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Abstract

Memory lies at the heart of human cognitive abilities. Therefore, understanding it

from neural, psychological and computational viewpoints is of key importance for

computational neuroscience, psychology and beyond. In this thesis, I explore two

prominent, but different, memory systems: episodic memory and working memory.

First, I propose a modification to a recent reinforcement learning algorithm for

decision making in which single memories of events, i.e., episodic memories, are

integrated to compute the long run value of actions. I argue that these memories

are recalled and that their contributions are weighted based on context. Further,

I propose that predictions made by this algorithm are combined with those that

come from a standard, model-free, reinforcement learning algorithm. I suggest

that humans can flexibly choose between these two sources of information to make

decisions and guide actions. I show that the resulting combined model best fits data

on human choices, outperforming previously proposed models.

To complement these algorithmic and psychological suggestions, I present a

generative model of the world according to which this sort of episodic recall is

an appropriate method for making inferences and predictions of future rewards.

Contrary to other suggestions for reward-based learning, this generative model can

model events that not only drift continuously in time, but can also suddenly change

to new or repeated events.

Turning to working memory, I use information theoretic analyses to show that

dynamic synapses, whose strengths adjust with usage, can increase its capacity. I ar-

gue that these components should be included in the study of working memory. The

thesis ends with an explanation of the connections between these memory systems.
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In this work, we explored some of the main concepts in the computational neu-

roscience literature: working memory and episodic memory. The first part of the

thesis explores the role of episodic memory in decision making. We show that this

memory system is very important for learning and guiding actions; however, its role

in reward-based decision making has not been widely explored. Here, we propose a

new reinforcement learning algorithm based on episodic memories that are recalled

and weighted by context. We show that, in combination with conventional rein-

forcement learning algorithms, it predicts human choices better. Furthermore, we

propose a generative model for which this learning algorithm is an adequate infer-

ence model. In this way, we are able to provide a solid statistical framework within

which to study and analyze the capabilities of the proposed learning algorithm.

The impact of this new algorithm extends from theoretical Reinforcement

Learning, to the modeling of human decision making, to improving the capabili-

ties of artificial agents. This algorithm proposes the integration of episodic memory

in reinforcement-based decision making frameworks, and it proposes a formal sta-

tistical framework in which to study theoretical questions and explore different en-

vironmental statistics and tasks where episodic memory is relevant. This algorithm

can also be used to train artificial agents. In addition to other learning algorithms, ar-

tificial agents can use our new proposal to improve their learning skills and decision

making. Integrating episodic memory learning among other learning algorithms for

artificial agents would allow them to have greater flexibility and possibly improve

their generalization capabilities. This model can also be used to study human cog-

nition. In this thesis we showed that episodic memory is a key component of human
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decision making and consequently of human intelligence. Finally, this model can

be used to study biases in recall and decisions in patients with mental disorders.

For example, it could be used to study how depressed people recall episodic memo-

ries (often biased towards negative memories), and how this affects their decisions.

This study could then be used to develop treatments targeted towards improving this

recall process. In conclusion, this model proposes a new reinforcement learning

framework that can be used to study episodic memory, training of artificial agents,

and could be a starting point for further studies with clinical applications.

The second part of the thesis explores the neural substrates of working memory.

Understanding working memory is key to understanding human cognition. One of

the big open questions regarding working memory is how it is implemented by neu-

ral circuits, i.e., its neural substrate. The most widely accepted theory claims that

working memory depends on the recurrent connections between neurons. Based

on previous experimental observations, in this thesis, we suggest that the synapses

that realize these connections have short-term dynamic states and should also be

considered part of the neural substrate of working memory. We showed that by

including dynamic synapses in a working memory model, the network’s capacity

increased. This work is significant since understanding working memory capacity

is key to understanding the limits of human intelligence, and indeed brain-inspired

algorithms. One of the big differences between human brains and machines is our

memory capacity constraints. In order to understand the computational model of

the human brain, we need to bound our algorithms according to our capacity limi-

tations. For this reason, understanding the neural substrates of working memory is

an important component for this endeavour. Consequently, the results of this thesis

are an important contribution to solving the puzzle of how the human brain works.



Acknowledgements

Doing a PhD at the Gatsby Unit has been an invaluable experience for me, and I

am very thankful to all the people who have supported me on this journey. First of

all, I would like to thank my supervisor, Peter Dayan, for his support and guidance

throughout these years. It has been a great opportunity to be able to work with one

of the leading minds in the field. I would also like to thank the faculty and members

of the Unit for always been there to discuss and challenge any scientific project

or curiosity. It is thanks to the environment they created that I have been able to

grow as a scientist. In particular, I would like to thank my friends Joana Soldado

Magraner and Eszter Vertes for their personal and professional support. Finally, I

would like to thank my family for always believing in me.



Contents

1 Introductory Material 26

2 Episodic Memory in Reward Based Learning 30

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Previous Models . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Temporal Context Model . . . . . . . . . . . . . . . . . . . 43

2.3 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Equations Summary . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.1 Contextual Episodic Model . . . . . . . . . . . . . . . . . . 55

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.1 Analysis using Artificial Data . . . . . . . . . . . . . . . . 57

2.5.2 Analysis of Human Data . . . . . . . . . . . . . . . . . . . 72

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Generative Model 85

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1.1 Generative Model for Rescorla-Wagner . . . . . . . . . . . 87

3.1.2 Generative Model Proposal . . . . . . . . . . . . . . . . . . 90

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2.1 Previous Model . . . . . . . . . . . . . . . . . . . . . . . . 91



Contents 8

3.2.2 Dirichlet Processes . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Contextual Episodic Model as Inference Approximation . . . . . . 120

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.5.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.5.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.5.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.5.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4 Redefining the Neural Substrates of Working Memory: A Mechanistic

Approach 142

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2 Models of Working Memory . . . . . . . . . . . . . . . . . . . . . 144

4.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.4 Fisher Memory Measures . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 161

4.6 Network Structure Analysis . . . . . . . . . . . . . . . . . . . . . . 165

4.6.1 Symmetric Network . . . . . . . . . . . . . . . . . . . . . 165

4.6.2 Orthogonal Network . . . . . . . . . . . . . . . . . . . . . 177

4.6.3 Total Memory . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5 General Conclusions 196

Appendices 199

A Confusion Matrices (Artificial Data Analysis) 199

B Model Selection for Contextual Episodic 200



Contents 9

C Weighting Functions 202

D Fisher Information 204

E Linear and Linearized Networks Response to input pulse 206

F Schur Form Symmetric Network with dynamic synapses 207

Bibliography 208



List of Figures

2.1 Four-arm bandit task from [Daw et al., 2005]. (a) Participants chose

between four slot machines to receive points. (b) Payoffs. The mean

amount of points paid out by each machine varied slowly over the

course of the experiment . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Two-arm bandit task from [Bornstein et al., 2017]. (a) Each ban-

dit delivered tickets—trial-unique photographs—associated with a

dollar value—either 5or5. (b) Payoff probabilities. The probability

of each bandit paying out a winning ticket varied slowly over the

course of the experiment.(c) Memory probes. Participants encoun-

tered 32 recognition memory probes. On 26 of these probe trials,

participants were shown objects that were either received on a pre-

vious choice trial (‘valid’), whereas on others they were shown new

objects that were not part of any previous trial (‘invalid’) . . . . . . 43

2.3 A schematic of TCM. An observed item remains activated in con-

text for a period of time. Thus, context at each time step represents

the current observation and decaying versions of previous observa-

tions. [Howard and Kahana, 2002] . . . . . . . . . . . . . . . . . . 45

2.4 Confusion Matrix Experiment 1: The confusion matrix was nor-

malized by subtracting the diagonal entries from each row. Diago-

nal entries correspond to each model’s performance using its own

data, and are equal to zero after normalization. The values of the

Confusion Matrix are detailed in Appendix A. . . . . . . . . . . . 65



List of Figures 11

2.5 Confusion Matrix Experiment 2: The confusion matrix was nor-

malized by subtracting the diagonal entries from each row. Diago-

nal entries correspond to each model’s performance using its own

data, and are equal to zero after normalization. The values of the

Confusion Matrix are detailed in Appendix A. . . . . . . . . . . . 66

2.6 Increments (relative to chance) in Conditional Probability of re-

peating the same action at times t, t+1 and t + 2 after seeing a

memory probe from time tm at time t given that r(tm) was posi-

tive. (a). Comparison between all models at time t. There was a

statistically significant difference between groups as determined by

one-way ANOVA (F(3,396) = 16.30, p <0.001). A Tukey post hoc

test revealed that the difference in conditional probabilities between

the Hybrid model (0.94 +/- 0.021) and the RW model ( 0.54+/- 0.06,

p <0.001), the Hybrid model and the TC model (0.46 +/- 0.056, p

<0.001), and the Hybrid model and the Sampling model (0.81 +/-

0.035, p = 0.045) were statistically significant. There was no sta-

tistically significant difference between the RW and TC models (p

= 0.66).(b). Comparison between all models at time t. There was

a statistically significant difference between groups as determined

by one-way ANOVA (F(3,396)) = 6.84, p <0.001)). A Tukey post

hoc test revealed that the difference in conditional probabilities be-

tween the Hybrid model (0.79 +/- 0.045) and the RW model ( 0.48

+/- 0.078, p = 0.018), the Hybrid model and the TC model (0.44 +/-

0.067, p <0.01=27), and the Hybrid model and the Sampling model

(0.65 +/- 0.056, p = 0.042) were statistically significant. There was

no statistically significant difference between the RW and TC mod-

els (p = 0.65).(c).Comparison between all models at time t.There

was not a statistically significant difference between groups as de-

termined by one-way ANOVA (F(3,396)) = 1.79, p = 0.65). . . . . . 69



List of Figures 12

2.7 Decrements (relative to chance) in Conditional Probability of re-

peating the same action at times t, t+1 and t + 2 after seeing a

memory probe from time tm at time t given that r(tm) was nega-

tive. (a). Comparison between all models at time t. There was

a statistically significant difference between groups as determined

by one-way ANOVA (F(3,396) = 7.55 , p <0.001)). A Tukey post

hoc test revealed that the difference in conditional probabilities be-

tween the Hybrid model (0.21 +/- 0.018) and the RW model ( 0.5

+/- 0.051, p = 0.002), the Hybrid model and the TC model (0.53 +/-

0.045, p <0.017), and the Hybrid model and the Sampling model

(0.32 +/- 0.022, p = 0.038) were statistically significant. There was

no statistically significant difference between the RW and TC mod-

els (p = 0.86). (b). Comparison between all models at time t. There

was a statistically significant difference between groups as deter-

mined by one-way ANOVA (F(3,396)= 5.04, p = 0.0019 . A Tukey

post hoc test revealed that the difference in conditional probabili-

ties between the Hybrid model (0.36 +/- 0.039) and the RW model

( 0.5 +/- 0.072, p = 0.041), the Hybrid model and the TC model

(0.52 +/- 0.061, p <0.037), and the Hybrid model and the Sampling

model (0.4 +/- 0.048, p = 0.047) were statistically significant. There

was no statistically significant difference between the RW and TC

models (p = 0.92). (c).Comparison between all models at time t.

There was not a statistically significant difference between groups

as determined by one-way ANOVA (F(3,396)= 2.467, p = 0.636). . 70



List of Figures 13

2.8 Increments (relative to chance) in Conditional Probability of re-

peating the same action at times t, t+1 and t + 2 after seeing a

memory probe from time tm at time t given that r(tm) was posi-

tive. (a). Comparison between all models at time t. There was a

statistically significant difference between groups as determined by

one-way ANOVA (F(3,396) = 18.30, p <0.001). A Tukey post hoc

test revealed that the difference in conditional probabilities between

data from Humans ( 0.76 +/- 0.45) and the RW model ( 0.51 +/- 0.6,

p <0.001), data from Humans and the TC model (0.537+/- 0.05, p

=0.008), and data from Humans and the Sampling model (0.71 +/-

0.03, p = 0.036) were statistically significant. There was no statis-

tically significant difference between the RW and TC models (p =

0.74), and the Hybrid model (0.79 +/- 0.05, p = 0.57) and data from

Humans. (b). Comparison between all models at time t. There was

a statistically significant difference between groups as determined

by one-way ANOVA (F(3,396)) = 6.7, p = 0.011)). A Tukey post

hoc test revealed that the difference in conditional probabilities be-

tween data from Humans (0.46 +/- 0.002) and the RW model ( 0.49

+/- 0.03, p <0.001), data fromHumans and the TC model (0.52+/-

0.028, p <0.001), and data from Humans and the Sampling model

(0.32 +/- 0.035, p = 0.021) were statistically significant. There was

no statistically significant difference between the RW and TC mod-

els (p = 0.75), and the Hybrid model ( 0.41 +/- 0.032, p = 0.97) and

data from Humans. (c). Comparison between all models at time t.

There was not a statistically significant difference between groups

as determined by one-way ANOVA (F(3,396)= 2.467, p = 0.0736).

A Tukey post hoc test revealed that the difference in conditional

probabilities between data from Humans ( 0.59 +/- 0.022) and the

RW model ( 0.4 +/- 0.018, p =0.012), and data from Humans and

the TC model (0.42+/- 0.021, p =0.015) were statistically signifi-

cant. There was no statistically significant difference between the

RW and TC models (p = 0.74), data from Humans and the Sampling

model (0.671 +/- 0.033, p = 0.066) and the Hybrid model (0.63 +/-

0.025, p = 0.65) and data from Humans. . . . . . . . . . . . . . . . 76



List of Figures 14

2.9 Decrements (relative to chance) in Conditional Probability of re-

peating the same action at times t, t+1 and t + 2 after seeing a

memory probe from time tm at time t given that r(tm) was nega-

tive. (a). Comparison between all models at time t. There was a

statistically significant difference between groups as determined by

one-way ANOVA (F(3,396) = 9.67, p <0.001)). A Tukey post hoc

test revealed that the difference in conditional probabilities between

Human data (0.38 +/- 0.035 ) and the RW model ( 0.52 +/- 0038,

p <0.001), Humans and the TC model (0.46+/- 0.067, p <0.001),

data from Humans and the Sampling model (0.41 +/- 0.016, p =

0.009), the RW and the TC model (p = 0.025), and the Hybrid

model (0.22 +/- 0.001, p = 0.018) and data from Humans were sta-

tistically significant. (b). Comparison between all models at time

t. There was a statistically significant difference between groups

as determined by one-way ANOVA (F(3,396)= 12.467, p <0.001.

A Tukey post hoc test revealed that the difference in conditional

probabilities between data from Humans ( 0.33 +/- 0.044) and the

RW model ( 0.5+/- 0.07, p =0.023), data from Humans and the TC

model (0.52+/- 0.06, p=0.014), and data from Humans and the Sam-

pling model (0.4 +/- 0.05, p = 0.033) were statistically significant.

There was no statistically significant difference between the RW

and TC models (p = 0.74), and the Hybrid model (0.38+/- 0.04) , p

= 0.87) and data from Humans (c). Comparison between all models

at time t. There was not a statistically significant difference between

groups as determined by one-way ANOVA (F(3,396)) = 3.45, p =

.045). A Tukey post hoc test revealed that the difference in con-

ditional probabilities between Human data (0.35 +/- 0.03 ) and the

RW model ( 0.5 +/- 0.0456, p <0.001), Humans and the TC model

(0.51+/- 0.038, p <0.001), and Humans and the Sampling model

(0.4 +/- 0.03, p = 0.026) were statistically significant. There was no

statistically significant difference between the RW and TC models

(p = 0.74), and the Hybrid model ( 0.38 +/- 0.025, p = 0.57) and

data from Humans. . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Figures 15

3.1 Infinite Hidden Markov Model: State Transitions generative mech-

anism. (a-d) Sampled state trajectories of length T - 250 (time

along horizontal axis) (a) α = 0.1, β = 1000, γ = 100, visits

many states. (b) α = 0, β = 0.1, γ = 100, retraces multiple tra-

jectory segments. (c) α = 8, β = 2, γ = 2 visits few states. (d)

α = 1, β = 1, γ = 10000, has strict left-to-right transition dynamics

[Beal et al., 2002] . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Toy model of the Generative model. It describes the temporal dy-

namics of the state of the world and of the agent in the world. Each

square is one time step. At each time step the model of the world

changes slightly. The colors at each location, and correspond to dif-

ferent values of rewards. The agent, A, changes locations each time

step. The location is indicated by the value that the variable A takes

at each time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Initial values (time t = 0) of rewards given at all different locations

in the environment for taking action 1. . . . . . . . . . . . . . . . . 108

3.4 Initial values (time t = 0) of rewards given at all different locations

in the environment for taking action 2. . . . . . . . . . . . . . . . . 109

3.5 Agent’s Location in the environment for all time steps. Y axis

shows the index of location in the environment, and x axis shows

the time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Bandits’ rewards received by the agent at each time step as it ex-

plores different locations in the environment . . . . . . . . . . . . . 112

3.7 Agent’s Location in the environment for all time steps. Y axis

shows the index of location in the environment, and x axis shows

the time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 Bandits’ rewards received by the agent at each time step as it ex-

plores different locations in the environment . . . . . . . . . . . . . 115



List of Figures 16

3.9 Agent’s Location in the environment for all time steps. Y axis

shows the index of location in the environment, and x axis shows

the time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.10 Bandits’ rewards received by the agent at each time step as it ex-

plores different locations in the environment . . . . . . . . . . . . . 117

3.11 Agent’s Location in the environment for all time steps. Y axis

shows the index of location in the environment, and x axis shows

the time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.12 Bandits’ rewards received by the agent at each time step as it ex-

plores different locations in the environment . . . . . . . . . . . . . 119

3.13 Simple Task. Rewards for Action 1 for all trials . . . . . . . . . . . 124

3.14 Simple Task. Rewards for Action 2 for all trials . . . . . . . . . . . 125

3.15 Comparison of the weight assigned by the Rescorla Wagner and

Contextual Episodic models to the most recent trial, the probed trial

and the trial following the probed trial at the trial when the probed

was shown (trial 17) and at the following trial (trial 18) . . . . . . . 127

3.16 Q values predictions at the trial when the probe was shown (trial 17)

and at the following trial (18) by the Rescorla Wagner and Contex-

tual Episodic models. Next to these values, we show, for compari-

son, the value of the actual reward received at these trials (called Ac-

tual in the label). Neither predictions is perfect due to the effect of

other trials in the computation, but the Contextual Episodic model

computes a better estimate of the actual reward than the Rescorla

Wagner model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



List of Figures 17

3.17 Total rewards collected by the Rescorla Wagner, Hybrid and Con-

textual Episodic models using data from Scenario 1. Each bar

shows the mean value of total rewards collected over 100 tasks

(each tasks consisted of 300 trials or time steps). The red line

(Chance = 88.2) shows the total reward that collected by an agent

that selects between actions with equal probability. The green line

(Max = 126.5) shows the maximum total reward collected by an

agent that knows the action that gives the highest reward at each

time step. There was a statistically significant difference between

the total rewards collected by each model over the 100 tasks as

determined by one-way ANOVA (F(4,495) = 27, p <0.001). A

Tukey post hoc test revealed that the difference between the total

rewards collected between the Rescorla Wagner model (118 +/- 4, p

<0.001), the Hybrid model (99 +/- 2, p <0.001) and the Contextual

Episodic model (98 +/- 5, p <0.001) were statistically significant. . 131



List of Figures 18

3.18 Total rewards collected by the Rescorla Wagner, Hybrid and Con-

textual Episodic models using data from Scenario 2. Each bar

shows the mean value of total rewards collected over 100 tasks

(each tasks consisted of 300 trials or time steps). The red line

(Chance = 131.2) shows the total reward that collected by an agent

that selects between actions with equal probability. The green line

(Max = 168.5) shows the maximum total reward collected by an

agent that knows the action that gives the highest reward at each

time step. There was a statistically significant difference between

the total rewards collected by each model over the 100 tasks as

determined by one-way ANOVA (F(4,495) = 35, p <0.001). A

Tukey post hoc test revealed that the difference between the total

rewards collected between the Rescorla Wagner model (159 +/- 4,

p <0.001), the Hybrid model (162 +/- 4.2, p <0.001) and the Con-

textual Episodic model (151 +/- 3.8, p <0.001) were statistically

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Figures 19

3.19 Total rewards collected by the Rescorla Wagner, Hybrid and Con-

textual Episodic models using data from Scenario 3. Each bar

shows the mean value of total rewards collected over 100 tasks

(each tasks consisted of 300 trials or time steps). The red line

(Chance =123.48) shows the total reward that collected by an agent

that selects between actions with equal probability. The green line

(Max = 159.25) shows the maximum total reward collected by an

agent that knows the action that gives the highest reward at each

time step. There was a statistically significant difference between

the total rewards collected by each model over the 100 tasks as

determined by one-way ANOVA (F(4,495) = 29, p <0.001). A

Tukey post hoc test revealed that the difference between the to-

tal rewards collected between the Rescorla Wagner model (141 +/-

3.2, p <0.001), the Hybrid model (152 +/- 4.9, p <0.001) and the

Contextual Episodic model (136 +/- 4, p <0.001) were statistically

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Figures 20

3.20 Total rewards collected by the Rescorla Wagner, Hybrid and Con-

textual Episodic models using data from Scenario 2. Each bar

shows the mean value of total rewards collected over 100 tasks

(each tasks consisted of 300 trials or time steps). The red line

(Chance = 119.5) shows the total reward that collected by an agent

that selects between actions with equal probability. The green line

(Max = 184.4) shows the maximum total reward collected by an

agent that knows the action that gives the highest reward at each

time step. There was a statistically significant difference between

the total rewards collected by each model over the 100 tasks as

determined by one-way ANOVA (F(4,495) = 31, p <0.001). A

Tukey post hoc test revealed that the difference between the total

rewards collected between the Rescorla Wagner model (146 +/- 2.7,

p <0.001), the Hybrid model (157 +/- 3, p <0.001) and the Contex-

tual Episodic model (184.43 +/- 4.8 , p <0.001) were statistically

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1 Average firing during delay response task from [Fuster and Alexander, 1971].

Average firing of two units during a five delayed response trials with

30 second delays (a) unit in prefrontal cortex (b) unit in nucleus

medals dorsalis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2 Working memory delay activity dual-task: working memory task is

interrupted during the delay period with an attention task. Content-

specific activity is abolished by the memory task and reactivated at

the end of the dual task, reflecting a shift in focus to complete the

working memory task upon receiving the cue signal [Stokes, 2015]. 150

4.3 Eigenspectrum: Symmetric Network with dynamic synapses . . . . 166

4.4 Eigenspectrum: Symmetric Network with dynamic synapses with-

out dynamic synapses . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.5 Schur Decomposition: Symmetric Network with dynamic synapses . 168



List of Figures 21

4.6 Schur Decomposition: Symmetric Network without dynamic

synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.7 Network Amplification: Symmetric Network with dynamic

synapses (red) and without dynamic synapses (blue) . . . . . . . . . 171

4.8 Fisher Memory Curve: Symmetric Network with dynamic synapses

(red) and without dynamic synapses (blue) . . . . . . . . . . . . . . 172

4.9 Total Memory with varying τ f . . . . . . . . . . . . . . . . . . . . 174

4.10 Total Memory with varying τd . . . . . . . . . . . . . . . . . . . . 175

4.11 Eigenspectrum: Orthogonal Network with dynamic synapses . . . . 177

4.12 Eigenspectrum: Orthogonal Network without dynamic synapses . . 178

4.13 Schur Decomposition: Orthogonal Network with dynamic synapses 179

4.14 Schur Decomposition: Orthogonal Network without dynamic

synapses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.15 Network Amplification: Orthogonal Network with dynamic

synapses (blue) and without dynamic synapses (blue) . . . . . . . . 181

4.16 Fisher Memory Curve : Orthogonal Network with dynamic

synapses (blue) and without dynamic synapses (blue) . . . . . . . . 182

4.17 Total Memory with varying τ f : 100 Orthogonal Networks . . . . . 183

4.18 Total Memory with varying τd : 100 Orthogonal Networks . . . . . 184

4.19 Total Memory achieved by Symmetric and Orthogonal connectivity

matrices with dynamic synapses . . . . . . . . . . . . . . . . . . . 186

4.20 Total Memory as a function of the number of neurons in the network

(Symmetric Network) . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.21 Total Memory Scaling as a function of the number of neurons in the

network (Orthonormal Network) . . . . . . . . . . . . . . . . . . . 188

C.1 Recency-based Weight . . . . . . . . . . . . . . . . . . . . . . . . 203

C.2 TCM-based Weight . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.1 Fisher Information . . . . . . . . . . . . . . . . . . . . . . . . . . 205



List of Figures 22

E.1 Networks Dynamics: Linear and Non-linear Networks’ response to

a pulse input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

F.1 Schur Decomposition: Symmetric Network with dynamic

synapses: zoom version. Entries along the delay line can be seen . . 207



List of Tables

2.1 Model Fitting Results. In this table, we show the RW model param-

eters used to generate the data (left), the parameters learned through

model fitting using the RW model (middle), and the difference be-

tween the actual and the means of the estimated parameters (right).

In parenthesis next to the estimated parameters (middle), we show

the standard deviation in the parameters’ estimates. . . . . . . . . . 58

2.2 Model Fitting Results. In this table, we show the RW model pa-

rameters used to generate the data (left), and the parameters learned

through model fitting using the Hybrid model (right). In parenthesis

next to the estimated parameters, we show the standard deviation in

the parameters’ estimates. . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Model Fitting Results. In this table, we show the Time Constants

model parameters used to generate the data (left), the parameters

learned through model fitting using the Time Constants model (mid-

dle), and the difference between the actual and the means of the

estimated parameters (right). In parenthesis next to the estimated

parameters (middle), we show the standard deviation in the param-

eters’ estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Model Fitting Results. In this table, we show the Time Constants

model parameters used to generate the data (left), and the parame-

ters learned through model fitting using the Hybrid model (right). In

parenthesis next to the estimated parameters, we show the standard

deviation in the parameters’ estimates. . . . . . . . . . . . . . . . . 61



List of Tables 24

2.5 Model Fitting Results. In this table, we show the Sampling model

parameters used to generate the data (left), the parameters learned

through model fitting using the Sampling model (middle), and the

difference between the actual and the means of the estimated pa-

rameters (right). In parenthesis next to the estimated parameters

(middle), we show the standard deviation in the parameters’ esti-

mates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Model Fitting Results. In this table, we show the Sampling model

parameters used to generate the data (left), and the parameters

learned through model fitting using the Hybrid model (right). In

parenthesis next to the estimated parameters, we show the standard

deviation in the parameters’ estimates. . . . . . . . . . . . . . . . . 63

2.7 Model Fitting Results. In this table, we show the Hybrid model

parameters used to generate the data (left), the parameters learned

through model fitting using the Hybrid model (middle), and the dif-

ference between the actual and the means of the estimated param-

eters (right). In parenthesis next to the estimated parameters (mid-

dle), we show the standard deviation in the parameters’ estimates. . 64

2.8 In this table, we show the description of a third experiment, which

does not resemble either experiment described before, consists of

100 data points with 10 memory probes from the past. This table

shows the times of those 10 probes (right, Probed Times), and the

trials that are cued at those times (right, Reminded Trials). . . . . . 68

2.9 Model Fitting Results. In this table, we show the estimates of pa-

rameters using data from Experiment 1. We show the parameters

learned by the RW, Time Constants, Sampling and Hybrid models.

In parenthesis next to the estimated parameters (middle), we show

the standard deviation in the parameters’ estimates. . . . . . . . . . 72



List of Tables 25

2.10 Model Fitting Results. In this table, we show the estimates of pa-

rameters using data from Experiment 2. We show the parameters

learned by the RW, Time Constants, Sampling and Hybrid models.

In parenthesis next to the estimated parameters (middle), we show

the standard deviation in the parameters’ estimates. . . . . . . . . . 73

2.11 Log Bayes scores between Sampling and Hybrid . . . . . . . . . . 74

3.1 Description of the parameters governing the agent’s dynamics for

all time steps i.e how the agent explores different locations in the

environment at each time step. In this situation, the agent remains

in one location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2 Description of the parameters governing the agent’s dynamics for

all time steps i.e how the agent explores different locations in the

environment at each time step. . . . . . . . . . . . . . . . . . . . . 113

3.3 Description of the parameters governing the agent’s dynamics for

all time steps i.e how the agent explores different locations in the

environment at each time step. . . . . . . . . . . . . . . . . . . . . 116

3.4 Description of the parameters governing the agent’s dynamics for

all time steps i.e how the agent explores different locations in the

environment at each time step. . . . . . . . . . . . . . . . . . . . . 118

3.5 Learned parameters for data from Scenario 1 using the Rescorla

Wagner, Hybrid and Contextual Episodic Models . . . . . . . . . . 130

3.6 Learned parameters for data from Scenario 2 using the Rescorla

Wagner, Hybrid and Contextual Episodic Models . . . . . . . . . . 132

3.7 Learned parameters for data from Scenario 3 using the Rescorla

Wagner, Hybrid and Contextual Episodic Models . . . . . . . . . . 134

3.8 Learned parameters for data from Scenario 4 using the Rescorla

Wagner, Hybrid and Contextual Episodic Models . . . . . . . . . . 136

A.1 Confusion Matrix Experiment 1 . . . . . . . . . . . . . . . . . . . 199

A.2 Confusion Matrix Experiment 2 . . . . . . . . . . . . . . . . . . . 199



Chapter 1

Introductory Material

In order to improve their chances of survival, living beings have had to adapt to

the continuous wealth of temporal and spatial time scales of their environments.

To do so, organisms have developed a diverse set of mechanisms for storing and

retrieving information. These mechanisms reflect the statistics of the environ-

ment necessary to guide actions – for example, the frequency of occurrence of

a stimuli or the coincidence of stimuli and reward [Sherry and Schacter, 1987]

[Miyake and Shah, 1999], [Tetzlaff et al., 2012]. These mechanisms form the ba-

sis of learning and memory, and give rise to a complex and diverse set of memory

systems. These systems may be characterized based on the different time scales at

which they operate and the interactions between information storage and retrieval.

Understanding memory is key to understanding cognition and intelligence.

However, the study of memory has never been straightforward. From psychologists

to neuroscientists to physicists, scientists from different fields have taken diverse ap-

proaches to address this subject [Miyake and Shah, 1999]. On one hand, memory

has been studied as a theoretical construct that explains key cognitive phenomena;

on the other hand, the complexities of the physical and a biological processes un-

derlying these phenomena have fallen short of explaining the richness of subjective

experience. To complicate matters further, there is no one agreed definition or set

of characteristics outlining what memory should be [Baddeley, 2012].

Evidence in cognitive psychology and neuroscience shows that there is more

than one type of memory systems [Squire et al., 1984]. The term memory systems
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refers to different systems, often associated with different neural substrates, that

have different mechanisms for storage, retention and retrieval of memories and of-

ten times process different types of information [Tulving, 1985]. This specializa-

tion of memory systems developed to solve tasks with properties and character-

istics for which alternate systems were incompatible [Sherry and Schacter, 1987].

An example of this can be seen in the distinctions between incremental habit for-

mation and episodic memory. Both types of memories are important for guiding

appropriate behaviour; however, they operate at different time scales and storage

mechanisms that seem mutually incompatible. Habit formation requires gradual

or incremental learning, while episodic memory requires a rapid one-trial learning

[Sherry and Schacter, 1987].

