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Precision medicine research often searches for treatment-covariate interactions,
which refers to when a treatment effect (eg, measured as a mean difference,
odds ratio, hazard ratio) changes across values of a participant-level covariate
(eg, age, gender, biomarker). Single trials do not usually have sufficient power
to detect genuine treatment-covariate interactions, which motivate the sharing
of individual participant data (IPD) from multiple trials for meta-analysis. Here,
we provide statistical recommendations for conducting and planning an IPD
meta-analysis of randomized trials to examine treatment-covariate interactions.
For conduct, two-stage and one-stage statistical models are described, and we
recommend: (i) interactions should be estimated directly, and not by calculat-
ing differences in meta-analysis results for subgroups; (ii) interaction estimates
should be based solely on within-study information; (iii) continuous covari-
ates and outcomes should be analyzed on their continuous scale; (iv) nonlinear
relationships should be examined for continuous covariates, using a multi-
variate meta-analysis of the trend (eg, using restricted cubic spline functions);
and (v) translation of interactions into clinical practice is nontrivial, requiring
individualized treatment effect prediction. For planning, we describe first why
the decision to initiate an IPD meta-analysis project should not be based on
between-study heterogeneity in the overall treatment effect; and second, how to
calculate the power of a potential IPD meta-analysis project in advance of IPD
collection, conditional on characteristics (eg, number of participants, standard
deviation of covariates) of the trials (potentially) promising their IPD. Real IPD
meta-analysis projects are used for illustration throughout.
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1 INTRODUCTION

Precision medicine and stratified healthcare tailors treatment decisions to individuals based on their particular
characteristics.1,2 The goal is to optimize treatment decisions and reduce unnecessary costs for each individual, by select-
ing treatments most likely to benefit (or least likely to harm) them based on their participant-level covariate values. For
example, trastuzumab is only given to the subgroup of breast cancer patients who are human epidermal growth factor
receptor 2 (HER-2) positive, as it is known to lock on to the HER-2 protein, block the receptor, and stop the cells from
dividing and growing.3 It is therefore considered unnecessary for those who are HER-2 negative. In this situation, there is
a so-called treatment-covariate interaction, such that the treatment effect (measured on a scale such as a mean difference,
risk ratio, odds ratio, or hazard ratio) changes according to an individual's HER-2 status. Participant-level covariates that
interact with treatment effect are also known as effect modifiers, moderators, predictors of treatment effect and, mainly
in the cancer literature, predictive markers.

Though some treatment-covariate interactions, such as HER-2, are suspected in advance due to strong biological ratio-
nale, others are only identified following secondary investigations of existing data. Single randomized trials are typically
powered on the overall treatment effect (ie, the treatment effect averaged across all individuals), and so do not usually
have sufficient power to detect differences in treatment effect between individuals. Powering a single trial to detect a
genuine treatment-covariate interaction will typically require at least four times the sample size needed to test the over-
all treatment effect;4 thus the funding of such trials is expensive and often infeasible. When individual participant data
(IPD) from multiple randomized trials are available, meta-analysis provides the opportunity to increase power to detect
true treatment-covariate interactions.5 For this reason, many IPD meta-analyses of randomized trials are initiated specifi-
cally to examine one or more potential treatment-covariate interactions, often with the aim to reduce or explain observed
between-study heterogeneity in a previous meta-analysis of (published) aggregate data. For pharmaceutical companies,
a driver may be to rescue a treatment that previously showed no overall benefit on all patients combined, but which may
still benefit a select group of individuals.

Over the last decade we have been involved in a number of IPD meta-analysis projects aiming to examine
treatment-covariate interactions at the participant-level, and learnt important lessons and pitfalls from a statistical point
of view. In this tutorial article, we share our experience to help other researchers in this situation, building on previous
work in both IPD meta-analysis and single study settings.4,6-16 Our main goal is to provide statistical recommendations
for the meta-analysis part of the project; in particular, how to estimate treatment-covariate interactions using either a
one-stage or two-stage IPD meta-analysis framework. A further aim is to highlight two statistical topics that are relevant
to consider before embarking on an IPD meta-analysis project to examine treatment-covariate interactions. The outline
of the article is as follows. Section 2 describes two motivating examples used for illustration throughout the whole article.
Section 3 describes a framework for two-stage and one-stage IPD meta-analysis models for estimating treatment-covariate
interactions, and Section 4 highlights five recommendations in this context: (i) calculating differences in meta-analysis
results for subgroups is misleading; (ii) interaction estimates should be based solely on within-study information; (iii)
continuous covariates (and outcomes) should be analyzed on their continuous scale; (iv) nonlinear relationships should
be examined for continuous covariates, using a multivariate meta-analysis of the trend (eg, using restricted cubic spline
functions); and (v) translation of interactions into clinical practice requires individualized treatment effect prediction.
Section 5 then describes two statistical issues in guiding decisions to initiate an IPD meta-analysis project to examine
interactions. First, how the decision to initiate such IPD meta-analysis projects should not be based on the amount of
between-study heterogeneity in the overall treatment effect. Second, how to calculate, in advance of IPD collection, the
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power of a potential IPD meta-analysis conditional on the characteristics of those trials promising their IPD. Section 6
concludes with discussion.

2 MOTIVATING EXAMPLES

We now introduce two examples, which will be used to illustrate some of the key issues in later sections.

2.1 An IPD meta-analysis examining the effect of antihypertensive treatment

Wang et al17 performed an IPD meta-analysis of trials in participants with hypertension to investigate to what extent low-
ering of systolic blood pressure (SBP) contributed to the prevention of cardiovascular events. They selected randomized
trials that tested active antihypertensive drugs against control. IPD was sought from trials in the INdividual Data ANaly-
sis of Antihypertensive intervention trials (INDANA) dataset or at the Studies Coordinating Centre in Leuven (Belgium).
Ten trials (with a parallel group design) were ultimately included, and these provided IPD for a total of 28 581 patients.
Key outcomes of interest by end of follow-up were SBP, cardiovascular disease (CVD), and all-cause mortality. An impor-
tant focus is on whether the effect of antihypertensive treatment on these outcomes is modified by (ie, interacts with)
participant-level covariates such as gender and baseline blood pressure.

2.2 An IPD meta-analysis examining the effect of interventions to reduce gestational
weight gain in pregnancy

The International Weight Management in Pregnancy (i-WIP) Collaborative Group obtained IPD from 36 trials (12 447
women), to investigate whether diet and lifestyle interventions improve outcomes during pregnancy. A primary outcome
was whether interventions reduced gestational weight gain, for which 33 studies and a total of 9320 women were available.
Weight was recorded as a continuous outcome (in kg), available at baseline (ie, confirmation of pregnancy) and follow-up
(ie, last available weight recorded before delivery). Other outcomes include pre-eclampsia and stillbirth. A key aim was to
examine if the intervention effect on these maternal and fetal outcomes is modified by (ie, interacts with) participant-level
covariates such as the mother's age and body mass index (BMI) at baseline.

3 TWO-STAGE AND ONE-STAGE IPD META-ANALYSIS MODELS
FOR ESTIMATING TREATMENT- COVARIATE INTERACTIONS

In this section, we introduce the framework of two-stage and one-stage models for conducting an IPD meta-analysis to
examine treatment-covariate interactions based on within-study information.

