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Abstract

Epilepsy is a brain disorder characterised by recurrent seizures with a wide range

of cognitive, psychological, and social consequences. Seizures are the transient

occurrence of signs and symptoms due to abnormal excessive synchronous neural

activity. Epilepsy is currently treated with medication or by a resective surgical

procedure; however, about 30% of patients still do not achieve seizure control. The

unpredictability of when seizures occur means that even infrequent seizures can

have a devastating effect on someone’s life and has hampered progress in response

mode treatments.

There has, therefore, been a major research drive for the development of

seizure prediction/detection techniques. These have suffered from poor sensitiv-

ity and/or specificity. Moreover, many of the advanced mathematical methods for

seizure detection/prediction do no more than reproduce the results of linear and

simpler approaches.

This thesis focuses on the scaling properties of intracranial electrophysiologi-

cal measures from both humans and rats. Firstly, a novel approach to evaluate mul-

tifractal properties of brain signals is presented and its properties are demonstrated.

Secondly, the developed approach is applied in a series of clinical challenges: dis-
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tinguishing sleep phases; a study on characteristic time for seizure detection; a pu-

tative classification scheme for focal epileptic seizures; and an evaluation of data

from an animal model of epileptogenesis.

The proposed technique was capable of extracting distinct information from

the EEG signals that has clinical utility. Moreover, the multifractal nature of the

brain signals hints at how neural structures work and lends support to results from

previous research.



Impact Statement

Epilepsy is a disease that affects over 70 million people around the globe with

around 30% of these patients not being able to achieve freedom from seizures —

the main symptom of the syndrome — despite optimum treatment. One of the most

disabling aspects of seizures is their unpredictability.

This thesis investigates properties of the electrical activity of epileptic seizures,

aiming to determine methods of detecting and predicting seizures that could help the

development of new ’response-mode’ treatments. Moreover, a better understanding

of seizure dynamics could provide insights into novel treatment approaches. Thus,

this work could have an impact on the treatment and care of people with epilepsy.

Discoveries arising from the studies presented in this thesis could impact

academia by bringing new information on mechanisms and dynamics of the brain

— in both health and disease. This way it could change concepts in neurology and

foster the development of new research ideas, projects and questions.

These results would have a global impact in both academia and healthcare,

changing the lives of millions of people around the world. One article resulting

from the working developed during the studies presented in this thesis has already
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Chapter 1

Introduction

1.1 On epilepsy

Epilepsy is a brain disorder characterised by recurrent seizures with a wide range

of cognitive, psychological and social consequences. Seizures are defined as the

paroxysmal (transient) occurrence of signs and symptoms due to abnormal, exces-

sive synchronous neural activity (Fisher et al., 2005). The existence of an enduring

alteration, in the brain, that increases the likelihood of seizures (epileptogenicity),

is the key concept in the definition of epilepsy (Fisher et al., 2005).

Epilepsy is believed to affect over 70 million people all over the world (Thijs

et al., 2019), with a higher impact in under-resourced countries (Meinardi et al.,

2008; Ngugi et al., 2010). This disparity can be explained by the lack of effective

healthcare systems and eventual “higher risk of brain damage due to parasitic (e.g.,

cysticercosis) and bacterial (e.g., tuberculosis, meningococci) infections, and due to

substandard perinatal care” (Meinardi et al., 2008).

In wealthy countries the incidence of epilepsy is approximately 50/100,000
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cases per year, whereas in resource-poor countries the incidence is two to threefold

higher (Sander, 2003). The prevalence is approximately 0.6-1 % (Sander, 2003).

The epilepsies are classified by the International League Against Epilepsy

(ILAE) as either generalised, which “are conceptualised as originating at some point

within, and rapidly engaging, bilaterally distributed networks”, or focal, “originat-

ing within networks limited to one hemisphere” (Berg et al., 2010).

1.1.1 Classifying epilepsies and epileptic seizures

Classifying neurological syndromes as diverse as the epilepsies, and their clinical

manifestations epileptic seizures, can bring some challenges. Proposals of inter-

national classifications were made in late 1960s and published in 1970 (Gastaut,

1970; Merlis, 1970; Berg and Cross, 2010). The initial classification scheme in-

cluded clinical features of epileptic seizures (Berg and Cross, 2010) and mainly

divided epileptic seizures in two groups: of those “that are generalised from the

beginning”, and “those that are partial or focal at onset and become generalised

secondarily” (Penry, 1981).

A proposal of revision of such classification was published in 1981; it encom-

passes knowledge obtained from — at the time — novel clinical technologies for

documenting epileptic seizures, e.g. prolonged EEG and video recordings. Named

International Classification of Epileptic Seizures (ICES), the revision also removed

historical information or data considered speculative (such as aetiology), age fac-

tors, and anatomic substrate (Penry, 1981). It is important to emphasise that this was

still a seizure classification and kept some of the elements from the 1970 scheme.
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The ILAE proposed another classification in 1989, called International Clas-

sification of Epilepsies and Epileptic Syndromes (ICE). In this new scheme the

syndromes rather than the seizures - expressions of those syndromes - are classi-

fied. The new proposal still maintained the main concept of previous work with

the two major classes being defined as epilepsies with generalised or partial/focal

seizures, respectively. Aetiological criteria were also adopted by the 1989 proposal

with epilepsies being classed as symptomatic or “secondary” (of known aetiology),

idiopathic (primary), and cryptogenic (Commission on Classification and Termi-

nology of the International League Against Epilepsy, 1989). In 2010, the ILAE

Commission on Classification and Terminology published a document reviewing

the “concepts, terminology, and approaches for classifying seizures and forms of

epilepsy” (Berg et al., 2010). This new classification departs from both 1981’s and

1989’s ICES and ICE.

The revised terminology separates epileptic seizures into two groups: gener-

alised and focal. Also, the aetiologies of the syndromes were redefined as genetic,

structural-metabolic, and unknown, to replace idiopathic, symptomatic, and cryp-

togenic, respectively (Berg et al., 2010). It is important to emphasise that some

seizures, and epilepsies, may fall into subtypes and/or exhibit special features.

1.1.2 The epileptic seizure

Overall, epileptic seizures are the symptoms caused by “abnormal excessive or syn-

chronous neuronal activity in the brain” (Fisher et al., 2005). An epileptic seizure is

a transient event with a clear start and finish; however, the termination is often less



1.1. On epilepsy 23

Figure 1.1: Example of seizure electroencephalography obtained with intracranial elec-
trodes in a patient undergoing presurgical evaluation. The seizure starts at 60
seconds and lasts for about 133 seconds.

evident than its onset — this is due to the fact that the postictal state can at times

blur the termination of a seizure (Fisher et al., 2005).

There is a wide range of clinical manifestations that can arise from epileptic

seizures; these signs will depend on location of the onset in the brain, the propaga-

tion, medications and various other factors (Fisher et al., 2005). “Sensory, motor,

and autonomic function; consciousness; emotional state; memory; cognition; or be-

haviour” can be affected by epileptic seizures (Fisher et al., 2005). Nevertheless,

not all seizures compromise all these functions and capacities but at least one of

these will be affected (Fisher et al., 2005).

This section follows the terminology proposed in 2010 by the ILAE commis-

sion (Berg et al., 2010) and describes the main seizure types classed as either gener-

alised or focal. These seizures may also exhibit further subtypes and special features

not discussed in this text.
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1.1.2.1 Generalised seizures

Generalised seizures are defined “as originating at some point within, and rapidly

engaging, bilaterally distributed networks” that can involve cortical and subcortical

structures (Berg et al., 2010). The generalised seizures can be classified in 6 main

subgroups: tonic-clonic, absence, myoclonic, clonic, tonic, and atonic seizures

(Berg et al., 2010).

Tonic-clonic seizures are characterised by a sudden attack and loss of con-

sciousness without warning or auras (Greenberg et al., 2012). This class of seizure

is defined by three phases: tonic, clonic, and recovery stages. In rare cases, they

may evolve into convulsive status epilepticus (prolonged seizures, defined below in

section 1.1.2.3) (Greenberg et al., 2012).

The initial tonic stage, with unconscious tonic muscular contractions, lasts be-

tween 10 and 30 seconds. In this type of seizure, the patient falls to the ground and

can be injured. Contraction of respiratory muscles may cause vocalisation, resulting

in a “cry” or “moan”, and cyanosis. Some patients may experience tongue trauma

due to contraction of masticatory muscles (Greenberg et al., 2012).

The second phase is characterised by “a clonic (alternating muscle contrac-

tion and relaxation) phase of symmetric limb jerking” and persists for 30-60 sec-

onds or more (Greenberg et al., 2012). This phase is also marked by cessation of

cyanosis, mouth froth with saliva, and sometimes urinary incontinence (Greenberg

et al., 2012).

The third phase is marked by postictal confusion and often headache. Full ori-

entation should take 10-30 minutes but can take longer in cases with status epilep-
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ticus (Greenberg et al., 2012).

Absence seizures are characterised by a brief loss of consciousness that lasts

from 5 to 10 seconds. These seizures may also feature subtle motor manifestations,

e.g. eye blink and head turning. Consciousness recovers immediately after the

cessation of the seizure (Greenberg et al., 2012).

Myoclonic seizures exhibit sudden and brief contractions localised to some

muscles, to one or more extremities, or distributed more generally (Greenberg et al.,

2012).

Clonic seizures show similar features to the second phase of tonic-clonic

seizures without the initial tonic phase, whereas the tonic seizures exhibit prop-

erties of the first phase of tonic-clonic seizures without the subsequent clonic phase

(Greenberg et al., 2012). Atonic seizures feature loss of postural tone leading to

a fall or drop attack and may be preceded by a myoclonic jerk (Greenberg et al.,

2012).

1.1.2.2 Focal seizures

Focal seizures are defined “as originating within networks limited to one hemi-

sphere”. These networks can be more localised or widely spread and can also have

their origin in subcortical structures. Focal seizures are not grouped into sets of

natural classes, but are defined by loss, or not, of awareness, and the presence of

clinical features depending upon origin and spread (Berg et al., 2010).

It is also vital to underline that, in focal epilepsies, seizures are often a clinical

expression of a disease process; in other words, ongoing structural and functional
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changes following a brain insult or lesion can be expressed clinically as seizures in

susceptible individuals (Walker et al., 2002).

1.1.2.3 Status epilepticus

Status epilepticus is defined by the ILAE in the 1981 ICE as when “a seizure persists

for a sufficient length of time or is repeated frequently enough that recovery between

attacks does not occur”. This official definition however is deemed imprecise as it

lacks a specific duration of seizure activity (Lowenstein et al., 1999). The condition

is thought to be caused by the failure of mechanisms that would normally abort

epileptic seizures (Lowenstein and Alldredge, 1998).

Attempts have been made to quantify the maximum duration of an epileptic

seizure; these efforts were based on the time it takes for the episode to cause neu-

ronal damage in animal models (Lowenstein and Alldredge, 1998; Lowenstein et al.,

1999). However, the studies suggest different values for a putative maximum dura-

tion (status epilepticus inclusion criterion), e.g., 30 (Celesia, 1976; Brodie, 1990),

20 (Bleck, 1991), and 10 minutes (Treiman et al., 1998). Another problem with such

criteria is their incompatibility with clinical practice, in which assistance would be

given much sooner (Lowenstein et al., 1999).

To try to solve this inconsistency Lowenstein et al. (1999), established an oper-

ational definition of status epilepticus “in adults and older children (> 5 years old)”

as “5 minutes of (a) continuous seizures or (b) two or more discrete seizures be-

tween which there is incomplete recovery of consciousness”. A further mechanistic

definition states that “convulsive status epilepticus refers to a condition in which
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there is a failure of the ‘normal’ factors that serve to terminate a typical generalised

tonic-clonic seizure” (Lowenstein et al., 1999).

In a recent effort, an ILAE commission merged the two definitions given by

Lowenstein et al. (1999). The new definition says “status epilepticus is a condition

resulting either from the failure of the mechanisms responsible for seizure termi-

nation or from the initiation of mechanisms which lead to abnormally prolonged

seizures (after time point t1). It is a condition that can have long-term consequences

(after time point t2), including neuronal death, neuronal injury, and alteration of

neuronal networks, depending on the type and duration of seizures” (Trinka et al.,

2015). The values of t1 and t2 were defined as 5 and 30 minutes for tonic-clonic sta-

tus epilepticus, 10 and > 60 minutes for focal status epilepticus with impaired con-

sciousness, and 10-15 minutes, and unknown for absence status epilepticus (Trinka

et al., 2015).

Status epilepticus is an extremely serious and life-threatening condition

(Brodie, 1990) that brings serious risks to the health of the patient, such as per-

manent brain damage from hyperpyrexia, circulatory collapse, and/or excitotoxic

neuronal damage (Greenberg et al., 2012).

1.1.3 Aetiologies

Epilepsy is a condition with multiple potential causes. The ILAE 2010 terminology

revision defined three potential types of cause (aetiology) for epileptic syndromes:

genetic, structural/metabolic, and unknown cause (Berg et al., 2010).

Genetic epilepsies are defined as “the direct result of a known or presumed
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genetic defect(s) in which seizures are the core symptom of the disorder”. The

diagnosis of this subtype of epilepsy must come from a specific genetic test (Berg

et al., 2010).

Structural/metabolic epilepsies are caused by “distinct other structural or

metabolic condition or disease”, such as lesions caused by stroke, trauma, and in-

fections. These conditions may have a genetic cause, such as some malformations,

but the separate disorder causes the epilepsy as opposed to a genetic aetiology (Berg

et al., 2010).

Unknown epilepsies include all the other cases that are yet to have an aetiology

found/confirmed. In the ILAE commission’s words “the nature of the underlying

cause is as yet unknown” (Berg et al., 2010).

Epileptogenesis and the epilepsies have numerous aetiologies and it seems un-

likely that there exists a universal mechanism underlying its development. Even the

epilepsies in which a causative gene is identified, environmental variables seem to

be important for the development of epilepsy (Walker et al., 2002).

1.1.4 Epileptogenesis

Epileptogenesis refers to the process of the development of epilepsy that leads to

the occurrence of spontaneous seizures. It consists of a phenomenon in which the

brain undergoes molecular and structural changes after an insult that eventually

lead to the occurrence of spontaneous seizures (Pitkänen et al., 2007; Goldberg and

Coulter, 2013; Williams et al., 2007). The period between the brain insult and the

onset of the first spontaneous seizure — chronic epilepsy — is termed the latent
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period (Hellier et al., 1998; Williams et al., 2007).

The definition of latent period brings some challenges to clinical practice. For

an accurate evaluation of such period, in humans, both the time of the brain in-

jury and first seizure must be correctly defined. However, these two are not always

clearly marked. This is even more challenging when it comes to the first seizure

as it might not be recognised by the carer or occur during sleep (Williams et al.,

2007). The average time for epileptogenesis in humans is 7.5 years (French et al.,

1993). Common factors for epileptogenesis in humans include traumatic brain in-

jury (TBI), stroke, and cerebral infections (Pitkänen et al., 2007).

In animal models, epileptogenesis shows latent periods of several days to

months (Williams et al., 2007). This period has, however, shown dependence on

the animal model and the severity of the brain injury (Williams et al., 2007).

There is evidence shown by some studies that epilepsy worsens in time; how-

ever, some do not show very clear signs of change in the frequency or duration of

seizures (French et al., 1993; Bertram and Cornett, 1993, 1994; Hellier et al., 1998;

Williams et al., 2007; Mazarati et al., 2002). In the latter case, the latent period is a

phase which includes all the molecular and structural changes that facilitate epilep-

tic seizures and the dynamics of the disease would be described by two discrete

states: without and with seizures. The former scenario would still feature changes

after the first epileptic seizures; the frequency of these would converge to a plateau

at some point (Williams et al., 2007).

Knowledge of epileptogenesis and epileptic seizures dynamics can provide in-

sights for clinical practice and enable the discovery and creation of novel treatments,
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including anti-epileptic drugs and surgery.

1.1.5 Treatment

1.1.5.1 Current treatment approaches

The two main current treatment options for epilepsy are the use of medication, and

in some cases, a resective surgical procedure. Seizure control is achieved in two-

thirds of patients with focal epilepsy through the use of antiepileptic drugs (AEDs)

(Mormann et al., 2007).

AEDs protect against seizures by acting on, and affecting, the function of a

variety of cellular targets, suppressing the abnormal hypersynchronous activity in

brain circuits (Rogawski and Cavazos, 2015). However, for a significant proportion

of epilepsy patients (∼ 30%), these drugs are not effective (Mormann et al., 2007).

In cases in which there is effective control and reduction of the ictal episodes,

treatment may be limited by adverse effects. Even when successful, long-term treat-

ment with AEDs can cause several unwanted effects, such as cognitive and other

neurological dysfunction (Elger, 2001).

The epilepsies that cannot be controlled by medication are termed “drug resis-

tant” and are defined, by the ILAE, as a condition that features “a failure of adequate

trials of two tolerated and appropriately chosen and used AED schedules (whether

as monotherapies or in combination) to achieve sustainable seizure freedom” (Kwan

et al., 2010).

In societies with advanced health care systems, seizure control can be achieved

in drug resistant cases by a resective surgical procedure (Mormann et al., 2007).
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Surgical therapy is based on the principle of removing and/or disconnecting a crit-

ical mass of the epileptogenic network. However, the long-term seizure outcome

tends to change over time and the likelihood of success of the surgical procedure

seems to be inversely related to the complexity of the epileptogenic network (Wiebe

and Jette, 2012).

In a postsurgical outcome study of 615 patients, 52% remained seizure free at

5 years after the surgery, and 47% at 10 years after the procedure. Surgery can also

result in functional deficit and is not without risk, including death (de Tisi et al.,

2011).

1.1.5.2 New therapeutic approaches

The ability to identify earlier seizure markers could lead to new therapeutic method-

ologies, and improve current techniques, e.g. targeted AED administration and/or

surgical procedures through improved localisation based on the spread seizure pat-

terns knowledge, thereby providing a more effective treatment option for those pa-

tients who do not attain sustained seizure freedom.

Also, the treatment concepts could move from a preventive strategy towards

an on-demand therapy by the delivery of anticonvulsants substances or by electrical

stimulation of the brain prior to the seizure onset, that would depend only on the

correct characterisation, and detection or prediction of a possible ictal state (Mor-

mann et al., 2007).
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1.2 On fractals

1.2.1 Beyond Euclid: fractals

Geometry is the branch of mathematics dealing with the properties of figures in

space. Euclid compiled knowledge on geometry available in 300 BC, which was

subsequently called Euclidian geometry. The figures of such geometry are con-

structed from various elements such as points, lines, planes, curves and surfaces.

Euclid also defined axioms and relationships between these elements (Wolfe, 2012).

Euclidean geometry, with its axioms, is unable to capture and describe some

naturally occurring shapes (e.g. shapes of clouds, galaxies, mountains, leaves, or

neurons). The French mathematician Benoit Mandelbrot describes such natural pat-

terns as “fragmented and irregular”, emphasising the discrepancies with Euclids fig-

ures (Mandelbrot, 1983). This led him to conceive the concept of fractal geometry,

enabling the description of objects with much higher complexity that transcends

traditional geometric shapes (Mandelbrot, 1983).

1.2.2 What is a fractal?

The term fractal was coined by Mandelbrot (1983), from the Latin adjective frac-

tus. The verb frangere means, in Latin, to break, to create irregular fragments.

So, a fractal would be a broken and irregular object. A fractal is a shape that is

“self-similar” or “scale-invariant” and has a Hausdorff-Besicovitch dimension, or

simply Hausdorff dimension, that exceeds the topological dimension (Feder, 1988).

If the object has these characteristics, the Hausdorff dimension is also called fractal

dimension (Mandelbrot, 1983).
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The topological dimension corresponds to the amount of information needed

to localise a coordinate in an object, e.g. in a line only one index is required to

differentiate a point from any other possible points. It can also be defined based

on the dimension of the object needed to split the initial figure in two pieces; this

must have a dimension n− 1, where n is the topological dimension of the figure,

e.g. a point (conventionally treated as a zero-dimensional element) can split a line

(topological dimension = 1) in two pieces (Mandelbrot, 1983; Feder, 1988).

Scale invariance is the property of an object to retain its features when the scale

changes by a fixed factor. Such a property is possessed by several objects in nature,

such as the 1/ f noise (Bak et al., 1987). For fractal objects, scale invariance can

be considered as the property of being made of parts similar to the whole object

(Feder, 1988). Examples of fractal objects can be seen in figure 1.2.

1.2.3 Hausdorff dimension

The Hausdorff dimension quantifies the way in which an object occupies the space

in which it is immersed and can have a fractional value (Feder, 1988). The length

L of a straight line can be measured by line segments of size δ . The number of

elements used, N(δ ), will give the value of the line’s size according to the equation:

L = N(δ )δ (1.1)

The same concept can be extended to the measure of areas and volumes. In

this case small squares of area δ 2 and cubes of volume δ 3 are used, respectively,

according to the equations:
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Figure 1.2: Examples of fractal objects. A) Sierpiński triangle (Hausdorff dimension
D≈ 1.585 (Falconer, 2003)). B) Mandelbrot set (boundary D = 2 (Shishikura,
1998)). C) Koch curve (D≈ 1.263 (Feder, 1988)). The Haudorff dimension is
described in section 1.2.3.

A = N(δ )δ 2 (1.2)

V = N(δ )δ 3 (1.3)

These three equations allow us to define a general rule to represent a measure

Md of a generic object, in which the d exponent represents the dimension of the

measurement object (line segments d = 1, squares d = 2, cubes d = 3, etc.) (Feder,

1988):
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Md = lim
δ→0

N(δ )δ d (1.4)

The number of elements used to cover the object can be generalised in the

following way, where the K represents a proportionality constant and D is a scaling

exponent:

N(δ ) = Kδ
−D (1.5)

A final expression for measure can be obtained by replacing N(δ ) with the

previous definition, giving:

Md = lim
δ→0

Kδ
(d−D) (1.6)

This final expression presents, varying d, a transition point when d = D in a

similar way to the formal definition of the Hausdorff dimension (dimHF). This

transition point also represents the Hausdorff dimension value, i.e. the value for the

dimension of the measurement object in which Md is different from 0 and ∞.

Md(δ ) =


0, d > D

∞, d < D

(1.7)

For a fractal object, the Hausdorff dimension D can be determined by the ex-

pression for Md by counting the number of segments needed to cover a figure and

is called the box counting dimension (Feder, 1988).
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A formal definition of the Hausdorff dimension is given by Falconer (2003) and

is based on topology and set theory. Taking U as a generic, non-empty, subset of

n-dimensional Rn space, its diameter can be defined as |U |= sup{|x−y| : x,y∈U}.

If {Ui} is a countable collection of sets of diameter δ that cover F (a subset of Rn),

it is called a δ -cover of F :

F ⊂
∞⋃

i=1

Ui with 0≤ |Ui| ≤ δ (1.8)

Supposing F is a subset of Rn and S is a non-negative number, for any δ > 0,

it is possible to define:

H S
δ
(F) = inf

{
∞

∑
i=1
|Ui|s : {Ui} is a δ -cover of F

}
(1.9)

H S(F) = lim
δ→0

H S
δ
(F) (1.10)

The quantity H S(F) is called the S-dimensional Hausdorff measure, in which

S represents the dimension of the measurement object and will impact on the ob-

tained estimate (Falconer, 2003). For any set F ⊂ Rn and δ < 1, it is possible to

assert that:

∑
i
|Ui|t ≤∑

i
|Ui|t
|Ui|S

|Ui|S
(1.11)

∑
i
|Ui|t ≤∑

i
|Ui|t−S|Ui|S (1.12)
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∑
i
|Ui|t ≤ δ

t−S
∑

i
|Ui|S (1.13)

And taking the infimum

inf

{
∑

i
|Ui|t ≤ δ

t−S
∑

i
|Ui|S

}
(1.14)

H t
δ
(F)≤ δ

t−SH S
δ
(F) (1.15)

Taking the limit when δ → 0, it is possible to conclude that, if H S(F) < ∞,

H t(F) = 0 for t > S. There is a critical limit for S (Sc) in which H S(F) changes

from ∞ to 0 as S varies. To this value is given the name of the Hausdorff dimension,

or the Hausdorff-Besicovitch dimension, Sc = dimH F . As shown in figure 1.3.

