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ABSTRACT

Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, 

but poor support for the resolution of deeper nodes, including relationships among families and 

orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian 

relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting 

hundreds of conserved exons which are effective across the class. After obtaining data from 220 

loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a 

phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest 

branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of 

alternative topological hypotheses for amphibian monophyly, focusing on interordinal 

relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly 

across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage 

of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister 

relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species 

tree analyses converge on a small set of topological hypotheses for the relationships among 

extant amphibian families. These results clarify several contentious portions of the amphibian 

Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly 

younger timescale for crown and ordinal amphibian diversification than previously reported. 

More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of 

support across loci in phylogenomic data sets.

Keywords: Gene Tree-Species Tree Discordance, Genomics, Information Theory, AIC, 

Amphibia, Batrachia, Phylogeny
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Understanding the extent of gene tree-species tree discordance in empirical studies can 

have important ramifications beyond the resolution of the species tree (Page and Charleston 

1997; Degnan and Rosenberg 2006). Gene tree discordance has numerous causes (Degnan and 

Rosenberg 2009; Edwards 2009), and when a product of incomplete lineage sorting (ILS) or 

introgressive hybridization, can affect downstream interpretations about organismal evolution by 

obscuring divergence time estimates (Burbrink and Pyron 2011), or inducing apparent (but 

spurious) substitution rate variation (Mendes and Hahn 2016). A focus on the species tree and 

not on its discordant gene trees can lead to inaccurate interpretations of character evolution 

(Hahn and Nakleh 2015), including artifactual patterns of diminishing molecular convergence 

over time (Mendes et al. 2016).

Gene tree discordance has been studied most intensively at relatively shallow 

phylogenetic scales (Maddison 1997; Pollard et al. 2006; Carstens and Knowles 2007; Avise and 

Robinson 2008; White et al. 2009). However, simulation results suggest that given particular 

combinations of effective population size and speciation rates, patterns of ILS may persist over 

tens or hundreds of millions of years (Oliver 2013). In line with these expectations, some 

empirical studies have purportedly found a signature of ILS at deep phylogenetic scales on the 

order of tens of millions of years (Pollard et al. 2006; Ebersberger et al. 2007; Hobolth et al. 

2011; Salichos and Rokas 2013; Suh et al. 2015; Sun et al. 2015). Although considerable 

attention has been paid to the overall reconstruction of very deep phylogenetic relationships 

using total evidence approaches (e.g., Rokas and Carroll 2006; Dunn et al. 2008), few studies 

have intensively examined the potential for gene tree-species tree discordance at deep timescales 

on a gene-by-gene basis. At these deep phylogenetic scales, distinguishing true discordance from 

gene tree estimation error can be challenging (Gatesy and Springer 2014).
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Loci that are genealogically concordant with the species tree can lose phylogenetic 

information over time through multiple substitutions at sites, potentially leading to the spurious 

estimation of a discordant gene tree. Signals from actual discordance may similarly erode over 

time. Consequently, genes with high information content may be required to detect and quantify 

gene tree discordance at deep scales (Townsend 2007; Salichos and Rokas 2013). Scrutinizing 

signal from individual gene alignments and their contributions to the overall estimate of the 

species tree is also important (e.g., Brown and Thomson 2016). The topology of the gene tree 

alone may hide signal that is distributed across sites within a gene, signal that can be extracted to 

evaluate alternative gene-tree topologies and their support for a species-tree hypothesis (Arcila et 

al. 2017). Individual genes may be subject to systematic error due to a wide range of phenomena 

(Rannala and Yang 2008), and evidence for deep discordance may also provide insight into 

demographic histories.

Early amphibian evolution represents a unique empirical challenge for analyses of deep 

genealogical discordance (San Mauro et al. 2005). Here, we examine these issues using 

phylogenomic data assembled from extant amphibians (Lissamphibia) to estimate phylogenetic 

history across this clade and focus on the contentious relationships among the three deeply 

diverged amphibian orders. Amphibians are a diverse and imperiled class of vertebrates, with 

more than 8,100 species described to date (AmphibiaWeb 2020; Frost 2020). Three amphibian 

orders are recognized: Anura (frogs and toads, approximately 7,200 species), Caudata 

(salamanders and newts, approximately 750 species), and Gymnophiona (caecilians, 

approximately 200 species). Despite extensive investigation, phylogenetic affinities of some 

amphibian groups remain unresolved, including disagreement about deep interordinal 

relationships among the three extant amphibian orders, as well as relationships among more 
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shallowly diverged lineages (Larson and Wilson 1989; Feller and Hedges 1998; Fong et al. 2012; 

Frost et al. 2006; Roelants et al. 2007; Chen et al. 2015; Jetz and Pyron 2018). While much 

research has centered on the use of morphology and paleontological approaches to resolve deep 

amphibian relationships (e.g., Carroll 2007; Sigurdsen and Green 2011; Pardo et al. 2017; 

Schoch 2019; Matsumoto and Evans 2018), here we place our focus on molecular phylogenetic 

approaches.

Although the monophyly of each amphibian order is not disputed (Frost et al. 2006; 

Roelants et al. 2007; Anderson 2008; Pyron and Wiens 2011), relationships among them have 

remained murky. Three possible topologies exist (assuming a monophyletic Amphibia): the 

Batrachia hypothesis (e.g., Haeckel 1866; Duellman and Trueb 1994; Zardoya and Meyer 2001; 

Frost et al. 2006; Anderson et al. 2008), which places frogs and salamanders as each other's 

closest relatives, the Procera hypothesis (Feller and Hedges 1996), which suggests a sister 

relationship between salamanders and caecilians, and the Acauda hypothesis (named here), 

which proposes that frogs and caecilians form a clade. 

Although different regions of the genome may support different topologies, a single 

species tree exists for interordinal amphibian relationships; thus, the question of the relationships 

between frogs, salamanders, and caecilians becomes a model selection problem. The Batrachia 

and Procera hypotheses have received the most support in previous studies (Frost et al. 2006; 

Roelants et al. 2007; Pyron and Wiens 2011), although recent genome-scale analyses with 

modest numbers of taxa (Fong et al. 2012; Chen et al. 2015) have found some loci that appear to 

support each of the alternative hypotheses. These studies (Fong et al. 2012; Chen et al. 2015) 

have even revealed some loci that appear to support the non-monophyly of amphibians with 
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respect to amniotes, further widening the hypothesis space for the deep evolution of Amphibia 

(Supplementary Fig. S1 available on Dryad).

