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ABSTRACT: Targeting protein degradation with Proteolysis-
Targeting Chimeras (PROTACs) is an area of great current
interest in drug discovery. Nevertheless, although the high
effectiveness of PROTACs against a wide variety of targets has
been established, most degraders reported to date display limited
intrinsic tissue selectivity and do not discriminate between cells of
different types. Here, we describe a strategy for selective protein
degradation in a specific cell type. We report the design and
synthesis of a trastuzumab-PROTAC conjugate (Ab-PROTAC 3)
in which E3 ligase-directed degrader activity is caged with an
antibody linker which can be hydrolyzed following antibody—
PROTAC internalization, releasing the active PROTAC and
inducing catalytic protein degradation. We show that 3 selectively
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targets bromodomain-containing protein 4 (BRD4) for degradation only in HER2 positive breast cancer cell lines, while sparing
HER2 negative cells. Using live cell confocal microscopy, we show internalization and lysosomal trafficking of the conjugate
specifically in HER2 positive cells, leading to the release of active PROTAC in quantities sufficient to induce potent BRD4
degradation. These studies demonstrate proof-of-concept for tissue-specific BRD4 degradation, overcoming limitations of PROTAC

selectivity, with significant potential for application to novel targets.

rotein degradation directed by small molecules including

“molecular glues”,'~* or Proteolysis-Targeting Chimeras
(PROTACs),”™” is among the fastest growing fields in
chemical biology and drug discovery. In addition to its
therapeutic potential, this technology has led to powerful
chemical tools to probe protein function. PROTACs are
bifunctional compounds composed of a ligand against a
protein of interest (POI) connected to an E3 ligase ligand via a
suitably designed linker.'” The mode of action of these
molecules relies on their ability to bring the POI and E3 ligase
into proximity, triggering directed polyubiquitination and
subsequent proteasome-mediated degradation of the POI, in
a manner that is catalytic, with respect to the PROTAC."
PROTACS have been reported against a wide range of different
targets playing important roles in biology, and particularly
cancer, including Estrogen Receptor (ER),"* Androgen
Receptor (AR),'”'* BET-bromodomain proteins,">'® and
various kinases.'’ "> Recently disclosed safety and pharmaco-
kinetics data for two orally bioavailable PROTAC candidates
(ARV-110 targeting AR, for the treatment of prostate cancer,
and ARV-471, which is an ERa degrader for breast cancer
therapy) in a phase I clinical trial prefigures the potential of
these compounds.”””>* Nonetheless, although numerous
reported PROTACs are highly efficient degraders, they are
generally not tissue-specific, since they exploit E3 ligases with
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broad expression profiles. Tissue-specific degradation could
enable optimization of the therapeutic window and minimize
side effects for broad-spectrum PROTACsS, increasing their
potential as drugs or chemical tools. However, PROTACs
exploiting E3 ligases with restricted tissue distribution have not
been reported to date, and the development of novel E3 ligase
ligands remains a significant challenge.

We considered an antibody—PROTAC conjugate as an
alternative approach for selective delivery of a broad-spectrum
PROTAC into specific cell types, by analogy to antibody—drug
conjugates (ADCs). ADCs have gained momentum as
anticancer therapeutics, since they allow delivery of a cytotoxic
payload specifically to cancer cells, minimizing undesired side
effects.”> ADCs can enhance therapeutic monoclonal antibod-
ies, such as trastuzumab (Herceptin) or pertuzumab
(Perjeta).26 For example, the ADC T-DMI1 ado-trastuzumab
emtansine (Kadcyla) has been approved by the United States
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Figure 1. (A) Proposed mode of action of an antibody—PROTAC conjugate, resulting in HER2-dependent protein degradation. (B) Structures of
compounds 1 and 2. (C) Overall structure of Ab-PROTAC 3. (D) LC-MS analysis of trastuzumab-NGM-PROTAC conjugate (Ab-PROTAC 3)
and the deconvoluted ion series mass spectrum. Observed mass of 152 010 corresponds to full antibody modified with four NGM-BCN-PROTAC
molecules, where all NGM moieties are hydrolyzed to maleamic acids (expected: 152 008); 76 00S corresponds to the isomeric form in which the
hinge cysteines are bridged in an intrachain manner (expected: 76 004). (E) Hydrolytic stability of Ab-PROTAC 3 determined by liquid

chromatography—mass spectroscopy (LC-MS).

