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Abstract
Let n be a positive integer andM a set of rational n× n-matrices such thatM generates a finite
multiplicative semigroup. We show that any matrix in the semigroup is a product of matrices inM
whose length is at most 2n(2n+3)g(n)n+1 ∈ 2O(n2 log n), where g(n) is the maximum order of finite
groups over rational n× n-matrices. This result implies algorithms with an elementary running time
for deciding finiteness of weighted automata over the rationals and for deciding reachability in affine
integer vector addition systems with states with the finite monoid property.
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1 Introduction

The Burnside Problem

An element g of a semigroup G is called torsion if gi = gj holds for some naturals i < j, and
G torsion if all its elements are torsion. Burnside [6] asked in 1902 a question which became
known as the Burnside problem for groups: is every finitely generated torsion group finite?
Schur [28] showed in 1911 that this holds true for groups of invertible complex matrices,
i.e., any finitely generated torsion subgroup of GL(n,C) is finite. This was generalised by
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Kaplansky [21, p. 105] to matrices over arbitrary fields. The Burnside problem for groups has
a negative answer in general: in 1964 Golod and Shafarevich exhibited a finitely generated
infinite torsion group [13, 14].

The Maximal Order of Finite Matrix Groups

Schur’s result [28] assures that finitely generated torsion matrix groups are finite, but does
not bound the group order. Indeed, it is easy to see that any finite cyclic group is isomorphic
to a group generated by a matrix in GL(2,R). The same is not true for GL(n,Q): An
elementary proof, see e.g. [23], shows that any finite subgroup of GL(n,Q) is conjugate to a
finite subgroup of GL(n,Z). Another elementary proof shows that the order of any finite
subgroup of GL(n,Z) divides (2n)!; see, e.g., [27, Chapter IX]. Thus, denoting the order of the
largest finite subgroup of GL(n,Q) by g(n), we have g(n) ≤ (2n)!. It is shown in a paper by
Friedland [12] that g(n) = 2nn! holds for all sufficiently large n. This bound is attained by the
group of signed permutation matrices. Friedland’s proof rests on an article by Weisfeiler [34]
which in turn is based on the classification of finite simple groups. Feit showed in an
unpublished manuscript [9] that g(n) = 2nn! holds if and only if n ∈ N \ {2, 4, 6, 7, 8, 9, 10}.1
Feit’s proof relies on an unpublished manuscript [33], also based on the classification of finite
simple groups, which Weisfeiler left behind before his tragic disappearance.

Deciding Finiteness of Matrix Groups

Bounds on group orders give a straightforward, albeit inefficient, way of deciding whether a
given set of matrices generates a finite group: starting from the set of generators, enlarge it
with products of matrices in the set, until either it is closed under product or the bound on
the order has been exceeded. One can do substantially better: it is shown in [2] that, using
computations on quadratic forms, one can decide in polynomial time if a given finite set of
rational matrices generates a finite group.

Deciding Finiteness of Matrix Semigroups

The Burnside problem has a natural analogue for semigroups. In 1975, McNaughton and
Zalcstein [26] positively solved the Burnside problem for matrix semigroups, i.e., they showed,
for any field F, that any finitely generated torsion subsemigroup of Fn×n is finite, using the
result for groups by Schur and Kaplansky as a building block. From a computational point
of view, McNaughton and Zalcstein’s result suggests an approach for deciding finiteness
of the semigroup generated by a given set of rational matrices: finiteness is recursively
enumerable, by closing the set of generators under product, as described above for groups.
On the other hand, infiniteness is recursively enumerable by enumerating elements in the
generated semigroup and checking each element whether it is torsion. By the contrapositive
of McNaughton and Zalcstein’s result, if the generated matrix semigroup is infinite, it has
a non-torsion element, witnessing infiniteness. However, deciding whether a given matrix
has finite order is nontrivial. Only in 1980 did Kannan and Lipton [19, 20] show that the
so-called orbit problem is decidable (in polynomial time), implying an algorithm for checking
whether a matrix has finite order.

1 A list of the maximal-order finite subgroups of GL(n,Q) for n ∈ {2, 4, 6, 7, 8, 9, 10} can be found in [3,
Table 1].
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Avoiding this problem, Mandel and Simon [25] showed in 1977 that there exists a function
f : N3 → N such that if S is a finite subsemigroup of Fn×n, generated by m of its elements,
and the subgroups of S have order at most g, then S has size (cardinality) at most f(n,m, g).
For rational matrices, one may use the function g(n) from above for g. By making, in a sense,
McNaughton and Zalcstein’s proof quantitative, Mandel and Simon explicitly construct such
a function f , which implies an algorithm, with bounded runtime, for deciding finiteness of a
finitely generated rational matrix semigroup. A similar result about the decidability of this
problem was obtained independently and concurrently by Jacob [18].

