halliday 2015). This is 209 

achieved using pre-whitening of the Fourier transforms. This acts to bring the spectral content of a 210 

signal closer to that of white noise, in this case using optimal pre-whitening with minimum mean 211 

squared error to compute the whitening filter. This procedure is equivalent to generating two new 212 

random processes which have spectra equal to 1 at all frequencies: 213 
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�		� (�) = 1, ���� (�) = 1 

(2) 214 

The prewhitening step effectively eliminates the autocorrelation structure of the respective signals but 215 

retains bivariate correlations between them. The pre-whitening brings the denominator of the 216 

coherence, the product of the autospectra (a normalization factor) equal to 1. Thus, the coherence can 217 

be reduced to the magnitude squared of the minimum mean square error (MMSE) pre-whitened cross 218 

spectrum: 219 

|��	(�)|
 = ��	� (�). 220 

(3) 221 

The overall scalar measure of dependence between X and Y, denoted as ��	
 , is defined as the integral 222 

over the coherence in equation (1). In line with the previous literature, the notation here uses as ��	
  to 223 

indicate a scalar measure of overall dependence and |��	(�)|
 to indicate coherence, a function of 224 

frequency. As the coherence loses all terms in the denominator, the equivalent cross-spectrum can 225 

then be transformed to the time domain to yield the time-domain correlation function: 226 

��	(�) = �

�� ��	� (�)���������� . 227 

(4) 228 

This measure can be decomposed (in the time domain) via Parseval’s theorem for any desired lag. We 229 

choose to separate into reverse, instantaneous, and forward components: 230 

��	
 = � |��	(�)|
�������    !    "
	→�

+ |��	(0)|
�  !  "
	↔�

+ � |��	(�)|
���'���    !    "	←�
. 231 

(5) 232 

These components may be abbreviated to: 233 

��	
 = ��	,�
 + ��	,�
 + ��	,�
  

(6) 234 

where component ��	,�
  yields correlations in which Y lags X, ��	,�
  instantaneous correlations, and 235 

��	,�
 correlations in which X lags Y. To create a set of frequency domain measures which decompose 236 

coherence into three directional components, the three terms in equation (6) are each Fourier 237 

transformed using the lag ranges in equation (5). This creates three frequency domain measures that 238 

capture reverse, zero-lag and forward directionality, respectively. Coherence is decomposed by 239 

direction using a ratio of the relative magnitude-squared values at each frequency as: 240 

|��	(�)|
 = )�′�	,�(�))
+	)�′�	,�(�))
 +	)�′�	,�(�))
. 241 
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(7) 242 

The prime symbol on the RHS of equation (7) is used to indicate that these are not formal coherence 243 

measures, but represent one of three directional contributions (reverse, instantaneous and forward) to 244 

the coherence. Thus, from each component we can assess spectrally resolved directional interaction 245 

whilst accounting for the signals’ autocorrelation structure. For a full derivation of the NPD method 246 

and details of its algorithmic implementation please refer to Halliday et al. (2016). 247 

2.3.3 A Multivariate Extension – Conditioned Non-Parametric Directionality 248 

In addition to bivariate NPD, we used a multivariate extension that allows the directional components 249 

of coherence to be conditioned upon a third signal (Halliday et al. 2016). The conditionalization of 250 

NPD is achieved through a partial regression of X and Y conditioned on Z. This analysis decomposes 251 

the partial coherence into the same three directional components: forward, reverse, and zero-lag. It 252 

can indicate if information in the bivariate interaction shares variance common to signals in other 253 

parts of the network. For example, the partial correlation between X and Y with Z as predictor can be 254 

used to determine if the flow of information from X → Y is independent of area Z, or whether the flow 255 

of information is X → Z → Y, in which case the partial coherence between X and Y with Z as predictor 256 

should be zero. The partial coherence can also be used to investigate if the flow of information is Z → 257 

X and Z → Y, or if it is X → Y → Z or Z → X → Y, or in the case of common input Z → X and Y, in 258 

which cases the partial coherence, and any directional components, should be zero. 259 

The relationship between the squared coherence function |�	�(�)|
  and the squared correlation 260 

coefficient was the starting point for the derivation of the non-parametric directionality method in 261 

Halliday (2015). The correlation coefficient is given by: 262 

��	
 = ,�
 − ,�|	
,�
  

(8) 263 

where the conditioned variance, ,�|	
  is the variance of the error process following a linear regression 264 

of Y on X. It then follows that the correlation coefficient may be conditioned to account for any 265 

common effect that a process Z may have on both X and Y by also estimating the residuals following 266 

regression with Z: 267 

��	|.
 = ,�|.
 − ,�|	,.

,�|.
  

(9) 268 

in which the processes X and Y are both conditioned (regressed) against the third process Z. Partial 269 

regression is often useful in situations in which it is believed that the tertiary signal Z can account for 270 
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some or all of the original association between X and Y. Thus, the objective is to distinguish whether 271 

there is a genuine correlation ��	
  that is distinct from the apparent one induced by Z: ��	|.
 . In the 272 

same manner by which the correlation coefficient may be conditioned to account for any common 273 

effect that a process Z may have on both X and Y, we can condition the estimated coherence 274 

|��	(�)|
	on Z: 275 

)��	|.(�))
 = )��	|.(�))
�		|.(�)���|.(�) 
(10) 276 

In this way we can form a so called ‘partial’ coherence to determine the association of the coherence 277 

between X and Y with predictor Z. By using this form of the coherence as the starting step we can 278 

continue with the same decomposition as was made before for bivariate NPD, in order to attain an 279 

estimate of the NPD between X and Y but conditioned on Z. In practice we achieve conditioning of 280 

the respective autospectra �		|.(�) and ���|.(�) using the approach set out in Brillinger (1988). This 281 

method has been used successfully in LFP recordings to recover known anatomical pathways in the 282 

basal-ganglia (West et al. 2018). For full details of the derivation and implementation of conditioned 283 

NPD, see Halliday et al. (2016). 284 

Increased levels of additive noise can impact on partial coherence estimates but should not distort any 285 

temporal precedence present in the triplets of signals (Baccalá and Sameshima 2006). Conditioned 286 

NPD uses decomposition by time lag to infer directionality so should be robust to increased levels of 287 

additive noise in the predictor. We explore the extent to which this is true in simulations of triadic 288 

networks in results section 3.8. 289 

2.3.4 Non-Parametric Granger Causality and its Relation to NPD 290 

Granger causality is based on the premise that if a signal X causes a signal Y, then the past values of X 291 

can be used to predict the state of Y beyond that of the information contained in the past of Y alone 292 

(Granger 1969). This has conventionally been tested in the context of multivariate autoregressive 293 

models fit to the data, and in which the explained variance of Y via a ‘restricted’ model based on Y 294 

alone is compared to that of a ‘full’ model using information of both the past of X and Y (Geweke 295 

1982). Frequency domain extensions of Granger have been developed (Geweke 1982; Kamiński et al. 296 

2001) and applied widely across many domains of  neuroscience (e.g. Brovelli et al. 2004). 297 

The requirement to fit multiple MVAR models can cause several difficulties in analyses, namely: i) 298 

the requirement of large model orders to capture complex spectral features; ii) computational cost of 299 

model inversion; and iii) assumptions as to the correlation structure of the data in order to capture the 300 

signal as an MVAR process. In order to avoid the requirement for the estimation of MVAR models, 301 

Dhamala et al. (2008) proposed a non-parametric estimator of Granger Causality. This estimator can 302 
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be derived from widely used Fourier or wavelet based spectral estimation methods which do not 303 

suffer from these complications. The method hinges on the derivation of a spectral matrix directly 304 

from the spectral transforms of the data (i.e. Fourier or wavelet) instead of the full transfer and noise 305 

covariance matrices specified in an inverted MVAR model. Subsequently, the spectral matrix is 306 

factorized to derive the transfer function and noise covariance matrices of the set of signals (Sayed 307 

and Kailath 2001). Via this technique it is possible to decompose the total power spectrum of Y 308 

between its intrinsic power and the causal contribution from X. The first term refers to the intrinsic 309 

power of Y, the second term to a causal contribution to the power of Y from X. For a full derivation 310 

and details of its implementation please refer to Dhamala et al. (2008). 311 

The difference between the way NPG and NPD determine causal or directional components is that 312 

NPG uses a decomposition of the signal power into intrinsic and extrinsic components, whereas NPD 313 

decomposes a normalised correlation coefficient according to time lag. Both NPG and NPD use a 314 

frequency domain approach. The frequency approach in NPG uses the formulation in Geweke (1982) 315 

in combination with factorization of the spectral matrix (Wilson, 1972), see Dhamala et al. (2008a, 316 

2008b) for details. NPD is based on the approach of Pierce (1979) to decompose the product moment 317 

correlation coefficient and coherence summatively into directional components. The starting point is 318 

the spectral matrix (as in NPG). The decomposition is achieved by generating an MMSE pre-whitened 319 

spectral matrix, /� , as: 320 

/� = 0 1 ��	(�		���)��.�
�	�(�		���)��.� 1 1, 321 

(11) 322 

where ��� and �		 are the autospectra, and ��	 and �	� are the cross spectra, with frequency argument 323 

omitted. The effect of this pre-whitening allows coherence to be calculated directly from the cross-324 

spectra. NPD thus decomposes coherence according to time lag in the normalised correlation whereas 325 

NPG decomposes the spectrum into intrinsic and extrinsic factors, the presence of non-zero intrinsic 326 

factors is taken as indicative of a causal effect in NPG. 327 

2.3.5 Pairwise Versus Multivariate Applications of Metrics 328 

Both NPD and NPG can be used in either a bivariate (pairwise) or a full multivariate (i.e. greater than 329 

two signals) framework. As pairwise analyses of dFC are by far the most common approach used in 330 

the current literature we primarily make a comparison of bivariate NPD and NPG computed between 331 

two signals only. However, when investigating issues such as common drive and the influence of 332 

tertiary signals we utilize the multivariate extension of NPG (mvNPG; Wen et al. 2013) and compare 333 

it with conditioned NPD. mvNPG extends Geweke’s formulation of Granger beyond pairwise 334 

analyses using spectral matrix factorization. In combination with Dhamala’s approach to obtain 335 
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spectral matrices from Fourier transforms of data this yields a method by which it is possible to create 336 

a non-parametric estimator of causality in high dimensional data. mvNPG used here is implemented in 337 

Fieldtrip (Oostenveld et al. 2011a). 338 

Conditioned NPD is indicated by the use of brackets to signify the conditioning signal (e.g. NPD(x) 339 

signifies NPD conditioned on signal X). This approach is used exclusively in section 3.1 (common 340 

drive) and 3.8 (incomplete signals for conditioning). 341 

2.4 Generation of Synthetic Data 342 

2.4.1 Multivariate Autoregressive Modelling 343 

In order to simulate data that models lagged propagation between simple periodic systems we used 344 

MVAR modelling. MVAR models are an extension to 1-dimensional autoregressive models in which 345 

a model variable can be expressed as a linear combination of its previous values plus some stochastic 346 

error term. A Pth order MVAR model with 2 number of states is given by: 347 

34 = 5 +6A�	34�� 	+ 84
9

�:�
 

(12) 348 

where 3; is a [2 × 1] vector of values at time t, and 3;−? are the values at time (; − ?).	A�, … , A9	are 349 