The technical hurdles to generating genome-scale data sets for phylogenetic inference in 

amphibians are still nontrivial, due primarily to their deep evolutionary divergences and 

inordinately large genomes (e.g., salamander genomes are ~15–120 Gb; Gregory 2020; Weisrock 

et al. 2018). Targeted sequence-capture approaches have grown in popularity in recent years 

(e.g., Faircloth et al. 2012; Lemmon et al. 2012; Bi et al. 2012) and have the potential to 

streamline the sequencing of large numbers of loci in parallel. Yet, the constraints imposed by 

sequence divergence across broad taxonomic scales limit the applicability of sequence capture 

approaches when capture probes are designed from a single or a few model taxa. Additionally, in 

clades with extreme variation in genome size, sequence capture efficiency can be highly variable 

because target loci are effectively diluted in large genomes. 

Recent studies using large molecular data sets in amphibians have demonstrated the 

power of genomic data for resolving relationships, divergence times, and reconstructing shared 

patterns of diversification across amphibians (Roelants et al. 2007; Peloso et al. 2016; Feng et al. 

2017; Irisarri et al. 2017; Streicher et al. 2018; Jetz and Pyron 2018; Hutter et al. 2019). 

However, to date no study has combined dense sampling from the nuclear genome with 

comprehensive taxon sampling at the subfamily level across all three orders of extant 

amphibians. To address these needs across extant amphibians, we designed a taxon-specific 

variation of the Anchored Hybrid Enrichment (AHE) protocol (Lemmon et al. 2012). By 

including probes designed from multiple model species spanning the three orders, we provide a 

novel sequence capture system for effectively targeting and sequencing hundreds of nuclear 

protein-coding loci across all extant amphibian species. We employed this capture system to 
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collect AHE data and reconstruct the phylogeny of extant amphibians, assess the degree of deep-

time genealogical discordance across their genomes, and evaluate the alternative hypotheses 

described above.

MATERIALS AND METHODS

Amphibian-Specific Sequence Capture Probe Design

We designed a probe set that targets amphibian-specific orthologs for 366 of the 512 

AHE loci developed by Lemmon et al. (2012). This probe set is designed from a diverse array of 

representatives of each of the three amphibian orders. Following Barrow et al. (2018), Heinicke 

et al. (2018), and Yuan et al. (2019), we mined the publicly available genome sequence for the 

model frog Xenopus tropicalis (Hellsten et al. 2010) and published transcriptomes for the 

salamanders Ambystoma mexicanum (Wu et al. 2013) and Notophthalmus viridescens 

(Abdullayev et al. 2013). To increase taxon representation in our probe design, we also 

developed and mined genomic resources de novo for six additional frogs (Ascaphus montanus, 

Gastrophryne carolinensis, Mixophyes schevilli, Pseudacris feriarum, Pseudacris nigrita, and 

Rana sphenocephala), one salamander (Desmognathus fuscus), and one caecilian (Ichthyophis 

multicolor), as well as transcriptomic resources for two additional salamanders (Cryptobranchus 

alleganiensis and Ensatina eschscholtzii). For each of these 13 amphibian taxa, we identified 

putative orthologs for the 366 amphibian-specific AHE loci from Lemmon et al. (2012) and 

designed DNA capture probes specific to these loci. Although not all of the 366 target loci were 

identified in all 13 model taxa, each locus was represented by, on average, 11.1 model taxa. 
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Because it targets a subset of protein-coding exons, this probe set represents < 1% of the 

Xenopus genome. After retaining a set of 220 putatively single-copy orthologous loci (see below 

in Nuclear Locus Assembly and Alignment), we identified human orthologs for these loci (see 

Supplementary Table S1 available on Dryad).

We designed a set of 120 base pair (bp) RNA probes tiled across each of these loci for 

each of the 4,061 locus-by-model-taxon combinations. Each locus consists of an evolutionarily 

conserved core exonic region flanked by more variable regions on either side. Our probes for 

each model taxon covered these core regions and also extended into the flanks in order to 

increase the lengths of captured loci across diverse taxa. Across all 13 model taxa and 366 target 

loci, the region covered by our probes was 1,090 bp per locus on average. In practice, longer 

assemblies are generated from this type of data because the use of paired-end sequencing allows 

for the extension of sequenced regions beyond the core conserved regions covered by the probes. 

This set of 57,750 unique 120-mer probes was synthesized by Agilent Technologies and 

sequences of these probes are included in this study's Dryad package 

(https://doi.org/10.5061/dryad.ch84dh2).

Taxon Sampling for Amphibian Phylogenetics

We assembled tissues and/or genomic DNA, nearly all from museum vouchers, for a set 

of 286 amphibian species broadly covering family- and subfamily-level diversity and performed 

targeted sequence capture using our amphibian-specific probe set. Including eight of the 13 

model taxa used in the probe kit design, our ingroup taxa consisted of 15 species and nine 

families of caecilians (out of 214 species and 10 families), 41 species and 10 families of 
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salamanders (out of 740 species and 10 families), and 230 species and 52 families of frogs (out 

of 7,193 species and 54 families) (detailed in Supplementary Table S2 available on Dryad; 

species and family counts follow AmphibiaWeb.org, last accessed 13 Apr 2020). Within each of 

the three amphibian orders, we attempted to sample representatives from each recognized family, 

and from multiple sub-families in the case of particularly diverse families (taxonomy used here 

follows AmphibiaWeb 2020). We sampled taxa in rough proportion to the species richness of 

their respective families, but we were also constrained by the availability of tissues and the 

quality of genomic DNA available for sequencing. To guide taxon choice, we consulted 

previously published phylogenies and, where possible, attempted to include similar taxonomic 

coverage of the different amphibian families. 

We specifically attempted to sample deeply divergent lineages, as well as taxa that would 

break up long branches deep in the amphibian phylogeny or potentially provide resolution of 

recalcitrant nodes. Capturing large numbers of loci from the deeply divergent salamander Siren 

intermedia was problematic due to the combination of an extremely large genome, and deep 

divergence from any of the model probe taxa. Because of the importance of Siren for resolving 

salamander phylogeny, we sequenced a multi-tissue transcriptome for this species and mined 

orthologs from this assembly to include with our alignments. For the early-branching caecilian 

Rhinatrema bivittatum, we mined a published transcriptome sequence (Irisarri et al. 2017) for 

orthologs to our target loci.

Outgroup choice can have important downstream implications for phylogenetic inference 

(e.g., Wilberg 2015; Grant 2019), so to counter the potential for long branch attraction and to 

better estimate model parameters and divergence times for deep branches, we included multiple 

outgroup taxa. We included gene sequences mined from available genomic resources on 
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GenBank from four amniote outgroups (Anolis carolinensis, taxon ID: 28377; Chrysemys picta, 

taxon ID: 8478; Gallus gallus, taxon ID:9031; and Homo sapiens, taxon ID 9606) and the 

coelacanth (Latimeria chalumnae, taxon ID: 7897). To identify putatively orthologous sequences 

to our target loci for these five outgroup taxa, we performed blastn searches with the NCBI 

BLAST algorithm (Johnson et al. 2008) against our target loci.