The modern concept of multiple memory systems started with the case of the

amnesic patient H.M. He suffered from epilepsy, and in an attempt to cure it, he

had bilateral medial temporal lobotomy. With it, he had removed two thirds of

his hippocampi, parahippocampal cortices, entorhinal cortices, piriform cortices,

and amygdalae [White and McDonald, 2002] [Corkin, 2002]. As a consequence,

he developed anterograde amnesia, which is the loss of the ability to create new

memories, and moderate retrograde amnesia, which is the inability to remember

events in a given period right before the onset of amnesia. However, he was still

able to complete other tasks like solving puzzles, and was able to recall events

from long term memory. These abilities suggested that other types of memory were

intact and mediated by different brain regions. This case jump-started the study of

memory systems, and many have been identified ever since.

At present, we understand memory as comprised of many distinct but interact-

ing systems. Here, we present a brief simplified overview of the current taxonomy

of memory systems, which is sufficient for the purposes of our thesis. This taxon-

omy separates memory into long term memory (duration of hours to years) and short

term memory (duration of a few seconds). When information is been attended to in

short term memory, it is referred to as working memory. Long term memory has

been further subdivided into explicit or declarative and implicit or non-declarative.
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Declarative memory is the type that can be consciously recalled. It encompasses se-

mantic and episodic memory, which each refers to the memory of facts and events

respectively. Non-declarative memory encompasses priming, procedural, associa-

tive learning, and non-associative learning. Priming is the memory type that is

expressed unconsciously through the performance of certain tasks. It refers to the

unconscious effect of the exposure to a word or object on a subsequent word or

object, even when that first word or object are not consciously remembered. Pro-

cedural memory refers to skills and habits. Associative learning refers to classical

and operant conditioning. Finally, non-associative learning is associated with reflex

pathways [Squire, 2004] [Tulving and Schacter, 1990] [Thompson and Kim, 1996]

[Squire and Zola, 1996]

The study of memory is very complex, and not straightforward. There are

different levels of complexity and open questions that span from the neural sub-

strates to the cognitive and psychological mechanisms of each memory system.

For that reason, we follow David’s Marr approach and separate the study of mem-

ory into three levels of analysis: the computational level, the algorithmic or repre-

sentational level and the implementation or physical level [Marr and Poggio, 1976]

[Marr et al., 1991]. The computational level refers to the study of the problem a

system has to solve, the algorithmic level focuses on how the system solves that

problem, and finally the implementation level studies how the system implements

this solution. In terms of memory research, the computational level refers to the

information processing goal of the memory system: i.e. what is the optimal way to

store and recall information. The algorithmic level refers to the actual operations

carried on during these information processing task: i.e what algorithms are used to

store and retrieve information. Finally, the implementation level refers to the way

networks of neurons and synapses perform these operations.

In this thesis, we focus on two memory systems: episodic memory and work-

ing memory. We use different levels of analysis to address open questions in

each of them. By using different levels of analysis, we hope to separate differ-

ent issues relevant to the two memory systems into separate specific questions. It
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might seem that the thesis comprises of two completely disparate parts. However,

both memory systems studied are primarily concerned with the storage and recall

of information about particular events rather than compressed sufficient statistics

[Wenger and Shing, 2016]. The first part concerns the computational and algorith-

mic issues associated with longer term storage. Specifically we ask how individual

events are stored for later retrieval when a similar situation occurs and an action

needs to be taken. In this part, we look at usage of this type of memory during

reward learning. In particular, we study how information retrieval from episodic

memory guides reward based learning and decision making. To achieve this goal,

we incorporate an episodic memory model into a reinforcement learning frame-

work. We test this theory with human data, and we propose a generative model for

which our algorithm is a suitable approximate inference method. The second part

of the thesis explores the neural substrates of short term storage. To answer this

question, we look at the implementation mechanisms of neural systems to retain

information actively for short periods of time while an animal makes a decision or

performs an action. The importance of this analysis lies on the fact that the neural

mechanisms of this memory system constrain the capacity or number of items that

can be stored in short term memory. Properly answering this question can reveal

the physical limits of working memory, and by doing so give answers to many open

question on the field. For example, we could understand some critical limits to

human capacities and intelligence.

In short, this thesis explores two memory systems concerning the storage,

maintenance and retrieval of one type of information (specific events) at two dif-

ferent time scales (short-term and long-term). Marr’s approach becomes useful in

conceptualizing the different open questions regarding these two systems. Taken

together, the two parts of the thesis constitute a significant contribution to the un-

derstanding of one of the pillars of human cognition: human memory.



Chapter 2

Episodic Memory in Reward Based

Learning

2.1 Motivation

Reinforcement learning (RL) is a learning framework for modeling adaptive

decision-making based on reward history [Sutton and Barto, 2018], [Sutton and Barto, 1998],

[Dayan and Niv, 2008]. Its goal is to optimize performance, measured in terms of

cumulative reward, large by means of learning to predict the consequences of ac-

tions. Reinforcement learning has been able to both explain natural systems and

build artificial ones [Sutton and Barto, 2018].

The two main categories in RL are called model-free and model-based rein-

forcement learning. These two categories were originally defined and are often

treated as separate; however, it has been shown that human behaviour often lies

somewhere in between both of them [Sutton and Barto, 1998],[Sutton and Barto, 2018].

A model-free learner chooses actions based on previously computed and stored

estimates or cached values of the future utility of actions. The action with the

highest expected future utility is chosen – up to stochasticity. These estimates

are computed based on trial and error experiences, and are typically equal to run-

ning averages of past rewards, where each reward is weighted by recency. These

values are updated at each time step using the difference between the expected

reward and the reward received (known as prediction error in the RL literature) as
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a guidance[Sutton, 1988, Watkins, 1989]. Model free learning is computationally

inexpensive in learning and use, but also statistically inefficient. This means that

most information about the environment and task structure is lost, since the only

information kept is a scalar value of the long run value of actions. Among other

areas, the dorsolateral striatum and parts of the amygdala have been associated with

this type of learning [Balleine, 2005], [Killcross and Coutureau, 2003].

On the other hand, a model-based learner learns and stores a model of

the environment (transition probabilities between states and rewards) based on

previous observations [Daw et al., 2005]. This model is then used to plan the

consequences of actions before making a decision. A model-based learner

computes long run values of actions by operations equivalent to running for-

ward this learned mental model of actions and rewards whilst summing the lat-

ter. This type of learning uses experience in a statistically efficient manner

[Dayan and Niv, 2008]. Contrary to model free learning, it is flexible, and it can

quickly adapt after sudden changes. This flexibility is due to the fact that a

model-based learner stores all information from the environment, so it can plan

forward and if presented with new information, it can instantly change its be-

haviour at future states. In this way, it allows for goal-directed decision making

[Dickinson and Balleine, 2002]. Model-free cached values are updated slowly and

carry the long run average information from the past; therefore, a model-free learner

requires more time to adapt to changes. Model-based RL is associated with the

dorsomedial striatum, prelimbic pre-frontal cortex, orbitofrontal cortex and parts

of the amygdala [Rushworth and Behrens, 2008],[Balleine, 2005],[Dolan, 2007],

[Matsumoto and Tanaka, 2004].

We consider a third type of reinforcement learning methods by introducing a

new algorithm that uses episodic memories, cued by context, to choose actions.

We call this new algorithm: Contextual Episodic. Episodic memory is a distinct

and unique memory system that stores and retrieves information from single past

events [Tulving and Schacter, 1990]. Contrary to short-term or working memory,

it can store information for than a few minutes, and contrary to other forms of
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long term memory, such as semantic memory, it doesn’t store summary statis-

tics, but rather, it stores and recalls specific events. As all other memory sys-

tems, episodic memory presumably evolved [Sherry and Schacter, 1987], because

the type of information it provides is useful for organisms to survive and maxi-

mize payoffs. We hypothesize that this memory system exists, because rare events

can happen again, and in those situations, knowledge of that specific event is more

useful than accumulated statistics from many non-relevant events. For this rea-

son, and for the fact that humans draw on memory to compute decisions flexibly

[Bornstein et al., 2017] [Bornstein and Norman, 2017], we propose a decision mak-

ing framework that utilizes episodic memory. This memory system is used daily by

humans; however, much of mainstream reinforcement learning has ignored it, with

some important exceptions: [Bornstein et al., 2017] [Bornstein and Norman, 2017]

[Gershman and Daw, 2017]. We show that by taking advantage of this memory sys-

tem, it is possible to capture human behavioral data more accurately.

In fact, episodic memory can be used in the context of both model-based and

model-free learning. Either the model of the world from a particular situation, or

a summary statistic from it can be stored and retrieved as a single episode. In

our work, we use episodic memory to replace (or to be combined with) model-

free cached values. In this chapter, we show that such an episodic based learning

algorithm fits human data, suggesting that humans might use this memory system

for decision making. The particulars of the situations in which such an algorithm

might be preferentially powerful is the topic of our next chapter.

Previous models that have studied the role of episodic memory in decision

making include the work by Lengyel and Dayan [Lengyel and Dayan, 2008] and

Bornstein et, al [Bornstein et al., 2017]. Dayan and Lengyel described situations

where episodic memory can be more useful than model free or model based systems

[Lengyel and Dayan, 2008]. Their work focused on a cost/benefit analysis that par-

alleled previous work on the trade-offs between model free and model based learn-

ing [Daw et al., 2005]. They found that when there isn’t enough gathered informa-

tion to have reliable model-free cached values, as well as when the environment is
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characterized by high complexity and inferential noise, retrieving single episodes is

the most efficient way to use previous experiences [Lengyel and Dayan, 2008].

Bornstein et al. [Bornstein et al., 2017] proposed a model that describes how

episodic memories can be used in a decision making framework. They suggested a

sampling model, where individual events are sampled and used to make decisions.

We expand on this model in the literature review section.

Gershman and Daw proposed that episodic memories can be used to con-

struct non-parametric approximations to state, actions or state-action value func-

tions [Gershman and Daw, 2017]. They proposed that individual episodes could

be retrieved and averaged, based on a similarity function between current and re-

trieved states, at the moment of making a decision or choosing to perform an ac-

tion. In this way, they suggested that episodic memory could be used to alleviate

some of the open questions in RL such as computing values when environments

are non-Markovian and have long time dependencies. An RL algorithm endowed

with episodic memory can use raw data stored in Episodic memory, and retrieve

the necessary episodes, including those with long temporal dependencies, to com-

pute the value of state or actions. They proposed a theoretical framework, called

Episodic RL that uses a kernel function to measure the similarity between states.

Therefore, Episodic RL is non-parametric, which frees it from relying on a param-

eterized version of the value function, and in turns allows it to grow with observed

data [Gershman and Daw, 2017].

Our Contextual Episodic learning model builds on Bornstein’s model, and

extends Gerschman and Daw’s proposal so that episodic memories are recalled

and combined weighted by contextual similarity. Our algorithm is also a non-

parametric model based on a kernel function, but it defines similarity as the sim-

ilarity between temporal contexts. Similarly, Bornstein uses episodic memories

to make decisions, but its bases recall on recency rather than any similarity be-

tween states or context. It has been shown that context influences what events

are recalled [Duncan and Shohamy, 2016], and that these events - cued by contex-

tual recall - influence current decisions [Bornstein and Norman, 2017]. This find-
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ing demonstrates the importance of episodic memories in decision making, but

furthermore, it highlights the relevance of context in decision making - through

its influence in episodic recall. For this reason, we considered it crucial that our

model is based around context. Furthermore, it has been shown that a similarity-

based approach to recalling specific events from memory leads to higher perfor-

mance in learning agents [Plonsky et al., 2015], and behavioural economists have

developed a theory, where decision makers are endowed with a similarity func-

tion that compares previous states. This theory is called case-based decision theory

[Gilboa and Schmeidler, 2001]. For these reasons, our algorithm uses context to re-

call events, and furthermore, it uses a contextual similarity function to weight the

events it recalls. In this way, our algorithm allows for flexible recall of relevant

information, measured by contextual similarity between events, that can be be used

for reward learning and decision-making. Finally, our algorithm uses a Temporal

Context Model (TCM) [Howard and Kahana, 2002] to model the temporal evolu-

tion of context. TCM was developed to understand free recall in humans, and we

use it as a key component of our algorithm.

In this chapter, we further propose a Hybrid model between our Contextual

Episodic model and standard model free learning. Learning frameworks do not

happen in isolation. They often cooperate or compete [Gershman and Daw, 2017]

[Daw et al., 2005] [O’Doherty et al., 2003] [Keramati et al., 2011], which imply

that humans use a combination of techniques to make decisions. For this reason, we

hypothesize that when humans make decisions they use a weighted combination of

at least two decision making methods. For the purpose of this chapter, we focus on

Contextual Episodic and model-free frameworks. Our model allows for flexibility

in the utilization of information. Contextual cues are always triggering the recall

of episodic memories [Duncan and Shohamy, 2016], and it is only at the time of

decision that we select which information is relevant for our actions.

In the following sections, we review the details of Bornstein’s sampling model

and the TCM model, on which we base our proposal. Then, we formally introduce

the Contextual Episodic Framework and the Hybrid model. We finish with an anal-
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ysis of the Hybrid model, and how it compares to other models using both artificial

data and data from previous human experiments.

2.2 Literature Review

2.2.1 Previous Models

Prior to reviewing previous models from the literature, we introduce the main con-

cepts of Reinforcement Learning and set up the decision making problems we study.

Reinforcement learning models study how decision making agents learn to interact

with their environment in order to achieve a goal (i.e. maximize long term rewards).

To achieve this goal, agents learn to choose actions, often based on, or at least in-

fluenced by, judgments of their long-run value. Different Reinforcement Learning

models have different methods to estimate these values [Sutton and Barto, 1998].

The most common and simplest decision making problem studied in the Rein-

forcement Learning literature is the n-bandits task. A bandit is a slot machine, which

is operated by pulling a handle. The decision task consists on choosing which ban-

dit to operate. The decision to operate a specific bandit among n different bandits

is called an action. After choosing a bandit (taking an action), a reward is received.

The learning agent has to perform a sequence of actions to maximize reward re-

ceived over time. As explained, a standard reinforcement learning agent chooses

actions based on the estimated value of each action a at each time step t – denoted

as Qt(a) [Watkins, 1989]. There are different methods for estimating the value of

actions, and for selecting an action based on these estimates. In this thesis, we

focus only on the methods for estimating action values. For action selection, we

use a stochastic policy, or strategy for action selection, where an action is selected

following a soft-max probability distribution. The equation below describes this

probability distribution. In this equation, a and b are two actions corresponding to

two bandits in a two-bandits task. The two probabilities add up to one, and their

values vary from 0 to 1. The inverse temperature parameter β determines how de-

terministic the probability functions are with respect to action values. For large β ,

the probability is almost deterministic, while for small β , actions are more random.
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[Sutton and Barto, 1998] [Dayan et al., 2003]:

P(a) =
eβQt(a)

eβQt(a)+ eβQt(b)
(2.1)

P(b) =
eβQt(b)

eβQt(b)+ eβQt(a)
(2.2)

The true value of each action is equal to the mean reward that would be received

if that action is taken at that time step by the agent - this value is unknown for

the agent. The agent can only form estimated values for each action. Informally,

the estimated value of an action depends on the history of rewards received after

taking the action. Different reinforcement learning frameworks compute this value

differently based on how the information from previous rewards is utilized, and the

assumptions of how the environment changes [Sutton and Barto, 1998] In the case

of stationary bandits, where rewards values are not changing over time, the simplest

estimation method is the sample average method. This method says that if at time t,

action a has been chosen Nt(a) times with rewards r1, ...,rNt(a), the estimated value

for action a is [Sutton and Barto, 1998] :

Qt(a) =
r1 + . . .+ rNt(a)

Nt(a)
(2.3)

In order to avoid exponential memory and computational cost, an incremental

approach was derived, where only an estimate of the value of action a for the tth

reward received Qt(a) is maintained and updated when the next reward is received.

The derivation of this incremental equation is the following. In the following equa-

tion, Qt+1(a) is the average of all previously received rewards for that action, and i

is the index of previous rewards [Sutton and Barto, 1998] :

Qt+1(a) =
1

Nt(a)

t

∑
i=1

ri (2.4)

Qt+1(a) =
1

Nt(a)

(
rt +

t−1

∑
i=1

ri

)
(2.5)
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Qt+1(a) =
1

Nt(a)
(rt +(t−1)Qt(a)+Qt(a)−Qt(a)) (2.6)

Qt+1(a) =
1

Nt(a)
(rt + tQt(a)−Qt(a)) (2.7)

Qt+1(a) = Qt(a)+
1

Nt(a)
[rt−Qt(a)] (2.8)

In these equations 1
Nt(a)

is the step-size of each update. For non-stationary

problems, where rewards are changing over time, a constant step-size α is used

instead. For non-stationary problems, it makes sense to weight the most recent

rewards more than the long past ones. However, as we will explain later on, the

proposal of this thesis is that this is not always the case. Using this constant α , the

update equations are equal to [Sutton and Barto, 1998]:

Qt+1(a) = Qt(a)+α [rt−Qt(a)] (2.9)

Qt+1(a) = αrt +(1−α)Qt(a) (2.10)

Qt+1(a) = αrt +(1−α) [αrt−1 +(1−α)Qt−1(a)] (2.11)

Qt+1(a) = αrt +(1−α)αrt−1 +(1−α)2Qt−1(a) (2.12)

Qt+1(a)=αrt +(1−α)αrt−1+(1−α)2
αrt−2+· · ·+(1−α)t−1

αr1+(1−α)tQt=1(a)

(2.13)

Qt+1(a) = (1−α)tQt=1(a)+
t

∑
i=1

α(1−α)t−iri (2.14)

This new update rule defines a weighted running average. It is a weighted
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average, because (1−α)t +∑
t
i=1 α(1−α)t−i = 1. As can be seen, this is a dif-

ferent method for estimating the value of actions. The information from previ-

ous rewards is not weighted equally. Each reward received at a different time

step has a different weight. For example, in the equations above, each reward

Ri is weighted by α(1−α)t−i. This weight decays exponentially the further in

the past reward Ri was received. The reason for this is that the term (1−α) is

less than one, and consequently it decays exponentially with the value of the expo-

nent t−1. For this reason, this weighted average is called recency-based weighted

average[Sutton and Barto, 1998].

For the purposes of this chapter, we analyze the learning frameworks for a two-

armed bandit task with non-stationary rewards. The learning agent has to choose

between the two bandits to maximize rewards. We use the recency-based weighted

average described above as our baseline model for comparison. This method was

previously derived by Widrow and Hoff as the delta rule [Widrow and Hoff, 1960]

and in classical conditioning to account for conditioned responses rather than ac-

tions. In classical conditioning this rule is known as the Rescorla-Wagner learning

rule [Rescorla et al., 1972] (Here, we refer to this rule with the initials RW). In this

chapter, when we use this method to compute action values, we name the estimates

QRW
t (a), and we use equation 2.9 to compute these estimates.

In this chapter, we also investigate a variation to the Rescorla-Wagner equation,

and use it for the comparison analysis we perform in this chapter. We call this

variation the Time Constants model (abbreviated as TC), because it is similar to

the Rescorla-Wagner learning rule, but it integrates information using two learning

rates. The Q values estimated are a weighted combination between two Q value

estimates, each following a RW rule with a different learning rate. In this way,

it integrates information using two different time scales. Thus, not only the most

recent rewards are the most relevant information for the computation of Q values,

but also information from far in the past could be relevant. The learning rates are

free parameters, so they can be adapted to fit the requirements of a data set. The

equation for this variation is the following:
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Q1
t+1(a) = Q1

t (a)+α1
[
rt−Q1

t (a)
]

(2.15)

Q2
t+1(a) = Q2

t (a)+α2
[
rt−Q2

t (a)
]

(2.16)

QTC
t+1(a) = (1−w)Q1

t+1(a)+wQ2
t+1(a) (2.17)

The goal of this chapter is to propose a different way of integrating information

from previous rewards by encoding and retrieving them as episodes. We review a

previously proposed model that treats past rewards as episodes and suggests a dif-

ferent mechanism for estimating the value of actions. This model was advocated

by Bornstein et. al [Bornstein et al., 2017]. In this model, the values of actions are

estimated by sampling the rewards from individual past events instead of using in-

crementally averaged rewards. The proposal is that agents sample a previous event

and use the value of the reward received at that point to estimate the current value of

actions. This model samples previous events based on temporal recency and based

on evoked memories from the past. It is important to note that the contextual cue

serves as a reminder, but it is not part of the model. Its influence is only accounted

by the influence of the value of the reward on the reminded trial. In terms of tem-

poral recency, it maintains, similarly to RW, that the most recent events should have

the highest influence in current decisions. For the two actions scenario we have

have been considering, Bornstein’s sampling probability functions for the values of

each actions are the following [Bornstein et al., 2017]. In these equations, Bs speci-

fies the sampling function based on recency and Be the sampling function based on

evoked or reminded trials. αs and αe are the parameters of the model that specify

the likelihood of a recent (direct) or a reminded (evoked) trial been sampled. The

index i refers to previous time steps.:

P(QBs
t (a) = ri,s) = αs(1−αs)

t−i (2.18)
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P(QBe
t (a) = ri,e) = αe(1−αe)

t−i (2.19)

It is important to note that the first probability function has the same form as

the weighting function used to compute the incremental running averages of rewards

from equation 2.14 [Bornstein et al., 2017]. For action selection, the sampled val-

ues are used to replace the estimated values of actions used in equations 2.1 and 2.2.

To compute the probability of taking a particular action, the model takes the expec-

tation over every possible individual sample. It uses the sampling probability based

on recency for all but the evoked trial’s sample, where it uses the sampling prob-

ability for evoked trials. Equation 2.20 (below) describes this probability function

P(a) (when only one sample is evoked - as it is the case in Bornstein’s experiment).

In this equation, the parameter βc models any perseverative effect of the previous

trial’s choice, and the term Ic
t is an indicator function that returns 1 if the previous

choice was identical to the current choice and 0 otherwise.

These equations describe Bornstein’s model, which he calls the Sampling

model. The primary difference between the Sampling model and Rescorla-Wagner

is where the expectation or average of past rewards is taken. Rescorla-Wagner com-

putes the average first and then uses this average to compute choice probabilities,

while the sampling model takes the average after computing the choice probability

for each sample value. The motivation for this is to make action choices based on

one sampled episode, but make this sample be the expected episode to be sampled.

Conceptually the difference between these two models is that Rescorla-Wagner ac-

cumulates the information from all samples and averages them, while the Sampling

model uses the information from one episode. Mathematically, however, these two

quantities are related. When more than one sample is used in the Sampling model,

these two models start to converge. In the limit of k−> ∞, these two models com-

pute the sample value. When just one sample is used, they give different predictions

[Bornstein et al., 2017]

In particular and in terms of performance, a learning agent that uses Born-

stein’s Sampling model would be able to accumulate higher rewards than a learning
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agent that uses the RW model when the environment (rewards) have high variance.

Bornstein tested that indeed the latter form is a better fit for trial by trial human

choices in two different experiments [Bornstein et al., 2017]. The first experiment

consisted of data from a previously published learning study [Daw et al., 2005]. 26

participants completed a four-choice bandit task for 300 trials. On each trial, partic-

ipants had to choose one of four different slot machines to maximize their overall

payoff. Each machine had assigned a payoff between 0 and 100 points. The payoff

for each machine was initialized at a number within this range, and then this payoff

evolved over time following a random walk. Participants learned the values of each

machine, and use this to make their choices. Figure 2.1 describes the task and the

time-varying rewards for each bandit [Daw et al., 2005].

Figure 2.1: Four-arm bandit task from [Daw et al., 2005]. (a) Participants chose between
four slot machines to receive points. (b) Payoffs. The mean amount of points
paid out by each machine varied slowly over the course of the experiment

In the original paper by Daw, [Daw et al., 2005], a standard incremental learn-

ing rule was used to fit the data. Bornstein fitted the data using the proposed sam-

pling model and a standard incremental learning rule. He computed the probability

that each model would produced the observed choices (Likelihood of the data), and

selected the parameters that maximized the likelihood of each model. Model selec-

tion was performed by comparing the likelihoods computed by each model. The

Sampling model fit the data better with mean log Bayes factor (described in exper-

iments section) of 8.867 and standard deviation of 1.081 against the incremental

learning model [Bornstein et al., 2017]. In conclusion, the sampling model fits this
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data better even though the experiment was not designed with a structure that favors

or encourages sampling.

In the previous experiment, each trial looked formally identical, and there was

no clear indication that subjects might be sampling specific individual events from

the past. For that reason, a second behavioural experiment was performed. The

goal of this second experiment was to measure the impact of single and selected

experiences on choices. 30 participants made a choice between two-armed bandits

to maximize cumulative payoff during 162 trials. Each bandit had a probability of

giving a winning (+5) ticket or a loosing (-5) ticket. The probability assigned to

each bandit changed slowly over time. In order to differentiate across trials, each

trial was tagged with a picture. In 32 of the 162 trials, a picture from a previous trial

was presented. These trials were called memory probe trials. Figure 2.2 shows the

structure of the task, and the varying probability of reward.

The memory probes were intended to remind the participants of previous spe-

cific trials and so to facilitate and mark the use of sampled trials from the past, if

they were indeed used. It was hypothesized that the reminded picture would also

remind the participant of the bandit chosen at that trial. Model selection results

showed that indeed this hypothesis was correct, and the sampling model was still a

better fit in this experiment than the incremental model with mean log Bayes fac-

tor of 6.918 and standard deviation of 1.32 favoring the Sampling model over the

incremental model [Bornstein et al., 2017].

Bornstein’s Sampling model proposes a new way to use past information to

guide decisions. In particular, it uses episodic memory. However, the sampling

model uses the information of just one episodic sample, sampled based on recency

or the memory probe in the case of probed trials. It fails to integrate information

from other trials that occur nearby in time. In this work, we argue that such the

sampling method limits the flexibility and generalization of the usage of previous

experience. Consequently, it limits the performance of learning agents. Recent

events may or may not be optimal to guide current decisions. Often times, events

far away in the past are key for making optimal choices in the present. We propose



2.2. Literature Review 43

Figure 2.2: Two-arm bandit task from [Bornstein et al., 2017]. (a) Each bandit deliv-
ered tickets—trial-unique photographs—associated with a dollar value—either
5or5. (b) Payoff probabilities. The probability of each bandit paying out a win-
ning ticket varied slowly over the course of the experiment.(c) Memory probes.
Participants encountered 32 recognition memory probes. On 26 of these probe
trials, participants were shown objects that were either received on a previous
choice trial (‘valid’), whereas on others they were shown new objects that were
not part of any previous trial (‘invalid’)

that the best way to access to this information is by recalling events that are similar

in context - and therefore relevant to the current situation. For that, we base our

model on a context based model of episodic memory. We describe this model in the

following sub-section.

2.2.2 Temporal Context Model

Episodic memory refers to the memory of single events including features such

as time, places, and associated context and emotions. It is the memory sys-

tem that allows the recall of events that took place at a particular time and

place. For this reason, episodic recall is often known as ”traveling back in time”

[Schacter and Addis, 2009]. During studies of free and serial recall, two basic prin-
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ciples of human episodic memory have been characterized: recency and contiguity

[Mayo and Crockett, 1964]. Recency refers to the ubiquitous finding that memory

performances decreases over time or with the presence of intervening items. Con-

tiguity refers to the finding that presentation of an item facilitates the recall of an-

other item that occurred close in time to this presented item. Both these principles

relate to temporal factors of recall. For this reason, Howard and Kahanna proposed

a computational model of episodic memory that captures these main two features

[Howard and Kahana, 2002]. These two features, as well as the data that inspired

this model, were observed in free recall experiments, where subjects are presented

with a list of words and then asked to remember the words in any order. These prin-

ciples imply that in free recall the last rehearsed items will be the first ones recalled,

and that once an item is recalled, items that occurred right before or right after this

item most likely to be recalled. Another important observed feature captured by

this model is asymmetric recall. This feature refers to the observation that items

that that occurred forward in time from the last item recalled are more likely to be

recalled than items that occurred backwards in time [Howard and Kahana, 2002].

Howard and Kahanna’s proposed model is called: Temporal Context Model

(TCM) [Howard and Kahana, 2002]. This model adds a notion of context to

episodic encoding and retrieval. In this model, context refers to everything else

in an event that is not the item been attended. In free recall experiments, it refers

to the environment, the person’s mood, external sounds,and everything else that is

happening during the experiments except for the studied words. Context evolves at

slower time scales than items; in this way, allowing information to persist for longer.

Context drifts through time, and it represents a running average of recent items. It

binds to the transient representations of items, and consequently provides memory

with a temporal structure. Figure 2.3 shows possible different contexts evolving at

different time scales during a free recall experiment [Howard and Kahana, 2002].

TCM proposes that context can be used to store and later retrieve stored items.

In free recall, this implies that context can cue the recall of specific words. For

episodic memory, this means that events can be retrieved using contextual cues from
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Figure 2.3: A schematic of TCM. An observed item remains activated in context for a pe-
riod of time. Thus, context at each time step represents the current observation
and decaying versions of previous observations. [Howard and Kahana, 2002]

the environment. In TCM, recall is stimulated by using the current context as a re-

trieval cue. To achieve this, each stored item is associated with the context that was

active at the time of encoding. Stored items compete, and the item recalled is the one

with the associated context that is the most similar to the current context. The item

recalled and its associated mental context are incorporated in the current context. In

this way, context evolves in time based on observed items and contexts recalled. It

is this contextual retrieval that allows for the ability to recall events from far in the

past and bring them to awareness in the present [Howard and Kahana, 2002].

Algorithmically, TCM has five basic components [Howard and Kahana, 2002]:

1. A space of items F , with elements ft corresponding to item representations

at time t. Each item is represented by a unique unit-length vector. All items are

orthogonal to each other.

2. A context space C with entries ct corresponding to the state of the context

at time t.

3. A matrix MTC that represents the strength of the connections between in-

dividual items in F and contextual states in C. This matrix enables context to act

as a cue for the retrieval of items. It is constructed as a set of outer-product terms:

MTC = ∑t=1 ftc
′
t , where ft represents an item from F presented at time t. This ma-

trix is used to represent items can be used as cues for context. In our work, we

focus exclusively on how context can be used to retrieve items, so we do not use the

matrix MTC. We included it here for completion.

4. A matrix MCT
t that represents the strength of the connections between con-
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texts at each time step and individual items. This matrix enables an individual item

to act as a cue for contextual retrieval. We describe the learning rule for this matrix

below.