[2 × 2] matrices of autoregressive coefficients at lag ?, 5  is a vector of constants, and 8; is 350 

innovation noise (Gaussian) with zero mean and covariance �. An AR model of order P describes the 351 

N values at time, 3;, as a linear combination of P previous values, 3;−?, a set of constants, c, and a 352 

vector of additional noise values, A;. The P matrices B?	(? = 1, … , C) specify the linear dependencies 353 

in the model at time lag i. Simple periodic signals may be engineered in the MVAR formulation by 354 

setting of alternating signed coefficients at different lags. For example, to obtain a lag two periodicity 355 

of the system variable X we set A�,
 = [1 − 1]. The alternating signs of the coefficients set up the 356 

signal to oscillate with a period equal to the difference in lags. In order to introduce correlations 357 

between variables we introduced non-zero coefficients off the diagonal. In this way we simulate 358 

lagged connectivity by setting positive coefficients between nodes at lags greater than 1. For the 359 

parameters of the simulated MVAR models please see appendix II. Simulations were made using the 360 

BSMART toolbox. All simulations were run with sample length T, where T = 5 x 104 data samples 361 

(except in sets of simulations investigating data availability and benchmarking; see below). In order to 362 

set a time scale of the simulations we chose an arbitrary sampling frequency of 200 Hz which places 363 

simulations around the frequencies typically observed in neural data. This yields total simulation time 364 

of 250s (unless otherwise stated). The model architecture for each set of figures is outlined using a 365 

ball and stick diagram next to the main results. All MVAR models used were tested for asymptotic 366 
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stability by determining that the absolute value of the eigenvalues of a model’s companion matrix 367 

were less than 1 (as per Lütkepohl 2005). 368 

2.4.2 Observation Modelling 369 

To introduce the effects of changes in SNR and instantaneous mixing of signals that can arise due to 370 

the practical aspects of experimental recordings of neural signals, we construct an observation model 371 

on top of the model of the dynamics that maps from the hidden internal variables 3  onto the 372 

externally observed variables D. This function adds observation noise to the MVAR signal and then 373 

applies an instantaneous linear combination of the internal variables: 374 

D = E(F3) + GH 

(13) 375 

where D is a vector of observations created using the vector of internal variables, 3, combined with a 376 

vector of additive observation noise (i.i.d, zero-mean, unit-variance, white noise)  H weighted by 377 

scalar factor G  which determines the effective SNR of the observed variables. The function E(∙) 378 

indicates z-standardization to zero mean and unit variance. A [2 × 2] mixing matrix L is used to 379 

introduce dependencies between the observed signals. There is a constraint on the diagonal of L such 380 

that F?=J = 1, ? = 1,… ,2 such that the gain of the signals themselves was unaltered. Thus, we specify 381 

the mixing between signals by specifying the off-diagonal entries of matrix L. When applied to z-382 

normalized, uncorrelated data, the mixing matrix introduces shared variance equal to the square-root 383 

of the off-diagonal coefficients of L (Halliday et al. 2016).  384 

We compute the decibel SNR as the log ratio of signal variances i.e. 1:1 SNR is equivalent to 0 dB. In 385 

some simulations we investigate the role of asymmetric SNR and so report the difference of SNRs 386 

between signals: ΔL2�	� 	= L2�	(MN) − L2��(MN) . Assuming one signal is held constant then a 387 

difference in SNRs of 10 dB is equivalent to 10 times increase in the noise in the other signal, 20 dB 388 

equivalent to 100 times increase, etc. SNR calculations are computed from the ratios of the mean 389 

narrowband power within the range of the peak frequency of activities ±5 Hz with that of the 390 

background noise, providing good coverage over the example signals used here. In empirical 391 

neuroimaging data where multiple origins of noise exist, this is a much harder quantity to estimate 392 

(Parkkonen 2010). We however use +12 dB as the level for the weakest signal, equivalent to a good 393 

quality EEG recording (Goldenholz et al. 2009).  394 

2.5 Benchmarking the Metrics: Data Length, Number of 395 

Connections, and Combined Confounders 396 

To determine the quantity of data required to use either NPD or NPG for the accurate estimation of 397 

dFC, we setup a benchmark test and then examine how the score of this benchmark changes with the 398 
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amount of available data and number of connections in a given network. We also use this benchmark 399 

to assess how a combination of confounding effects can influence network estimation. First, we 400 

randomly simulate three sets of 24 random directed graphs with a fixed number of vertices (n = 3) and 401 

including either one, two, or three edges in total. These graphs are then simulated as MVAR models 402 

(as detailed above) by placing non-zero autoregressive coefficients with a random lag uniformly 403 

distributed in the interval [1 3]. The simulated data is then analysed with NPD and NPG. By using a 404 

non-parametric permutation test to form confidence intervals (see section 2.7.1 below) for each 405 

measure we determine the detection of a directed connection if 10% of the spectra for the given pair 406 

of nodes is over the 99.99% confidence limit to yield a predicted adjacency matrix OP . For every 407 

element of OP that is equal to that in the actual adjacency matrix O (i.e. a true positive or negative) the 408 

score is +1; for every non-equal element (i.e. false positive or negative) the score is -1. Thus, the 409 

maximum score in a three-node network is +6 (all correct) and the minimum is -6. We report scores as 410 

percentages of the maximum from -100% to 100%. 411 

In the first set of benchmarks we investigate both the role of data availability and the number of 412 

connections in a graph. We perform the benchmark with the 24 random graphs using: i) a fixed 413 

amount of data (500s), but variable trial length (23 to 210) (such as is the case when deciding how to 414 

epoch data from a ‘steady-state’); and ii) a variable amount of data but a fixed number of trials (n = 415 

100) (such is the case when analysing an event related study with a set number of repetitions).  416 

In the second set of benchmarks we investigate how the combination of asymmetric SNR and signal 417 

mixing effects act to confound connectivity estimation. We make a 12 x 12 design, adding noise to the 418 

target node to achieve a range of narrowband (50-60 Hz) ΔL2��,
 of -45 dB to 0 dB and then adding 419 

signal mixing to achieve 0% to 100% shared variance. The weakest signal is again clamped to 12 dB. 420 

Note that the adjustment of SNR is done before signal mixing. The benchmark is then applied for data 421 

simulated from the 24 random graphs described above. 422 

2.6 Experimental Data 423 

2.6.1 Experimental Protocol 424 

In the final experiment of this paper, we investigate how the two dFC metrics (NPD and NPG) 425 

perform when estimating the dFC between the cerebral cortex (supplementary motor area; SMA) and 426 

the subthalamic nucleus (STN). This connection has been reported to be predominantly cortically 427 

leading in patients with Parkinsonism (as estimated with NPG in Litvak et al. 2011, 2012). In this 428 

paper we use an example recording in which NPG reveals a clear directed component from SMA → 429 

STN. This recording was taken from a cohort of patients with PD who have undergone surgery for 430 

deep brain stimulation (DBS). The experimental data contains recordings made using whole head 431 

MEG and simultaneous LFP recordings from DBS electrodes implanted into the STN. The recordings 432 
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were made for approximately 3 minutes with the patient quietly at rest with their eyes open. 433 

Experiments investigated the differences in MEG and LFP activity and connectivity when patients 434 

were withdrawn from their usual dose of L-DOPA (OFF) versus the L-DOPA treated state (ON). 435 

Patients were not undergoing stimulation with DBS at the time of the recording. The two-time series 436 

analysed were 183s in duration with MEG from a right SMA virtual sensor recorded simultaneously 437 

with an LFP from the right STN in a PD patient in the OFF state at rest. All experiments were 438 

conducted in a study approved by the joint ethics committee of the National Hospital of Neurology 439 

and Neurosurgery and the University College London Institute of Neurology. The patient gave their 440 

written informed consent. For full details of the surgery, implantation, recording, and experimental 441 

paradigm please see Litvak et al. 2011.  442 

2.6.2 Preprocessing 443 

The MEG and LFP signals were first down-sampled to 200 Hz. They were then preprocessed using a 444 

high-pass filter (passband at 4 Hz, finite impulse response, two-pass, filter order optimized for data 445 

length). Recordings were truncated 1s at either end to remove border artefacts arising due to 446 

movement and equipment initialization. Finally, data were visually inspected to determine the 447 

presence of large abnormalities and high amplitude transients. In the case of the example data used 448 

here, none were found. 449 

We performed estimation of the empirical SNR of the signals as detailed in section 2.4.2. The 450 

empirical data was first standardized to unit variance and then spectral peaks in the 14-31 Hz were 451 

compared with that of a white noise surrogate also with unit variance. The ratio between the peaks is 452 

reported as the estimated empirical SNR, equivalent to the difference of the spectral peak (in beta 453 

band) with that of the noise floor. 454 

Changes to the SNR, asymmetric SNR, and linear mixing of the empirically derived signals were 455 

introduced using the same process as listed in section 2.4.2. This treatment ignores the fact that the 456 

data by necessity of empirical recording have already undergone observation with a transform similar 457 

in form to that in equation (13) but with unknown parameters regarding the lead-field (mixing matrix) 458 

and observation noise. Instead we take the empirical recordings as a ground-truth and investigate 459 

subsequent changes following artificially induced confounds. 460 

2.7 Statistics 461 

2.7.1 Permutation Confidence Intervals 462 

In order to form confidence intervals for the connectivity metrics we make no assumptions as to the 463 

form of their distributions but instead form permutation distributions of the metrics estimated from 464 

surrogate data and computed using a non-parametric rank order significance threshold (Theiler et al. 465 

1992). We adopt a phase randomization approach to generate surrogates (Breakspear and Terry 2002; 466 
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Lancaster et al. 2018) which acts to preserve the magnitudes of the spectral estimates whilst 467 

scrambling the phase and hence disrupting any interaction between signals. For details and a 468 

discussion of the algorithm please see appendix I as well as Lancaster et al. (2018).  For each test we 469 

generated 1000 realizations of the surrogate process. We obtain the P = 0.001 confidence limit by 470 

taking the 99.9th percentile of the resulting distribution. Limits are plot in figures as a dashed line with 471 

arrows on the side of the axis to indicate their values.  472 

2.7.2 Least-Squares Regression 473 

In the case of some confounds the response profiles were found to be sigmoidal functions with a 474 

maximum response, midpoint Q�; and steepness R. We used a least-squares regression to fit the 475 

logistic function. All reported fits exceeded R2 > 0.95 and we report the estimated parameters of the 476 

curves as summary statistics of the connectivity metrics’ modulation by a confound. 477 

3 Results 478 

3.1 Organization of the Results 479 

In the following section the effects of common drive, degradation of SNR, asymmetric SNR, 480 

instantaneous signal mixing, data availability, and simultaneous confounders upon estimation of dFC 481 

using NPD and NPG are investigated. In figures 1-4 examples of the impact of these individual 482 

confounding factors upon the power and connectivity spectra are presented. In order to summarise the 483 

effects of the confounds across a much larger range of scales, in figure 5 the effects of SNR, unequal 484 

SNR, and signal mixing are visualized as a plot of the relevant statistic of the connectivity (i.e. 485 

strength or asymmetry) against a scale of values of the confounding factor. In each of the following 486 

sections (3.2-3.5) we inspect first the example spectra displayed in figures 1-4, and then go on to 487 

establish the total effect over the full range of the confound using the data illustrated in figure 5. 488 