Genomic Library Preparation and High-Throughput Sequencing

Genomic DNA was extracted using DNeasy silica column kits (Qiagen). We performed 

2% agarose gel electrophoresis for each sample to confirm the presence of high molecular weight 

genomic DNA. Library preparation and enrichment were performed at Florida State University's 

Center for Anchored Phylogenomics (www.anchoredphylogeny.com). Each sample was 

fragmented with a Covaris sonicator to a mean fragment size of 300–500 bp. DNA samples with 

signs of degradation were subjected to less fragmentation during library preparation. Individual 

samples were uniquely barcoded by ligation of 8 bp single index oligonucleotides and then 

pooled together in batches of 12–16 for multiplexed target capture. Capture reactions were 

carried out following Lemmon et al. (2012). The enriched, captured products were amplified by 

low-cycle PCR with high fidelity polymerase. Resulting genomic libraries were bead-cleaned 

and pooled for paired-end 150 bp sequencing on the Illumina platform (12–24 caecilians and 

salamanders per Illumina lane, and 24–60 frogs per lane) and sequenced across 14 lanes of an 

Illumina HiSeq2500 sequencer at the Florida State University Translational Lab.

Nuclear Locus Assembly and Alignment

http://mc.manuscriptcentral.com/systbiol
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Loci were assembled using a quasi-de novo strategy employing spaced kmer matching 

and extension assembly from merged paired-end Illumina reads (as in Rokyta et al. 2012; Prum 

et al. 2015; Hamilton et al. 2016). Orthology was established using a neighbor-joining algorithm 

based on pairwise distance matrices that accommodate high variation at third codon positions 

(see Hamilton et al. 2016). Ortholog filtering resulted in a set of 220 putatively single-copy 

nuclear loci for which all five outgroup taxa were also sampled. Of this set of 220 loci, 195 

contained representatives of each of the three amphibian orders (Supplementary Table S3 

available on Dryad, Supplementary Table S4 available on Dryad). We used the approach of 

Pyron et al. (2016) to recover both allele copies for diploid individuals (and multiple allele 

copies for ploidy levels greater than two). In the case of phase ambiguities, nucleotides were 

randomly resolved to one of their potential states. Although we generated phased data for every 

individual, we retained only one randomly chosen haplotype for each individual at each locus in 

order to greatly reduce the computational burden of downstream analyses. Multiple sequence 

alignment was performed in a nested procedure. We first performed four separate alignments for 

frogs, salamanders, caecilians, and the amniote and Latimeria outgroups in MAFFT v7.221 

(Katoh & Standley 2013) with the L-INS-i parameter settings. These sub-alignments were then 

combined using the MAFFT --merge function.

Preliminary examination of gene trees for these alignments revealed that some taxa had 

clearly erroneous placements in a small number of gene trees (e.g., a salamander placed within 

frogs, or a caecilian nested within amniotes). These taxa were typically characterized by very 

long branch lengths. Further scrutiny revealed that in nearly every case, large numbers of 

ambiguous or missing sites apparently drove this pattern. This effect of missing data was, 
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however, not unexpected (Lemmon et al. 2009). To clean up these alignments, we implemented a 

taxon-filtering procedure for each locus that culled any ingroup taxon with greater than 50% 

missing and/or ambiguous sites across an alignment, or with a terminal gene tree branch length 

greater than five times the average branch length for that tree. This filtering procedure removed 

less than 1% of the taxon-by-locus combinations and greatly improved the consistency of 

estimated gene trees.

Culled alignments were examined by eye to correct obvious misalignment issues (e.g., 

large gaps preceded by a single leading nucleotide), and to establish reading frames across 

protein-coding portions of each locus. Between zero and two base pairs were trimmed from the 

upstream ends of each alignment so that the first nucleotide represented the first codon position 

and the last nucleotide represented the third codon position of each locus. Establishment of 

reading frame and alignment corrections were performed in Geneious R8 (Kearse et al. 2012) 

with hydrophobicity display enabled for translated amino acid sequences. In many cases, manual 

alignment correction substantially increased polarity conservation, especially around gaps where 

the alignment may be particularly uncertain.

MtDNA Assembly and Sample Vetting

To verify the identities of samples, we assembled complete and partial mitochondrial 

genomes for nearly all taxa from off-target bycatch reads. These mitochondrial data served as 

integrated "barcodes" with which we could verify the integrity of our taxon identifiers and flag 

potential cases of misidentified taxa. Raw read data were reassembled de novo with trinityrnaseq 

v2.0.3 (Grabherr et al. 2011) and the resulting assemblies were mined for mtDNA regions using 
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blastn searches against known mitogenomes. This procedure identified six instances of apparent 

pairwise transposition of sample labels, corroborated by aberrant placements in preliminary gene 

trees (e.g., placement of two taxa appeared transposed). This mislabeling likely occurred after 

DNA extraction but prior to library preparation. When mtDNA confirmed sample switching, 

taxon identifiers for these pairs of taxa were amended accordingly.

Gene Tree Estimation 

Based on strict orthology assessment, we retained 220 loci for gene tree estimation. 

Individual locus alignments had on average 5.88% missing sites (range 0.36% – 19.75% missing 

sites). Because these AHE loci are exclusively protein-coding, we used a codon-based 

partitioning strategy for identifying and modeling substitution variation. For each locus, we used 

the corrected Akaike Information Criterion (AICc) calculated in PartitionFinder2 (Lanfear et al. 

2016) to simultaneously select among possible partitioning schemes and models of molecular 

evolution using the greedy search algorithm (Lanfear et al. 2012). We chose partitioning 

schemes for each locus using AICc for use during gene tree estimation (detailed in 

Supplementary Table S3 available on Dryad). Maximum likelihood (ML) estimates of each 

individual gene tree were obtained in RAxML v8.2.11 (Stamatakis 2014) under several different 

topological constraints. For each RAxML analysis, 500 rapid bootstraps were conducted 

followed by a series of 20 slow ML optimization steps before the full ML analysis with branch 

length optimization. For each locus, we performed 17 separate ML tree searches. The first ML 

search was for a completely topologically unconstrained analysis. The second ML search was 

performed using a topological constraint that enforced amphibian monophyly but did not enforce 
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any further topological constraints. These monophyletic-Amphibia constraint trees were used in 

downstream analyses of the support across loci for either the Batrachia, Procera, or Acauda 

hypotheses. Additionally, we inferred ML trees for each of the 15 backbone constraints 

representing the 15 possible tree topologies relating frogs, salamanders, caecilians, amniotes, and 

the outgroup Latimeria (Supplementary Fig. S1 available on Dryad). These 15 constrained trees 

were used in downstream analyses of the support for all competing interordinal models (see 

below). For 15 backbone constraints, intra-ordinal amphibian monophyly and the monophyly of 

amniotes were both enforced, but no constraints were imposed on relationships within the 

amphibian orders or within amniotes.

Species Tree Estimation

We employed several methods to reconstruct the topology of the amphibian species tree. 