1.2.4 Estimating the Hausdorff dimension: the box counting

method

The general equation for the number of measurement objects used can be trans-

formed such that it becomes a linear relationship, with D being the slope of the

linear function:

logN(δ ) = logKδ
−D (1.16)

logN(δ ) =−D logδ + logK (1.17)
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Figure 1.3: Transition on the value of the Hausdorff measure H S(F) as the measurement
object’s dimension S changes. The plot exhibits a transition in which the value
of the Hausdorff measure goes from ∞ to 0 for Sc = dimH F .

The box-counting method was devised from this expression and consists of a

box with equal dimensions, incorporating the figure. This box is further split into

smaller ones keeping equal side lengths. The number of boxes occupied by parts of

the figure is then counted and registered. The splitting procedure is repeated for n

iterations as shown in figure 1.4.

By counting the number of boxes N(δ ) needed to cover the object, and plotting

it against the size of the boxes (δ ) in log space, the slope of the plot indicates the

Hausdorff dimension.
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Figure 1.4: Illustration of the box counting procedure used for estimating the Hausdorff
dimension of an object. The number of occupied boxes should present a power
law in relation to the boxes’ side length. The exponent of this function cor-
responds to the Hausdorff dimension. A fractal’s dimension is equal to its
Hausdorff dimension.

1.2.5 Fractals and time series

Many time series obtained from natural phenomena present a scale-invariance be-

haviour, e.g. rainfall (Andrade et al., 1998) and earthquake (Sornette and Sornette,

1989) recordings. However this invariance is not isotropic at times, i.e. the scale

factor changes in different directions, a phenomenon called self-affine structure

(Feder, 1988).

While trying to devise the ideal water reservoir, i.e. that should never empty or

overflow, in the middle of the twentieth century, the American engineer Harold Ed-

win Hurst developed a method to estimate scaling properties called rescaled range

analysis (R/S analysis) (Feder, 1988; Mandelbrot and Wallis, 1968). In brief, if a

water reservoir receives an amount of water ξ (t) in a time period τ , the mean influx

can be calculated by the expression:

< ξ >τ=
1
τ

τ

∑
t=1

ξ (t) (1.18)



1.2. On fractals 40

For an ideal reservoir the amount of water that leaves should be the same as

the influx. At any time, t, the accumulated outflow can be expressed as:

X(t,τ) =
t

∑
u=1
{ξ (u)−< ξ >τ} (1.19)

Hurst defined the quantity R (from range) as the difference between the maxi-

mum and the minimum of the accumulated outflow:

R(τ) = max((X(t,τ)))−min((X(t,τ))) (1.20)

The standard deviation of the accumulated outflow can be defined as:

S =

(
1
τ

t

∑
u=1
{ξ (u)−< ξ >τ}2

) 1
2

(1.21)

Studying a range of natural phenomena, Hurst found the following empirical

relationship between the R function and the standard deviation (Feder, 1988)

R
S
=

(
τ

2

)H

(1.22)

Where H is the Hurst exponent, which is characteristic of the phenomenon that

generated the time series X . The Hurst exponent is related to the fractal dimension

of the time series by the following expression (Feder, 1988):

D = 2−H (1.23)

H can vary between 0 and 1. Time series with H < 0.5 present an anti-
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persistent behaviour, while time series with H > 0.5 exhibit a persistent pattern,

and H = 0.5 corresponds to a random process (Feder, 1988). Figure 1.5 shows

examples of time series with different values of H (Feder, 1988).

Persistent time series present positive correlation between its elements, as anti-

persistent present an opposite behaviour, i.e. increases are followed by decreases

and vice versa. Random processes have no correlation between their elements and

are known as processes without memory (Feder, 1988).
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Figure 1.5: Samples of simulated random walks with different values of the Hurst exponent
(H). From top to bottom: persistent behaviour (H = 0.9 — D = 1.1), random
(H = 0.5 — D = 1.5) and anti-persistent (H = 0.1 — D = 1.9).

Hurst reported that many natural phenomena feature an exponent H > 0.5.

These values would indicate that natural phenomena follow a persistent behaviour

(with memory). For example, in a process with memory, a river discharge would be
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affected not only by recent rain levels but also by previous records. Long drought

periods would cause the drainage basin to dry and in subsequent periods of higher

precipitation would have part of the water absorbed by the same drainage basin.

Whereas, in high precipitation years, such a drainage basin would be saturated and

not capable of absorbing the same amount of water — resulting in bigger river

discharges even for lower precipitations (Feder, 1988).

1.2.6 Multifractals

While fractal analyses brought some insights about the nature of certain phenom-

ena, nonetheless, some structures seem to require more than one-dimension D to be

adequately characterised. For example, in time series, the value of D can change as

a function of time. Objects that require an infinite number of indices to be properly

characterised are called multifractals (Stanley et al., 1999), e.g. several phenomena

such as turbulence (Meneveau and Sreenivasan, 1987), soil composition (Miranda

et al., 2006) and human activity (França et al., 2019).

The Lipschitz-Holder exponent (α) quantifies the singularities of a structure

whose Hausdorff dimension is described by the function, f (α), the combination of

these two indices result in a graph called the multifractal spectrum (Chhabra and

Jensen, 1989; Feder, 1988).

In order to give an intuition of the multifractal spectrum (in a similar way to

the physical meaning of the fractal dimension), figure 1.6 shows examples for the

three time series, namely a simulated multifractal time series, a surrogate time series

(shuffled version of the original multifractal time series), and a generated random
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time series.
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Figure 1.6: Multifractal spectra for different types of simulated time series. A) Spec-
tra obtained for different types of time series. B) Series corresponding to
each spectrum. C) Histogram of each time series. The spectra have a simi-
lar parabolic shape. The surrogate data and the random series (Gaussian and
Poisson) present a reduced spectral width — with the Poisson series showing
a wider spectrum than the Gaussian signal. The point labelled as Monofrac-
tal series is an idealisation. In a perfect monofractal time series, the spectrum
consists of a single point.

Given its parabolic shape the spectrum can be characterised by the difference

between its maximum and minimum value f (α) which corresponds to α(q = 0)

or α0, and the parabola width, given by the difference between αq− and αq+, cor-

responding, respectively, to the lowest (negative) and highest (positive) values of

q; see figure 1.7 (Miranda et al., 2006). ∆ f expresses the diversity of Hausdorff

dimensions of the different singularities while ∆α represents the object’s diversity

of singularities; the quantities α0−αq− and αq+−α0 are also used, providing spe-

cific information about small or large (respectively) singularities and can be used to

characterise the spectrum’s symmetry.
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Figure 1.7: Multifractal spectrum parabola characteristics. ∆α gives a measure of diversity
of singularities in the profile, as ∆ f represents the different Hausdorff dimen-
sions of each singularity on the profile. The two half widths (α0−αq− and
αq+−α0) provide information about the diversity of singularities on each pos-
itive and negative q values.

1.2.6.1 Multifractal theory: The q factor and generalised dimen-

sions

The scale invariance analysis in a monofractal object is applied only to the second

statistical moment. This evaluation can be expanded to the qth order moment. If

the scaling properties change with q, the object is multifractal (Biswas et al., 2012).

For a generic timeseries, the mass exponent τ(q) can be defined as:

< [∆Z(x)]q >∝ Xτ(q) (1.24)
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∆Z(x) represents a generic measure of the time series and x the length of the

analysed window. If the graph of τ(q) versus q presents a single slope (straight line),

the series can be described with only one index and consequently is a monofractal

(Biswas et al., 2012). An example can be seen in figure 1.8.

τ(
q
)

q

Monofractal

Multifractal

Figure 1.8: Mass exponent graph, or τ(q) curve, of a monofractal and a multifractal object.
As it can be seen, the monofractal curve is a straight line (only one slope value
on the whole length).

It is possible to define a generalised dimension (a generalisation of the fractal

dimension), or fractal dimensions’ spectrum Dq, based on the q parameter (Feder,

1988; Chhabra and Jensen, 1989) as follows:

Dq =
1

(q−1)
lim
L→0

log∑i Pq
i (L)

logL
(1.25)



1.2. On fractals 46

Pi represents the probability (integrated measure) of finding a point in a box of

size L (Chhabra and Jensen, 1989). The equation can be rewritten as:

Dq =
1

(q−1)
τ(q) (1.26)

The mass exponent τ(q) can then be defined as:

τ(q) = lim
L→0

log∑i Pq
i (L)

logL
(1.27)

According to Chhabra and Jensen (1989), the index q can be conceived as a mi-

croscope, probing the object’s singularities at various scales (Chhabra and Jensen,

1989). For q > 0, the more singular regions are amplified and therefore contribute

to a greater degree to Dq, by contrast, for q < 0 the less singular regions are accen-

tuated. Figure 1.9 presents a generalised dimensions’ spectrum for a time series; it

presents two regions of convergence and an inflexion point.

1.2.6.2 Multifractal theory: The Lipschitz-Hölder exponent and the

multifractal spectrum

Another approach to multifractal analysis consists of the analysis of the multifractal

spectrum of the object. The Lipschitz-Hölder exponent, α , can be defined as:

Pi(L)∼ Lα (1.28)

A normalised measures’ family can be built up with the parameter q, in this

case, µi(q,L) representing the probabilities in boxes of size L, defined as:
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Figure 1.9: Example of generalised dimensions’ spectrum for a time series. In this case, q
was chosen to vary from -50 to 50.

µi(q,L) =
Pi(L)q

∑ j Pj(L)q (1.29)

Pi(L) represents the integrative measure cited previously in equation 1.24 and

consists of the normalised sum of the time series values in a window. From the

normalised measures µi(q,L), Chhabra and Jensen (1989) derived the multifractal

spectrum that can be obtained from:

α(q) = lim
L→0

∑i µi(q,L) logPi(L)
logL

(1.30)

and
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f (α) = lim
L→0

∑i µi(q,L) log µi(q,L)
logL

(1.31)

1.2.6.3 Multifractal theory: The relations between generalised di-

mensions and the multifractal spectrum

The variables f (α), τ(q), α and q are thermodynamically conjugated, which means

that they can be related by a Legendre transform (Gu and Zhou, 2010). This way, it

is possible to rewrite them using the following expressions:

α(q) =
dτ(q)

dq
(1.32)

f (q) = qα− τ(q) (1.33)

1.3 On fractals and epilepsy

The fractals framework has been widely applied in different studies of human brain

dynamics in health (Pereda et al., 1998; Linkenkaer-Hansen et al., 2001; Papo et al.,

2017; Gong et al., 2003) and disease (Gómez et al., 2009; Zappasodi et al., 2014;

Esteller et al., 1999). These efforts provided some knowledge on critical behaviour

of the brain and putative changes provoked by disease processes in conditions such

as Alzheimer’s disease (Gómez et al., 2009), stroke (Zappasodi et al., 2014), and

epilepsy (Esteller et al., 1999).

In refractory mesial temporal lobe epilepsy cases, fractal analysis of electroen-



1.3. On fractals and epilepsy 49

cephalography signals has shown changes at seizure onset. These signals were ob-

tained from intracranial depth and strip electrodes in patients undergoing epilepsy

surgery evaluation. In these signals the fractal dimension increases at the onset of

the epileptic seizures suggesting more complex dynamics during the ictal phase —

hypothesised to be connected to the rhythms that generate the epileptic seizure (Es-

teller et al., 1999, 1995). Another study applied fractal metrics to EEG recordings

from rats and has shown three different patterns for seizure onset (Li et al., 2005).

Fractal analysis has also been employed in studies on seizure detection; these

studies hypothesised that if fractal metrics are able to show differences in time se-

ries, maybe they could also differ between interictal and ictal segments (Polychron-

aki et al., 2010; Päivinen et al., 2005; Yuan et al., 2012). Another study has shown

changes in fractal properties of local field potential signals in rats after a brain injury

(Spasic et al., 2005).

Polychronaki et al. (2010), Päivinen et al. (2005), and Yuan et al. (2012) em-

ployed fractal methods as a feature of the EEG signals containing ictal activity.

Polychronaki et al. (2010) evaluated scalp EEG signals from 8 patients with a total

of 55 seizures. These signals were registered at 400 Hz. Katz’s and Higuchi (de-

scribed in details in section 3.2.1.1) methods were used as features for a k-nearest

neighbours (k-NN) algorithm as a classifier. The authors report a sensitivity of

100% and a False Prediction Rate (FPR) of 0.42h−1. Yuan et al. (2012) evaluated

data from 21 patients recorded at 256 Hz — with a total of 65 epileptic seizures.

The authors used fractal properties of the intracranial EEG signals as features of a

single-layer neural network classifier. The studies reported a sensitivity of 93.85%
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and a FPR of 0.35h−1. Päivinen et al. (2005) applied the Higuchi method to signals

obtained with implanted electrodes in rats. The data was recorded at 256 Hz and

the fractal features of the signal were evaluated with discriminant analysis.

Further evidence shows that brain dynamics are in fact multifractal (Ihlen and

Vereijken, 2010; Ciuciu, 2012; Zhang et al., 2015; Suckling et al., 2008; Zorick and

Mandelkern, 2013; Papo et al., 2017). A breakdown of the monofractal power-law

pattern in brain dynamics suggests that additional statistical moments, not reflected

by a single statistical moment such as in monofractal characterisation, may be nec-

essary to model brain signals (Fraiman and Chialvo, 2012). Moreover, it is known

that interacting processes with different fundamental time scales, such as those ob-

served in the brain, can generate multifractal patterns (Argoul et al., 1989; Suckling

et al., 2008).

The multifractal formalism was previously applied to a seizure detection study

(Zhang et al., 2015). The authors reported a significant reduction in the multifractal

spectral width for the ictal segments, as well as the capability of classifying different

segments as ictal or interictal based on the multifractal spectra geometrical measures

and employing a Support Vector Machine classifier. Nevertheless, the authors did

not analyse in depth the variation of the multifractal indices as a seizure emerges or

the dependency of such markers in relation to clinical features, such as the type of

epilepsy, and the study was limited to introduce the classifier.

Considering the information about the brain function provided by multifrac-

tal analysis in previous studies (Fraiman and Chialvo, 2012; Argoul et al., 1989;

Suckling et al., 2008), it is reasonable to assume that such methodologies could
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yield relevant information to the study of ictal activity — as it has been suggested

by (Zhang et al., 2015). There is, however, evidence that some non-linear metrics

would not provide any additional information from EEG recordings when compared

to linear metrics, e.g. variance (McSharry et al., 2003). This has not been evalu-

ated for multifractal approaches thus far; however these metrics are more likely not

to present such issues due to the multiple statistical moments employed during the

derivations of the multifractal spectra. This topic is discussed in detail in chapter 3.

This thesis focusses on the development of an approach to the study of mul-

tifractal properties of EEG signals recorded from individuals with epilepsy. The

analyses shown in the subsequent chapters evaluate the time-varying properties of

the brain’s critical dynamics. Differently from the work developed by Zhang et al.

(2015), this thesis does not aim to present a classifier that exploits multifractal prop-

erties of EEG signals for seizure detection or prediction algorithms. It is, nonethe-

less, a study on the temporal variation of such properties and how these features can

be used to understand epileptic seizures and even classify groups of similar epileptic

discharges.



Chapter 2

Aims and hypotheses

The overall aim of this work was to use multifractal analysis to develop a framework

that could be widely applied to study brain electrophysiological signals, especially

in patients with intractable focal epilepsies. Within this aim, specific hypotheses

were tested.

There is considerable evidence that many advanced methods for studying the

EEG during epileptic seizures are biased by changes in the variance of the recording,

common to many seizures, leading to the following hypothesis:

• Scaling analysis methods, such as multifractal spectrum estimation ap-

proaches are affected by changes in the standard deviation of the time series,

which can bias seizure analysis applications (Chapter 3).

Recordings for pre-surgical planning in refractory epilepsies feature durations

of days — or weeks — including sleep. Moreover, putative closed-loop devices for

controlling seizures should also consider the sleep patterns of the patient. Hence, it

is important to evaluate how the different sleep stages would impact scaling proper-

ties of the recording. Therefore, the following hypothesis was tested:
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• Sleep phases impact multifractal estimation in human long-term electro-

graphical recordings for epilepsy surgery planning (Chapter 4).

Although there are many studies on methods to detect and/or predict seizures,

it is largely unknown how sampling frequency can affect such methods.

• Focal epileptic seizure detection exhibits optimal results at specific sampling

frequencies (Chapter 5).

To date, there is no objective electrographic classification scheme for focal

epileptic seizures. A classification of this type of epileptic seizures could not only

provide insights into the onset and dynamics of such events but also suggest optimal

therapeutic interventions. Therefore, the following hypothesis was tested:

• Focal epileptic seizures can be classified into families using multifractal anal-

ysis (Chapter 6).

Lastly, following a brain insult (e.g. prolonged seizure, traumatic brain in-

jury, stroke), there are changes in brain circuitry that result in spontaneous epileptic

seizures (this process is termed epileptogenesis).

• Changes that occur during epileptogenesis can be detected by the multifractal

analysis approach. An adequate application of multifractal analysis can iden-

tify animals that could develop spontaneous seizures after an initial trauma

based on the analysis of local field potential signals. (Chapter 7)

The framework presented in this thesis should be generic and allow different

applications. It should also provide insights into the genesis of brain signals and

how epileptic seizures — and their emergence — change these recordings.



Chapter 3

An unbiased multifractal evaluation

approach for use as a signal feature

for machine learning in clinical

applications

3.1 Introduction

Drug-resistant epilepsies impose a significant burden to patients and healthcare sys-

tems around the world (Carney et al., 2011). Over the last decades, researchers have

sought alternative approaches. Many of these, such as response-mode stimulation,

depend upon seizure detection and seizure prediction (Mormann et al., 2007).

As for any type of forecasting, the power of predicting seizures relies on the

existence of early, preceding signs of the ictal state. The existence and identification

of a pre-ictal state is a prerequisite fore response-mode interventions that prevent
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seizure occurrence.

Any pre-ictal state should, a priori, be characterised as a gradual change, or

cascade of changes, in EEG dynamics (Mormann et al., 2007). These changes

should therefore be detected by an adequate analytical methodology. Once pre-

ictal features have been demonstrated to exist, it would hopefully be possible to

devise a therapeutic intervention based on the pre-ictal signal.

Seizure detection would, in contrast, be defined by the capacity of inferring

the occurrence of an epileptic seizure at the ictal onset. The prediction differs from

detection, as forecasting, intrinsically, suggests some prior information on what is

about to emerge, and detection is status reporting of the current behaviour. Predic-

tion can thus be seen as a generalised case, in which, when the warning time prior

to the seizure is zero or less, it becomes a detection approach. For prediction stud-

ies, the horizon, i.e. time interval between the warning and the ictal onset, must be

greater than zero and should provide an interval that makes a possible intervention

feasible (Snyder et al., 2008).

In the literature, this horizon is presented in three distinct ways: a set amount of

time, which should be satisfied in order to consider a warning as a correct prediction

(Shufang Li et al., 2013; Eftekhar et al., 2014; Esteller et al., 1995; Gadhoumi et al.,

2013); a statistical value estimated from the mean of the interval times for a certain

approach (Haddad et al., 2014; Navarro et al., 2005; Zandi et al., 2011, 2013); or a

range of values presented by the apparatus (Bedeeuzzaman et al., 2013; Gadhoumi

et al., 2015; Mormann et al., 2003).

Nonetheless, the literature on seizure prediction and detection is extensive and
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a more detailed description of the field is beyond the scope of this thesis. It is impor-

tant to emphasise, though, the relevance of non-linear metrics in the development of

seizure prediction approaches. (Iasemidis et al., 1990) has proposed the existence

of a pre-ictal transition, based on the largest Lyapunov exponent analysis of EEG

signal of patients with epilepsy. These signals exhibited a reduced exponent for the

recordings prior to the seizures. The reduced value for the exponent suggests a less

chaotic process, and, consequently, characterises a seizure onset as a transition to a

more ordered state (Iasemidis et al., 1990).

Another study revealed long-term trends in epileptic seizure emergence and a

non-linear transition prior to the ictal onset in patients with mesial temporal lobe

epilepsy and an identified focus (Martinerie et al., 1998). Such phenomenon —

the change in non-linear measures prior to seizure-onset — was also observed later

with a Kolmogorov entropy analysis (van Drongelen et al., 2003).

As was also observed by Iasemidis et al. (1990), the behaviour of the Lyapunov

exponent over the different ictal phases, including the possible pre-ictal phase, in-

dicates that the system (epileptic brain) enters a less chaotic state after several tran-

sient decreases in chaoticity. The existence of such non-linear features preceding

the seizure supports the idea of predictability.

A major concern, however, is that complex methods of analysis may not offer

a significant advance over simpler, already established methods — this is crucial

for extracting putative features in machine learning applications, e.g. seizure pre-

diction and/or detection (Baldassano et al., 2017; Brinkmann et al., 2016; Freestone

et al., 2015; Karoly et al., 2017; Mormann et al., 2007; Kuhlmann et al., 2018a,b;
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Varatharajah et al., 2018). For example, in the analysis of the electroencephalogram

of epileptic seizures, complex non-linear methods were found to actually reproduce

patterns detected by simpler measures such as variance of the signal (McSharry

et al., 2003).

It is therefore essential to understand how these approaches, such as (mono-

and multi-) fractal measures, relate to more traditional markers, and if new features

can be obtained from the signal by applying a mono- or multi- fractal formalism.

This chapter introduces an approach for multifractal assessment of EEG sig-

nals, avoiding bias caused by changes in the variance of the signal. The approach

is evaluated on both real and simulated time series and compared to classic fractal

evaluation methods.

3.2 Methods

This section describes the methods employed in this study. Firstly, the monofrac-

tal and multifractal analysis approaches are introduced. Secondly, two methods to

produce time series featuring scaling properties are introduced, namely fractional

Brownian motion and p-model. The remaining sections describe the proposed ap-

proach to remove bias caused by the variance of the time series and concepts of

feature redundancy and stability of different multifractal analysis methods.

3.2.1 Monofractal methods

Two established monofractal estimation approaches — Higuchi method (Higuchi,

1988) and Detrended Fluctuation Analysis (Peng et al., 1994) — were used. These

methods are widely applied in the literature and aim to capture the features of a time
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series in a single scaling exponent.

Mandelbrot (1983) defined fractals as self-similar structures with fractal di-

mensions (FD) that are between their topological and embedding dimensions T

and E, and an established relationship of FD+H = E, where E = T +1, T = 1 in

the case of a time series, and H is the Hurst exponent. When assuming this self-

similarity, one can measure both FD and H in EEG time series as alternative ways

of estimating the fractal dimension. However, more generally, the fractal dimension

FD and the Hurst exponent H do not necessarily reflect the same property of the

time series (Gneiting and Schlather, 2004). Nevertheless, for this thesis, the two

established methods were applied to estimate FD and H, respectively.

3.2.1.1 The Higuchi method

The Higuchi method measures the fractal dimension FD of a time series. It

consists of constructing series with elements of an original time series and mea-

suring their lengths (Higuchi, 1988). Given a time series with N time points

X(1),X(2), ...,X(N), the equation 3.1 shows a rule for reconstructing smaller time

series with elements of the original recording. The lengths of the time series can

be assessed according to equation 3.2. The brackets bc represent Gauss notation,

i.e. the rounded integer of the division (Higuchi, 1988). The variable d represents a

down-sampling factor of the original time series.