Food and Drug Administration (FDA) for the treatment of
metastatic HER2 positive (HER2+) breast cancer, following
treatment with trastuzumab and taxanes.””*® Nonetheless, to
date, only a few ADCs have received FDA approval for
commercialization, since many of these new therapeutics have
failed during clinical trials, because of intrinsic limitations such
as uptake into nontargeted cells. The main challenge for ADC
development is related to dose-limiting toxicities (DLTs),
which are frequently reported, even at suboptimal therapeutic
doses, resulting in a poor balance between therapeutic efficacy
and off-target toxicity of these drugs.”® Another drawback of
ADC s is the low quantity of payload typically delivered into
tumors, meaning that the payload must be extremely cytotoxic,
which can be dose-limiting.”” We considered that a PROTAC
could be an ideal ADC payload, since it benefits from catalytic
degradation activity driven by substoichiometric target engage-
ment, delivering extended and potent target degradation from
a low dose of compound.”

We hypothesized that a trastuzumab-PROTAC conjugate
platform could achieve selective delivery of a PROTAC and
direct protein degradation specifically in HER2+ cells. Such a
conjugate would bind HER2/neu receptors, inducing endo-
somal internalization and lysosomal release of active PROTAC

(see Figure 1A). Given that bromodomain containing protein
4 (BRD4) is a potentially attractive target in inflammation and
cancer, because of its role in transcriptional dysregulation,*” we
were interested in exploring the potential of a trastuzumab—
BRD4 degrader conjugate to achieve cell-type-specific BRD4
degradation in a breast cancer cell model. We selected
PROTAC 1 for a proof-of-concept study (Figure 1B). This
compound is an analogue of BRD4 degrader MZ1, which has
been reported to achieve complete degradation of BRD4 at
100 nM, following 4 h of treatment.”> PROTACs of this class
feature BET bromodomain ligand JQI as a targeting element
for BET-containing proteins (such as BRD4) linked to a ligand
for von Hippel-Lindau protein (VHL), which is a key
component of an E3 ligase complex involved in the regulation
of hypoxia.”> While our manuscript was in preparation, other
examples of antibody-based targeted protein degradation were
disclosed by Dragovich et al, including the delivery of
Estrogen Receptor alpha (ERa) degraders selectively to
targeted cells” and selective delivery of an anti-CLL1-(GNE-
987) conjugate in a model of chronic lymphocytic leukemia
(CLL).” In the latter study, the authors report a new BRD4
degrader (GNE-987) with picomolar potencies toward BRD4
degradation in EOL-1 AML cells, as well as in cell viability
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Figure 2. (A) Expression of HER2/neu receptor and BRD4 protein in the cell lines used in this study: Western blot analysis of HER2/neu, BRD4,
and f-actin on cell lysates from MCF-7, MDA-MB-231, SK-BR-3, and BT-474 cells. (B) Representative frame from immunofluorescence
microscopy images of HER2— MCF-7 and HER2+ SK-BR-3 cells labeled with a primary anti-HER2 antibody and stained with a secondary AF488-
conjugated antibody (green). Nuclei were stained with DAPI (blue). (C) Monitoring of BRD4 degradation properties of PROTAC 1 in MCF-7,
MDA-MB-231, SK-BR-3 and BT-474 cells. Western blot analysis of BRD4 and f-actin after treatment of cells with PROTAC 1, or control