3.1 The two-stage approach

A two-stage IPD meta-analysis for summarizing treatment-covariate interactions is a straightforward application of
a traditional meta-analysis framework. In the first stage the treatment-covariate interactions are estimated using the
IPD from each trial separately; then in the second stage these interaction estimates are pooled using a traditional (eg,
inverse-variance weighted) meta-analysis model.

Consider an IPD meta-analysis of multiple randomized trials, each comparing the effect of a particular treatment
relative to a control using a simple parallel group design. Let i denote trial (i = 1 to S), ni denote the number of par-
ticipants in the ith trial, j denote participant (j = 1 to ni), and xij denote allocation to either the treatment (xij = 1) or
control (xij = 0) group for the jth participant in the ith trial. Let zij be a key participant-level covariate of interest (eg, the
sex of participant j in trial i), observed for all participants in each trial. Then, the two-stage approach can be detailed as
follows.
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3.1.1 First stage

The analysis to apply in the first stage depends on the outcome type. For example, assume the aim is to evaluate the
treatment effect on a continuous outcome (yij), such as SBP, then the first stage of the IPD meta-analysis should apply a
linear regression in each trial separately, adjusting for the baseline SBP (y0ij) and the covariate (zij), whilst including the
treatment (xij) and the treatment-covariate interaction (xijzij):

y𝑖𝑗 = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗 + e𝑖𝑗
e𝑖𝑗 ∼ N(0, 𝜎2

i ). (1)

The key parameter in model (1) is the treatment-covariate interaction (𝛾Wi), which represents the change in the treat-
ment effect (ie, the change in the mean difference in outcome value for treatment compared to control) for a 1-unit
increase in zij after adjusting for the prognostic effects of zij and y0ij. Other terms are 𝛼i (the intercept, that is, the expected
outcome value for participants in the control group with zero values of zij and y0ij), 𝛽1i and 𝛽3i (the expected change in
the outcome value for a 1-unit increase in zij and y0ij, respectively) and 𝛽2i (the treatment effect for those with a zij of zero
after adjusting for baseline). The same residual variance (𝜎2

i ) is assumed for the treatment and control groups, but this
can be relaxed if considered appropriate.18

If a binary outcome was rather of interest (ie, yij = 0 or 1), then alternatively a binomial regression could be fitted in
each trial separately, such as a logistic regression,

y𝑖𝑗 ∼ Bernoulli(p𝑖𝑗)

ln
( p𝑖𝑗

1 − p𝑖𝑗

)
= 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗 , (2)

where pij is the probability of an outcome event (ie, yij = 1) for the jth participant in the ith trial conditional on their
covariate values. The parameters are defined similar to those for model (1), expect now we model the log-odds of the out-

come event
(

ie, ln
(

p𝑖𝑗

1−p𝑖𝑗

))
such that the treatment effect is measured by a log odds ratio. Hence, the treatment-covariate

interaction (𝛾Wi) represents the change in the log odds ratio for a 1-unit increase in zij after adjusting for the prognostic
effects of zij and y0ij.

If a time-to-event outcome was of interest, then a Cox proportional hazards regression model could be fitted in each
trial separately, such as

𝜆𝑖𝑗(t) = 𝜆0i(t) exp(𝛽1izij + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗), (3)

where 𝜆ij(t) is the hazard rate of the outcome for the jth participant in the ith trial conditional on their covariate values,
whilst 𝜆0i(t) is the baseline hazard (ie, the hazard rate for a participant in the control group with zero values of zij and y0ij).
Now the treatment effect is measured by a log hazard ratio, such that the treatment-covariate interaction (𝛾Wi) represents
the change in the log hazard ratio for a 1-unit increase in zij after adjusting for the prognostic effects of zij and y0ij.

Extension of models (1) to (3) to adjust for further baseline covariates (ie, in addition to zij and y0ij) is recommended
when there are other known prognostic factors.19 Ideally, the researcher should predefine a core set of strong prognostic
factors to be adjusted for in each trial, particularly focusing on those routinely recorded in the trials available for IPD
meta-analysis. For example, in many disease fields, age and stage of disease are key prognostic factors and routinely
recorded at baseline, such that they can be adjusted for in the analysis. Other more complex trial designs (eg, cluster trials,
or multicenter or multiarm trials) would also require the models to be modified, as would allowing for nonproportional
hazards in model (3).

Estimation of models (1) to (3) in each study, for example using (restricted) maximum likelihood estimation, produces
a treatment-covariate interaction estimate, �̂�𝑊𝑖, and its variance, var(�̂�𝑊𝑖). The “W” is used to emphasize that the interac-
tion, 𝛾Wi, in each study is based solely on within-study information; that is, it is only based on differences in the treatment
effect across participant-level covariate values observed within each study. This is an important point (as it avoids using
across-study information and potentially introducing aggregation bias), which we return to in the next section. Each 𝛾Wi
indicates for trial i the change in treatment effect for a one-unit increase in the participant-level covariate zij. For a con-
tinuous covariate, this assumes the effect of the interaction is linear (although extension to nonlinear trends is important,
as described later in the article).
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3.1.2 Second stage

In the second stage of a two-stage IPD meta-analysis, we simply combine the �̂�𝑊𝑖 values across trials in a traditional
meta-analysis model, such as a common-effect (sometimes known as a fixed-effect) model,

�̂�𝑊𝑖 ∼ N(𝛾W , var(�̂�𝑊𝑖)), (4)

or a random-effects model:
�̂�𝑊𝑖 ∼ N(𝛾𝑊𝑖, var(�̂�𝑊𝑖))
𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2). (5)

After estimation of the chosen meta-analysis model (eg, using restricted maximum likelihood estimation), the estimate
of 𝛾W summarizes the difference in the treatment effect for two individuals who differ in zij by one-unit. Based on the
linear, logistic, and Cox models used in the first-stage, 𝛾W represents a difference in mean difference for a continuous
outcome, a difference in log odds ratios for a binary outcome (ie, exp(�̂�W ) gives a ratio of odds ratios), and a difference in
log hazard ratios for a time-to-event outcome (ie, exp(�̂�W ) is a ratio of hazard ratios).

Note that random-effects meta-analysis model (5) allows for between-study heterogeneity in the true treatment
-covariate interaction. It may arise due to differences across studies in, for example, the dose of the treatment, the length
of follow-up, the way the covariate has been measured, and the magnitude of any interaction. It may also be due to
case-mix differences in the study populations, for example leading to between-study differences in the distribution of
within-study confounders and even the covariate itself. For example, if a treatment-covariate interaction is nonlinear, and
the covariate distribution is narrow in some studies and wide in others, then this will induce between-study heterogene-
ity in the treatment-covariate interaction, unless the nonlinear association is modeled directly (see later). The magnitude
and impact of heterogeneity can be summarized by providing estimates of 𝜏2 and using 95% prediction intervals.20,21

To account for uncertainty in the estimate of 𝜏2 when deriving 95% confidence intervals for 𝛾W , we recommend the
Hartung-Knapp Sidik-Jonkman (HKSJ) approach,22,23 or alternatively using a Bayesian framework.

If some studies do not agree to share their IPD but do provide (either directly or in a publication) the required
treatment-covariate interaction estimate and its corresponding standard error (SE), these can be incorporated in the sec-
ond stage. That is, the �̂�𝑊𝑖 derived directly from IPD trials are combined with the �̂�𝑊𝑖 extracted (or provided) from non-IPD
trials.