X(m),X(m+d),X(m+2d), ...,X
(

m+

⌊
N−m

d

⌋
d
)

where m = 1,2, ...,d

(3.1)
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Lm(d) =

{
∑
[(N−m)/d]
i=1 |X(m+ id)−X(m+(i−1)d)| N−1

b(N−m)/dcd

}
d

(3.2)

If the average curve length < Lm(d) >m over d sets follows a power law, ac-

cording to equation 3.3, the time series has scaling properties, with a fractal dimen-

sion FDHig.

< L(d)>∝ d−FDHig (3.3)

The routine used in the estimation of Higuchi fractal dimension FD is available

at https://uk.mathworks.com/matlabcentral/fileexchange/

50290-higuchi-and-katz-fractal-dimension-measures.

3.2.1.2 Detrendred Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) method is an alternative approach (Peng

et al., 1994, 1995), which estimates the Hurst exponent H in time series data instead

of the fractal dimension. The method consists of the following steps:

Initially the time series with N time points X(1),X(2), ...,X(N) is integrated

as follows:

y(k) =
k

∑
i=1

(X(i)−〈X〉) (3.4)

Where X(i) represents the ith element of the time series and < X > denotes

the mean over the whole recording. The second step consists of dividing the time

https://uk.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures
https://uk.mathworks.com/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures
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series into Nl windows of length l, then the mean square root of the integrated series

is subtracted from the local trend, in every window (Peng et al., 1995), as shown in

equation 3.5.

F(l) =

√√√√ 1
Nl

Nl

∑
k=1

[y(k)− yl(k)]2 (3.5)

The local trend (yl(k)) is obtained from a linear regression over the time series

in the window, and number Nl represents the total number of windows. In the

following step, equation 3.5 is obtained for several window lengths (l). The relation

between F(l) and l is described by a power law, according to equation 3.6, where

H is the Hurst exponent.

F(l) ∝ lH (3.6)

The code used here is available in the Physionet repository (https://www.

physionet.org/physiotools/dfa/) (Goldberger et al., 2000; Peng et al.,

1995).

3.2.2 Multifractal methods

In this section, three multifractal spectrum estimators are described: Multifractal

Detrended Moving Average (Gu and Zhou, 2010), Multifractal Detrended Fluctu-

ation Analysis (Ihlen and Vereijken, 2010; Ihlen, 2012; Kantelhardt et al., 2002),

and Chhabra-Jensen (Chhabra and Jensen, 1989), as these are the most established

methods used in the literature.

Multifractal properties are represented as spectra, where essentially the fractal

https://www.physionet.org/physiotools/dfa/
https://www.physionet.org/physiotools/dfa/
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scaling properties, or more precisely Hausdorff dimensions (often noted as f (α)),

are measured over a range of different singularities (α). Formally, the singularity

spectrum is a function that describes the Hausdorff dimension of subsets of the time

series X(t) with a specific Hölder exponent, according to:

f (α) = DF{X(ts),H(X(ts)) = α} (3.7)

Essentially, f (α) is the Hausdorff dimension (DF) of the subset (ts) of the time

series X(ts) that has a Hölder exponent α (van den Berg, 1999; Murcio et al., 2015).

To characterise the function, or singularity spectrum f (α), usually, the width

(∆α) and height (∆ f ) — differences of maximum and minimum values of α and

f (α) respectively — of the spectrum are used. ∆α indicates the range of singu-

larities present in a time series; this is also the most commonly used measure of

how multifractal a time series is. The spectrum height ∆ f indicates the range of

Hausdorff dimensions present in the time series. See Fig. 3.1 for an exemplary

singularity spectrum plot.

3.2.2.1 MF-DMA

Multifractal Detrended Moving Average (MF-DMA) is one of the most commonly

used methods for the estimation of multifractal measures. The method of calcula-

tion consists of the following steps (Gu and Zhou, 2010). Given time series X(t)

with time points X(1),X(2), ...,X(N), the cumulative sum time series is obtained:

y(t) =
N

∑
t=1

X(t) (3.8)
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Figure 3.1: Multifractal singularity spectrum, f (α), with a characteristic parabolic shape.
The spectrum width (∆α) and height (∆ f ) measures are indicated by the arrows.

The moving average over time window of length l is then calculated:

ỹ(t) =
1
l

l−1

∑
z=0

y(t− z) (3.9)

A detrended version of the signal is obtained by the subtraction:

ε(i) = y(i)− ỹ(i) (3.10)

The resulting series is then divided in Nl disjoint sets of points of size l and a

root mean-square function is obtained for each epoch ν via:
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Fν(l) =
{

1
l

l

∑
i=1

ε
2
ν(i)
} 1

2

(3.11)

A generalised qth-order overall fluctuation function can be obtained from:

Fq(l) =
{

1
Nl

Nl

∑
ν=1

Fν(l)q
} 1

q

q 6= 0 (3.12)

and

lnF0(l) =
1
Nl

Nl

∑
ν=1

lnFν(l) for q = 0 (3.13)

It is possible to find a power-law relationship between Fq(l) and the window

length, or scale l by:

Fq(l) ∝ lα(q) (3.14)

The multifractal mass exponent introduced in equation 1.24 (Biswas et al.,

2012) can be defined as:

τ(q) = qα(q)−D f (3.15)

where D f is the fractal dimension of the support measure. For a single-channel

time series, D f = 1. The spectrum, f (α), can be obtained with a Legendre trans-

form (Gu and Zhou, 2010).
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α(q) =
dτ(q)

dq
(3.16)

f (q) = qα− τ(q) (3.17)

It is important to note that Legendre transform is known to cause problems in

multifractal spectra derivations if some heterogeneities are present in the signal, as

has been reported elsewhere (Chhabra and Jensen, 1989; Mukli et al., 2015).

3.2.2.2 MF-DFA

The Multifractal Detrended Fluctuation Analysis (MF-DFA) method is essentially

a generalisation of the DFA approach (Ihlen, 2012; Kantelhardt et al., 2002). The

time series is first rebuilt according to eq. 3.18. It is then divided into Nl =
N
l

non-

overlapping epochs ν of length l. The variance of the detrended series l is calculated

as follows:

F2
ν (l) =

1
l

n

∑
k=1

(y((ν−1)l +1)− yv(k))2 (3.18)

where yν represents the fitting in the epoch ν obtained via linear regression.

The overall q-th order fluctuation functions can be obtained as:

Fq(l) =
{

1
Nl

Nl

∑
ν=1

(F2
ν (l))

q
2

} 1
q

(3.19)

A log-log plot of Fq(l) versus l for different values of q should present a linear

curve defined by the power law in equation 3.14. Similarly to the MF-DMA method,
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the multifractal scaling exponent can be defined as in 3.15 and the spectrum f (α)

can be determined in the same way as in the MF-DMA approach.

3.2.2.3 Chhabra-Jensen

Multifractal spectra can be obtained in a more direct way, without the need for the

Legendre transform using the Chhabra-Jensen (CJ) method (Chhabra and Jensen,

1989; França et al., 2019; Murcio et al., 2015; Vidal-Vázquez et al., 2013; Paz Fer-

reiro et al., 2010; Paz-Ferreiro et al., 2010; Miranda et al., 2006; Zeleke and Si,

2006; Vázquez et al., 2008; Xu et al., 2017). Considering a time series as a distribu-

tion over time, the approach consists of calculating a family of generalised measures

by covering the time series with windows. These are probabilistic measures with

an emphasis factor q that accentuates different singularities depending on its value.

More singular regions are emphasised by q > 1 whereas less singular regions will

have a higher weight with q < 1 (Chhabra and Jensen, 1989). First, a family of

generalised measures can be defined:

µi(q, l) =
Pi(l)q

∑ j Pj(l)q (3.20)

where Pi(l) represents the cumulative probability of a window i. l corresponds

to the size of the window in which the generalised measures are obtained. The

window epochs are indexed by the variables i and j. Then the multifractal spectra

can be obtained directly from:

α(q) = lim
l→0

∑i µi(q, l) logPi(l)
log l

(3.21)
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and

f (q) = lim
l→0

∑i µi(q, l) log µi(q, l)
log l

(3.22)

A numerical approximation to the equations above is provided by the measures

Mα and M f functions in eq. 3.23 and 3.24.

Mα = ∑
i

µi(q, l) logPi(l) (3.23)

M f = ∑
i

µi(q, l) log µi(q, l) (3.24)

α and f (q) can then be obtained as the slopes by regressing these two measures

against the scales l: Mα ∼ l and M f ∼ l.

The algorithmic summary of the Chhabra-Jensen method consists of the fol-

lowing steps:

• The algorithm has as input the time series, a range of q values to which the

spectrum will be evaluated, and epoch length l that vary in a dyadic scale.

• The time series is divided into non-overlapping epochs of length l and the

generalised measures are estimated according to equation 3.20.

• The measures Mα and M f are obtained from the generalised measures.

• α and f (q) in eq. 3.21 and 3.22, respectively, are obtained with a linear

regression procedure: log(Mα) is regressed against log(l) and log(M f ) is

regressed against log(l), they give α and f respectively as the slopes.
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Input:
  Timeseries (vector)
  qValues (vector index i)
  scales (vector index j)

Example:
  [1 2 1 5 3 2 9 1]
  [-3 -2 -1 0 1 2 3]
  [1 2 3]

Loop through
i, j until all qValues and scales 

For each qValue(i) and scales(j)
calculate matricies

Ma(i,j), Mf(i,j), Md(i,j)
Algorithm shown separately

Output:
α, f

Example:
α = [1.49 1.45 1.35 1.14 0.86 0.65 0.56]
f =[0.66 0.77 0.91 1  0.86 0.56 0.33]
D = [1.28 1.22 1.13 1  0.86 0.74 0.67]D= d

1-qValues

muScales(j) = -log10(2scales(j))

Regress the rows of Ma(i,:), Mf(i,:), Md(i,:) against 
muScales and obtain slopes α(i), f(i), D(i) for each row

0.5 1 1.5
α

0.2

0.4

0.6

0.8

1

f(α
)

%for the i-th qValue and j-th scale: 

window=2^scales(j);
q=qValues(i);
            
%break the time series into windows & sum
TimeseriesReshaped=reshape(Timeseries,[],window);
TimeseriesSummed=sum(Timeseries);
            
%calculate p
ps=sum(TimeseriesReshaped);
p=ps./TimeseriesSummed;
            
Nor=sum(p.^q);
mu=(p.^q)/Nor;

Md(i,j)=log10(Nor);
Ma(i,j)=sum(mu.*log10(p));
Mf(i,j)=sum(mu.*log10(mu));

Example for i=1, j=1:

window=2^1;
q=-3;
            

[1 2 1 5;                       3 2 9 1]’
1+2+1+5+3+2+9+1 = 24
            

[1+2+1+5=9          3+2+9+1=15]
[9/24=0.375           15/24=0.625]
            
0.375^-3+0.625^-3 = 23.059
[0.375^-3/23.059 = 0.8224  
 0.625^-3/23.059 = 0.1776]

log10(23.059) = 1.3628;
-0.3503 +  -0.0363 = -0.3866
-0.0698 +  -0.1333 = -0.2032

-3 -2 -1 0 1 2 3
q

0.6

0.8

1

1.2

1.4

D

Chhabra Jensen Algorithm for estimating multifractal spectra

Figure 3.2: Flow-chart diagram of the algorithm for Chhabra-Jensen approach.

• A rejection criterion is also used, where all q exponent values with R2 < 0.9

in the linear regression are not considered to avoid overfitting.

The code used in this study to calculate the multifractal spectrum is available

at: https://github.com/lucasfr/chhabra-jensen. A flow-chart di-

agram of the algorithm is available in figure 3.2.

The direct estimation via the Chhabra-Jensen (CJ) equations makes the cal-

culus of the multifractal spectra easier and more precise. The method presents an

advantage, compared to others (such as MFDFA or MFDMA), for the precise and

direct determination f (α) spectrum, without a Legendre transform (Chhabra and

Jensen, 1989). The correct use of the method still depends, though, on the correct

choice of the analysis parameters, as described below.

https://github.com/lucasfr/chhabra-jensen
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Figure 3.3: Convergence in generalised dimensions’ spectrum. The dashed lines show the
convergence value and the limits for convergence are, in this case, the values
-50 and 50. The limits of convergence should be chosen as parameters for the
multifractal analysis.

The first parameter, the range of q, can be defined based on the generalised

dimensions plot, figure 3.3, i.e., the points at which the value of Dq converges.

The scales (l) range can be evaluated based on the scaling properties of the

partition function, which should present a linear behaviour when on a logarithmic

scale for all the q values, as shown in figure 3.4, for all the scales used in analysis.

In this example, the last two points, for negative values of q, do not fit properly on

the linear fit; these two scale sizes were therefore excluded from analysis.
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Figure 3.4: Partition function by scale value linearised by the logarithm method. The cho-
sen scales must form a straight line. In this case, the two smallest scales would
be removed.

3.2.3 Modelling series with scaling properties

3.2.3.1 Modelling monofractal data

To fully test methods of estimating the monofractal dimension from signals, time

series that are known to be fractal were computationally produced. Fractional Brow-

nian motion (fBm) (Mandelbrot and Van Ness, 1968) profiles/time series were gen-

erated using a novel modified version of the Wood-Chan or circulant embedding

approach (Kroese and Botev, 2015; Shevchenko, 2015), that allows us to change

the variance of the signal over time, in order to evaluate its influence on the fractal

estimation. This novel modulated fBM approach uses a modulating function, M(t),

which produces a signal that has an amplitude varying over time.
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A fractional Brownian motion is a continuous zero-mean Gaussian process

that can be described by the function in equation 3.26 (Kroese and Botev, 2015). In

order to simulate such properties, it is sufficient to simulate the increments on the

profile, as described in equation 3.25.

ξ1 = BH
1 ,ξ2 = BH

2 −BH
1 ,ξN = BH

N −BH
N−1 (3.25)

These values form a stationary sequence of standard Gaussian variables with

a covariance described in equation 3.26. The vector ξ = (ξ1, ...,ξN)
T , composed

by the simulated increments, is called fractional Gaussian noise and is a centred

Gaussian array with covariance matrix Ω (Shevchenko, 2015).

ρH(n) = E[ξ1ξn+1] =
1
2

(
(n+1)2H +(n−1)2H−2n2H

)
, n≥ 1 (3.26)

Ω=Cov(ξ )=



1 ρH(1) ρH(2) · · · ρH(N−2) ρH(N−1)

ρH(1) 1 ρH(1) · · · ρH(N−3) ρH(N−2)

ρH(2) ρH(1) 1 · · · ρH(N−4) ρH(N−3)

...
...

... . . . ...
...

ρH(N−2) ρH(N−3) ρH(N−4) · · · 1 ρH(1)

ρH(N−1) ρH(N−2) ρH(N−3) · · · ρH(1) 1


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In order to solve this problem, one can, alternatively, convert the covariance

matrix into a circulant matrix. The circular matrix (Σ) has a known eigenvalues

structure, making it easier to solve the problem. Taking the relationship M = 2(N−

1), a circular matrix Σ is defined based on the relations in equation 3.27.

c0 = 1,

ck =


ρH(n), n = 1,2, ...,N−1

ρH(M−n), n = N,N +1, ...,M−1

(3.27)

Σ = circ(c0,c1, ...,cM−1) =



c0 c1 c2 · · · cM−2 cM−1

cM−1 c0 c1 · · · cM−3 cM−2

cM−2 cM−1 c0 · · · cM−4 cM−3

· · · · · · · · · . . . · · · · · ·

c2 c3 c4 · · · c0 c1

c1 c2 c3 · · · cM−1 c0



The aim is a factorisation described in the equation 3.28 (Kroese and Botev,

2015). The increments in the simulated Brownian motion time series can be derived

from the eigenvalues λ = (λ1, ...,λ4N2)T arranged as a 2Nx2N matrix Λ. The vari-

able P is the Kronecker product of two discreet Fourier transform matrices given by

P = F
⊗

F (Kroese and Botev, 2015).

Σ = P∗ΛP (3.28)
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Fjk =
1√
2N

e−2πi jk/2N , where j,k = 0,1, ...2N−1 (3.29)

The algorithm used to derive the fBm time series is available at https:

//github.com/lucasfr/ModfBm and can be summarised in the following

steps:

• First, the covariance matrix is calculated (Ω) (step 1).

• Then a 2Nx 2N circulant matrix (Σ) is built (step 2).

• For this operation, one just needs the first row of the matrix Σ (step 3).

• The eigenvalues of matrix Λ can then be obtained via Fourier transformation.

Both real and complex parts will present a Gaussian profile, however, it is

enough to consider the real part of the eigenvalues (step 4).

• The following step consists of multiplying the output of step 4 by random

complex numbers and applying the inverse Fourier transformation (step 5).

• This step was modified, and an element of a function M has been added, such

element will be multiplied by these complex random values before applying

the inverse Fourier transformation. From now on, this modified version will

be denoted as Modulated fractional Brownian motion (ModfBm).

• The last step consists of accumulating the values generated by the previous

operation and multiplying by a constant scaled by the Hurst exponent H. The

generated time series should present scale properties according to the chosen

H exponent and, for the ModfBm, feature changes on its standard deviation.

https://github.com/lucasfr/ModfBm
https://github.com/lucasfr/ModfBm
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A time series of 1,843,200 points (1800 windows of 1024 points) was gener-

ated, corresponding to a recording of an hour duration with a sampling rate of 512

Hz — similar to the clinical intracranial EEG segment from the patient NHNN1,

used on the analysis of real EEG data. The time series was simulated with a Hurst

exponent H = 0.7, the value was chosen due to its persistent features, i.e. it gener-

ates a time series with memory. Additionally, a modulating function M, for every 2

seconds window w, described by equation 3.30 and shown in Fig. 3.7(A) was used

to simulate the Modulated fBm.

M(w) =



1, w < 450

1+(w−449)0.01, 450≤ w≤ 900

1, w > 900

(3.30)

Note that there are alternative methods to generate monofractal time series

(Eke et al., 2002; Mukli et al., 2015; Nagy et al., 2017; Davies and Harte, 1987).

However, as the aim was not to compare generative models of monofractal time

series, but rather simply to demonstrate that the effects observed in EEG signals

could be more general. The above-mentioned chosen approach serves as an example

demonstration.

3.2.3.2 Modelling multifractal data

This section presents a computational procedure to generate time series that are

known to be multifractal based on the p-model, which was developed to reproduce

features observed in turbulence experiments known to have multifractal properties
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(Meneveau and Sreenivasan, 1987). This is a simple model, having a single frac-

tion p1 as its only input and is often mentioned in the literature (Pechlivanidis and

Arheimer, 2015; Consolini et al., 1996; Davis et al., 1997; Kestener and Arneodo,

2003; Lipa and Buschbeck, 1989; Meneveau and Sreenivasan, 1987, 1991; She and

Leveque, 1994; Sreenivasan and Antonia, 1997; Zhou, 2008).

Briefly, the algorithm works as follows: from an interval of length L and height

εL = c (is a constant), two segments of length L/2 are created. Based on the input

parameter p1, it is possible to establish a second fraction in which a second param-

eter will be given by p2 = 1− p1. The heights of each interval will thus be given by

y = 2p1L, and y = 2p2L, respectively. This procedure is repeated for each remaining

segment, selecting left or right for p1 randomly (Meneveau and Sreenivasan, 1987).

The p-model was employed in the simulation of a time series profile with mul-

tifractal properties to be evaluated by different estimation methods. It was gener-

ated with a code available at http://www2.meteo.uni-bonn.de/staff/

venema/themes/surrogates/pmodel/ (Davis et al., 1997; Venema et al.,

2006). Using this algorithm, time series were generated to evaluate the performance

of different multifractal estimators with p = 0.4. The value was rounded (for sim-

plicity) from the figure used elsewhere (p = 0.375) (Davis et al., 1997).

3.2.4 Data

In order to evaluate the effect of EEG signal variance change on multifractal prop-

erties, one specific recording where the signal variance changes dramatically over

time was chosen. Such a recording comes from one patient (male, 28 years old,

http://www2.meteo.uni-bonn.de/staff/venema/themes/surrogates/pmodel/
http://www2.meteo.uni-bonn.de/staff/venema/themes/surrogates/pmodel/
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temporal lobe epilepsy, recorded at the National Hospital for Neurology and Neu-

rosurgery (NHNN) ((UCLH NHS Foundation Trust, Queen Square, London, UK),

patient ID: NHNN1) near one seizure event. A 60-minute recording segment around

the epileptic seizure was used for this analysis. The EEG recording was sampled at

512 Hz.

The seizure onset and offset were marked by expert clinicians, independent

of this research project. Note that this segment specifically was used due to the

dramatic change in signal variance, which actually occurs before the seizure and

evolves over about 15 minutes. This chapter does not make conclusions about the

seizure event itself at this stage, but rather uses this recording as an example to

illustrate a technical point about multifractal property estimation from EEG.

In order to show that the results obtained in this study are reproduced in other

seizures, a further two segments of the same patient and channels were evaluated

with the developed methodology. The first of these two segments consisted of an

interictal EEG recording of 8380 seconds with no seizures — featuring interictal

epileptiform discharges (IEDs), and the second comprises another recording of 9376

seconds containing one epileptic seizure.

For NHNN data, the subjects gave informed written consent, and the study

was approved by the Joint Research Ethics Committee of the NHNN (UCLH NHS

Foundation Trust) and UCL Queen Square Institute of Neurology, Queen Square,

London, UK.
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3.2.5 A sigmoid approach

Unless stated otherwise, the same pre-processing and analysis parameters have been

applied to the computationally generated time series and the human EEG record-

ings. Also, the fractal and multifractal estimations were performed on 1024-sample

epochs. This chapter is specifically focused on the effect of signal variance on the

(multi) fractal estimation, and therefore the results for signal subjected to a stan-

dardisation procedure were compared, the novel approach is performed as follows:

x′ =
X−< X >

s
(3.31)

where < X > is the epoch mean and s the epoch standard deviation of the

time series X , resulting in a time series with zero mean and unit standard deviation.

The Chhabra-Jensen method requires as input a distribution function over the do-

main of positive real numbers, which is incompatible with EEG data which contain

positive and negative values. Hence, this chapter proposes the use of a sigmoid-

transformation here (equation 3.32) to map the time series onto positive values, in

order to apply the Chhabra-Jensen method. Example sigmoid functions and corre-

spondingly transformed EEG signal are shown in Fig. 3.5.

σ(X) =
1

1+ evX (3.32)

The parameter v was chosen based on its effect on the estimated multifractal

width for three types of time series: icEEG (NHNN1 - channel 1), surrogate EEG

(temporally shuffled values of the original time series from NHNN1 - channel 1)
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Figure 3.5: Impact of sigmoid transformation on the signal. This function maps the original
(raw) time series into a sequence of elements ranging in between 0 and 1, allow-
ing the use of the Chhabra-Jensen method on recordings originally containing
negative values. (A) Sigmoid curves with different values of v. This parameter
defines how shallow/steep the sigmoid curve will be. (B) Effect of the sigmoid
transform on an epoch extracted from an intracranial EEG recording. Smaller
values of the parameter v tend to flatten the curve.

and a simulated random series (with the same mean and variance), across the range

v = [0.1,2.0] in steps of 0.1. To find the optimal value for the parameter v, it was

necessary to balance the trade-off between the three series in terms of presenting

the most distinct ∆α values (Fig. 3.6 (A)), while showing minimum distortion of

the recording, or maximum correlation with the original time series (Fig. 3.6 (B)).

The value v = 1 was chosen as an acceptable trade-off point.

3.2.6 Multifractal estimation stability

In order to evaluate the stability of multifractal properties in time, a time series

exhibiting stable multifractal properties over time was generated; such a series was

computationally generated using the p-Model. The time series was then evaluated

using an epoch-based approach with the three estimators: MF-DFA, MF-DMA,

and Chhabra-Jensen. The stability of the estimator was assessed as the temporal

variability of its output.
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Figure 3.6: Assessment of parameters for sigmoid mapping function. A) Variability of ∆α

(0.1, 0.5 and 0.9 quantiles) as a function of the parameter v. B) Pearson cor-
relation of the original series and the mapped one for the three types of signal.
Based on the optimisation criterion — maximum difference and minimum dis-
tortion (maximum correlation) — the value chosen was v = 1.