compounds. Cells were incubated with PROTAC 1 for either 4 h in the medium before harvesting cell lysates (“4 h incubation”), or for 1 h
followed by washout (“washout”), which consisted of removal of the medium, washing with PBS, the addition of fresh medium, and harvesting 23 h
later. (D) Ab-PROTAC 3 induces selective degradation of BRD4 in HER2+ cell lines, in a dose-dependent manner: Western blot analysis of BRD4
and f-actin following treatment of MCEF-7, MDA-MB-231, SK-BR-3, or BT-474 cells with Ab-PROTAC 3, or control compounds. Cells were
incubated with Ab-PROTAC 3 for either 4 h in the medium before harvesting cell lysates (“4 h incubation”), or for 1 h followed by washout
(“washout”), consisting of removal of the medium, washing with PBS, the addition of fresh medium, and harvesting 23 h later. (E) Structure of
BRD4 degrader 4 used as a positive control to gauge BRD4 degradation. (F) BRD4 degradation by Ab-PROTAC 3 is proteasome-dependent:
Western blot analysis of BRD4 and f-actin after treatment of SK-BR-3 and BT-474 cells with Ab-PROTAC 3 or control compounds in the
presence or absence of proteasome inhibitor bortezomib (BTZ). Cells were incubated for 2 h with BTZ or PBS (pH 6.9), followed by 1 h of
treatment with Ab-PROTAC (3). A washout was performed on the wells treated with Ab-PROTAC 3, and cells were harvested 23 h after washout.
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Figure 3. (A) HER2+ SK-BR-3 cells were treated with Alexa488-conjugated Ab-PROTAC (AF488-3) (100 nM) for 1, 4, 8, and 24 h (all post-1-h
washout). Cells were then labeled with LysoTracker DeepRed (50 nM, 30 min). Shown is a representative frame from live imaging of cells via
confocal microscopy. Scale bar = 20 ym. (B) HER2— MCF-7 cells were treated with AF488-3 (100 nM) for 30 min, followed by incubation with
LysoTracker DeepRed (50 nM) for an additional 30 min. Shown is a representative frame from live imaging of cells via confocal microscopy. (C)
Quantification of AF488-3 colocalization with LysoTracker DeepRed. The Pearson’s correlation coeflicient is shown for various incubation time
points in SK-BR-3 cells; data are mean + the standard error of measurement (SEM); n = 6 cells. Statistical analysis was performed by one-way
ANOVA, followed by Tukey’s multiple comparison test (triple asterisk symbol (*#*) denotes P < 0.0001; “ns” = nonsignificant).

studies performed with different leukemia cell lines.
Furthermore, with the aim of improving the pharmacokinetics
properties of this compound in vivo, the derivatization of this
degrader into an antibody—degrader conjugate was described.
This involved the conjugation of GNE-987 to a CCLI
antibody through a disulfide-bearing linker that was attached to
GNE-987 via a carbonate bond. A single IV administration of
the conjugate to mice with HL-60 AML xenografts provided
dose- and antigen-dependent tumor regression.

Our conjugation strategy required attachment of the
PROTAC to trastuzumab through a triazole moiety. We
decided to take advantage of the free hydroxyl group on the
VHL ligand moiety of 1 to tether an azido-PEG linker. This
hydroxyl group in 1 is essential for binding to VHL;***” hence,
attaching an antibody linker to this position via an ester (see
Figure 1B, as well as Scheme S1 in the Supporting
Information) would effectively cage PROTAC activity until it
is released intracellularly during lysosomal digestion of the
conjugate. Thus, our tool compounds PROTAC 1 and azido-
PROTAC 2 were synthesized as reported in Scheme S1.