3.2 The one-stage approach

A one-stage IPD meta-analysis can also be used to summarize treatment-covariate interactions. This approach analyzes
the IPD from all trials in a single step using a general or generalized linear (mixed) model framework,24,25 or a survival
(frailty) model.26 This allows a more exact likelihood specification than that used in the second stage of the two-stage
approach, and thus avoids assuming study-specific treatment-covariate interaction estimates are normally distributed
with known variances.24 Hence one-stage models may be most advantageous when the studies in the IPD meta-analysis
have small numbers of participants and/or events.27,28

Inclusion of a treatment-covariate interaction term in a one-stage model is not as straightforward as it may seem.
Depending on the model specification, the apparently simple inclusion of a global treatment-covariate interaction
term may allow across-study information to contribute toward the summary interaction estimate, in combination with
within-study information.8,29,30 This may lead to aggregation bias (also known as ecological bias), which refers to when
the information across studies distorts the interaction estimate compared to when using only within-study information.

Let zi represent the study-specific mean of the covariate zij, and let us assume there is potential between-study het-
erogeneity in the treatment-covariate interaction. Then, to disentangle within-study and across-study information in a
one-stage model, there are two key options:

(i) Center the covariate zij about its study-specific mean, zi and add an additional term which allows the covariate means
(zi) to explain between-study heterogeneity in the overall treatment effect7,31,32;

and/or.
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(ii) Stratify by trial other parameters outside the interaction term, including the parameter representing the treatment
effect (ie, the treatment effect at the covariate's reference value, typically zij = 0 or if the covariate is centered z𝑖𝑗 = zi).

Implementing either approach should give very similar summary estimates of the treatment-covariate interaction, 𝛾W ,
from a one-stage IPD meta-analysis. Approach (i) leads to a one-stage model for continuous, binary, and time-to-event
outcomes of the following format7,8,29:

y𝑖𝑗 = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗(z𝑖𝑗 − zi) + 𝜀𝑖𝑗

𝛽2i ∼ N(𝜑 + 𝛾Azi, 𝜏
2
1 ) 𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2

2 ), (6)

y𝑖𝑗 ∼ Bernoulli(p𝑖𝑗)
logit(p𝑖𝑗) = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗(z𝑖𝑗 − zi)
𝛽2i ∼ N(𝜑 + 𝛾Azi, 𝜏

2
1 ) 𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2

2 ), (7)

𝜆𝑖𝑗(t) = 𝜆0i(t) exp(𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗(z𝑖𝑗 − zi))
𝛽2i ∼ N(𝜑 + 𝛾Azi, 𝜏

2
1 ) 𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2

2 ). (8)

Parameters in models (6) to (8) are similar to those defined for models (1) to (3) in Section 3.1.1. In addi-
tion, the study-specific treatment-covariate interactions (𝛾Wi) are assumed normally distributed with a mean 𝛾W and
between-study variance 𝜏2

2 , as for random-effects model (5) in the second stage of the two-stage approach. Of key interest
is an estimate of 𝛾W , to summarize the expected change in the treatment effect (eg, log hazard ratio in model (8)) for each
one unit increase in zij. As previously, “W” indicates that the interaction will be based solely on within-study information.

Models (6) to (8) also include a meta-regression component (𝜑 + 𝛾Azi), where 𝜑 denotes the summary treatment effect
for participants with zero values of zij and y0ij in trials with zi equal to zero; and 𝛾A is the change in the summary treatment
effect for each 1-unit increase in zi. The models also allow for residual between-study variance (𝜏2

1 ) in the summary
treatment effect (ie, that not explained by zi). Inclusion of the 𝛾Azi term, together with the centering of zij within the
interaction term, disentangles 𝛾W and 𝛾A such that they are uncorrelated with each other, and thus �̂�W will be based
solely on within-trial information.8,32 Note that if the 𝛾Azi term is not included in model (8), then the interaction term
will represent some weighted average of �̂�W and the magnitude of aggregation bias (�̂�E = �̂�A − �̂�W ). Other parameters (ie,
intercepts, baseline hazards, prognostic effects of zij and y0ij) are stratified by trial (ie, estimated separately for each trial).

Approach (ii) leads to one-stage models for continuous, binary and time-to-event outcomes of the following format:

y𝑖𝑗 = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗 + 𝜀𝑖𝑗

𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2), (9)

y𝑖𝑗 ∼ Bernoulli(p𝑖𝑗)
logit(p𝑖𝑗) = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗
𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2), (10)

𝜆𝑖𝑗(t) = 𝜆0i(t) exp(𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝑖x𝑖𝑗z𝑖𝑗)
𝛾𝑊𝑖 ∼ N(𝛾W , 𝜏2). (11)

In models (9) to (11) each of the “nuisance” parameters (ie, the 𝛼i, 𝜆0i(t), 𝛽1i, 𝛽2i, and 𝛽3i parameters which are not of
primary interest) are stratified by trial, and random effects are placed only on the within-study interaction. This stratifi-
cation of all nuisance parameters by trial, in particular 𝛽2i representing the treatment effect at the covariate's reference
value, ensures that 𝛾W only contains within-trial information. It also closely reflects the two-stage approach, where all
nuisance parameters are naturally stratified by trial as they are estimated in each trial separately in the first stage.

As mentioned for the two-stage approach, all these one-stage models (6) to (11) need to be modified for other trial
designs (eg, cluster trials) and when adjusting for further prognostic factors (ie, in addition to zij and y0ij). The latter is a
sensible strategy (see discussion in Section 3.1.1), but again requires each prognostic factor's effect to be stratified by study.
This will increase the number of parameters and so, for estimation reasons, centering each included prognostic factor by
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F I G U R E 1 A two-stage IPD meta-analysis
of treatment-sex interactions, summarizing the
difference in the effect of antihypertensive
treatment for males compared to females. Note:
The interactions refer to the difference between
males and females in the treatment effect (ie,
their difference in the mean difference in final
systolic blood pressure for treatment vs control,
after adjusting for baseline), with negative
values indicating that the treatment effect is
better in females than males [Colour figure can
be viewed at wileyonlinelibrary.com]

its study-specific mean is a sensible default approach (especially when unrestricted maximum likelihood estimation is
used to fit the one-stage model).

3.3 Applied example: Is the effect of antihypertensive treatment different for males
and females?

The two-stage and one-stage approaches are now illustrated using the IPD from the 10 randomized trials examining the
effect of antihypertensive treatment on SBP, as introduced in Section 2.1. The question is whether the treatment effect is
different for males compared to females; that is, whether there is a treatment-sex interaction.

Two-stage approach
In the first stage, restricted maximum likelihood (REML) estimation was used to fit model (1) with final SBP as

the response, and sex (males = 1, females = 0) as the covariate, zij, of interest. Figure 1 provides a forest plot of the
treatment-sex interaction estimates, �̂�𝑊𝑖, plotted as circles. Circles are recommended by Fisher et al to help distinguish a
forest plot of interaction estimates from a standard forest plot of treatment effect estimates,6,9,33 for which squares are typ-
ically used. In the second stage, REML estimation was used to fit random-effects meta-analysis model (5) and this gave a
summary interaction estimate of �̂�W = 0.77 (95% CI: −0.52 to 2.07). Hence there is no evidence of an important difference
in treatment effect for males compared to females; the summary interaction estimate is close to zero and clinically unim-
portant, the confidence interval overlaps zero, and there is also between-study heterogeneity. Using the HKSJ approach,
the 95% confidence is slightly wider (−0.73 to 2.27).