3.2.7 Feature redundancy

To assess whether the chosen multifractal metrics contribute any non-redundant

features about the signal in addition to more established signal metrics, human EEG

signals recorded intracranially were analysed.

Again, an epoch-based approach was employed, and the multifractal metrics

were compared to a number of conventional signal metrics (mean, standard devia-

tion, line length, band power) on each epoch. The similarity between signal features

was evaluated using Pearson correlation and Mutual Information (Guyon and Elis-

seeff, 2003; Ince et al., 2017) (the code is available at https://github.com/

robince/gcmi). Furthermore, monofractal metrics were also included in this

comparison, to determine advantages in applying multifractal over monofractal ap-

proaches.

Finally, to compare multifractal properties to classical EEG frequency band

power, the following definitions for the classical EEG frequency bands were con-

https://github.com/robince/gcmi
https://github.com/robince/gcmi
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sidered: δ (0.5-4 Hz), θ (4-8 Hz), α (8-15 Hz), β (15-30 Hz), and γ (30-60 Hz).

3.3 Results

This study evaluated the relationship between monofractal measures and signal vari-

ance using a simulated time series based on fractional Brownian motion (fBm),

where its signal variance is modulated by a modified ramp function. The modu-

lation function is shown in Fig. 3.7(A) and resulting time series in Fig. 3.7(B).

The standard deviation of the generated time series indeed tracks the shape of the

modulating function (Fig. 3.7(C)).

The monofractal dimension of this simulated signal was estimated using two

standard methods: Higuchi and DFA. It is possible to observe that both methods

appear to be affected by the changing signal variance (Fig. 3.7(D), (F)). Further-

more, this effect persists after epoch-based standardisation (Fig. 3.7(E), (G)): the

monofractal properties and standard deviation correlate with ρ = 1.00 and ρ = 0.99

for the Higuchi and DFA methods, respectively. A similar effect was observed for a

real icEEG recording that contained changes in signal variance over time (Fig. 3.8).

In conclusion, monofractal properties derived for each epoch from DFA and

Higuchi methods (with, or without signal standardisation) correlate highly with the

signal standard deviation of the epoch. Therefore, in epoch-based approaches (e.g.

for applications such as detecting or predicting epileptic seizures), the monofractal

properties cannot be regarded as a useful, non-redundant EEG feature when stan-

dard deviation of the epoch is readily available.

This text will now denote the epoch-wise estimates of multifractal width ∆α
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Figure 3.7: Impact of the signal standard deviation on monofractal scaling exponent es-
timation. (A) Modulation of the standard deviation of the time series over
time; (B) Time series simulated using fractional Brownian motion based on
modulation in (A); (C) Standard deviation of the simulated signal in (B). (D)
Monofractal dimension obtained with the Higuchi method from signal with-
out epoch-based standardisation. (E) Monofractal dimension obtained with the
Higuchi method from epoch-based standardised signal. (F) Hurst exponent ob-
tained with the DFA method from signal without epoch-based standardisation.
(G) Hurst exponent obtained with the DFA method from epoch-based standard-
ised signal.

and height ∆ f (and ∆α† and ∆ f † for the epoch-based standardised measures). This

experiment was designed to assess the reliability of the different multifractal esti-

mation methods over time. In other words, if the multifractal properties of the time

series remain constant over different epochs, then one would expect the multifractal
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estimation method to show the same output over these different epochs. Note that

the accuracy of these methods (i.e. the method outputting the expected multifrac-

tal measures of a predefined multifractal object with known multifractal properties)

has been demonstrated elsewhere (Chhabra and Jensen, 1989; Gu and Zhou, 2010;

Kantelhardt et al., 2002).

Figure 3.9 shows the simulated signal by the p-model and the outputs of the

three multifractal spectral estimation methods. In all cases, the magnitude of ∆α†

and ∆ f † were clearly different from zero. The (∆α†, ∆ f †) output variances over

time for the MF-DFA, MF-DMA, and Chhabra-Jensen estimation methods were:

(0.018, 0.18), (4.17e-4, 0.0028) and (2.3e-30, 6.5e-30), respectively.

In addition, the MF-DFA output violated the theoretical topological limit of

∆ f † = 1, again indicating problems in the MF-DFA method, potentially due to the

inversion of multifractal spectrum (Mukli et al., 2015). As the Chhabra-Jensen

method shows the lowest variance over time (i.e. most reliable/stable), it will be the

multifractal analysis method of choice for the remainder of this work.

Next, the relationship between multifractal signal properties and other widely

used conventional EEG measures (such as signal variance) was evaluated. Figure

3.10 shows the results of the multifractal spectrum and conventional measures in

comparison. The pattern of multifractal spectrum width without epoch-based stan-

dardisation (∆α) reflects the signal variance closely, in contrast to the estimate for

the epoch-based standardised signal (∆α†). A similar outcome is obtained from an-

other segment with an epilpetic seizure in the same patient, as seen in figure 3.12.

Finally, signal line length also shows a very different temporal profile from ∆α†.
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The variation of ∆ f and ∆ f † metrics is available in Fig. 3.11.

Figure 3.13 shows the quantification of similarities of the signals in Fig. 3.10

and 3.11 through a correlation analysis. In summary, a high degree of correlation

is present between the signal standard deviation, multifractal spectrum width (∆α),

and detrended fluctuation analysis (monofractal approach) both with and without

epoch-based standardisation. The standardisation reduces the correlation between

∆α and the standard deviation from ρ = 0.86 (for ∆α) to ρ = 0.14 (for ∆α†). Also

note that ∆α is highly correlated with DFA and DFA† estimates (ρ = 0.74 and ρ =

0.71, respectively) while it is markedly reduced for ∆α† (|ρ| < 0.3). The analysis

based on mutual information (Ince et al., 2017) rather than correlation showed a

similar pattern (Fig. 3.14).

The relationships of the multifractal properties and specific EEG frequency

band power are shown in Fig 3.15. In summary, the correlation values between the

multifractal measures ∆α†, ∆ f † and signal power in the classical EEG bands are

low (|ρ|< 0.3).

3.4 Discussion

In this study, the monofractal and multifractal properties of human EEG recordings

and simulated data were explored to test the performance of fractal property esti-

mation methods. Although mono- and multi-fractal approaches have been widely

employed in the study of physiological signals in humans (Costa et al., 2017; França

et al., 2019; Hu et al., 2004, 2009; Ivanov et al., 1999; Stanley et al., 1999), it has

been demonstrated that the non-linear measures, such as monofractal dimension,
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may be capturing a similar signal feature as the signal variance (McSharry et al.,

2003).

When using standardisation to remove the effect of signal variance, it was

shown that multifractal measures (estimated by the Chhabra-Jensen method) cap-

ture features not contained in widely used conventional signal measures, making it

a viable feature for machine learning in clinical EEG applications.

One of the key observations is that monofractal estimators are tightly correlated

with signal variance even following epoch-wise standardisation, whereas multifrac-

tal properties following epoch-wise standardisation are no longer tightly correlated

with signal variance. This non-intuitive observation has not been reported before.

To interpret this observation, it is worth noting the relationship between

monofractal and multifractal analyses. Essentially, in multifractal analysis, at the

point for which q = 2, the corresponding f (α) is the so-called correlation dimen-

sion, which is an alternative way of estimating the monofractal dimension (Murcio

et al., 2015). The relationship between monofractal dimension and signal variance

has been established and explained before (Cannon et al., 1997).

By the same token, signal variance also affects higher statistical moments (q >

2 or q< 2). However, when analysing the exact effect of variance on the multifractal

spectrum (Fig. 3.16), it was observed that the variance particularly impacts the

multifractal spectrum width and height but maintains an almost constant value of

f (α) for q = 2. This explains why epoch-wise standardisation does not impact

monofractal dimension but does impact multifractal spectrum width and height.

The mono- and multifractal properties being investigated here are essentially
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describing different properties of the multifractal spectrum. Note that through the

standardisation procedure, the approach does not abolish multifractality, but only its

dependence on signal variance. Future work will need to show mathematically the

exact reason for this observation, although intuitively it is understandable that the

standardisation procedure (a linear transformation of the signal) changes the q = 2

moment least and affects higher moments more.

It has also been observed that the Chhabra-Jensen method is the most reliable

out of the three methods. As was pointed out in the original publication (Chhabra

and Jensen, 1989), this is most likely due to the fact that the Chhabra-Jensen method

avoids a Legendre transform that the other methods require. The Legendre trans-

formation requires smoothing of the Dq curve and can lead to errors. For further

advantages of the Chhabra-Jensen method, the reader is referred to the original pub-

lication (Chhabra and Jensen, 1989). A recent development, FMF method (Mukli

et al., 2015; Nagy et al., 2017), is an alternative to the approach proposed in this

study.

Previous studies reported that the brain is characterised by critical dynamics

(Chialvo, 2010, 2012; Eguı́luz et al., 2005; Racz et al., 2018). This characteris-

tic, found from microscopic spatial scales (such as neuronal networks) (Beggs and

Plenz, 2003, 2004) to the global brain structure (Eguı́luz et al., 2005), is thought

to facilitate the storage and processing of information. It has been further sug-

gested that more than one scaling exponent would be necessary to properly char-

acterise the brain’s critical dynamics (Ciuciu, 2012; Fraiman and Chialvo, 2012;

Ihlen and Vereijken, 2010; Papo, 2014; Papo et al., 2017; Racz et al., 2018; Suck-
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ling et al., 2008; Zhang et al., 2015; Zorick and Mandelkern, 2013), as departures

from the power-law pattern have been frequently observed in brain signals. Hence,

it has been proposed that using additional, higher-order statistical moments can bet-

ter characterise such data (Fraiman and Chialvo, 2012). This work contributes a

complementary observation: while monofractal measures of EEG appeared to es-

sentially follow the slow changes of signal variance, multifractal characterisation is

capable of revealing new information.

In terms of generative processes that can produce monofractal properties, it

has been suggested that a property called Self-Organised Criticality (SOC) (Bak

et al., 1987) may play an essential role. SOC describes the capacity of a system to

evolve naturally into a critical state (a state in which a minimum perturbation could

lead to events of all sizes). Such phenomena display power-law distributions and

fractal properties as signatures (Bak and Paczuski, 1995). An example process that

displays SOC is the so-called single avalanche or Bak-Tang-Wiesenfeld model (also

known as Abelian sandpile model) (Bak et al., 1987).

SOC behaviour has been linked to physiological control mechanisms, such

as in human heart rate variability (Goldberger et al., 2002). Similar to SOC, a

related regime — termed non-classical SOC — is thought to give rise to multifractal

properties (Lovejoy and Schertzer, 2007). The analysis and understanding of the

non-classical SOC is, however, still under development.

In this context, the proposed multifractal spectral analyses of human EEG data

suggest that cerebral phenomena should not be modelled by a single avalanche

model (classical SOC), in agreement with findings in a previous study (Fraiman
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and Chialvo, 2012). Moreover, it is hypothesised that brain dynamics are non-

ergodic (Bianco et al., 2007), i.e. display preferential states and depend on previous

states (Papo, 2014), which are all properties of multifractal processes (Lovejoy and

Schertzer, 2007). Thus, multifractal analyses could provide a new paradigm for

studying brain function and structure, as previously suggested in other studies of

normal (Ciuciu, 2012; Ihlen and Vereijken, 2010; Papo, 2014; Papo et al., 2017;

Racz et al., 2018; Suckling et al., 2008; Zorick and Mandelkern, 2013) and patho-

logical brain activity (Zhang et al., 2015).

Furthermore, generative processes displaying multifractal properties could

help our understanding of the observed multifractal changes on a mechanistic level.

It is important to emphasise that the conclusions from this work are drawn on the

basis that slow changes in signal fractal features can be captured by using an epoch-

wise feature extraction procedure. It is also evident from a feature redundancy

perspective that there is a suggestion for the need of multifractal approaches over

monofractal measures.

This work does not dispute the usefulness of monofractal measures in other

general applications. In this work, a feature selection procedure was performed

using correlation and mutual information (Guyon and Elisseeff, 2003). Then the

differences between signal features were compared on an epoch-wise basis. Feature

selection is crucial to obtain faster and cost-effective models and avoids overfitting

of the available data. It might also help achieving a deeper insight into the nature of

the studied phenomena (Blum and Langley, 1997; Guyon and Elisseeff, 2003; Liu

et al., 1998; Liu and Yu, 2005; Saeys et al., 2007).
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Furthermore, the slow temporal changes in multifractal dynamics need to be

characterised in a systematic way. Using epileptic seizures as an example, Fig.

3.10 shows that dramatic changes in multifractal properties can sometimes be seen

before an epileptic seizure. This observation requires further investigation to ad-

dress questions such as: are all epileptic seizures characterised by pre-ictal changes

in multifractal properties? Do other physiological processes, such as sleep, influ-

ence this finding? To answer these questions, a large scale future prospective study

will most likely be necessary. Finally, it is well recognised that epileptic seizures

are spatio-temporal processes (Wang et al., 2014, 2017), and the current approach

of only focusing in the temporal aspect in one location will need to be expanded.

Data-driven unsupervised approaches, such as dimensionality reduction, may help

summarise spatial aspects. Additionally, the challenge will be to develop a spatio-

temporal multifractal analysis approach that can also deal with the challenges of

low spatial sampling resolution.
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Figure 3.8: Monofractal analysis of seizure segment. Both Higuchi and DFA approaches
exhibits similar patterns to the standard deviation of the signal, in accordance
with the simulated data presented on the main text of this article. The signals
from intracranial EEG shows a H = 1.2 (non-stationary) for interictal segments
in patients with epilepsy.
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Figure 3.9: Comparison of three multifractal spectrum estimation methods (MF-DFA, MF-
DMA, and Chhabra-Jensen) for p-Model simulated time series. (A) Time series
simulated for p = 0.4. (B) Estimated multifractal spectra width ∆α† and (C)
height ∆ f †.
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Figure 3.10: Temporal dynamics of multifractal spectrum width compared with conven-
tional measures for human intracranial EEG. (A) Intracranial EEG segment
containing a seizure (onset and offset marked with red vertical lines). Note
that this recording was chosen because it showed a dramatic change in sig-
nal variance during non-seizure periods, not because of any seizure related
properties. (B) Variation of multifractal spectrum width without epoch-wise
standardisation (∆α). (C) Multifractal spectrum width based on epoch-wise
standardised time series (∆α†). (D) Standard deviation in each epoch. (E)
Line length in each epoch. Black line: moving average of each measure.
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Figure 3.11: Multifractal spectrum height and other signal property changes over time. (A)
A single channel intracranial EEG time series segment containing one seizure
in the patient NHNN1 (channel 1). The seizure onset and offset are marked
by red lines. (B) Variation of multifractal spectrum height (∆ f ) estimated on
epochs of the EEG segment in (A). (C) Epoch-wise normalised multifractal
spectrum height (∆ f †). (D) Standard deviation of the time series for each
epoch. (E) Line length of the signal for each epoch.
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Figure 3.12: Temporal dynamics of multifractal spectrum width in two additional human
intracranial EEG recordings. (A) Intracranial EEG segment with interictal
activity, including interictal epileptiform discharges (IEDs). The analysis re-
sults in multifractal spectra width (∆α†) with constant average over time. (B)
Intracranial EEG segment containing one epileptic seizure. The multifractal
spectra width (∆α†) analysis reports a similar result to the segment shown in
3.10 — with a drop in multifractal spectra width prior to the seizure.
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†
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Figure 3.13: Correlation between multifractal spectrum and conventional EEG measures
for human icEEG data (from Figure 3.10). The diagonal of the matrix shows
the distribution for each measure across epochs. The lower triangle contains
the scatter plots for each pair of measures across epochs. The upper triangle
shows the Pearson correlation value for each pair of measure, where the size
of the font additionally corresponds to the correlation coefficient to provide
an additional visual cue.
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Figure 3.14: Mutual information of different measures. The MI measure shows higher
values for the pair ∆α/St. Dev. than to ∆α†1/St. Dev., similar to the result in
Fig. 3.13.
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Figure 3.15: Comparison of multifractal measures with classical spectral band power. Scat-
ter plot matrix comparing both standardised multifractal spectrum width and
height (∆α† and ∆ f †) with the δ , θ , α , β , and γ average band power in each
epoch. Each scatter point is derived from a single epoch of the time series.
The diagonal of the matrix features the histograms for each measure. The
lower triangle contains the scatter plots for each pair of measures. The upper
triangle shows the Pearson correlation for each pair of measure, where the
size of the font additionally corresponds to the correlation coefficient to pro-
vide an additional visual cue. The icEEG data underlying this figure is shown
in Figure 3.10 A.
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Figure 3.16: Multifractal spectra from a segment obtained with standardisation procedure,
varying the standard deviation on sigmoid transformation. The standard devi-
ation of the time series (128.4839) was multiplied by a scaling factor ranging
from 0.5 to 1.5 by steps of 0.1. The scaling of the standard deviation changes
the spectral features however f (α) for q = 2 (correlation dimension that is
equivalent to monofractal dimension highlighted by the circles) shows a rel-
atively small change. The little change in the correlation dimension caused
by the standardisation procedure might explain why monofractal methods are
not affected by the sigmoid standardisation approach and still correlate with
the variance of the signal.



Chapter 4

Do sleep phases impact multifractal

estimation in human electrographic

recordings?

4.1 Introduction

Long term EEG monitoring of epileptic seizures is defined as the process of record-

ing EEG signals for a ’prolonged period’, i.e. for more than one hour (Lagerlund

et al., 1996). Nevertheless, in clinical practice the duration of these recordings

varies from a few hours to over a week (Lagerlund et al., 1996).

Long-term EEG recording of epileptic seizures is often indicated for an ac-

curate diagnosis of the syndrome as well as correct identification of the type of

seizures and their onset zone — for focal paroxysms (Lagerlund et al., 1996).

This type of recording has also been exploited by researchers studying brain

dynamics, e.g. studies of the occurrence of epileptic seizure (Baldassano et al.,
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2017; Brinkmann et al., 2016; Freestone et al., 2015; Karoly et al., 2017; Mormann

et al., 2007; Kuhlmann et al., 2018a,b; Varatharajah et al., 2018). Long-term EEG

monitoring is necessary to implement novel therapeutic approaches, which depend

upon seizure detection/prediction (Iasemidis, 2003).

However, such long-term monitoring imposes several challenges. An exam-

ple of these problems is systematic and time-varying properties of the brain, e.g.

sleep/awake status. Epileptic seizures have also been shown to change accordingly

with circadian and ultradian rhythms (Karoly et al., 2017; Baud et al., 2018). Nev-

ertheless, the effect of brain rhythms during distinct sleep phases on EEG markers

for seizure detection/prediction has had little attention in the literature.

Sleep stages are conventionally defined using specific power bands — namely

δ (< 4 Hz), θ (4-8 Hz), α (8-13 Hz), and β (14-40 Hz) bands (Noachtar et al.,

1999), and can be divided in three main groups: waking, non-REM sleep, and REM

sleep (Mendelson, 1987). The non-REM sleep stage can be divided in four sub-

sequent types: stage 1, stage 2, stage 3, and stage 4 (Mendelson, 1987). More

recently, stages 3 and 4 have been amalgamated into one deep sleep stage, termed

N3 (American Academy of Sleep Medicine, 2007).

The waking, resting stage is characterised by an EEG signal predominantly

composed of sinusoidal α waves, with some β waves of lower amplitude (Mendel-

son, 1987). During this stage the individual is in relaxed wakefulness and with their

eyes closed (Mendelson, 1987).

For non-REM sleep, or stage 1, the α activity is reduced and there is a mixture

of low-amplitude β and θ waves (Mendelson, 1987). Stage 2 mostly exhibits θ
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waves and is characterised by two main distinguishing events: sleep spindles and

the K complexes (Mendelson, 1987). The former consists of a burst of central

rhythmic activity at 14 Hz, whereas the latter is a “high-amplitude negative wave

followed by a positive wave” (Mendelson, 1987).

Stages 3 and 4 are marked by high amplitude (slow) δ waves (Mendelson,

1987). These stages are also known as slow-wave sleep or delta sleep (Mendelson,

1987). If δ waves comprise from 20% to 50% of a 30-second epoch, the stage is

scores as 3. If δ waves correspond to more than 50% of a 30-second epoch, this

characterises the stage 4 (Mendelson, 1987).

Sleep stages’ scoring is normally performed by a specialist who does the mark-

ings manually. An automatic or semi-automatic approach to facilitate such work

could help optimise the scoring of sleep EEG signals by making it quicker and more

precise. There have been several studies of computational methods to perform such

tasks, often applying machine learning techniques (Liang et al., 2012; Estrada et al.,

2005; Smith and Karacan, 1971; Agarwal and Gotman, 2001; Flexer et al., 2005;

Koley and Dey, 2012; Güne et al., 2010; Radha et al., 2014; Lajnef et al., 2015).

For this thesis, the studies that apply (multi)fractal and/or scaling evaluation

approaches to sleep stage scoring are of greatest interest. In the last decades, some

studies focussed on such properties and how these markers relate to sleep stages

Koley and Dey (2012); Ma et al. (2018); Lee et al. (2004); Ma et al. (2005).

Fractal and multifractal metrics were capable of showing differences between

sleep phases when applied to EEG signals. Overall, the EEG signals exhibited

increased complexity (a higher scaling exponent / shifted multifractal spectrum) for
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deeper sleep stages (Lee et al., 2004; Ma et al., 2005).

Following these findings, and considering long-term seizure monitoring — in

which a patient will likely pass through different sleep stages, this chapter focusses

on whether/how sleep could affect multifractal analysis of EEG with the standard-

ised approach. The aim of this chapter is to evaluate whether the approach proposed

in chapter 3 is affected by sleep stages and how multifractal features change under

such circumstances.

4.2 Methods

This section describes the application of the unbiased multifractal estimation

method introduced in chapter 3 to sleep scalp EEG signals obtained from individu-

als during polysomnography.

4.2.1 Data

This study evaluated signal features that could be connected to sleep stages in scalp

EEG signals measured from individuals without epilepsy. The scalp EEG data stud-

ied are available at PhysioNet repository (https://physionet.org/) (Goldberger et al.,

2000; Kemp et al., 2000; Mourtazaev et al., 1995).

This chapter reports an analysis performed on EEG signals of five of these

healthy individuals: ST7011J, ST7022J, ST7041J, ST7052J, ST7061J. These sub-

jects were recruited from the general population in the period 1989-1991 and under-

took medical examination conducted by a neurologist/psychiatrist. The individuals

did not have any somatic, neurologic or psychiatric conditions (Mourtazaev et al.,

1995). Individuals also did not have sleep complaints or took any sleep-related
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medication (Mourtazaev et al., 1995).

The signals were digitised at 100 Hz with 12 bits/sample in a polysomnography

set-up with two different channels: Fpz-Cz and Pz-Oz (Mourtazaev et al., 1995).

Rechtschaffen and Kales stages were manually marked by a specialist in 30-second

epochs, following the standard criteria (Mourtazaev et al., 1995).

4.2.2 Multifractal analysis

The multifractal analysis approach presented in chapter 3 was appled to these scalp

EEG obtained from subjects as described in previous section, using both Fpz-Cz

and Pz-Oz channels.

The Chhabra-Jensen method was applied to the scalp EEG data that was epoch-

wise standardised and sigmoid transformed (i.e. the established pipeline introduced

in chapter 3). Each epoch was 10.24 seconds long, as the epochs had 1024 points

sampling, as the data had been sampled at 100 Hz.

4.2.3 δ -power

δ -power was also obtained for the EEG recordings as reference and to serve as

comparison to standard sleep analysis. The delta power is often a proxy for slow

wave sleep stages. For δ -power, the recordings were also split in 1024 points epochs

- comprising 10.24 seconds. Both Fpz-Cz and Pz-Oz channels were analysed.