5. A contextual evolution equation that describes how context drifts over time,

and how it is updated each time step using the context retrieved after the presentation

of an item. This is the core of the temporal dynamics of TCM:

ct = φct−1 +βbcin
t (2.20)

Here, βb is a free parameter, and it represents the contribution of cin
t (retrieved

context) to the evolution of context. φ represents how much information from the

previous time step ct−1 is kept in the current time step. A large φ indicates that con-

text is drifting slowly, and that the information from the recent past is more relevant

than the new inputs. If φ is close to 0, then the context vector has no memory, and it

changes each time step depending on the new inputs. φ can take values between 0

and 1, and it is chosen to satisfy the constraint |ct |= 1. An equation that satisfies this

constraint is given by the equation below, where cin
t represents the context retrieved

by the presentation of item ft , and it is also unit norm. [Howard and Kahana, 2002]:

φt =
√

1+β 2
b [(ctcin

t )
2−1]−βb(ctcin

t ) (2.21)

When item ft has not been presented or has not been presented recently in the

sequence, we can write the equation for φt as:

φt = φ =
√

1−β 2
b (2.22)

Contextual retrieval is obtained by presenting the current item to the matrix

MCT
t [Howard and Kahana, 2002]:

cin
t = MCT

t ft (2.23)

The matrix MCT
t is updated each time step using a rule that balances the con-
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tribution between the pre-experimental context (context associations before the pre-

sentations of items in a study) and newly learned associations. Thus, when an item

is presented, the context that is retrieved is a combination of the pre-experimental

context (cpre)) and the context when the item was presented during the study at time

t−r (cnew
t−r )) . This enables TCM to account for the asymmetric retrieval characteris-

tic observed in free and serial recall. The reason for this is that the pre-experimental

context favors forward recall, which biases the probability of recall towards items

in the forward time direction - as observed in human studies. Specifically, the rule

for updating the matrix MCT
t is the following [Howard and Kahana, 2002]:

MCT
t+1 = MCT

t P̃ft +AtMCT
t Pft +Btctf

′
t (2.24)

The first two terms in this equation represent the strength of pre-experimental

associations between items and context, and the last term represent a new Hebbian

association between the context at time t and the item presented. A and B are chosen

such that the norm of the input at time t is equal to one : |cin
t |= 1. For that, a variable

γ is introduced such that: [Howard and Kahana, 2002]:

γ =
At

Bt
(2.25)

and

At = γBt (2.26)

Using these definitions and solving for the constraint on the norm of cin
t , we

have that:

Bt =
1

γ2 +2γ(cin
t ct)+1

(2.27)

At and Bt balance the contribution of pre-experimental and newly learned con-

text in the retrieved context vector such that:

cin
t = Atcnew

t−r +Btcpre (2.28)
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Pft defines a projection operator with respect to ft :

Pft ≡
ftf
′
t

‖ft‖2 (2.29)

and :

P̃f = I−Pf (2.30)

In conclusion, the step by step process of TCM starts when an item is pre-

sented at time t. First, ft retrieves context cin
t . Then this retrieved context is used to

evolve the context vector, resulting in a new context state ct . Then both association

matrices are updated. This process describes contextual retrieval and contextual

integration. TCM characterizes the process of contextual encoding, storage and re-

trieval of episodic memory and it is that we use in this chapter for our proposal

[Howard and Kahana, 2002].

2.3 Proposal
In this section, we describe the Contextual Episodic learning framework (abbre-

viated later on as CE), and the Hybrid model. The Contextual Episodic learning

framework has similarities and differences with previous models. For example,

similar to Bornstein’s sampling model, it recalls episodic events to compute the

long run value of each action. However, it differs in the way this information is

integrated. Bornstein proposes that learning agents sample one - or more episodes

(although his work only shows results for one) - based on recency or evoked tri-

als. Then, it uses the value of this sample to compute the probability of choosing

each action. The final step, as was described in the previous section, is to take the

expected value of this probability over all possible events that could have been sam-

pled from the reward history [Bornstein et al., 2017]. Our work differs from this

model in the fact that it does not use the expected value of one sample, but the value

of multiple samples to compute a weighted average [Bornstein and Norman, 2017].

In this way, our model differs from Borsntein’s in a similar way that Rescorla Wag-

ner differs from Bornstein’s sampling model. The reason for this is that we know
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from previous work [Bornstein and Norman, 2017] [Duncan and Shohamy, 2016]

that context cues the retrieval of more than one event. We simply propose a model

that explains how this retrieval happens based on context, and then uses this con-

text to weight the relevance of each episode recalled for the current decision. In a

way, our model is similar to model-free cached values. It is a weighted average of

previous rewards. However, it is different from this framework, because model-free

cached values are computed with a recency-based average (decaying exponential

weighting function), while we use a contextual similarity- based average. In this

section, we describe the equations of the new proposals, and discuss in detail these

similarities and differences.

2.3.1 Equations Summary

Similarly to the other two reinforcement learning frameworks, in our Contextual

Episodic framework, the goal of the agent is to maximize future expected rewards.

For that, a learning agent computes a value of the utility of each action based on

previous rewards or punishments. We call this utility value QCE
t (a), because it is

computed as a weighted sum of rewards received in previous episodes. To calculate

QCE
t (a), we use the TCM model to recall past episodes. However, contrary to the

TCM model, we don’t assume that only one item is retrieved given a contextual cue,

but rather that different items are retrieved with a weighted contribution. We weight

how much each episode influences the current decision, based on how similar its

associated context is to the current context. Computationally, we implement this

using the Nadayara Watson Kernel Regression, which estimates future expected

value as a locally weighted average. This regression uses a kernel as a weighting

(or similarity measure) function. QCE
t (a) is computed using this regression function

in the following way:

QCE
t (a) =

∑ j K(ct− j,ct)rt− j(a)

∑k K(ct−k,ct)
(2.31)

where:
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K(x,y) = e−||x−y|| (2.32)

In this equation, ct represents the current context, and ct− j represents con-

text at previous times j. rt− j refers to the reward received at previous time

step j. ct is computed by the context evolution equation from the TCM model

[Howard and Kahana, 2002] described in the section above. We describe episodes

as the rewards received, and these episodes are associated with a particular context

at each time step.

As we have stated, our hypothesis is that organisms can use a combination of

learning frameworks. For this reason, we propose the following Hybrid model:

Qhybrid
t (a) = (1−w)QCE

t (a)+wQRW
t (a) (2.33)

In this model, QCE
t (a) is the Q value computed using the Contextual Episodic

model, QRW
t (a) is the current model free running average computed using the

Rescorla-Wagner incremental learning rule, and w measures the trade-off or

weighted contribution between these values. Once the Q values have been esti-

mated by either the Contextual Episodic or the Hybrid model, we can compute the

probability of each action using a soft-max distribution in terms of the Q values of

all actions. In the following equation, we use Q values computed by the Hybrid

model as an example:

P(a) =
eβcIc

t +βQhybrid
t (a)

eβcIc
t +βQhybrid

t (a)+ eβcIc
t +βQhybrid

t (b)
(2.34)

2.3.2 Discussion

As can be seen, this new proposal has elements of similarities and differences with

other models. Here we discuss the implications of each of them.

2.3.2.1 Contextual Episodic and Model-free RL

Both these models compute a weighted average of past rewards. The difference

between these two models is the form of the weighting function. While model-
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free RL algorithms such as the Rescorla-Wagner rule, compute the average of past

rewards using a decaying exponential, Contextual Episodic model uses a contextual

similarity based function. A decaying exponential weighting function implies that

more recent events are more relevant to current decisions; however, this is often not

the case, when events far in the past repeat themselves in the present. In those cases,

a recency-based approach fails to capture the relevant information. A contextual

similarity weighting function makes sure that relevant information has more weight

in current decisions regardless of when they occurred in the past.

What is important for this model is the similarity between contexts. Intuitively,

it makes sense that we would want to use information collected from similar situ-

ations to the present one. For example, if we want to evaluate whether to go to a

pizzeria in London, we would not want to use the information from our recent pizze-

ria experiences in Italy, but rather, remember our experiences in a similar context

i.e. last time we visited a pizzeria in London.

Furthermore, the Contextual Episodic model uses a temporal context model

(TCM) to compute the contextual similarity weighting function. The TCM model

allows us to not only compare the contexts between specific events, but also the

events that occurred nearby in time to these events. The reason for this is that con-

text that evolves according to TCM has a slow time constant of evolution. Thus,

it preserves information from nearby contexts. Consequently, all the events that

occurred nearby in time to the cued context have a higher weight of recall. In an en-

vironment in which the state of the world is moving slowly, recalling events nearby

in time to the cued episode would be useful. This characteristic resembles episodic

memory recall in humans, and allows us to ”travel back in time”. The motivation

for our proposal is that we hypothesize that humans assume the world has these

characteristics, and use this property of episodic memory when observing a cue. In

this chapter, we focus on showing how these characteristics of episodic memory fit

data on human choices better. In this way, showing that the retrieval mechanism

just described is necessary to understand human choices in certain situations. The

precise characteristics of the world and situations for which an episodic based RL
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algorithm would be useful is the topic of next chapter

Computationally, at time t, these two models compute averages of rewards

using the following weighting functions for past rewards: rt− j. Equation 2.36 de-

scribes the weighting function of the Rescorla Wagner model, and equation 2.37

describes the weighting function of the Contextual Episodic model.

wRW = α · (1−α)t− j (2.35)

wCE =
K(c j,ct− j)

∑k K(ct−k,ct)
(2.36)

2.3.2.2 Contextual Episodic model and Sampling model

Both Contextual Episodic and the Sampling models use episodes in the form of

previous rewards to compute the Q values of actions. The sampling model uses

a recency-based sampling probability, and a probability based on evoked trials (or

trials where a reminder is presented). At the moment of making a decision, a learn-

ing agent takes the expected value of choosing one sample over all reward history,

including evoked trials, weighted by their associated sampling probabilities. For

most trials, this sampling probability favors recent events, and makes it unlikely

that samples from the past are selected. Evoked trials are also sampled by recency,

but they have an independent parameter (that can be fitted to data) that might make

them more likely to be recalled even if they happened far in the past. It has similar

drawbacks as the Rescorla Wagner model, recency plays a big role in what events

get sample. Evoked trials have a higher chance of been recalled than other trials.

However, there is no principled way for recalling evoked trials, and recency is not

a very good measure of utility of information for the decision making agent. In

this way, our Contextual Episodic model is different. We propose a context based

approach to recall past events, and have a measure of relevance of these events for

the current decision also based on this context.
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2.3.2.3 Hybrid model and Sampling model

An interesting comparison arises when we compare the Sampling model to our Hy-

brid model (between RW and Contextual Episodic). Bornstein et al. also explored

hybrid version between RW and his Sampling model [Bornstein et al., 2017], but

concluded that the Sampling model was better than the Hybrid model, but the rea-

sons for this were unclear [private correspondence, May, 2019]. One hypothesis

for this is that the Sampling model already captures the relevant information from

previous trials when it takes the expected value over all previous rewards weighted

by their recency. For this reason, the Rescorla Wagner model did not offer any ex-

tra useful information to Bornstein’s Hybrid model. However, the Sampling model

performs better because it weights more the contribution of evoked trials, which is

exactly what our model proposes. But, the Contextual Episodic takes this two steps

further. First it allows the possibility of one or many episodes been recalled, and

the number of episodes recalled and how much they are weighted is based on their

contextual similarity. In this way, our Contextual Episodic model provides a way

of measuring how relevant an episode is to the current decision. The Hybrid model

combines these advantages of the Contextual Episodic model with information pro-

vided by the RW model. This explanation is obvious for experiment 2, where spe-

cific trials are reminded. For experiment 1, this can be explained by humans finding

(or trying to find) a structure in a sequence of items. In order to learn and make

inferences and predictions, humans must make certain assumptions about the struc-

ture of the environment. The fact that we show that the Contextual Episodic model

fits human data better than other models even for experiment 1 shows that humans

make certain assumptions about the temporal structure of events. In the next chap-

ter, we propose a generative model for which the Contextual Episodic model would

be a good inference approximation with the objective to unravel some of these as-

sumptions. We don’t know what the generative model that humans assume, but we

aim to begin an exploration in this direction.

An interesting comparison arises when we compare the Sampling model to

our Hybrid model (between RW and Contextual Episodic). Bornstein et al. also ex-
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plored hybrid version between RW and his Sampling model [Bornstein et al., 2017],

but concluded that the Sampling model was better than the Hybrid model, but the

reasons for this were unclear [private correspondence, May, 2019]. One hypothesis

for this is that the Sampling model already captures the relevant information from

previous trials when it takes the expected value over all previous rewards weighted

by their recency. For this reason, the Rescorla Wagner model did not offer any ex-

tra useful information to Bornstein’s Hybrid model. However, the Sampling model

performs better because it weights more the contribution of evoked trials, which is

exactly what our model proposes. But, the Contextual Episodic takes this two steps

further. First it allows the possibility of one or many episodes been recalled, and

the number of episodes recalled and how much they are weighted is based on their

contextual similarity. In this way, our Contextual Episodic model provides a way

of measuring how relevant an episode is to the current decision. The Hybrid model

combines these advantages of the Contextual Episodic model with information pro-

vided by the RW model.

2.3.2.4 TCM applications in free recall and in Contextual Episodic

decision making

The Contextual Episodic model uses the Temporal Context Model to define con-

text evolution, and storage. They differ in how retrieved episodes are used. In

both models episodes are retrieved using contextual cues. However, in TCM, re-

trieved episodes compete and then only one episode is selected. The reason for this

is that in free recall, subjects need to name one item at a time. In our Contextual

Episodic model, a learning agent does not need to select just one episode, but rather

use as much information as possible to make good decisions. For that reason, re-

trieved episodes are integrated and then the integrated information is used to select

an action. In short, the main difference is that in free recall, the output is a spe-

cific recalled event, while in decision making, the output is an action, for which the

information from many recalled events is used.
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2.4 Model Implementation
In this section, we explain how we implemented the Contextual Episodic and Hy-

brid models to fit the data from Experiment 1 [Daw et al., 2005] and Experiment 2

[Bornstein et al., 2017] (description in literature review).

2.4.1 Contextual Episodic Model

First, we define the items that modify context as the time steps of each trial for

Experiment 1 (since it does not have a contextual cue), and as the pictures shown at

each trial in Experiment 2. The context vector is a unit length vector of size equal to

the number of time steps. The context evolves each time step using the picture items

as inputs. The pictures are random, so each of them is a unit length vector of size n

with only one entry equal to one. Each picture is associated with the context at the

time of item presentation,and stored in the matrix MTC. This matrix is initialized

as a diagonal matrix, and it evolves with the TCM equations described in equations

3.5,3.6 and 3.7 [Howard and Kahana, 2002].

In experiment 2, after a picture is presented, the current context is updated

using the context evolution equation from TCM [Howard and Kahana, 2002]. Then

this context is used to retrieve previous episodes. These episodes are retrieved by

comparing the current context to the context when these episodes happened. The

goal with this mechanism is to use the picture presented as a contextual cue that

modifies current context, and then to mimic previously observed contextual retrieval

[Duncan and Shohamy, 2016] by searching in memory for events that had similar

context to the current one. If the picture presented is new, then current context

will only be similar to the most recent context - thanks to the slow drift term of the

context evolution. However, if the picture presented is the same picture or similar to

a picture that was shown in the past, then the current context will be similar to other

previous contexts. In this situation, one or more episodes are retrieved and averaged

weighted by how similar their associated contexts are to the current context. Using

this weighted average, Q values are updated and an action is chosen. With this

action, a reward is received, and this episode with the associated context is stored

in memory.
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2.5 Results
In this section, we test the Hybrid model hypothesis presented in this chapter. For

that, we generate artificial data from the Hybrid model, and compute the likelihood

of this data been generated by the Hybrid model, the Rescorla-Wagner model, the

Sampling model, and the Time Constants model [Rescorla et al., 1972]. We use

the Time Constants model, because it has two different time scales, and can have

recency-based weighted averaged combined with an average that weights events

from further in the past - both these time constants can be learned to fit the data.

We use this model to test whether learning two different time constants per data

set could replace the contextual similarity weighting. We test whether the Hybrid

model can be learned best by the Hybrid model, and therefore confirm that it is

a model independent from previously proposed models. Afterwards, we generate

data from these models, and do model fitting to compute a confusion matrix. We

show the results of this confusion matrix, where the results of the performance of

all the models using data generated by the Hybrid model can also be seen.

We perform data fitting for each model and data set using maximum likeli-

hood estimation. We compare these models using BIC scores. BIC is a method

for comparing likelihoods penalized by the number of parameters in each model

[Schwarz et al., 1978]. The BIC score is:

BIC =−2log(Likelihood)+Klog(N) (2.37)

where K refers to the number of free parameters, and N to the number of data

points. In the confusion matrix, we compare how well each model fits the data from

the other models, by reporting BIC scores for each data set and each model. Our

goal is to show that indeed these models are different, and can be distinguished with

model comparison. In the next section, we perform a similar analysis using human

data and claim that we indeed are able to distinguish the strategy used by humans

among the different proposed models.

We chose the BIC over AIC, because we wanted to compare our results to

that of [Bornstein et al., 2017]. In his work, Bornstein use BIC to compare between
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models. For this reason, in our work we use the BIC to first replicate his results, and

second to compare the relevance of our results. The improvements in performance

between our models and his measured through the BIC that we found and report

in this thesis are of similar magnitude to the improvements reported in his paper

between his model and previous ones.

2.5.1 Analysis using Artificial Data

The models used in this section are the Rescorla-Wagner model, the Time Con-

stants model, the Contextual Episodic Model, the Hybrid model and the Bornstein’s

Sampling model.

2.5.1.1 Experiments Description

We generate artificial data from the models described above. The data that

we generate is similar to Experiment 1 [Daw et al., 2005] and to Experiment 2

[Bornstein et al., 2017] described earlier. For experiment 1, we generate data for

300 trials using four bandits with payoffs between 0 and 100. These payoffs evolve

following a Gaussian random walk. For experiment 2, we generate data for 162

trials using two bandits with payoffs equal to +5 or -5. Each payoff is assigned

to a probability that slowly drifts over time. Experiment 1 generates choice data

when no memory probes are given to the learning agent, while experiment 2 uses

the same memory probes (items and times) as in Bornstein’s experiments. In this

way, these two experiments explore the same two cases that Bornstein did when he

described and analyzed the sampling model. The parameters that we use to gener-

ate these data sets are the same, when possible, to the ones estimated by Bornstein

in his paper (i.e. the learning rate α ,the learning rate for the Sampling model αs

and the temperature parameter β ) [Bornstein et al., 2017]. For the second learning

rate of the Time Constants model, we picked a value that was about half of the first

learning rate. For both the Time Constants model and the Hybrid model, we chose

a value of w = 0.5, so the data has influence from both the learning rates and from

both models in the case of the Time Constants and Hybrid models respectively. The

parameter of the TCM update in the Hybrid model was chosen to be γ = 0.7. This
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parameter determines how fast the context updates its value given new inputs. The

value we have chosen allows the context to be updated, but it also maintains mem-

ory from previous contexts. The Sampling model and the Hybrid model are the only

models for which the contextual cues are incorporated in the model. Both the Time

Constants and RW models are not influenced by contextual cues. For this reason,

these two models do not benefit from the addition of memory cues from Experiment

2.

2.5.1.2 Maximum Likelihood Estimates and Confusion Matrices

We do model fitting using maximum likelihood estimation, and we compare each

model using the BIC described earlier. Here, we present the results for the data sets

generated based on the two experiments we described. First we show the estimated

parameters for each model fitted to data generated from the Hybrid model and from

itself.

We start with the Rescorla-Wagner model, and we fit data generated by the RW

and the Hybrid models using the RW model. We do this for both experiment 1 and

experiment 2. Table 2.1 and Table 2.2 show the actual parameters used to generate

the data (using the Rescorla Wagner model and the Hybrid model respectively), and

the estimated parameters by the RW model.

Actual Parameters Estimated Parameters Actual - Mean Estimates

Exp. 1
α = 0.77
β = 8.7
βc = 0.65

α = 0.75 (0.05)
β = 8.51 (0.31)
βc = 0.59 (0.15)

0.02
0.19
0.06

Exp. 2
α = 0.55
β = 1.74
βc = 0.12

α = 0.66 (0.07)
β = 1.55 (0.32)
βc = 0.15 (0.05)

0.11
0.19
0.03

Table 2.1: Model Fitting Results. In this table, we show the RW model parameters used
to generate the data (left), the parameters learned through model fitting using
the RW model (middle), and the difference between the actual and the means of
the estimated parameters (right). In parenthesis next to the estimated parameters
(middle), we show the standard deviation in the parameters’ estimates.
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Actual Parameters Estimated Parameters
Exp. 1 α = 0.77 α = 0.8(0.15)

β = 8.7 β = 8.2(0.6)
βc = 0.65 βc = 1.05(0.56)
w = 0.4
βb = 0.52

Exp. 2 α = 0.55 α = 0.63(0.08)
β = 1.75 β = 1.59(0.22)
βc = 0.12 βc = 0.84(0.04)
w = 0.4
βb = 0.52

Table 2.2: Model Fitting Results. In this table, we show the RW model parameters used to
generate the data (left), and the parameters learned through model fitting using
the Hybrid model (right). In parenthesis next to the estimated parameters, we
show the standard deviation in the parameters’ estimates.
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Tables 2.3 and 2.4 show the results of model fitting using the Time Constants

model. These results also show that this model is better at learning its own data.

Furthermore, it shows that for experiment 2 - where contextual cues are given, this

model fails to capture the temporal dependencies found in the data. The two time

constants it learns are very close to each other. This shows that the model is not

using its capacity to integrate information with two temporal dependencies. The

reason for this is that the Hybrid model does not integrate information with two

rigid time constants, but it is rather flexible and it adapts to external temporal cues

and reminders. The Time Constant model probably found that it is much better to

fit the data with one learning rate than to use two learning rates that are rather a

misleading source of information i.e., for one time step information from the far

past might be useful, but for the next time step it might actually be detrimental.

Actual Parameters Estimated Parameters Actual - Mean Estimates

Exp. 1

α1 = 0.77
α2 = 0.30
β = 8.7
βc = 0.65
w = 0.5

α1 = 0.75 (0.03)
α2 = 0.28(0.14)
β = 8.2 (0.62)
βc = 0.71(0.21)
w = 0.65 (0.26)

0.02
0.02
0.5
0.6
0.15

Exp. 2

α1 = 0.55
α2 = 0.30
β = 1.75
βc = 0.12
w = 0.5

α1 = 0.44 (0.08)
α2 = 0.39(0.23)
β = 1.55 (0.32)
βc = 0.08(0.10)
w = 0.52 (0.98)

0.11
0.09
0.2
0.04
0.02

Table 2.3: Model Fitting Results. In this table, we show the Time Constants model parame-
ters used to generate the data (left), the parameters learned through model fitting
using the Time Constants model (middle), and the difference between the actual
and the means of the estimated parameters (right). In parenthesis next to the es-
timated parameters (middle), we show the standard deviation in the parameters’
estimates.
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Actual Parameters Estimated Parameters
Exp. 1 α = 0.77 α1 = 0.91(0.36)

β = 8.7 α2 = 0.60(0.21)
βc = 0.65 βc = 1.25(0.85)
w = 0.4 β = 8.21(0.92))
βb = 0.52 w = 0.8(0.06))

Exp. 2 α = 0.55 α1 = 0.62(0.35)
β = 1.75 α2 = 0.59(0.21)
βc = 0.12 βc = 0.15(0.17)
w = 0.4 β = 1.75(0.14)
βb = 0.52 w = 0.56(0.05))

Table 2.4: Model Fitting Results. In this table, we show the Time Constants model param-
eters used to generate the data (left), and the parameters learned through model
fitting using the Hybrid model (right). In parenthesis next to the estimated pa-
rameters, we show the standard deviation in the parameters’ estimates.
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We repeat the same analysis using Bornstein’s Sampling model, and show the

results in Tables 2.5 and 2.6. Similar to the other models, it fits its own data better

than it fits the Hybrid model data. The most interesting parameter of this model is

the αe, which defines the influence of evoked trials (memory probes) on choices.

For experiment 1, this parameter is set to zero [Bornstein et al., 2017], and it is

only used for experiment 2. When fitting the Hybrid data, this parameter is higher

than the learning rate α , which defines the influence of not evoked previous trials.

This demonstrates that indeed the sampling model learns that memory cues are

relevant; however, it fails to fit Hybrid data well since Hybrid choices are driven

by a gradually evolving temporal context and not just by memory cues at particular

time steps. Later, we will see how this affects probability of choice at one and two

time steps after the memory probe.

Actual Parameters Estimated Parameters Actual - Mean Estimates

Exp. 1
α = 0.72
β = 9.01
βc = 0.65

α = 0.65 (0.16)
β = 9.52 (0.62)
βc = 0.72 (0.21)

0.07

0.51
0.07

Exp. 2

α = 0.53
αe = 0.438

β = 2.28
βc = 0.56

α = 0.61 (0.18)
αe = 0.46 (0.35)
β = 2.09 (0.86)
βc = 0.48 (0.06)

0.11
0.09
0.2
0.04
0.02

Table 2.5: Model Fitting Results. In this table, we show the Sampling model parameters
used to generate the data (left), the parameters learned through model fitting
using the Sampling model (middle), and the difference between the actual and
the means of the estimated parameters (right). In parenthesis next to the esti-
mated parameters (middle), we show the standard deviation in the parameters’
estimates.
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Actual Parameters Estimated Parameters
Exp. 1 α = 0.77 α = 0.62(0.25)

β = 8.7 β = 9.2(0.08)
βc = 0.65 βc = 0.52(0.92)
w = 0.4
βb = 0.52

Exp. 2 α = 0.55 α = 0.52(0.65)
β = 1.75 αe = 0.68(0.12)
βc = 0.12 βc = 0.75(0.06)
w = 0.4 β = 2.5(0.06)
βb = 0.52

Table 2.6: Model Fitting Results. In this table, we show the Sampling model parameters
used to generate the data (left), and the parameters learned through model fitting
using the Hybrid model (right). In parenthesis next to the estimated parameters,
we show the standard deviation in the parameters’ estimates.
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Finally, we show how the Hybrid model learns its own data in Table 2.7. This

results demonstrates that this model is distinguishable. We show in the next section

with our analysis of human data that humans choices more closely resemble the

Hybrid model than the other models.

Actual Parameters Estimated Parameters Actual - Mean Estimates

Exp. 1

α = 0.77
β = 8.7
βc = 0.65
w = 0.4
βb = 0.52

α = 0.79
β = 8.5 (0.65)
βc = 0.13 (0.38)
w = 0.56 (0.20)
βb = 0.52 (0.06)

0.02
0.2
0.52
0.16
0

Exp. 2

α = 0.55
β = 1.75
βc = 0.12
w = 0.4
βb = 0.52

α = 0.50 (0.19)
β = 1.65 (0.72)
βc = 0.09 (0.24)
w = 0.39 (0.04)
βb = 0.52 (0.15)

0.05
0.1
0.3
0.01
0

Table 2.7: Model Fitting Results. In this table, we show the Hybrid model parameters used
to generate the data (left), the parameters learned through model fitting using the
Hybrid model (middle), and the difference between the actual and the means of
the estimated parameters (right). In parenthesis next to the estimated parameters
(middle), we show the standard deviation in the parameters’ estimates.

We compute the BIC scores for each of these models using the parameters es-

timated and data sets generated by each of these models, and generate a Confusion

Matrix for both experiment 1 and experiment 2. These matrices shows how well

each model learns data from other models compared to how it learns its own data.

We normalize these matrices by subtracting the diagonal elements, which corre-

spond to the BICs for each model using its own data. In this way, we can see the

difference in performance on each column. The lowest value corresponds to the

model’s performance using its own data (diagonal entries of the confusion matrix),

and the other entries show how much this performance decreases when using other

model’s data. The plot below corresponds to this confusion matrix. As can be seen,

in Figure 2.4 the Hybrid model fits its data better, and the other models are not as

good as fitting data generated by this model. The Hybrid model is a more complex

model, not only in terms of parameter number, but also its dynamics are difficult to

capture with other simpler models.
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Figure 2.4: Confusion Matrix Experiment 1: The confusion matrix was normalized by sub-
tracting the diagonal entries from each row. Diagonal entries correspond to
each model’s performance using its own data, and are equal to zero after nor-
malization. The values of the Confusion Matrix are detailed in Appendix A.

The confusion matrices in Figure 2.4 and Figure 2.5 are based on data from

the artificial data sets corresponding to experiment 1. Dark green represents lower

values, while bright yellow represents higher values. We want to minimize the neg-

ative log-likelihood of the data; therefore, we say that a better data fit corresponds

to lower BIC value (darker green).As can be seen, there is a difference in how much

each model can learn with different data sets. All models struggle to learn data from

the Hybrid model in both experiments.The Hybrid model learns data from the Hy-

brid model best: the Hybrid model has the lowest BIC when learning data generated

from itself. This shows that if any data set would be generated by this model, we

would be able to identify it correctly- this result is true for all other existing models

as well. It is interesting to see that for all data sets, but particularly for the Hybrid
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Figure 2.5: Confusion Matrix Experiment 2: The confusion matrix was normalized by sub-
tracting the diagonal entries from each row. Diagonal entries correspond to
each model’s performance using its own data, and are equal to zero after nor-
malization. The values of the Confusion Matrix are detailed in Appendix A.

data, all learning models perform better in experiment 1. There are differences in

performance but they are small compared to the differences in performance in ex-

periment 2. This result isn’t surprising to us, since the memory probes are the main

element that drives the difference between these models - the ability to be reminded

of a particular trial. However, it is encouraging to also notice that despite the lack

of memory probes, the Hybrid model still has unique characteristics that can not

be captured by other models. The confusion matrix from experiment 2 shows that

the Hybrid model is more adaptable at learning from data from other models. The

differences in performance show that the worst model at capturing the data from

the Hybrid model is the Time Constants model. Particularly, for experiment 2, it

does not use the fact that it has two different learning rates, but it is penalized for

having this extra parameter. Both the Time Constants model and the Rescorla Wag-
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ner model do not learn the Hybrid data well, because they fail to capture one of

the main components that drive the data from the Hybrid model - memory probes.

In experiment 1 where there are no memory probes, these models perform slightly

better, but still the Sampling model out-performs them (a result that corroborates

Bornstein’s findings). The Sampling model, in both experiment 1 and 2, fits Hybrid

data better; the reason for this is that it is the only model that has the capability to

use information about memory probes.

The Time Constants model fits data worse than RW for all data sets; however,

this difference is very small. So, we attribute it to the fact that the RW is penalized

by fewer parameters, and the fact that the two learned learning rates for the Time

Constants model are almost the same. The latter fact further shows that an extra

time constant is not sufficient or necessary to capture data generated by a Hybrid

model. Finally, we hypothesize that a better experiment - one designed to capture

the temporal components of context evolution, would show the unique properties of

the Hybrid model more.