One-stage approach
For the one-stage approach, we used REML estimation to fit models (6) and (9). This gave the same summary interac-

tion estimate of �̂�W = 0.77 (95% CI: −0.52 to 2.06), practically identical to that from the two-stage approach when REML
and a Wald-based confidence interval are used. When we rather used the Satterthwaite approach to derive confidence
intervals following estimation of the one-stage model (as recommended for continuous outcomes34,35) the obtained 95%
confidence interval for 𝛾W was slightly wider (−0.72 to 2.26), and practically identical to that derived using the HKSJ
method in the two-stage approach (as they both utilize the t-distribution rather than the standard normal distribution).
Thus, one-stage and two-stage IPD meta-analysis results for the treatment-sex interaction are almost identical. This agrees
with Burke et al who describe in detail that when the same assumptions and the same estimation approaches are applied,
one-stage and two-stage approaches will closely agree unless most studies are small.28 In conclusion, this example does
not support there being an important treatment-sex interaction.

http://wileyonlinelibrary.com
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4 STATISTICAL MODELING RECOMMENDATIONS WHEN CONDUCTING
AN IPD META-ANALYSIS TO EXAMINE TREATMENT- COVARIATE
INTERACTIONS

Some published IPD meta-analysis projects that examine treatment-covariate interactions use inappropriate statistical
approaches that ignore or incorrectly modify the models described in Section 3.9 We now make five recommendations to
address the key concerns.

4.1 Do not make inferences about interactions using the summary treatment effect
derived in each subgroup separately

When the participant-level covariate is categorical, it may be tempting to perform a one-stage or two-stage IPD
meta-analysis of the overall treatment effect in each category (subgroup) separately. For example, an IPD meta-analysis
might be conducted for males and females separately, to obtain the summary treatment effect for males and females.
However, Fisher et al and Belias et al show that it is dangerous to use the subsequent results to make inferences about
whether an interaction exists.9,36 In particular, a common mistake is to conclude a treatment-covariate interaction exists
if the summary treatment effect estimate is statistically significant in one subgroup but not the other. In this situation
the actual treatment-covariate interaction (difference between subgroups based on within-study information) may not be
statistically significant. Altman and Bland consider this eloquently.37

It is even flawed to compare the summary treatment effects for each subgroup, for example via a statistical test or
by calculating their difference. Although this is apparently simple, it amalgamates within-study and across-study infor-
mation, and so should be avoided. The larger the differences in mean covariate values across studies, the larger the
potential contribution of the across-study information. One way to understand this is to consider an extreme situation,
where a treatment-sex interaction is of interest, but some trials contain only males. Such trials cannot contribute any
within-study information about the interaction between treatment effect and sex at the individual level, as there are no
females. However, the trial would still contribute toward the subgroup result for males, and thus subsequently toward
the difference between meta-analysis results for male and female subgroups. This issue is avoided by meta-analyzing
the treatment-covariate interaction estimates observed within trials, by using the two-stage and one-stage approaches
outlined in Section 3.

Application to the hypertension example
Recall that a two-stage IPD meta-analysis using only within-study information gave a summary treatment-sex inter-

action estimate of �̂�W = 0.77 (95% CI: −0.52 to 2.07). When we do a separate IPD meta-analysis for males and females,
we obtain summary treatment effect estimates of −9.02 (95% CI: −10.47 to −7.57) and −10.59 (95% CI: −12.60 to −8.58),
respectively. The estimated difference in these subgroup results is 1.57, which is an amalgamation of within-trial and
across-trial information, and about twice the size of the summary interaction estimate of 0.77 based solely on within-study
information. The across-trial information arises because the proportion of males varies considerably across trials, from
about 0.23 to 0.70.

4.2 Separate within-trial and across-trial information in one-stage models

One-stage IPD meta-analysis models are appealing to statisticians, as they eloquently synthesize all the IPD in a single
statistical model as described in Section 3.2. However, compared to the two-stage approach, it is easier to make modeling
errors when estimating 𝛾WA. One-stage models (6) to (11) show how to separate within-study and across-study informa-
tion, and ensure that 𝛾WA is estimated based solely on within-study information. As such, they are labeled as “deft” by
Fisher et al.9 However, many researchers wrongly fit models (6) to (8) without the 𝛾Azi term, and with 𝛾𝑊𝑖x𝑖𝑗(z𝑖𝑗 − zi)
replaced by 𝛾WAixijzij. For example, a flawed one-stage linear regression model for a continuous outcome is:

y𝑖𝑗 = 𝛼i + 𝛽1iz𝑖𝑗 + 𝛽2ix𝑖𝑗 + 𝛽3iy0𝑖𝑗 + 𝛾𝑊𝐴𝑖x𝑖𝑗z𝑖𝑗 + e𝑖𝑗
𝛾𝑊𝐴𝑖 ∼ N(𝛾𝑊𝐴, 𝜏

2
𝛾𝑊𝐴

) 𝛽2i ∼ N(𝛽2, 𝜏
2
𝛽2
) e𝑖𝑗 ∼ N(0, 𝜎2

i ). (12)

Here, the interaction 𝛾WA is an amalgamation of within-study information and across-study information; essentially
a weighted average of 𝛾W and 𝛾A.8 The estimate of 𝛾WA from model (12) will be more precise than the estimate of 𝛾W from
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F I G U R E 2 Does age interact with the effect of
antihypertensive treatment on systolic blood pressure? Findings
from an IPD meta-analysis of 10 trials, showing difference in
results based on across-study (solid line) and within-study
(dashed lines) information. Across-study relationship (from
meta-regression of trial's treatment effect estimates vs mean age)
denoted by gradient of solid line. Participant-level relationship
using within-study information (ie, treatment-sex interaction
within each trial) denoted by gradient of dashed lines and the
summary gradient (γ̂W) is −0.036 (95% CI: −0.19 to 0.12). Each
block represents one trial, and the block size is proportional to the
size of the trial.
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model (6), but at the expense of the across-study information distorting the estimate and interpretation compared to 𝛾W .
This motivates Fisher et al to call it a “deluded” analysis.9

Application to the hypertension example
Returning to the hypertension example, let us consider whether there is a treatment-age interaction whilst assuming

that the effect of age is linear. REML estimation of one-stage model (6) gives �̂�W =−0.036 (95% CI: −0.19 to 0.12), and thus
no clear evidence of a treatment-age interaction. When rather fitting model (12), we obtain �̂�𝑊𝐴= −0.079 (95% CI: −0.14
to −0.02), which is almost twice the size of that based solely on within-study information and now strongly suggests a
treatment-age interaction. The difference is because �̂�𝑊𝐴 is strongly influenced by the across-study information, which
is suggesting a different magnitude of effect than suggested by the within-study information in half of the trials. This is
illustrated in Figure 2, which also suggests that there may be a nonlinear interaction with age, as the direction of the
interactions appears to be different in trials with younger and older ages. Extension to nonlinear trends is considered later.