Size Bounds

Unlike the function g for rational matrix groups, Mandel and Simon’s function f(n,m, g)
depends on m, the number of generators. This is unavoidable: the semigroup generated

by the set Mm :=
{(

0 i

0 0

)
: i ∈ {0, . . . ,m− 1}}

}
is the set Mm itself, with |Mm| = m

for any m ∈ N. Further, the growth in n of Mandel and Simon’s f is, roughly, a tower of
exponentials of height n. They write in [25, Section 3]: “However, it is likely that our upper
bound [f(n,m, g)] can be significantly improved.”

In [4, Chapter VI], Berstel and Reutenauer also show, for the rational case, the existence
of a function in n and m that bounds the semigroup size. They write: “As we shall see, the
function [. . . ] grows extremely rapidly.” An analysis of their proof shows that the growth of
their function is comparable with the growth of Mandel and Simon’s function. A related
approach is taken in [31]. Further proofs of McNaughton and Zalcstein’s result can be found,
e.g., in [24, 11, 8, 30], but they do not lead to better size bounds.

Length Bounds

In 1991, Weber and Seidl [32] considered semigroups over nonnegative integer matrices. Using
combinatorial and automata-theoretic techniques, they showed that if a finite setM⊆ Nn×n
generates a finite monoid, then for any matrix M of that monoid there are M1, . . . ,M` ∈M
with ` ≤ de2n!e − 2 such that M = M1 · · ·M`; i.e., any matrix in the monoid is a product of
matrices inM whose length is at most de2n!e − 2. Note that this bound does not depend
on the number of generators. Weber and Seidl also give an example that shows that such a
length bound cannot be smaller than 2n−2.

Almeida and Steinberg [1] proved in 2009 a length bound for rational matrices and
expressing the zero matrix: if a finite setM⊆ Qn×n (with n > 1) generates a finite semigroup
that includes the zero matrix 0, then there are M1, . . . ,M` ∈ M with ` ≤ (2n − 1)n2 − 1
such that 0 = M1 · · ·M`. A length bound of n5 for expressing the zero matrix was recently
given in the nonnegative integer case [22]. It is open whether there is a polynomial length
bound for expressing the zero matrix in the rational case.

Our Contribution

We prove a 2O(n2 logn) length bound for the rational case:

I Theorem 1. Let M ⊆ Qn×n be a finite set of rational matrices such that M gen-
erates a finite semigroup M. Then for any M ∈ M there are M1, . . . ,M` ∈ M with
` ≤ 2n(2n+3)g(n)n+1 ∈ 2O(n2 logn) such that M = M1 · · ·M`. (Here g(n) ≤ (2n)! denotes the
order of the largest finite subgroup of GL(n,Q).)

ICALP 2020
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The example by Weber and Seidl mentioned above shows that any such length bound must
be at least 2n−2. A length bound trivially implies a size bound, and Theorem 1 allows us to
obtain the first significant improvement over the fast-growing function of Mandel and Simon.

I Corollary 2. LetM⊆ Qn×n be a finite set of m rational matrices that generate a finite
semigroupM. Then |M| ≤ m2O(n2 log n) .

The proof of Theorem 1 is largely based on linear-algebra arguments, specifically on the
structure of a certain graph of vector spaces obtained fromM. This graph was introduced
and analysed by Hrushovski et al. [17] for the computation of the Zariski closure of the
generated matrix semigroup.

After the preliminaries (section 2) and the proof of Theorem 1 (section 3), we discuss
applications in automata theory (section 4). In particular we show that our result implies
the first elementary-time algorithm for deciding finiteness of weighted automata over the
rationals.

2 Preliminaries

We write N = {0, 1, 2, . . .}. For a finite alphabet Σ, we write Σ∗ = {a1 · · · ak : k ≥ 0, ai ∈ Σ}
and Σ+ = {a1 · · · ak : k ≥ 1, ai ∈ Σ} for the free monoid and the free semigroup generated
by Σ. The elements of Σ∗ are called words. For a word w = a1 · · · ak, its length |w| is k.
We denote by ε the empty word, i.e., the word of length 0. For L ⊆ Σ∗, we also write
L∗ = {w1 · · ·wk : k ≥ 0, wi ∈ L} ⊆ Σ∗ and L+ = {w1 · · ·wk : k ≥ 1, wi ∈ L} ⊆ Σ∗.

We denote by In the n×n-identity matrix, and by ~0 the zero vector. For vectors v1, . . . , vk
from a vector space, we denote their span by 〈v1, . . . , vk〉. In this article, we view elements
of Qn as row vectors.