Figures 6 and 7 use a benchmarking approach to quantify the accuracy of recovery given differing 489 

data lengths and mixed confounds. In the final section and figure 9 we look at application of the 490 

metrics to empirically recorded data. 491 

3.2 Effects of Lagged Dependencies and Common Drive  492 

We first demonstrate the efficacy of the metrics at recovering simple hierarchical architectures and 493 

establish how common input can act to confound them. To this end we present results from a simple 494 

3-state, 3rd order MVAR model with no signal mixing and zero observation noise. The MVAR model 495 

is imbued with periodic dynamics that are identical at each node and are driven by noise with fixed 496 

covariance structure. Non-zero (off-diagonal) matrix coefficients are all fixed at 0.5 and the full 497 

MVAR parameters can be seen in table 1 of appendix II. We design the MVAR model (figure 1A) 498 

such that all edges originate at node X and correlations are lagged such that an input arriving at node 499 
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Z lags that at node Y (δ1 < δ2). This introduces a deliberate confound as dFC methods estimating 500 

causality in a way dependent upon temporal lag will assign spurious causality from Y to Z, due to the 501 

difference in arrival times of input from X. An example time series of the process is shown in figure 502 

1B and the resulting analyses of the functional connectivity are shown in figure 1C.  503 

This model generates rhythmic activity at ~55 Hz as indicated by the peaked autospectrum for each 504 

node. Functional connectivity as measured using standard coherence shows significant connectivity (> 505 

0.5) between all nodes, albeit reduced for the connection between Y and Z. We next estimate directed 506 

connectivity using NPD. NPD shows that all connections are in the forward direction for X → Y and 507 

X → Z. As the full coherence is equal to the sum of the directional components, the overlap of the 508 

forward NPD (spectra in the top-right panel of the figure) with the coherence shows that they are 509 

equivalent in this case. The shorter lag in transmission from node X → Y compared to X → Z, results 510 

in a spurious estimate of coupling from Y → Z when estimated with NPD. However, when we 511 

condition the NPD upon the signal that both node X and Z receive common input from (NPD 512 

conditioned on node X; NPD(X)), we see that the Y→ Z correlation is abolished.  513 

When pairwise Granger (NPG) was applied to the simulated data, the connectivity from X to Z and Y 514 

was very similar in form to the unconditioned NPD (data not shown). However, as the multivariate 515 

estimator of Granger (mvNPG) considers the full covariance across all nodes, its application acted to 516 

remove the spurious Y→ Z correlation that arose due to the common drive. This limitation of pairwise 517 

NPD is readily overcome using the multivariate extension that allows for the conditioning of the 518 

common input. In this way the results between mvNPG and NPD conditioned upon the common input 519 

(NPD(X)) are comparable. Both NPD(X) and mvNPG give estimates of Y → Z that are below the P = 520 

0.001 confidence interval indicating the absence of any significant directed connectivity between X 521 

and Y. 522 

3.3 Effects of Low Signal-to-Noise Ratios 523 

Recordings of field activity in the brain are made in the presence of both endogenous neural 524 

background activity as well as observer noise originating from recording equipment and other sources 525 

outside the brain. In figure 2 we simulate the effects of signal-to-noise ratio (SNR) upon estimates of 526 

functional connectivity. The variance of the MVAR process was standardized and so was equal in all 527 

simulations. We used additive Gaussian noise in the observation model to simulate an SNR of 1:0 (+ 528 

∞ dB), 4:3 (+ 5.3 dB), and 1:3 (- 1.0 dB). All functional connectivity metrics were resistant up to 529 

moderate amount of additive noise (SNRdB = + 5.3 dB), but all estimates were heavily attenuated for 530 

the greatest noise tested in figure 2 i.e. SNR = -1.0 dB. When looking across a wider range of SNRs 531 

(figure 5A), both NPD and NPG approached 0 when the data became almost entirely noise i.e. SNR 532 

approached 0:1 (- ∞ dB). Responses were sigmoidal for all three metrics measured with half 533 

maximum suppression around 50% signal loss. Non-linear least-squares fitting yielded parameter 534 
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estimates of the logistic rise for each FC estimator (midpoint Q� and steepness R): coherence Q�STU = 535 

1.12 dB, RVTU = 0.12; NPD Q�W9X = 1.47 dB, RW9X = 0.11; and NPG Q�W9Y = + 7.1 dB, RW9Y = 0.07. 536 

From these estimates and the curves shown in figure 5A, it is clear that coherence and NPD 537 

effectively share the same response profile to SNR. NPG is more sensitive to noise with estimates 538 

becoming degraded at higher SNRs (Q�W9Y >	Q�W9X). Overall the two metrics have a difference in the 539 

midpoints of the calibration curves of ~8 dB, with NPG being more sensitive to noise by almost an 540 

order of magnitude greater than NPD. However, the differences between the NPG estimator and NPD 541 

result in different SNR thresholds required to detect statistically significant connectivity (i.e. greater 542 

than the P = 0.001 confidence threshold) and so the measures reach significance at different SNR 543 

levels: for NPG at -7 dB (SNR = 1:5), and for NPD at -11.5 dB (SNR = 1:14). 544 

3.4 Effects of Differences in Signal-to-Noise Ratios between Signals 545 

Asymmetries in the SNR of different signals are known to distort the estimation of dFC when using 546 

methods based upon Granger causality (Bastos and Schoffelen 2016; Nolte et al. 2008). We next 547 

tested whether this was true for NPD. We simplified the model to contain just 2 nodes that were 548 

reciprocally connected with the same lag. Again, the output of the MVAR model was standardized to 549 

have unit variance. We then modified the SNR of the first node (X) via the same process as for the 550 

previous set of simulations but fixing the variance of the noise of the second (Y) node to yield an SNR 551 

of +13 dB. Signals were constructed with a difference of SNRs between X and Y (ΔL2�	� ) equal to 552 

-17 dB, -7 dB, and 0 dB and calculated with respect to the SNR of Y which was held constant. The 553 

results of the simulations are shown in figures 3 and 5B. In figure 3 we plot the difference in the 554 

estimates of the directed connection (i.e. X → Y minus Y → X; Δ/[	�) to explore any deviation 555 

away from the symmetry in functional connectivity expected from the MVAR model (Δ/[	�	≈ 0). 556 

Our simulations confirm that NPG is biased by differences in SNR between signals, showing that 557 

even at moderate asymmetries (ΔL2�	� = -7 dB) the weaker signal is estimated to be driven by the 558 

stronger i.e. Y→ X. NPD suffers far less from this confound and maintains estimation of the 559 

difference in coupling as close to zero for all conditions tested. Analysis with NPD shows far less 560 

deviation from the ground truth of symmetrical coupling when the SNRs are unequal. When looking 561 

across a range of SNR asymmetries the response of each measure is apparent (figure 5B). NPG 562 

spuriously identifies directed coupling, with the bias for Y leading when ΔL2�	� is in the range -10 563 

dB to -50 dB and peaking around -35 dB (zone II of figure 5B). In contrast, the bias for X leading is 564 

when X has a stronger SNR and ΔL2�	�  is in range of +10db to +50 dB, and peaking around 565 

ΔL2�	� = +35 dB (zone IV). At very large (positive) or very small (negative) ΔL2�	�	the bias in 566 

coupling is diminished and there is a return to symmetrical estimate of connectivity as both NPD and 567 

NPG approach 0 for both directions (zones I and V). However, whilst NPD exhibits a much weaker 568 

bias than NPG it does still demonstrate an above significant difference in connectivity. However, 569 
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deviations in estimation of symmetrical coupling arising due to unequal SNR are roughly an order of 570 

magnitude smaller than NPG with a maximum Δ2C\	� of -0.045 versus Δ2C]	� of -0.42. In terms 571 

of deviation from the difference in measures when ΔL2�	� = 0 dB, NPD shows a maximum of 1.5 572 

times inflation in asymmetry. For NPG this bias is a maximum of 20 times larger indicating its 573 

increased susceptibility to unbalanced SNRs.  574 

3.5 Effects of Instantaneous Signal Mixing 575 

Neurophysiologically recorded signals such as MEG, EEG, and LFPs are subject to instantaneous 576 

mixing of the underlying dipole currents as a result of field spread effects. We next simulate these 577 

effects by multiplication of the simulated MVAR process with a linear mixing matrix and investigate 578 

the influence of mixing coefficients upon estimates of dFC. We use an identical model to that in 579 

section 3.2 (3 state, 3rd order MVAR) but with the addition of the observer model to model signal 580 

mixing at a range of values of λ to yield simulations with 0%, 20%, and 60% shared variance. There 581 

is no observation noise added. The results of the analysis are shown in figure 4. 582 

The confounding effect of instantaneous mixing was established by first estimating the degree to 583 

which it may influence the symmetrical zero-lag component of the NPD. As expected, it was found 584 

that the zero-lag NPD is increased by mixing (data not shown), particularly at frequencies outside of 585 

the periodic component of the signal. This occurs as in the case of the unmixed signals, correlation 586 

between processes is dictated by off diagonal MVAR coefficients at lags greater than zero. When 587 

mixing is introduced, common noise from outside the main frequency band of interaction more 588 

readily overcomes the intrinsic noise at each node (which is weaker in power than activity at the 589 

interaction frequency) and so results in the largest zero-lag correlations outside of the main periodic 590 

component of the signals. 591 

When using NPD to estimate dFC we found that it accurately reconstructs the designed connectivity 592 

up to a moderate degree of signal mixing (45% shared variance), albeit with a reduction of the 593 

estimated magnitude of connectivity (e.g. 0.6 to 0.4 for X → Y). At the highest degree of mixing 594 

(90% shared variance) the spurious connectivity between nodes Y and Z (introduced by the lagged 595 

common drive from node X) becomes increasingly symmetrical with an increase in the connectivity 596 

in the reverse direction (i.e. Y → X) despite the absence of these connections in the model arising 597 

either by design or by lagged common input. Overall, with increased signal mixing, the estimate of 598 

NPD is weakened equally across all connections. Analysis with NPG however shows that mixing has 599 

the effect of introducing spurious connectivity between Y and Z, exhibiting a small but significant 600 

reversal connectivity at Z → Y at even moderate mixing (45% shared variance). At the greatest 601 

degree of mixing, NPG determines statistically significant connections (above P = 0.001 permutation 602 

confidence interval) for Y → X and Z → X, neither of which are in the underlying model. Unlike 603 