4.3 Do not dichotomize continuous covariates or outcomes

Categorization, and in particular dichotomization, of continuous covariates (eg, such as age, blood pressure, and most
biomarkers) using cut-points is best avoided when examining their interaction with treatment effect.38-40 The usual argu-
ment for categorization is to aid clinical interpretation and maintain simplicity. However it can rarely, if ever, be justified
that an individual whose value is just below the cut-point is completely different from an individual whose value is just
above it. Moreover, categorization reduces the power to detect genuine covariates that interact with treatment effect. Ensor
et al show that, in the aforementioned IPD meta-analysis to examine exercise interventions to reduce gestational weight
gain in pregnancy, the loss of information by dichotomizing BMI (rather than keeping BMI as continuous) is equivalent
to throwing away about one-third of the IPD available.41

Categorization of continuous outcomes should also be avoided, as it can mislead researchers into thinking there are
differential responses to treatment. In particular, classifying individuals as either responders or nonresponders, based
on an arbitrary cut-point value for a continuous outcome (eg, SBP< 120 mmHg at follow-up), will lead to those just
above the threshold being classed differently to those just below it, which is nonsense. Such dichotomization also leads
to misclassification when there is measurement error.42

Application to the pregnancy example
In the pregnancy example an outcome of interest was caesarean section and, across all participants in 32 trials, the

intervention reduces the odds of caesarean section by about 10% (summary OR= 0.91; 95% CI: 0.83 to 0.99). It is of interest
whether the mother's age interacts with this intervention effect. If we arbitrarily dichotomize age at 35 years, so that it
becomes a binary variable (ie, 0 if age ≤35, and 1 if age >35), then a two-stage IPD meta-analysis (model (2) followed by
model (5)) shows no clear evidence of an interaction between age and treatment effect (summary ratio of ORs = 1.14,
95% CI: 0.90 to 1.45). However, if age is kept as a continuous variable, then there is stronger evidence of a treatment-age
interaction. The intervention becomes less effective at reducing the odds of caesarean section as a women's age increases.
For every 5-year increase in age the odds ratio increases by about 10% (summary ratio of ORs = 1.10, 95% CI: 1.00 to 1.20).
When analyzed on the risk (rather than odds scale), using a binomial regression with a log-link, this translates to about
a 6% increase in the risk ratio for every 5-year increase (95% CI: 0.98 to 1.15).
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4.4 Allow for potential nonlinear relationships when modeling interactions
with continuous covariates

In the previous example we assumed a linear trend for the interaction of treatment and a continuous covariate. How-
ever, sometimes the interaction may be nonlinear, as emphasized by Royston and Sauerbrei,15 and considered in detail by
Kasenda et al.43,44 This implies the change in treatment effect for every 1-unit increase in the covariate may vary across
the distribution of the covariate. Therefore, nonlinear interactions should be evaluated when the interaction of a con-
tinuous covariate and treatment effect is of interest. We now illustrate this with an example, and explain how it can be
implemented using a multivariate meta-analysis of spline functions.

Application to the hypertension example
Wang et al consider whether there is an interaction between age and the effect of hypertensive treatment, and identify

a nonlinear relationship, with older patients between 60 and 80 years old seeming to benefit more than younger patients
and those older than 80.17 Their original analysis categorized age, but we now update their analysis to rather display the
change in treatment effect as a smooth, nonlinear function of age (Figure 3), with the reference group being the treatment
effect for a 55 year old. A J-shaped relationship is visible; in particular, there is strong evidence that younger individuals
have the smallest treatment effect. For example, compared to an individual aged 40 years, an individual aged 55 years has
about a 3 mmHg greater reduction in SBP due to the treatment (compared to control). In very old ages the treatment effect
also appears to reduce slightly, but there is large uncertainty (wide confidence intervals). Interestingly, if we just include
an interaction with age (ie, assume a linear interaction term) then there is no evidence of a treatment-age interaction.
The change in treatment effect for each year increase of age is −0.05 (95% CI: −0.19 to 0.12). The linear assumption hides
the more J-shaped interaction revealed by the nonlinear modeling approach.

Conducting a two-stage multivariate IPD meta-analysis of restricted cubic splines
Figure 3 was obtained by conducting a two-stage IPD meta-analysis, where in the first stage a restricted cubic spline

function was estimated in each study separately and in the second stage a multivariate meta-analysis was fitted. Splines
are a flexible way of modeling smooth nonlinear relationships.45 Briefly, a restricted cubic spline is obtained by fitting
a series of cubic functions and forcing them to join (and be smoothed) at certain points (called internal knots), whilst
constraining the function to be linear in the tails (ie, before the first internal knot and after the last internal knot). The
magnitude and shape of the curve are defined by multiple parameters depending on the number of knots chosen; as
explained in Figure 4. The knot locations are forced to be the same in every study, to ensure the study-specific curves can be
synthesized meaningfully. Rather than using a reference group whose covariate value is 0, it helps to center the covariate
at a meaningful value (eg, 55 years was chosen as the reference group in Figure 3), which is the same in every study. In
our example, three internal knots (at the same locations in every study) were chosen for the restricted cubic function
representing the association between age and final SBP in the control group. Hence, in the first stage three parameters
defining the spline function are estimated in each study (an intercept and two slope terms), plus the interaction of this
spline function with the treatment effect. The latter provides the within-study treatment-covariate interaction defined by
𝛾W1i and 𝛾W2i (see Figure 5A), which represent the change (difference) in treatment effect across covariate values, relative
to the chosen reference group of an individual aged 55 years.

F I G U R E 3 Summary of the nonlinear interaction between
age and effect of hypertension treatment on final SBP value. Figure
created by fitting an analysis of covariance model in each study
separately, with the interaction between age and treatment modeled
via a restricted cubic spline function (with knot positions of 39, 60,
and 75), and then the study-specific parameter estimates (relating to
the interaction) pooled in a multivariate random-effects
meta-analysis
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F I G U R E 4 Introduction to modeling nonlinear relationships in a single study using restricted cubic splines; for further details we
recommend the reader refer to Harrell45
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F I G U R E 5 (A): Overview of the first stage of a two-stage multivariate IPD meta-analysis to summarize a nonlinear treatment-covariate
interaction using a restricted cubic spline. The steps are described in relation to the hypertension example of Figure 3 which examined a
treatment-age interaction.
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F I G U R E 5 (B): Overview of the second stage of a two-stage multivariate IPD meta-analysis to summarize a nonlinear
treatment-covariate interaction using a restricted cubic spline. The steps are described in relation to the hypertension example of Figure 3
which examined a treatment-age interaction
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In the second stage, the study estimates of the difference in slope parameters of the spline function (ie, �̂�W1i and
�̂�W2i) can be meta-analyzed using a multivariate random-effects meta-analysis.46-50 This allows the synthesis of multiple
parameter estimates whilst accounting for their within-study and between-study correlation, and produces a summary
estimate for each parameter, from which the summary spline (nonlinear) function can be derived. It can handle missing
parameter estimates (ie, for missing parts of the spline function in studies with a narrow distribution of covariate values)
as described in Figure 5A,B. This summary curve describes the association between values of the covariate and the change
in treatment effect, relative to the reference group (age 55 years in the example). This can then be plotted graphically to aid
interpretation. The study-specific estimated curves from the first stage (or study-specific empirical Bayes curves obtained
postestimation from the second stage) might also be presented, as shown by Gasparrini et al.46