Antibody—PROTAC conjugate 3 was synthesized by
rebridging the interchain disulfide bonds of trastuzumab with
next-generation maleimides (NGMs), giving access to
constructs with controlled PROTAC loading and robust
serum stability, ensuring PROTAC release solely via hydrolysis
of the cleavable ester linker.”*™*" A novel dibromomaleimide-
strained alkyne linker 13 (Scheme S2A in the Supporting
Information) was used for convenient synthesis of 3 by copper-
free strain-promoted azide—alkyne cycloaddition (SPAAC),
precluding any risk of copper contamination (see Scheme S2B
in the Supporting Information). Following disulfide bond

reduction, trastuzumab was reacted with dibromomaleimide
13, and overnight incubation at pH 8.5 buffer facilitated
quantitative hydrolysis to the desired serum stable maleamic
acids (see Figures S1 and S4 in the Supporting Information).
Azido-PROTAC 2 was installed via SPAAC (20 equiv 2 at
22 °C, 4 h, pH 69), affording Ab-PROTAC 3 with a
PROTAC—antibody ratio (or drug:antibody ratio, DAR) of 4
(see Figures 1C and 1D). Denaturing LC-MS analysis shows
two isomeric DAR 4 disulfide bridged conjugates, consistent
with the precedent for such ADCs.”” ELISA confirmed full
retention of antibody binding activity (see Figure SS in the
Supporting Information). Pleasingly, we found that 3 shows
excellent stability, with 98.8% of 3 intact after 4 h of incubation
(PBS, pH 7.4, 37 °C), and up to 83.5% after 24 h of incubation
(see Figure 1E, as well as Figure S3 in the Supporting
Information).

We examined the biological activity of 3 against two HER2
negative (HER2—) breast cancer cell lines (MCF-7 and MDA-
MB-231) and two HER2+ breast cancer cell lines (SK-BR-3
and BT-474), selected based on HER2/neu receptor and
BRD4 expression levels determined by Western blot and
immunofluorescence (see Figures 2A and 2B) and the con-
firmed capacity of free PROTAC 1 to degrade BRD4 in each
of these cell lines under the same conditions selected for
testing Ab-PROTAC 3 (Figure 2C). The different BRD4
degradation profile of PROTAC 1 among HER2+ and HER2—
phenotypes is most likely related to different expression levels
of BRD4 across these cell lines.*”** Each cell line was treated
with vehicle (PBS), antibody (trastuzumab), or positive
control 4 (Figure 2E), or with increasing concentrations of
Ab-PROTAC 3. BRD4 degrader 4 was used as a positive
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control across these studies as a reference point for maximal
degradation of BRD4. Cognizant of the stability of Ab-
PROTAC 3 at physiological pH (above), we incubated cells
either for 4 h in a serum-free medium, or for 23 h following 1-h
preincubation and subsequent washout (24 h). BRD4
abundance was analyzed by SDS-PAGE, followed by Western
blot analysis (Figure 2D), showing that Ab-PROTAC 3
selectively degrades BRD4 only in HER2+ cells while leaving
BRD4 intact in HER2— cells. 100 nM Ab-PROTAC 3 for 4 h
delivered almost-complete BRD4 depletion only in HER2+ cell
lines. Significant BRD4 degradation was also observed at S0
nM, whereas no degradation was detected at any of the
concentrations tested in HER2— cell lines. Furthermore, just 1
h of incubation with Ab-PROTAC 3 produced significant
degradation of BRD4 24 h after treatment in HER2+ cells,
suggesting that the construct achieves sufficient internalization
into HER2+ cells within the 1-h treatment period to deliver a
potent dose of PROTAC 1. In the case of cells lacking HER2/
neu receptor surface expression, 3 is unable to undergo HER2/
neu mediated internalization; hence, no degradation was
observed. We note that BRD4 degradation was not observed in
any experiment in which cells were treated with native
trastuzumab. In the case of washout experiments with SK-
BR-3 cells (Figure 2D), the minor variations in BRD4 band
intensity are attributed to variation in loading, as supported by
quantitation of the Western blot data (Figure S7 in the
Supporting Information). The results of these experiments
deliver proof of concept for selective HER2/neu-mediated
PROTAC delivery.