NPD, which shows a uniform reduction in magnitude with increased mixing, the magnitude of NPG 604 
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estimates depends upon the initial SNR of the nodes. In this instance the X → Z connection is 605 

weakened whilst the X → Y is strengthened. This effect is due to the process explored in section 3.4, 606 

by which unequal SNR biases the NPG estimator. 607 

When testing across a wider range of degrees of signal mixing (figure 5C) the difference in the 608 

response of NPD and NPG is apparent. When using NPG to estimate dFC the magnitude of the 609 

estimate of X→ Y increases to a maximum at around 50% shared variance and then quickly collapses 610 

at very high mixing as instantaneous correlations begin to predominate. This result is related to the 611 

findings of the section 3.4 in which it was shown that signal leakage acts to modify the effective SNR 612 

of the signals such that leakage from one signal can act to bias causality estimates towards another 613 

signal at even moderate amounts of instantaneous mixing. This effect is apparent when looking at the 614 

trace of the standard (symmetrical) coherence (in blue) which drops to a minimum at ~30% shared 615 

variance but then increases as zero-lag correlations take over. As the NPD explicitly ignores the zero-616 

lag component, it displays simpler behaviour, and reduces in amplitude with increased mixing. This 617 

occurs because zero-lag coherence predominates, and the lagged components become increasingly 618 

small.  619 

3.6 Effects of Data Availability upon Benchmarks of the Metrics’ 620 

Accuracy 621 

Application of functional connectivity metrics to real world data are often limited by the amount of 622 

data that is available to estimate them. In the next series of analyses, we quantify the dependency of 623 

accurate estimation upon the sufficiency of the given data. We use the benchmarking approach laid 624 

out in the methods and examine the role of data availability in two ways: 1) data which is continuous 625 

but of fixed total length (500s) data which is variable in length but with a fixed trial length. The 626 

results of this are shown in figure 6. In figure 6 A and B we compare NPD with mvNPG in the 627 

accurate recovery of known patterns of connectivity using a benchmark score of accuracy (see method 628 

section 2.5) when using a fixed amount of data. We observe a common trend that the overall accuracy 629 

of recovery increases with trial length, reaching a maximum at the highest trial length tested at 210 630 

samples (equivalent to 39 trials each ~5s in duration assuming a 200 Hz sampling rate).  The recovery 631 

of denser models required longer trial lengths and overall were estimated less accurately. This effect 632 

occurs due to the introduction of common drive effects inducing false-positive detection of 633 

connections. Sparser networks including just one single connection reached maximum accuracy with 634 

trial lengths as short as 25 samples (equivalent to 1250 trials each ~0.16s in duration). With a fixed 635 

data length, it was found that NPD required shorter trials than mvNPG to reach similar degrees of 636 

accuracy (figure 6A versus 6B). Accuracy of recovery falls off with longer duration trials as the 637 

reduced number of repetitions hinders accurate estimation. 638 
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In figures 6 C and D, the total data availability (i.e. 100 trials of variable duration) upon estimator 639 

accuracy was investigated. Again, both metrics displayed improved accuracy with increasing trials 640 

lengths. However, with longer trial lengths, mvNPG was able to accurately recover connectivity of 641 

models with denser connectivity than for NPD: in the case of networks with three random 642 

connections, and with a long trial length of 210, mvNPG reached ~85% benchmark score versus 65% 643 

for NPD. Sparser models with just one or two connections showed an optimal trial length around 25 644 

(0.16s at 200 Hz) for mvNPG versus 26 (0.32s at 200 Hz) for NPD.  645 

3.7 Effects of Combined Confounds: Instantaneous Mixing and 646 

Asymmetric Signal-to-Noise Ratios 647 

Empirically recorded signals are subject to several simultaneous confounding effects. In figure 7 we 648 

present results from a benchmarking analysis in which we confound simulated signals by introducing 649 

both asymmetric signal to noise, as well as instantaneous mixing of sources to a range of combined 650 

degrees. In figure 7A and 7B we compare the performance of mvNPG and NPD in the estimation of 651 

connectivity in MVAR models with one random connection. We vary instantaneous mixing from 0 to 652 

100% shared variance; and asymmetric SNR at -45 dB to 0 dB. These simulations show that when 653 

estimating connectivity using NPD in sparse networks with just a single connection there is a highly 654 

accurate recovery (>95% benchmark scores) unaffected by asymmetric SNR, and only with high 655 

shared variance (> 50%) is there any significant drop in accuracy. A combination of strong 656 

asymmetry (-30 dB) and high mixing can however reduce benchmark scores to 30%. In comparison, 657 

mvNPG demonstrates poor accuracy across a much wider area of the conditions tested - with the 658 

benchmark reduced from 100% to 20% in the presence of negative asymmetric SNR greater than -20 659 

dB (i.e. source node is weakest) and at all degrees of mixing above 20%. Benchmark scores are 660 

weakened further by the coincidence of strong instantaneous mixing of the signals. 661 

In figures 7 C and D we vary instantaneous mixing from 0 to 100% shared variance; and asymmetric 662 

SNR at -45 dB to 0 dB.  These tests show that mvNPG is more readily corrupted by both confounds 663 

with scores ranging from 80% to 50% along the asymmetric SNR axis, and from 80% to -10% along 664 

the axis in which instantaneous mixing is varied. Furthermore, the estimation of denser connectivity 665 

with NPD is hindered by asymmetric SNR but is less susceptible to combined signal mixing. Whereas 666 

the negative benchmark scores for mvNPG indicate common detection of false positives, scores for 667 

NPD do not drop below 40% for any of the combined confounds tested. 668 

3.8 Confounds for Conditioned Directed Connectivity Arising from 669 

Incomplete Measurement of Signals.  670 

We next investigate the properties of the multivariate extension to NPD which we term conditioned 671 

NPD.  Conditioned dFC provides a more powerful method with which to explore network functional 672 
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connectivity; however, in empirical cases, conditioning with a tertiary signal Z may not produce 673 

complete attenuation of the spuriously inferred directed connection between X and Y arising from the 674 

common input Z. This may arise as a result of: i) incomplete capture of the activity occurring at Z; 675 

and/or ii) difference in the routing of signals; and/or iii) because there are other sources of the 676 

spuriously inferred connection than Z alone. In cases where structural connectivity is well understood, 677 

and the conditioned signal Z is not expected to interconnect the path between nodes X and Y, any 678 

attenuation when conditioning can be assumed to arise in information propagated forward in the 679 

network (feedforward). On the other hand, if anatomical connectivity is unclear the effect of 680 

conditioning upon directed connectivity may also be explained by conventional serial routing (i.e. X 681 

→ Z→ Y) but with incompleteness of observed signals at Z resulting in only partial attenuation of the 682 

X → Y estimate.  In the next set of tests, we ask whether there are any differences in how the 683 

measures of dFC behave in the face of incomplete signal observation.  684 

For this set of simulations, we use a three state, 3rd order MVAR model, with all nodes generating 685 

identical autonomous dynamics and identical cross-node coefficients at equal model lags. We test 686 

three model connectivities to compare three types of signal propagation: a) serial (i.e. X → Z → Y); b) 687 

feedforward (i.e. X → Y → Z); or c) recurrent (i.e. X → Y → Z → X). We simulate incomplete 688 

observation of Z by modifying the SNR as was done in section 3.2. The model architectures and 689 

results of simulations are shown in figure 8. We demonstrate that in the simplest case of a serial path, 690 

the NPD conditioned on signal Z (NPD(Z)) behaves as expected: the estimate of connectivity X → Y 691 

is attenuated as all information between them is routed via Z. With decreasing SNR of the observation 692 

of Z we show that conditioning has less and less effect and converges to the estimate yielded by the 693 

unconditioned NPD. Pairwise NPD remains constant at all SNRs tested as it does not account for any 694 

of the activity at Z. In these simulations, multivariate NPG (mvNPG) was also applied as a way to 695 

estimate directed connectivity that accounts for all signals in the model. We find that mvNPG shows a 696 

small decrease (~0.025) in the estimate of X→ Y with increased SNR of Z. This weak attenuation 697 

demonstrates that mvNPG can detect serial routing, yet it is not as suited for discriminating direct 698 

connectivity (i.e. X→ Y) from when there is relay via a secondary node (X  → Z → Y).  699 

We next looked at a feedforward network, where X propagates directly to Y, but is then relayed on to 700 

Z. Because some of the information passed X → Y is contained in Z, we expect conditioning to 701 

attenuate the directed connection. Again, we find that NPD(Z) behaves as expected, although the 702 

attenuation is weaker than in (A) when Z mediated the routing entirely.  In this way the difference in 703 

values between the NPD and NPD(Z) yields a measure of how much information of X is fed forward 704 

from Y→ Z. Thus, decreasing SNR of the observation of Z decreases the attenuating effect of the 705 

conditioned NPD. mvNPG remains at a constant magnitude for all SNRs tested. This demonstrates 706 

that the multivariate estimator of Granger causality is not sensitive to feedforward configurations 707 
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whereby the estimation of connectivity between X and Y is not influenced by activity at the terminal 708 

(receiving) node. 709 

For the third test, we investigated the combination of recurrent loops in the network and incomplete 710 

signal observation- two features likely to occur in real recordings from neural systems. We find that 711 

with complete signal observation (i.e. SNR → ∞) the metrics behave similarly to the feedforward 712 

model. A notable difference is the increased NPD of X → Y compared to the feedforward case, as 713 

correlations are reinforced by signals resonating across the loop. NPD(Z) behaves in a similar way as 714 

before, showing attenuation of the conditioned estimate at low noise levels, but converging back to 715 

the unconditioned NPD as the reference signal is obscured by noise and estimation of its confounding 716 

influence is lost. The mvNPG estimate of the connection X → Y decreases by 0.1 as the observation 717 

noise of Z is reduced. This finding indicates that in the case of recurrent connectivity, mvNPG is 718 

sensitive to the quality of the signal recorded at the routing node. In the case of recurrent 719 

configurations, this finding shows that mvNPG can readily discriminate between direct X→ Y 720 

connectivity and cyclical routing via a secondary signal recorded at Z. 721 

3.9 Example of Estimation of Directed Functional Connectivity in 722 

Confounded Empirical Data: Cortico-Subthalamic Connectivity 723 

 Using the example dataset described in section 2.6 we examine how changes in the overall SNR, 724 

differences in SNR between signals, and instantaneous signal mixing may act to confound the 725 

estimation of dFC in empirical data recorded from simultaneous MEG and LFP in patients with 726 

Parkinson’s disease. We first analyse the original empirical data and then subsequently introduce 727 

synthetic confounding effects as described in the methods section that outlined observation modelling. 728 

The results of this analysis are presented in figure 9.  729 

We demonstrate in the original data that there is a clear asymmetry in coupling with both NPD and 730 

NPG indicating a clear dFC from SMA → STN. The zero-lag component (top row figure 9) of the 731 

NPD is negligible in the original data. In contrast, the instantaneous component of NPG shows above 732 

significance level connectivity at 20-30 Hz. The empirical SNR of the data was estimated using the 733 

method described in section 2.6.2. We use activity in the beta band (14-30 Hz) to define the signal and 734 

then compare with the noise floor. SNR estimates of the MEG virtual electrode and LFP were + 1.9 735 

dB (SNRSMA ≈ 3:2) and + 4.0 dB (SNRSTN ≈ 5:2) respectively. This yields an empirical ΔL2� of -2.1 736 

dB with the LFP measured at the STN having the largest SNR. 737 

In the first set of experiments we reduced the SNR of both signals equally (figure 9 A-C). We added 738 

noise to the original signals to yield a range of SNRs: + ∞ dB, + 4.1 dB, and -1.9 dB. These analyses 739 

show that both NPG and NPD estimates of connectivity respond to a uniform reduction in SNR in a 740 
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simple and predictable way by reducing their overall magnitude approaching zero as the signals 741 

become mostly noise.  742 

Subsequently, the effect of changing the SNR of only one of the signals upon dFC estimates was also 743 

investigated (figure 9 D-F). Signals were constructed to have a range of ΔL2�: - 3 dB; +16 dB; and + 744 

26 dB. We reduced the SNR of the strongest signal only (STN; L2�MN^_W), in an attempt to bias the 745 

directionality estimates in the reverse direction (i.e. increase the strength of STN → SMA). However, 746 

it was found for both NPD and NPG that this had a similar effect to reducing the SNR symmetrically 747 

(i.e. when SMA → STN is weakened). This result suggests that for this dataset, it may not be possible 748 

to induce a strong bias in the inferred dFC by making one signal weaker than the other (i.e. 749 