A summary of the two-stage multivariate IPD meta-analysis of restricted spline functions is given in Figure 5A,B.
A similar approach is a multivariate IPD meta-analysis of a polynomial function51; in the first stage the differences (ie,
treatment minus control) of the parameters of a chosen polynomial function are estimated in each study (eg, differences
in a quadratic shape, such as 𝛾W1x𝑖𝑗z𝑖𝑗 + 𝛾W2x𝑖𝑗z2

𝑖𝑗
) and the parameter estimates (�̂�W1 and �̂�W2) are jointly synthesized to

produce a summary function.51 In particular, fractional polynomial functions provide a flexible set of power transforma-
tions to describe a potentially nonlinear association.52-54 In order for the parameters of the function to be combinable
across studies in a multivariate meta-analysis, the same powers of the fractional polynomial function must be specified
in each study (ie, the shape of the nonlinear association is fixed across studies).51 In contrast, as long as the same num-
ber and location of knots is used in each study, a restricted cubic spline function is more flexible (ie, the shape of the
nonlinear association can vary across studies) and it can handle different covariate distributions across studies by strate-
gic placement of knots. Sauerbrei and Royston show that it is possible to combine different fractional polynomial power
transformations across studies, if the predicted values of the function are pooled (rather than the parameters defining the
function),55 with the pooling of predictions done at each value of the covariate separately.

A one-stage IPD meta-analysis model can also be used to examine nonlinear treatment-covariate interactions, but
difficulties can arise. First, the extra parameters required to model nonlinear functions, and potentially multiple ran-
dom effects, may cause estimation and convergence problems. Second, when centering covariates by their study-specific
means (ie, to avoid aggregation bias), by extending models (6) to (8), the interpretation of the spline function becomes
problematic. Unless all studies have the same mean covariate value, the change in treatment effect for a 1-unit increase
in a covariate from its mean will have a different interpretation in each study; this will make the summary spline func-
tion uninterpretable. Therefore, it is preferable to examine nonlinear trends by extending one-stage models (9) to (11),
stratifying by trial parameters outside the interaction term, to remove aggregation bias.

4.5 To personalize decision-making, individualized predictions of treatment effect are
required

For clinical practice, translation of identified treatment-covariate interactions is required for the individual patient, in
order to tailor their treatment decisions. This is nontrivial. A fundamental error is to assume that if a treatment-covariate
interaction exists then the treatment is effective in some individuals but not in others. Actually, even when the magnitude
of treatment effect varies across individuals, the direction of effect may consistently suggest the treatment is beneficial
for everyone.

To better guide decision-making, a predicted treatment effect is required for each individual. This requires a robust
prediction model equation, developed and validated using methodology principles for clinical prediction models.2,45,56 In
particular, to reduce overfitting (too extreme predictions) the model development might require penalization and shrink-
age approaches,57-59 to reduce the variability of predictions in new datasets, thereby reducing the mean-square error of the
predictions. A step further is to predict an individual's absolute outcome value or risk conditional on their prognostic fac-
tors and expected treatment effect. These and related issues are discussed in detail elsewhere.60-63 Crucially, aggregation
bias should also be avoided when making predictions, and we now illustrate this with an example.

Application to the hypertension example
Consider the example within Figure 3 that suggests a potential nonlinear interaction between age and the effect of

antihypertensive treatment, with younger patients seemingly having less benefit (in terms of reduction in SBP) than older
individuals. The smooth curve reflects the treatment-age interaction; it reveals the summary estimate of the difference
in treatment effect for an individual with a particular age compared to an individual aged 55 years. However, it does not
tell us the predicted (expected) treatment effect for an individual with a particular age. To obtain this, we performed a
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multivariate IPD random-effects meta-analysis, where we estimate and then meta-analyze the two slopes (𝛾W1i and 𝛾W2i)
of the spline function (as defined in Figure 5A), and also the reference treatment group (𝛽2i, the study-specific treatment
effect for individuals aged 55 years, our reference group). Then, the summary estimates (𝛽2, �̂�W1, �̂�W2) obtained were used
to define the prediction model for an individual's treatment effect conditional on their age:

Predicted treatment effect for jth individual = 𝛽2 + �̂�W1(age1j − 55) + �̂�W2(age2j − 3.16)

= −10.66–(0.251 × (age1j − 55))

+ (0.156 × (age2j − 3.16)). (13)

Here, −10.66 is the predicted treatment effect for an individual aged 55 years, and age1j and age2j represent, respec-
tively, the individual's values of the first and second spline transformation of their age. For example, for an individual
aged 40, their corresponding age1j is 40 and age2j is 0.00077, and thus their predicted treatment effect is

−10.66–(0.251 × (40–55)) + (0.15 × (0.00077–3.16)) = −7.39.

Overfitting is potentially of limited concern for prediction Equation (13), as it was derived using over 28 000 partici-
pants with only two parameters (excluding the intercept) estimated. The predicted treatment effect across the age range is
summarized in Figure 6. Across all ages the predicted treatment effect is at least 5 mmHg. Hence, on average, all patients
are predicted to benefit by a clinically useful amount, even though the magnitude of effect varies due to the treatment-age
interaction.

A concern is that a multivariate meta-analysis of 𝛽2i, �̂�W1i, and �̂�W2i accounts for the correlation amongst these param-
eters, both within and between studies. Yet again this allows the potential for aggregation bias to influence the summary
interaction terms, �̂�W1 and �̂�W2, as their correlation with 𝛽2 allows the borrowing of across-trial information. Though it
is perhaps sensible for 𝛽2 (as it is our reference treatment effect averaged across studies), we should want our summary
interactions terms to be based solely on within-trial information, as previously argued. To address this, we replace the
summary �̂�W1 and �̂�W2 estimates in our prediction Equation (13) with −0.178 and 0.133, their respective estimates from a
multivariate meta-analysis ignoring any correlation with 𝛽2i terms Then, the modified prediction equation is:

Predicted treatment effect for jth individual = 𝛽2 + �̂�W1(age1j − 55) + �̂�W2(age2j − 3.16)

= −10.66–(0.178 × (age1j − 55))

+ (0.133 × (age2j − 3.16)). (14)

This allows us to produce predicted treatment effects conditional on age, summarized across all studies and removing
aggregation bias. Using Equation (14) for an individual aged 40 years, their predicted treatment effect is,

−10.66–(0.178 × (40–55)) + (0.133 × (0.00077–3.16)) = −8.41 mmHg

F I G U R E 6 The predicted effect of antihypertensive treatment
on SBP conditional on an individual's age, based on a multivariate
meta-analysis either with or without aggregation bias in the
summary treatment-age interactions
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which is larger than the −7.39 predicted from the previous equation. Indeed, the predicted curve across the entire age
range is noticeably shallower after removing aggregation bias (Figure 6), because the aggregation bias (arising from incor-
porating across trial information) makes interaction estimates larger than when based solely on within-trial information.
Note that the predictions shown here are averaged across studies. If possible, incorporation of study-level covariates (eg,
country) that explain between-study heterogeneity in parameter estimates might help tailor predictions further.

5 TO IPD OR NOT TO IPD? STATISTICAL RECOMMENDATIONS WHEN
PLANNING AN IPD META-ANALYSIS PROJECT TO EXAMINE
TREATMENT- COVARIATE INTERACTIONS

Statistical considerations are also important when deciding whether to initiate an IPD meta-analysis project (ie, before
IPD collection), and two key issues are now discussed in the context of treatment-covariate interactions.