As a first pass, we concatenated all 220 loci together into a single alignment with 291,282 

nucleotide characters for 291 taxa (286 amphibians, four amniotes, and the Latimeria outgroup). 

Overall, this concatenated alignment was 86.4% complete and had 199,328 variable sites and 

176,483 parsimony-informative sites. We also explored optimal partitioning schemes for the 

concatenated alignment in two different ways. One approach combined first, second, and third 

codon positions across all loci into their own respective subsets and identified an optimal 

partitioning scheme based on a greedy search in PartitionFinder2 where aggregate first, second, 

and third codon positions each comprised their own partitions. Next, we used the rcluster 

algorithm (Lanfear et al. 2014) in PartitionFinder2 to heuristically search model space for 660 

maximum potential partitions from 220 loci each partitioned by codon position resulting in 76 
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separate partitions. The best partitioning schemes for both approaches were used for 

concatenated ML phylogeny estimation in RAxML. RAxML analyses employed 500 rapid 

bootstrap replicates, followed by 20 slow ML optimization steps before the full ML analysis with 

branch length optimization. We enforced a single topological constraint on these concatenated 

ML analyses by setting Latimeria as the outgroup to all other taxa.

To account for different coalescent histories among loci, we performed species tree 

estimation in ASTRAL2 v5.6.1 (Mirarab and Warnow 2015) using the best ML tree for each of 

the 220 loci from the unconstrained gene tree analysis. Using ASTRAL, we produced trees with 

local posterior estimates of branch support (Sayyari and Mirarab 2016), as well as estimates of 

the effective number of genes supporting each bipartition and the relative support for each of the 

alternative quartet resolutions. Although ASTRAL is technically not a coalescent method, it is 

statistically consistent with the coalescent model for increasing numbers of loci and sites 

(Mirarab and Warnow 2015).

Divergence Time Estimation

We estimated divergence times in the MCMCTree program from PAML v4.9f (Yang 

2007) using a set of 19 fossil calibrations which were also applied by Feng et al. (2017) (see 

Supplementary Table S5 available on Dryad, Supplementary Fig. S2 available on Dryad). These 

fossil calibration points cover many of the deep branches within tetrapods and within 

amphibians. We began by estimating the substitution rate for each of the 220 loci partitioned by 

codon position in the PAML program baseml under a GTR+Γ model of nucleotide substitution 

with five discretized rate categories. For each locus, the gene tree topology was fixed to that 
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from the unconstrained RAxML gene tree analyses and the root age for the divergence between 

Latimeria and tetrapods was set to 450 million years ago (Ma) (Benton et al. 2015). Based on all 

loci and codon positions, we estimated a mean substitution rate of 0.899 substitutions per billion 

years and used this estimate to parameterize a diffuse gamma Dirichlet prior on locus rates 

(rgene_gamma) as Γ(1 1.11).

We used the concatenated alignment of 220 loci, partitioned into aggregate first, second, 

and third codon positions as input for MCMCTree and fixed the tree topology to the ASTRAL 

species tree estimate. We then applied 19 fossil calibration points to constrain nodes such that 

95% of the prior probability mass fell between the lower and upper (soft) bounds of each fossil 

calibration, with 2.5% prior density extending above and below these bounds. Next, we obtained 

maximum likelihood estimates (MLEs) of branch lengths by approximate likelihood and 

calculated the gradient and Hessian matrices at MLEs of branch lengths with the usedata=3 

option. Using inferred ML branch lengths, we estimated divergence times in MCMCTree with 

the usedata=2 option, uncorrelated rates across loci, and a GTR+Γ model of nucleotide 

substitution. MCMCTree analyses used two independent MCMC chains with a 1,000,000 

generation burnin, subsequently sampling every 100 generations until 10,000 samples were 

collected. The outputs of these analyses were combined and summarized together using the 

print=-1 setting in MCMCTree to calculate the posterior mean divergence times and 95% highest 

posterior density (HPD) credible intervals on divergence times. Effective sample size (ESS) 

values of parameters were calculated for the combined results in Tracer v1.7.1 (Rambaut et al. 

2018). We also performed fossil cross-validation analyses (Near & Sanderson 2004) of our 

divergence time estimates to quantify the sensitivity of our results to individual fossil calibration 

points by systematically omitting one of each of the 19 fossil calibrations in each run.
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Support across Loci for Interordinal Amphibian Relationships

One hundred ninety-five loci included representatives of all three amphibian orders and 

were thus suitable for investigating support for competing interordinal models (Supplementary 

Fig. S1 available on Dryad, Supplementary Table S4 available on Dryad). We initially quantified 

support across these 195 loci for the three competing interordinal models that support a 

monophyletic Amphibia (Batrachia, Procera, and Acauda). We counted how many of these 

constrained ML gene trees recovered topologies consistent with Batrachia, Procera, or Acauda. 

For each of these 195 genes, we also calculated the proportion of gene tree bootstrap replicates 

that supported Batrachia, Procera, or Acauda and plotted these values across loci. Additionally, 

we used a model-selection framework to calculate the relative support for each of these three 

competing interordinal topologies. For each locus, we compared the log likelihoods of 

constrained gene trees and calculated the Akaike Information Criterion (AIC; Akaike 1974) for 

each topological model relative to the best model [the model with the lowest -ln(L)]. AIC was 

calculated as 2k – 2ln(L) where k is the number of free parameters in the model of sequence 

evolution and the tree (e.g., branch lengths) and L is the maximum likelihood under the 

constraints for a given hypothesis. There is an additional unknown number of free parameters 

associated with topological freedom in our hypotheses (i.e., we constrain monophyly of orders, 

but not relationships within orders) that we do not include in k, because the appropriate number 

is unclear. However, this value should be the same across hypotheses, because each has the same 

amount of topological freedom, therefore the associated penalty term would cancel when 

calculating differences in AIC scores. These differences between the best model and the other i 
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competing models for each locus were calculated as |AICmin – AICi|. Because k is identical across 

hypotheses, calculating these differences in AIC is equivalent to examining the log of the 

maximum likelihood ratio between the best model and each alternative. We also repeated these 

analyses for the full 15-model set depicted in Supplementary Fig. S1 (available on Dryad).

To further quantify support for competing interordinal models for amphibian 

relationships, we conducted Approximately Unbiased (AU) tests of topology (Shimodaira 2002) 

across the 15 backbone constraints. To examine support across loci for the interordinal 

amphibian relationships, we applied the method of gene genealogy interrogation (GGI; Arcila et 

al. 2017). For each locus, we inferred an ML topology and then plotted the cumulative number of 

loci supporting each alternative topological hypothesis, rank ordered by decreasing statistical 

significance of the AU P-value. We performed AU tests in PAUP* (v4a.151) (Swofford 2003).