2.5.1.3 Trial by trial analysis

In this subsection, we perform a detailed analysis of how contextual cues affect

decisions; particularly, decisions at the time of the cue and two time steps later. To

do this, we simulate what amounts to a third experiment which does not resemble

either experiment described before. Its objective is to have a simpler data set to

perform a more detailed analysis. In this experiment, rewards are either +10 or

-10 for two bandits. The probabilities of receiving a reward drift over time. We

generate 100 data points with 10 memory probes from the past. These memory

probes are contextual cues from previous time steps. The memory probe times and

the reminded trials at each probed time are shown below:

To analyze the effect of memory probes, we compute the average conditional

probability of choosing the same action taken at the time of the probes given the

sign of the reward received at that time. We label the current time as t and the time

when the memory probed appeared the first time as tm If the reminded trials affect

decisions, we expect to see a bias towards the action taken at that time, when a
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Probed Times Reminded Trials
10 2
18 7
22 5
30 28
42 12
55 28
60 3
72 65
80 30

Table 2.8: In this table, we show the description of a third experiment, which does not
resemble either experiment described before, consists of 100 data points with
10 memory probes from the past. This table shows the times of those 10 probes
(right, Probed Times), and the trials that are cued at those times (right, Reminded
Trials).

positive reward was received, and a bias towards taking the opposite action, when a

negative reward was received. The mechanism for this is that the Q values computed

will be updated using the value of the reward at the time of the probe, and this

will increase or decrease the value of the action taken at that time depending on

the sign for the reward received. We compare the average conditional probability

described above for the Rescorla-Wagner, the Time Constants, the Sampling and

the Hybrid models. We show that indeed the probes influence action selection in

the Hybrid model and the Sampling model more than the other two models, which

do not incorporate information from the memory probe.
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Figure 2.6: Increments (relative to chance) in Conditional Probability of repeating the same
action at times t, t+1 and t + 2 after seeing a memory probe from time tm at
time t given that r(tm) was positive. (a). Comparison between all models at
time t. There was a statistically significant difference between groups as deter-
mined by one-way ANOVA (F(3,396) = 16.30, p <0.001). A Tukey post hoc
test revealed that the difference in conditional probabilities between the Hy-
brid model (0.94 +/- 0.021) and the RW model ( 0.54+/- 0.06, p <0.001), the
Hybrid model and the TC model (0.46 +/- 0.056, p <0.001), and the Hybrid
model and the Sampling model (0.81 +/- 0.035, p = 0.045) were statistically
significant. There was no statistically significant difference between the RW
and TC models (p = 0.66).(b). Comparison between all models at time t. There
was a statistically significant difference between groups as determined by one-
way ANOVA (F(3,396)) = 6.84, p <0.001)). A Tukey post hoc test revealed
that the difference in conditional probabilities between the Hybrid model (0.79
+/- 0.045) and the RW model ( 0.48 +/- 0.078, p = 0.018), the Hybrid model
and the TC model (0.44 +/- 0.067, p <0.01=27), and the Hybrid model and the
Sampling model (0.65 +/- 0.056, p = 0.042) were statistically significant. There
was no statistically significant difference between the RW and TC models (p
= 0.65).(c).Comparison between all models at time t.There was not a statisti-
cally significant difference between groups as determined by one-way ANOVA
(F(3,396)) = 1.79, p = 0.65).
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Figure 2.7: Decrements (relative to chance) in Conditional Probability of repeating the
same action at times t, t+1 and t + 2 after seeing a memory probe from time tm
at time t given that r(tm) was negative. (a). Comparison between all models at
time t. There was a statistically significant difference between groups as deter-
mined by one-way ANOVA (F(3,396) = 7.55 , p <0.001)). A Tukey post hoc
test revealed that the difference in conditional probabilities between the Hybrid
model (0.21 +/- 0.018) and the RW model ( 0.5 +/- 0.051, p = 0.002), the Hy-
brid model and the TC model (0.53 +/- 0.045, p <0.017), and the Hybrid model
and the Sampling model (0.32 +/- 0.022, p = 0.038) were statistically signif-
icant. There was no statistically significant difference between the RW and
TC models (p = 0.86). (b). Comparison between all models at time t. There
was a statistically significant difference between groups as determined by one-
way ANOVA (F(3,396)= 5.04, p = 0.0019 . A Tukey post hoc test revealed
that the difference in conditional probabilities between the Hybrid model (0.36
+/- 0.039) and the RW model ( 0.5 +/- 0.072, p = 0.041), the Hybrid model
and the TC model (0.52 +/- 0.061, p <0.037), and the Hybrid model and the
Sampling model (0.4 +/- 0.048, p = 0.047) were statistically significant. There
was no statistically significant difference between the RW and TC models (p =
0.92). (c).Comparison between all models at time t. There was not a statisti-
cally significant difference between groups as determined by one-way ANOVA
(F(3,396)= 2.467, p = 0.636).
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Our results show that the Hybrid and the Sampling model have a bias towards

choosing an action conditional on the sign of the reward received at the time of the

memory probe that was presented. The reason for this bias is that these two mod-

els incorporate the memory probe in their algorithms, and therefore, their choices

reflect this additional information. We also investigate the effects of these mem-

ory probes one and two time steps after the presentation of the probe. The results

indicate that there is still an influence of the memory probes in the Hybrid and Sam-

pling models one step in the future. The reason for this is that the Hybrid model’s

context variable carries information about the previous time step (thanks to its evo-

lution equation, which depends on previous time-steps), and the Sampling model

(thanks to its preservation parameter βc), which has a smaller influence than the

one observed in the Hybrid model. It is important to note that the influence of this

parameter is not very large, and for that reason, the influence of the reminded trial

is less than it was for the previous time step. Similar conclusions are observed

for two time steps after the presentation of the cue. The main difference for these

probabilities is that the biases from the cue observed are smaller.

We can see that there is a bias in the probability of choice in the Hybrid

model. The mechanism for this influence is again due to the context evolution

equation. Episodes that happened following the first presentation of the memory

probe (episodes occurring after time tp) integrate the context of the memory probe

in their own context. In this way, they have similar contexts to the context of the

probed episode. When retrieving episodes based on contextual similarity, all nearby

episodes (which are the ones that keep the memory of the context from the memory

probe) will be recalled and have a weighted influence on choice. This fact is one of

the main contributing factors for the difference in performance between these mod-

els. Specially, between the Sampling and the Hybrid models. The Rescorla Wagner

and Time Constant models do not have a mechanism to include information from

the probe or from nearby episodes, and the Sampling model can only retrieve infor-

mation from the cued episode. The Sampling model can use some of the influence

of the cued episode up to one more time step after it was presented, but then all
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influence is gone. Furthermore, the Sampling model does not have the property,

where other temporally close episodes can influence choices. For all these reasons,

data generated by the Hybrid model is difficult to capture by the other models. In

the Hybrid model, there is more complexity regarding the influences of previous

episodes on choices. This is due to the fact that it uses a temporal model of episodic

recall as its base. In the next section, we test the performance of these models with

real data.

2.5.2 Analysis of Human Data

We next tested the Hybrid model’s performance with human data from the four

armed bandit task described in [Daw et al., 2005] (Experiment 1) and the two armed

restless bandit task described in [Bornstein et al., 2017] (Experiment 2). We report

the parameter estimates and the BIC scores for each model.

Models Parameter Values
RW α = 0.67(0.14)

β = 8.09(0.73)
βc = 0.61(0.34)
BIC = 330.01 (0.81)

TCs α1 = 0.68(0.23)
α2 = 0.48(0.52)
β = 6.63(0.12)
βc = 0.31(0.13)
w = 0.66 (0.05)
BIC = 341.33 (0.87)

Sampling α = 0.82(0.11)
αe = 0.33(0.53)
β = 10.26(0.41)
BIC = 319.96 (0.77)

Hybrid α = 0.56(0.19)
β = 6.31(0.03)
w = 0.65 (0.09)
βb = 0.56(0.27)
BIC = 317.02 (0.72)

Table 2.9: Model Fitting Results. In this table, we show the estimates of parameters us-
ing data from Experiment 1. We show the parameters learned by the RW, Time
Constants, Sampling and Hybrid models. In parenthesis next to the estimated pa-
rameters (middle), we show the standard deviation in the parameters’ estimates.
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Models Parameter Values
RW α = 0.45(0.5)

β = 1.85(0.47)
βc = 0.08(0.21)
BIC = 115.9 (1.04)

TCs α1 = 0.73(0.14)
α2 = 0.35(0.21)
β = 2.86(0.58)
βc = 0.59(0.33)
w = 0.69 (0.02)
BIC = 120.20 (0.64)

Sampling α = 0.52(0.34)
αe = 0.37(0.78)
β = 3.1(0.96)
BIC = 107.25 (0.95)

Hybrid α = 0.65(0.04)
β = 3.25(0.73)
w = 0.46 (0.08)
βb = 0.68(0.29)
BIC = 101.79(0.74)

Table 2.10: Model Fitting Results. In this table, we show the estimates of parameters using
data from Experiment 2. We show the parameters learned by the RW, Time
Constants, Sampling and Hybrid models. In parenthesis next to the estimated
parameters (middle), we show the standard deviation in the parameters’ esti-
mates.
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From this analysis, we can see that the Hybrid model is a better fit than the

other models. This suggest that the features we have described about this model

manage to capture the complexity of the dynamics of decision making in humans

better than previously presented models. In order to compare further the perfor-

mance between these models, we compute an approximation to the Log-Bayes:

Difference of penalized likelihoods using BIC. It was already shown that the Sam-

pling model is better than Rescorla-Wagner, and Rescorla-Wagner is better here

than Time Constants model. For that reason, we show the log Bayes scores compar-

ing the Hybrid and Sampling models. Since we are trying to minimize the negative

log-likelihood of the data, a positive log Bayes ratio between Sampling and Hybrid

model indicates that the Sampling model fits the data worse - its penalized nega-

tive log-likelihood is higher. The difference between these two models is similar

to the improvements shown in [Bornstein et al., 2017] between the Sampling model

and the Rescorla Wagner model. We used this paper as our metric of comparison,

and show that our data shows a similar improvements as the ones reported in this

previous work.

Table 2.11: Log Bayes scores between Sampling and Hybrid

Experiment Scores
Experiment 1 2.94
Experiment 2 5.46

2.5.2.1 Trial by trial analysis

In order to better understand the reasons for the better performance of the Hybrid

model, we perform the same analysis described in the artificial data section regard-

ing the conditional probability of choosing an action given the value of the reward

at the time of a probe. Here, we use the data set from experiment 2. The difference

between this analysis and the one done with artificial data is that in the latter the

data generated was indeed generated by a model that uses the information from the

probes. With human data, we are uncertain as to what model humans subject use to

make their choices. For that reason we compare the conditional probabilities com-

puted empirically from the human choices of this experiment with the conditional
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probabilities obtained from using the Rescorla-Wagner, Time Constants, Sampling,

and Hybrid models.
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Figure 2.8: Increments (relative to chance) in Conditional Probability of repeating the same
action at times t, t+1 and t + 2 after seeing a memory probe from time tm at time
t given that r(tm) was positive. (a). Comparison between all models at time t.
There was a statistically significant difference between groups as determined
by one-way ANOVA (F(3,396) = 18.30, p <0.001). A Tukey post hoc test
revealed that the difference in conditional probabilities between data from Hu-
mans ( 0.76 +/- 0.45) and the RW model ( 0.51 +/- 0.6, p <0.001), data from
Humans and the TC model (0.537+/- 0.05, p =0.008), and data from Humans
and the Sampling model (0.71 +/- 0.03, p = 0.036) were statistically signifi-
cant. There was no statistically significant difference between the RW and TC
models (p = 0.74), and the Hybrid model (0.79 +/- 0.05, p = 0.57) and data
from Humans. (b). Comparison between all models at time t. There was a
statistically significant difference between groups as determined by one-way
ANOVA (F(3,396)) = 6.7, p = 0.011)). A Tukey post hoc test revealed that
the difference in conditional probabilities between data from Humans (0.46 +/-
0.002) and the RW model ( 0.49 +/- 0.03, p <0.001), data fromHumans and the
TC model (0.52+/- 0.028, p <0.001), and data from Humans and the Sampling
model (0.32 +/- 0.035, p = 0.021) were statistically significant. There was no
statistically significant difference between the RW and TC models (p = 0.75),
and the Hybrid model ( 0.41 +/- 0.032, p = 0.97) and data from Humans. (c).
Comparison between all models at time t. There was not a statistically signifi-
cant difference between groups as determined by one-way ANOVA (F(3,396)=
2.467, p = 0.0736). A Tukey post hoc test revealed that the difference in con-
ditional probabilities between data from Humans ( 0.59 +/- 0.022) and the RW
model ( 0.4 +/- 0.018, p =0.012), and data from Humans and the TC model
(0.42+/- 0.021, p =0.015) were statistically significant. There was no statisti-
cally significant difference between the RW and TC models (p = 0.74), data
from Humans and the Sampling model (0.671 +/- 0.033, p = 0.066) and the
Hybrid model (0.63 +/- 0.025, p = 0.65) and data from Humans.
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Figure 2.9: Decrements (relative to chance) in Conditional Probability of repeating the
same action at times t, t+1 and t + 2 after seeing a memory probe from time
tm at time t given that r(tm) was negative. (a). Comparison between all mod-
els at time t. There was a statistically significant difference between groups
as determined by one-way ANOVA (F(3,396) = 9.67, p <0.001)). A Tukey
post hoc test revealed that the difference in conditional probabilities between
Human data (0.38 +/- 0.035 ) and the RW model ( 0.52 +/- 0038, p <0.001),
Humans and the TC model (0.46+/- 0.067, p <0.001), data from Humans and
the Sampling model (0.41 +/- 0.016, p = 0.009), the RW and the TC model
(p = 0.025), and the Hybrid model (0.22 +/- 0.001, p = 0.018) and data from
Humans were statistically significant. (b). Comparison between all models at
time t. There was a statistically significant difference between groups as de-
termined by one-way ANOVA (F(3,396)= 12.467, p <0.001. A Tukey post
hoc test revealed that the difference in conditional probabilities between data
from Humans ( 0.33 +/- 0.044) and the RW model ( 0.5+/- 0.07, p =0.023),
data from Humans and the TC model (0.52+/- 0.06, p=0.014), and data from
Humans and the Sampling model (0.4 +/- 0.05, p = 0.033) were statistically
significant. There was no statistically significant difference between the RW
and TC models (p = 0.74), and the Hybrid model (0.38+/- 0.04) , p = 0.87) and
data from Humans (c). Comparison between all models at time t. There was
not a statistically significant difference between groups as determined by one-
way ANOVA (F(3,396)) = 3.45, p = .045). A Tukey post hoc test revealed that
the difference in conditional probabilities between Human data (0.35 +/- 0.03
) and the RW model ( 0.5 +/- 0.0456, p <0.001), Humans and the TC model
(0.51+/- 0.038, p <0.001), and Humans and the Sampling model (0.4 +/- 0.03,
p = 0.026) were statistically significant. There was no statistically significant
difference between the RW and TC models (p = 0.74), and the Hybrid model (
0.38 +/- 0.025, p = 0.57) and data from Humans.
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Our results show that it is indeed the case that the Hybrid model captures bi-

ases in decisions due to memory probes better than other models. The conditional

probability of repeating the same action from the time of a probe is more biased

in the direction of the reward received when using the Hybrid model than when

using the other models. Furthermore, we can see that the Hybrid model’s condi-

tional probabilities are closer to the empirical conditional probabilities computed

with human data. We continue with an analysis similar to the analysis performed

using artificial data in the previous section. The conditional probabilities of humans

exhibit biases similar to those of the Hybrid model. This result explains why the

Hybrid model is a better fit to human data; furthermore, it shows that humans are

biased not only by the probed event, but also by nearby events from that probed

event. In this way, suggesting that humans use episodic information in a manner

that resembles our proposal. Human subjects recall events based on cues, but also

appear to make assumptions about the environment that favor the usage of a tem-

poral context model of recall. In particular, it appears that humans assume that the

world can suddenly change and go back to a previous situation, and once they are

back in that situation, or a very similar one, the world continues to change slowly.

This means that they react to a memory probe, and reinstate a similar mental state to

that of the time where that probed event occurred. With the retrieval of this mental

state, they also retrieve memories of that event and of nearby events. Consequently,

the information from events following the memory probe, also appear to have an

effect on the current time step, and subsequent time steps. The memory probe it-

self also continues to influence decisions in the future. At each time step, humans

preserve information from previous time steps. In this way, the information from

the probe can still influence decisions one and two time steps after the probe was

presented. This feature confirms our hypothesis that humans subjects believe the

world changes slowly.

In this chapter, we have shown that an episodic based RL algorithm; partic-

ularly, the Hybrid model, is a better fit for human choices than the other models

discussed. But more importantly, we have shown that this result implies that hu-
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mans make certain assumptions about the world, and store and recall information

accordingly. In the next chapter, we focus on understanding what these assumptions

are, and propose a generative model for our episodic based RL algorithms.

2.6 Conclusions

Memory systems lie at the heart of animal learning, and therefore they also

play a central role in Reinforcement Learning. This invites us to under-

stand how distinctions between different memory and different RL systems

relate, both mechanistically, and in terms of the different aspects of the en-

vironment to which they are tuned. Specifically, model free RL resembles

the rigid structure of striatal procedural memory, while model based RL re-

sembles the flexibility of declarative semantic memory associated with the

hippocampus and neocortex [Gershman and Daw, 2017] [Poldrack et al., 2001]

[Eichenbaum and Cohen, 2004]. These memory systems have been the fo-

cus of reinforcement learning research, while other systems—such as work-

ing and episodic memory—have been mostly neglected, with few exceptions

[Collins and Frank, 2012] [Lengyel and Dayan, 2008] [Gershman and Daw, 2017]

[Bornstein et al., 2017]. Episodic memory differs from procedural or semantic

memory in that it stores and recalls information about specific events that took

place in particular times and places. Contrary to the memory systems already used

in RL, it does not store accumulated statistics of the environment. For this reason,

its associated RL framework is fundamentally different from existing models.

In this chapter, we extended previously proposed models [Bornstein and Norman, 2017]

and introduced a new RL framework that uses episodic memory. We introduced

two new RL frameworks: Contextual Episodic and Hybrid—a mixture between

Contextual Episodic and the standard Rescorla-Wagner model. The Contextual

Episodic model uses episodic memories to make decisions about actions. This

model recalls episodic memories based on contextual cues to make decisions. We

used the Temporal Context Model (TCM) [Howard and Kahana, 2002] to model

contextual integration, drift and recall. Episodic memories are each associated with
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the context in which they occurred. Episodes are retrieved, weighted and integrated

during decision-making, based on the similarity between their associated contexts

and the current context. Episodes are then weighted based on this contextual sim-

ilarity to the current context, and integrated to make a choice. This use of past

events based on contextual similarity is the core pillar of the Contextual Episodic

model. Despite the well-established influence of context and contextual cues on

decision-making [Duncan and Shohamy, 2016] [Bornstein and Norman, 2017], no

previous RL model has bound episodes to context. Furthermore, thanks to the tem-

poral structure of TCM, our model organizes the storage and retrieval of episodes

based on temporal contexts. This feature allows for the flying-back-in-time prop-

erty of episodic recall to also be present in RL-based decision-making. When a

past episode is cued in the present, decision-making is influenced by not only that

particular episode but also episodes that followed the cued episode. In this way, the

Contextual Episodic model is a temporally dynamic model of decision-making.

Subsequently, we proposed the Hybrid model to address the fact that hu-

man behaviour often incorporates elements from both model-based and model-free

choice, and that contextual retrieval is omnipresent. Standard RL algorithms are of-

ten deployed simultaneously to optimize decision-making. Similarly, the Rescorla

Wagner and Contextual Episodic algorithms may be combined to make more accu-

rate choices since they provide different types of information. Furthermore, even

when choices are made using a model-free method, different contextual cues trigger

the recall of similar contexts with their associated episodes. In this way, episodes

are always being recalled, and the more relevant they are to the current context, the

stronger is their influence on current decisions. In our proposal, the Hybrid model

is a weighted combination of model-free and episodic sources, which allows for a

more flexible algorithm.

We tested this framework on both simulated and human data, and found that

the Hybrid model is a better fit to human data choices. First, we designed an arti-

ficial two-armed bandit task and showed (unsurprisingly) that contextual cues bias

the probability of choices only in models that incorporate both of these cues such
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as the Hybrid and Sampling models, but not in conventional models such as the

Rescorla Wagner and Time Constants models. We further showed that the effect

of a contextual cue in the Hybrid model lasts for the next two time steps after the

presentation of the cue, while in the Sampling model this effect only lasts for a

single further time step. This feature of the Hybrid model is a results of the con-

textual drift characteristic of TCM. Context slowly drifts through time; therefore, at

any time point, the current context preserves information from previous time steps.

When a cue is presented, the current context is updated and it is used by the Hybrid

model to search in memory for similar contexts. This effect remains present during

the next time steps, while the memory of the contextual cue is still present.

Furthermore, we showed that it is not only the cued episode that influences de-

cisions in the Hybrid model, but also episodes that immediately followed the origi-

nal presentation of the cued episode. Thanks to the memory property of TCM pre-

viously described, episodes that occurred right after the cued episode original pre-

sentation have similar contexts. For this reason, these episodes are also retrieved by

our contextual similarity retrieval mechanism. An advantage of the Hybrid model is

that it weights information from previous episodes based on relevance—measured

as contextual similarity, thus more than one episode from the past can influence

decision-making based on relevance rather than recency. The Sampling model com-

bines the information from all episodes, and weights them by recency (except for

the cued episode, which enjoys its own unique weight). It is this influence of rel-

evance that distinguishes the Hybrid and Sampling models. In the latter, only the

cued episode has a stronger influence on the action choice. On average, all other

episodes have similar degree of influence as episodes would have in the Rescorla

Wagner model. Thus, it is the influence of contextual relevance that distinguishes

the Hybrid and Sampling models.

Nevertheless, this chapter also discussed the similarities between the Hybrid

model and Sampling model because they both use episodic information and com-

bine it with a form of recency based integration of previous episodes. In the case

of the Sampling model, this is a consequence of sampling a value from the entire
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history of episodes weighted by recency, whereas in the Hybrid model, it is a con-

sequence of the low pass filter nature of the TCM and the weighted contribution of

the Rescorla Wagner model. The Hybrid model, however, can adjust a parameter

that weights how much of this information is useful, which gives the Hybrid model

another advantage: flexibility in its use of information. This extends beyond weight-

ing episodes based on contextual similarity to switching between situations where

either episodic information is more relevant or a model-free strategy is more opti-

mal. For example, if a novel situation is encountered, the Hybrid model can easily

increase the weight of episodic information. Conversely, when retrieving episodes

and weighting them becomes an unnecessary and heavy load on working memory

(i.e. the learner has mastered the task), the Hybrid model can switch partially or

completely to a model-free system.

In this chapter, we showed that due to its unique features, the Hybrid model

outperforms other models using simulated data (unsurprisingly since it was de-

signed to test this model) and human data. These results suggest that - a temporal

context model and episodic memory are present during decision making. While the

temporal context model has been shown to robustly predict free recall in humans,

this is the first time that this framework is used to model the retrieval of contextually

relevant episodes to make decisions. A key distinction between free recall models

and contextual episodic models—and hybrids—is that to optimize decision-making,

contextual episodic models retrieve and weight all episodes to integrate the infor-

mation of more than one episode, as opposed to the single episode selection that

occurs in free recall models.

The fact that human choices are closer to those suggested by the Hybrid model

suggests that at least some of the implicit assumptions humans make about the struc-

ture of the world are captured by this model. We do not claim that the Hybrid model

is the algorithm used by humans, or that the conditions of the environment that this

model assumes are exactly those assumed by humans. However, we have observed

that some features of this model are used by humans, and therefore understanding

the assumptions behind this model could be useful to understanding some of the
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assumptions made by humans.

An extension to this current work would be to explore how this weighting

parameter is adapted dynamically and online. In our work, we fit the weight param-

eter w for each task, but in humans, this parameter may be dynamically adjusted

from trial to trial as the subject explores the environment and gains more expertise.

Learned, or expected levels of uncertainty may afford cognitive resources necessary

for episodic retrieval, while unexpected uncertainty may require quick action-value

assessments for optimal performance . Indeed, several neuromodulators have been

associated to changes in environmental uncertainty [Angela and Dayan, 2005] and

would be prime candidates for the biological substrate for adjustments to parameter

w.

Our model also opens the door to further analysis related to the understand-

ing of how memories are integrated during decision-making, problem solving and

creative thinking. In our approach, model-free approaches were compared or com-

bined with episodic-based learning. However, model-based algorithms may serve as

more adequate recognition models in cases where inferences regarding the tempo-

ral causal structure are required for maximal reward. Future work should extend the

Contextual Episodic model ideas to a model based framework. Our proposed frame-

work is a proof-of-concept for a Contextual Episodic decision making algorithm.

The definition of context could be expanded to include aspects; such as, seman-

tics, emotions, and multiple contexts overlapping at different temporal time scales.

Some of these aspects have already been addressed, and used to expand the notion

of the TCM beyond temporal context [Polyn et al., 2009] [Talmi et al., 2019]. In

the future, we would like to expand on this even further and see how these different

features affect decision-making. In particular, we are interested in understanding

biases in recall based on emotions. We would like to test for negative biases by

adding extra features that code for positive and negative contexts, and test whether

patients with psychiatric disorders exhibit these biases. These biases could be in-

corporated during context encoding, retrieval or weighting. Understanding when

and how these biases affect decision-making would be a fruitful research direction.
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Finally, an important direction for future work would be to expand these decision

making models to problem solving and creative thinking, since these three cogni-

tive computations share the core pillar of integrating previous memories to assess

the present. The case of creative thinking is particularly interesting for us, since

it requires integrating memories that are seemingly out of context, but turn out to

be key to finding novel solutions. To build a model of creative thinking, we would

need to expand not only our definition of context, but our mechanism of retrieval.

Decision-making algorithms are based on inductive biases, or inferences made

by the learner about the structure of the world that generates observations and re-

wards. In the next chapter we explore this further, presenting a generative model

to which the Contextual Episodic model and Hybrid models are matched. We first

study the conditions of the world for which a Contextual Episodic model would be

an appropriate inference algorithm. We then explore the scenario where a learner

would combine this model with the Rescorla Wagner model. By describing a gener-

ative model for these learning algorithms, we present a formal normative approach

for further study into the conditions for which this model would be an optimal strat-

egy. In particular, we study when and why humans might use temporal episodic

memory-based strategies for decision-making.



Chapter 3

Generative Model

3.1 Motivation

In the previous chapter, we introduced a learning framework based on episodic

recall. We further introduced the concept of contextual similarity based recall, and

we described how events from far in the past can be relevant and used for decision

making in the present. We called this learning framework: Contextual Episodic.

In this chapter, we introduce a generative model for which the Contextual Episodic

learning framework is a suitable approximate inference model, and which therefore

specifies an environment to which Contextual Episodic decision-making is likely to

be effective.

A generative model is a statistical construct that describes the process by which

observable variables are generated [Ng and Jordan, 2002], [Bernardo et al., 2007].

In the context of our experiments, it describes the process that generates the contex-

tual cues and the bandits with their respective associated rewards. In other words,

the generative model captures the environment the agent explores, and in this way,

determines the requirements for appropriate inference.

Formally, we call the data, observable variables D, and describe the statistical

model as the probability P(D|θ), where θ are themselves random variables that act

as parameters in this stochastic generative process. This probability is called the

Likelihood function or Likelihood of the data [Ng and Jordan, 2002]. We assume

that a learning agent does not start off knowing the true values of θ ; but only has a
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prior distribution over these values. However, the learning agent can compute these

parameters using an inference model. An inference model computes the posterior

probability P(θ |D) based on prior beliefs and conditional on the observed data D.

Exact posterior inference is computed using Bayes’ rule:

Posterior ∝ Likelihood ∗Prior (3.1)

where the Likelihood function is the probability given by the generative model

P(D|θ) and the prior and posterior are probabilities taken over the model’s param-

eters:

P(θ |D) ∝ P(D|θ)P(θ) (3.2)

In the context of our bandit tasks, the learning agent wants to infer the value

of these parameters, so that he or she can make predictions about future rewards.

Specifically, after accumulating data from previous rewards (and other observations

if there are any such), the learning agent can compute the posterior over the param-

eters that define the model of the environment, and use this learned parameterized

model to predict future outcomes. Using these predictions, the learning agent can

make rational decisions about future actions and choices. In Bayesian treatments of

decision-making, rationality is defined as performing exact inference over the latent

causes or generative model of an environment and guiding behaviour and choices

accordingly.

Often there are constraints on the ability of agents to perform exact inference,

due to physical limitations, intractable computations or ignorance of the exact gen-

erative model of the environment. Constraints such as these give rise to bounded ra-

tionality [Howes et al., 2009]. It is very important to acknowledge that even though

exact inference is the optimal solution for rational decision making, often times bi-

ological and artificial agents are limited and thus approximations to inference are

necessary. In this work, we introduce a generative model, for which exact inference

is difficult, and thus we present our learning algorithms as suitable approximations.
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3.1.1 Generative Model for Rescorla-Wagner

One example of an inference model in the reinforcement learning literature

with an associated generative model is the Rescorla-Wagner (RW) algorithm

[Rescorla et al., 1972] [Dayan et al., 2000] [Daw et al., 2008]. It has been shown

that the RW algorithm is equivalent to the Kalman Filter (at least in the regime in

which the Kalman gain has reached an asymptote), which performs exact inference

in a generative model known as the Linear Gaussian State Space Model (LGSSM)

[Sutton, 1992] [Dayan et al., 2000] [Daw et al., 2008]. Here, as a foundation for

our own work, we describe the RW algorithm, and introduce a generative model

for which this learning algorithm computes optimal inference. We show how this

generative model is a LGSSM.

The Rescorla-Wagner model is a formal model of classical conditioning.

It describes how animals learn associations or predictive relationships between

stimuli (conditioned stimuli) and rewards or punishments (unconditioned stimuli)

[Rescorla et al., 1972]. These predictions apparently guide behavioral responses

[Rescorla et al., 1972] [Dickinson, 1980] [Mackintosh, 1983]. For example, during

a particular classical conditioning experiment, animals might learn to predict that

food comes after the sound of a bell, or that an electric shock comes after the pre-

sentation of a red light. Consequently, they salivate or freeze, respectively.

Formally, this model is described by the RW learning rule [Rescorla et al., 1972]

(which is equivalent to the delta rule; Widrow & Hoff, 1960). This rule makes pre-

dictions of rewards given a stimulus. To derive this rule, we consider a vector xt

given on trial t, which represents the presence or absence of the conditioned stimuli.

Often, the entries of xt will be binary – but this is not necessary for what follows.

The delivery of the unconditioned stimulus (the reward) is represented by the scalar

rt . The predictive relationship between xt and rt is captured by a set of parameters

wt, and in this model, it is assumed to be linear: Vt = xt ·wt. The goal of a RW

learning agent is to make adequate predictions of the reward it will receive upon

presentation of the conditioned stimuli by acquiring an appropriate value for wt.

RW is a learning rule that (expressed in modern terms) updates this value at each
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time step in the following way [Rescorla et al., 1972]:

wt+1 = wt +αδtxt (3.3)

where α is the learning rate and δt is equal to the error between the reward

received and the expected reward:

δt = rt−Vt = rt−xt ·wt (3.4)

In order to interpret the Rescorla-Wagner algorithm as an inference model, we

consider a statistical approach to the prediction problem between the conditioned

stimuli and the reward. To do this, we describe a space of statistical hypotheses

about the data generation process or generative model of the data. This genera-

tive model has two components. One is the likelihood: a parameterized probability

distribution over each data set D = {xt ,rt} of stimuli-reward pairs: P(D|θ), where

θ = {wt} in this model represent the latent variables wt that characterize the genera-

tive process (by capturing the association between each stimuli in xt and the reward

rt). The second component is the prior P(θ). For classical conditioning, it suf-

fices that this model describes how rewards are generated on each trial conditioned

on the stimuli observed [Daw et al., 2008]. In other words, the generative model

for classical conditioning is a conditional generative model. It defines a condi-

tional probability distribution of reward rt given stimuli xt . A full generative model

for data D would model the joint probability distribution of both variables jointly

[Daw et al., 2008]. The conditional probability distribution of reward rt given stim-

uli xt is given by a Gaussian distribution with mean equal to wt ·xt and observation

variance σ :

P(rt |xt ,wt ;σ)∼N (wt ·xt ,σ) (3.5)

Additionally, the prior P(θ) specifies that latent variables wt evolve according

to a first order Gaussian drift with mean centered around wt−1 and covariance equal
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to Σw:

P(wt |wt−1;Σw) = N (wt−1,Σw) (3.6)

The likelihood and prior jointly define a generative model for the de-

livery of reward, where the optimal inference algorithm is a form of the

Rescorla-Wagner learning rule related to the Pearce-Hall rule [Dayan et al., 2000]

[Pearce and Hall, 1980] [Sutton, 1992]. If we define the prior distribution over wt

at time t = 1 to be a Gaussian distribution with mean given by wo and covariance

Σwo :

P(wt=1) = N (wo,Σwo) (3.7)

Then this conditional generative model is equivalent to a Linear Gaussian State

Space Model (LGSSM), for which it has been shown that the exact inference algo-

rithm is the Kalman Filter [Dayan and Kakade, 2001]. This shows how the gener-

ative model for which the Rescorla-Wagner algorithm performs exact inference is

equivalent to a LGSSM. To see this, observe that the Kalman Filter computes the

posterior distribution of wt given all previous observations with mean ŵt and the

covariance matrix Σ̂t :

P(wt |r1...rt−1;x1...xt−1) = N (ŵt , Σ̂t) (3.8)

And updates it according to [Kalman, 1960] [Welch et al., 1995]:

ŵt+1 = ŵt + κ̂t(rt− ŵt ·xt) (3.9)

Σ̂t+1 = Σ̂t− κ̂txT
t Σ̂t +Σw (3.10)

where κ is the Kalman gain vector:

κ̂t =
Σ̂txt

xT
t Σ̂txt +σ

(3.11)

(3.12)
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These equations describe the Kalman filter updates for inference in the

LGSSM. It can be seen that the update rule for the mean is equivalent to the

Rescorla-Wagner learning rule when Σ̂t ∝ I.