5.1 The decision to initiate an IPD meta-analysis project to examine
treatment-covariate interactions should not be based on the amount of between-study
heterogeneity in the overall treatment effect

Without IPD, most meta-analyses of randomized trials will summarize the treatment effect based on all trial partici-
pants (ie, without consideration of treatment-covariate interactions). If such a meta-analysis does not find evidence of
between-study heterogeneity in the treatment effect, it may be tempting to conclude that the treatment effect is the same
for all individuals. However, this logic is flawed: the absence of heterogeneity in the overall effect (across all participants)
does not necessarily imply an interaction does not exist. First, if there is a genuine treatment-covariate interaction, but
the distribution of the covariate is very similar across studies, then (assuming no other patient-level or study-level effect
modifiers differ across studies), the overall treatment effect will be the same in each study (ie, there will be no hetero-
geneity). Second, even if the distribution of the covariate does change across studies, the overall treatment effect may still
be homogenous; for example this may arise due to chance, or because the covariate has a nonlinear (eg, U-shaped) inter-
action with treatment (so that the overall treatment effect may still be the same in two studies with very different mean
covariate values), or even due to multiple effect modifiers acting in combination and different directions.

Conversely, if there is heterogeneity in the overall treatment effect this does not imply that an interaction exists at the
participant-level. Heterogeneity can arise due to changes in study-level characteristics such as dose, follow-up length, and
setting, even when there is no interaction at the participant-level. Hence, the decision to investigate treatment-covariate
interactions should not be driven by the presence of between-study heterogeneity in treatment effect, and should be rather
motivated by the supposed (biological) mechanism of treatment response.

Application to the hypertension example
As an illustration of why heterogeneity is a poor indicator of whether treatment-covariate interactions exist, consider

a two-stage IPD meta-analysis examining the effect of antihypertensive treatment on rate of CVD, for which the summary
hazard ratio was 0.74 (95% CI: 0.67 to 0.81) with no observed heterogeneity (𝜏2 = 0).64 However, there is some suggestion

F I G U R E 7 Evidence of a potential nonlinear interaction
between baseline SBP and the effect of hypertension treatment on
the rate of CVD, even though there was no between-study
heterogeneity in the overall treatment effect
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of a nonlinear interaction between baseline SBP and the treatment effect on CVD, with the treatment effect gradually
reducing as the baseline SBP moves from about 170 mmHg toward 120 mmHG (Figure 7), as obtained using a two-stage
multivariate meta-analysis of restricted cubic splines as described in Figure 5A,B.

5.2 Calculate the power to identify a treatment-covariate interaction prior
to collection of IPD

IPD meta-analysis projects are more likely to be funded if they have sufficient power to answer the research question at
hand. Before IPD collection, power calculations for IPD meta-analysis projects can be made conditional on the number
of trials promising their IPD, using known trial characteristics such as the number of participants and standard deviation
(SD) of covariate values. Closed-form solutions are difficult to obtain, especially for noncontinuous outcomes unless
approximations are made.65 A pragmatic starting point is to consider whether the total sample size (and overall outcome
proportion or rate for binary and time-to-event outcomes) of the promised IPD has adequate power if naively considered
to come from a single study. Then standard statistical software for estimating the power of an interaction in a single
randomized trial could be used.

To mirror the IPD meta-analysis setting more exactly, a simulation-based approach has been proposed.66-69 In partic-
ular, Ensor et al suggest generating IPD containing the same number of studies (and same number of participants and
events therein) as promising their IPD,41 with covariate values simulated based on assumed true treatment effects and
treatment-covariate interaction effect size. Then a two-stage IPD meta-analysis is applied to this simulated dataset, and
the estimated treatment-covariate interaction and its confidence interval are stored. This is repeated m times (ideally thou-
sands). Based on a traditional frequentist paradigm, power can then be estimated by calculating the proportion of times
the summary estimate was statistically significant (eg, as defined by the associated 95% confidence interval excluding the
null value). This process might also be repeated assuming different values for the size of the assumed treatment-covariate
interaction, and different values for the assumed magnitude of heterogeneity in the interaction across studies (starting
from zero).

For an IPD meta-analysis of S randomized trials with continuous outcomes, closed-form solutions are obtainable for
the power to evaluate a treatment-covariate interaction.10 Simmonds and Higgins provide the following analytic solu-
tion for the maximum likelihood estimate of a treatment-covariate interaction for a continuous outcome in a single
randomized trial with two parallel groups:10

�̂�𝑊𝑖 =
2∑ni

j=1 z′2
𝑖𝑗

(∑
j∈Ti

y𝑖𝑗z′𝑖𝑗 −
∑
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y𝑖𝑗z′𝑖𝑗

)
.

Here, Ti denotes the treatment group and Ci the control group in study i, and z′
𝑖𝑗

denotes that each zij is centered
about the study-specific mean zij value (ie, z′

𝑖𝑗
= z𝑖𝑗 − zi). Simmonds and Higgins use this to derive subsequent power

calculations,10 assuming common residual variances across trials. If we extend their work by allowing for different
residual variances in each trial (𝜎2

i ), the variance (var) of the interaction estimate in a particular study i is:
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Let us assume an equal number of participants in the treatment and control groups, and that the variance of the
covariate (𝜎2

zi
) is the same in each treatment group

(
ie, 𝜎2

Tizi
= 𝜎2

Cizi
= 𝜎2

zi

)
. Then

∑ni
j=1 z′2

𝑖𝑗
= ni𝜎

2
zi

, and Equation (15)
simplifies to:
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var(�̂�𝑊𝑖) =
4𝜎2

i(∑ni
j=1 z′2

𝑖𝑗

)2

( ni∑
j=1

z′2𝑖𝑗

)
=

4𝜎2
i∑ni

j=1 z′2𝑖𝑗
=

4𝜎2
i

ni𝜎
2
zi

. (16)

Using the solution for var(�̂�𝑊𝑖) from either Equation (15) or (16), we can derive a closed-form solution for the variance
of the summary interaction estimate from the second stage of a two-stage IPD meta-analysis. Assuming common-effect
model (4), var(�̂�W ) is simply the sum of the inverse of the variances from each study,

var(�̂�W ) =

( S∑
i=1

1
var(�̂�𝑊𝑖)

)−1

, (17)

and the subsequent power to estimate a treatment-covariate interaction of size 𝛾W using the IPD meta-analysis is
approximately,

Power = Prob

(
�̂�W√

var(�̂�W )
> 1.96

)
+ Prob

(
�̂�W√

var(�̂�W )
< −1.96

)
. (18)

For example, assuming a common interaction and that trials have equally sized groups, we can use Equations (16) and
(17) to give,

Power = Prob

(
�̂�W√

var(�̂�W )
> 1.96

)
+ Prob

(
�̂�W√

var(�̂�W )
< −1.96

)

= Φ
⎛⎜⎜⎝−1.96 + 𝛾W

√√√√ S∑
i=1

ni𝜎
2
zi

4𝜎2
i

⎞⎟⎟⎠
+ Φ

⎛⎜⎜⎝−1.96 − 𝛾W

√√√√ S∑
i=1

ni𝜎
2
zi

4𝜎2
i

⎞⎟⎟⎠ , (19)

where Φ(x) is the probability of sampling a value < x from the standard normal distribution. Allowing for different sized
groups in a trial (ie, using Equation (15) rather than (16)), the power calculation becomes,