4.2.4 Dimensionality reduction

Dimensionality reduction consists of a procedure that converts high-dimensional

input data X = {x1,x2, ...,xn} to lower-dimensional elements, e.g., two or three di-

mensions, Y = {y1,y2, ...,yn} (Van Der Maaten and Hinton, 2008). Several methods
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attempt to tackle such problem with linear approaches, e.g. Principal Component

Analysis (PCA) and Multidimensional Scaling (MDS) (Van Der Maaten and Hin-

ton, 2008).

There is, however, a class of methods that perform non-linear operations and

try to preserve the local structure of the data points (Van Der Maaten and Hinton,

2008). These methods will be referred to in this thesis as neighbour embedding

approaches. This chapter shows the application of t-distributed stochastic neighbour

embedding (t-SNE). t-SNE is an improvement on a previous method, stochastic

neighbour embedding (SNE) (Van Der Maaten and Hinton, 2008). The technique

was applied to visualise the higher-dimensional data from the sleep analysis in a

2-dimensional space.

4.2.4.1 SNE

Stochastic Neighbour Embedding (SNE) is a dimensionality reduction technique

that converts high-dimensional Euclidean distances into low-dimensional represen-

tations. In SNE, these elements are treated as probabilities and are compared ac-

cording to their similarities (Van Der Maaten and Hinton, 2008; Hinton and Roweis,

2002).

Equation 4.1 indicates the conditional probability that xi would pick x j as

neighbour — based on their probability density. p j|i is high for nearby points

and low for sparse points (Van Der Maaten and Hinton, 2008; Hinton and Roweis,

2002).
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p j|i =
e||xi−x j||2/2σ2

i

∑k 6=i e||xi−xk||2/2σ2
i

(4.1)

Where σi is the variance of a Gaussian distribution that is centred on data point

xi. The aim of this operation is to look for pair-wise similarities so it is possible to

assume pi|i = 0 (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

A conditional probability for xi and x j low-dimensional counterparts, yi and

y j, can be defined in a similar way to equation 4.1. In this case, the variance is set

σi = 0 (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

q j|i =
e||yi−y j||2

∑k 6=i e||yi−yk||2
(4.2)

Again, the aim is to look for pair-wise similarities so qi|i = 0. If yi and y j model

correctly xi and x j, p j|i and q j|i must be equal. A way of quantifying the similarity

between two different distributions is Kullback-Leibler (KL) divergence, shown in

equation 4.3 (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

SNE minimises the sum of KL divergences over all data points with gradient

descent method and cost function given by 4.3 (Van Der Maaten and Hinton, 2008;

Hinton and Roweis, 2002).

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

p j|i log
p j|i
q j|i

(4.3)

Pi is the conditional probability distribution over data points xi, whereas Qi

is the conditional probability distribution over data points yi (Van Der Maaten and

Hinton, 2008; Hinton and Roweis, 2002).
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SNE cost function focusses on returning the local structure of the data points,

i.e. there is a large cost for mapping nearby points with widely separated represen-

tations. However, it has a small cost to map widely separated points and nearby

representations. Such a difference is due to KL divergence asymmetry (Van Der

Maaten and Hinton, 2008; Hinton and Roweis, 2002).

There is still a remaining parameter to be chosen — variance σi of the Gaussian

distribution centred at each high-dimensional data point xi. Data points are unlikely

to have a unique optimal variance and σi should vary according to the density of the

data, as smaller values of σi are more appropriate to denser regions. SNE searches

for a value of σi that produces a Pi with a perplexity specified by the user. The

perplexity is associated with the number of neighbours of a point xi and is defined

according to equation 4.4 (Van Der Maaten and Hinton, 2008; Hinton and Roweis,

2002).

Perp(Pi) = 2H(Pi) (4.4)

H(Pi) corresponds to Shannon’s entropy measured in bits, as seen in equation

4.5.

H(Pi) =−∑
j

p j|i log2 p j|i (4.5)

The gradient of equation 4.3 — cost function — allows the minimisation of C

and the determination of the best low-dimensional representation of xi. The gradi-

ent of the cost function is obtained with gradient descent method and is shown in
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equation 4.6 (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

∇C =
δC
δyi

= 2∑
j
(p j|i−q j|i + pi| j−qi| j)(yi− y j) (4.6)

The procedure of minimisations shown in 4.7 starts with a random mapping

λ (t−1). An exponentially decaying α(t)(λ (t−1)−λ (t−2)) is added to accelerate the

calculation (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

λ
(t) = λ

(t−1)+n
δC
δλ

+α(t)(λ (t−1)−λ
(t−2)) (4.7)

Moreover, the two multipliers n and α(t) also feature on the iterative operation.

With the former representing the learning rate or step size and the latter indicating

the moment of random noise term at iteration t. The output corresponds to λ (t)

when t reaches the maximum number of iterations defined before the calculation

starts (Van Der Maaten and Hinton, 2008; Hinton and Roweis, 2002).

4.2.4.2 t-SNE

SNE is capable of reproducing high-dimensional structures in analogue low-

dimensional representations. Nevertheless, the approach suffers from two main

problems: the lack of symmetry of the cost function — KL divergence — and

the so-called ”crowding problem” (Van Der Maaten and Hinton, 2008). The latter

refers to difficulties associated with representing high-dimensional distances in a

lower dimensionality map, i.e. if small distances are accurately represented on the

map, medium or longer distances might not be reproduced as well (Van Der Maaten

and Hinton, 2008).



4.2. Methods 106

A new method called t-distributed stochastic neighbor embedding (t-SNE) has

sorted both these issues from SNE with a symmetric cost function and using a

Student t-distribution for low-dimensional representations (Van Der Maaten and

Hinton, 2008). For t-SNE high-dimensional and low-dimensional probabilities are

described, respectively according to equations 4.8 and 4.9 (Van Der Maaten and

Hinton, 2008).

pi| j =
e

−||yi− y j||2

2σ2

∑k 6=l e
−||yk− yl||2

2σ2

(4.8)

qi| j =
(1+ ||yi− y j||2)−1

∑k 6=l(1+ ||yk− yl||2)−1 (4.9)

The cost function — KL divergence — and the minimisation (gradient) of this

can then be written accordingly, as shown in equations 4.10 and 4.11.

C = KL(P||Q) = ∑
i

∑
j

pi| j log
pi| j
qi| j

(4.10)

∇C =
δC
δyi

= 4∑
j
(pi j−qi j)(yi− y j)(1+ ||yi− y j||2)−1 (4.11)

t-SNE has been successfully applied to a wide variety of research problems,

including in the biomedical sciences (Wong et al., 2015; McDonnell et al., 2016;

Platzer, 2013; Taskesen and Reinders, 2016). A case to note is the work of Birjand-

talab et al. (2016), that applied t-SNE in a seizure detection study.

This chapter shows the application of t-SNE to the six variables collected from
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the two channels, comprising multifractal spectra width, multifractal spectra height,

and δ -power — from all subjects. For such a procedure, the perplexity was defined

as 40 and the maximum number of iterations gradient was set to 1000.

The aim of this procedure is to reduce the dimensionality of the features ob-

tained from sleep EEG — for both Fpz-Cz and Pz-Oz channels — and to look for

patterns for the different sleep stages that should suggest that the outcomes of the

approach proposed in chapter 3 would be susceptible to sleep states. If this turn out

to be the case, the suggested approach could be exploited in the development of an

automatic (or semi-automatic) sleep staging system.

4.3 Results

Figure 4.1 shows the variation of the multifractal spectra width (B), the multifractal

spectra height (C), and power in δ -band for the different sleep stages shown by the

hypnogram (A) for patient ’ST7011J’ and both EEG channels: Fpz-Cz and Pz-Oz.

The violin plots show the distribution of ∆α†, ∆ f †, and power in the δ band

(Fig. 4.1 E-J). A clear drift in the ∆α† distribution can be observed that slowly

changes from awake to REM to S1, S2, S3 and S4 (Fig. 4.1 E and H). This is in

contrast to power in the δ band, where the distributions between awake, REM, and

S1 are very similar, and then become highly variable in S2, S3 and S4 (Fig. 4.1 G

and J).

A repeated measures ANOVA test was applied to the multifractal met-

rics in both channels to verify whether these provide statistically signifi-

cant information about the sleep stages. The predicting model evaluated
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Table 4.1: F-values and p-values obtained from repeated measures ANOVA hypothesis test
for ∆α† and ∆ f † on Fpz-Cz and Pz-Oz channels of polysomnography sleep
EEG. Both ∆α† and ∆ f † show statistically significant differences on FPz-Cz
and Pz-Oz channels, suggesting that multifractal measures in long term EEG
can be affected by the state of the patient and that these metrics could be em-
ployed to devise some (semi) automatic sleep staging method. ** - p < 0.01 * -
p < 0.05 .

∆α† ∆ f †

Fpz-Cz F = 16.310 p = 0.016∗ F = 29.320 p = 0.006∗∗

Pz-Oz F = 7.938 p = 0.048∗ F = 19.310 p = 0.012∗

is described by the formula: Sleep stage ∼ Multi f ractal measure ∗ Time +

Error(Patient/(Multi f ractal measure ∗ Time)). The test reports statistically sig-

nificant differences for both ∆α† and ∆ f † across different sleep stages. F-values

and p-values for every channel and metric are shown in table 4.1.

Fig 4.2 shows the projection into a two-dimensional space. Note that the infor-

mation about the sleep stages was not given to the tSNE algorithm. The projection

shows one big cluster and two smaller clusters. When applying the information

about the sleep stages, it becomes clear that the two smaller clusters are awake

states, whereas the one big cluster shows a progression from REM to S4. Note that

there are also data points from the awake state in this cluster.

4.4 Discussion

Results from this preliminary evaluation on how multifractal metrics are affected by

sleep stages suggest that sleep stages do affect multifractal markers. The outcome

is important because it emphasises that future applications of multifractal analysis

to EEG signals should take sleep phenomena into account when designing experi-
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ments and solutions.

Distributions of multifractal spectra width show an increase towards deeper

sleep phases, probably due the appearance of new singularities — related to the

sleep stage — in the signal. The variation is also similar to the one exhibited by

power in δ -band. In contrast, the multifractal spectra height does not vary with

sleep stage.

The output exhibited by the two-dimensional representation of the measures

with t-SNE reinforces the results show in figure 4.1, suggesting some continuity of

sleep stages. There are also points of wake stage scattered all over the figure. Future

work will need to determine if those data points are simply mislabeled, or in any

way closer to sleep states. If so, multifractal measures may be useful in devising a

classifier for sleep stages in EEG.

The sleep rhythms show different spatial distributions and so different mon-

tages and referencing could impact the multifractal analysis and indeed sleep inter-

pretation. American Academy of Sleep Medicine therefore recommends standard

montages and referencing (American Academy of Sleep Medicine, 2007). These

were used in this study but it is possible that greater information could be obtained

with different montages.
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Figure 4.1: Impact of sleep stages on multifractal markers. The figure features measures
performed on a scalp EEG recorded in a polysomnography in two montages
Fpz-Cz and Pz-Oz for patient ST7011J. (A) Hypnogram with sleep phases
marked by a specialist. (B) Variation of the Multifractal spectra width in time.
(C) Variation of the Multifractal spectra height in time. (D) Variation of the
power of the δ band in time. (E, F, G, H, I, and J) Violin plots of the estimated
values of ∆α† (E, H), ∆ f † (F, I), and P(δ ) (G, J) for both Fpz-Cz (E, F, G)
and Pz-Oz (H, I, J) montages. At visual inspection, ∆α† presents a behaviour
similar to P(δ ), following the variations of the hypnogram. The violin plots
show an increase in the measures towards more advanced sleep phases for both
∆α† and P(δ ), in both montages.



4.4. Discussion 111

−50

−25

0

25

−50 −25 0 25 50

t−SNE1

t−
S

N
E

2

Sleep stages
REM

S1

S2

S3

S4

Wake

Figure 4.2: Dimensionality reduction with t-distributed stochastic neighbor embedding of
the ∆α†, ∆ f †, and P(δ ) variables for both Fpz-Cz and Pz-Oz channels in a two-
dimensional space. The figure shows all sleep stages. It is possible to observe
that the measures provide information about the sleep stage that could be used
in order to devise a classifier.



Chapter 5

Do seizures have a characteristic time

for detection?

5.1 Introduction

The parameters of analysis, namely sampling rate and epoch size, are also impor-

tant in evaluating putative methods for seizure detection/prediction. The latter will

depend on the chosen methods of analysis and choice for the study; however, the

former relies on the data acquisition, which in the case of epilepsy is often decided

in a clinical context.

The seizure detection/prediction literature is rather diverse when it comes to the

characteristics of the analysed data. Regarding the source of data which has been the

subject of studies on prediction/detection studies, it can be divided in three different

groups. Most of the data comes from intracranial EEG (iEEG) (Le Van Quyen

et al., 2005; Harrison et al., 2005a,b; Feldwisch-Drentrup et al., 2011; Takahashi

et al., 2012; Williamson et al., 2012; Naro et al., 2014; Sharafat and Nesaei, 2015;
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Eftekhar et al., 2014; Zhang et al., 2014, 2015; Zheng et al., 2014; Niknazar and

Nasrabadi, 2015).

The second group is composed of data from scalp EEG, and features a signif-

icant amount of different studies (Protopopescu et al., 2001; Drury et al., 2003; Li

et al., 2006; Aksenova et al., 2007; James and Gupta, 2009; Wang et al., 2011).

The third and smallest group comprises scalp + intracranial recordings (not

acquired from the same patient and/or simultaneously) (Navarro et al., 2002;

Hyunchul Kim and Rosen, 2010; Cheng-Yi Chiang et al., 2011; Bandarabadi et al.,

2012; Chang et al., 2012).

Different sources of data can affect the capacity of recording epileptiform ac-

tivity and be more (scalp) or less (intracranial) susceptible to noise. Moreover, of

interest to this thesis is the study by Zhang et al. (2015) that applied multifractal

analysis to seizure detection and suggests that such a technique can be successfully

employed into seizure detection.

The greater number of intracranial EEG data reflects the technique’s higher

sensitivity and lower noise compared to scalp recordings and serves to localise

seizures when non-invasive methodologies are not able to do so. Intracranial EEG

are often obtained at higher sampling rates, up to 5000 Hz.

Such difference in parameters of analysis impose difficulties in comparing dif-

ferent detection/prediction approaches. Moreover, a question remains unanswered:

are there optimal sampling frequency and epoch length to detect focal epileptic

seizures?

This chapter aims to explore this issue, comparing the impact of different



5.2. Methods 114

Table 5.1: Duration of the epileptic seizure evaluated in each patient.

Patient Seizure duration (s)
I001 P005 D01 70.50
Study 040 19.65
I001 P010 D01 39.62
I001 P034 D01 28.31

choices for epoch sizes and distinct sampling rates on multifractal analysis metrics.

5.2 Methods

This analysis consisted of evaluating the sensitivity of multifractal metrics to differ-

ent sets of parameters of the signal, namely epoch sizes and sampling rates.

5.2.1 Data

Intracranial EEG from four subjects were retrieved from the ieeg.org reposi-

tory (http://www.ieeg.org/) (Wagenaar et al., 2013): I001 P005 D01,

I001 P034 D01, ’I001 P010 D01’, and Study 040. These subjects were chosen due

to the high sampling rate of their recordings (5 kHz), so the impact of sampling fre-

quency on multifractal properties could be evaluated. A single seizure was obtained

for every patient.

A 30-minute segment around the seizure was evaluated in each patient for

further analysis. The multifractal analysis was performed on channels that were

marked as seizure onset channels by a specialist. The duration of the epileptic

seizure of each patient is shown in table 5.1.

The anonymised data analysed in this study were recorded in patients under-

going evaluation for epilepsy surgery. The iEEG.org portal provided EEG data

http://www.ieeg.org/
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and ethical approval for analysing the data was provided by Mayo Clinic IRB

(Brinkmann et al., 2016, 2009).

5.2.2 Downsampling

In order to evaluate the effect of different sampling frequencies, the original signals

were downsampled by removing data points. Signals were downsampled to the

following sampling frequencies: 4000 Hz, 3000 Hz, 2500 Hz, 2000 Hz, 1000 Hz,

800 Hz, 750 Hz, 600 Hz, 500 Hz, 400 Hz, 300 Hz, and 250Hz.

5.2.3 Multifractal analysis

Finally, the impact of the multifractal estimation parameters in the characterisation

of a seizure was evaluated. The multifractal analysis approach presented in chapter

3 was applied to these original and downsampled versions. For this analysis, down-

sampled versions were analysed with epochs of different sizes.

The Chhabra-Jensen method was applied to the recordings that were epoch-

wise standardised and sigmoid transformed (i.e. the established pipeline introduced

in 3). Each epoch featured different sizes (1024 points, 2048 points, 4096 points,

8192 points, and 16384 points), and different durations — depending on the down-

sampled frequency.

5.2.4 Cohen’s D effect size

The effect of the pair of parameters — sampling rate and epoch size — over the

sensitivity of multifractal metrics to epileptic seizures was evaluated with Cohen’s

D measure in equation 5.1.

The multifractal spectrum width (∆α†) during the seizure was compared to the



5.3. Results 116

background as the effect size (Cohens D) between the ictal and interictal periods:

D =
< ∆α

†
ictal >−< ∆α

†
interictal >

s(∆α
†
interictal)

(5.1)

where < ∆α† > represents the mean and s denotes standard deviation. Higher

values of Cohens D would show a higher sensitivity to epileptic seizure detection

and a variation of such values for different sampling rates and epoch sizes could

suggest optimal parameters for seizure detection — and maybe a characteristic time.

5.3 Results

The variation of the multifractal spectrum width ∆α† for different combinations

of epoch sizes and sampling frequencies for patient I001 P005 D01 is shown in

figure 5.1 (A). On visual inspection, it is clear that there are some combinations of

epoch size and sampling frequency that show a clear increase of ∆α† during the

ictal period (marked by the red lines).

To quantify this effect, figure 5.1 (B) shows the Cohen’s effect size D of the

ictal vs. interictal ∆α† distributions plotted against epoch duration (in seconds). In

this plot, 15 different sampling frequencies were included, and also data from three

different EEG channels (all in the seizure onset zone).

A peak in D can be seen at about 1 second (across all sampling frequencies),

indicating that the change in ∆α† during a seizure can be best captured when using

1-second epochs (regardless of sampling frequency, or number of samples). This

effect was not found for the sampling frequency or epoch length separately.

Other patients have shown similar results, as can be seen in figures 5.2, 5.3, and



5.4. Sampling rate invariance 117

5.4. Nevertheless, some of these individuals show peaks for D at different epoch

durations for either some specific channels, e.g. figure 5.3, or for all channels in

the seizure onset zone, e.g. figure 5.4. This feature is more pronounced for patients

shown in figures 5.1 and 5.2.

5.4 Sampling rate invariance

A visual inspection of Figure 5.1 also suggests that Cohen’s D is not directly af-

fected by the sampling, i.e. is invariant to sampling rate. A more careful evaluation

suggests that such a property is indeed true.

Figure 5.5 shows the distribution of Cohen’s D values for a range of frequen-

cies. It is possible to observe, that for the interval between 250 Hz and 5000 Hz, the

value of Cohen’s D is constant across different sampling frequencies. Moreover,

the colour scales show that some time epoch durations feature higher values for D -

across multiple sampling frequencies.

A hypothesis test reports non-significant differences between the Cohen’s D

values obtained for different sampling frequencies. The ANOVA model reports

F− value = 1.213 and p = 0.272.

5.5 Discussion

This analysis highlighted the importance of choosing an adequate epoch size given

a sampling frequency, in order to study events such as epileptic seizures. Moreover,

this study has also shown that these features are invariant to sampling frequencies

(in a given range between 250 Hz and 5000 Hz) and specific optimal time scales
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Figure 5.1: Influence of EEG sampling frequency and epoch length on multifractal spec-
trum width around and during an epileptic seizure. The data used for this fig-
ure was obtained from subject ’I001 P005 D01’ — channels 1, 2, and 3. (A)
Multifractal spectrum width (∆α†) in a 15-minute intracranial EEG segment
containing one seizure (onset and offset marked by the red lines). The signal
was initially sampled at 5000 Hz. Each column shows ∆α† for 5000 Hz, 2500
Hz, 500 Hz and 100 Hz sampling rates. Different epoch sizes were used rang-
ing from 1024 to 16384 samples (in each row). (B) Relationship of effect size
D (between the interictal and ictal distribution of ∆α†) and epoch duration in
seconds (obtained by dividing the number of sampling points by the sampling
rate of the signal). Channel 1 is the data shown in (A). The solid line represents
a LOESS curve fitting of the data points, with formula y∼ x.



5.5. Discussion 119

−0.5

0.0

0.5

1.0

0 1 2 3 4
Time (s)

E
ffe

ct
 S

iz
e

Sampling Rate (Hz)
250
300
400
500
600
750
800
1000
1200
1500
2000
2500
3000
4000
5000

Channel
1
2
3
4
43
44
45

Figure 5.2: Relationship of effect size D (between the interictal and ictal distribution of
∆α†) and epoch duration in seconds (obtained by dividing the number of sam-
pling points by the sampling rate of the signal). The data used for this figure
was obtained from subject Study 040 — channels 1-4 and 43-45. The solid line
represents a LOESS curve fitting of the data points, with formula y∼ x.

are featured across sampling frequencies. However, this study was based on the

analysis of ictal vs. interictal epochs, i.e. a hard separation that may not represent

continuous phenomena accurately.

Future work should take into account that multifractal properties may be

continuously changing over time, and an explicitly time-based approach may be

needed. Along similar lines, this finding of an optimal timescale may be due to

the non-stationary nature of the multifractal properties. Further theoretical work

may have to develop a temporally-resolved multifractal estimator, in order to fully

understand this aspect.

A fundamental observation in this work is that optimal time scales may exist
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Figure 5.3: Relationship of effect size D (between the interictal and ictal distribution of
∆α†) and epoch duration in seconds (obtained by dividing the number of sam-
pling points by the sampling rate of the signal). The data used for this figure
was obtained from subject ’I001 P010 D01’ — channels 3, 5, and 6. The solid
line represents a LOESS curve fitting of the data points, with formula y∼ x.

for specific physiological processes (such as epileptic seizures) in terms of their

multifractal dynamics. This result suggests that, at least in an epoch-based study,

for any given epileptic seizure in a given patient, the variety of scaling exponents

(∆α) will depend on the length of the epoch analysed. This is further supported by

similar findings in monofractal analysis (Eke et al. (2002)). The implications of this

observation are that certain scaling exponents will only exist in specific timescales

and the diversity of scaling exponents will depend on the duration of the epoch.

These results suggest the potential need for tuning, i.e. potentially having to find

the characteristic time for every studied phenomenon. If this is indeed the case, a

temporally resolved (not epoch-based) multifractal method should be developed in
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Figure 5.4: Relationship of effect size D (between the interictal and ictal distribution of
∆α†) and epoch duration in seconds (obtained by dividing the number of sam-
pling points by the sampling rate of the signal). The data used for this figure
was obtained from subject ’I001 P034 D01’ — channels 13 and 14. The solid
line represents a LOESS curve fitting of the data points, with formula y∼ x.

future to adequately characterise brain dynamics.

The occurrence of peaks for D at different epoch durations suggest that patients

with distinct types of seizure could exhibit other characteristic times for detection

— again, this would be connected to the dynamics of onset and propagation of

the epileptic seizure. A similar rationale would be valid for different channels im-

planted to a same patient; the dynamics of recruitment would follow local patterns.

It is important to highlight that channels not obviously involved in the seizures may

nevertheless carry information about the epileptic seizures as part of a wider ictal

network (Sinha et al., 2017).
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sampling frequency in the range between 250 Hz and 5000 Hz. Moreover, the
colour scale shows that some timescales feature higher values for D in multiple
sampling frequencies.