Intuitively, the Rescorla-Wagner rule averages past rewards based on recency.

It can be seen from the generative model that indeed the random variable w gradu-

ally diffuses over time, so that values are more similar to those of nearby trials than

to those that are further apart. For this reason, a recency-based inference model

is adequate. A generative model helps us understand the requirements for infer-

ence and predictions, and likewise different inference algorithms imply learning in

a different generative model.

3.1.2 Generative Model Proposal

Motivated by the Rescorla-Wagner model with its associated generative model, we

would like to understand the conditions of the environment for which an episodic-

based algorithm; such as the Contextual Episodic model or the Hybrid model, are

adequate strategies for a reward-based learner. In last chapter, we showed that hu-

man decision-making had similarities with our algorithms; for this reason, we would

like to understand the assumptions of the world necessary for an organism to choose

these strategies. In order to draw statistically rigorous conclusions for the type of

tasks or environments where using our algorithm would be adequate, we need to un-

derstand the structure of the environment in which it is trying to perform inference.

Our Contextual Episodic algorithm does not weight rewards by recency, but rather

by contextual similarity. This fact indicates us that the Contextual Episodic algo-

rithm is not trying to perform inference in a LGSSM. Therefore, we need to propose

a different generative model. Furthermore, the Contextual Episodic algorithm uses

a temporal context model (TCM) [Howard and Kahana, 2002] that integrates infor-

mation from events using a context vector, which is updated as a low pass filter of

the previous contexts, but it is also updated by new inputs. These inputs can be

similar to the previous context, to a context far in the past, or to be completely new.

We explore the necessary characteristics for the corresponding generative model of

this inference process. In other words, we explore the conditions under which being
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able to learn and integrate all the described contextual information would be nec-

essary to perform inference. Consequently, we conclude that our generative model

will have to generate data that changes slowly in time, but also suddenly can change

to previous or new situations.

Here, we elaborate these requirements and propose a suitable generative

model. For that, we first review a previous generative model that uses the Tem-

poral Context Model [Howard and Kahana, 2002]. Then, we review the Dirichlet

Process [Teh, 2010] [El-Arini, 2008]. In particular, we review the Infinite Hidden

Markov Model (IHMM) [Beal et al., 2002], because we use this model for our gen-

erative model. Finally, we introduce our generative model, and analyze the implica-

tions of different parameter regimes for approximate inference with the Contextual

Episodic algorithm. In this way, we show different situations when our new model

is an adequate inference algorithm.

3.2 Literature Review

3.2.1 Previous Model

We begin this literature review with an overview of a conditional generative

model of human memory performance in free recall developed by Socher et. al

[Socher et al., 2009]. Free recall is studied in subjects that memorize a list of words,

and then are asked to recall these words. Models of verbal memory assume that

words are formed and retrieved based on assimilated semantic representations. In

this model, Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is used to represent

this latent semantic structure [Socher et al., 2009]. LDA represents the meaning of

documents as a distribution over topics, which themselves are a distribution over

words. Free recall is then modeled by combining the latent representations pro-

vided by LDA with a slowly changing temporal latent context[Socher et al., 2009].

The Temporal Context Model (TCM) [Howard and Kahana, 2002] is used to model

this latent temporal structure. In essence, this conditional generative model as-

sumes that memories of words are formed as distributions over topics that are as-

similated into a slowly a changing latent context. Using this conditional generative
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model, Bayesian inference can be used to make predictions about recalled words

[Socher et al., 2009]. The goals of this model are closely related to our intent in

this chapter: formulate a generative model for temporal and contextual-based recall

inspired by TCM. The main difference between this work and our work is that the

work by Socher et. al proposes a conditional generative model based on TCM and

LDA [Socher et al., 2009] which, like the RW analysis, uses inputs as a fixed part

of the generative process (details below). On the other hand, we will propose later

in this chapter a full generative model, where a TCM-based algorithm is used as an

approximate inference model. Here we describe the different components of this

conditional generative model. In the next section, we describe our proposed full

generative model.

Socher et al. consider both a study phase and a recall phase. In experiments ex-

amining free recall, which are the focus of the TCM, subjects first have to memorize

a list of words (study phase), and then they need to recall these words (recall phase).

Socher’s model is based on TCM, but it re-interprets it as a dynamic latent variable

model, where the context vector represents a distribution over topics and the con-

textual drift can be seen as a sequence of mixtures of topics [Socher et al., 2009].

Here we describe the two phases. We label the context during study phase

cs, and the context during recall phase cr. The study phase specifies the trajec-

tory of mental context by first drawing the initial mental context from a Gaussian

[Socher et al., 2009]. The subscript n refers to the current studied word, and it is

used to identify the context and probabilities during the study phase:

P(cs
o)∼N (0,σ I) (3.13)

then, using the new studied words as inputs, the mental context drifts according to

the following equation:

P(cs
n)∼N (hs

n,σ I) (3.14)



3.2. Literature Review 93

where hs
n evolves with the following equation

hs
n = η1cs

n−1 +(1−η1) log(ps
n) (3.15)

where ps
n ∼ β s

wn
. ps

n is the posterior probability of each context given the current

studied word, and β s
wn

is the distribution over words given a context containing the

current studied word wn

(3.16)

These equations show how the mental context drifts when the subject studies

new words. The two forces governing this drift are the previous mental context cs
n−1

and the posterior probability ps
n. The parameter η1 controls the contribution of each

of these forces [Socher et al., 2009].

The recall phase specifies the distribution of recalled words and the dynamics

of the drifting context during this recall process. First, we describe how subjects

recall words after the study phase. At time step t, a recalled word is generated from a

mixture of ”paths”: semantic and episodic [Socher et al., 2009]. The semantic path

recalls words according to an LDA generative model using the current context as the

distribution over topics. This implies that a topic is drawn from this distribution, and

then a word is drawn from this topic. Formally, word w is recalled via the semantic

path with a probability induced by the current context [Socher et al., 2009]. Here

the index t refers to the time step of the recalled word.:

Pse(w) = π(cr
t )βw (3.17)

In this equation, π represents a function that maps vectors onto the simplex,

where positive vectors sum to one, and βw is distribution over words. Then, Pse(w)

represents the marginal probability of recalling word w given the current recalled

context.

The episodic recall path draws words from the set of studied words, with prob-
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ability equal to a weighted sum of δ functions defined at each study word, where the

weight for each function is based on the contextual similarity between the current

context and the context when each word was studied. This contextual similarity is

measured by the function d(·, ·), which corresponds to the negative KL-divergence.

In the equation below, ε is a parameter that controls the curvature of this similarity

function. Therefore, the probability of recalling word w via the episodic path is

equal to [Socher et al., 2009]:

Pe(w) =
ut,w

∑i ut,i
(3.18)

where ut is obtained by summing over all studied words:

ut =
N

∑
n=1

δs,wsn

d(π(cr
t ),π(cs

n))
ε

(3.19)

A recalled word is generated from a mixture of these two paths. This mixture

is determined by a mixing proportion γ . Therefore, a word is drawn during recall

according to [Socher et al., 2009]:

wrt ∼Mult(φt) (3.20)

where:

φt(w) = γPse(w)+(1− γ)Pe(w) (3.21)

During this recall phase, context drifts according to the following equation:

P(cr
t+1) = N (hr

t ,σ I) (3.22)

where:

hr
t = η2cr

t +η3log(pr
t )+η4cs

n(wr,t)
(3.23)
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where, similar to the study phase, pr
t is is the posterior probability of each context

given the current recalled word.

These equations are very similar to the evolution of context during the study

phase. The only difference is that, during recall, context is also driven by the re-

trieved context (the context that was present when the recalled word was studied).

Formally, this corresponds to η4, which maps a recalled word to its index when it

appeared during the study period [Socher et al., 2009].

This model is a conditional generative model of free recall. It uses input words

during the study phase as part of the generative model. It does not specify the statis-

tics of the environment that would generate these words. It uses the input words to

construct probabilities over topics. Furthermore, it uses the temporal context model

as part of the generative model. In this thesis, we propose a TCM inspired algo-

rithm as an inference algorithm, and then in this chapter, we will propose a full

generative model for which such a contextual and temporal algorithm is an appro-

priate approximate inference method. In the following section, we present this full

generative model of episodic events applied to a reinforcement learning task. The

goal of inference in our model is to predict the values of actions based on previous

rewards, and previous and current observations. In this way, we want our inference

algorithm to guide agents to make adequate choices.

3.2.2 Dirichlet Processes

The Dirichlet process is a Bayesian non-parametric model, which defines a distribu-

tion over distributions [Teh, 2010], [El-Arini, 2008], [Ferguson, 1973]. This means

that each draw from the Dirichlet process is also a distribution. These distributions

are discrete, and cannot be described using a finite number of parameters. For this

reason, these models are called non-parametric [Teh, 2010]. The Dirichlet process

is specified by a base distribution and a concentration parameter:

G∼ DP(α,H) (3.24)

where α is the concentration parameter, and H is the base distribution.
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The Dirichlet process draws distributions around this base distribution in a

similar way that a normal distribution draws samples around its mean. The scaling

parameter specifies how concentrated or spread out the discrete distributions drawn

from the DP are. A higher value of α means that distributions are less concentrated

or more spread out. Intuitively, the Dirichlet Process (DP) is an infinite dimensional

generalization of the Dirichlet distribution, and it is the conjugate prior for infinite,

non-parametric distributions; such as, infinite mixture models or infinite Hidden

Markov Models (HMMs). In this section, we describe this infinite generalization of

HMMs: the Infinite Hidden Markov Model.

3.2.2.1 Infinite Hidden Markov Model

The Infinite Hidden Markov Model was proposed by Beal et. al [Beal et al., 2002]

to extend the Hidden Markov Model (HMM) to have infinite number of states. Stan-

dard HMMs are used to model sequential data; such as, speech, music, or protein

sequencing. They define a probability distribution over observed sequences by de-

scribing the evolution of another sequence of unobserved or hidden states. The ob-

served sequences have unknown temporal dynamics, and are conditionally indepen-

dent given hidden states. On the other hand, hidden states have Markov dynamics:

the hidden state at time t only depends on the hidden state at time t−1. Therefore,

conditioned on this state, it is independent of the previous state sequence. We define

the hidden states as Yt and the observations as ot . To model the hidden states, we

only to define the transition matrix, with the i jth entry equal to P(Yt = j|Yt = i).

These hidden states emit observations with emission probability matrix, with the

iqth entry equal to P(ot = q|Yt = i). Since the hidden sequence is independent of the

past given the previous state of the sequence, the observed variables are independent

of their history given the value of the hidden state [Beal et al., 2002].

HMMs have important limitations for modeling sequential data. First of all,

the modeler needs to specify in advance the structure, such as number of parame-

ters of the model, of the sequence, and knowing this structure is often not possible

a priori. Second, it is often unreasonable to assume that the data was generated by a

set of discrete states. For this reason, iHMMs propose that data can be generated by
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countably infinite hidden states. iHMMs are a non-parametric extension of HMMs

to infinite possible transitions. Therefore, they do not require the experimenter to

specify the structure of the task in advance, and the number of states can grow de-

pending on the complexity of this task. This infinite realization is achieved thanks

to the usage of Dirichlet processes, which make it be possible to integrate out the in-

finities. We describe iHMMs below, and show the equations and parameters needed

for drawing samples and optimization [Beal et al., 2002].

The infinite Hidden Markov Model extends the HMM model by considering

each row of the transition and emission probability matrices of the HMM as a

Dirichlet Process. One of the advantages of using DPs is that we can, we inte-

grate out the Dirichlet prior and get a set of conditional probabilities with only three

hyper-parameters. These probabilities depend only on the three hyper-parameters

(α,β ,andγ) corresponding to the two Dirichlet process, and on the number of tran-

sitions from each state to another one following the transition matrix and emissions

or observations from each state following the emission matrix [Beal et al., 2002].

Before we present the set of equations for these conditional probabilities, we

introduce the variables ni j and miq that count the number of transitions from state

Y = i to state Y = j, and the number of emissions of symbol o = q from state Y = i,

respectively. Similarly, to the HMM, each state Yt is hidden, while each emission ot

corresponds to the observation at each time step.

The variable ni j is defined as:

ni j =
t−1

∑
t ′=1

δ (Yt ′, i)δ (Yt ′+1, j) (3.25)

The variable miq is defined as:

miq =
t−1

∑
t ′=1

δ (Yt ′ , i)δ (ot ′ ,q) (3.26)

We further introduce the variables n�i and m�q that respectively count the number

of times state Y = i transitioned to new state it has not visited before, and the number

of times state Y = i emitted new symbol [Beal et al., 2002].
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We now define the equations for the the generation of the hidden state se-

quences in an iHMM. States that have already appeared up to time t in the sequence

are labeled states 1 to k. The three hyper-parameters α,β ,andγ each control how

the hidden state sequence is generated. α controls the prior tendency to remain in a

state. β controls the tendency to explore transitions to new states. Finally, γ controls

the expected number of represented hidden states. Each state can transition to itself,

to a state it has transitioned before, to a state that has appeared in the sequence but

it has not transitioned to it before, or it can transition to a completely new state. The

probability of a state remaining the same is proportional to the sum of number of

transitions it has had to itself before and a parameter α . This probability determines

the time-scale of evolution of the iHMM [Beal et al., 2002]:

P(Yt+1 = i|Yt = i;n,β ,α) =
nii +α

ΣK
j′=1ni j′+β +α

(3.27)

The state can also transition to a state from the history of states it has visited

in the past. This probability leads to common transitions, and it is proportional to

the number of times it has transitioned to each state in its past [Beal et al., 2002]:

P(Yt+1 = j|Yt = i;n,β ,α) =
ni j

ΣK
j′=1ni j′+β +α

(3.28)

j ∈ 1, ...,K (3.29)

With a certain probability, the state can transition to an oracle. The probability

of the transition to this oracle is proportional to a parameter β [Beal et al., 2002]:

P(oracle|Yt = i;n,β ,α) =
β

ΣK
j′=1ni j′+β +α

(3.30)

Once in the oracle, the state can transition to a state that it has never transi-

tioned to in the past, but that has previously appeared in the trajectory - a state that

has appeared in the sequence of hidden states, but not as a transition following the

current state but some other state in the trajectory. This transition probability de-
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pends on the number of times the state has used the oracle to make a transition n�

[Beal et al., 2002]:

P(Yt+1 = j|Yt = i;n�,γ) =
n�j

ΣK
j′=1n�j′+ γ

(3.31)

The second alternative once in the oracle is that a state can transition to a com-

pletely new state - a state that has never been visited in the past. This probability is

proportional to the parameter γ [Beal et al., 2002]:

P(Yt+1 = j|Yt = i;n�,γ) =
γ

ΣK
j′=1n�j′+ γ

(3.32)

The generation of hidden states is controlled by the three hyper-parameters:

α,β ,γ . The parameter α determines how quickly the iHMM changes states, the

parameters β and γ control how much trajectories deviate from typical trajectories,

and how frequent new states are visited. These new transitions or visited states

generate jumps in the trajectory, which is the characteristic that we are looking for

in this model. Furthermore, the parameter γ determines the variety of states visited

from the countably infinite states [Beal et al., 2002]. Figure 3.1 shows the different

state trajectories that can be generated by different parameters using the iHMM. We

use the iHMM to model the agent’s dynamics i.e. the locations in the world that

it visits ( Figue 3.2 shows how the agent visits different locations each time step).

We use the index of the different states to represent locations in the environment

i.e. state 1 corresponds to location 1 (index = 1). We are interested in a model that

can generate these trajectories, because we want to design an agent that can visit

locations sequentially, but can also jump to new locations or visit previous locations.

For example, Figure 3.1 (c) shows a trajectory that visits locations sequentially,

while Figure 3.1(b) shows some sequential trajectories interrupted by discontinuous

visits to other locations.

The emission transitions are similar in nature to the transition probabilities,

with the exception that there is no such a thing as ”self-transition” - probability to

transition to the same state. At each state there is a probability of emitting a symbol
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Figure 3.1: Infinite Hidden Markov Model: State Transitions generative mechanism. (a-
d) Sampled state trajectories of length T - 250 (time along horizontal axis) (a)
α = 0.1, β = 1000, γ = 100, visits many states. (b) α = 0, β = 0.1, γ =
100, retraces multiple trajectory segments. (c) α = 8, β = 2, γ = 2 visits few
states. (d) α = 1, β = 1, γ = 10000, has strict left-to-right transition dynamics
[Beal et al., 2002]

.

from the history of symbols generated by that state. That probability is proportional

to the number of times each symbol was emitted in the past miq [Beal et al., 2002]:

P(ot = q|Yt = i;miq,β
e) =

miq

Σqmiq +β e (3.33)

Similar to the transition probabilities, each state can transition to an oracle with

probability proportional to the parameter β e. This parameter controls the frequency

of each state generating a new symbol [Beal et al., 2002]:

P(oracle|Yt = i;miq,β
e) =

β e

Σqmiq +β e (3.34)

With a probability proportional to the times this state has used the oracle (mo
q),

the state can generate a symbol that has been generated in the past, but not from

this state [Beal et al., 2002]:
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P(ot = q|Yt = i;mo
q,γ

e) =
mo

q

Σqmo
q + γe (3.35)

And with probability proportional to γe, it can generate a completely new

symbol that has not been generated by this or any other state in the past

[Beal et al., 2002]:

P(ot = q|Yt = i;mo
q,γ

e) =
γe

Σqmo
q + γe (3.36)

The parameters β e and γe regulate the frequency of generating new sequences

of symbols [Beal et al., 2002].

This model was later derived by Teh, Jordan, Beal and Blei [Teh et al., 2005]

in terms of Hierarchical Dirichlet Processes (HDP). The HDP is a set of Dirichlet

Processes (DPs) coupled through a shared random base measure (this corresponds

to the base distribution from the definition of DPs). This shared base is itself drawn

from another DP, and thus the term hierarchical [Teh, 2010]. Specifically, the base

distribution of the Dirichlet Process G∼DP(αg,Go) has also a Dirichlet prior such

that: Go ∼ (γg,H). Both these two DPs can be expressed in the following manner:

Goi(φ) =
inf

∑
j=1

β jδφ j(φ) (3.37)

∀ : φ j ∼ H (3.38)

where β ∼ GEM(γ). This form of expressing DPs is known as the stick-

breaking construction for DPs [Van Gael et al., 2008]

Gi(φ) =
inf

∑
j=1

πi, jδφ j(φ) (3.39)

∀ : φ j ∼ H (3.40)

To understand how HDPs are an equivalent characterization of the iHMM, we
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simply need to identify π j,i as the transitions probabilities P(Yt = j|Yt−1 = i) and

δφ j(φ) as the parameters of the emission distributions for ot given state Yt = j.

The motivation for introducing a hierarchical DP is that the draws from that

Dirichlet prior are unique discrete distributions. In order to introduce coupling

across transitions, so we can have common trajectories in the iHMM, a hierarchical

Dirichlet prior is needed. In this way, the second DP draws from from a discrete

distribution, which itself was drawn from the first DP. Draws from a discrete distri-

bution can have the same value, which leads to the desired coupling.

3.3 Generative Model

In this section, we describe our proposed generative model. The design of this gen-

erative model was inspired by the unique properties of the learning algorithms we

studied in the previous section. Both the Contextual Episodic and the Hybrid model

(which is just a combination of the Contextual Episodic and the Rescorla Wagner)

use the information from the environment in a novel way. Here, we describe a gen-

erative model of the environment according to which the learning mechanisms of

these two algorithms are suitable to make good predictions. First, we give an intu-

itive explanation of the goals of this generative model, then we formally describe

the model. In short, the goal of this generative model is to provide a statistical

framework for events that evolve successively, but from time to time jump forward

to a completely new event or backwards to an event that happened in the past. Fur-

thermore, each event is paired with a contextual cue. In such an environment, an

episodic memory would be necessary to store and recall specific events, and a con-

textual based recall and weighting would be necessary to select the events with the

information that is most relevant for the current decision.

We design an environment that could later be used to in an experimental setting

with human subjects. Our environment is a sequence of two-armed bandit task

trials, each paired with a distinct picture. These pictures define the context, and are

used as contextual cues. Each trial consists of two bandits associated with a reward.
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The associated rewards are different on every trial. They vary over time following

a Gaussian drift, and represent the slowly changing state of the world. The pictures

are unique on each trial. However, any trial can repeat itself later in the sequence

of trials. When a trial repeats itself, both a similar picture and similar associated

rewards from that trial recur. The reason why this picture and rewards are only

similar and not exactly the same is because we assume that the world continues

to evolve over time, and thus a repeated trial is never exactly the same. After this

repeated trial, the following trials can be the same trials that followed this repeated

trial in the past, or completely new trials. In our model, pictures and bandits with

their associated rewards are paired. Another important note about our generative

model is that even though pictures and bandits with associated rewards can repeat

themselves during the sequence of trials, these pictures and bandits are never exactly

the same. We assume that pictures and bandit’s rewards are changing every time

step. The state of the world drifts gradually, but the agent’s observations depend on

the location of the agent in the world. The agent is able to jump to different states in

the world each time steps. It can jump to an unexpected new state and to a previous

state. Bornstein’s task only probed memories from the past. Figure 3.2 gives an

intuition of these characteristics.

To our knowledge, there is no existing model that fulfills the characteristics

just described. The main mathematical difficulties for achieving these character-

istics are the generative model must be able to generate contextual cues (unique

pictures per trial) as well as continuous (in time) bandits’ rewards. Furthermore,

both these discrete and continuous states must be able to have, on occasions, dis-

crete discontinuous jumps to previous or new states. In order to better understand

the required processes of this model, we show a cartoon of this generative model in

Figure 3.2. Here, an agent explores different locations in the world, and observes a

distinct picture and obtains a reward at each of these locations.

The environment observed by the agent at time t depends on the state of the

world at time t and the location of the agent in the world. The state of the bandits

are hidden from the observer until an action is taken and a reward is received or
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Figure 3.2: Toy model of the Generative model. It describes the temporal dynamics of the
state of the world and of the agent in the world. Each square is one time step.
At each time step the model of the world changes slightly. The colors at each
location, and correspond to different values of rewards. The agent, A, changes
locations each time step. The location is indicated by the value that the variable
A takes at each time step.

not. Following this analogy, we separate the problem in two: how the world or

environment evolves, and the location of the agent in this world. The state of the

world consists of a set of pictures and bandits with associated rewards. Both the

pictures and the bandits’ rewards have temporal dynamics. The agent has its own

separate dynamics which determine its location index in the world. The location

of the agent determines his or her observations. Furthermore, the dynamics of the

agent in the world create the discontinuous ”jumps” that we described earlier. The

state of the world (pictures and rewards) drift slowly over time, and it is the agent

the one that takes discrete steps in this world. These step can be sequential or the

agent can take a step backwards at the beginning of the state of the world or forward

to a new state. This process is shown in Figure 3.2.

To model this, we initialize the state of the world as a set of pictures and values

of rewards associated with two bandits per trial. The state of the world changes

evolves in time following a Gaussian drift. The location of the agent in the world
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is modeled as a location index Yt . Initially, the agent is located at location index

Yt=1 = 1, which corresponds to the first picture and first set of bandits of the state

of the world. Then, the agent’s dynamics are determined by the state transitions

of an iHMM. As described above, the iHMM is an Hierarchical Dirichlet process,

during which sequential trajectories as well as different type of jumps are possible.

In the Experiments section, we show how we use the iHMM to generate different

dynamics of the agent.

3.3.1 Formal Definition

To define formally our generative model and show that it satisfies the conditions

described above, we define the state of the world (set of pictures and rewards) as

St = [Spt ,Srt ]. Both Spt and Srt are vectors, and they represent the set of pictures

and the set of rewards respectively. The initial state of the world is drawn from:

P(S0) = N (So,Qo) (3.41)

where So = [Spo,Sro] are the initial mean values for the set of Pictures and the

set of Rewards, and Qo = [Qop,Qor ] are the covariance matrices of these sets respec-

tively. The state of the world St drifts over time following an Ornstein Uhlenbeck

process [Finch, 2004]. Without loss of generality, the set of pictures, assigned to all

possible locations the agent could visit, are treated as being Gaussian, and at each

time step, they are corrupted by Gaussian noise, and the values of the associated

rewards also drift following this Gaussian process. At each time step, the state of

the world is drawn from:

P(St |St−1) = N (ASt−1,Q) (3.42)

where, A = (Ap,Ar), the state transition matrices between states, and Q = (Qp,Qr)

the covariance matrices.

The location of the agent in the world is denoted by Yt , a scalar index. This loca-

tion indicates what picture from the pictures vector Spt and what reward from the

rewards vector Srt are observed by the agent. We define the observed picture and
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reward received at time t as Pt , and Rt . This means that the state of the world is

constantly changing, and observations depend on where in this world the agent is

located. Furthermore, because the state of the world is changing over time, even

if the agent were to come back to the same location, the state of the world would

have drifted and the agent wouldn’t observe the exact same picture and reward. The

indices for the location of the agent in the world are generated by the sequence of

hidden variables from an iHMM model. The indexes are equal to the hidden state

sequence of the iHMM. For our model, we do not use the emissions of the iHMM

and use only the sequence of hidden states. Every time step the iHMM generates a

new hidden state. We use the this hidden state as the location index for our agent.

Consequently, we generate the trajectories of Yt , using equations [4.23 to 4.28].

This process allows the agent to follow common trajectories, but from time

to time, also jump to a new state or to a previous state. Once we have generated

the state of the world and the location of the agent in the environment, pictures

and rewards are generated based on this state and location at time t. Pictures are

generated from a probability distribution given by a δ function defined at the entry

from the pictures vector Spt given by the index location of the agent:

P(Pt |St ,Yt) = δ (Pt ,Spt(Yt)) (3.43)

Rewards are drawn from a Gaussian distribution with a mean equal to the entry

from the rewards vector Srt given at location of the agent and co-variance σr :

P(Rt |St ,Yt) = N (Srt(Yt),σr) (3.44)

Using this generative model, we can construct different scenarios with differ-

ent requirements for learning. Our proposal is that this generative model is able to

generate an environment for which the characteristics of the Contextual Episodic

or the Hybrid model are necessary. In particular, we want to understand the char-

acteristics of the environment for which a pure Contextual Episodic strategy, or a

mixed strategy; such as the Hybrid model, are appropriate. For that, we look at
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scenarios where each of these algorithms have the highest performance. We also

report the performance of the Rescorla Wagner model in our analysis to study the

other end of the spectrum of the Hybrid model. In this way, we want to understand

how the changing characteristics of the world should lead suitably adaptive agents

to go from exhibiting model free to episodic based memory strategies, or to choose

a Hybrid strategy - possibly when it is uncertain what the environment requirements

are. A second aim of this chapter is to understand the situations when an episodic

based reinforcement learning algorithm would be required, and therefore the situ-

ations that have so far been under explored by the current reinforcement learning

literature.

Below, we describe different scenarios that exemplify different potential en-

vironments. To generate these different scenarios, we vary the parameters that de-

scribe the dynamics of the agent in this world. The location of the agent and how

it explores the world determine the observations of the world it obtains and thus

the learning strategy this agent adopts. We assume all agents are at least attempting

to maximize rewards. We describe the process of choice and reward maximization

in the results section where we explore the performance of agents using different

strategies to collect rewards in these different scenarios. Here, we focus on explain-

ing the different scenarios. First, we show the initialization values of the generative

model. Afterwards, we describe each scenario individually. The task consists of

300 trials, but Spo is initialized to 377 unique unit length pictures (to account for

the possibility of further locations - since in theory the environment can have in-

finite locations), and Sro = (Sro1,Sro2) are initialized such that they are different

from each other and at each spatial location as described in Figure 3.2. To achieve

this, we draw the initial rewards at each location (here we label each location i) in

the following way:

Sro1(i) = sin(
i

60
+10) (3.45)

Sro2(i) = cos(
i

60
−5) (3.46)
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By drawing the rewards in this manner, we achieve not only that each location has

a different reward, but that the reward at locations far apart will be distinguishable.

Thus, if the agent jumps to a further location, the agent will receive a significantly

higher or lower reward. Figure 3.16 and Figure 3.4 shows how rewards vary in

different locations, and how nearby locations are similar and locations far apart are

more different. This design was made to make results clearer, when agents jump or

are reminded of non-sequential trials. It is important to remember that this are the

initial values of the rewards at each location, and that as the state of the world drifts,

so do these rewards.

Figure 3.3: Initial values (time t = 0) of rewards given at all different locations in the envi-
ronment for taking action 1.
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Figure 3.4: Initial values (time t = 0) of rewards given at all different locations in the envi-
ronment for taking action 2.
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3.3.1.1 Scenario 1

In the first scenario, the agent does not change locations. It only observes how the

rewards and picture in that location change over time. This scenario is different

from the other scenarios because the dynamics of the agent are held constant. The

reason for this modification is that we wanted to create a scenario that resembles

the generative model of a Rescorla-Wagner algorithm. In this scenario, both the

rewards and the picture at the agent’s location change on each trial as a Gaussian

random walk or corrupted by Gaussian noise respectively. Therefore, the agent

observes a slowly changing world with no contextual cues - the picture is the same,

just corrupted by noise each time step.

Agent’s Dynamics
Yt=1 ∀t

Table 3.1: Description of the parameters governing the agent’s dynamics for all time steps
i.e how the agent explores different locations in the environment at each time
step. In this situation, the agent remains in one location.
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Figure 3.5: Agent’s Location in the environment for all time steps. Y axis shows the index
of location in the environment, and x axis shows the time step.
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Figure 3.6: Bandits’ rewards received by the agent at each time step as it explores different
locations in the environment
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3.3.1.2 Scenario 2

In this and the subsequent scenarios, we introduce more new or repeated episodes,

where we expect an episodic based RL to perform better. In this scenario, the dy-

namics of the agent are fairly constant. The agent remains most of its time observing

one picture (which is slowly changing), and gradually changing rewards. However,

from time to time, the agent jumps to a state further along the trajectory in the state

of the world and observes a new picture and new associated rewards. After those

jumps, the agent always comes back to its original position and continues to observe

a slowly changing world with just one picture. To avoid confusion with the param-

eters from the learning model, we label the hyper-parameters from the generative

model with the subscript g.

Agent’s Dynamics
αg 10
βg 0.1
γg 0.01

Table 3.2: Description of the parameters governing the agent’s dynamics for all time steps
i.e how the agent explores different locations in the environment at each time
step.
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Figure 3.7: Agent’s Location in the environment for all time steps. Y axis shows the index
of location in the environment, and x axis shows the time step.
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Figure 3.8: Bandits’ rewards received by the agent at each time step as it explores different
locations in the environment
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3.3.1.3 Scenario 3

This scenario consists of the agent exploring the world sequentially. For most of

its trajectory, the agent transitions from index i to index i+1. As with the previous

scenario, from time to time, the agent jumps to a new state and then it comes back

to the same sequential trajectory. These dynamic are seen on the figure below.

Agent’s Dynamics
αg 0.001
βg 1000
γg 500

Table 3.3: Description of the parameters governing the agent’s dynamics for all time steps
i.e how the agent explores different locations in the environment at each time
step.