We next determined whether BRD4 degradation induced by
Ab-PROTAC 3 is proteasome-dependent, as expected for
PROTAC-mediated degradation. Cells were incubated with
vehicle (PBS), positive control 4, or 100 nM Ab-PROTAC 3
in the presence or absence of proteasome inhibitor Bortezomib
(BTZ). Western blot analysis of cell lysates confirmed that
proteasome inhibition prevents Ab-PROTAC 3-mediated
BRD4 degradation in both HER2+ cell lines (Figure 2F).

Receptor-mediated antibody internalization has been ex-
tensively studied through different approaches, including
radiolabeling, fluorescence microscopy, flow cytometry, or
cytotoxicity .alssays.44_47 Among these, confocal microscopy
with fluorescently tagged antibodies allows antibody local-
ization upon internalization across different cellular compart-
ments, such as endosomes or lysosomes, and, hence, is a
commonly used technique. Trastuzumab internalization and
intracellular compartmentalization using this method has been
previously studied, evidencing endosomal internalization of the
HER2/trastuzumab complex.”® Taking these precedents into
account, we aimed to investigate the trafficking of Ab-
PROTAC 3 in live cells by confocal microscopy to confirm
internalization and further analyze the fate of our conjugate
within the intracellular environment. For these studies, we
used a fluorescently labeled AlexaFluor488-Ab-PROTAC
(AF488-3) (see Scheme S2 and Figure S4 in the Supporting
Information) synthesized by treating construct 3 with
AlexaFluor488-NHS ester (10 equiv, 22 °C, 2 h, pH 7.4),
resulting in conjugate AF488-3 with an average fluorophor-
e:antibody ratio (FAR) of 3.8 (see Figure S6 in the Supporting
Information). HER2+ SK-BR-3 cells were incubated with 100
nM AF488-3 for 1 h, and cells were then washed and imaged at
1, 4, 8, and 24 h time points to study conjugate trafficking (see
Figure 3A). At 1 h, AF488-3 was observed on the cell surface,
whereas after 4 h of incubation, AF488-3 was already partially

internalized into distinct intracellular compartments, presum-
ably early and late endosomes upstream from lysosome
trafficking for degradation, and partially colocalized with
LysoTracker DeepRed labeled lysosomes (see Figures 3A
and 3C). After 8 h, AF488-labeled compartments colocalized
extensively with lysosomes (Figures 3A and 3C); similar results
were seen without conjugate washout (see Figure S8 in the
Supporting Information). Note that, upon lysosomal digestion
of Ab-PROTAC 3, the free active PROTAC 1 must be
released and then access the nucleus to trigger BRD4
degradation. MCF-7 cells expressing very low levels of HER2
receptor were unable to uptake AF488-3 under the same
conditions (Figure 3B), consistent with resistance of these cells
to Ab-PROTAC-mediated BRD4 degradation.

In summary, we have developed a new example of
antibody—PROTAC conjugate by linking azido-PROTAC 2
to dibromomaleimide-strained alkyne-functionalized trastuzu-
mab through a triazole moiety leading to Ab-PROTAC 3
bearing four molecules of PROTAC. This site-selective
conjugate directs proteasomal BRD4 degradation in HER2+
cells, following HER2-dependent internalization, lysosomal
trafficking, and active PROTAC release. Our studies
demonstrate a new antibody—PROTAC system for antigen-
specific targeted protein degradation through antigen-depend-
ent delivery of a PROTAC, broadening the scope of the Ab-
PROTAC technology and providing the basis for the
development of antibody—PROTACs for the degradation of
a variety of different targets. We conclude that Ab-PROTACs
have the potential to overcome traditional limitations of
targeted degraders and ADCs by combining the key advantages
of each modality: the catalytic potency of PROTACs with the
tissue specificity of ADCs.

B METHODS

Experimental procedures are described in detail in the Supporting
Information.
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