Chapter 6

How to classify focal epileptic

seizures

6.1 Introduction

Over the last decades, different methods for seizure detection/prediction have been

proposed. Such approaches employ a range of different techniques in order to make

inferences on the occurrence of epileptic seizures from information contained in

brain signals, e.g. intracranial EEG (Mormann et al., 2007; Freestone et al., 2015;

Kuhlmann et al., 2018b). Most of these methods have been applied to small groups

of patients though.

Since the appearance of seizure detection studies in literature, only one clin-

ical trial on seizure prediction has been conducted (Cook et al., 2013, 2016); in

this study, nine patients underwent the whole course of the trial (Kuhlmann et al.,

2018b). The system consisted of implanted electrodes connected to an advisory

system with indicating lights — that reported the risk of an epileptic seizure onset.
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This algorithm used by the device was developed for every individual patient in

order to account for patient specific patterns and changes in the signal (Kuhlmann

et al., 2018b).

The clinical trial resulted in good outcomes for three of the nine patients with

sensitivities of 86% and 100%; however, the other six individuals have shown lower

sensitivities — ranging from 54% to 71% (Kuhlmann et al., 2018b). Further studies

on the occurrence of seizures are still necessary to help determine why some pa-

tients do not show desirable results with the advisory system; such knowledge could

help in the understanding and classification of epilepsy (Kuhlmann et al., 2018b).

However, some factors have already been shown to confound seizure prediction.

These features are: high frequency of seizures, temporal variations in the durations

of seizures, and multimodal seizure durations and intervals between events (Cook

et al., 2014, 2016; Kuhlmann et al., 2018b).

These issues seem to arise from the fact that the seizure onset — and subse-

quent dynamics — is a complex phenomenon, i.e. does not feature monomorphic

properties (Grinenko et al., 2018). Moreover, epileptic seizures seem to exhibit dif-

ferent patterns and properties in both intra- and inter- patient comparisons (Cook

et al., 2016; Kuhlmann et al., 2018b; Schroeder et al., 2019). Essentially, there

might be different types of seizures, exhibiting different dynamics, even within the

same patient. Such a difference can be explained by both the ictal onset zone and

brain network in which the seizure spreads across the brain (Schroeder et al., 2019).

The existence of distinct types of seizures implies that there may be a method

of classifying such episodes in groups — that could provide insights into epilepto-
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genesis and epilepsies. Machine learning techniques have been extensively applied

to comparisons of signals/time series and, in some cases, to medical applications

(De Fauw et al., 2018). Such techniques could be applied to compare epileptic

seizures and to devise an objective classification of such episodes.

However, according to Kuhlmann et al. (2018b), “machine learning does not

readily reveal which physiological aspects underlie the predictive characteristics

of EEG”, as previously applied to some seizure prediction/detection studies (Cook

et al., 2016; Kuhlmann et al., 2018b). Nevertheless, if explored with care, these

techniques can be useful to extract information from seizure data, providing insights

on a putative classification scheme of focal epileptic seizures.

An example of such an application was proposed by Schroeder et al. (2019). In

this study the authors applied Dynamic Time Warping to classify epileptic seizures

based on their network of propagation.

This chapter presents an approach to classify epileptic seizures based on MF

methods introduced in chapter 3, Dynamic Time Warping and hierarchical cluster-

ing.

6.2 Methods

This section describes the approach developed in this study to classify focal epilep-

tic seizure with machine learning techniques for dimensionality reduction and clus-

tering.
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Table 6.1: List of patients featuring number of channels and seizures. This study evaluated
a total of 137 epileptic seizures across all patients.

Patient # of channels # of seizures Surgical outcome
Study 004-2 56 3 Bad
Study 016 64 7 Bad
Study 019 96 36 Bad
Study 020 56 8 Bad
Study 021 108 13 Good
Study 022 56 7 Bad
Study 023 88 4 Good
Study 026 96 20 Good
Study 028 96 9 Good
Study 029 64 3 Bad
Study 033 128 17 Bad
Study 038 88 10 Good

6.2.1 Data

Intracranial EEG segments from 12 subjects were retrieved from the ieeg.org reposi-

tory (http://www.ieeg.org/) (Wagenaar et al., 2013). The segments contain

a seizure each and start 60 seconds before seizure onset, finishing 10 seconds after.

Table 6.1 shows the number of seizures and channels for each patient.

Seizures with artefacts were not included in the analysis. The twelve patients

had 137 epileptic seizures selected in total. These segments feature various dura-

tions, from seconds to minutes.

6.2.2 Multifractal analysis

The multifractal analysis approach presented in chapter 3 was applied to these in-

tracranial EEG data. The Chhabra-Jensen method was applied to time data that was

epoch-wise standardised and sigmoid transformed (i.e. the established pipeline in-

troduced in chapter 3). Each epoch was 2.048 seconds long, as the epochs had 1024

http://www.ieeg.org/
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points sampling, as sampling frequency of the data was 500 Hz.

6.2.3 Principal components analysis

Principal Components Analysis (PCA) is a method often used to extract low-

dimensional subsets of features from high-dimensional data (James et al., 2013).

Given a vector X of p variables X = {x1,x2, ...,xp}, it may be challenging to study

the variances and correlations of p - unless this vector has a very simple structure

(Jolliffe, 2002).

One can alternatively look for the elements of larger variance. Principal com-

ponents analysis aims to describe the data with a linear function α ′1X of X , where

α1 is a vector of p constants {α11,α12, ...,α1p}. α ′1X , in order to maximise the

inherited variance. α ′1X is the first component, PC1 (Jolliffe, 2002).

α
′
1X = α11x1 +α12x2 + ...+α1pxp =

p

∑
j=1

α1 jx j (6.1)

The next step consists of finding another function uncorrelated with α ′1X and

with maximum variance, α ′2X . The following steps are similar until the k-th itera-

tion and the linear function α ′kX that must be uncorrelated with α ′1X ,α ′2X , ...,α ′k−1X

(Jolliffe, 2002). A two-dimensional example is shown in figure 6.1. The green line

(PC1) represents the direction of greatest variance and the projection of the data

points in the function α ′1X will represent the first component’s scores (James et al.,

2013).

In this study, PCA was applied to reduce the dimensionality of the multifractal

spectra width obtained for each of the EEG channels.
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Figure 6.1: Illustration of Principal Component Analysis in a two-dimensional case. PC1
and PC2 represent the functions α ′1X and α ′2X , respectively

6.2.4 Dynamic time warping

It has been previously shown that Euclidean distance is not an adequate measure

to compare differences between two time series (Petitjean et al., 2011; Sakoe and

Chiba, 1978). In order to avoid such limitations, a new method — called Dynamic

Time Warping (DTW) — has been developed (Petitjean et al., 2011; Sakoe and

Chiba, 1978; Berndt and Clifford, 1994).

Given two sequences A =< a1, ...,ai, ...,aI > and B =< b1, ...,b j, ...,bJ >, and
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a distance between elements (or coordinates) δ , it is possible to define the Euclidean

distance of two sequences as shown in equation 6.2 (Petitjean et al., 2011; Sakoe and

Chiba, 1978; Berndt and Clifford, 1994). This distance, however, is not capable of

capturing flexible similarities (Petitjean et al., 2011; Sakoe and Chiba, 1978; Berndt

and Clifford, 1994).

D(A,B) =
√

δ (a1,b1)2 + ...+δ (ai,b j)2 + ...+δ (aI,bJ)2 (6.2)

DTW tries to solve this limitation by finding an optimal alignment (or cou-

pling) between the two sequences by obtaining the dissimilarity according to equa-

tion 6.3, i.e. the approach tries to bypass the timing differences between the two

sequences by matching them on a plane shown in figure 6.3 (Petitjean et al., 2011;

Sakoe and Chiba, 1978; Berndt and Clifford, 1994).

The timing differences between the points in sequences A and B are described

by C = (i, j), that constitutes a series shown in equation 6.3. Such a series cor-

responds to a Function F that approximately maps sequence A onto sequence B.

For the case of two identical sequences, the warping function coincides with the

diagonal i = j and consists of the canonical Euclidean distance (Petitjean et al.,

2011; Sakoe and Chiba, 1978; Berndt and Clifford, 1994). Figure 6.3 illustrates the

differences between Euclidean distance and DTW.

F =C1,C2, ...,Ck, ...,CK : Ck = (i(k), j(k)) (6.3)

DTW has been initially developed to solve problems in speech recognition
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Figure 6.2: Warping function C(k) (red line) for optimal alignment of the sequences A and
B. The devised warping functions follows the boundary conditions established
— these are indicated by the lines J, as well as the monotonicity (subsequent
values must be equal or bigger than previous measure) and continuity restric-
tions. The blue line indicates a pair-wise comparison between sequences A and
B, i.e. without Dynamic Time Warping approach. The values of C(k) indicate
the warping of the sequence before obtaining the difference between the two
sequences. Figure adapted from Sakoe and Chiba (1978).

methods. These applications used to feature inaccuracies as words can be pro-

nounced at different paces. The technique was established under two main condi-

tions:

Condition 1: The two segments feature similar sampling rates. However, these

segments can, and at times do, feature distinct number of elements (length) (Sakoe

and Chiba, 1978).

Condition 2: The researchers did not posses any a priori knowledge on seg-

ments or on embodied information and its distribution across the recording (Sakoe
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A) B)

Euclidean distance Dynamic time warping

Figure 6.3: Euclidean distance (A) and Dynamic time warping (DTW) (B): Two distinct
methods of estimation of similarities between two time series. DTW consists of
warping the time series in order to obtain an optimal alignment of both record-
ings and then calculating the distance between both, whereas traditional Eu-
clidean distance just compares each of the elements in sequences in a pair-wise
fashion. Moreover, DTW coincides with Euclidean distance if the two record-
ings already exhibit optimal alignment.

and Chiba, 1978).

In order to optimise the computational solution of this problem, some restric-

tions are imposed for the warping function. Besides having boundary conditions

defining the beginning and end points (C1 =C(1,1) and CK = (I,J), where K is the

length — number of elements — of the warping series), the warping function has

two main restrictions. It must also be a monotonic function, i.e., ai−1 ≤ ai ∀a ∈ A

and b j−1 ≤ b j ∀b ∈ B; and the function must show continuity conditions accord-

ing to: ai−ai−1 ≤ 1 ∀a ∈ A and b j−bi−1 ≤ 1 ∀b ∈ B. These conditions result

in equation 6.4 (Sakoe and Chiba, 1978).

D(Ai,B j) = δ (ai,a j)+min


D(Ai−1,B j−1)

D(Ai,B j−1)

D(Ai−1,B j)


(6.4)
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Figure 6.4 shows the previously mentioned restrictions to the warping function.

An example of use of DTW for two distinct time series is shown in figure 6.5. In this

study, DTW has been applied to the first component of multifractal spectra width

from the set of epileptic seizures described earlier in this chapter.

Sequence A
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e
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A) B) C)

Figure 6.4: Restrictions to optimise DTW algorithm. A) Boundary conditions (C1 =
C(1,1) and CK = (I,J), where K is the length - number of elements - of
the warping series). B) Continuity condition (ai − ai−1 ≤ 1 ∀a ∈ A and
b j− bi−1 ≤ 1 ∀b ∈ B). C) Monotonicity condition (ai−1 ≤ ai ∀a ∈ A and
b j−1 ≤ b j ∀b ∈ B).

6.2.5 Distance matrix

A distance matrix is a square matrix that shows the pair-wise distances, in most ap-

plications with Euclidean distance (Gentle, 2007), of a set of elements. Considering

a set of points X = {x1,x2,x3,x4}, according to 6.2, the Euclidean distance by the

points in the set X will be given by equation 6.5.

mi j = m(xi,x j) =
√

(x j− xi)2 (6.5)
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Figure 6.5: Warping function C (grey line) for optimal alignment of the sequences A and
B. The devised warping functions follows the boundary conditions established,
as well as the monotonicity and continuity restrictions.

A matrix Mi j can also be generated from the pair-wise distances between all

the elements of the set and has the from shown in the matrix below.

M =



m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55


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Figure 6.6 shows an example of calculation of a distance matrix with a Eu-

clidean metric. However, a similar array to the distance matrix can also be built

with different metrics, such as DTW. This chapter reports on results of dissimilarity

matrices built from DTW of first components of multifractal spectra width.

Distance Matrix

Figure 6.6: Distance matrix. Each element of the matrix shows a pair-wise distance
between elements of the set of the figures in the left. Adapted from
arXiv:1502.07541v2 (Dokmanic et al., 2015).

6.2.6 Hierarchical clustering

Hierarchical clustering analysis (HCA) is a class of approaches that look to find

classes in data and to evaluate their ranking. The outcome of the analysis consists

of a dendrogram that shows how smaller structures merge into bigger clusters ac-

cording to different similarity levels (Camastra and Vinciarelli, 2015).

HCAs can be classified into two different groups: the agglomerative hierarchi-

cal clustering methods — that consists of forming smaller clusters and subsequently

merging them, and the divisive clustering approaches — that consist of starting with

all elements belonging to a single cluster that is subsequently divided in smaller

classes (Berndt and Clifford, 1994).
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For the agglomerative hierarchical clustering methods, the algorithm consists

of considering all the n elements as individual clusters and obtaining a dissimilarity

measure, such as Euclidean distance, for all the n(n−1)/2 pair-wise combinations

(James et al., 2013).

The smallest distance between two of the clusters amongst all pair-wise com-

parisons is found and these are connected at a height equal to the distance between

them. Then the new set of pair-wise dissimilarities is obtained. The procedure is

repeated until all clusters are connected (James et al., 2013).

Linkage is the name attributed to the process of obtaining the dissimilarity be-

tween cluster groups, i.e. between the new connected branch and the other clusters.

There are four main types of linkage: complete — that computes all the dissimilar-

ities between two clusters A and B and chooses the largest of these, single — that

is similar to complete but chooses the smallest dissimilarity, average of the dissim-

ilarities of the clusters, and centroid — that is given by the dissimilarities between

the centroids of the clusters (James et al., 2013; Berndt and Clifford, 1994).

In this study, the complete-linkage type was applied to a dissimilarity matrix

obtained with DTW of the first component of the multifractal spectra width of ictal

segments from all patients.

6.2.7 Seizure classification approach

This section describes the procedure for deriving the focal seizures hierarchical

clusters. The steps described below apply the techniques previously described in

this chapter.
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• The EEG signal montage is changed to bipolar to mitigate potential effects in

case of artefacts in the reference electrode in the final results.

• Seizure clips starting 60 seconds before the onset and finishing 10 seconds af-

ter the termination have their multifractal spectra widths calculated according

to the procedure described in chapter 3.

• The above procedures result in spectra widths for all channels of the original

EEG signals.

• The spectral widths are standardised to feature a zero mean and standard de-

viation of 1 with z-scores.

• PCA is applied to the standardised values of the spectral widths.

• The principal components scores are compared with DTW and a dissimilarity

matrix is obtained.

• The hierarchical cluster for the focal seizures is then derived from the dissim-

ilarity matrix.

• A similar procedure is performed with line length measure, also described in

chapter 3, in order to compare multifractal measures to linear approaches.

6.3 Results

6.3.1 How many principal components are necessary?

One of the challenges involved in applying dimensionality reduction to data, and,

in this case, in principal component analysis, is to choose how many variables will
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describe the evaluated data.

The number of principal components employed to describe the phenomenon

changes from application to application and the according to the nature of the data

analysed.

In order to evaluate the number of principal components a scree plot for ev-

ery patient was plotted. Figure 6.7 shows how much information is contained in

every principal component for the first ten components. The aim is to minimise

the amount of variables and to increase the information contained in the reduced

dimensionality data.

On visual inspection, figure 6.7 shows that the first component features enough

variance — illustrated by the sudden drop. Only patient id ’Study 022’ shows a

smoother decay in the relevance of the subsequent principal components.

6.3.2 First components

The first components show the projection of the data in the direction of maximum

variance. In this chapter, only the first component was considered, given that it

comprehends most of the variance - as seen in figure 6.7.

Figure 6.8 shows the first components of both MF and LL measures for all

seizures across patients, and the duration of each seizure epoch. MF measures show

different patterns to the ones exhibited by LL measures.

Moreover, differently from LL measures, MF measures of distinct seizures

from the same patient show different features. For LL measures they often look

similar and feature a peak after the seizure onset.
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Figure 6.7: How much variance the principal components feature. The scree plots show
the amount of variance explained by each of the ten first components. The first
component comprehends most of the variance.

6.3.3 Dissimilarity matrix

Dissimilarity matrices were estimated from the principal components of both MF

and LL measures of all seizures with DTW. The matrices show smaller differences

between seizures of different patients, suggesting a cluster structure for the data.

Moreover, LL measures show more pronounced differences between seizures than

the equivalent MF time series.
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Figure 6.8: First components in A MF and B LL measures. The figure shows the variation
of the first component in time for all 12 patients. The black vertical line marks
the seizure onset — 60 seconds after the beginning of the segment. Differently
from MF measures, LL curves tend to show differences late after the seizure
onset.

6.3.4 Seizure clusters

A hierarchical cluster structure was obtained from the dissimilarity matrix for the

first components of the epileptic seizures. The dendrogram showing the structure is

available in figure 6.10. The hierarchical cluster shows an outlier that branches out

from the remaining branches above the height of 6500. Overall, the other elements

split at lower heights — with a maximum of below 2500.

When it comes to bad surgical outcome patients, their seizures seem, on vi-
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Figure 6.9: Dissimilarity matrices in A) MF and B) LL measures obtained with dynamic
time warping (DTW). The two dissimilarity matrices are different and suggest
that MF measures provide additional information on the similarities between
different seizures when compared to linear metrics such as LL.

sual inspection, spread across the whole dendrogram. However, the first half of

the dendrogram shows a higher concentration of seizures from bad outcome cases.

Figure 6.11 exhibits a zoomed plot of the dendrogram with labels coloured accord-

ing to the surgical outcome cases — with blue and red for good and bad outcomes,

respectively.

In order to evaluate how the different seizures group into classes, the hierar-

chical structure and the dendrogram must be cut at a specific height. The choice of

height in which the dendrogram is cut varies according to the application and the

nature of the data analysed.

In this chapter, four different levels for dendrogram cutting are shown (∼1000,

∼700, ∼550, and, ∼400) and the final height value is chosen according to the sim-

ilarity between the curves in each seizure group. The curves are warped into a

common seizure that belongs to the group with DTW.

At the first height level — ∼1000 — the dendrogram features 5 groups of
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Figure 6.10: Hierarchical cluster for all seizures obtained with dynamic time warping. The
dendrogram only features one outlier (033-11).
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Figure 6.11: Hierarchical cluster for all seizures obtained with dynamic time warping and
surgical outcomes. Bad surgical outcome patients seem to feature seizure in
different branches; however, some areas of the dendrogram show a higher
concentration of those seizures.
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seizures, as seen in figure 6.12. One of these groups features a single seizure only

— the outlier mentioned earlier. Overall, the curves in the groups suggest that a

more refined separation would provide better results.

At the second height level — ∼700 — the dendrogram features 9 groups of

seizures, as seen in figure 6.13 — with three single-seizure groups. The curves

show a more refined aspect when compared to the previous plots; however, there is

still room to make some of them (blue and purple) less noisy.

The next level — ∼550 — holds yet another improvement to the aspect of the

curves, as shown by 6.14. Although the dark purple group still features a not defined

look. This cut level features 10 seizure groups — with three single-seizure classes.

The last level —∼400 — features 11 groups, with three single-seizure classes.

In this cut the curves look more defined and less noisy than the previous tries. From

now on all analyses will consider a cutting at ∼400.

Figure 6.16 is an alternative version of figure 6.15 that additionally features

coloured labels to indicate surgical outcomes (red for bad and blue for good out-

come cases), patient colour-coded dendrogram leaves, and a colour bar that shows

the length of the evaluated epoch.

The groups contain seizures from different individuals, except for the cluster #2

and #4 that feature seizures from patients ’Study 019’ and ’Study 033’ respectively.

Moreover, clusters #1, #2, and #3 show longer durations for epileptic seizures.

Patients have seizures featured in distinct number of clusters, from one as seen

in ’Study 023’ and ’Study 029’, to five as seen in ’Study 019’, ’Study 028’, and

’Study 038’. The number of clusters do not seem to be related to the surgical out-
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come of a patient as seen in figure 6.17-A.

When it comes to the seizure duration, clusters #1-4 tend to feature longer

seizures than the clusters #5-8. However, these groups still show seizures that are

either shorter or longer, as seen in figure 6.17-B.

At visual inspection of Figure 6.16, different groups seem to feature distinct

ratios of bad/good surgical outcome patient seizures. Figure 6.17-C shows the oc-

currence of either-outcome patient seizures for all the identified groups. The first

four clusters show a substantive higher count of bad outcome cases, whereas the

remaining four clusters do not show any clear trends for either outcomes.

Figures 6.16, 6.17-B, and, 6.17-C suggest that bad surgical outcome patients

would feature longer seizures. The violin plots show the distribution of durations

for seizures of patients with both outcomes and in all clusters. Bad-outcome patients

seizures show longer durations and feature a bimodal distribution, whereas good-

outcome patients seizures present a reduced duration without a bimodal character

of durations distribution. These findings can be seen in figure 6.17-D.

To evaluate whether there are statistically significant differences between bad

and good outcome seizures durations or not, a non-parametric test (Wilcoxon) was

performed and returned a p < 0.001 (p = 2.9e− 7) showing a highly significant

distinction between the two distributions. The Wilcoxon test was chosen due to

the bimodal character of the bad-outcome seizures durations distribution and con-

sequent need for a non-parametric test.

A similar dedrogram was generated for LL measures (and seizures dissimilar-

ity matrix) and is shown in figure 6.18. The structure of the dendrogram/clusters is
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different from those shown by MF measures in yet another piece of evidence evi-

dence that MF is capable of providing additional information on seizure phenomena

and their dynamics.

The dendrogram was also evaluated in a systematic way with the silhouette

method (Rousseeuw, 1987), which measures the quality of fit for clusters. In this

metric, the clusters obtained with the MF measure feature higher values for average

silhouette width compared to LL up to five groups — when the average silhouette

is closer to 1 (> 0.4). For the subsequent measures of average silhouette width (for

# of clusters > 6), MF performs slightly worse or similarly to LL.

6.4 Discussion

This chapter introduces a putative approach for classification of focal epileptic

seizures. It is important to emphasise that, to date, there is no objective way of

classifying such epileptic seizures, as they do not fall into sets of natural classes

(Berg et al., 2010).

The approach introduced here tries to devise this potential classification

scheme from insights obtained with machine learning techniques that could help

the understanding of seizure phenomena and consequently epilepsy — as suggested

by Kuhlmann et al. (2018b).

Multifractal spectra width obtained with the approach introduced in chapter 3

were studied with principal component analysis, dynamic time warping, and hierar-

chical clustering techniques. After selecting parameters and performing the analysis

a hierarchical cluster was devised.
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The cluster only exhibited one main outlier — a long seizure. The other seg-

ments from both good and bad surgical outcomes are spread across the branches

of the dendrogram. There is, nevertheless, a concentration of bad outcome cases

seizures in one part of the dendrogram. Which might suggest that these branches

could be related to different generating or propagation network.

When cut at the height of ∼ 400, the seizures fall into eight different groups

and three individual seizures (ungrouped). The curves of these eight groups show

overall different characteristics and could be connected to different dynamics. The

groups also feature seizures from distinct patients — suggesting that there might be

some common aspects to seizures of different patients.

The approach employed to evaluate the cluster quality — silhouette method —

suggests that MF measures perform better than LL up to 5 clusters. This is also the

range in which the average silhouette width is closer to 1 (ideal value). For more

clusters MF measures perform similarly or slightly worse than LL. The silhouette

method can help diagnose the quality of a fit of a cluster and to define how many

different groups exist in the data. However, for focal epileptic seizures this will

require clinical studies with bigger datasets.