Power = Φ

⎛⎜⎜⎜⎜⎝
−1.96 + 𝛾W

√√√√√√√ S∑
i=1

⎛⎜⎜⎜⎝
(∑ni

j=1 z′2
𝑖𝑗

)2

4𝜎2
i

(∑
j∈Ti

z′2
𝑖𝑗
+
∑

j∈Ci
z′2
𝑖𝑗

)⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
+ Φ

⎛⎜⎜⎜⎜⎝
−1.96 − 𝛾W

√√√√√√√ S∑
i=1

⎛⎜⎜⎜⎝
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𝑖𝑗

)2
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i

(∑
j∈Ti
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𝑖𝑗
+
∑

j∈Ci
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)⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
, (20)

and as before we could replace
∑ni

j=1 z′2
𝑖𝑗

with ni𝜎
2
zi

, and similarly
∑

j∈Ti
z′2
𝑖𝑗

and
∑

j∈Ci
z′2
𝑖𝑗

could be replaced with nTi𝜎
2
Tizi

and
nCi𝜎

2
Cizi

, respectively.
Equations (19) and (20) require the user to specify a minimally important value for 𝛾W , and also the values of ni, 𝜎2

i ,
and 𝜎2

zi
based on published study information (eg, from the baseline characteristics table for a trial) or provided directly by

study authors. The residual variance (𝜎2
i ) might be unavailable, and so approximated by the variance of outcome values.

Extension can be made to allow for potential heterogeneity in the treatment-covariate interaction, but the amount of
heterogeneity is difficult to know in advance. Thus we suggest to focus on the power in an ideal situation where there is
no between-study heterogeneity in the size of the interaction.

5.2.1 Application to the pregnancy example

In the IPD meta-analysis conducted by the i-WIP collaboration introduced in Section 2.2, a primary objective was to
examine a potential interaction between baseline BMI and intervention effect on gestational weight gain. The prior
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hypothesis was that those with high baseline BMI may benefit most from weight management interventions. No formal
power calculation was performed in advance of IPD collection but ultimately IPD from 24 trials. For illustration, here
we reconstruct the power calculation for this project assuming it was known that IPD could be obtained from these 24
trials. The values of ni, 𝜎2

i , and 𝜎2
zi

were extracted from the publications of the 24 trials, and are shown by Ensor et al41;
occasionally 𝜎2

i and 𝜎2
zi

were missing and for these we used a weighted average of values from other studies. These val-
ues were input into Equation (16) to derive var(�̂�𝑊𝑖) for each trial, which then were used within Equation (17) to give
var(�̂�W ) = 0.0014.

A minimally important interaction size of −0.1 was suggested by clinical experts, such that the reduction in weight is
at least 1 kg larger for a 10-unit increase in BMI. Thus inputting 𝛾W = − 0.1 and var(�̂�W ) = 0.0014 into Equation (19), we
obtain:

power = Φ

(
−1.96 − 0.1

√
1

0.0014

)
+ Φ

(
−1.96 + 0.1

√
1

0.0014

)
= Φ(−4.917) + Φ(0.997)
= 0 + 0.84.

Thus the estimated power is 84%. Ensor et al estimate a comparable 83% power using a simulation-based power
calculation,41 but our closed-form solution is obtained in a much quicker time-frame. Had this power been known
at the time of the i-WIP grant application, it would have given further merit to undertaking and funding the IPD
meta-analysis project. Although, even if power was deemed low, there are often many other potential benefits of
undertaking an IPD meta-analysis project (eg, obtaining additional follow-up, standardizing inclusion criteria, and
so on).

6 DISCUSSION

There are multiple reasons for pursuing the collection and synthesis of IPD, 70,71 but personalized medicine is driv-
ing many IPD meta-analyses to search for treatment-covariate interactions. To guide such IPD meta-analysis projects,
this article has outlined key statistical methods for their conduct and planning, whilst drawing attention to issues and
pitfalls. We focused on interactions in randomized trials, but key points also apply to modeling interactions in IPD
meta-analyses of study types, such as those evaluating the accuracy of diagnostic tests or the association of prognostic
factors to subsequent outcomes.72

The actual identification, validation, and successful implementation of treatment-covariate interaction is rare.2 A
sensible starting point—for funders, researchers, health professionals, and patients—is that the relative treatment effect
is similar for all individuals, unless there is strong justification otherwise (eg, from previous findings, and especially
biological rationale).11,73 We highlighted many issues and pitfalls that if ignored may produce misleading conclusions,
and we suspect many will affect the 102 IPD meta-analyses identified by Schuit et al as providing a significant interaction
estimate.74

Our work focuses on statistical models for estimating an interaction. However if we are willing to make clinical deci-
sions (and even withhold treatment) based on an individual's predicted treatment effect, then there should be a firm
understanding of the causal mechanism and pathway, and the cost-effectiveness of the approach. Sun et al suggest criteria
to assess the credibility of a treatment-covariate interaction (which they call a subgroup effect),12 including an item about
the need for evidence to be based on within-study rather than across-study information. A key role is to disentangle dif-
ferent sources of variation,75 and Senn recommends we need more N-of-1 trials,76 to repeatedly test multiple treatments
in the same person, including the same treatment multiple times. For further consideration of whether interactions are
likely to be genuine, we refer to two excellent tutorials which discuss intricate issues such as dose-response relationships,
measurement error, adjusting for confounders, dealing with multiple covariates, and multiplicative vs additive scales.72,77

Scale of the analysis is an important issue. For example, a treatment-covariate interaction may occur on the odds ratio
scale but not the risk ratio scale, when the covariate is also a prognostic factor, as superbly illustrated by Shrier and Pang.78

Conversely the risk ratio scale may also be problematic in some particular situations as, unlike the odds ratio, its value
may be bounded.45 Nonlinear trends may also exist on one scale but not another. Therefore consideration of multiple
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scales may be important, as illustrated in the example of Section 4.3. Allowing for nonproportional hazards may also be
important for similar reasons.

More research is needed to help address the issue of multiple testing and exploratory research when investigating
multiple interactions in IPD meta-analysis settings, extending recommendations for a single trial.79 Mistry et al propose
a tree-based recursive partitioning algorithm (called “IPD-SIDES”) to identify subgroup effects in an IPD meta-analysis
when there are many covariates of interest (ie, in an exploratory analysis).80 A limitation of their proposal is that it requires
the use of cut-points to dichotomize continuous covariates, rather than leaving them as continuous, and—as far as we
can tell—amalgamated within-study and across-study information. Extension of their work to address these issues would
be welcome.

Treatment-covariate interactions correspond to changes across individuals in the treatment effect as measured on the
relative scale (eg, risk ratio, odds ratio, hazard ratio). However, another approach to personalizing or stratifying the use
of treatments is to consider their impact on absolute risks. Those people with the highest absolute risk will derive the
largest absolute benefit from a treatment (eg, greatest reduction in probability of the outcome) when the treatment effect
expressed as a risk ratio is the same for all patients. Therefore, even in the absence of treatment-covariate interactions,
treatment decisions might be tailored conditional on absolute outcome risk.1,2 Lastly, we note that those considering IPD
meta-analysis projects should also consider other practicalities aside from the analysis, such as obtaining, cleaning and
harmonizing the IPD.17,18
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