For some n ∈ N \ {0}, letM ⊆ Qn×n be a finite set of rational matrices, generating a
finite semigroupM. For notational convenience, throughout the paper, we associate toM
an alphabet Σ with |M| = |Σ|, and a bijection M : Σ→M which we extend to the monoid
morphism M : Σ∗ →M∪{In}. Thus we may write M(Σ) and M(Σ∗) forM andM∪{In},
respectively.

We often identify a matrix A ∈ Qn×n with its linear transformation A : Qn → Qn such
that x 7→ xA for row vectors x ∈ Qn. To avoid clutter, we extend linear-algebra notions from
matrices to words, i.e., we may write imw, kerw, rkw for the image im(M(w)) = QnM(w),
the kernel ker(M(w)) = {x ∈ Qn : xM(w) = ~0}, and the rank of M(w).

If all matrices inM(Σ) are invertible andM(Σ∗) is finite, thenM(Σ∗) is a finite subgroup
of GL(n,Q). For n ∈ N, let us write g(n) for the size of the largest finite subgroup of GL(n,Q).
As discussed in the introduction, a non-trivial but elementary proof shows g(n) ≤ (2n)!, and
it is known that g(n) = 2nn! holds for sufficiently large n.

Exterior Algebra

This brief introduction is borrowed and slightly extended from [17, Section 3]. Let V be
an n-dimensional vector space over a field F. (We will only consider V = Qn.) For any
r ∈ N, let Ar denote the set of maps B : V r → F so that B is linear in each argument and
further B(v1, . . . , vr) = 0 holds whenever vi = vi+1 holds for some i ∈ {1, . . . , r − 1}. These
conditions imply that swapping two adjacent arguments changes the sign, i.e.,

B(v1, . . . , vi−2, vi−1, vi+1, vi, vi+2, vi+3, . . . , vr) = −B(v1, . . . , vr) .
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These properties of Ar imply that, given an arbitrary basis {e1, . . . , en} of V , any B ∈ Ar
is uniquely determined by all B(ei1 , . . . , eir ) where 1 ≤ i1 < i2 < . . . < ir ≤ n. For any
v1, . . . , vr ∈ V , define the wedge product

v1 ∧ · · · ∧ vr : Ar → F by (v1 ∧ · · · ∧ vr)(B) = B(v1, . . . , vr) .

It follows from the properties of Ar above that the wedge product is linear in each argument:
if vi = λu+ λ′u′ then( ∧

1≤i≤k
vi

)
(B) = λ

( ∧
1≤j<i

vj ∧ u ∧
∧

i<j≤k

vj

)
(B) + λ′

( ∧
1≤j<i

vj ∧ u′ ∧
∧

i<j≤k

vj

)
(B)

Moreover, (v1 ∧ · · · ∧ vr)(B) = 0 if vi = vj holds for some i, j with i 6= j.
For r ∈ N define ΛrV as the vector space generated by the length-r wedge products

v1∧· · ·∧vr with v1, . . . , vr ∈ V . For any basis {e1, . . . , en} of V , the set {ei1∧· · ·∧eir : 1 ≤ i1 <
. . . < ir ≤ n} is a basis of ΛrV ; hence dim ΛrV =

(
n
r

)
. Note that Λ1V = V and

(
n
r

)
= 0 for

r > n. One can view the wedge product as an associative operation ∧ : ΛrV ×Λ`V → Λr+`V .
Define the exterior algebra of V as the direct sum ΛV = Λ0V ⊕ Λ1V ⊕ · · · . Then also
∧ : ΛV × ΛV → ΛV .

It follows that for u1, . . . , ur ∈ V , we have u1 ∧ · · · ∧ ur 6= ~0 if and only if {u1, . . . , ur} is
linearly independent. Furthermore, for u1, . . . , ur, v1, . . . , vr ∈ V and u = u1 ∧ · · · ∧ ur 6= ~0
and v = v1 ∧ · · · ∧ vr 6= ~0, we have that u, v are scalar multiples if and only if 〈u1, . . . , ur〉 =
〈v1, . . . , vr〉.

The Grassmannian Gr(n) is the set of subspaces of Qn. By the above-stated properties
of the wedge product there is an injective function

ι : Gr(n)→ ΛQn

such that, for all W ∈ Gr(n), we have ι(W ) = v1∧· · ·∧vr where {v1, . . . , vr} is an arbitrarily
chosen basis of W . Note that the particular choice of a basis for W only changes the value
of ι(W ) up to a constant. Given subspacesW1,W2 ∈ Gr(n), we moreover haveW1∩W2 = {~0}
if and only if ι(W1) ∧ ι(W2) 6= ~0.