RESULTS

Nuclear Locus Assembly and Alignment

After filtering for potential paralogs and missing data in alignments, we retained a set of 

220 loci, of which 195 had representatives of all three amphibian orders present. This resulted in 

total of 291,282 aligned nucleotide positions across all loci. On average, individual frogs, 

caecilians, and salamanders had 214, 165, and 146 loci, and 97%, 75%, and 66% of sites in the 

alignments present, respectively.

Gene Tree Estimation
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Codon-based partitioning analyses and substitution model selection for individual loci 

identified 217 loci for which a single partition containing all codon positions and a GTR+ 

model of sequence evolution was applied (Supplementary Table S3 available on Dryad). The 

remaining three loci (L123, L262, and L285) were best modeled with two partitions, one 

combining first and second codon positions and the second partition comprising third codon 

positions and a GTR+ model. RAxML bootstrap support (BS) for individual gene trees was 

relatively high, with an average BS value of 73.8 across all branches in all gene trees (median 

value of 90). Individual unconstrained gene trees varied according to which of the 15 possible 

interordinal models of amphibian and amniote relationships were present in the ML tree. Among 

unconstrained gene trees, 143 loci identified a monophyletic Amphibia, 67 loci recovered 

Batrachia, 38 loci supported Procera, and 38 loci supported Acauda. All gene trees are included 

in this study's Dryad accession.

Topology and Timescale for the Amphibian Tree of Life

Concatenated RAxML and ASTRAL analyses produced similar estimates of the species 

tree (normalized Robinson-Foulds distance = 0.027), and we present the ASTRAL species tree 

here (Fig. 1; concatenated RAxML tree in Supplementary Fig. S3 available on Dryad). In both 

estimates of the species trees, we recovered a monophyletic Amphibia, monophyly of each 

amphibian order, and a frogs-sister-to-salamanders relationship (the Batrachia hypothesis), all 

with BS = 100. MCMCTree results indicated that the Amniota-Lissamphibia split occurred 347–

352 Ma, during the early Carboniferous, that the ancestor of caecilians and an ancient batrachian 
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diverged 287–303 Ma, in the late Carboniferous or early Permian, and that frogs split from 

salamanders by 269–275 Ma, during the middle Permian (Fig. 2). 

The estimated phylogenetic relationships within each of the three amphibian orders were 

largely consistent with those from previous studies, with most inter-familial branches receiving 

maximal bootstrap support in both the RAxML and ASTRAL analyses (Supplementary Fig. S3 

available on Dryad and Supplementary Fig. S4 available on Dryad, respectively). Within 

caecilians, we recovered the deepest divergence event as being between the Rhinatrematidae and 

all other caecilians examined (Fig. 1, Fig. 2, Supplementary Fig. S3 available on Dryad, 

Supplementary Fig. S4 available on Dryad), with this divergence occurring 102–130 Ma in the 

early Cretaceous. All remaining family-level relationships within caecilians were resolved with 

high branch support (Supplementary Fig. S3 available on Dryad, Supplementary Fig. S4 

available on Dryad).

Our results unequivocally supported an initial divergence event in crown salamanders 

between Cryptobranchioidea (Cryptobranchidae and Hynobiidae) and a clade comprising 

Salamandroidea and Sirenidae (Fig. 1, Supplementary Fig. S3 available on Dryad, 

Supplementary Fig. S4 available on Dryad), with a divergence occurring 148–171 Ma in the 

early to middle Jurassic (Fig. 2). After divergence with Sirenidae, the first split within 

Salamandroidea involved a clade comprising Ambystomatidae and Dicamptodontidae and 

Salamandridae, and a clade comprising successive divergence events splitting off Proteidae, 

Rhyacotritonidae, Amphiumidae, and Plethodontidae.

Within frogs, we recovered a non-monophyletic Archaeobatrachia (Fig. 1, Fig. 3, 

Supplementary Fig. S3 available on Dryad, Supplementary Fig. S4 available on Dryad). At the 

root of the frog clade, the Leiopelmatoidea (Leiopelmatidae and Ascaphidae, Green and 
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Cannatella 1993) diverged from all other frogs 205–223 Ma in the late Triassic (Fig. 3). 

Additional archaeobatrachian superfamily-level groups were also resolved, including 

Bombinatoroidea (Bombinatoridae and Alytidae) and the Pipoidea (Rhinophrynidae and 

Pipidae), and Pelobatoidea, the clade containing (Scaphiopodidae, Pelodytidae, Pelobatidae, and 

Megophryidae). Our results suggest that Leiopelma and Ascaphus diverged 187–209 Ma in the 

early Jurassic, and that Neobatrachia split from Pelobatoidea (Scaphiopodidae, Pelobatidae, and 

Pelodytidae) 169–185 Ma in the middle Jurassic.

Neobatrachia was recovered as monophyletic in all analyses (Fig. 1), and all methods 

supported Heleophryne as sister to all other neobatrachians (Fig. 1, Fig. 3, Supplementary Fig. 

S3 available on Dryad, Supplementary Fig. S4 available on Dryad). The remaining 

neobatrachian lineages formed two clades: (Hyloidea, (Myobatrachidae, Calyptocephalella)) and 

(Ranoidea, (Sooglossus, Nasikabatrachus)). Within Ranoidea, we recovered a clade comprising 

(Microhylidae, (Natatanura, Afrobatrachia)). Within Neobatrachia, we found that 

Heleophrynidae split from all other neobatrachians 140–152 Ma in the late Jurassic or early 

Cretaceous (Fig. 3). Our results also suggest that the major neobatrachian crown lineages 

Hyloidea, Ranoidea, Afrobatrachia, and Natatanura arose 67–77 Ma, 99–111 Ma, 81–92 Ma, and 

61–69 Ma, respectively (Fig. 3, Fig. 4). We found support for a sister relationship between 

Nasikabatrachus and Sooglossus and estimated the divergence time between these two deeply 

divergent anuran families at 62–93 Ma (Fig. 4). This particularly large range of dates for this 

node may be associated with an elevated percentage of missing loci for Nasikabatrachus. Within 

Ranoidea, we recovered Microhylidae sister to a clade containing Afrobatrachia and Natatanura 

(Fig. 4). Posterior mean divergence times, upper and lower bounds of the 95% HPD confidence 

intervals, and ESS values for all nodes are provided in Supplementary Table S6 (available on 
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Dryad). Our divergence time estimation results were largely robust to the sensitivity analyses 

wherein we reran the MCMCTree analyses excluding a single fossil calibration in each run. 

Results of the exclusion analyses are provided in Supplementary Table S7 (available on Dryad).

Placement of Nasikabatrachidae and Sooglossidae

Our final ASTRAL and concatenated RAxML analyses both supported a sister 

relationship between the two deeply divergent anuran families Nasikabatrachidae and 

Sooglossidae (Supplementary Fig. S5 available on Dryad). Initial ASTRAL and RAxML 

analyses based on gene alignments that were not filtered for missing sites (see Materials and 

Methods) disagreed with respect to the placement of Nasikabatrachus, with ASTRAL analyses 

placing it as sister to all Microhylidae and RAxML supporting a placement sister to Sooglossus. 