A possible explanation for bad surgical outcome in epilepsy surgery is the ex-

istence of an additional focus for epileptic seizures or an onset that occurs out of the

a priori presumed seizure onset zone (Chaudhary et al., 2012). These seizures that

arise from distinct regions could show different dynamic properties and be classed

in different groups in an application like this. Looking at the count of groups per

patient, i.e. in how many of the identified groups each patient features, there is no
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difference between good and bad outcome surgical cases. Thus this suggests that

the number of groups in which a patient’s seizures are in is not predictive of the

surgical outcome.

Moreover, it is important to emphasise that groups #1, #2, #3, and #4 feature

a higher count of seizures of bad outcome cases. Future studies should investi-

gate whether some groups are predominantly composed of seizures of bad surgical

outcomes patients. If that is indeed true, these seizures would show onset and dy-

namical features that would be inherent to such bad outcome cases. It is also up

to further studies to determine what these properties are — these studies could, as

suggested by Kuhlmann et al. (2018b) help to understand underlying mechanisms in

ictogenesis. The remaining groups, nevertheless, do not show clear trends to either

bad or good surgical outcomes.

When it comes to recording time (seizure duration + 70 seconds), groups #1,

#2, #3, and #4 concentrate longer seizures, which is most likely related to the fact

that the warp of the time series was not normalised according to its length, causing

seizure length to determine seizure dissimilarities. Future study normalising by the

seizure length will show whether that is the case or not and if the dynamics are

indeed connected to the duration of an epileptic seizure. It has been suggested by

Cook et al. (2016) that a seizure’s origin, propagation network, and clinical man-

ifestations might be connected to its duration. This study suggests that these con-

nections might be even more profound and related, in some level, to the onset and

evolution dynamics themselves. Cook et al. (2016) also suggest the need of further

studies in order to understand the connections between seizure duration and their
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onset/evolution mechanisms.

As bad surgical outcome cases and longer seizure durations seemed to match

at visual inspection, an appropriate evaluation was performed in order to check if

that is actually a correlated effect. The character of the distributions — including

all seizures from all patients — is different for bad and good surgical outcomes.

Bad outcome seizure durations feature longer durations and a bimodal distribution

— suggesting multiple seizure populations. Bimodal distributions have been found

in patients that show poor seizure prediction results in the prediction clinical trial

(Cook et al., 2013, 2016). Cook et al. (2016) suggest different onset mechanisms as

a potential reason for the multi-modal character of the seizure duration distribution

and poor results of prediction algorithms.

Further study might look into connections between bad surgical outcome cases

and efficiency of prediction algorithms in those individuals. There is, however, a

challenge in performing such a study as intracranial recordings performed in ambu-

latory patients record for usually a couple of weeks and the prediction clinical trial

required a much longer gathering in order to obtain a minimum number of seizures

(Kuhlmann et al., 2018b). Nevertheless, the connections between seizure from bad

outcome surgical procedures and poor results of prediction algorithms may provide

new insights on seizure onset and dynamics.
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Figure 6.12: Hierarchical cluster for the first components of MF spectral width for all
seizures obtained with dynamic time warping cut at the height of ∼1000.
With cuttings at this level, the data features 5 different clusters (1 with sin-
gle seizures). The plots pointed by the arrows show the first components of
the seizures in the cluster when warped to a common seizure in the cluster
with dynamic time warping. The seizure curves look blurry though, suggest-
ing that the dendrogram should be cut off in a lower level.
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Figure 6.13: Hierarchical cluster for the first components of MF spectral width for all
seizures obtained with dynamic time warping cut at the height of ∼700.
With cuttings at this level, the data features 9 different clusters (3 with sin-
gle seizures). The plots pointed by the arrows show the first components of
the seizures in the cluster when warped to a common seizure in the cluster
with dynamic time warping. Some of the seizure curves look blurry though,
suggesting that the dendrogram should be cut off in a lower level.
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Figure 6.14: Hierarchical cluster for the first components of MF spectral width for all
seizures obtained with dynamic time warping cut at the height of ∼550. With
cuttings at this level, the data features 10 different clusters (3 with single
seizures). The plots pointed by the arrows show the first components of the
seizures in the cluster when warped to a common seizure in the cluster with
dynamic time warping. Some of the seizure curves look blurry though, sug-
gesting that the dendrogram should be cut off in a lower level.
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Figure 6.15: Hierarchical cluster for the first components of MF spectral width for all
seizures obtained with dynamic time warping cut at the height of ∼400. With
cuttings at this level, the data features 11 different clusters (3 with single
seizures). The plots pointed by the arrows show the first components of the
seizures in the cluster when warped to a common seizure in the cluster with
dynamic time warping. At this level, the curves look more defined. This
should be the height of the cut employed in the analysis of this chapter.
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Figure 6.16: Hierarchical cluster, seizure duration and surgical outcome for all seizures.
Cluster cut at the height of ∼400. Patient and seizure numbers were colour-
coded according to the patient’s surgical outcome in red and blue for bad
and good outcomes, respectively. Leaves were coloured according to patient
and the bar underneath the dendrogram shows the seizure duration for every
recording in the cluster. Patients do have seizures spread across different clus-
ters. All clusters show bad outcome patients’ seizures, though the number of
these elements vary. Some of the clusters seem to feature longer seizures at
visual inspection.
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Figure 6.17: Evaluation of the clusters of epileptic seizures. A Count of clusters featured
per patients for both good and bad outcome cases. At visual inspection, good
and bad outcome cases do not feature different numbers of clusters. B Violin
plots showing the distribution of seizure durations per cluster. The curves
suggest that some clusters (#1 - #4) comprehend longer seizures. C Count
of seizures from both good and bad outcome cases. Some clusters (#1 - #4)
are predominantly or exclusively composed by bad outcome cases. D Violin
plots showing the distribution of seizure durations according to the surgical
outcome of the patient. There is a statistically significant difference for the
distributions of durations for good and bad surgical outcome case.



6.4. Discussion 155

0 500 1000 1500 2000 2500

Height

033 − 11
033 − 3
033 − 8
033 − 9
028 − 2
038 − 5
016 − 6
016 − 7

019 − 28
038 − 7

004−2 − 3
016 − 5
020 − 2
038 − 3
038 − 9
021 − 4
021 − 5
033 − 2
033 − 7
033 − 4
033 − 6
033 − 5

033 − 17
028 − 4
038 − 4

019 − 30
019 − 31
019 − 32

020 − 8
019 − 18

019 − 1
019 − 22

022 − 4
019 − 23
019 − 15

019 − 2
019 − 4
019 − 6
019 − 9
028 − 3
038 − 6
038 − 2

019 − 29
019 − 11
019 − 14
019 − 8

019 − 20
019 − 16
019 − 19
026 − 8
023 − 3
020 − 3
020 − 4
021 − 2

004−2 − 1
022 − 2
022 − 3
023 − 2

026 − 19
004−2 − 2

016 − 3
029 − 2
029 − 1
029 − 3
026 − 3

026 − 20
026 − 9
026 − 2
026 − 5
026 − 4

026 − 18
023 − 1

026 − 14
020 − 1
022 − 1
026 − 6
016 − 2
023 − 4

026 − 13
021 − 3

026 − 10
026 − 7

026 − 11
021 − 7
021 − 8
022 − 7

021 − 13
026 − 15
016 − 4

019 − 33
019 − 34
033 − 15
033 − 16
022 − 5
028 − 1

019 − 25
019 − 26
019 − 27
020 − 7
022 − 6

019 − 24
019 − 3
019 − 7

019 − 35
019 − 36
019 − 12
019 − 21
019 − 13
019 − 10
019 − 5

019 − 17
033 − 14
016 − 1
026 − 1

026 − 16
026 − 12
026 − 17
033 − 12

033 − 1
033 − 10
033 − 13
021 − 10
021 − 11
021 − 12

021 − 1
021 − 6
021 − 9
038 − 8

038 − 10
038 − 1
020 − 5
020 − 6
028 − 8
028 − 6
028 − 7
028 − 5
028 − 9

Recording time (s)

148

403

1097

Figure 6.18: Hierarchical cluster, recording time and surgical outcome for all seizures.
Cluster obtained from the first components of LL for with dynamic time warp-
ing. Patient and seizure numbers were colour-coded according to the patient’s
surgical outcome in red and blue for bad and good outcomes, respectively.
Leaves were coloured according to patient and the bar underneath the dendro-
gram shows the seizure duration for every recording in the cluster. Patients do
have seizures spread across different clusters. The dendrogram obtained with
LL shows a different structure to the one obtained with MF measures.
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Figure 6.19: Average silhouette for clusters obtained with both MF and LL methods series.
MF shows higher quality clustering up to 5 clusters. In subsequent numbers
MF measures show similar or slightly worse performance in clustering than
LL.



Chapter 7

Scaling properties of local field

potential recordings in an animal

model of epileptogenesis

7.1 Introduction

Prevention of epilepsy in patients at risk after acquired injury is still not available

(Pitkänen and Lukasiuk, 2011; Rizzi et al., 2016; Pitkänen et al., 2016). Anti-

epileptogenesis, i.e. a process that opposes epileptogenesis, comprehends preven-

tion, seizure modification and cure (Pitkänen and Engel, 2014).

A putative anti-epileptogenic treatment could be administrated prior to — in

order to prevent the disease onset or attenuate the frequency/severity of seizures —

or after epilepsy onset (Pitkänen and Engel, 2014; Pitkänen et al., 2016). When

applied after the onset of epilepsy, an anti-epileptogenic could reduce the severity

of the disease, as well as prevent or slow the progression of the condition. An



7.1. Introduction 158

anti-epileptic treatment can also modify the dynamics, e.g. from drug-resistant to

drug-sensitive (Pitkänen and Engel, 2014).

However, in order to devise such a treatment, biomarkers of epileptogenesis are

necessary (Pitkänen and Engel, 2014; Pitkänen et al., 2016). The study of epilep-

togenesis is still an active area of research (Pitkänen and Engel, 2014). The chal-

lenges consist of understanding how epileptogenesis occurs and the changes to the

brain that make epileptic seizures happen spontaneously (Pitkänen and Engel, 2014;

Pitkänen et al., 2016).

Part of the efforts in acquiring insights into epileptogenesis consist of using

animal models. These models of epileptogenesis are generated by inducing status

epilepticus (a prolonged seizure) in animals, e.g. rats, and following the evolution

until the appearance of spontaneous seizures (Williams et al., 2009; Liu et al., 2016;

Jupp et al., 2012; Shekh-Ahmad et al., 2019a,b; Pauletti et al., 2017; Shekh-Ahmad

et al., 2018; Hellier et al., 1998).

Status epilepticus causes neuronal damage, inflammation, alterations to under-

lying neuronal circuitry and neuronal behaviour, and so triggers the epileptogenic

process. These models can be produced with both electrical stimulation (Brandt

et al., 2016; Pauletti et al., 2017; Rizzi et al., 2019) and chemically, e.g. kainic

acid (Hellier et al., 1998; Williams et al., 2009; Liu et al., 2016; Jupp et al., 2012;

Shekh-Ahmad et al., 2019a,b, 2018).

These studies can help understanding when neural damage could cause

epilepsy and how these processes occur after an insult to the brain. Some stud-

ies also point to putative therapeutic interventions to prevent or reduce the impact
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of epileptic seizures after neural damage, e.g. stroke and traumatic brain injury

(Hellier et al., 1998).

When it comes to the understanding of epileptogenesis, electrophysiological

biomarkers might allow a better comprehension of the mechanisms that lead the

brain from an insult to a state in which spontaneous seizures occur (Pitkänen et al.,

2016). Some previous studies focused on electrophysiological biomarkers for both

diagnosis and prognostic evaluations, e.g. pathological high frequency oscillations

(HFOs) and markers of seizure threshold/likelihood (Pitkänen et al., 2016).

Another example of such applications is the use of non-linear metrics to eval-

uate dynamical changes in the brain’s behaviour after the initial insult. These tech-

niques analyse long term correlations in the signals and can point to changes in

the network of interactions of neurons and neuronal regions — presenting tokens to

intrinsic changes that make epileptic seizures more likely. (Rizzi et al., 2016, 2019).

Further research on such markers could provide more insights on how the neu-

ronal damage changes interactions between neurons and neuronal populations in

order to generate the increased excitability that could cause spontaneous epileptic

seizures.

Chapter 3 shows how multifractal measures can provide additional information

on epileptic seizures and their occurrence. Considering the results obtained by Rizzi

et al. (2016, 2019), MF measure could also provide additional information on the

changes that take place in the brain after an injury/insult.

Hence, this chapter is aimed to evaluate signals from an epileptogenesis ex-

periment and to explore putative information MF measures on changes in the brain
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exhibited by electrophysiological signals from an epileptogenesis model in rats.

7.2 Methods

7.2.1 Animal model and data

Sprague-Dawley rats had kainic acid treatment in order to induce status epilepticus

and provoke neuronal damage. The procedure is described in more details by Hellier

et al. (1998) and Shekh-Ahmad et al. (2018).

The signals presented in this chapter comprises data of fifteen rats that have

undergone the procedure. Continuous EEG/EcoG was also recorded from these

rats. A subdural electrode was implanted above the right hippocampus and the

reference electrode was implanted in the contralateral hemisphere. The apparatus

recorded a single channel at 512 Hz in two distinct phases: a baseline stage, in

which the data was recorded before the induction of status epilepticus; and a second

stage consisting of the epileptogenesis phase, after the neuronal insult and before the

subsequent development of spontaneous seizures (first seizure) — in some animals.

The series were capped to week-long durations in order to keep consistency across

different rats — as the animals develop spontaneous seizures at different paces.

Animals were divided into two groups: the rats that exhibited spontaneous

seizures (S), and the rats that did not develop seizures (NS). Some of the rats had

been treated to prevent the development of epilepsy (Shekh-Ahmad et al., 2018).

The tests were blind and the labels were not available until the end of this analysis.
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Table 7.1: Rats IDs classified according to the occurrence of spontaneous epileptic seizures
after a neuronal insult. The groups are labelled as S and NS at this point — for
animals that show spontaneous seizures and animals that do not yet, respectively.

Rat ID Group
ID 1 S
ID 2 NS
ID 3 NS
ID 4 NS
ID 5 S
ID 6 S
ID 7 S
ID 8 S
ID 9 NS
ID 10 S
ID 11 S
ID 12 S
ID 13 S
ID 14 NS
ID 15 NS

7.2.2 Multifractal analysis

The multifractal analysis approach presented in chapter 3 was applied to these in-

tracranial EEG obtained from rats as described in previous section.

The Chhabra-Jensen method was applied to time data that was epoch-wise

standardised and sigmoid transformed (i.e. the established pipeline introduced in

chapter 3). Each epoch was 2 seconds long, as the epochs had 1024 points sampling

and sampling frequency at 512 Hz.

7.2.3 Statistics of extremes

Differently from the previous chapters of this thesis, the analysis shown in this

chapter consists of long range data, i.e. weeks of recordings — considering all the

rats. So a different methodology is necessary when it comes to selecting relevant

pieces of data for the study.
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Ictal events are rare (Kuhlmann et al., 2018b) — and presumably events re-

lated to changes involved in epileptogenesis should follow suit. In order to bypass

that issue and remove the potentially uninteresting segments of the time series, the

statistics of extremes were performed after the MF analysis of the recordings. Only

the MF spectra width bigger than the mean plus three standard deviations were con-

sidered when comparing baseline and epileptogenesis phases.

New dynamics and interaction networks caused by the neuronal insult and

epileptogenesis could be reflected in the multifractal spectra measures, e.g. these

new features could increase the MF spectra width due to an increase in heterogene-

ity of the signal. Hence the choice for extreme values on MF spectra width.

7.3 Results

The multifractal spectra features exhibited by the rats’ electrographic measures

show subtle changes between baseline and epileptogenesis phases. Given the

amount of measures (∼ 4 mi), it is hard to evaluate the widths and heights for

all rats. A possible way to visualise the data consists of employing hexagonal bins

to represent the amount of measures in every area of the plot. Figure 7.1 shows the

bin count for both baseline and epileptogenesis data.

In both baseline and epileptogenesis phases, it is evident that most of the mea-

sures are concentrated around the mean value. Moreover, values that suffer with

overfitting are relatively rare with log(Count)< 400. However, at visual inspection

most values for width seem to concentrate around the average (slightly below 0.5) -

shown by black vertical line. Height measures show some overfitting and result in
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values above the topological limit (height = 1).
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Figure 7.1: Hexagonal bins of width and height for multifractal spectra obtained from all
rats for baseline and epileptogenesis stages. The black vertical line shows the
mean value for width and the dashed line indicates the value for mean plus
three standard deviations. The figure shows the count of points in the different
areas and suggests that most of measures are concentrated around the mean
width. Moreover, the cluster of the overfitted height measures show relatively
few occurrences across the ∼ 4 mi measure points.

At visual inspection, figure 7.1 suggests changes on the epileptogenesis phase

of the recordings. The widths of the spectra seem to shift towards higher values,

suggesting that the brain insult, which the rats have been submitted to, might cause

the increase of the multifractal spectra width.

In order to evaluate such putative effects, the percentage of extremes, i.e.

widths with values above the mean plus three standard deviations of the distribu-

tion, was obtained for every rat in both baseline and epileptogenesis phases. Most

rats, except ’ID5’, ’ID8’, ’ID11’, and ’ID12’, exhibit similar percentages for both

baseline and epileptogenesis — below 1%. The four exceptions mentioned feature

notably higher percentages for the epileptogenesis phase, all above 1% and with a

peak of ∼4% for rat ’ID11’.
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Figure 7.2: Percentage of extremes (larger or equal to mean plus three standard deviations)
for each rat in both baseline and epileptogenesis stages. At visual inspection,
five rats feature a higher percentage of extremes for the epileptogenesis phase.
In particular, four rats show a percentage of extremes above the 1% threshold
for the epileptogenesis phase. No rat shows a percentage of extremes above 1%
for the baseline phase.

In an alternative view, figure 7.3 shows violin plots of the percentage of ex-

tremes for both baseline and epileptogenesis phases. This time rats were divided

into two groups concerning the development of spontaneous seizures after the brain

insult on the induction of the status epilepticus.

The two groups, at visual inspection, show differences when it comes to vari-

ations from baseline to epileptogenesis phase. Both groups exhibit similar percent-

ages of extremes for the baseline phase. Nevertheless, the majority of measures for

epileptogenesis phase in S show higher percentages than NS (as indicated by the

dashed line) — that features approximately the same percentages for both baseline

and epileptogenesis phases.

A hypothesis test does not show statistically significant differences between the

two groups, however. A Welch two sample t-test was applied to the differences in

percentages of extremes for both groups and returned a non-statistically significant

output with p = 0.117 and t = 1.757.
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Figure 7.3: Violin plot of the difference in the percentage of extremes for S and NS rats in
baseline and epileptogenesis phases. At visual inspection, S seems to feature a
higher proportion of epileptogenesis values, which does not show in NS. Such
results might indicate that S shows more abnormal activity.

In order to gather a better understanding on the rats of S that show percentages

for epileptogenesis phase at similar values to baseline phase, the proportions of

extremes were evaluated on a day-to-day basis. The procedure consists of the same

steps adopted before, but values are reported for every day of the recording, rather

than a global score per rat per phase of monitoring.

Figure 7.4 shows the curves for both epileptogenesis and baseline states in

every rat of the experiment. Most of the rats show curves with higher percentages of

extremes for the epileptogenesis phase. It is, however, variable and shows increases

and drops over the course of days.

In a visualisation similar to figure 7.3, a data point for every day and all rats in
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Figure 7.4: Variation of the percentage of extremes (larger or equal to mean plus three
standard deviations) for each rat in both baseline and epileptogenesis stages
over days. Different rats show distinct patterns. Moreover, the curves show
oscillations on the percentage of extremes across days. The solid line represents
a LOESS curve fitting of the data points, with formula y∼ x.

both S and NS, for both epileptogenesis and baseline phases, was plotted in figure

7.5. The difference between S and NS featured by figure 7.3 is also shown by this

version of the plot. This time, however, the difference between S and NS is more

pronounced with points related to measures of the epileptogenesis phase for several

rats above the mean for the values of the baseline phase.

Further analysis revealed that there are no statistically significant differences

between S and NS rats. A Welch two sample t-test was applied to the maximum

values of the differences between baseline and epileptogenesis phase measures of

the percentage of extremes in S and NS groups and returned a non-statistically sig-

nificant output with p = 0.181 and t = 1.433.



7.4. Discussion 167

0.00%

2.00%

4.00%

6.00%

S NS
Group

Pe
rc

en
ta

ge
 o

f e
xt

re
m

es
Baseline
Epileptogenesis

ID1
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9
ID10
ID11
ID12
ID13
ID14
ID15

Figure 7.5: Violin plot of percentage of extremes for S and NS rats in both baseline and
epileptogenesis phases for daily measures.

After the obtaining these results, it was revealed that S corresponds to the rats

that developed spontaneous seizures after the status epilepticus and NS does not

show ictal activity after the induced status epilepticus.

7.4 Discussion

There are multiple putative mechanisms underlying epileptogenesis but it has not

thus been possible to predict those who will go on to develop epilepsy following a

brain insult (Pitkänen and Lukasiuk, 2011; Rizzi et al., 2016; Pitkänen et al., 2016).

This chapter presented a study on brain signals recorded from rats in a long

monitoring experiment after induction of status epilepticus with kainic acid. The

aim of the experiment was to evaluate and find markers of epileptogenesis that could
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be of use in understanding the dynamics of epilepsy and epileptic seizures, as well

as putative markers to identify patients that would potentially develop epilepsy after

a brain insult such as stroke or traumatic brain injury.

The multifractal approach described in chapter 3 was applied to the signals

recorded from fifteen rats of the epileptogenesis animal model described in the pre-

vious paragraph. The approach has been applied to epileptic seizures in chapter 3

showing sensitivity to ictal activity. Moreover, if the complexity and nature of the

networks are changing with epileptogenesis, multifractal analysis should be sensi-

tive to such changes. This thesis also presents a putative approach employing the

same method to the classification of focal epileptic seizures from patients undergo-

ing presurgical evaluation in chapter 6.

The Chhabra-Jensen method (Chhabra and Jensen, 1989) has also been applied

to long term monitoring of physiological signals, such as actigraphy signals in pa-

tients with fibromyalgia (França et al., 2019). The method was then applied to the

longer electrophysiologic signals from animals models of epileptogenesis.

Signals were compared in two distinct phases: the baseline — before the status

epilepticus induction — and epileptogenesis - consisting of the phase after the brain

insult. The multifractal spectra features showed differences between the baseline

and the epileptogenesis phase. In the latter, values seem to shift towards higher

values for width of the spectra, suggesting a more heterogeneous recording. Such

increase in heterogeneity could be a result from new rhythms caused by the brain

insult and be connected to epileptogenesis/ictogenesis.

The Chhabra-Jensen method has been shown to be efficient in the estimation
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of dynamical properties of time series, particularly when employed with the stan-

dardisation approach mentioned in chapter 3. Nevertheless, when exposed to huge

quantities of data in this later experiment, the approach has shown some overfitting

with estimated heights of the spectra above the topological limits. The frequency of

such issues is relatively small, particularly when compared to the ∼ 4 mi measures

obtained. In order to avoid such issues, this study focussed on the spectral width,

that is not subject to overfitting as much as the spectral height.

One of the difficulties in studying ictal phenomena is the rare occurrence of

such episodes (Kuhlmann et al., 2018b). It is also evident from figure 7.1 that most

of the data are centred around the mean, suggesting that most of the EEG segments

exhibit similar levels of hetereogeneity. It is possible to quantify, however, the

occurrence of shifted values as described previously.