3 Proof of Theorem 1

It is convenient to state and prove our main result in terms of monoids rather than semigroups:

I Theorem 3. Let M : Σ∗ → Qn×n be a monoid morphism whose image M(Σ∗) is finite.
Then for any w ∈ Σ∗ there is u ∈ Σ∗ with M(w) = M(u) and

|u| ≤ 2n(2n+3)g(n)n+1 ∈ 2O(n2 logn) .

With this theorem at hand, Theorem 1 follows immediately:

Proof of Theorem 1. Let M ∈ M be an element of the semigroup generated by M. If
M 6= In, by Theorem 3, M can be written as a short product. Otherwise, M = In ∈ G,
where G =M∩GL(n,Q) is a finite group of order at most g(n). For any product M1 · · ·M`

with ` > g(n), there are 1 ≤ i < j ≤ ` such that M1 · · ·Mi = M1 · · ·Mj , and so M1 · · ·M` =
M1 · · ·MiMj+1 · · ·M`. Hence, there are ` ∈ {1, . . . , g(n)} and M1, . . . ,M` ∈ M such that
M = In = M1 · · ·M`. J

ICALP 2020
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I Remark 4. The same argument as in the proof above shows that in a finite monoid (H, ·),
generated by G ⊆ H, for any h ∈ H there are ` ∈ {0, . . . , |H| − 1} and g1, . . . , g` ∈ G with
h = g1 · · · g`.

In the remainder of this section, we prove Theorem 3. We assume that M : Σ∗ → Qn×n
is a monoid morphism with finite image M(Σ∗).

3.1 The Maximum-Rank Case
In this subsection we prove:

I Proposition 5. Suppose that there is r ≤ n with rk a = r for all a ∈ Σ. Let w ∈ Σ∗ with
rkw = r. Then there is u ∈ Σ∗ with M(w) = M(u) and

|u| ≤ 22n+3g(n)− 1 ∈ 2O(n logn) .

In this subsection we assume that rk a = r holds for all a ∈ Σ. For the proof of
Proposition 5, we define a directed labelled graph G whose vertices are the vector spaces imw

for w ∈ Σ∗ such that rkw = r, and whose edges are triples (V1, a, V2) such that a ∈ Σ and
V1M(a) = V2. Let (V1, a, V2) be an edge; then V2 ⊆ im a, but dimV2 = r = rk a = dim im a,
hence V2 = im a, i.e., the edge label determines the edge target. We will implicitly use the
fact that any path in G is determined by its start vertex and the sequence of its edge labels.
Note that if V1 is a vertex and a ∈ Σ, the edge (V1, a, im a) is present in G if and only if
rk V1M(a) = r if and only if V1 ∩ ker a = {~0}.

The following two lemmas, which are variants of lemmas in [17, Section 6], are statements
about the structure of G in terms of its strongly connected components (SCCs).

I Lemma 6. Let w = w1 · · ·wk for w1, . . . , wk ∈ Σ+ with rkw = r such that the k vertices
imw1, . . . , imwk are all in different SCCs of G. Then k ≤ 2

(
n
r

)
.

Proof. Let i ∈ {2, . . . , k− 1}. Since rkwi = r = rk(wiwi+1), we have imwi ∩kerwi+1 = {~0},
thus ι(imwi) ∧ ι(kerwi+1) 6= ~0. On the other hand, for any j < i, since imwi, imwj are
in different SCCs and imwi is reachable from imwj , the vertex imwj is not reachable
from imwi; therefore we have imwi ∩ kerwj 6= {~0}, thus ι(imwi) ∧ ι(kerwj) = ~0. It
follows that ι(kerwi+1) 6∈ 〈ι(kerwj) : j < i〉. Indeed, if ι(kerwi+1) =

∑
j<i λjι(kerwj)

for some λ1, . . . , λi−1 then, by linearity of the wedge product, ι(imwi) ∧ ι(kerwi+1) =∑
j<i λj(ι(imwi) ∧ ι(kerwj)) = ~0, a contradiction.
We show by induction on i that dim 〈ι(kerwj) : j ∈ {1, . . . , i}〉 ≥ i/2 for all i ∈ {1, . . . , k}.

This is clear for i = 1, 2. For the induction step, we have dim 〈ι(kerwj) : j ∈ {1, . . . , i+ 1}〉 ≥
dim 〈ι(kerwi+1), ι(kerwj) : j ∈ {1, . . . , i− 1}〉 ≥ 1 + (i − 1)/2 = (i + 1)/2. Hence k/2 ≤
dim 〈ι(kerwj) : j ∈ {1, . . . , k}〉 ≤ dim Λn−rQn =

(
n
r

)
. J

I Lemma 7. Let a1 · · · ak ∈ Σ∗ be (the edge labels of) a shortest path in G from a vertex im a0
to im ak. Then k ≤

(
n
r

)
.