However, upon further scrutiny of individual gene alignments, we noted a pattern of short, gap-

laden loci supporting Nasikabatrachus as sister to the microhylid genus Oreophryne, whereas 

loci with fewer missing sites supported the conventionally accepted placement of 

Nasikabatrachus sister to Sooglossus (Supplementary Fig. S5 available on Dryad). Final 

analyses that filtered out individual sequences with > 50% of sites missing for any locus resulted 

in ASTRAL species tree placement of Nasikabatrachus and Sooglossus as sister clades.

Gene Tree Discordance and Genomic Support for Deep Amphibian Relationships

When considering only the Batrachia, Procera, and Acauda interordinal models, each of 

the three alternative interordinal hypotheses for a monophyletic Amphibia was supported by 
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different subsets of the genome. Quantifying bootstrap support for interordinal models involving 

a monophyletic Amphibia revealed substantial variation across loci (Fig. 5a). A greater number 

of gene trees exhibited high bootstrap support for the Batrachia hypothesis relative to the Acauda 

or Procera hypotheses. However, each of these three interordinal hypotheses had at least three 

gene trees with BS > 90 at the interordinal nodes. Of 195 loci with at least one member of each 

amphibian order included, 89 loci supported Batrachia, 51 supported Procera, and 55 supported 

Acauda, respectively. Similarly, a rank-ordered plot of BS by interordinal hypothesis revealed 

multiple loci with low to moderate bootstrap support for each hypothesis (Fig. 5a). In fact, only 

28 loci had BS > 90 for any of the deep interordinal nodes, suggesting that many loci might lack 

sufficient information content for resolving these deepest nodes in the amphibian phylogeny.

Measures of AIC-based model support across the full set of 15 models that also account 

for the possibility of a non-monophyletic Amphibia found very strong support for models 

involving a monophyletic Amphibia, with AIC values as high as 1,400 against some non-

monophyletic models. Of the 195 interordinal-informative loci, 144 loci supported monophyly of 

Amphibia (68 loci supported Batrachia, 38 loci supported Procera, and 38 loci supported 

Acauda). The remaining 51 loci supported one of the 12 alternative models of a non-

monophyletic Amphibia (Supplementary Fig. S6 available on Dryad). The raw log likelihoods of 

the 15 constrained models across 195 loci used as input for AIC-based measures of support for 

the three- and 15-hypothesis analyses are included in Supplementary Table S8 (available on 

Dryad).

Results from GGI analyses (Fig. 6) demonstrated that the majority of loci support a 

monophyletic Amphibia, although support for either the Acauda, Procera, or Batrachia 

hypotheses varied across loci. Approximately unbiased test P-values represent how strongly 
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competing topological models can be rejected relative to the preferred model, with a canonical 

value of 0.05 reflecting strong support. Very few loci had strong AU support ([1 – AU P-value] 

> 0.95), but most gene trees supported the Batrachia hypothesis (Fig. 6). Across loci supporting 

each of the 15 possible interordinal topologies rank-ordered by decreasing AU test values, 

support dropped precipitously for Procera and Acauda and non-monophyletic Amphibia models. 

Notably, only a small number of loci supporting any of the 15 possible models received support 

above our threshold of P ≤ 0.05. Fig. 6a shows GGI support for the three monophyletic 

Amphibia models and the 12 aggregated non-monophyletic Amphibia models, whereas Fig. 6b 

depicts GGI support across the 12 alternative models individually.

DISCUSSION

Using data generated with a newly developed, amphibian-specific Anchored Hybrid 

Enrichment probe set, we produced the most comprehensive phylogenomic inference of the 

amphibian Tree of Life to date, both in terms of taxa (286 species, ~95% of amphibian families) 

and genetic loci (220 nuclear loci). Although there were few surprising topological relationships 

uncovered by this work (see below), we provide the most robust assessment to date of amphibian 

relationships and their divergence times, placing all major amphibian lineages together in a 

comprehensive phylogenomic framework. We recognize that future study is warranted in several 

clades (e.g., Plethodontidae, Microhylidae) to better resolve more shallow-scale relationships.

Overall, our species tree results firmly corroborate the monophyly of Amphibia and 

strongly supported the Batrachia hypothesis, grouping frogs and salamanders as a clade. Perhaps 

the most surprising aspect of our results was the identification of significant variation across the 
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genome in the strength of support for competing hypotheses about the deepest divergences in the 

evolutionary history of amphibians. Some loci even exhibited strong support for a non-

monophyletic Amphibia. In the context of a monophyletic Amphibia, each of the three possible 

interordinal hypotheses received strong support from at least some loci (see below). Yet, at the 

species-tree level, our genome-wide data strongly supported the monophyly of Amphibia and a 

sister relationship between frogs and salamanders (the Batrachia hypothesis).

Collectively, our results imply either the persistence of patterns of evolutionary 

mechanisms that contribute to genealogical discord (e.g., ILS or gene flow) over extremely deep 

timescales, and/or systematic error in phylogenetic estimates from some loci, leading to strongly 

supported, but inaccurate, estimates of gene trees. The observed heterogeneity in gene tree 

topologies in deep evolutionary history is obscured by species tree analyses, potentially leading 

to oversimplification of genomic evolutionary history. Our findings underscore the importance of 

conducting an in-depth examination of genome-wide phylogenetic signal as opposed to utilizing 

summary approaches such as gene concatenation or species tree analyses alone. 

Our results further support recent analyses presented by Burbrink et al. (2020) for 

squamates. In that study, genomic interrogation using machine learning showed strong overall 

congruence for a single topological resolution of lizard and snake relationships that is obscured 

for some early nodes by apparent ILS, as well as poor or degraded phylogenetic signal in some 

loci. These congruent results across taxa and timescales for similarly constructed genomic 

datasets suggests that these processes of signal decay and genealogical discordance driven by 

rapid radiations and short internodes may be a ubiquitous feature of early branches in the Tree of 

Life (e.g., Rokas and Carroll 2006; Dunn et al. 2008). However, approaches such as ours and 
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those of Burbrink et al. (2020) nonetheless show the tractability of resolving strong support for 

these relationships given sufficient data.

Evaluating Interordinal Amphibian Models and Deep ILS

Deep-time gene tree-species tree discordance was evident from multiple analyses. 

Bootstrap results provided some indication for variation across loci in support of different 

interordinal models involving a monophyletic Amphibia. Many loci were equivocal in their 

bootstrap support for the reconstruction of any of the three interordinal models involving a 

monophyletic Amphibia. Yet, each of the three interordinal hypotheses was reconstructed from 

at least a small number of loci with high bootstrap support. For example, three loci supported an 

Acauda gene tree with BS > 90 and eight loci supported a Procera gene tree with BS > 90, both 

in contrast to the robust species tree reconstruction of a Batrachia relationship (with 17 loci with 

concordant gene trees at BS > 90). The bootstrap represents a bounded measure of branch 

support, with the ability to tell us something about the direction, but not the magnitude, of 

support for a particular hypothesis.