Figure 3.9: Agent’s Location in the environment for all time steps. Y axis shows the index
of location in the environment, and x axis shows the time step.
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Figure 3.10: Bandits’ rewards received by the agent at each time step as it explores different
locations in the environment
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3.3.1.4 Scenario 4

In this scenario, the agent continues to explore the world sequentially, but it jumps

to new and previous states more frequently. In this scenario, the agent will not

observe a gradually changing world. We expect that the agent will more heavily

rely on its episodic memory to maximize reward.

Agent’s Dynamics
αg 0.8
βg 100
γg 10000

Table 3.4: Description of the parameters governing the agent’s dynamics for all time steps
i.e how the agent explores different locations in the environment at each time
step.

Figure 3.11: Agent’s Location in the environment for all time steps. Y axis shows the index
of location in the environment, and x axis shows the time step.
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Figure 3.12: Bandits’ rewards received by the agent at each time step as it explores different
locations in the environment
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3.4 Contextual Episodic Model as Inference Approx-

imation
Exact Bayesian inference is a computational framework that defines the optimal

performance of agents that learn the structure of the world in order to make deci-

sions or guide actions [Geisler and Diehl, 2003]. We use Bayesian inference as an

ideal to which we believe rational agents aspire to. However, capacity constraints,

computational costs, and specific task requirements often make optimal inference

not achievable. Additionally, agents might have different prior assumptions of the

world that make their optimal inference look sub-optimal to outside observers. Ex-

act Bayesian inference might not only be difficult for real world agents to compute,

but it is also often times intractable for machine learning algorithms. The reason

for this is that many real world problems or data sets require computing intractable

integrals in order to estimate the posterior distribution. For these reasons, our goal

is to compute exact inference, but when this is not possible, we choose an approxi-

mation.

It is the case for our generative model that exact inference is intractable. The

reason for this is that it requires computing intractable sums and integrals over all

possible states of the agent and all possible states of the world respectively. These

integrals and sum grow in size at each time step. Furthermore, solving this equation

would require discretizing the continuous variables, which would increase compu-

tational complexity even further. It can also be seen that the non-stationarity of

the world, as well as the inter-dependency between variables, make inference even

more complicated. Finally, inference in iHMMs involves intractable sums over

possibly infinite latent state trajectories, which can grow in size each time step.

MCMC methods, which are a class of sampling algorithms, can be used to com-

pute intractable posterior integrals. These algorithms have a theoretical guarantee

of convergence to the true posterior. However, they suffer from the curse of dimen-

sionality, which in the case of our generative model (due to its increasing complexity

at each time step), makes convergence to the true posterior - in a finite amount of

time - not feasible. For this reason, in this chapter, we propose an approximate
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inference algorithm to this exact posterior.

When exact inference is not possible, we can compute an approximation to

the exact posterior. One common alternative for approximate inference are vari-

ational approximations [Ormerod and Wand, 2010]. These methods are fast and

deterministic alternatives to exact inference or sampling methods such as MCMC.

They approximate the posterior with a more tractable function. Depending on the

nature of the approximation, these methods vary in accuracy [Jordán et al., 1999]

[Fox and Roberts, 2012], [Blei et al., 2017]. In our situation, one obvious varia-

tional approximation would be that the posterior be computed as two separate pro-

cesses:

P(Yt ,St |Pt ,Rt) = Q1(Yt |Pt ,Rt)Q2(St |Pt ,Rt) (3.47)

This approximation would be highly inaccurate. The problem is that the con-

tinuous process (state of the world) provides the vector, and the discrete process

(agent dynamics) provides the index that specifies which entry from the state of the

world vector is selected at each time step. The index selects what information from

the state of the world vectors is used to generate the picture and the reward. At every

time step, it is important to know the values of both variables. Both processes are

interdependent and coupled. Furthermore, the output of each process depends on its

previous time steps, and the previous time steps of the other process. For these rea-

sons, any approximate inference method that separates the continuous and discrete

variables would be inaccurate. Since one of the problems with exact inference is

that it is difficult to make estimates that mix the continuous and discrete processes,

any approximate algorithm would need to separate these processes. In this way, any

of these approximations would suffer from the same problems of the approximation

just described.

To address this issue, we propose that our Contextual Episodic algorithm is

an adequate approximate inference algorithm for this generative model. This al-

gorithm is based on a model of human episodic memory, which is embedded in a

Reinforcement Learning framework. First of all, we propose that it is reasonable
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to construct an approximate inference algorithm based on previous brain-inspired

algorithms. The reason for this is that the human brain has found ways to solve in-

tractable computations in real time, and it is only natural to draw inspiration from it.

Second, our generative model was constructed to satisfy the requirements postulated

as necessary for an episodic-based and reward based decision making algorithm to

be necessary. For this reason, it has some embedded characteristics that help it learn

and make inferences from this generative model.

Now, we elaborate on the reasons why we propose our Contextual Episodic

algorithm as a good approximate inference for our generative model. To do that,

first, we need to understand the goal of the agent, and how this agent can use avail-

able information to achieve this goal. The goal of the agent is to understand the

latent dynamics that give rise to the pictures and rewards it observes/ receives -

respectively, and use this information to make predictions about future rewards.

Specifically, the agent needs to infer the dynamics governing its own location in

the world, the dynamics of the state of the world, and how these two dynamics in-

fluence the rewards he or she receives. In our generative model, both the location

of the agent in the world and the state of the world itself have their own dynamics.

The agent makes the assumption that both the pictures and the rewards are unique to

each location each time step. Thus, knowing the location of the agent in the world

gives information regarding its associated picture and rewards. Consequently, if the

agent observes a picture, and it is able to properly infer its location, it can use its

episodic memory to retrieve the associated rewards with that location. Therefore, in

our generative model of the world, the inference problem faced by the agent can be

narrowed down to inferring the location of the world given the pictures observed.

The one caveat to this is that the agent must also take into account that the state of

the world is changing. So, the agent can perfectly infer its location from the picture

it observes. Both pictures and rewards are gradually drifting over time. Thus, the

observations at the current time step are always slightly different from past obser-

vations at the same locations.

The Contextual Episodic algorithm can be used to solve this inference and
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prediction problem. A contextual episodic learning agent, learns a temporal context

variable based on pictures observed at each location. The agent uses this context

variable to estimate its location in the world, and make predictions about rewards

accordingly. The agent uses this context variable to search for similar contexts in

the past. The Contextual Episodic agent has a degree of uncertainty regarding which

trial is the best to recall and use, due to changing nature of the state of the world.

For this reason, it recalls and weights different episodes rather than just one episode.

Due to the continuity of the world, the agent expects to weight heavily the most

recent episodes. However, it also knows that from time to time it can be in a different

location with no resemblance to the recent past. To reconcile these two assumptions,

the agent weights all retrieved episodes based on their contextual similarity. In this

way, recent episodes are still weighted heavily due to the low pass filter nature of the

context variable - the current context is similar to its recent past, but also episodes

that occurred far in the past but are relevant in the present (similar in context) are

also included. The agent also retrieves and weights all rewards associated with

these relevant episodes. It makes a prediction about the reward at a new location

by integrating all relevant previous rewards, and weighting them by the contextual

similarity of their associated episodes. In short, a contextual episodic learning agent

uses observed pictures to infer its location, which is hidden to the agent, in the form

of a context variable. Then, it uses stored episodic memories (stored rewards with

associated context) to make predictions of future rewards.

In order to see how the Contextual Episodic model operates, we designed a

simple task with one memory probe, and used it to show the effect of that probe

on the weighting function and the Q values’ estimates. We compared the weighting

function and the Q values’ estimates with the standard Rescorla Wagner model. Our

goal is to show how the Contextual Episodic model uses information from the cue

to weight previous episodes accordingly, and how this has different effects on the Q

values compared to the Rescorla Wagner’s estimates. The task consisted of 20 trials

and one memory probe of trial 3 at trial 17. Rewards were between 0 and 1 and

they were drawn from a normal distribution with mean equal to 0.3 (Keeping only
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positive numbers, and re-sampling if the number drawn was negative). In order to

make the visualization of the probe more evident, we changed the rewards given at

trial 3, 4, 17 and 18 in the following way: at trial 3 and 17 the rewards given for

action 2 were equal to 0.05 (far lower than the average reward for all other trials),

and the reward given for action 1 at trial 4 and 18 were equal to 0.95 and 0.65

respectively (far greater than the average for all other trials). Our goal with this task

was to see clearly the effect of remembering trial 3 at trial 17, and to test whether

trial 4 also had an effect on trial 18. We designed the task such that it would be

useful for an agent to remember this information, and made the rewards at trials 17

and 18 the same as the rewards at trial 3 and 4. The rewards for all trials can be seen

in Figure 3.13 and Figure 3.14.

Figure 3.13: Simple Task. Rewards for Action 1 for all trials
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Figure 3.14: Simple Task. Rewards for Action 2 for all trials
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Now, we show the effects of the memory probe at trials 17 and 18 on the

weighting of previous episodes by the Contextual Episodic model and the Rescorla

Wagner model. We chose these two trials, because we expect to see the effects of

the memory probe at these trials. The memory probe of trial 3 was presented at

trial 17. Thus, if the learning agent was using the probe as information, this effect

would be seen in the weighting function at this trial. Furthermore, if the learning

agent was using a temporal model, then the effect of this probe would also be seen

in the following trial. We show the weighting functions for action 2 (at trial 17)

and action 1 (at trial 18), because the learning agent selected these actions at trials

3 and 4. Consequently, the information of these trials will only be present in the

weighting functions of these actions at trial 17 and 18 respectively. We only update

the weight for observed trials.

In Figure 3.15, we show the difference in weighting of the probed event (trial

3) and most recent trial (trial 16) at trial 17 (action 2), and of the event following

the probe (trial 4) and the most recent event (trial 17) at trial 18 (action 1) between

the Contextual Episodic and RW models. It can be seen that the Rescorla Wagner

puts most of the weight on the most recent trial. This effect corresponds with the

fact that the RW is a recency based model and does not incorporate the information

from memory probes. On the other hand, the Contextual Episodic model takes into

account the information from the memory probe and weights this trial the most. It

can also be seen that this model uses temporal information, and at trial 18, it puts

some weight trial 4.

In the following figure, we show how these differences in weighting functions

impact the predictions made by each model. More specifically, we show the dif-

ferences in Q values computed by each model at trial 17 and 18. We show that

the Rescorla Wagner’s predictions are less accurate than those of the Contextual

Episodic model. Because it doesnt use the information from the probes, at trial 17 it

overvalues action 2 and at trial 18 it undervalues action 1. It is important to note that

the Contextual Episodic predicts values closer to the actual rewards; however, there

is still some difference between the Q value and the actual reward due to the influ-
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Figure 3.15: Comparison of the weight assigned by the Rescorla Wagner and Contextual
Episodic models to the most recent trial, the probed trial and the trial following
the probed trial at the trial when the probed was shown (trial 17) and at the
following trial (trial 18)

ence of previous trials in the computation of the Q value. Even if the Contextual

Episodic model weights the probed trial the most, it still considers the information

from the most recent experiences. In our situation, this extra consideration dimin-

ishes the accuracy of the prediction.

In conclusion, this figure shows how the Contextual Episodic model uses the

information of the probe to make predictions, and how this information is used

based on contextual similarity (obtained through the weighting functions shown

above). In an environment where context gives information about rewards, the

Contextual Episodic model is a more suitable model for inference and prediction

than the Rescorla Wagner model. The difference in predictions made by these two

models can make a big difference in rewards obtained by an agent; particularly,

when repeated trials have unusual rewards. For humans, this is analogous to our
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Figure 3.16: Q values predictions at the trial when the probe was shown (trial 17) and at the
following trial (18) by the Rescorla Wagner and Contextual Episodic models.
Next to these values, we show, for comparison, the value of the actual re-
ward received at these trials (called Actual in the label). Neither predictions
is perfect due to the effect of other trials in the computation, but the Contex-
tual Episodic model computes a better estimate of the actual reward than the
Rescorla Wagner model.

memories of unusual events, which help us avoid traps or seek opportunities.

This example shows the Contextual Episodic model at work, how it differen-

tiates from the Rescorla Wagner model, and how its weighting strategy allows it to

make more accurate predictions. In the next section, we design experiments where

we show the scenarios where the weighting functions of the different models (Con-

textual Episodic and Rescorla Wagner) are useful. We also show when the Hybrid

strategy turns out to be the best strategy.
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3.5 Experimental Results

Here we test the performance of the Contextual Episodic, the Hybrid and the

Rescorla-Wagner models in the four scenarios described previously. Our goal is

to understand which of these models would perform the best in different situations,

and with this understand when and why a learning agent would use each of these

strategies. Particularly, we are interested in discovering the conditions of the world

for which the Hybrid model would have the highest performance. In the previous

chapter, we saw that the Hybrid model was the algorithm that fit human data the

best. For that reason, we can say that from all algorithms that we have discussed

so far, the Hybrid algorithm resembles best the assumptions that humans make to

guide their decisions. By understanding the characteristics of the environment for

which the Hybrid model is the most adequate algorithm, we can gain some insights

into the assumptions of the world that humans have.

In order to achieve these goals, we trained our algorithms to maximize cumula-

tive reward using the pictures generated by our generative model as contextual cues,

and the rewards as the outcomes from two bandits. Because the generative model is

stochastic for each given set of parameters, we use Bayesian optimization to com-

pute the best fit parameters. The learning agent chooses one bandit and receives a

reward. Over time, this agent will learn the value of each action and make choices

accordingly. How the agent learns these values is the topic of our analysis. The

three models we have described are the strategies that we test in this section. The

equations for computing these values using each of this algorithms were described

in the previous chapter. For reference, see Chapter 3 equation 3.9 for the Rescorla

Wagner model, equation 3.30 for the Contextual Episodic model and equation 3.32

for the Hybrid model. For each scenario, we trained each algorithm over 100 tasks

(each tasks consisted of 300 trials or time steps), and optimized the parameters us-

ing Bayesian optimization. Below we show the optimized parameters as well as the

accumulated rewards by each algorithm on each scenario.
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3.5.1 Scenario 1

The dynamics of the agent in this scenario are described by Figure 3.5. The opti-

mized parameters for this scenario are the following:

Model Parameters

Rescorla Wagner
α = 0.26(0.12)
β = 6.2(1.01)

Hybrid

α = 0.33(0.08)
β = 5.7(1.2)
γ = 0.29(0.02)
w = 0.67(0.25)

Contextual Episodic
γ = 0.37(0.18)
β = 7.8(1.58)

Table 3.5: Learned parameters for data from Scenario 1 using the Rescorla Wagner, Hybrid
and Contextual Episodic Models

Using these parameters, the Rescorla-Wagner algorithm had the highest per-

formance. It was able to accumulate the highest reward, because it keeps a running

average of received rewards weighted by recency, and uses this average to make pre-

dictions about the next reward. In an environment in which rewards are changing

slowly, this strategy is optimal. The Hybrid model is the second best algorithm, and

the parameter w that maximizes the performance of this algorithm in this scenario

is close to 1. The closer the w is to 1, the higher the contribution of the Rescorla-

Wagner algorithm. For this scenario, this value of w makes sense, since the agent is

trying to maximize performance.
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Figure 3.17: Total rewards collected by the Rescorla Wagner, Hybrid and Contextual
Episodic models using data from Scenario 1. Each bar shows the mean value
of total rewards collected over 100 tasks (each tasks consisted of 300 trials
or time steps). The red line (Chance = 88.2) shows the total reward that col-
lected by an agent that selects between actions with equal probability. The
green line (Max = 126.5) shows the maximum total reward collected by an
agent that knows the action that gives the highest reward at each time step.
There was a statistically significant difference between the total rewards col-
lected by each model over the 100 tasks as determined by one-way ANOVA
(F(4,495) = 27, p <0.001). A Tukey post hoc test revealed that the difference
between the total rewards collected between the Rescorla Wagner model (118
+/- 4, p <0.001), the Hybrid model (99 +/- 2, p <0.001) and the Contextual
Episodic model (98 +/- 5, p <0.001) were statistically significant.
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3.5.2 Scenario 2

The dynamics of the agent in this scenario are described by Figure 3.7.The opti-

mized parameters for this scenario are the following:

Model Parameters

Rescorla Wagner
α = 0.48(0.28)
β = 6.55(0.34)

Hybrid

α = 0.41(0.05)
β = 4.02(1.75)
γ = 0.57(0.86)
w = 0.68(0.16)

Contextual Episodic
γ = 0.69(0.75)
β = 5.1(0.92)

Table 3.6: Learned parameters for data from Scenario 2 using the Rescorla Wagner, Hybrid
and Contextual Episodic Models

In this scenario, both the Rescorla-Wagner and the Hybrid model performed

better than the Contextual Episodic model. The Hybrid model performed slightly

better than the Rescolar-Wagner model. The parameter w that weights the con-

tribution of each model in the Hybrid model was fit to w = 0.68, which shows a

major contribution from the Rescolar-Wagner model with some contribution from

the Contextual Episodic model. This result makes sense in the case of Scenario 2,

where the agent makes few discrete jumps, but it mainly remains in its original po-

sition. In this position, the agent observes how the world changes gradually, while

when the agent makes discrete jumps, it observes different discrete states of the

world. At the beginning of the trial, these jumps are completely unfamiliar to the

learning agent, but as more discrete jumps happen, the agent can integrate informa-

tion from previous jumps to make better informed decisions. For these later jumps,

the contribution of episodes become more useful. As we will see in the follow-

ing scenarios, as jumps become more frequent, the performance of the Contextual

Episodic model increases.
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Figure 3.18: Total rewards collected by the Rescorla Wagner, Hybrid and Contextual
Episodic models using data from Scenario 2. Each bar shows the mean value
of total rewards collected over 100 tasks (each tasks consisted of 300 trials or
time steps). The red line (Chance = 131.2) shows the total reward that col-
lected by an agent that selects between actions with equal probability. The
green line (Max = 168.5) shows the maximum total reward collected by an
agent that knows the action that gives the highest reward at each time step.
There was a statistically significant difference between the total rewards col-
lected by each model over the 100 tasks as determined by one-way ANOVA
(F(4,495) = 35, p <0.001). A Tukey post hoc test revealed that the difference
between the total rewards collected between the Rescorla Wagner model (159
+/- 4, p <0.001), the Hybrid model (162 +/- 4.2, p <0.001) and the Contextual
Episodic model (151 +/- 3.8, p <0.001) were statistically significant.
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3.5.3 Scenario 3

The dynamics of the agent in this scenario are described by Figure 3.9.The opti-

mized parameters for this scenario are the following:

Model Parameters

Rescorla Wagner
α = 0.41(0.15)
β = 8.02(0.66)

Hybrid

α = 0.41(0.32)
β = 9.2(1.07)
γ = 0.63(0.21)
w = 0.45(0.18)

Contextual Episodic
γ = 0.71(0.65)
β = 8.2(0.93)

Table 3.7: Learned parameters for data from Scenario 3 using the Rescorla Wagner, Hybrid
and Contextual Episodic Models

In this scenario, the Hybrid model performed best. The parameter w was fit

to w = 0.45. This result shows that both models had a significant contribution to

the performance of the Hybrid model. In this scenario, the agent moves in the

environment continuously with the exception of some discrete jumps. The number

of jumps are higher in this scenario than in the previous scenarios, which explain

the higher contribution of the Contextual Episodic model. However, the Rescorla

Wagner model is also able to perform well, because there is some gradual continuity

in the way the agent explores the world, and therefore in the values of the rewards

received.
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Figure 3.19: Total rewards collected by the Rescorla Wagner, Hybrid and Contextual
Episodic models using data from Scenario 3. Each bar shows the mean value
of total rewards collected over 100 tasks (each tasks consisted of 300 trials or
time steps). The red line (Chance =123.48) shows the total reward that col-
lected by an agent that selects between actions with equal probability. The
green line (Max = 159.25) shows the maximum total reward collected by an
agent that knows the action that gives the highest reward at each time step.
There was a statistically significant difference between the total rewards col-
lected by each model over the 100 tasks as determined by one-way ANOVA
(F(4,495) = 29, p <0.001). A Tukey post hoc test revealed that the difference
between the total rewards collected between the Rescorla Wagner model (141
+/- 3.2, p <0.001), the Hybrid model (152 +/- 4.9, p <0.001) and the Contex-
tual Episodic model (136 +/- 4, p <0.001) were statistically significant.
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3.5.4 Scenario 4

The dynamics of the agent in this scenario are described by Figure 3.11.The opti-

mized parameters for this scenario are the following:

Model Parameters

Rescorla Wagner
α = 0.71(0.56)
β = 7.56(0.83)

Hybrid

α = 0.49(0.39)
β = 7.8(1.02)
γ = 0.81(0.12)
w = 0.15(0.17)

Contextual Episodic
γ = 0.67(0.52)
β = 8.8(1.12)

Table 3.8: Learned parameters for data from Scenario 4 using the Rescorla Wagner, Hybrid
and Contextual Episodic Models

In this final scenario, the Contextual Episodic performs best. This scenario

shows that when events are discontinuous, and recent events do not hold the most

relevant information, the learning agent can turn to its episodic memory to make

accurate decisions. Episodes are recalled based on contextual similarity, and are

weighted accordingly at the time of decision. This flexibility allows the Contextual

Episodic model to perform best in scenarios, where recent events provide with little

information. This is the case for scenario 4, where there are a lot of discontinuous

jumps. One important thing to note is that this discontinuous jumps, as seen in

Figure 3.11, often have similarities to previous jumps earlier in the trial.

The goal of this chapter was to introduce a generative model for an episodic-

based Reinforcement Learning algorithm. In particular, for the Contextual Episodic

and the Hybrid models, and to show the characteristics of the world for which ei-

ther model would be the most suitable. We have shown that this generative model

can produce a spectrum of scenarios, where a purely Rescorla Wagner model or a

Contextual Episodic model are the best choices. But more importantly, we showed

that the generative model can generate scenarios, where a mixed strategy, like the

Hybrid model, is necessary. It was our goal to show a model of the world for the

Hybrid strategy, which was the one that fit human data the best in the previous chap-
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Figure 3.20: Total rewards collected by the Rescorla Wagner, Hybrid and Contextual
Episodic models using data from Scenario 2. Each bar shows the mean value
of total rewards collected over 100 tasks (each tasks consisted of 300 trials or
time steps). The red line (Chance = 119.5) shows the total reward that col-
lected by an agent that selects between actions with equal probability. The
green line (Max = 184.4) shows the maximum total reward collected by an
agent that knows the action that gives the highest reward at each time step.
There was a statistically significant difference between the total rewards col-
lected by each model over the 100 tasks as determined by one-way ANOVA
(F(4,495) = 31, p <0.001). A Tukey post hoc test revealed that the difference
between the total rewards collected between the Rescorla Wagner model (146
+/- 2.7, p <0.001), the Hybrid model (157 +/- 3, p <0.001) and the Contextual
Episodic model (184.43 +/- 4.8 , p <0.001) were statistically significant.

ter. In this way, we wanted to understand the constraints and assumptions about the

world made by humans when making decisions.

It is important to note that, presumably with more data, the Hybrid model

would have been able to fit the data in all scenarios at least as well as the Contextual

Episodic (in Scenario 1), and the Rescorla Wagner model (in Scenario 2), by setting

the value of w to 0 and 1 respectively. This implies that the Hybrid model would

have been able to learn that the Hybrid strategy is not optimal, and put all weight in



3.6. Conclusions 138

one strategy.

We have also shown that our algorithms can perform adequate approximate

inference in our generative model. It would be an interesting question for future

work to understand how closely our algorithms approximate exact inference.

3.6 Conclusions

Generative models define statistical hypotheses regarding the generation of a partic-

ular data set. They define the probability distribution of observing data given some

underlying, latent (hidden) causes. The counterparts to these models are their statis-

tical inverses known as recognition models, which are used to infer the probability

distribution over these underlying latent causes, for which they are also known as

inference models. In this chapter, we propose a generative model for which the

Contextual Episodic or Hybrid models (described and justified in chapter 3, partly

via their link to the TCM [Howard and Kahana, 2002] and kernel based similarity,

which [Jäkel et al., 2009] [Shahbazi et al., 2016]) are reasonable approximate infer-

ence algorithms, or recognition models.

The generative model proposed captures relevant characteristics for which an

episodic memory would be necessary and therefore provides a formal test ground to

explore the advantages of endowing RL algorithms with a memory of this sort. The

main characteristics of this generative model parallel characteristics of the real en-

vironment that are often ignored in laboratory experimental settings. For example,

with this generative model, random new events can happen unexpectedly, and cir-

cumstance similar to those from past events may reoccur. These two characteristics

are quite common in day to day life, but have not been extensively tested in labora-

tory scenarios for decision-making, or substantially implemented in computational

models.

Bayes-optimal inference in this generative model is intractable. As a conse-

quence, this might not be the most efficient goal for adequate probabilistic reasoning

[Dasgupta et al., 2017], [Gershman et al., 2015], [Lieder and Griffiths, 2019]. In-

stead, when considering the costs of computations and complexity of the real world,
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humans might use a variety of approximations or heuristics. Unfortunately, various

conventional methods that converge or approximate the exact posterior appear to

be unfeasible. In particular, MCMC methods, often a gold standard for accuracy,

would be very computationally expensive and likely struggle to sample new states in

the agent’s trajectory. We justified the Contextual Episodic algorithm as a suitable

approximate inference algorithm by showing how a learner that uses this algorithm

can learn to infer the state of the world and make good predictions about future

reward.

We then explored different parameter settings within this generative model to

examine when a learner could usefully employ an episodic memory based strategy.

For simplicity, we focused on the case of immediate rewards without considering

the additional complexities that arise with prospective planning. We studied the

transition between a purely model-free strategy using the Rescorla Wagner algo-

rithm and a Contextual Episodic strategy, with the Hybrid model used a mixed

strategy for problems where the agent has not gathered enough information or it is

not clear whether to use purely cached values or episodes. Particularly, we were

interested in understanding the circumstances under which a model that includes an

episodic memory and has higher complexity, such as the Contextual Episodic or the

Hybrid models, would be required for better performance–measured in accumulated

rewards by the learning agent. In order to make better predictions, the inference

model used by the learning agents needs to fit the characteristics of the generative

model. This inferential complexity was rewarded when the environment is equally

complex, as shown by the different scenarios where an agent would choose either

of the strategies described. This work sets the stage for future studies to address

meta-learning considerations that arise in this framework, such as learning parame-

ter w, or learning when and how to select the strategies discussed in this chapter. In

our experiments, we kept parameter w fixed, but it is likely that in a closer approx-

imation of human behaviour, such a parameter would be dynamic and adapt as the

agent collects more information.

One of the benefits of having a generative model is that it suggests new experi-
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mental directions, which can offer a more stringent examination of the mechanisms

of storage and recall of episodes during decision-making. In particular, Bornstein’s

experiment 2 used contextual cues that did not represent any meaningful informa-

tion about the structure of the world. The memory probes in this experiment were

not correlated with the underlying structure of reward generation; nevertheless, it

was hypothesized that the learner would use this picture, retrieve the information

from that previous trial and use it to make a choice. It was shown that subjects

who were not aware of the relevance of this memory probe treated this memory

probe as a cue and retrieved the cued information to make a choice. This result

suggests that humans believe that events that happen in similar context are similar

themselves, thus previous information from a similar context can be used to make

decisions when that context reoccurs. We would go further and suggest that human

episodic memory is indeed optimized for situations in which contextual cues indi-

cate the repetition of a past event. In our generative model, contextual cues provide

useful information about the environment, and memory probes are paired with their

associated rewards from that state of the world.

We suggest that in order to test the predictions from this chapter, it would be

desirable to generate data from the scenarios described and use it to test behaviour

of human subjects. An experiment can be designed where individual pictures are

generated, and human subjects have to make a choice between two bandits with

two different rewards. Specifically, we could test whether humans use the Rescorla-

Wagner model when data is generated by scenarios 1, the Contextual Episodic when

data is generated by scenario 4, and the Hybrid model when data is generated by

scenario 3. To test this, we could collect data from human participants and per-

form model selection using these data to uncover the model that was used by the

participants.

Collins and Frank influential work on the integration of working memory and

reinforcement learning [Collins and Frank, 2012] speak directly to the frameworks

proposed in Chapters 1 and 2. Collins and Frank showed that these systems can

interact or compete for resources, and that humans use a mixture of these strategies,
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which appear to interfere with each other during learning and decision-making.

They showed that a hybrid model between a Rescorla-Wagner algorithm and a

capacity-limited working memory-based reinforcement learning algorithm fit their

experimental human data the best. It is possible that most learning algorithms might

need to include this component if they are to provide accurate models of the brain

and behaviour. It is definitely still an open question for future work to understand

how a working memory component could be included in our proposed algorithms.

One of the critical aspects that Collins and Frank stress is the constraint that

arises from the limited capacity of working memory. We believe that understand-

ing the physical implementation and limits of working memory is fundamental to

properly developing algorithms and understanding cognitive computation. In our

models, both Contextual Episodic and Hybrid, rely on working memory capacity.

The number of episodes that can be retrieved by the Contextual Episodic model is

constrained by working memory capacity. How well the Hybrid model can combine

different sources of information is also constrained by working memory capacity. In

general, most cognitive computations rely on working memory and are constrained

by its capacity. Thus, understanding the neural substrates and limitations of working

memory would be key to understanding human cognition, and developing accurate

algorithms. In the following chapter, we explore the neural mechanisms of working

memory. We focus on one alternative theory for the neural substrate of working

memory that has the potential to expand our current understanding of its capacity.



Chapter 4

Redefining the Neural Substrates of

Working Memory: A Mechanistic

Approach

4.1 Motivation

Working memory is a theoretical construct used in various disciplines includ-

ing cognitive psychology, neuroscience and computational neuroscience. Al-

though there has yet to be a generally agreed definition, the term working mem-

ory usually refers to the core executive function that is responsible for the tran-

sient holding, processing, and manipulation of information [Baddley et al., 2003],

[Baddeley, 2012]. This definition was first used by cognitive psychologist George

A. Miller [Miller, 1956],[Cowan et al., 2004]. Based on lesion and imaging stud-

ies, working memory is associated with the dorsolateral prefrontal cortex, pos-

terior parietal cortex, and hippocampus [Metcalfe et al., 2013]. However, tran-

sient holding of information has been observed in many other areas, includ-

ing the motor cortex [Fuster and Alexander, 1971], [Alexander and Fuster, 1973],

[D’Esposito et al., 2000], [D’Esposito, 2007]. It is a substantial open chal-

lenge to understand how recurrent neural circuits can act as a memory buffers,

despite fast forgetting by individual neurons. Previous work has primarily

focused on understanding memory lifetimes of recurrent circuits with fixed
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synapses with no intrinsic dynamics of their own. However, synapses are

rich dynamical systems in their own right, and recent experimental findings

[Stokes, 2015], [Lundqvist et al., 2016], along with previous theoretical proposals

[Mongillo et al., 2008], [Buonomano and Maass, 2009] implicate these character-

istics as supporting short-term memory.

In this thesis, we propose to address this controversy using theoretical analysis,

and to test whether including synapses as part of the neural substrate of working

memory could have a positive impact on memory capacity. Specifically, we propose

that working memory is maintained in both the persistent activity of neurons and the

dynamics of synapses. As a stimulus is presented, neural activity causes changes in

the networks’ synapses. During a delay period, information is maintained for the

duration of time that the network is capable of maintaining that sustained activity

plus the duration of time that the changes in the synapses last. For these reasons, we

hypothesize that neuronal activity and dynamical synapses are jointly responsible

for holding information in working memory. The advantage of this combination

is that each component has different decay time constants, and consequently can

increase working memory capacity.