Proof. Let i ∈ {0, . . . , k− 2}. We have im ai ∩ ker ai+1 = {~0}, thus ι(im ai)∧ ι(ker ai+1) 6= ~0.
On the other hand, for any j > i + 1, since ai+1 · · · aj is a shortest path from im ai
to im aj , there is no edge from im ai to im aj ; therefore we have im ai ∩ ker aj 6= {~0}, thus
ι(im ai) ∧ ι(ker aj) = ~0. It follows that ι(ker ai+1) 6∈ 〈ι(ker aj) : j > i+ 1〉.

By induction it follows that dim 〈ι(ker aj) : j ∈ {i+ 1, . . . , k}〉 ≥ k − i holds for all
i ∈ {0, . . . , k − 1}. Hence k ≤ dim 〈ι(ker aj) : j ∈ {1, . . . , k}〉 ≤ dim Λn−rQn =

(
n
r

)
. J
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The next lemmas discuss cycles w ∈ Σ+ in G, i.e., (the edge labels of) paths in G such
that imw∩kerw = {~0}. A cycle w is said to be around imw0 if imw = imw0. The following
lemma says, loosely speaking, that cycles around a single vertex “generate a group”.

I Lemma 8. Let w0 ∈ Σ+ with rkw0 = r, and let P ∈ Qr×n be a matrix with imP = imw0.
Then for every cycle w ∈ Σ+ around imw0 there exists a unique invertible matrix M ′(w) ∈
GL(r,Q) such that PM(w) = M ′(w)P . Moreover, for any nonempty set C ⊆ Σ+ of cycles
around imw0, M ′(C+) is a finite subgroup of GL(r,Q).

Proof. Let w ∈ Σ+ be a cycle around imw0. Since imP ∩ ker(M(w)) = {~0}, it follows that
im(PM(w)) = imw = imP . So the rows of PM(w) are linear combinations of rows of P ,
and vice versa, hence there is a unique M ′(w) ∈ GL(r,Q) with PM(w) = M ′(w)P .

Let C ⊆ Σ+ be a nonempty set of cycles around imw0. For any w1, w2 ∈ C we have
M ′(w1w2)P = PM(w1w2) = PM(w1)M(w2) = M ′(w1)PM(w2) = M ′(w1)M ′(w2)P , and
since the rows of P are linearly independent, it follows that M ′(w1w2) = M ′(w1)M ′(w2).
Thus, M ′(C+) is a semigroup.

Towards a contradiction, suppose M ′(C+) were infinite. Since the rows of P are linearly
independent, it follows that M ′(C+)P is infinite, thus PM(C+) is infinite. Since imw0 =
imP , there is a matrix B ∈ Qn×r with M(w0) = BP . Since the columns of B are linearly
independent, the set BPM(C+) is infinite. But this set equals M(w0C

+), contradicting
the finiteness of M(Σ∗). Thus the semigroup M ′(C+) is finite. As M ′(C+) ⊆ GL(r,Q), it
follows that M ′(C+) is a finite group. J

The following lemma allows us, loosely speaking, to limit the number of cycles in a word.

I Lemma 9. Let w0, w1, . . . , wk ∈ Σ+ such that w1, . . . , wk are cycles around imw0. Then
there exist ` ≤ g(n) − 1 and {u1, . . . , u`} ⊆ {w1, . . . , wk} such that M(w0w1 · · ·wk) =
M(w0u1 · · ·u`).

Proof. We can assume k ≥ 1. Let C = {w1, . . . , wk}. Let P and M ′(w) for w ∈ C

as in Lemma 8. By Lemma 8, the set M ′(C+) is a finite subgroup of GL(r,Q), so we
have |M ′(C+)| ≤ g(r) ≤ g(n). By Remark 4, there are ` ≤ g(n) − 1 and u1, . . . , u` ∈ C
such that M ′(w1) · · ·M ′(wk) = M ′(u1) · · ·M ′(u`). Since imw0 = imP , there is a matrix
B ∈ Qn×r with M(w0) = BP . Hence we have M(w0w1 · · ·wk) = BPM(w1) · · ·M(wk) =
BM ′(w1) · · ·M ′(wk)P = BM ′(u1) · · ·M ′(u`)P = BPM(u1) · · ·M(u`) = M(w0u1 · · ·u`).

J

The following lemma allows us to add cycles to a word.

I Lemma 10. Let w ∈ Σ+ be a cycle in G. Then there exists ρ(w) ∈ N \ {0} such that
M(w0) = M(w0w

ρ(w)) holds for all w0 ∈ Σ+ with imw0 = imw.