The use of GGI/AU tests and information theoretic relative model probabilities provided 

two explicit statistical approaches for comparing competing interordinal models, although these 

provided somewhat contrasting results. GGI/AU tests were quite conservative, with small 

numbers of loci statistically supporting all of the three monophyletic amphibian models. For 

example, a total of just four loci supported a Batrachia gene tree topology with an AU Test value 

≥ 0.95, and no loci produced gene trees with significant AU Test support for Acauda or Procera 

topologies. While the GGI analyses indicated that Batrachia is favored for gene tree relationships 
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among orders (roughly half of all loci have “best” gene trees consistent with Batrachia), most 

loci lacked definitive signal this far back in the evolutionary history of amphibians. 

Our GGI results for the deep (250–300 Ma) divergences in Amphibia mirror those found 

in other anciently diverging clades (such as early animal relationships), in that very few 

individual gene trees are statistically significant for any one model (Arcila et al. 2017). In 

contrast to the conservative GGI/AU tests, information-theoretic relative model probabilities 

provided stronger support across loci for all three monophyletic amphibian models. For example, 

nearly all of the loci supporting each of the three monophyletic amphibian models received 

relative model probabilities greater than 0.5 and many loci supported one particular model with a 

relative model probability of 1.0. However, both the GGI/AU tests and the relative model 

probabilities, like the bootstrap support values, are bounded metrics of support ranging from zero 

to one and, thus, may potentially obscure some patterns of support across loci.

In contrast, all three of our competing interordinal models had best gene trees that were 

supported with ΔAIC > 40 (ΔAIC > 2 is typically viewed as strong support for one model over 

another; Burnham & Anderson, 2002). We note, however, that in cases where the degree of 

topological constraint varies among hypotheses, AIC may be challenging, because the 

appropriate number of free parameters is unknown. Nonetheless, many studies may benefit from 

focusing on a set of topological hypotheses with the same degree of topological freedom, as we 

do here.

When considering all results, we find strong support for amphibian monophyly and the 

Batrachia hypothesis at the species tree level, and substantial support for discordant gene trees 

across this deep evolutionary split. Our interpretation of this genealogical discord is ultimately 

based on the extremely strong measures of ΔAIC support for particular models. We find no 
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correlation between the best supported interordinal models and numbers of taxa from each order, 

percent missing data across loci, GC content, or the variability of loci (Supplementary Fig. S7 

available on Dryad). Several potential and non-mutually exclusive explanations may account for 

this observation. Our detection of strongly supported discordant gene trees may reflect one of the 

potential evolutionary phenomena known to yield such patterns (Maddison 1997), including ILS, 

horizontal transfer, natural selection, saturation, or a gene duplication and loss resulting in errors 

in orthology assignment.

We are unable to definitively discriminate among these possible mechanisms of 

genealogical discordance. However, the preservation of a historical demographic signal of ILS 

seems most likely because the number of loci supporting Batrachia is roughly equal to the 

numbers of loci supporting Procera and Acauda, and because the number of loci supporting these 

two minor topologies (Procera and Acauda) are also roughly equal, a specific prediction of ILS 

(Degnan and Rosenberg 2009). Nearly 12 million years separate the 95% credible intervals for 

the divergences between the lower bound of the divergence between Gymnophiona and the 

ancestor to Batrachia and the upper bound of the divergence between Caudata and Anura (Fig. 

2), and it might be surprising to consider a pattern of ILS persisting over such a long period of 

time. However, at least one simulation study has demonstrated the potential for ILS to persist 

over tens to hundreds of millions of years (Oliver 2013). At least some empirical evidence has 

indicated that the preservation of deep ILS may be present in other major vertebrate clades (e.g. 

birds, Poe and Chubb 2004; Edwards et al. 2005). Although we observe a pattern of gene tree 

discordance that is consistent with expectations of ILS. Regardless of the specific mechanism(s) 

underlying deep gene tree discordance, a sole focus on the estimation and analysis of the species 
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tree topology (rather than also scrutinizing individual gene tree topologies) may lead to a failure 

to consider more nuanced aspects of evolutionary history (Hahn and Nakhleh 2016). 

Our detection of genealogical discordance across the amphibian genome also suggests 

that if one were to sample only a few loci at random, the genealogical variation across loci could 

lead to either weak support for deep nodes or spurious evidence for an alternative interordinal 

model. At least one other empirical amphibian study has reported discordance across loci, 

including a finding similar to ours, namely that some loci may support a non-monophyletic 

Amphibia (Fong et al. 2012), and stochastic sampling effects combined with deep ILS may 

together account for the variation across previous studies in terms of which interordinal 

amphibian topologies have been supported.

Effects of Missing Data in Phylogenomic Data Sets

Our study also emphasized the importance of scrutinizing the effects of large amounts of 

missing data from individual gene alignments on species tree topologies. We found the effects of 

missing data to be a particularly important issue in the resolution of relationships among an 

important set of frog clades, which is expected when branches are very strongly supported 

(Lemmon et al. 2009). Our initial analyses led to a disagreement between RAxML and ASTRAL 

trees with respect to the placement of Nasikabatrachus (Supplementary Fig. S5a available on 

Dryad). Although the concatenated ML tree strongly supported the canonical placement (Biju 

and Bossuyt 2003) of Nasikabatrachus as sister to Sooglossus (BS = 100), the initial ASTRAL 

tree supported a surprising and previously unreported sister relationship between 

Nasikabatrachus and the family Microhylidae, with relatively strong support (ASTRAL local 
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posterior = 0.71). Upon closer examination of the placement of Nasikabatrachus in the 194 gene 

trees containing both Nasikabatrachus and Sooglossus, we found that loci with greater 

proportions of missing sites (n = 98 loci) consistently favored Nasikabatrachus as sister to the 

microhylid Oreophryne, whereas loci with fewer missing data tended to favor traditional 

placements (Biju and Bossuyt, 2003; Feng et al., 2017) of Nasikabatrachus sister to Sooglossus 

(n = 94 loci) (Supplementary Fig. S5b available on Dryad). Subsequent filtering of individual 

gene alignments to exclude taxa with > 50% of sites missing brought the ASTRAL and RAxML 

topologies into agreement (Supplementary Fig. S5c available on Dryad). Thus, ASTRAL was 

likely misled by the fact that gene trees supporting the novel placement of Nasikabatrachus 

slightly outnumbered gene trees supporting the previously identified placement as sister to 

Sooglossus. Other studies have also reported conflicting placements for taxa with large amounts 

of missing data when using either supermatrix (e.g., Lemmon et al. 2009) or species tree 

methods (Hosner et al. 2016; Moyle et al. 2016). An early expectation for genome-scale 

phylogenetics was that massive genetic data sets, regardless of levels of missing data, would 

provide unwavering reconstructions for even the most recalcitrant branches of the Tree of Life 

through the sheer size of the data. However, whereas adding more genetic loci to species tree 

analyses can increase the accuracy of the resulting inferences, it is becoming clear that 

phylogenomic data, on their own, are no panacea for difficult phylogenetic problems (Jeffroy et 

al. 2008; Brown and Thomson 2016; Shen et al. 2017; Walker et al. 2018). 