Recently, an information-theoretic upper bound for the memory lifetime of

short term memory was derived for linear recurrent networks with static synapses.

Specifically, it was shown that any such linear network can, at most, achieve a mem-

ory life time proportional to the number of neurons in the network. Furthermore,

it was shown that only a delay line, or any network that is equivalent to a delay

line up to a unitary transformation, can saturate this bound [Ganguli et al., 2008].

Here, we extend this information-theoretic analysis to the case in which the neural

substrate of working memory includes neurons and dynamical synapses. We aim

to understand the role of dynamic synapses with short-term plasticity on memory

performance. By linearizing a non-linear network, we study how short term plastic-

ity modifies the effective connectivity matrix of the network to change the memory

performance. We test this framework using different architectures, focusing on net-

works with very poor memory performance.
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In the following sections, we review relevant literature from previous models

of working memory, and techniques from non-linear dynamical systems and infor-

mation theory. We then show that dynamical synapses indeed modify the internal

structure of these networks and improve their memory performance by using the

techniques described earlier.

4.2 Models of Working Memory

Working memory is essential for complex cognition, learning and guided behaviour

[Miyake and Shah, 1999]. The controversy with respect to its definition lies in

the fact that it is often confused with short term memory - the ability to hold

information for short periods of time. The subtle difference between these two

concepts is that working memory involves information that has been held for a

short period of time and is actively been attended to or used to guide actions

([Baddeley and Hitch, 1974] [Baddeley, 2012], [Daneman and Carpenter, 1980].

Nevertheless, the terms short term memory and working memory are often used

interchangeably in the literature, because of the conceptual overlap between them.

Furthermore, there is still an open debate on whether these two concepts should

exist as separate processes or whether short term memory should be considered

a component of working memory [Aben et al., 2012]. In this section, we do not

elaborate in the controversy between these two definitions. Instead, we focus on

explaining how the most influential models of working memory have characterized

this system. We then move on to explain the concept of working memory capacity,

and finish with an overview of different algorithmic proposals for the implementa-

tion of working memory in neural systems. This sets the stage for our proposal for

incorporating dynamical synapses.

The most famous model of working memory is the multi-compartment model

introduced by Baddeley and Hitch [Baddeley and Hitch, 1974], [Baddeley, 2012].

The original model consists of three components: the central executive, the phono-

logical loop and the visuo-spatial sketchpad. The central executive controls the flow

of information from and to the other two systems. The phonological loop specializes
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in phonological information; such as, languages and sounds, while the visuo-spatial

sketchpad specializes in visual and spatial information. Years after the original

proposal, another component, the episodic buffer, was added. The episodic buffer

provides a temporary storage of information in the form of single episodic repre-

sentations [Baddeley, 2000]. As a whole, this model describes working memory

as the information retained in short term memory, which is attended and coordi-

nated by the central executive. It represents working memory as a separate memory

system with specific parts for each type of information [Baddeley and Hitch, 1974]

[Baddeley, 2012][Baddeley, 2000].

Another way of modeling working memory was introduced by Cowan

[Cowan, 1999] . In his model, working memory consists of a subset of activated

representations from long term memory. Therefore, unlike the previous model,

working memory is not considered to be a separate system. Instead, it suggests

that working memory is characterized by attention. The model consists of two

levels. The first level consists of the activated representations in long term memory.

The second level consists of those of these representations that are attended. This

second level is called the focus of attention and it has a limited capacity of about 4

representations [Cowan, 1999].

O’Reilly and Frank developed model about the interactions between the pre-

frontal cortex and basal ganglia [O’Reilly and Frank, 2006]. In this model, the pre-

frontal cortex maintains active information during working memory tasks, while

the basal ganglia selectively gates information in and out. In this way, this model

explains how information is quickly updated and used for problem solving and

decision making. Besides the network model, O’Reilly and Frank proposed that

the pre-frontal cortex and basal ganglia interaction operates according to an actor-

critic system to learn the best way to use information during working memory tasks

[O’Reilly and Frank, 2006].

For a long time, working memory capacity or the number of items that can be

maintained in working memory [Wilhelm et al., 2013] was believed to be equal to

four [Cowan, 1999], [Cowan, 2016], [Cowan, 2001] or seven [Miller, 1956]. How-
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ever, current research suggests that working memory capacity might depend on a

variety of different factors such as the type of information been processed, and

the amount of training or familiarity of the subject [Miller, 1956]. Another im-

portant concept that is relevant for capacity is that of ”chunks” [Miller, 1956],

[Cowan, 2001], which are the real units of storage in memory, and which com-

press information. Different types of information are more easily compressed than

others, because different aspects regarding the content of the chunks matter includ-

ing the category of the information used (words, numbers, letters), the length of

each category, the complexity of each item (for example, phonological complex-

ity), the lexical status of the contents (whether the items are familiar to the subject:

compressing the names of your family members under the chunk ”relatives” is a

lot easier than compressing an equal number of names in Chinese). Furthermore,

rehearsal aids compression, as well as individual differences and abilities mat-

ter [Cowan et al., 2000], [Service, 1998], [Gobet and Simon, 2000]. Understanding

how to compress information to improve working memory capacity is an important

open question in psychology and cognitive science, albeit not one that we consider

further here.

In this thesis, we focus on understanding the physical limits of working mem-

ory capacity. These limits are not only very important for understanding working

memory, but also provide insights into to how information is processed in neural

circuits. In order to evaluate these physical limits, we first need to understand what

the neural substrate of working memory are. According to Marr, this study falls

into the implementational level of analysis. We consider that for working memory

this level of analysis is very important, because it provides the requirements and

constraints that we need to have when thinking of algorithms or computations that

use working memory.

Several models have been developed to understand the neural substrates of

working memory. Joaquin M. Fuster and Garrett Alexander observed an increase

in firing frequency of nerve cells in the pre-frontal cortex and in the nucleus me-

dialis dorsalis during a delay response task [Fuster and Alexander, 1971]. In this
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task, monkeys were presented with a stimuli for a brief period of time, and then

asked to perform an action based on this stimuli after a short delay. The firing rates

of activated neurons remained elevated throughout the delay period even when no

external cue was presented. Figure 4.1 shows results from these delay experiments

with a 30 seconds delay window. In this figure, persistent activity during the delay

in the pre-frontal cortex (A) and in the nuclues medialis dorsalis (B) can be ob-

served. This observation indicates that information is still present and been held in

working memory in the period prior to the animal taking an action.

Figure 4.1: Average firing during delay response task from [Fuster and Alexander, 1971].
Average firing of two units during a five delayed response trials with 30 second
delays (a) unit in prefrontal cortex (b) unit in nucleus medals dorsalis

Thanks to this experiment, Fuster and Alexander hypothesized that persistent
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activity, which was correlated with the narrowing of attention by the animal on

information held in temporary memory storage, might be the mechanism through

which neural systems retain information [Fuster and Alexander, 1971]. This ex-

perimental observation gave origin to the persistent activity theory of working

memory. This theory suggests that short term memory maintenance relies on sus-

tained elevated firing rates in a population of neurons. Many different mechanisms

to explain this sustained firing activity have been developed. They include re-

current excitation within cell assemblies, synfire chains and single-cell bistability

[Durstewitz et al., 2000], [Durstewitz and Seamans, 2006].

Recurrent excitation within cell assemblies is the most widely accepted pro-

posal for sustained elevated firing. Within these models, the most famous model is

the Hopfield model. This model stores discrete items in the synaptic weight matrix

of the network and retrieves them as fixed point attractors [Hopfield, 1982]. A fixed-

point attractor is an equilibrium point of a dynamical system that is represented by

a particular point in the dynamic space. In this model, neurons that encode the same

item are wired together and form a cell assembly. Each working memory activation

corresponds to the activation of one pattern stored, and to the network dynamics

associated with one equilibrium point.

The synfire chain hypothesis postulates that groups of neurons connected

via feedforward links can propagate waves of synchronous excitatory activ-

ity in circulatory loops. In this way, information continues to be propa-

gated and thus retained in the neural network [Hertz and Prügel-Bennett, 1996],

[Goedeke and Diesmann, 2008].

Single-cell bistability proposes that neurons can be maintained two different

stable states - resting and spiking. This phenomena is mediated by the non-linear

current-voltage relationship of NMDA receptors, which can produce two stable

fixed points of the neuron’s membrane potential [Durstewitz and Seamans, 2002],

[Seamans et al., 2001]. In this way, elevated firing rate can arise and be maintained

as a fixed point of each neuron. The advantage of this mechanism is that it does not

need previous synaptic learning, and therefore can store novel information faster
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than the two previously proposed models.

Recent experimental evidence has partly challenged the notion that stable per-

sistent activity consititutes the neural substrate of working memory. Lundqvist et al.

showed that working memory is highly dynamic and driven by oscillations. In this

work, it was shown that activity in working memory consists of brief and variable

bursts, and consequently, the observed sustained activity in previous experiments is

mainly an due to trial and population averaging effects [Lundqvist et al., 2016].

Stokes has also postulated that working memory is mediated by a dynamic

code besides persistent activity [Stokes, 2015]. His work showed that persistent

activity was not critical for maintaining information during the delay period of a

working memory task. He defined the term ”activity-silent” to refer to the activity

still present in a neuronal assembly, but absent from the activity of the neurons. He

designed a task that consisted of a delay working memory task with the addition

of a disrupting stimuli during the delay period. Figure 4.2 (a) shows the standard

working memory task from [Funahashi et al., 2004]. A monkey was trained to sac-

cade in the direction of a presented stimuli after a delay period. Figure 4.2 (b)

shows Stoke’s dual task, where the monkey is presented with a distractor in the de-

lay period. Stokes recorded the activity of the neurons during the presentation of

the stimuli, during the delay period with the distractors and during the onset of the

guided response. The data collected showed that neuronal activity associated with

the original stimuli decayed during the delay period due to the presence of the dis-

tractor. Figure 4.2 (c) shows the delay period, and how persistent activity was lost

when the distractor was presented. However, once the cue that signals the saccade

was given, this activity increased. Figure 4.2 (c) also shows how then the neural

activity encoding the stimuli started to ramp up. This finding shows that even if

the neural activity corresponding to the encoding of a stimuli is gone, information

regarding the stimuli can still be present - potentially in some hidden states like

the network’s synaptic components. For this reason, the animal was able to per-

form the task, as well as the neural activity was able to retrieve this information still

”silently” present in working memory.
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Figure 4.2: Working memory delay activity dual-task: working memory task is interrupted
during the delay period with an attention task. Content-specific activity is abol-
ished by the memory task and reactivated at the end of the dual task, reflecting
a shift in focus to complete the working memory task upon receiving the cue
signal [Stokes, 2015].

Stokes’ hypothesis is that the neural substrate for this ”silent” working memory

is the synaptic weights of the network [Stokes, 2015]. Information remains present

in the modified synapses of the neural circuit. These experimental observations

came as no surprise to the theoretical neuroscience community. Previously, theo-

retical models have argued for the importance of synaptic activity and dynamics in

working memory. Hempel et al. suggested that synaptic augmentation (short-term

synaptic enhancement of 40-60 % in synaptic transmission which lasts seconds to

minutes) can enhance the ability of neuronal circuits to sustain persistent activity

in response to transient inputs [Hempel et al., 2000] by boosting the level of recur-

rent excitation. In this way, synaptic enhancement was proposed as relevant factor

in maintaining working memory. Hempel et. al [Hempel et al., 2000] showed that

multiple forms of synaptic plasticity at excitatory synapses in rat medial prefrontal

cortex ; in particular synaptic facilitation and synaptic depression, lead to synaptic
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augmentation - a longer lasting form of short term enhancement. They proposed

and showed in computer simulations that this synaptic enhancement could led to

enhancement in the capacity of a circuit to sustain persistent activity after a tran-

sient stimuli. Dynamic synapses increase the duration of reverberations in neu-

ral activity after stimulus presentation Mongillo et al. [Mongillo et al., 2008] took

the role of synaptic dynamics one step further. They proposed a theoretical model

where short term memory is stored in the dynamics of synapses. In this model, dy-

namic synapses are not a facilitator, but are the neural substrate of working memory.

They suggested that, during encoding, neuronal activity changes synaptic efficacy,

leaving a longer lasting memory trace [Mongillo et al., 2008]. We might think that

the ”silent” memory observed by Stokes refers to the memory trace mediated by

activity-dependent short term plasticity. We use Mongillo et al.’s model as our net-

work model to study the effects of synaptic dynamics on memory capacity. We

describe their equations in the following section.

4.3 Network Model
We study how short-term plasticity of synapses modifies the internal structure of re-

current neural circuits. To do this, we use a previously proposed model of short-term

plasticity [Mongillo et al., 2008]. The model has two synaptic variables defined by

the vectors ut and xt , which refer to the synaptic variables corresponding to all neu-

rons in the network. The utilization parameter (the fraction of resources utilized

by each spike) is represented by ut , and refers to the residual calcium levels in the

pre-synaptic terminal. U represents the increment of u produced by a spike. The

amount of resources (neurotransmitters) available in each synapse are represented

by xt .

The dynamics of ut are given by :

dut

dt
=

U−ut

τ f
+U(1−ut)δ (t− tspike) (4.1)

After each spike (at time tspike), an amount equal to utxt is used, and xt is reduced.

Because the amount of resources available are depleted at each spike, the dynamics
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that govern how fast these resources are depleted (the dynamics of xt driven by

spikes - equation 4.2) determine the dynamics of synaptic depression. On the other

hand, ut is increased with each spike due to influx of calcium, which increases the

probability of release (probability of spike). For this reason, the dynamics of ut

(equation 4.1) determine the dynamics of synaptic facilitation. And the dynamics

of xt are given by:

dxt

dt
=

1−xt

τd
−utxtδ (t− tspike) (4.2)

Given these equations, both variables can saturate due to continuous spiking

or come back to their baseline values ( x = 1 and u = U) with time constants τd

(for synaptic depression) and τ f (for synaptic facilitation) respectively once spik-

ing stops. Depending on the value of the time constants, synapses are said to be

facilitating (larger τ f ) or depressing (larger τ f ) [Mongillo et al., 2008].

In this thesis, we study the behaviour of dynamic synapses in a rate network

model. For that, we average the dynamics of synapses over different realization of

spike trains. We denote rt the rate of all neurons in the network at time t. And

obtain the following equations:

dut

dt
=

U−ut

τ f
+U(1−ut)rt (4.3)

dxt

dt
=

1−xt

τd
−utxtrt (4.4)

A rate network with dynamic synapses evolves with the following dynamics:

τm
drt

dt
=−rt +Wutxtrt +vst (4.5)

Here, W is the connectivity matrix between the neurons in the network, st

represents a scalar, time-dependent signal that drives the recurrent network, and v is
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a time independent unit length vector of feed-forward connections from the signal

into the neurons in the network. This model consists of three non-linear coupled

differential equations describing the dynamic evolution of the recurrent rate network

and the two synaptic variables.

4.3.1 Linearization

To facilitate our analysis, we linearize this non-linear network. Linearization is a

dynamical systems technique used to study non-linear systems. It is performed by

finding a linear approximation to a function at a given fixed point of the system.

A fixed point is a point in the system where the net change is equal to zero. It is

assumed that the behaviour within a small range of this equilibrium point can be

approximated by a linear model. This linear function is approximated by the first

order Taylor expansion of the non-linear system around this point [Strogatz, 1994]

Given a non-linear dynamical system described by:

dyt

dt
= F(yt) (4.6)

The linear system is written as the first order Taylor expansion, where yo is the

fixed point of the system and J is the Jacobian matrix:

dyt

dt
= F(yo)+ J(yo)(yt−yo) (4.7)

The Jacobian matrix is the matrix of all first-order partial derivatives:

Ji, j =
∂F(yi)

∂yj
(4.8)

4.4 Fisher Memory Measures
Ganguli et al. studied the memory properties of generic high-dimensional dynam-

ical systems. They used Fisher information theory to study the fundamental limits

and properties of these systems to retain memory traces of previous inputs. In their

work, they focused on linear recurrent neural circuits driven by noisy time depen-

dent inputs, and derived theoretical upper bounds for memory capacity. Besides
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these theoretical bounds, they proposed memory measures called Fisher memory

measures to quantify how much of a signal’s history is encoded in the current state

of a network. Here we describe these measures, and introduce the memory upper

bounds [Ganguli et al., 2008]. Before that, we first define the linear network that

was used for this analysis.

Ganguli et. al [Ghahramani, 2010] defined fisher memory measures for a dis-

crete time linear network with dynamics given by:

rt = Wrt−1 +vst + zt (4.9)

In this equation, zt is a zero mean gaussian white noise with covariance

〈zt1 ,zt2〉= εδt1,t2 .

Fisher memory measures are useful measures of the efficiency with which the

network state rt encodes the history of the input signal. Because there is noise in this

system, a given past signal st−k|k ≥ 0 induces a conditional probability distribution

P(rt|s) [Ganguli et al., 2008]. For the purpose of this analysis, the history of the

signal is defined as a temporal vector s, where the kth component (sk) is equal to

st−k|k ≥ 0. The measures consist of the Fisher memory matrix (FMM), the Fisher

memory curve (FMC) and the Total Memory. The FMM between rt and the past

signal can be defined defined as:

Fk,l(s) =
〈
− ∂ 2

∂ sk∂ sl logP(rt|s)
〉

(4.10)

In this chapter, we change the notation from [Ganguli and Latham, 2009]. We

use F to define the memory measures instead of J, which was used in Ganguli’s

work. The reason for this is that later in the chapter, we introduce a Jacobian matrix

J, and we wanted to avoid confusion between these variables. This matrix is con-

structed based on the definition of Fisher information, where we consider the signal

a parameter and the conditional probability of the current state given this signal the

likelihood function given this parameter. Then, we can interpret the FMM as the

Fisher information that the state of the network carries about the signal. In other
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words, the amount of information the current state of the network carries about the

signal at a given time. This information measure quantifies the memory lifetime of

the signal in the recurrent network. For this reason, it is called a memory measure

[Ganguli et al., 2008]. We want to be able to apply these measures to our recurrent

network equation 4.5. This network was defined using continuous differential equa-

tions. In order to apply these memory measures to our network, we will discretize

these equations.

The most important terms of the FMM are the diagonal elements, which rep-

resent the information present in the network from a pulse signal k time step in the

past. These diagonal elements capture the decay of memory and form the Fisher

memory curve: FMC. Ganguli et al. named this curve Jk,k. In this thesis, we re-

named it Fk,k. The off-diagonal terms of the FMM represent the interference from

the signal at other time steps. Therefore, these terms represent how much of the

signal is lost at each time step. The FMC can be written as [Ganguli et al., 2008]:

Fk,k = v′Wk′C−1
t Wkv (4.11)

In this equation, Ct is the covariance matrix, and is equal to:

Ct = ε

∞

∑
k=0

WkWk′ (4.12)

It can be seen that the FMC only depends on the time lag k, and on the type

of network connectivity W. For this reason, the connectivity matrix of a network

defines its memory properties. The FMC is also a measure of the signal to noise

ratio (SNR: amount of signal relative to amount of noise) present in the network.

The kth component of the FMC represents the fraction of the original SNR of a

pulse presented to the network k time steps in the past. The area under the curve of

the FMC represents the total memory capacity of the network Ftot or the total SNR

present in the network at time t about the entire history of the signal, relative to the

original SNR. Ftot is defined as [Ganguli et al., 2008]:
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Ftot =
∞

∑
k=0

Fk,k (4.13)

Here we also changed the name of Ftot from Ganguli’s paper in order to main-

tain consistency with the FCM Fk,k. The measures described above provide the tools

to study memory lifetimes of recurrent circuits. Using these measures, Ganguli et al.

derived theoretical bounds for two classes of network connectivities: normal (ma-

trix with orthogonal basis of eigenvectors) and non-normal [Ganguli et al., 2008].

A real square matrix W is said to be normal if it commutes with its transpose such

that[Asllani et al., 2018]:

WW
′
= W

′
W (4.14)

Furthermore, the spectral theorem states that a matrix is normal if and only if

it is unitarily similar to a diagonal matrix. In linear algebra, two square matrices W

and D (here, a diagonal matrix) are unitarily similar if there exists a unitary matrix

U such that[Asllani et al., 2018] :

W = UDU
′

(4.15)

This statement is the same as saying that W is diagonalizable by unitary matrix U.

For normal matrix W, the diagonal entries of D are its eigenvalues, and the columns

of U are its eigenvectors. It follows that the eigenvectors of a normal matrix are

orthogonal. On the other hand, a matrix is non-normal if it is not diagonalizable

by a unitary matrix, and therefore, its eigenvectors are not orthogonal to each other.

This statement is thus equivalent to the condition that a for a non-normal matrix W

[Asllani et al., 2018]:

WW
′
6= W

′
W (4.16)
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What distinguishes normal and non-normal networks is whether they are diag-

onalizable or not. It is important to note that through the Schur-decomposition, we

can see whether a given matrix is normal or non-normal. The Schur-decomposition

holds for any square matrix W, allowing us to write it as unitarily equivalent to

an upper triangular matrix, whose diagonal elements are the eigenvalues of W. As

we stated before, if the matrix is normal, the only non-zero elements of this upper

triangular matrix will be the diagonal terms. In this way, if we perform the Schur

decomposition of any matrix, we can see whether the matrix is normal or not by

looking at the result of this unitary transformation. In the experiments in this chap-

ter, we use this technique to analyze whether a network is normal or not. The Schur

decomposition states that for a normal matrix W can be decomposed as equation

4.16. For a non-normal matrix W, it states that:

W = UTU
′

(4.17)

where U is a unitary matrix and T is an upper triangular matrix.

We note that both D and T are upper triangular matrices, but we refer as di-

agonal matrices to those with non-zero elements strictly in the diagonal. D and T

are known as Schur Forms, and we address them as such in the rest of the text.

The characteristics and differences between these two types of matrices have impli-

cations for dynamical systems. In our situation, we use these matrices as network

connectivity matrices. We call the networks with normal connectivity matrices, nor-

mal networks, and the networks with non-normal connectivity matrices, non-normal

networks. In the case of linear normal networks, one can write the solution to the

system as a linear combination of exponentially relaxing modes, whose character-

istic time scales are given by the inverse of each corresponding eigenvalue. In these

way, the eigenvalues and eigenmodes are responsible for driving the long term dy-

namics of these networks. In the case of linear non-normal networks, more complex

patterns can emerge. In these networks, eigenvectors do not form an orthonormal

basis, so the canonical characterization of a linear system by its spectrum is un-

reliable. Eigenvalues can become extremely sensitive to noise and consequently,
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their physical meanings are diminished. Furthermore, small disturbances can un-

dergo a transient phase and be strongly amplified. Here, we define the memory

bounds for these two connectivities as were derived in the work by Ganguli et al.

[Ganguli and Latham, 2009]:

For normal networks: Ftot =
1
ε

For non-normal networks: Ftot =
N
ε

where ε is the noise injected to the rate network equation 4.9.

The main results from [Ganguli et al., 2008] are that Ftot represents how much

of the entire signal history can be remembered by a given network. It defines the

memory lifetime of each network. When the memory lifetime is proportional to

the number of neurons in the network, this network has extensive memory. Gan-

guli et. al showed that only non-normal networks can achieve extensive memory,

and normal networks can only have a memory lifetime proportional to 1. The rea-

son for this is that normal networks are diagonalizable, whereas non-normal net-

works can be unitarily transformed into lower triangular matrices, which imply a

hidden feed-forward connectivity. Furthermore, normal networks’ dynamics are

driven solely by their eigenspectrum, while non-normal networks are capable of

transient expansion and compression [Kerg et al., 2019] These transient dynamics

have been shown to have many computational advantages over normal matrices

[Hennequin et al., 2012].

Ganguli’s results imply that when a signal enters a network with normal con-

nectivity, the signal does not get amplified. In this way, the signal gets lost over

time due to the increase in noise from interactions between neurons and corruption

from previous time-steps of the signal. Furthermore, if one were to optimize for

remembering the signal, one would have to choose between remembering only the

recent past or the remote past. For the signal to be preserved in time, a special type

of amplification is required. It was concluded that at least super-linear amplifica-

tion is necessary. The results above also show that non-normal networks can have

extensive memory - a memory lifetime proportional to the number of neurons in

the network. Networks that saturate this bound are said to achieve extensive mem-
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ory. Non-normal networks are the only networks capable of having this memory

capacity. The reason for this is that they have a hidden feed-forward architecture

that allows them to transiently amplify the signal, and maintain a high fraction of

the original SNR over time. When Ganguli et al. derived these bounds, they also

established the conditions for memory performance related to network connectivity

[Ganguli et al., 2008]. The main points are outlined below:

1. Only networks with a hidden feed-forward architecture can achieve a mem-

ory capacity greater than 1. Only non-normal networks have this property.

Hidden feedforward connectivity can be observed from the Schur Forms of a

network. If the network is upper triangular, with non zero elements outside

the diagonal, then it can have a feedforward structure. This finding agrees

with previously proposed observations that neural circuits may actually be-

have like feedforward networks in the brain [Ganguli and Latham, 2009].

2. Super-linear transient amplification, that lasts for at least a time of order N, is

necessary for a network to achieve extensive memory. Network amplification

refers to the gain of the initial input signal as it passes through the network.

Signal gain consists of scaling the input signal by a factor, and it occurs thanks

to the signal been passed on to different neurons each time step. The delay

line is the network structure that can achieve the most signal amplification

compared to noise amplification. Mathematically, network amplification is

defined as [Ganguli and Latham, 2009]:

A(k) = Wkv2 (4.18)

For normal networks, this amplification monotonically decreases, while for

non-normal networks it can transiently increase. Therefore, only non-normal

networks can satisfy this property [Ganguli and Latham, 2009].

3. Furthermore, the only non-normal network architecture that can achieve ex-

tensive memory is the delay line, or any network that can be unitarily trans-

formed to a delay line. The reason for this is that the delay line is the only
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network that can achieve the least noise amplification for a given amount of

signal amplification [Ganguli and Latham, 2009].

Another important concept for memory performance is the input connectiv-

ity. For normal networks, any type of network connectivity achieves the same per-

formance, since we showed that memory lifetime for normal networks can be at

most O(1) (order 1). However, for non-normal networks, it is important, because

the direction in which the input is fed can have a great impact in how it is am-

plified. An important concept when analyzing the best direction to feed the input

in the network is the Spatial Fisher Information : Fs. (We also changed the name

from Js in Ganguli’s paper to Fs for consistency with our notation). Fs measures

the information in the network’s spatial degrees of freedom about the entire signal

history[Ganguli and Latham, 2009], and is defined as:

Fsi, j = Σ
∞
k=0[W

k′C−1
t Wk]i, j (4.19)

In general, placing the signal in the direction of the eigenvector of the largest eigen-

value of the spatial Fisher information Fs counterbalances noise propagation inside

the network and maximizes total information. The reason for this is that in the case

of non-normal matrices, Fs does not have a trivial spatial structure, and consequently

the largest principal component contains the largest amount of information. It has

been shown that by placing the signal in this direction, one can guarantee that the

largest memory capacity will be obtained [Ganguli et al., 2008]. For the analysis

we perform in this chapter, we use this input connectivity that maximizes network

performance.

Using, Fs, the total Fisher information is equal to:

Ftot = v′Fsv (4.20)

Inspired by these theoretical findings, we ask the question of whether adding

dynamic synapses to a linear recurrent network with normal connectivity ma-
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trix could change its connectivity and as a consequence increase its memory ca-

pacity. From the recent experimental observations during delay working mem-

ory experiments, we know that synaptic variables are key for memory capac-

ity. For this reason, we hypothesize that models of recurrent neural circuits

have failed to achieve extensive memory, because they do not included all the

relevant variables in the neural circuit. Often time, neural circuits made up of

neurons and static synapses do not have transient amplification. We hypoth-

esize that dynamic synapses can modify the structure of the circuits. It has

been argued that dynamic synapses can increase the amount of time a mem-

ory trace is present in a neural circuit [Maass and Markram, 2002] [Stokes, 2015]

[Mongillo et al., 2008], as well as prevent memories from been over-written by new

memories [Lahiri and Ganguli, 2013] [Zenke et al., 2017] [Amit and Fusi, 1994]

[Poole et al., 2017]. For these reasons, we believe that adding dynamic synapses

produces structural changes in the network of neurons and synapses that increase

memory performance. In the results section, we show how adding dynamic

synapses does change network structure. For that, we linearize a non-linear network

with dynamic synapses, and obtain an effective connectivity matrix which includes

neurons and dynamic synapses as variables. We describe this procedure in the next

section.

4.5 Model Implementation

We use Mongillo’s model of a linear recurrent neural network with synaptic vari-

ables to test the hypothesis described in this chapter. First, we discretize the system

of differential equations so that our analysis is parallel to that performed by Ganguli

[Ganguli and Latham, 2009] . The resulting equations.

rt = rt−1 +
dt
τm

(−rt−1 +Wut−1xt−1rt−1 +vst + zt) (4.21)

ut = ut−1 +dt(
U−ut−1

τ f
+U(1−ut−1)rt−1) (4.22)
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xt = xt−1 +dt(
1−xt−1

τd
−ut−1xt−1rt−1) (4.23)

Because this model is non-linear and coupled, we linearize it to be able to

use the Fisher memory measures described earlier. Furthermore, this procedure

allows us to construct a Jacobian matrix (or the new connectivity matrix between

all variables: neurons and synapses), and use it as the effective connectivity matrix

of the new network. As long as perturbations to the system are small, this new

linearized network is a good approximation of the original network. The Jacobian

of the system is equal to the derivatives of the system evaluated at a fixed point.

We call the Jacobian matrix the effective connectivity matrix, because we believe

that information is effectively being propagated in the new network formed by the

neurons and the synapses.

At the fixed point, all variables in the network reach their steady state values.

r0 corresponds to the steady state value of all the neurons in the networks at the fixed

point. This value is obtained empirically. For the synaptic variables, the steady state

values are given by the following equations :

uo =U
1+ τ f ro

1+Uτ f ro
(4.24)

xo =
1

1+uoτdro
(4.25)

We compute the Jacobian matrix with respect to the network (neurons and

synapses): J, and with respect to the input: Js. We do this in order to have a consis-

tent linearized system, where J is the effective network connectivity matrix :

J =

∣∣∣∣∣∣∣∣∣
Jrr Jru Jrx

Jur Juu Jux

Jxr Jxu Jxx

∣∣∣∣∣∣∣∣∣ (4.26)

where:
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Jrr =
1

τm
(−I +Wuoxo) (4.27)

Jru =
1

τm
(Wro)xo) (4.28)

Jrx =
1

τm
(Wrouo) (4.29)

Jur = (U(1−uo)) (4.30)

Juu =−
1
τ f
−Uro (4.31)

Jux = 0 (4.32)

Jxr =−uoxo (4.33)

Jxu =−roxo (4.34)

Jxx =−
1
τd
− (rouo) (4.35)

and Js is the effective input connectivity://

Js =

∣∣∣∣∣∣∣∣∣
Jrs

Jus

Jxs

∣∣∣∣∣∣∣∣∣ (4.36)

Jrs = v (4.37)
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Jus = 0 (4.38)

Jxs = 0 (4.39)

We use these matrices to construct the new linearized system:

Zt = Zt−1 +dt(JZt−1 +Jsst) (4.40)

where Zt is a vector with rows equal to the perturbations of all variables of the

system from the steady state :

rt− ro (4.41)

xt−xo (4.42)

ut−uo (4.43)

We implemented the model above with the parameters previously used in

[Mongillo et al., 2008] to study the effects of short term synaptic plasticity in re-

current networks memory capacity. These parameters are shown in the table below:

Parameters
Number of neurons 100
τd 0.20 (ms)
τ f 1.5 (ms)
τm 0.15 (ms)
U 0.2

Before we proceed with the analysis of memory performance, we show how

well the linearized system matches the behaviour of the non-linear system under

small perturbations. We remind the reader that linearization only works under small

perturbations. First, we drive the non-linear network with an input pulse, and find

its steady state. At this steady state, we linearize the network using the technique
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described above. Finally, we test the response of both these networks under a small

perturbation: an input pulse of 0.15 Hz with gaussian noise with zero mean and vari-

ance equal to 0.001. We show in Appendix E how both networks respond similarly

under this perturbation. For this simulation, we used the symmetric connectivity

matrix, but the Orthogonal network response in the same manner. In the follow-

ing section, first, we show our analysis using the parameters defined here, and af-

terwards, we show how memory performance is affected when these parameters

change.