Proof. Let P ∈ Qr×n be a matrix with imP = imw. By Lemma 8, there exists M ′(w) ∈
GL(r,Q) such that PM(w) = M ′(w)P and {M ′(w)i : i ∈ N} is a finite group. Define ρ(w)
to be the order of this group, i.e., M ′(w)ρ(w) = Ir. Let w0 ∈ Σ+ with imw0 = imw. Since
imw0 = imP , there is a matrix B ∈ Qn×r with M(w0) = BP . Hence M(w0) = BP =
BIrP = BM ′(w)ρ(w)P = BPM(w)ρ(w) = M(w0)M(w)ρ(w) = M(w0w

ρ(w)). J

The following lemma allows us to limit the length of paths within an SCC.

I Lemma 11. Let a ∈ Σ, and let w ∈ Σ∗ be a path in G from im a such that im a and imw

are in the same SCC. Then there exists u ∈ Σ∗ with M(aw) = M(au) and

|u| ≤ 2n+2g(n)− 2 ∈ 2O(n logn) .

ICALP 2020
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. . .

· · ·

. . .

a a1

s(a, a1)

s(a1, a)

a2

s(a, a2)

s(a2, a)

a3 ak

s(a, ak)

s(ak, a)

Figure 1 Illustration of the paths w and w′ in Lemma 11. Edges are depicted as solid arrows,
paths as dashed arrows.

Proof. For any b1, b2 ∈ Σ such that im b1, im b2 are in the SCC of im a, let s(b1, b2) ∈ Σ∗ be
a shortest path from im b1 to im b2. By Lemma 7, we have |s(b1, b2)| ≤

(
n
r

)
.

Suppose w = a1 · · · ak for ai ∈ Σ. For i ∈ {1, . . . , k} define the cycle wi := s(ai, a)s(a, ai)
around im ai. By Lemma 10, we have M(aw) = M(aw′) for

w′ := a1w
ρ(w1)
1 a2w

ρ(w2)
2 · · · akwρ(wk)

k .

For i ∈ {1, . . . , k} also define the cycle vi := s(a, ai)s(ai, a) around im a. Then we have:

w′ = a1s(a1, a)vρ(w1)−1
1 s(a, a1)a2s(a2, a)vρ(w2)−1

2 s(a, a2) · · · aks(ak, a)vρ(wk)−1
k s(a, ak)

Figure 1 illustrates the paths w and w′. Define a set of cycles C ⊆ Σ∗ around im a by

C := {a1s(a1, a), v1, s(a, a1)a2s(a2, a), v2, . . . , s(a, ak−1)aks(ak, a), vk} .

Since w′ ∈ C∗s(a, ak), by Lemma 9, there exist ` ≤ g(n)− 1 and u1, . . . , u` ∈ C such that
M(aw) = M(aw′) = M(au1u2 · · ·u`s(a, ak)). For all v ∈ C we have |v| ≤ 2

(
n
r

)
+ 1 ≤ 2n+2,

and |s(a, ak)| ≤
(
n
r

)
≤ 2n. Hence the lemma holds for u := u1u2 · · ·u`s(a, ak), as |u| ≤

2n+2(g(n)− 1) + 2n ≤ 2n+2g(n)− 2. J

We are ready to prove Proposition 5.

Proof of Proposition 5. Decompose the word w into w = a1w1a2w2 · · · akwk for ai ∈ Σ
so that for all i ∈ {1, . . . , k} the vertices im ai, imwi are in the same SCC, and for all
i ∈ {1, . . . , k − 1} the vertices imwi, im ai+1 are in different SCCs. By Lemma 6, we
have k ≤ 2

(
n
r

)
≤ 2n+1. For all i ∈ {1, . . . , k}, by Lemma 11, there is ui ∈ Σ∗ with

|ui| ≤ 2n+2g(n) − 2 such that M(aiwi) = M(aiui). Hence the proposition holds for
u := a1u1a2u2 · · · akuk, as |u| ≤ 2n+1(2n+2g(n)− 2 + 1) ≤ 22n+3 − 1. J
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3.2 The General Case
In this subsection we prove Theorem 3. For r ∈ {0, . . . , n} let dr ∈ N be the smallest number
such that for any w ∈ Σ∗ with rkw ≥ r there is u ∈ Σ∗ with M(w) = M(u) and |u| ≤ dr.
Also write h for the bound from Proposition 5.

I Proposition 12. For any r ∈ {0, . . . , n− 1} we have dr ≤ dr+1 + (dr+1 + 1)h.

Proof. Let w ∈ Σ∗ with rkw ≥ r. We need to show that there is u ∈ Σ∗ with M(w) = M(u)
and |u| ≤ dr+1 + (dr+1 + 1)h. Decompose w into w = w0a1w1a2w2 · · · akwk for ai ∈ Σ
such that rkw0 > r and for all i ∈ {1, . . . , k} we have rk(aiwi) = r and rkwi > r. (This
decomposition is unique; in particular, akwk is the shortest suffix of w with rank r.) By
the definition of dr+1, for all i ∈ {0, . . . , k} there exists ui ∈ Σ∗ with M(wi) = M(ui) and
|ui| ≤ dr+1. Then M(w) = M(u0a1u1a2u2 · · · akuk).