The analysis of extremes consists of counting the amount of elements that

crosses a certain predefined threshold. In this study, a cut-off limit of the mean

value plus three standard deviations was chosen due to the nature of the data. The

removal of the other values allows computing information in a priori anomalous

portions of the data. Probably the simplest way of dealing with extremes consists

of calculating the proportion of these in regards to the original raw data.

The percentage of extremes on both baseline and epileptogenesis phases

change across rats; however, most of the measures stay below the 1% mark. Four

rats, nevertheless, show measures above the 1% cap exhibited by most of the ani-

mals. This difference could be a hint that these four animals might show different

activity in response to the brain insult during the induction phase. These animals
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are candidates to show new rhythms in the EEG — potentially linked to dynamics

that generate epileptic seizures (or might generate seizures in future).

This experiment was performed as a blind test and the group of rats that devel-

oped spontaneous seizures after the insult in the induction phase was only revealed

at the end. Nevertheless, the animals that belonged to the same groups were known

beforehand. In order to identify potential statistical differences between these two

groups in regard to the percentage of extremes in the multifractal spectra width, a

t-test was performed. At visual inspection, S shows higher values for the percentage

of extremes — in the epileptogenesis phase. The same cannot be observed for NS.

However, a t-test did not show a statistically significant difference between the two

groups.

The lack of statistical significance does not support that there are differences

between the two groups regarding extremes of multifractal spectra width. How-

ever, the pathophysiological aspects of these rats are completely different — one

of them presents spontaneous epileptic seizures whereas the second group does not.

Possible explanations for such an inconsistency could be a non-continuous epilepto-

genesis phenomena or the incapacity of multifractal metrics to captures changes in

the brain that could lead to the occurrence of spontaneous epileptic seizures. How-

ever, multifractal metrics seem to provide information on epileptogenesis for some

rats, so this study focussed on the former explanation.

The best way to evaluate the continuity of the epileptogenesis process is to split

the recordings in day activities. The curves for variation of percentage of extremes

per day suggest a transient condition to the epileptogenesis phase, rather than a con-
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tinuous process that starts after the status epilepticus and converges to a state that

allows the arise of spontaneous epileptic seizures. However, the evaluation of ex-

tremes of multifractal spectra measures in day intervals did not result in significant

differences between S and NS.

The results suggest that MF metrics are not sensitive to epileptogenic activ-

ity and are not capable of identifying the group of rats that develops spontaneous

seizures after an insult, as have previous non-linear metrics reported elsewhere

(Rizzi et al., 2016, 2019). However, the same analysis has shown non-monotonic

features, i.e. the percentages of extremes can increase osr decrease in subsequent

days. Such an outcome elicits questions on the mechanisms of epileptogenesis it-

self, i.e. is the epileptogenesis a continuous process that starts after the brain insult

and finishes after the first spontaneous seizures or slightly after the first spontaneous

seizure? Does the epileptogenesis procedure follow any sort of oscillatory mecha-

nism? It has been shown in the literature that epileptic seizures follow periods that

span over days (Baud et al., 2018); how these rhythms are established from initial

brain insult is a matter for future research.

It is still to be determined in future studies what are the types of oscillations

that lead to increased spectral widths of multifractal spectra. Such oscillations might

be easier to identify and may be more precise as future markers of epileptogenesis

and become predictors of whether a patient is likely to develop epilepsy or not after

neuronal damage.

This study is, however, limited by the choice on segments to be evaluated,

i.e. the extremes statistics threshold. Activity related to epileptogenesis could also
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occur in segments with multifractal spectra widths below the defined threshold.

Such activity could even suppress other rhythms, reducing the heterogeneity of the

signal and consequently the spectral width. These are issues to be investigated in

future work.



Chapter 8

General Conclusions

This thesis discussed scaling properties in electrophysiological signals in epilepsy

and implications of these characteristics on current knowledge of epileptogenesis

and seizure phenomena in humans and rats.

The document was arranged in seven major chapters, starting with an introduc-

tion on relevant information and concepts for the studies presented subsequently.

Firstly, a new approach to study epileptic seizures was reported. Secondly, this

approach was applied to a series of studies ranging for seizure occurrence (charac-

teristic time and classes) to epileptogenesis in animal models.

8.1 A novel methodology for the study of EEG dy-

namics

• Scaling analysis methods, such as multifractal spectrum estimation ap-

proaches are affected by changes in the standard deviation of the time series,

which can bias seizure analysis applications (Chapter 3).
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Chapter 3 has highlighted several challenges that need to be considered when

analysing multifractal properties of EEG signals — namely choice of the appropri-

ate estimation method, estimation parameters, and the influence of the time series

variance on signal features.

This chapter suggested some solutions to these problems, such as the use of the

Chhabra-Jensen approach combined with an epoch-wise standardisation approach,

which has shown potential capabilities as a signal feature for machine learning ap-

plications.

The chapter also highlights possible process-specific challenges. In terms of

epileptic seizures, future work is required to analyse a larger number of patients in

order to draw firmer conclusions on the potential clinical relevance of multifractal

analyses. Furthermore, the study of mechanistic generative models of EEG may

shed light on why those multifractal changes occur. For example, a generative pro-

cess of potential interest could feature a modified version of Bak-Tang-Wiesenfeld

model (Bak et al. (1987)).

In this chapter, the monofractal and multifractal properties of human EEG

recordings have been studied. It has been shown that monofractal estimates are

influenced by the standard variation of the time series, thus not capturing features

beyond signal variance. For multifractal estimation, it has been shown that the

Chhabra-Jensen approach is the most stable, and a method of signal pre-processing

to remove the influence caused by the variance of the signal has been developed.

Using the suggested approach, the multifractal estimates do not correlate with

traditional EEG measures, thus yielding additional information about the signal and
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being a relevant signal feature.

8.2 Insights on sleep

• Sleep phases impact multifractal estimation in human long term electrograph-

ical recordings for epilepsy surgery planning (Chapter 4).

Chapter 4 focuses on the impact of sleep stages on the metrics developed in

chapter 3. This is an important aspect of analysis of intracranial EEG signals, as

these are normally long-term recordings and are marked by changes in the sleep-

wake state of the patient.

The results shown by the study suggest that multifractal measures and the met-

rics presented in chapter 3 are sensitive to variations featured by EEG signals during

different sleep stages. Such an outcome has two major implications: 1. MF mea-

sures and the approach developed could be exploited in the automatic identification

of sleep stages. 2. Changes in the wakefulness of a patient on long term monitor-

ing, such as patients with intracranial implantations for epilepsy surgery planning

or seizure detection/prediction devices, could affect metrics of evaluation of elec-

trophysiological signals.

When it comes to sleep staging, the outcomes are still very speculative consid-

ering the results and the number of individuals with signals analysed. Moreover, the

signals used in this study feature some limitations as these were scalp EEG record-

ings digitised at 100 Hz and two channels. Further research with higher sampling

rate signals and more channels might show more robust results.
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8.3 Seizures and characteristic time

• Focal epileptic seizure detection exhibits optimal results at specific sampling

frequencies (Chapter 5).

An open question when it comes to seizure detection/prediction is the choice of

parameters for the analysis of EEG signals, i.e. sampling rate and epoch size. Chap-

ter 5 focussed on evaluating how these two parameters affect seizure detection in

intracranial EEG from patients undergoing presurgical evaluation with multifractal

metrics and the approach presented in chapter 3.

The results show that epileptic seizures do exhibit an optimal time scale, i.e.

the combination of sampling rate and epoch length parameters for detection with the

evaluated metrics. Such a result suggests that future approaches that aim looking

at seizure phenomena, e.g. detection, prediction, characterisation (signal analysis),

should look into these properties in order to optimise the outcomes.

Future work should evaluate the existence — and compare the magnitude —

of the optimal time scales in different patients. Further research might also evaluate

differences between optimal times in different seizures and whether different onsets

in the same patients would feature distinct optimal times.

8.4 Seizure classes

• Focal epileptic seizures can be classified into families using multifractal anal-

ysis (Chapter 6).

To date, there is not an objective method to classify focal epileptic seizures.

Classification of such episodes could change the understanding of epilepsy and pro-
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vide new insights in potential new therapeutic approaches. Chapter 6 presents a

putative approach to devise classes from a population of seizures with unsupervised

machine learning techniques.

The proposed approach, when applied to a population of epileptic seizures

undergoing planning for epilepsy surgery, suggests that seizures will cluster into

groups. Overall, these clusters are not patient dependent — which suggests that

there are common dynamics between seizures of different individuals. Moreover,

clusters also do not seem to be connected to the surgical outcomes of patients. How-

ever, some clusters seem to concentrate longer seizures — that are in general sec-

ondarily generalised seizures.

The method is, however, limited by the principal component analysis per-

formed in order to reduce dimensionality. Different patients have distinct implanta-

tion schemes, i.e. grids, strips, depth, causing difficulties in the comparison of the

seizures.

A possible way to overcome that limitation consists of performing the pro-

cedure with the signal obtained from the onset zone, instead of applying princi-

pal component analysis to reduce the dimensionality of the problem. Nevertheless,

there are also physical and pathological properties of the neural tissue that can make

such comparison difficult.

Albeit despite these limitations, the proposed classification scheme offers a

tool to class different seizures. The method developed in this study is a first step in

the direction of a system of classification of focal epileptic seizures.
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8.5 Extremes on epileptogenesis

• Changes that occur during epileptogenesis can be detected by the multifractal

analysis approach. An adequate application of multifractal analysis can iden-

tify animals that could develop spontaneous seizures after an initial trauma

based on the analysis of local field potential signals. (Chapter 7)

The mechanisms of epileptogenesis after a brain insult/neural damage are still

not fully understood, which hinders the development of new treatments to prevent

the evolution of the insult into epilepsy in patients. For example, in individuals after

stroke or traumatic brain injury episodes.

Animal models can provide insights on such a process and provide tokens on

processes that lead from the insult to the occurrence of epileptic seizures. Chapter 7

focussed on this matter and reports on a study on scaling properties and heterogene-

ity of electrographic signals obtained from rats after an induced status epilepticus.

The results of this study suggest that there are signs of epileptic activity on

scaling properties and heterogeneity of an electrographic signals. The changes are,

nonetheless, sporadic and difficult to detect. The changes observed with MF mea-

sures are not statistically significant.

Future work should look for strategies in finding such anomalous activity in

electrophysiologic signals. Moreover, types of neural activity could follow temporal

patterns which — if true — could provide further tokens on how to identify animals

with the potential to develop spontaneous epileptic seizures in future.
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8.6 Scaling properties in epilepsy

This thesis comprehends studies on scaling properties and heterogeneity in signals

containing epileptiform activity in both human and animal data. It has been reported

elsewhere that scaling properties are ubiquitous in the brain already and intrinsic to

its function. This thesis discussed these concepts and definitions and explored such

properties to study epileptiform activity.

The studies reported here were successful in applying multifractal analysis

metrics and concepts to answer diverse questions and to analyse signals from differ-

ent modalities — from identification/detection of ictal segments to finding signs of

the development of epilepsy and spontaneous epileptic seizures after a brain insult.

The results obtained in such studies and shown in this thesis indicate that scal-

ing properties are indeed tokens to understand, characterise, detect, and predict

epileptiform activity. Hence, multifractal analysis-based metrics can be used in or-

der to study epilepsy and epileptiform activity. The evaluation of the heterogeneity

arising from different rhythms in the brain can be a unique biomarker potentially

applicable to different analyses, e.g. seizure detection, seizure classification, and

diagnosing potential brain injuries that could lead to epileptic seizures.

Future work should focus on these questions and increase the populations stud-

ied — to evaluate whether these outcomes hold with a bigger sample. Understand-

ing how the non-classic self-organised criticality concepts, mentioned in chapter

3, would apply to epilepsy and seizure onset is also necessary in order to further

develop the multifractal based metrics as biomarkers of epilepsy. Moreover, com-

putational models should be able to help identify the mechanisms that generate
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properties shown by multifractal analyses.

The studies in this thesis have taken a new approach to the analysis of EEG

data in sleep/wake and epilepsy. It has been shown that in contrast to monofractal

analysis, this form analysis can provide information beyond measures of variance.

These studies have set out to show how this method can be applied and refined the

approach in order to facilitate its use in multiple situations. Further work is required

to determine the clinical utility in larger groups and to establish whether this form

of analysis can predict clinical outcomes and inform our mechanistic understanding

of changes in brain state.
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M., Tieng, Q. M., He, J., Muñoz-Almaraz, F. J., Botella-Rocamora, P., Pardo, J.,

Zamora-Martinez, F., Hills, M., Wu, W., Korshunova, I., Cukierski, W., Vite, C.,

Patterson, E. E., Litt, B., and Worrell, G. A. (2016). Crowdsourcing reproducible

seizure forecasting in human and canine epilepsy. Brain, 139(6):1713–1722.

Brodie, M. (1990). Status epilepticus in adults. The Lancet, 336(8714):551–552.

Camastra, F. and Vinciarelli, A. (2015). Clustering Methods. In Advanced Infor-

mation and Knowledge Processing, number 9781447167341, pages 131–167.

Campitelli, E. (2019). ggnewscale: Multiple Fill and Color Scales in ’ggplot2’. R

package version 0.3.0.

Cannon, M. J., Percival, D. B., Caccia, D. C., Raymond, G. M., and Bassingth-

waighte, J. B. (1997). Evaluating scaled windowed variance methods for esti-

mating the Hurst coefficient of time series. Physica A: Statistical Mechanics and

its Applications, 241(3-4):606–626.

Carney, P. R., Myers, S., and Geyer, J. D. (2011). Seizure prediction: Methods.

Epilepsy & Behavior, 22:S94–S101.

Celesia, G. G. (1976). Modern Concepts of Status Epilepticus. JAMA: The Journal

of the American Medical Association, 235(15):1571–1574.



BIBLIOGRAPHY 191

Chang, N.-f., Chen, T.-C., Chiang, C.-y., and Chen, L.-g. (2012). Channel selection

for epilepsy seizure prediction method based on machine learning. Conference

proceedings : ... Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology Soci-

ety. Annual Conference, 2012:5162–5.

Chaudhary, U. J., Carmichael, D. W., Rodionov, R., Thornton, R. C., Bartlett, P.,

Vulliemoz, S., Micallef, C., McEvoy, A. W., Diehl, B., Walker, M. C., Dun-

can, J. S., and Lemieux, L. (2012). Mapping preictal and ictal haemodynamic

networks using video- electroencephalography and functional imaging. Brain,

135(12):3645–3663.

Cheng-Yi Chiang, Nai-Fu Chang, Tung-Chien Chen, Hong-Hui Chen, and Liang-

Gee Chen (2011). Seizure prediction based on classification of EEG synchro-

nization patterns with on-line retraining and post-processing scheme. In 2011

Annual International Conference of the IEEE Engineering in Medicine and Biol-

ogy Society, pages 7564–7569. IEEE.

Chhabra, A. and Jensen, R. V. (1989). Direct determination of the f(α) singularity

spectrum. Physical Review Letters, 62(12):1327–1330.

Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics,

6(10):744–750.

Chialvo, D. R. (2012). Critical brain dynamics at large scale. Criticality in Neural

Systems, 2013:1–22.



BIBLIOGRAPHY 192

Ciuciu, P. (2012). Scale-free and multifractal time dynamics of fMRI signals during

rest and task. Frontiers in Physiology, 3(June):1–18.

Commission on Classification and Terminology of the International League Against

Epilepsy (1989). Proposal for Revised Classification of Epilepsies and Epileptic

Syndromes. Epilepsia, 30(4):389–399.

Consolini, G., Marcucci, M. F., and Candidi, M. (1996). Multifractal structure of

auroral electrojet index data. Physical Review Letters, 76(21):4082–4085.

Cook, M. J., Karoly, P. J., Freestone, D. R., Himes, D., Leyde, K., Berkovic, S.,

Brien, T. O., Grayden, D. B., and Boston, R. (2016). Human focal seizures are

characterized by populations of fixed duration and interval. pages 359–368.

Cook, M. J., O’Brien, T. J., Berkovic, S. F., Murphy, M., Morokoff, A., Fabinyi,

G., D’Souza, W., Yerra, R., Archer, J., Litewka, L., Hosking, S., Lightfoot, P.,

Ruedebusch, V., Sheffield, W. D., Snyder, D., Leyde, K., and Himes, D. (2013).

Prediction of seizure likelihood with a long-term, implanted seizure advisory sys-

tem in patients with drug-resistant epilepsy: A first-in-man study. The Lancet

Neurology, 12(6):563–571.

Cook, M. J., Varsavsky, A., Himes, D., Leyde, K., Berkovic, S., O’Brien, T., and

Mareels, I. (2014). The dynamics of the epileptic brain reveal long memory

processes. Frontiers in Neurology, 5(OCT):1–8.

Costa, I. d. S., Gamundı́, A., Miranda, J. G. V., França, L. G. S., De Santana,



BIBLIOGRAPHY 193

C. N., and Montoya, P. (2017). Altered Functional Performance in Patients with

Fibromyalgia. Frontiers in Human Neuroscience, 11(January):14.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex net-

work research. InterJournal, Complex Systems:1695.

Davies, R. B. and Harte, D. S. (1987). Tests for Hurst effect. Biometrika, 74(1):95–

101.

Davis, A., Marshak, A., Cahalan, R., and Wiscombe, W. (1997). The Landsat

Scale Break in Stratocumulus as a Three-Dimensional Radiative Transfer Effect:

Implications for Cloud Remote Sensing. Journal of the Atmospheric Sciences,

54(2):241–260.

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Black-

well, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., van den Driess-

che, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K.,

Chopra, R., King, D., Karthikesalingam, A., Hughes, C. O., Raine, R., Hughes, J.,

Sim, D. A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back,

T., Khaw, P. T., Suleyman, M., Cornebise, J., Keane, P. A., and Ronneberger, O.

(2018). Clinically applicable deep learning for diagnosis and referral in retinal

disease. Nature Medicine, 24(9):1342–1350.

de Tisi, J., Bell, G. S., Peacock, J. L., McEvoy, A. W., Harkness, W. F., Sander,

J. W., and Duncan, J. S. (2011). The long-term outcome of adult epilepsy



BIBLIOGRAPHY 194

surgery, patterns of seizure remission, and relapse: a cohort study. The Lancet,

378(9800):1388–1395.

Dokmanic, I., Parhizkar, R., Ranieri, J., and Vetterli, M. (2015). Euclidean Distance

Matrices: Essential theory, algorithms, and applications. IEEE Signal Processing

Magazine, 32(6):12–30.

Drury, I., Smith, B., Li, D., and Savit, R. (2003). Seizure prediction using scalp

electroencephalogram. Experimental Neurology, 184(SUPPL. 1).

Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T. G., and Toumazou, C.

(2014). Ngram-Derived Pattern Recognition for the Detection and Prediction

of Epileptic Seizures. PLoS ONE, 9(6):e96235.

Eguı́luz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., and Apkarian, A. V.

(2005). Scale-Free Brain Functional Networks. Physical Review Letters,

94(1):018102.

Eke, A., Herman, P., Kocsis, L., and Kozak, L. R. (2002). Fractal characterization

of complexity in temporal physiological signals. Physiological Measurement,

23(1):R1–R38.

Elger, C. E. (2001). Future trends in epileptology. Current Opinion in Neurology,

14(2):185–186.

Esteller, R., Vachtsevanos, G., Echauz, J., Henry, T., Pennell, P., Epstein, C., Bakay,

R., Bowen, C., and Litt, B. (1999). Fractal dimension characterizes seizure on-

set in epileptic patients. In 1999 IEEE International Conference on Acoustics,



BIBLIOGRAPHY 195

Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258),

volume 4, pages 2343–2346 vol.4. IEEE.

Esteller, R., Vachtsevanos, G., Echauz, J., and Lilt, B. (1995). A comparison of

fractal dimension algorithms using synthetic and experimental data. In Andresen,

B. F. and Strojnik, M., editors, ISCAS’99. Proceedings of the 1999 IEEE Inter-

national Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), vol-

ume 3, pages 199–202. IEEE.

Estrada, E., Nazeran, H., Nava, P., Behbehani, K., Burk, J., and Lucas, E. (2005).

EEG feature extraction for classification of sleep stages. In The 26th Annual

International Conference of the IEEE Engineering in Medicine and Biology So-

ciety, volume 3, pages 196–199. IEEE.

Falconer, K. (2003). Fractal Geometry. John Wiley & Sons, Ltd, Chichester, UK.

Feder, J. (1988). Fractals. Springer US, Boston, MA.

Feldwisch-Drentrup, H., Staniek, M., Schulze-Bonhage, A., Timmer, J., Dickten,

H., Elger, C. E., Schelter, B., and Lehnertz, K. (2011). Identification of Preseizure

States in Epilepsy: A Data-Driven Approach for Multichannel EEG Recordings.

Frontiers in Computational Neuroscience, 5(July):32.

Fisher, R. S., Boas, W. v. E., Blume, W., Elger, C., Genton, P., Lee, P., and Engel,

J. (2005). Epileptic Seizures and Epilepsy: Definitions Proposed by the Interna-

tional League Against Epilepsy (ILAE) and the International Bureau for Epilepsy

(IBE). Epilepsia, 46(4):470–472.



BIBLIOGRAPHY 196

Flexer, A., Gruber, G., and Dorffner, G. (2005). A reliable probabilistic sleep stager

based on a single EEG signal. Artificial Intelligence in Medicine, 33(3):199–207.

Fraiman, D. and Chialvo, D. R. (2012). What kind of noise is brain noise: anoma-

lous scaling behavior of the resting brain activity fluctuations. Frontiers in Phys-

iology, 3(July):1–11.

França, L. G. S., Montoya, P., and Miranda, J. G. V. (2019). On multifractals: A

non-linear study of actigraphy data. Physica A: Statistical Mechanics and its

Applications, 514:612–619.

Freestone, D. R., Karoly, P. J., Peterson, A. D. H., Kuhlmann, L., Lai, A., Goodarzy,

F., and Cook, M. J. (2015). Seizure Prediction: Science Fiction or Soon to Be-

come Reality? Current Neurology and Neuroscience Reports, 15(11):73.

French, J. A., Williamson, P. D., Thadani, V. M., Darcey, T. M., Mattson, R. H.,

Spencer, S. S., and Spencer, D. D. (1993). Characteristics of medial temporal lobe

epilepsy: I. Results of history and physical examination. Annals of Neurology,

34(6):774–780.

Gadhoumi, K., Gotman, J., and Lina, J. M. (2015). Scale Invariance Proper-

ties of Intracerebral EEG Improve Seizure Prediction in Mesial Temporal Lobe

Epilepsy. PLoS ONE, 10(4):e0121182.

Gadhoumi, K., Lina, J. M., and Gotman, J. (2013). Seizure prediction in patients

with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin-

ical Neurophysiology, 124(9):1745–1754.



BIBLIOGRAPHY 197

Galili, T. (2015). dendextend: an r package for visualizing, adjusting, and compar-

ing trees of hierarchical clustering. Bioinformatics.

Gastaut, H. (1970). Clinical and Electroencephalographical Classification of

Epileptic Seizures. Epilepsia, 11(1):102–112.

Gentle, J. E. (2007). Matrix Algebra. Springer Texts in Statistics. Springer New

York, New York, NY.

Gneiting, T. and Schlather, M. (2004). Stochastic Models That Separate Fractal

Dimension and the Hurst Effect. SIAM Review, 46(2):269–282.

Goldberg, E. M. and Coulter, D. A. (2013). Mechanisms of epileptogenesis:

a convergence on neural circuit dysfunction. Nature Reviews Neuroscience,

14(5):337–349.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C.,

Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000).

PhysioBank, PhysioToolkit, and PhysioNet : Components of a New Research

Resource for Complex Physiologic Signals. Circulation, 101(23):e215–e220.

Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., Peng, C.-

K., and Stanley, H. E. (2002). Fractal dynamics in physiology: Alterations with

disease and aging. Proceedings of the National Academy of Sciences, 99(Supple-

ment 1):2466–2472.
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