4.6 Network Structure Analysis
Using the linearized network described above, we compute the Fisher memory mea-

sures for two different type of connectivity matrices: Orthogonal and Symmetric.

We chose Orthogonal and Symmetric connectivity matrices, because they are nor-

mal matrices, and ideal to test our hypothesis that adding synaptic variables changes

the effective connectivity of the network and can improve memory performance.

Here we present the results of our analysis. First, we analyze the structure of the

networks before and after adding dynamic synapses, and then we show the implica-

tions of these changes for memory performance.

4.6.1 Symmetric Network

First, we analyze the eigenspectrum of the effective connectivity matrices before

and after including dynamical synapses. We call them ’network with only neurons’

or ’network with static synapses’, and ’network with dynamical synapses’. We

present the results for the effective connectivity matrices and parameters defined

earlier. We start our analysis with a network with symmetric connectivity. This

network is a normal network, and it is characterized by having a flat eigenspectrum

(all eigenvalues are real) in the complex plane. Figure 4.3 shows the distribution of

eigenvalues of a symmetric matrix. Figure 4.4 shows how the distribution of eigen-

values changes after including dynamic synapses in the system ( The eigenvalues

from the effective connectivity matrix from the linearized system with dynamic

synapses).
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Figure 4.3: Eigenspectrum: Symmetric Network with dynamic synapses
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Figure 4.4: Eigenspectrum: Symmetric Network with dynamic synapses without dynamic
synapses
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From these results, we can see that indeed adding synaptic variables modifies

the internal structure of the connectivity matrices. It can be seen that the addition

of dynamic synapses causes the eigenspectrum to deviate from the spectrum of a

symmetric matrix. This analysis shows that dynamic synapses indeed can cause

structural changes to the network. However, in order to see whether these changes

imply that the network is no longer normal, we perform the Schur decomposition

of the connectivity matrix before and after the addition of dynamic synapses. We

analyze the resulting Schur Form for each of these matrices. We know that only if

the Schur Form is diagonal, the matrix is a normal matrix. Figure 4.5 shows the

resulting Schur Form for the symmetric connectivity matrix before the addition of

dynamic synapses and Figure 4.6 shows the symmetric connectivity matrix after the

addition of dynamic synapses. A zoom version of the schur form for network with

dynamic synapses can be seen in Appendix F, where the entries along the delay line

can be seen more clearly.

Figure 4.5: Schur Decomposition: Symmetric Network with dynamic synapses
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Figure 4.6: Schur Decomposition: Symmetric Network without dynamic synapses



4.6. Network Structure Analysis 170

We can see that the network with dynamic synapses is no longer a normal

matrix. The diagonal matrix from the network without dynamic synapses is trans-

formed into a lower triangular matrix when dynamic synapses are added. Devi-

ation from normality increases the potential for a network to achieve a memory

capacity proportional to the number of neurons in the network or extensive memory

[Ganguli et al., 2008]. Figure F.1 simply shows the connectivity matrix between the

effective elements of each network. For the case of the network with no dynamic

synapses, it shows the connectivity matrix between neurons. For the network with

dynamic synapses, it shows the connectivity matrix between all effective compo-

nents of the network: neurons and synapses. The colorbar is a way to show which

values are comparatively higher, and thus driving the network. The background

color yellow represents entries equal to zero. For both matrices shown, most entries

are equal to zero. In the case of the matrix from the network with static synapses,

the only non-zero elements are in the diagonal. Some of these elements have values

less than zero (red color), and higher than zero( light yellow). In the matrix corre-

sponding to the network with dynamic synapses, the diagonal entries are color red

(less than zero), while the lower triangular entries are bright yellow (greater than

zero) - it is for this reason that the plot looks ”lighter”. Bright yellow entries appear

more opaque (due to the colorbar selection), but they correspond to a higher entry

value. As we explained earlier, a lower diagonal matrix has a hidden feed-forward

architecture. This implies that this network could be capable of achieving a higher

memory performance. In Ganguli’s work, it was shown that this hidden structure

is necessary to achieve extensive memory, if it translates into an adequate network

amplification. The condition found by [Ganguli et al., 2008] is that this network

amplification needs to be at least super-linear. We show the network amplification,

defined in equation 4.20 for the symmetric connectivity network with and without

dynamic synapses in Figure 4.7.

As can be seen, the network with dynamic synapses 4.7 (red) can transiently

amplify an input signal. Figure 4.7 shows how the network amplifies the signal.

This signal amplification allows the network to have a higher memory capacity than
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Figure 4.7: Network Amplification: Symmetric Network with dynamic synapses (red) and
without dynamic synapses (blue)

its static synapses counterpart. Network amplification, in the case of the network

with dynamic synapses, was computed using all network’s components: neurons

and dynamic synapses. The reason for this is that the hypothesis of this chapter is

that an input signal is stored in the neuron’s activities and in the dynamic synapses

- each with their respective time scales. For this reason, how the signal is amplified

over time involves both these components. For this reason, the values of network

amplification are much higher in the network with dynamic synapses. However,

it is not the values what is the most important feature for us, but the shape of the

curves. Furthermore, the signal that can be read from a network is present on the

activity of the neurons only. In order to compute the information content available

or present in the network at time t, we use the Fisher memory measures described

in the previous section using only neurons as elements for both the network with

dynamic synapses and the network with static synapses. We show the results of the
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Fisher Memory Curve in Figure 4.8, which shows how much of the signal is present

k time steps after it was originally presented. The results shown for the FMC and

Network Amplification are for 50 realizations of each network. The equation for

the Fisher Memory Curve was described in equation 4.12.

Figure 4.8: Fisher Memory Curve: Symmetric Network with dynamic synapses (red) and
without dynamic synapses (blue)

Another important measure that arises from the Fisher Memory Curve is the

Total Memory, which is the area under the curve of the FMC. The Total Memory

measures the amount of information present in the network from the entire history

of the input signal at the current time t. The Total Memory (TM) for the network

without dynamic synapses is equal to 1. This result is consistent with the theoretical

prediction for normal matrices. The TM for the network with dynamic synapses, us-

ing the parameters defined earlier, is equal to 6.6 compared to 1 which is the TM for

normal networks (or this network before adding dynamic synapses). In the follow-

ing section, we show how the Total Memory scales with the number of neurons in

the network. This result indicates that there is an increase in memory performance
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when dynamic synapses are included. More importantly, the addition of dynamic

synapses allows the network to break the normal matrix memory upper bound of

1. This result is important, because it shows that indeed other variables present in

the network can play a role in short term memory capacity. Consequently, show-

ing that the current picture of persistent neuronal activity as the neural substrate of

working memory is incomplete, and that the memory performance of artificial cir-

cuits can be improved if dynamic synapses, as well as all the molecular machinery

involved in synaptic communication, are included. In this analysis, we included

only two synaptic variables, but it is known that there are many variables involved

in synaptic communication with a cascade of time constants [Südhof, 1995].

In order to test how much of this memory performance is due to specific pa-

rameters, we show how the Total Memory of the network changes as the synaptic

parameters τ f and τd vary. We chose the parameter range for which network be-

haviour does not saturate - if we increased or decreased the networks’ time constants

any further, there was no further change in the dynamics. We show the results of

how TM varies as each synaptic time constant (depression or facilitation) changes

given the value of the other time constant is kept fixed.
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Figure 4.9: Total Memory with varying τ f
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Figure 4.10: Total Memory with varying τd
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Figure 4.9 shows how TM changes as τ f increases and decreases from the value

we used to for our analysis: τ f = 1.5ms. We can see that the memory increases as

the memory time constant increases. This result makes sense, because the larger

the memory time constant, the longer the effect of the input signal will last in the

synapse. The same effect can be seen in Figure 4.10 . The main difference is that

memory performance does not change as much as in the case of facilitation. The

reason for this is that the time constant of facilitation is already large enough, and

by using the dynamics defined by these two variables, the network cannot achieve a

much larger memory capacity.
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4.6.2 Orthogonal Network

In this section, we analyze the properties of an orthogonal network when dynamic

synapses are added. The most salient result from this network connectivity is that

the Schur Form is not very different from the one of the network without dynamic

synapses. Below we show the figures that show how an orthogonal network does

not change significantly with the addition of dynamic synapses.

Figure 4.11: Eigenspectrum: Orthogonal Network with dynamic synapses



4.6. Network Structure Analysis 178

Figure 4.12: Eigenspectrum: Orthogonal Network without dynamic synapses
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The orthogonal network preserves its diagonal hidden structure. This structure

is closer to that of a normal matrix. For this reason, it is possible, and we will

show that the network with orthogonal connectivity does not improve its memory

capacity with the addition of dynamic synapses.

Figure 4.13: Schur Decomposition: Orthogonal Network with dynamic synapses
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Figure 4.14: Schur Decomposition: Orthogonal Network without dynamic synapses
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Following the results shown above,the network amplification of the orthogonal

network with and without dynamic synapses decays with time. It does not tran-

siently amplify, as was the case for the network with Symmetric matrix after the

addition of dynamic synapses. This amplification profiles corresponds to that of

normal matrices. Normal network amplification decays with time, and thus it has a

poor memory capacity.

Figure 4.15: Network Amplification: Orthogonal Network with dynamic synapses (blue)
and without dynamic synapses (blue)
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Finally, we show that this network amplification profile does translate into a

poor memory performance.

Figure 4.16: Fisher Memory Curve : Orthogonal Network with dynamic synapses (blue)
and without dynamic synapses (blue)
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The TM of the orthogonal network with or without dynamic synapses is equal

to one, which is the bound for normal networks.

Figure 4.17: Total Memory with varying τ f : 100 Orthogonal Networks
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Figure 4.18: Total Memory with varying τd : 100 Orthogonal Networks
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The results of the analysis of this connectivity matrix are very interesting. They

show that dynamic synapses cause an improvement in memory performance only

in certain cases. This result opens the door for further questions, which will be

discussed in the conclusions section.
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4.6.3 Total Memory

Now, we show a graph with the Total Memory achieved by all networks when dy-

namic synapses are added. Error bars correspond to the standard deviation from the

mean from 100 networks. We showed how dynamic synapses change the connectiv-

ity of normal matrices in a way that it changes its hidden feed-forward structure, and

allows them to have a higher memory capacity. Now, we show the Total Memory

achieved by each of the two connectivities discussed (Symmetric and Orthogonal)

with dynamic synapses. We showed the average results and standard deviation (er-

ror bars) in Figure 4.19.

Figure 4.19: Total Memory achieved by Symmetric and Orthogonal connectivity matrices
with dynamic synapses

As we can see, memory performance is better for the Symmetric network, even

if it is not extensive. Extensive memory as was defined earlier is memory capacity

proportional to the number of neurons in the network. We also saw in this chapter

that the Orthogonal network was not affected by the addition of dynamic synapses,
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and consequently its memory capacity is that of a normal matrix and equal to one.

In Figures 4.20, and 4.21 we show how Total Memory scales as the number of

neurons in the network increases.

Figure 4.20: Total Memory as a function of the number of neurons in the network (Sym-
metric Network)
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Figure 4.21: Total Memory Scaling as a function of the number of neurons in the network
(Orthonormal Network)
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4.7 Conclusions

One of the most remarkable characteristics of the human brain is its ability to

hold information in short-term memory for use in prospective decision-making

and action-selection. The current and most widely accepted hypothesis regard-

ing the mechanistic implementation of working memory is persistent activity of

neurons in cortical networks. However, the notion that this hypothesis is the sole

neural substrate of working memory has been challenged [Hempel et al., 2000]

[Mongillo et al., 2008] [Stokes, 2015] [Maass and Markram, 2002]. Persistent ac-

tivity models have focused on storing discrete stimulus in specific working memory

tasks; such as, the delayed matching task [White et al., 2004] [Toyoizumi, 2012]. In

these models, each input is stored as a unique pattern of activity, and the presenta-

tion of a new input disrupts this memory. Stokes [Stokes, 2015] showed that neural

circuits can overcome this disruption by extending the neural substrate of working

memory from persistent activity in neurons to activity in hidden states, which he

hypothesized were dynamic synapses. Furthermore, working memory tasks often

require that items are stored and recalled sequentially. These sequential working

memory tasks require the reconstruction of a whole dynamic sequence of inputs

after a delay; for which standard persistent activity models are insufficient due to

the interference of each input in the sequence [Toyoizumi, 2012]. In this chapter,

we leveraged the fact that generic recurrent networks have been suggested as mem-

ory buffers [Maass et al., 2002] [Jaeger, 2001], and used a generic linear recurrent

network endowed with dynamic synapses as a model of working memory.

Synapses between neurons are not static, rather they are composed of many

membrane proteins with diverse temporal dynamics in terms of membrane traffick-

ing, molecular structure and excitability. It has been proposed that this dynamic

behaviour plays an important role not only in long term memory [Fusi et al., 2005],

but also in working memory. In this chapter, we used a linear recurrent neural

network, where synaptic strength is not static, but rather has its own intrinsic dy-

namics: short term facilitation and short term depression. Inspired by the proposals

of [Stokes, 2015], [Maass and Markram, 2002] and [Mongillo et al., 2008], which
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regard synapses as active neural substrates of working memory, we tested whether

dynamic synapses could change the effective connectivity of networks and increase

their memory capacity.

We used previous work regarding the limits of memory capacity in linear re-

current neural circuits, and focused our analysis on networks with poor memory

capacity (normal networks). In our analysis, we tested whether the temporal dy-

namics of synapses could change the effective connectivity of these network to have

a hidden feed-forward structure. This structure is a pre-requisite for an effective

network to have supra-linear transient amplification, which is necessary for a net-

work to have a memory capacity of order higher than 1. We showed that dynamic

synapses can change the structure of symmetric networks to that of anti-symmetric

networks, which have previously been shown to have a significantly greater am-

plification profile compared to that of symmetric networks [Li and Dayan, 1999].

This result shows that neurons and synapses (endowed with their own dynamics)

are capable of positively modifying neural networks. It is for future work to un-

derstand whether including more dynamic synapses, with a wider range of time

constants, could further improve memory capacity. Particularly, it would be inter-

esting to study the properties of real neural connectivities, and explore how they

change with the addition of more dynamic variables. From a theoretical point of

view, the connection between eigenspectrum modifications and changes in the net-

works’ dynamics is poorly understood - outside the cannonical cases. It would be

useful to have this understanding, so we can have a better intuition of how changes

in network structure lead to higher memory performance. Then, we can guide our

research towards understanding how dynamic synapses can improve network struc-

ture.

Our results also suggest that we need to understand the conditions under which

extensive memory, memory capacity proportional to the number of neurons, can be

achieved. The symmetric network achieved a higher memory capacity when dy-

namic synapses were added; however, it did not achieve extensive memory. To

evaluate this result, it is important to remember that the theoretical prediction for
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non-normal matrices is that they are capable of achieving extensive memory (mem-

ory capacity proportional to the number of neurons). There is no guarantee that they

will achieve it. In order to achieve this bound, the network needs to exhibit transient

supra-linear amplification, and this amplification of the signal needs to be higher

than the noise amplification. It was shown that the delay line, and matrices unitarily

equivalent to it, are the ones that can achieve extensive memory or memory of order

proportional to the number of neurons in the network [Ganguli et al., 2008]. In our

analysis, we saw that the amplification profile changed for the symmetric network

when dynamic synapses were added. However, this amplification profile was not

sufficient for the network to achieve extensive memory. The two main reasons for

this are that it is unclear whether this particular amplification profile was sufficient

to counteract the amplification of the noise. Our network has high values along the

delay line (see its Schur Form plot), but it also has other elements connected in the

network. These interactions cause noise through interference, and this noise is am-

plified every time step. Future work should focus on understanding the conditions

that cause non-normal matrices to have a favorable transient amplification profile,

and how a network can be driven closer to a delay line profile. This question is not

straight forward. It requires a deep mathematical analysis of network theory be-

yond our current understanding. The second reason why this amplification profile

was insufficient for the Symmetric network is because in our analysis, we only read

the information stored in the neurons. The components of the effective network

are both neurons and synapses; however, we only used the information available in

the neurons. In the brain, only neurons can transmit information, so we wanted the

comparison to be fair. We only measured the available information in the neurons,

and not all the information that was amplified and available in the network. It is

unclear how the brain uses information available in hidden variables, whether it has

better decoding mechanisms to exploit information stored in synapses, or whether

simply having this information readily available is sufficient to increase memory ca-

pacity. This point touches upon the topic of ’salient’ working memory, which was

discussed by [Stokes, 2015] and which implied that information hidden to a de-
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coder is still present in other variables inside the network and it is useful to perform

a task. Our results suggest that the neural substrates of working memory should be

re-analyzed, and that we need to find a method for quantifying information present

in all variables of a neural circuit.

Additionally, the results of this chapter give rise to new hypothesis regard-

ing how the memory of discrete items in working memory and sequential memory

can be understood by the same neural substrates. By including both neurons and

synapses, we propose a more complete picture of working memory, where informa-

tion can be stored and retrieved at different time scales. In this way, we not only

reconcile the two opposing views described in this chapter, but we also suggest a

mechanism for working memory of discrete items and sequential items. When an

item is presented, and retained, the first mechanism to store this item is persistent

activity. However, as time evolves, changes in synapses occur, and information is

stored in these variables as well. The information stored in synapses can be used

to mediate sequential memory tasks, as well as interruptions by other items like

in Stoke’s experiment without eliminating persistent activity as a neural substrate.

Our proposal is to rather build on these models and include dynamic synapses in

the picture. We have shown that dynamic synapses can change the effective net-

work connectivity and improve memory capacity. However, we only used two dy-

namic synaptic variable, and the brain has multiple dynamic variables inside each

neuron. By excluding all these variables in standard analysis, we are limiting our

understanding of working memory. We believe that to fully understand the neural

substrates and capacity limits of working memory, we need to introduce the rich

temporal dynamics and biochemical cascades present inside each neuron in real

neural circuits.

We hope that our results may be of particularly use in the field of artificial neu-

ral networks. So far, these networks make use of other structures, such as external

memory buffers or gates, to learn temporal sequences. Otherwise, information is

quickly lost due to the fast-forgetting of neurons and the chaotic dynamics of the

network. Furthermore, even training these networks is difficult due to problems
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with back-propagation such as exploding and vanishing gradients. Different solu-

tions have been proposed to these learning problems, partly based on the same anal-

ysis methods that we have used. For instance, it has been proposed that orthogonal

or unitary connectivity matrices can be used to avoid these problems with train-

ing and can guarantee stable dynamics because they preserve Euclidean norms and

ensure unit length eigenvalues [Kerg et al., 2019][Orhan and Pitkow, 2019]. There-

fore, they prevent exponential growth or decay in long products of Jacobians used

during gradient decent computations. However, these connectivity matrices have

limited temporal expressivity, do not deal well with tasks that require online com-

putations, and their norm preserving characteristic breaks down in the presence of

noise or non-linearities [Orhan and Pitkow, 2019]. Orhan et. al suggests that for

non-linear networks or for networks with noisy inputs, one should focus on the

signal-to-noise ratio of the propagated input (how signal is amplified through the

circuit compared to noise, and in these scenarios non-normal matrices outperform

unitary matrices, as predicted by [Ganguli et al., 2008]. Furthermore, these authors

showed that networks that were initialized with an orthogonal or unitary connec-

tivity matrix, through training, changed their structure to non-normality and hidden

chain-like feedforward [Orhan and Pitkow, 2019]. This result is aligned with our

observations. They suggest that both biological and artificial learning mechanisms

are capable of adapting their structure input and task requirements. We showed that

this is possible with dynamic synapses and Orhan et. al showed that this is possible

with training. Dynamic synapses (short-term plasticity) and neural network training

have the same objective: modify the structure of the network to adapt to different

tasks. It has been shown that this adaptation improves memory capacity, and there-

fore the mechanisms that allow for it (dynamic synapses) should be included as part

of the neural substrate of working memory. The field connecting structure adapta-

tion with computational performance is just emerging, but we believe that the way

forward consists of incorporating more diversity and components from real neural

circuits.

For temporal sequential memory, both biological learning and artificial learn-
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ing rules might change the effective connectivity of the network to a feed-forward

structure. Kerg et. al take this argument one step further and suggest a more flex-

ible approach that uses both normal and non-normal structures and harness the

advantages of both. They proposed a novel connectivity structure, called non-

normal RNN (nnRNN), based on splitting of the Schur form into normal (diago-

nal) and non-normal (non-diagonal, feed-forward) parts. By adding a non-normal

component, these recurrent networks can use the computational advantages of

non-normality, such as transient expansion and compression and better expressiv-

ity to encode and transmit. In this way, on tasks well suited for unitary RNNs,

nnRNNs learn a normal connectivity; and on tasks requiring temporal expressivity,

they learn a non-normal connectivity. nnRNNs retain the stability advantages and

training speed of unitary RNNs, while enhancing expressivity, especially on tasks

that require computations over ongoing input sequences [Kerg et al., 2019]. This

new proposal shows how training can adjust the connectivity structure of the net-

work to increase performance, which is aligned with the proposal of this chapter

that networks can flexibly adjust their connectivity matrices and that non-normal

connectivity can arise when learning is activated in the synapses. Previous work

[Hennequin et al., 2012], has also shown that recurrent networks can amplify sig-

nals by the presence of near-critical eigenvalues in the network connectivity matrix,

or through the non-normality of this network. In particular, we showed that there ex-

ists a trade-off between non-normal amplification and the dynamical slowing caused

by the near-critical eigenvalues of the network. Furthermore, it was shown that in

order for transient amplification to occur with little slowing of dynamics, matrix

connectivity must be structured. We showed that an anti-symmetric network can

achieve this and argued that synaptic plasticity could be accounted for the shaping

of network connectivity. The characteristics of network connectivity on biologi-

cal neural circuits and whether they learn temporal inputs using a combination of

normal and non-normal components remains an open question.

We have argue that understanding the neural substrates of working memory

is closely linked to understanding its capacity limits and constraints. The physical
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structure of working memory is what ultimately limits its capacity. This understand-

ing is essential to determine the computational constraints of almost all cognitive

computations including reward-based decision-making [Collins and Frank, 2012].

Earlier in this thesis, we explored how episodic memory can be used in reinforce-

ment learning. In our model, episodes are retrieved and integrated at the time of a

decision. This implies that the retrieval and action-value computations associated

with episodes rely on working memory. The capacity to retrieve more than one

episode, and integrate this information adequately is highly dependent on working

memory capacity. The retrieval of episodes based on contextual cues is meditated by

working memory [Bornstein and Norman, 2017]. Furthermore, our model is based

on a temporal context model of episodic memory TCM [Howes et al., 2009]. This

model relies heavily on working memory because context is updated as a low pass

filter of previous contexts held in working memory. The motivation of this chap-

ter was to further our understanding of working memory capacity, so in the future

we can develop more accurate algorithms of cognition. Future work on the mech-

anistic implementations of working memory will be key for the development and

understanding of algorithmic and normative models of cognition.



Chapter 5

General Conclusions

In the previous sections, we described individual conclusions for each chapter. The

goal of this section is to try to bring together the two separate analysis done in this

thesis. For that, we put the analysis performed in this thesis into context. One

of the most important goals in theoretical neuroscience is to understand how hu-

mans make rational computations to guide their actions and decisions in the face

of uncertainty and biological constraints. To achieve this goal, it is hypothesized

that humans make assumptions about their environment that allows them to guide

their decisions accordingly. Specifically, humans infer the casual relationships of

events, and use this information to make predictions regarding the consequences of

actions. Then, if they are rational, they choose the one that gives them the highest

reward. It is important to note that even though it would be optimal to perform

exact inference of these causal relationships, human’s cognitive capacity is lim-

ited and the real world is multivariate and complex; for that reason, it is assumed

that the inference performed by humans is only approximate [Franklin et al., 2019]

[Tenenbaum et al., 2011].

This work explored properties of two memory systems relevant for neural and

cognitive computation: episodic memory and episodic memory. In the first section,

we proposed a new framework for reward based learning based on episodic mem-

ory called Contextual Episodic. This framework recalls and weights episodes from

the past based on their contextual similarity, and uses them to guide decisions. Fur-

thermore, this framework can be combined with model-free cached values (Hybrid
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model), capturing the human ability to integrate multiple sources of information to

make decisions. We showed that this model fits human data better than previous

models, demonstrating the importance of contextually-sensitive episodic memory

for decision-making. We also derived a generative model for which a particular

form of episodic recall is required for optimal posterior inference (also known as

recognition), and we proposed our episodic-based frameworks (Contextual Episodic

and Hybrid models) as approximate inference mechanisms.In order to understand

the computations performed by the brain, it is important to understand the structure

of the natural world [Brunswik, 1955] [Simon, 1955]. Using our proposed gener-

ative model, we showed that there is a range of parameters for which episodes are

more or less important, and demonstrated that the standard Rescorla-Wagner rule,

the Contextual Episodic or the Hybrid model each works best in certain situations

in terms of making more accurate inferences and predictions of future rewards. In

particular, the Hybrid model collected the greatest reward when the environment

consisted of continuous events interspersed with random events or repetitions of

similar events from the past. The Hybrid model is the model that fits human data

the best; for this reason, it might be said that human inference operates as if it ex-

pects to be in an environment with this property. That is, human inference assumes

that events are generally temporal contiguous, but it is also ready for new situations

or situations similar to the past to occur. It is for these types of situations that an

episodic memory would be necessary, and where an episodic-based reinforcement

learning algorithm can play an important role.

In the second section, we discussed another very important memory system

for cognition: working memory. This memory system is a core component of many

cognitive computations, as well as many of their theoretical proposals. Such is

the case of our Contextual Episodic and Hybrid models. For this reason, under-

standing the mechanisms of working memory and its limits is necessary for de-

veloping constrained and accurate models of cognition. Because the definition of

working memory and its neural substrates are poorly understood, in this section we

explored the hypothesis that dynamic synapses are hidden, but active components of



198

working memory [Stokes, 2015]. Using a simplified linear recurrent neural network

model with dynamic synapses, we showed that they can play an important role at

expanding the temporal capacity of working memory capacity. It is an interesting

question for future work to understand whether this result is applicable to realistic

neural connectivities, as well as understand the conditions under which dynamic

synapses (or other dynamic elements inside the neuron) are active components dur-

ing short term storage in the brain. Furthermore, this finding is important for the

machine learning community. Artificial neural networks, which are based on re-

current networks with static synapses, suffer from poor temporal memory. LSTMs

[Hochreiter and Schmidhuber, 1997], GRUs [Cho et al., 2014], among other archi-

tectures have been proposed as a way to train and buffer temporal information in

artificial networks. Our work suggests that including other variables, with a diverse

set of time constants, could be one way to harness the temporal power of recurrent

networks.

As a final thought, this thesis has explored new ways to better understand work-

ing memory and episodic memory. Although we studied them rather separately, in

fact they interact in two critical ways. First, working memory is likely the store for

the episodes that are recalled through the process of decision-making. Thus, the

capacity of working memory plays a central role in determining the quality of the

contribution of episodes to choice. Second, the time constants of the evolution of

context in the Temporal Context Model [Howard and Kahana, 2002] depend on the

nature of working memory. It is therefore a pressing task for the future to study

episodic and working memory conjointly, looking at how they realize good- and

bad-quality decision-making.



Appendix A

Confusion Matrices (Artificial Data

Analysis)

RW TC S H
RW 115.24 118.80 116.02 117.54
TC 116.80 114.56 116.72 118.07
S 115.98 117.20 112.89 113.56
H 117.14 119.82 114.01 112.02

Table A.1: Confusion Matrix Experiment 1

RW TC S H
RW 72.32 76.80 75.61 78.80
TC 77.20 74.93 76.45 79.57
S 78.90 81.05 71.05 72.49
H 88.79 92.20 76.79 69.72

Table A.2: Confusion Matrix Experiment 2



Appendix B

Model Selection for Contextual

Episodic

In Chapter 2, we introduced the Contextual Episodic model, in which episodes

stored are equal to rewards received. However, episodes stored could also be equal

to the Q values of actions at each time step. In order to select between these two

ways of storing episodes, we performed model selection between these two mod-

els. We tested two Contextual Episodic models, one where the stored values are Q

values and another one where the stored values are rewards. We call the first model

Contextual EpisodicQ and the second one just Contextual Episodic. The table below

shows the results of the BIC scores computed with human data from Experiment 2.

The Contextual Episodic model with rewards as episodes out-performs the model

with Q values as episodes. For this reason, we decided to use the value of rewards

received as the episodes stored.

Models BIC Scores
Contextual EpisodicQ 106.56
Contextual Episodic 103.85

This result suggests humans use a combination of techniques and sources of

information to make decisions. Intuitively, it makes sense that humans would have a

running average value of actions, and complement it with episodic recall if needed.

At the time of decision, it would make the most sense to keep both sources of
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information, and make use of the one that appears more accurate or relevant at the

time.



Appendix C

Weighting Functions

In this appendix, we show the plots of the recency-based and the TCM-based

weighting functions. These functions were taken model fitting experiment 2 data.

The plots show the weights for previous time step during the 162 time steps of the

experiment.It can be seen that recency-based weighting function has an exponential

decay, while TCM-based weighting function weights different items with higher

weights.
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Figure C.1: Recency-based Weight

Figure C.2: TCM-based Weight



Appendix D

Fisher Information

Fisher information, which measures the amount of information an observed ran-

dom variable carries about an unknown parameter of the distribution from which

the observed variable is sampled. Formally, it is defined as the variance of the score

(partial derivative with respect to parameter of the logarithm of the likelihood func-

tion). Since the expected value of the score is equal to zero [Ly et al., 2017]. To

define Fisher information, we define a random variable y drawn from a distribution

P(y|). The Fisher information is equal to:

I(θ) = E

[(
d
d

logP(y|θ)
)2
]

(D.1)

The Fisher information can also be written as [Ly et al., 2017]:

I(θ) = E
[(
−d2

d2 logP(y|θ)
)]

(D.2)

The Fisher information is also used to give a lower bound on the variance

of any unbiased estimator of a model’s parameters. This bound is called the

Cramér–Rao bound. Intuitively, the Fisher information tells us how much we

can infer about the parameters of a distribution when we make an observation. The

Fisher information tells us how steep or flat the distribution is. When the distri-

bution is sharply peaked, the Fisher information is high and the variance of the

estimator is low. Each observation carries a lot of information. On the other hand,

when the distribution is flat, one observation is not very informative and the Fisher
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information is low [Ly et al., 2017]. Figure D.1 provides a visual explanation of

this description, where L() refers to the Likelihood function L() = P(y|)

Figure D.1: Fisher Information



Appendix E

Linear and Linearized Networks

Response to input pulse

Figure E.1: Networks Dynamics: Linear and Non-linear Networks’ response to a pulse
input



Appendix F

Schur Form Symmetric Network

with dynamic synapses

Figure F.1: Schur Decomposition: Symmetric Network with dynamic synapses: zoom ver-
sion. Entries along the delay line can be seen
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