Define a new alphabet Σr and a monoid morphism Mr : Σ∗r → Qn×n with Mr(Σr) =
{M(aiui) : i ∈ {1, . . . , k}}, and note that rkMr(b) = r for all b ∈ Σr. Then there is a
word y ∈ Σ∗r such that Mr(y) = M(a1u1 · · · akuk). By Proposition 5, there is x ∈ Σ∗r with
Mr(y) = Mr(x) and |x| ≤ h. Obtain the word v ∈ Σ∗ from x by replacing each letter
b ∈ Σr in x by aiui for i ∈ {1, . . . , k} such that Mr(b) = M(aiui). Then Mr(x) = M(v), and
thus M(w) = M(u0a1u1 · · · akuk) = M(u0)Mr(y) = M(u0)Mr(x) = M(u0)M(v) = M(u0v),
where |u0v| = |u0|+ |v| ≤ dr+1 + (dr+1 + 1)|x| ≤ dr+1 + (dr+1 + 1)h. J

We can now prove our main result.

Proof of Theorem 3. We prove by induction that for all r ∈ {0, . . . , n} we have dr ≤
(h + 1)n−rdn + (h + 1)n−r − 1. For the base case, r = n, this is trivial. For the step, let
r < n. We have:

dr ≤ h+ (h+ 1)dr+1 (Proposition 12)
≤ h+ (h+ 1)

(
(h+ 1)n−r−1dn + (h+ 1)n−r−1 − 1

)
(induction hypothesis)

= h+ (h+ 1)n−rdn + (h+ 1)n−r − h− 1

This completes the induction proof. Hence d0 ≤ (h+ 1)n(dn + 1) = 2n(2n+3)g(n)n(dn + 1).
The rank-n matrices in M(Σ) generate a finite subgroup of GL(n,Q). So it follows by
Remark 4 that dn + 1 ≤ g(n). Thus d0 ≤ 2n(2n+3)g(n)n+1. J

4 Algorithmic Applications

Theorem 1 gives an exponential-space algorithm for deciding finiteness of a finitely generated
rational matrix semigroup. In fact, the following theorem shows that deciding finiteness is in
the second level of the weak EXP hierarchy (see e.g. [16] for a definition).

I Theorem 13. Given be a finite setM⊆ Qn×n of rational matrices, the problem of deciding
finiteness of the generated semigroupM is in coNEXPNP.

Proof. For a NEXPNP algorithm deciding infiniteness, non-deterministically guess in expo-
nential time some M = M1 · · ·M`, Mi ∈M, with ` = 2n(2n+3)g(n)n+1 + 1 as a witness for
infiniteness. Then, using a call to an NP oracle, check whether there are M ′1, . . . ,M ′r ∈M
such that M = M ′1 · · ·M ′r for some 0 ≤ r < `. If the call is successful then reject, otherwise
accept.

Correctness of the algorithm immediately follows from Theorem 1: ifM is finite, then
the M ′1, . . . ,M ′r ∈M such that M = M ′1 · · ·M ′r are guaranteed to exist. J
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This is the first improvement of the non-elementary algorithm of Mandel and Simon [25].
Another immediate consequence of Theorem 1 is an upper bound on the complexity of

the membership problem for finite matrix semigroups:

I Theorem 14. Given a finite set of rational matrices M ⊆ Qn×n such that M is finite
and A ∈ Qn×n, the problem of deciding whether A ∈M is in NEXP.

In the remainder of this section, we discuss implications of Theorem 13 to decision
problems in automata theory.

4.1 Weighted Automata
The motivation for Mandel and Simon to study the finiteness problem originated from investig-
ating the decidability of the finiteness problem (originally called boundedness problem in [25])
for weighted automata. A weighted automaton over Q is a quintuple A = (n,Σ,M, α, η)
where n ∈ N is the number of states, Σ is the finite alphabet, M : Σ→ Qn×n maps letters to
transition matrices, α ∈ Qn is the initial state vector, and η ∈ Qn is the final state vector.
We extend M to the monoid morphism M : Σ∗ → Qn×n as before. Such an automaton
defines a function |A| : Σ∗ → Q by defining |A|(w) = αM(w)ηT , where the superscript T
denotes transpose. We say, A is finite if the image of |A| is finite, i.e., if |A|(Σ∗) ⊆ Q is a
finite set. The finiteness problem asks whether a given automaton is finite.