L2�MN^`a>> L2�MN^_W) as there is no anatomical STN→SMA feedback (a situation in contrast with 750 

simulations investigating asymmetric SNR in section 3.4.). 751 

In the final column of figure 9 (panels G-I) the effect of signal mixing was measured. We simulated 752 

several degrees of signal mixing: λ = 0 (0% shared variance); λ = 0.075 (7.5% shared variance); and λ 753 

= 0.15 (15% shared variance). Again, it was found that the instantaneous component of the NPD 754 

behaves as expected, increasing in magnitude with increased signal mixing. This is most apparent in 755 

the frequencies outside the main oscillatory bands of activity. When using the instantaneous part of 756 

NPG, we found that there was generally an increase, yet the frequencies around the main component 757 

(of the peak in the lagged connectivity) were negative and uninterpretable. Furthermore, we show that 758 

even moderate increases in the signal mixing (7.5%) corrupt the dFC estimation when using NPG. 759 

This is especially apparent at high mixing levels (15%), where a wide band reverse component 760 

(STN→SMA) arises, as well as large second peak in the SMA→STN at around 4-12 Hz. NPD 761 

estimates are much more stable in comparison and only show a reduction in the original peak with 762 

increased mixing, but no spurious peaks emerge outside of this range at any of mixing degrees tested. 763 

4 Discussion 764 

The results presented in this paper further support the NPD methodology as an accurate and robust 765 

method for the estimation of dFC in continuous neural data. We first provided a face validation of 766 

NPD for estimation of the directed interactions between MVAR processes. Secondly, we assessed the 767 

performance of the NPD measure in the presence of several confounding factors that are likely to 768 

arise in experimental recordings of neurophysiological networks, namely: volume conduction, 769 

common drive, low SNR, unequal SNRs between signals, and recurrent connectivity. Thirdly, we 770 

provided a direct comparison of NPD with a well-established estimate of dFC based on Granger 771 

causality – NPG. Finally, our results show that the additional information gained from using a 772 

conditioned, multivariate extension of the NPD method allows for some of the confounding 773 

influences of common drive, or non-trivial signal routing, to be mitigated. The degree to which this is 774 
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achieved is dependent upon the extent to which the signal captures the neural activity at the recording 775 

site.  776 

4.1 A Summary of Effects of Signal Confounds 777 

4.1.1 Effects of Common Drive 778 

Common input to two parallel neural populations has long been known to be a confounding factor 779 

when estimating functional connectivity (Aertsen et al. 1989; Farmer et al. 1993; Horwitz 2003). The 780 

limitations of finite sampling over the brain means that no FC measure is immune to this problem as 781 

there always remains the potential for an unmeasured common input to the recorded populations from 782 

which an FC estimate is made. Our simulations demonstrate this effect where both pairwise NPD and 783 

NPG estimates indicate spurious causality in the case of lagged common input. However, when using 784 

multivariate extensions of the two methods, in which the common drive signal is factored out, it is 785 

possible to avoid spurious estimation of connectivity between nodes sharing a common drive. This is 786 

shown to be true when using the multivariate NPG which accounts for the total covariance across the 787 

network. On the other hand, NPD in its simplest form is measured in a pairwise manner and cannot 788 

account for the action of a tertiary signal on the naïve estimate. However, we demonstrate that this 789 

issue can be remedied using the multivariate extension of NPD in which the influence of a common 790 

drive may be regressed out in order to eliminate spurious connectivity between the driven nodes. 791 

Whilst this is a solution when the common drive is observed, there still remains the potential 792 

confound of an unobserved common signal, to which NPD and NPG are equally susceptible. These 793 

issues can be addressed by model based estimators of effective connectivity such as dynamic causal 794 

modelling which allow for the inference of unobserved states in a causal network (Friston et al. 2013). 795 

4.1.2 Effects of A/symmetric Signal-to-Noise Ratios  796 

Functional connectivity estimates are subject to the limits of inference implied by the SNR of the 797 

available recordings. We demonstrate (figure 5A) that coherence, NPD, and NPG are degraded by 798 

poor SNR with similar logistic decays. However, NPG exhibits a greater susceptibility to degradation 799 

by noise than NPD. NPG magnitude are reduced at SNRs an order of magnitude higher than those that 800 

would elicit an equal reduction in NPD.  Despite this, both measures show a remarkable resistance to 801 

even high levels of noise, with the range of SNRs at which both NPG and NPD provide statistically 802 

significant estimates of connectivity (i.e. having a magnitude exceeding the P = 0.001 confidence 803 

interval) reaching as low as SNR = 1:30 (equivalent to -15 dB). This would suggest that both are 804 

robust to the occurrence of false-negative errors as a result of poor SNR in neural recordings. These 805 

findings can also explain the common empirical finding of significant functional connectivity in the 806 

absence of obvious peaks in the power spectra. 807 
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A number of authors have noted that estimation of Granger causality is biased by the existence of 808 

unequal SNRs (Bastos and Schoffelen 2016; Haufe et al. 2013; Nolte et al. 2008). Our simulations 809 

reiterate this fact and demonstrate that NPG is biased to estimate the driving node as the strongest 810 

signal (section 3.4; figure 5B). This is an important problem as all neurophysiological signals 811 

comprise some unknown mixture of the signal of interest and background noise on a source by source 812 

basis. As a result, it can rarely be assumed that the SNRs of two signals are balanced. We find that 813 

when investigating the simultaneous effects of unequal SNR and instantaneous mixing, that NPG is 814 

most easily corrupted by the asymmetry in the signals, whereas NPD is most sensitive to mixing. 815 

This is particularly important when looking at directed connectivity between signals recorded from 816 

two different modalities (e.g. MEG and LFP) where the estimate will be biased in favour of the higher 817 

gain recording (to lead). For instance, in our data we show a difference in empirical SNRs of 4.5 dB 818 

between the LFP and virtual channel signals. This has led some authors to suggest the usage of time-819 

reversed data as surrogate comparison for dFC methods (Haufe et al. 2013) because if a true causal 820 

effect is present then time reversal should flip the sign of the directionality. Future validations should 821 

explore whether this approach can reduce the susceptibility of the NPD method to so called “weak” 822 

data asymmetries. However, the simulations here demonstrate that estimates made using NPD are far 823 

less subject to this confound than NPG. NPD is still affected by decreased SNR (both asymmetric and 824 

symmetric) but shows no bias, as directional estimates decrease uniformly as the SNR goes down.  825 

This finding leads us to suggest that in future studies of dFC in multimodal data or in other cases 826 

where the signals are likely to be of differing SNR, the NPD method provides a more robust and 827 

readily interpretable result over Granger based approaches. 828 

4.1.3 Effects of Simulated Volume Conduction through Signal Mixing 829 

The extent to which signals recorded from the brain are subject to the influence of volume conduction 830 

is generally more severe with decreasing distance between the recording electrodes. Experiments have 831 

demonstrated that LFPs measured from electrodes separated by a distance of 5 cm will typically show 832 

R2 values indicating approximately 50% shared variance (Nunez et al. 1997) and so analyses of 833 

directed functional connectivity are likely to be significantly affected by instantaneous mixing at 834 

distances much closer than this (e.g. recordings made from neighbouring contacts of the same 835 

intracranial electrodes). Instead, some authors have shown that functional connectivity analyses are 836 

better suited to source localized signals due to the reduced extent of signal leakage (Schoffelen and 837 

Gross 2009). This is likely to hold true for the application of NPD analysis to whole brain recordings. 838 

It is difficult to find a limit for when zero-lag effects will corrupt a method such as NPG as this 839 

ultimately depends on the nature of the lagged connectivity present in the data. In our simulations, we 840 

show that the bias on NPG induced by mixing is dependent upon the original SNR of the signals as a 841 

result of confounding by the mechanism of SNR asymmetry discussed in the previous section.   842 
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In addition to the benefit of being less susceptible to corruption by volume conduction, NPD provides 843 

explicit frequency resolved estimation of the zero-lag component of coherence, making it possible to 844 

estimate the extent to which coupling is influenced by instantaneous effects. This characteristic 845 

affords NPD an advantage over corrected methods of FC such as imaginary coherence or the phase 846 

locking index (Nolte et al. 2004; Vinck et al. 2011) which are set up to ignore zero-phase coherence.  847 

In this respect it is important to note that zero-phase coherence can reflect synchronous physiological 848 

coupling  (Roelfsema et al. 1997). We also note that volume conduction is manifest not only through 849 

the mixing of known sources of interest, but also hidden sources (Bastos and Schoffelen 2016). This 850 

introduces a confound like that of limited signal observation (see below) in which the influence of a 851 

node can only be estimated if it is directly observable.    852 

4.1.4 Effects of Data Length on Estimation Accuracy 853 

Estimation of connectivity in empirical data is limited by the availability of recorded data due either 854 

to experimental design or practical limitations of storage and acquisition. In figure 6 we presented a 855 

set of tests to determine the sensitivity of the two methods to data length. Overall, we find that NPG is 856 

the most robust of the two and can make accurate recovery at trial lengths two orders (to the power of 857 

2) shorter than NPD. As expected, this exact effect is dependent upon the complexity of the model to 858 

be evaluated. In the case where more dense networks are to be estimated, the required amount of data 859 

is larger than for simpler models with one or two connections. These limitations are likely due to the 860 

variance of the spectral estimators from which the two metrics are decomposed, with coherence 861 

known to be sensitive to having a larger number of samples to restrict estimates.  862 

It is well known that insufficient sampling will hinder parametric estimators of Granger causality 863 

(Seth et al. 2015). Simulations here suggest that with a good number of trial repetitions (> 35) at a 864 

sampling rate of 200 Hz, trial lengths from 0.5 to 1 second are required for accurate estimation with 865 

NPD. For NPG, this requirement is reduced to a minimum of 0.2 seconds, although these guidelines 866 

are likely to depend upon the SNR, as well as frequency band of the interaction of interest in the 867 

analysed data. 868 

4.1.5 Effects of Limited Signal Observation 869 

The argument that conditioned metrics of dFC such as conditioned NPD provide an increased ability 870 

to infer the causal structure of real-world neural networks hinges upon the assumption that a recorded 871 

signal truly captures the complete dynamics of the underlying population through which the signal is 872 

routed. In section 3.8 we provide an analysis of how the incomplete observation of signals acts to 873 

confound the estimates of dFC under several hypotheses of signal propagation: A) serial; B) 874 

feedforward; and C) recurrent connectivity (figure 8). In the case of the simplest architecture - serial 875 

propagation, the metrics behave as expected – the more poorly the signal used to perform the 876 

conditioning captures the underlying dynamics, the less the conditioning can inform accurate 877 
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estimation of directed connectivity. In the case of complete signal capture, the conditioning procedure 878 

(NPD(Z)) completely attenuates the directed connection (X → Y), as there is no possibility that any of 879 

the information contained in Y concerning node X is exclusive of Z. Therefore, if the signal recorded 880 

at Z completely captures the dynamics of Y then there is the potential to attenuate the X → Y 881 

connection entirely using a conditioning on Z. In the case of feedforward propagation, conditioning 882 

will also act to attenuate the estimate, but unlike serial processing (where the reference node Z 883 

provides an intermediate node in the chain of propagation between X and Y) the attenuation can never 884 

be complete as the variance introduced at Z is not shared with X or Y. In case C we show that the re-885 

entrant connection acts to increase the overall coherence due to cyclical passage of information in the 886 

circuit. Furthermore, conditioning acts to bring the NPD estimate closer to that of the feedforward 887 

model (where the re-entrant connection is missing). In the case of recurrent connectivity, the 888 

multivariate NPG also acts to discount the reconnection via Z. When Z is completely captured (SNR 889 

is high) then the NPG gives an estimated connectivity equivalent again to the feedforward model.  890 