Genomic Perspectives on the Amphibian Tree of Life
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Beyond the firm establishment of the Batrachia relationship at the base of the amphibian 

Tree of Life, our study also cemented a number of important relationships between and within 

family-level lineages. A notable exception is that our results support a sister clade relationship 

between Afrobatrachia and Natatanura (local posterior support = 0.32), with the two as sister of 

Microhylidae (Fig. 4). This result contrasts with previous hypotheses of amphibian phylogenies 

based on relatively small amounts of DNA sequence data (e.g., less than 20 loci, Frost et al 2006; 

Pyron and Wiens 2011) but agrees with more recent genomic studies (Feng et al. 2017; Yuan et 

al. 2019). Some amphibian clades received relatively high bootstrap support from concatenated 

RAxML analyses but are nonetheless not well supported by ASTRAL analyses. Within some 

families (e.g., Plethodontidae and Microhylidae), phylogenetic relationships are less well 

supported than relationships between families, suggesting some recalcitrant portions of the 

amphibian phylogeny still remain to be addressed.

Our divergence time estimates for Lissamphibia and Batrachia are somewhat younger 

than in Roelants et al. (2007), but largely in line with Feng et al. (2017). However, perhaps the 

most surprising aspects of our study are the relatively younger divergence times among families 

within each of the three amphibian orders. The Late Cretaceous-Paleogene boundary has been 

suggested as a critical epoch for amphibian evolution, reflected in the origin and early 

diversification of several hyperdiverse clades (i.e., Hyloidea, Microhylidae, Afrobatrachia, 

Natatanura, Salamandridae and Plethodontidae) (Roelants et al. 2007; Pyron 2014; Feng et al. 

2017). Our divergence time estimates, based on the most comprehensive amphibian dataset 

assembled to date, push the date of origin and initial diversification of frogs, caecilians, and 

salamanders, later by several million years, and may thus reshape the way we think about the 

evolution and biogeography of amphibians. This is especially the case concerning hypotheses of 
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continental vicariance and dispersal (e.g., Pyron 2014) and the emphasis currently placed on the 

Cretaceous–Paleogene boundary (Feng et al. 2017). Understanding the main drivers of 

amphibian diversification in the Paleogene and Neogene, which contributed so significantly to 

the radiation that we see today, will be a major focus of future systematics research on 

amphibians.
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Data sets, supplementary figures, and supplementary tables are available from the Dryad Digital 

Repository (https://doi.org/10.5061/dryad.9kd51c5dc).
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FIGURE CAPTIONS

Figure 1. Topology of family-level amphibian relationships inferred from ASTRAL and 

RAxML analyses. Gray boxes denote branches with ASTRAL local posterior values of 1 and 

RAxML bootstrap percentages of 100. For branches without unanimous support, upper values 

indicate ASTRAL local posterior probabilities and lower values indicate RAxML bootstrap 

percentages. N/A indicates that a branch was recovered by ASTRAL but not by RAxML. 

Terminal branches without support values are represented by a single taxon from a given family. 

Values in parentheses after a family name indicate the number of species sampled if greater than 

one. Families from which species were selected for probe design are underlined. Dashed gray 

lines connect exemplar photos to their respective families.

Figure 2. Time-calibrated phylogeny for Amphibia. Divergence times among amniotes, 

caecilians, and salamanders. Divergence times across Amphibia were inferred in MCMCTree 

with 19 fossil calibration points. Posterior distributions are plotted for each node, representing 

the 95% highest posterior density confidence interval of divergence times. Fossil calibrated 

nodes are denoted with orange posterior distributions and non-calibrated nodes are shown in 

blue. The tree topology is based on the results of the ASTRAL analysis. The heights of the 

posterior distributions are scaled to their corresponding branches.

Figure 3. Time-calibrated phylogeny for Anurans I. Divergence times for a portion of Anura, 

containing the Archeobatrachia and some lineages and clades of Neobatrachia. Posterior 

distributions are plotted for each node, representing the 95% highest posterior density confidence 
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interval of divergence times. Fossil calibrated nodes are denoted with orange posterior 

distributions and non-calibrated nodes are shown in blue. The tree topology is based on the 

results of the ASTRAL analysis. The heights of the posterior distributions are scaled to their 

corresponding branches.

Figure 4. Time-calibrated phylogeny for Anurans II. Divergence times for the remaining portion 

of Anura, containing the remaining clades from Neobatrachia. Posterior distributions are plotted 

for each node, representing the 95% highest posterior density confidence interval of divergence 

times. Fossil calibrated nodes are denoted with orange posterior distributions and non-calibrated 

nodes are shown in blue. The tree topology is based on the results of the ASTRAL analysis. The 

heights of the posterior distributions are scaled to their corresponding branches.

Figure 5. Evaluation of the magnitude and direction of support for competing models of a 

monophyletic Amphibia. a) Proportions of RAxML gene tree bootstrap replicates supporting the 

three possible interordinal topologies, assuming a monophyletic Amphibia. b) Relative model 

probabilities among three possible interordinal models. c) Differences in Akaike Information 

Criterion (AIC) between best model and alternative models quantifying the magnitude of 

support against the two alternative models for interordinal amphibian relationships (bars are 

stacked for clarity and values are not cumulative). In all three panels, 195 loci with 

representatives of each amphibian order are plotted along the horizontal axis. Alternative models 

for Acauda, Batrachia, and Procera are colored in dark blue, red, and light blue, respectively.
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Figure 6. Gene Genealogy Interrogation with the Approximately Unbiased (AU) test across 195 

loci. Results from AU tests performed for each of 195 loci with representatives of each 

amphibian order. Loci are binned according to which of the 15 possible topologies are supported 

by unconstrained RAxML gene trees, and then ranked according to the AU test P-value 

supporting their preferred hypothesis. a) Most unconstrained gene trees support a monophyletic 

Amphibia, but very few are significantly better than alternative trees at a threshold of 0.95. 

Alternative models for Acauda, Batrachia, and Procera are colored in dark blue, red, and light 

blue, respectively, and loci supporting any of the 12 models for a non-monophyletic Amphibia 

are colored in orange. b) Loci supporting a non-monophyletic Amphibia are plotted by which of 

the alternative models are supported. Model numbers correspond to Figure S1.
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