It is clear that if M(Σ∗) is finite then A is finite. The converse is not generally true: e.g.,
any automaton A whose initial state vector is the zero vector satisfies |A|(Σ∗) = {0}, hence
is finite, regardless of M(Σ∗). However, it is argued in the proof of Corollary 5.4 in [25] that,
given an automaton A, one can compute, in exponential time, a polynomial-size automaton B
with monoid morphism MB such that (i) |A| = |B|, and (ii) A (and hence B) is finite if and
only if MB(Σ∗) is finite.2 Mandel and Simon use this argument to show that the finiteness
problem for weighted automata over Q is decidable. Theorem 13 then immediately gives:

I Corollary 15. The finiteness problem for weighted automata over Q can be decided in
coNEXPNP.

4.2 Affine Integer Vector Addition Systems with States
We show that Theorem 1 together with Corollary 2 imply an upper bound for the reachability
problem in affine integer vector addition systems with states with the finite monoid property
(afmp-Z-VASS) studied in [5]. An affine Z-VASS in dimension d ∈ N is a tuple V = (d,Q, T )
such that Q is a finite set of states and T ⊆ Q×Zd×d ×Zd ×Q is a finite transition relation.
Setting M := {A ∈ Zd×d : (q, A,~b, r) ∈ T}, in afmp-Z-VASS we additionally require that
M is finite. A configuration of V is a tuple (q,~v) ∈ Q × Zd which we write as q(~v). We
define the step relation → ⊆ (Q × Zd)2 such that q(~v) → r(~w) if and only if there is a
transition (q, A,~b, r) ∈ T such that ~w = A · ~v +~b. Moreover, we denote by →∗ the reflexive
transitive closure of →. For a configuration q(~v), we define the reachability set of q(~v) as
R(q(~v)) := {r(~w) : q(~v)→∗ r(~w)}. Given configurations q(~v) and r(~w), reachability is the
problem of deciding whether r(~w) ∈ R(q(~v)). Note that R(q(~v)) is in general infinite despite
M being finite.

2 We remark that this automaton B has the minimal number of states among the automata defining the
function |A|. This minimal automaton goes back to [29] and has been further studied in, e.g., [7, 10].
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The reachability problem for afmp-Z-VASS was shown decidable in [5] by a reduction
to reachability in Z-VASS. A Z-VASS is an afmp-Z-VASS in which every transition is of
the form (q, Id,~b, r). The reachability problem for Z-VASS is known to be NP-complete, see
e.g. [15]. The size of the Z-VASS obtained in the reduction given in [5] grows in |M| and
hence leads to a non-elementary upper bound for reachability in afmp-Z-VASS assuming
Mandel and Simon’s bound. The results of this paper enable us to significantly improve this
upper bound.

I Corollary 16. The reachability problem for afmp-Z-VASS can be decided in EXPSPACE.

Proof. Let V = (d,Q, T ) be an afmp-Z-VASS and letM be defined as above. Set ||M|| :=
|M| · d2 ·max{log(||A||+ 1) : A ∈M}, where ||A|| is the largest absolute value of all entries
of A. Since ||A1 · · ·An|| ≤ dn · ||A1|| · · · ||An|| for all A1, . . . , An ∈ Zd×d and n ∈ N, by
Theorem 1 and Corollary 2 we have

||M|| ≤ |T |2
O(d2·log d)

· d2 · 2d(2d+3)g(d)d+1 · (log d+ ||T ||) ≤ ||T ||2
O(d2·log d)

,

where ||T || :=
∑

(q,A,~b,r)∈T d
2 · dlog ||A||+log ||~b||+1e. It can be deduced from the proof of [5,

Thm. 7] that reachability in V can be decided in non-deterministic space that is polynomially
bounded in the encoding of V and poly-logarithmically in ||M||, from which the desired
exponential space upper bound follows. J

5 Conclusion

The main result of this paper has been to show that any element in the finite multiplicative
semigroupM generated by a finite setM of m rational n× n matrices can be obtained as a
product of generators of length at most 2O(n2 logn). This length bound immediately gives
that |M| is bounded by m2O(n2 log n) .

There remain two immediate questions that we did not answer in this article. The first
is whether the order of growth of |M| we obtained is tight. IfM is a group its order can
be bounded by 2nn! for almost all n, and this bound is attained by the group of signed
permutation matrices. In contrast, in the semigroup case |M| also depends on m. We
conjecture that our doubly exponential upper bound is not optimal and that it is possible to
establish an exponential upper bound of |M| in terms of m and n. The second open question
concerns the precise complexity of deciding finiteness of matrix semigroups. We have been
unable to establish any non-trivial lower bounds on this problem and conjecture that our
coNEXPNP upper bound can significantly be improved, possibly by adapting techniques of
Babai et al. [2].
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