These observations make it clear that if conditioning removes the inferred connectivity in its entirety 891 

then the conditioned node must be in a relay like position (i.e. X → Z → Y). For instance, this was 892 

found to be the case in West et al. (2018) where conditioning of NPD between the striatum and 893 

subthalamic nucleus upon the external segment of the globus pallidus removed connectivity almost 894 

entirely, leading to the conclusion that information propagated serially in the network, a finding in-895 

line with known anatomical details of the indirect pathway of the basal-ganglia. However, the 896 

findings described in the present paper regarding the combination of circuit organization and SNR of 897 

conditioned signals introduce ambiguity when interpreting the results of conditioned or multivariate 898 

estimates of directed connectivity in empirical data. For instance, incomplete attenuation of 899 

conditioning may arise either from poor SNR of the reference signal in a serial network or may 900 

indicate that the conditioned signal is placed in either a feedforward or recurrent configuration. In this 901 

case it is necessary to combine evidence from multiple conditioning steps (e.g. also conditioning X → 902 

Z on Y) in order to determine the exact signal routing. Previous work has argued that additive noise 903 

only impairs estimation rather than distorts temporal structure of the signals (Baccalá and Sameshima 904 

2006), here we show that this disruption is dependent upon the exact routing of the signals. 905 

Specifically, in networks containing a high degree of reciprocity, partialized estimated of coherence 906 

(both directed and undirected) are likely to be confounded. This finding could be used in principle to 907 

further specify the role of a conditioned node by determining its effect upon directed connectivity in 908 

response to additive noise. 909 

4.2 Extensions and Final Conclusions 910 

We have presented a validation of NPD, a novel tool for the assessment of dFC, in continuous neural 911 

recordings such as that measured in methods commonly used for human neuroimaging. We argue that 912 
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in the face of common practical issues arising from the physical limitations of many experimental 913 

recording methods, as well as from the complex biology of the systems that they aim to explore, NPD 914 

and its conditioned extension provide a useful method that builds upon the founding principles of the 915 

more established Granger causality. The NPD measure (conditioned and unconditioned) has been 916 

recently demonstrated to provide insights into the patterns of propagating neural activity in animal 917 

electrophysiology in the basal-ganglia (West et al. 2018) and hippocampus (Halliday et al. 2016); as 918 

well as in human motor networks (Halliday 2015; Spedden et al. 2019). and is likely to have wide 919 

application across other domains of clinical and experimental neuroscience. The finding that NPD is 920 

robust to the confounding effects of SNR asymmetry means that it may be readily applied to multi-921 

modal neural recordings without some of the concerns that may arise with Granger-based methods.  922 

The validation provided here is not extensive: there is a wide range of other existing dFC metrics to 923 

which we have not made comparison, and so it is possible that other metrics may perform better than 924 

NPG (for an extensive comparison of many metrics, not including NPD, see Wang et al. 2014). 925 

Granger causality-based methods have become a staple of the dFC toolbox and form the statistical 926 

foundation for several methods developed since including the directed transfer function (Kaminski 927 

and Blinowska 1991) and partial directed coherence (Baccalá and Sameshima 2001). An adaptation of 928 

the directed transfer function aimed at improving estimation of directed connectivity (i.e. X → Y) 929 

introduced by Korzeniewska et al. 2003 may perform better at recovering known patterns of 930 

connectivity in the face of common drive than the metrics presented here. Furthermore, the role of 931 

time reversal procedures (Haufe et al. 2013) in alleviating some of these shortcomings in the metrics 932 

should be the subject of future study. This is likely to be important when investigating more complex 933 

networks or high dimensional data such as that measured with magneto- or electroencephalographic 934 

recordings. However, NPD shows broadly equivalent results to the Granger based measure but 935 

exhibits more robust performance in the recovery of complex network topologies in highly 936 

confounded data. The full extent to which this is true either in networks of a greater size or density 937 

will need to be tested. 938 

We conclude that the NPD measure of directed functional connectivity is inexpensive to compute, 939 

makes limited assumptions of the properties of the data, is flexible to the form of the original spectral 940 

estimate and is conceptually simple to formulate. It eschews the computationally expensive estimation 941 

of model parameters required for parametric estimates of Granger causality or directed transfer 942 

function and doesn’t require iterative binning procedures such as that use in information-based 943 

metrics like transfer entropy. Overall, NPD provides a simple and compact statistical description of 944 

directed dependencies between signals and is readily interpretable, providing the basis for testable 945 

hypotheses of causation in real neural systems. 946 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 30 
 

5 Acknowledgements 947 

SFF acknowledges salary funding support from the University College London Hospitals Biomedical 948 

Research Centre. T.O.W. thanks UCL CoMPLEX for their funding and support for the duration of 949 

this project.  950 

6 Funding 951 

S.F.F. receives funding from UCLH BRC. Engineering Research Council UK (awards EPSRC 952 

EP/F500351/1 to T.O.W). The Wellcome Trust (ref: 204829) through the Centre for Future Health 953 

(CFH) at the University of York to D.H. The Wellcome Centre for Human Neuroimaging is supported 954 

by core funding from the Wellcome 203147/Z/16/Z. UK MEG community is supported by the MRC 955 

UKMEG Partnership grant MR/K005464/1.  956 

7 Competing Interests 957 

The authors have no competing interests to declare. 958 

8 Bibliography 959 

Aertsen AM, Gerstein GL, Habib MK , Palm G. Dynamics of neuronal firing correlation: 960 

modulation of “effective connectivity.” J Neurophysiol 61: 900–917, 1989. 961 

Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure 962 

determination. Biol Cybern 84: 463–474, 2001. 963 

Baccalá LA, Sameshima K. Comments on ‘Is Partial Coherence a Viable Technique for Identifying 964 

Generators of Neural Oscillations?’ Biol Cybern 95: 135–141, 2006. 965 

Bastos AM, Schoffelen J-M. A Tutorial Review of Functional Connectivity Analysis Methods and 966 

Their Interpretational Pitfalls. Front Syst Neurosci 9: 175, 2016. 967 

Breakspear M, Terry JR . Detection and description of non-linear interdependence in normal 968 

multichannel human EEG data. Clin Neurophysiol 113: 735–753, 2002. 969 

Bressler SL, Seth AK. Wiener–Granger Causality: A well established methodology. Neuroimage 58: 970 

323–329, 2011. 971 

Brillinger DR . Time series: data analysis and theory [Online]. Holt, Rinehart, and 972 

Winston.https://books.google.co.uk/books?id=9hzvAAAAMAAJ. 973 

Brillinger DR . Some Statistical Methods for Random Process Data from Seismology and 974 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 31 
 

Neurophysiology. Ann Stat 16: 1–54, 1988. 975 

Brovelli A , Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a large-976 

scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proc Natl 977 

Acad Sci U S A 101: 9849–9854, 2004. 978 

Cui J, Xu L , Bressler SL, Ding M , Liang H . BSMART: A Matlab/C toolbox for analysis of 979 

multichannel neural time series. Neural Networks 21: 1094–1104, 2008. 980 

Dhamala M, Rangarajan G, Ding M . Analyzing information flow in brain networks with 981 

nonparametric Granger causality [Online]. Neuroimage 41: 354–362, 982 

2008ahttps://www.sciencedirect.com/science/article/pii/S1053811908001328 [19 Sep. 2016]. 983 

Dhamala M, Rangarajan G, Ding M . Estimating Granger Causality from Fourier and Wavelet 984 

Transforms of Time Series Data. Phys Rev Lett 100: 018701, 2008b. 985 

Ding M , Chen Y, Bressler SL. Granger Causality: Basic Theory and Application to Neuroscience. 986 

In: Handbook of Time Series Analysis. Wiley-VCH Verlag GmbH & Co. KGaA, p. 437–460. 987 

Farmer SF, Bremner FD, Halliday DM , Rosenberg JR, Stephens JA. The frequency content of 988 

common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. J 989 

Physiol 470: 127–55, 1993. 990 

Friston K , Moran R, Seth AK. Analysing connectivity with Granger causality and dynamic causal 991 

modelling. Curr Opin Neurobiol 23: 172–178, 2013. 992 

Friston KJ . Functional and Effective Connectivity: A Review. Brain Connect 1: 13–36, 2011. 993 

Geweke J. Measurement of Linear Dependence and Feedback Between Multiple Time Series. J Am 994 

Stat Assoc 77: 304, 1982. 995 

Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M , Vaina LM , Stufflebeam 996 

SM. Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and 997 

electroencephalography. Hum Brain Mapp 30: 1077–86, 2009. 998 

Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. 999 

Econometrica 37: 424, 1969. 1000 

Halliday D, Rosenberg JR, Amjad A , Breeze P, Conway BA, Farmer SF. A framework for the 1001 

analysis of mixed time series/point process data—Theory and application to the study of physiological 1002 

tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64: 237–278, 1003 

1995. 1004 

Halliday DM . Nonparametric directionality measures for time series and point process data. J Integr 1005 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 32 
 

Neurosci 14: 253–277, 2015. 1006 

Halliday DM , Senik MH, Stevenson CW, Mason R. Non-parametric directionality analysis – 1007 

Extension for removal of a single common predictor and application to time series. J Neurosci 1008 

Methods 268: 87–97, 2016. 1009 

Haufe S, Nikulin V V. , Müller K-R , Nolte G. A critical assessment of connectivity measures for 1010 

EEG data: A simulation study. Neuroimage 64: 120–133, 2013. 1011 

Haufe S, Nikulin V V , Nolte G. Alleviating the Influence of Weak Data Asymmetries on Granger-1012 

Causal Analyses. In: Latent Variable Analysis and Signal Separation, edited by Theis F, Cichocki A, 1013 

Yeredor A, Zibulevsky M. Berlin, Heidelberg, Heidelberg: Springer Berlin Heidelberg, 2012, p. 25–1014 

33. 1015 

Horwitz B . The elusive concept of brain connectivity. Neuroimage 19: 466–470, 2003. 1016 

Kamiński M, Ding M , Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: 1017 

Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 1018 

85: 145–157, 2001. 1019 

Kaminski MJ , Blinowska KJ. A new method of the description of the information flow in the brain 1020 

structures. Biol Cybern 65: 203–210, 1991. 1021 

Korzeniewska A, Mańczak M, Kamiński M , Blinowska KJ, Kasicki S. Determination of 1022 

information flow direction among brain structures by a modified directed transfer function (dDTF) 1023 

method. J Neurosci Methods 125: 195–207, 2003. 1024 

Lancaster G, Iatsenko D, Pidde A, Ticcinelli V , Stefanovska A. Surrogate data for hypothesis 1025 

testing of physical systems. Phys Rep 748: 1–60, 2018. 1026 

Litvak V , Eusebio A, Jha A, Oostenveld R, Barnes G, Foltynie T, Limousin P, Zrinzo L , Hariz 1027 

MI , Friston K , Brown P. Movement-related changes in local and long-range synchronization in 1028 

Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings. J 1029 

Neurosci 32: 10541–53, 2012. 1030 

Litvak V , Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L , Hariz MI , Friston 1031 

K , Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s 1032 

disease. Brain 134: 359–374, 2011. 1033 

Lütkepohl H . Stable Vector Autoregressive Processes. In: New Introduction to Multiple Time Series 1034 

Analysis. Springer Berlin Heidelberg, p. 13–68. 1035 

Nalatore H, Ding M , Rangarajan G. Mitigating the effects of measurement noise on Granger 1036 

causality. Phys Rev E 75: 031123, 2007. 1037 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 33 
 

Newbold P. Feedback Induced by Measurement Errors. Int Econ Rev (Philadelphia) 19: 787, 1978. 1038 

Nolte G, Bai O, Wheaton L, Mari Z , Vorbach S, Hallett M . Identifying true brain interaction from 1039 

EEG data using the imaginary part of coherency. Clin Neurophysiol 115: 2292–307, 2004. 1040 

Nolte G, Ziehe A, Nikulin V V. , Schlögl A, Krämer N , Brismar T , Müller K-R . Robustly 1041 

Estimating the Flow Direction of Information in Complex Physical Systems. Phys Rev Lett 100: 1042 

234101, 2008. 1043 

Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM , Silberstein RB, Cadusch 1044 

PJ. EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical 1045 

imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103: 499–515, 1046 

1997. 1047 

Oostenveld R, Fries P, Maris E, Schoffelen J-M, Oostenveld R, Fries P, Maris E, Schoffelen J-1048 

M . FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive 1049 

Electrophysiological Data. Comput Intell Neurosci 2011: 1–9, 2011a. 1050 

Parkkonen L. Instrumentation and data preprocessing. MEG An Introd to methods 24–64, 2010. 1051 

Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological 1052 

signals. Prog Neurobiol 77: 1–37, 2005. 1053 

Pierce DA. Signal Extraction Error in Nonstationary Time Series. Ann Stat 7: 1303–1320, 1979. 1054 

Richter CG, Coppola R, Bressler SL. Top-down beta oscillatory signaling conveys behavioral 1055 

context in early visual cortex. Sci Rep 8: 6991, 2018. 1056 

Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-1057 

lag synchronization among cortical areas. Nature 385: 157–161, 1997. 1058 

Sayed AH, Kailath T . A survey of spectral factorization methods. Numer Linear Algebr with Appl 8: 1059 

467–496, 2001. 1060 

Schoffelen J-M, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30: 1061 

1857–1865, 2009. 1062 

Seth AK, Barrett AB , Barnett L . Granger Causality Analysis in Neuroscience and Neuroimaging. J 1063 

Neurosci 35: 3293–3297, 2015. 1064 

Spedden ME, Jensen P, Terkildsen CU, Jensen NJ, Halliday DM , Lundbye-Jensen J, Nielsen 1065 

JB, Geertsen SS. The development of functional and directed corticomuscular connectivity during 1066 

tonic ankle muscle contraction across childhood and adolescence. Neuroimage 191: 350–360, 2019. 1067 

Sporns O. Networks of the Brain [Online]. MIT 1068 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 34 
 

Press.https://books.google.co.uk/books?id=v1DBKE7-UrYC. 1069 

Srinivasan R, Winter WR , Ding J, Nunez PL. EEG and MEG coherence: Measures of functional 1070 

connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 166: 41–52, 2007. 1071 

Swanson LW. Brain Architecture: Understanding the Basic Plan [Online]. OUP 1072 

USA.https://books.google.co.uk/books?id=4rAlwYWVEroC. 1073 

Theiler J, Eubank S, Longtin A , Galdrikian B , Doyne Farmer J. Testing for nonlinearity in time 1074 

series: the method of surrogate data. Phys D Nonlinear Phenom 58: 77–94, 1992. 1075 

Truccolo WA, Ding M , Knuth KH , Nakamura R, Bressler SL. Trial-to-trial variability of cortical 1076 

evoked responses: implications for the analysis of functional connectivity. Clin Neurophysiol 113: 1077 

206–226, 2002. 1078 

Vinck M , Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of 1079 

phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and 1080 

sample-size bias. Neuroimage 55: 1548–1565, 2011. 1081 

Wang HE, Bénar CG, Quilichini PP , Friston KJ , Jirsa VK , Bernard C. A systematic framework 1082 

for functional connectivity measures. Front Neurosci 8: 405, 2014. 1083 

Wen X, Rangarajan G, Ding M . Multivariate Granger causality: an estimation framework based on 1084 

factorization of the spectral density matrix. Philos Trans R Soc A Math Phys Eng Sci 371: 20110610–1085 

20110610, 2013. 1086 

West TO, Berthouze L, Halliday DM , Litvak V , Sharott A, Magill PJ, Farmer SF. Propagation of 1087 

Beta/Gamma Rhythms in the Cortico-Basal Ganglia Circuits of the Parkinsonian Rat. J Neurophysiol 1088 

jn.00629.2017, 2018. 1089 

Wiener N. Nonlinear Prediction and Dynamics [Online]. In: Proceedings of the Third Berkeley 1090 

Symposium on Mathematical Statistics and Probability, Volume 3: Contributions to Astronomy and 1091 

Physics. University of California Press, p. 247–1092 

252.https://projecteuclid.org/euclid.bsmsp/1200502197. 1093 

Zalesky A, Breakspear M. Towards a statistical test for functional connectivity dynamics. 1094 

Neuroimage 114: 466–470, 2015.  1095 



West et al. (2018): A Novel Non-Parametric Directionality Measure  v5.3 
  
 

20/04/2020 CORRECTED MANUSCRIPT 35 
 

9 Figures 1096 

9.1 Figure 1(COLOR) 1097 

 1098 

Figure 1 – Three -node simulation of MVAR model to compare functional connectivity 1099 

measures. (A) A simple three state, 3rd order MVAR model was used to simulate coupling of 1100 

autonomous periodic signals. Connectivity was simulated using non-zero coefficients at lag 2 for node 1101 

X → Y, and lag 3 for X → Z. Correlations are lagged such that the time delays are unequal (i.e. δ1 < 1102 

δ2). (B) Example 5-second realization of the simulated MVAR processes. (C) Connectivity matrix of 1103 

the coupled signals. Autospectra are shown on the diagonal (black). Undirected functional 1104 

connectivity (coherence) is shown in blue. Estimates of directed connectivity are shown for 1105 

multivariate non-parametric Granger causality (mvNPG; red); Non-parametric Directionality (NPD; 1106 

green); and NPD conditioned on signal X (NPD(X); orange). NPD identifies spurious directional 1107 

connectivity between Y and Z due to the lagged correlations of X → Y relative to X → Z. Spurious 1108 

connectivity is removed partializing the NPD estimate upon the signal at the common source at node 1109 

X (NPD(X)) which acts to remove all spurious connectivity. Permutation confidence intervals (P = 1110 

0.001) are shown for NPD and mvNPG by the green and red dashed lines and arrows respectively.  1111 

  1112 
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9.2 Figure 2 (COLOR) 1113 

 1114 

Figure 2 – Analysis of the effects of signal-to-noise ratio (SNR) upon estimators of directed 1115 

functional connectivity. The confounding effects of poor SNR were simulated by adding Gaussian 1116 

noise to the MVAR processes and standardizing the overall variance equal to 1. The MVAR model is 1117 

identical in form to that used in figure 1 and its structure is given by the ball and stick diagram in the 1118 

inset. Simulated narrowband (45-55 Hz) SNRs at: 1:0 (+ ∞ dB; bold), 4:3 (+ 5.3 dB; ---), and 1:3 (- 1119 

1.0 dB; ···). The effects upon coherence (blue), NPD (green), and non-parametric Granger causality 1120 

(NPG) were investigated. All estimators were reduced by increased levels of noise. Permutation 1121 

confidence intervals (P = 0.001) are shown for NPD and NPG by the green and red dashed lines and 1122 

arrows respectively. 1123 

1124 
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9.3 Figure 3 (COLOR) 1125 

 1126 

Figure 3 – Analysis of the effects of unequal signal-to-noise ratios, measured as a difference of 1127 

the SNRs between X and Y (bcdefg) upon symmetrical directed functional connectivity (dFC). 1128 

The confounding effect of connected signals having different SNRs was simulated by the addition of 1129 

Gaussian noise to signal X but fixing the noise of node Y to yield + 13 dB. A range of differences in 1130 

SNR between X and Y (ΔL2�	�) were simulated at 0 dB (bold), - 7 dB (---), and - 17 dB (···). 1131 

Connectivity was held fixed to be symmetrical. We assessed dFC by plotting the difference in 1132 

magnitudes of the connectivity for each direction (Δ/[	� ) with Δ/[	�  ≈ 0 as the ground truth. 1133 

Results from both non-parametric directionality (NPD; green) and non-parametric Granger causality 1134 

(NPG; red) are shown. In the face of medium amounts of SNR asymmetry, NPG spuriously identifies 1135 

the strongest signal as the driving node. NPD suffers less from this issue and yields approximately 1136 

symmetrical estimates for all conditions tested.  1137 
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9.4 Figure 4 (COLOR) 1138 

 1139 

Figure 4 – Analysis of the effects of instantaneous mixing upon estimates of directed functional 1140 

connectivity (dFC). The confounding effects of volume conduction were simulated by multiplication 1141 

of signals with a mixing matrix with off-diagonal coefficients λ. The unmixed signals were first 1142 

generated with a three state, 3rd order MVAR model (identical to that used in figures 1 and 2). We 1143 

simulate three mixing conditions: λ = 0 (zero mixing; bold line), λ = 0.45 (45% shared variance; ---), 1144 

and λ = 1.2 (90% shared variance; ···). dFC is estimated using the lagged components of the NPD 1145 

(green) or non-parametric Granger (NPG) (red). Permutation confidence intervals (P = 0.001) are 1146 

shown for NPD and NPG by the green and red dashed lines and arrows respectively. 1147 

  1148 
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9.5 Figure 5 (COLOR) 1149 

 1150 

Figure 5 – Investigating the effects of signal-to-noise ratios (SNR), SNR asymmetries, and 1151 

instantaneous linear mixing upon functional connectivity measures: coherence (blue), non-1152 

parametric directionality (NPD; green), and non-parametric Granger causality (NPG; red). All 1153 

measures are reported as the peak value for each individual estimate. Permutation confidence intervals 1154 

(P = 0.001) are shown for NPD and NPG by the green and red dashed lines and arrows respectively. 1155 

(A) The effect of SNR was tested in the range from -30 dB to +30 dB. All estimators were found to 1156 

have a sigmoidal response, with half-maximal suppression around SNR = 0 dB. (B) The effect of 1157 

unequal SNR between nodes X and Y (ΔL2�	�) was varied by addition of observation noise to node 1158 

X or Y separately to yield a range of narrowband ΔL2�	� from -60 dB to + 60 dB whilst coupling 1159 

strengths were held fixed. NPG incorrectly identifies asymmetrical coupling for a wide range of 1160 

ΔL2�	� (within zone II from -50 dB to -10 dB as well as zone IV from +10 dB to 50 dB). NPD 1161 

estimates a weak bias towards one signal leading but with differences in directionality remaining 1162 

close to zero across the range examined. (C) The effect of instantaneous signal mixing was examined 1163 

across a range of mixing coefficients (λ) to yield a range of 0% to 100% shared variance. Coherence 1164 

is shown to increase as zero-lag correlations predominate with increasing valued λ. The lagged NPD 1165 

shrinks to zero as instantaneous component of coherence dominates.  NPG increases to a maximum at 1166 

around 65% signal mixing and then sharply falls to zero. Permutation confidence intervals (P = 0.001) 1167 

are shown for NPD and NPG by the green and red dashed lines and arrows respectively. 1168 
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9.6 Figure 6 (COLOR) 1169 

 1170 

Figure 6 – Investigating the role of data availability upon the accuracy of connectivity recovery 1171 

when using non-parametric directionality (NPD; blue), and non-parametric Granger causality 1172 

(NPG; red). The two estimators were benchmarked against three sets of 24 MVAR models with 1173 

random connectivity comprising either one, two, or three connections respectively. Different amounts 1174 

of data were simulated for each model and the accuracy of the recovery was scored using the criteria 1175 

set out in the methods. Simulated data is sampled at 200 Hz. (A and B) Benchmarks recorded from 1176 

analyses of simulated data in which there was a fixed amount of data (500s) but allowing for variable 1177 

trial lengths (in samples). (C and D) Benchmarks recorded from analyses of simulated data in which 1178 

there were a fixed number of trials (n = 100) but variable total data length.   1179 
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9.7 Figure 7 (COLOR) 1180 

 1181 

Figure 7 – Investigating the role of combined data confounds (instantaneous mixing and 1182 

asymmetric signal-to-noise ratio; bcdefg) upon the accuracy of connectivity estimation when 1183 

using non-parametric directionality, and non-parametric multivariate Granger causality. The 1184 

two measures were benchmarked against two sets of 24 realizations of a 3-node MVAR models 1185 

comprising either one (top row), or two (bottom row) randomly placed connections. For each 1186 

simulation 200s of data was simulated and divided into epochs of 28 samples. Simulated data is 1187 

sampled at 200 Hz. All data is represented as a contour plot when varying first instantaneous mixing 1188 

from 0% to 100% shared variance; and then adjusting the approximate asymmetric narrowband (45-1189 

55 Hz) SNR from -45 dB to 0 dB. (A) Benchmarking of mvNPG with simulations containing one 1190 

randomly placed connection on a three-node network. (B) Same as for (A) but using NPD. (C) 1191 

Benchmarking of mvNPG with simulations containing two randomly placed connections on a three-1192 

node network. (D) Same as for (C) but using NPD as the estimator. 1193 
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9.8 Figure 8 (COLOR) 1194 

 1195 

Figure 8 – The effects of incomplete signal observation upon estimation of directed functional 1196 

connectivity: non-parametric Granger causality (NPG); non-parametric directionality (NPD); 1197 

and NPD conditioned on reference signal Z (NPD(Z)). Simulations investigate the connectivity of 1198 

X  → Y and the influence of propagation involving a tertiary node Z. We simulate incomplete 1199 

sampling of Z by modifying its signal-to-noise ratio (SNR) via the addition of Gaussian white noise 1200 

and then standardizing the variance equal to 1. (A and D) Serial propagation – signals propagate 1201 

from X → Z → Y. The results of changing the SNR of Z are shown in panel D. Simulations 1202 

demonstrate that dFC estimation with NPD/NPG are constant. At complete signal observation (SNR 1203 

1:0; +∞ dB), conditioning removes the estimate of dFC. With increasing SNR, the attenuation is 1204 

diminished to the point where conditioning has no effect. (B and E) Feedforward connectivity – 1205 

signals propagate to feedforward to the tertiary node: X → Y → Z. We find that conditioning has a 1206 

weak effect (panel E), and the attenuation of NPD(Z) for estimation of X→ Y is again reduced by 1207 

decreasing SNR of Z. (C and F) Recurrent connectivity – a further connection is added to the model 1208 

to complete a cyclic path in the network: X → Z → Y → X. Decreasing the SNR of Z results in an 1209 

increased estimation of NPG in X → Y (panel F). We again find that that increased completeness of 1210 

observation of Z results in an increase in the efficacy of NPD(Z) in determining tertiary (non-direct) 1211 

signal routing.  1212 
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9.9 Figure 9 (COLOR) 1213 

   1214 

Figure 9 – Testing for the confounding effects of symmetric and asymmetric SNR, and 1215 

instantaneous signal mixing upon estimation of directed functional connectivity in experimental 1216 

data recorded in patients with Parkinson’s disease. Empirical data is comprised of local field 1217 

potentials recorded from the STN and a virtual electrode localized to the SMA, computed from 1218 

whole-head magnetoencephalography. Signals were analysed for dFC using the instantaneous 1219 

components (first row); STN → SMA (second row); and SMA → STN (third row) parts of the NPD 1220 

(green) and NPG (red). Empirical data is indicated by bold line; low by the dotted (···); and high 1221 

degrees by the dashed (---). (A-C) The effect of modulating the overall SNR of the signals equally. 1222 

We used a range of narrowband (14-31 Hz) SNRs: 1:1 (+ ∞ dB; bold); 4:3 (+ 4.1 dB; ---); and 1:3 (-1223 

1.9 dB; ···). (D-F) The effect of modulating the SNR of the strongest signal (STN) only. We used a 1224 

range of ΔL2�: -3 dB (bold); + 16 dB (---); and + 26 dB (···). (G-I) The effect of modulating the 1225 

degree of instantaneous mixing between signals. We simulated a degree of signal mixing: λ = 0 (0% 1226 

shared variance; bold); λ = 0.075 (7.5% shared variance; ---); and λ = 0.15 (15% shared variance; ···).  1227 
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10 Appendices 1228 

10.1  List of External Toolboxes Used in Analysis, Statistics, and 1229 

Plotting 1230 

1. BSMART toolbox- Hualou Liang, Steven Bressler, Mingzhou Ding (Cui et al. 2008): 1231 

http://www.brain-smart.org/ 1232 

2. Fieldtrip toolbox- Donders Insitute, Radboud University (Oostenveld et al. 2011a): 1233 

www.fieldtriptoolbox.org/ 1234 

3. Linspecer - David Kun: https://github.com/davidkun/linspecer 1235 

4. Neurospec 2.11 toolbox- David Halliday, University of York: http://www.neurospec.org/ 1236 

5. SPM 12 toolbox- UCL, Wellcome Centre for Human Neuroscience: 1237 

https://www.fil.ion.ucl.ac.uk/spm/ 1238 

 1239 

10.2  Table of MVAR Coefficients 1240 

 

Simulating Common Drive, Signal-to-noise, instantaneous mixing (figure 1, 2, 4, 5C) 

Transfer Matrix Noise Covariance Matrix 

 

hi = jk. l k kk k. l kk k k. lm 
 

hn = j−k. l k kk. l −k. l kk k −k. lm 
 

ho = jk. l k kk k. l kk. l k k. lm 
 

8 = j0.3 0 00 0.3 00 0 0.3m 
 

Simulating Asymmetric Signal-to-noise (figure 3, 5A, 5B) 

Transfer Matrix Noise Covariance Matrix 

 

hi = qk. l kk k. lr 
 

hn = q−k. l k. olk. ol −k. lr 
 

ho = qk. l kk k. lr 
 

8 = q0.3 00 0.3r 
 

 

Simulating Incomplete Signals for Conditioning: Serial (figure 8A, D) 

Transfer Matrix Noise Covariance Matrix 
 

hi = jk. l k kk k. l kk k k. lm 
8 = j0.3 0 00 0.3 00 0 0.3m 
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hn = j−k. l k kk −k. l kk k −k. lm 
 

ho = j k k kk. o k kk k. o km 
 

Simulating Incomplete Signals for Conditioning: Feedforward (figure 8B, E) 

Transfer Matrix Noise Covariance Matrix 

 

hi = jk. l k kk k. l kk k k. lm 
 

hn = j−k. l k kk −k. l kk k −k. lm 
 

ho = jk. l k kk k. l kk. o k k. lm 
 

8 = j0.3 0 00 0.3 00 0 0.3m 
 

Simulating Incomplete Signals for Conditioning: Recurrent (figure 68, F) 

Transfer Matrix Noise Covariance Matrix 

 

hi = jk. l k kk k. l kk k k. lm 
 

hn = j−k. l k kk −k. l kk k −k. lm 
 

ho = j k k. o kk k k. ok. o k k m 
 

8 = j0.3 0 00 0.3 00 0 0.3m 
 

 1241 

10.3  Permutation Testing for Significance Thresholds 1242 

Estimates of interactions between signals can give rise to non-zero values in the absence of any 1243 

interaction. To check whether an observed value of an estimator is statistically significant, its value 1244 

can be compared against a distribution of the same index estimated from surrogate data (Theiler et al. 1245 

1992). This surrogate data must preserve the statistics of the individual signals whilst removing the 1246 

property to be tested, namely the interactions between them. Once a null distribution is obtained, 1247 

(rank-order) significance thresholds can be calculated from the corresponding percentiles of the 1248 

surrogate distribution (e.g. a P = 0.01 threshold can be estimated from the 99th percentile).  1249 

Many possibilities exist for the generation of surrogates and methods range from the very simple 1250 

permutation of the time series samples, up to increasingly complex surrogates that aim to maintain 1251 

nonlinear features of the individual signals (for reviews see: Lancaster et al. 2018; Pereda et al. 2005). 1252 

All methods will fall short at capturing all confounding properties of the individual generators of the 1253 

signals including the phase randomization method (Zalesky and Breakspear 2015). 1254 
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In this work we use a phase randomization approach. We maintain the original FFTs of the signals but 1255 

randomize the phase of the individual Fourier components. To do this we generate a vector of random 1256 

phases Ψ uniformly sampled on the interval [0 2π] for N/2 samples and multiply the first half of the 1257 

FFT by exp(iΨ). The remainder of the FFT is then the horizontally flipped complex conjugate of the 1258 

first half. This method ensures that the overall expected value of the magnitude of  the averaged 1259 

spectral estimate is equal to zero. See Lancaster et al. (2018) for a discussion of this method and 1260 

Breakspear and Terry (2002) for application to assessing interdependence of neurophysiological 1261 

signals. 1262 





















1.1 Table of MVAR Coefficients 

 

Simulating Common Drive, Signal-to-noise, instantaneous mixing (figure 1, 2, 4, 5C) 

Transfer Matrix Noise Covariance Matrix 

 

�� = ��. � � �� �. � �� � �. �� 
 

�	 = �−�. � � ��. � −�. � �� � −�. �� 
 

�� = ��. � � �� �. � ��. � � �. �� 
 

� = �0.3 0 00 0.3 00 0 0.3� 
 

Simulating (A)symmetric Signal-to-noise (figure 3, 5A, 5B) 

Transfer Matrix Noise Covariance Matrix 

 

�� = ��. � �� �. �� 
 

�	 = �−�. � �. ���. �� −�. �� 
 

�� = ��. � �� �. �� 
 

� = �0.3 00 0.3� 
 

 

Simulating Incomplete Signals for Conditioning: Serial (figure 8A, D) 

Transfer Matrix Noise Covariance Matrix 
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Simulating Incomplete Signals for Conditioning: Feedforward (figure 8B, E) 

Transfer Matrix Noise Covariance Matrix 

 

�� = ��. � � �� �. � �� � �. �� 
 

�	 = �−�. � � �� −�. � �� � −�. �� 
 

�� = ��. � � �� �. � ��. � � �. �� 
 

� = �0.3 0 00 0.3 00 0 0.3� 
 

Simulating Incomplete Signals for Conditioning: Recurrent (figure 6C, F) 

Transfer Matrix Noise Covariance Matrix 
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