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Abstract  

A hybrid engineering approach to the study of transport phenomena, based on the 

synergy among computational, analytical, and experimental methodologies is 

reviewed. The focus of the chapter is on fundamental analysis and proof of concept 

developments in the use of nano- and micro-technologies for energy efficiency and 

heat and mass transfer enhancement applications. The hybrid approach described 

herein combines improved lumped-differential modeling, hybrid numerical-

analytical solution methods, mixed symbolic-numerical computations, and 

advanced experimental techniques for micro-scale transport phenomena. An 

application dealing with micro-reactors for continuous synthesis of biodiesel is 

selected to demonstrate the instrumental role of the hybrid approach in achieving 

improved design and enhanced performance. 

 

Keywords: Hybrid methods, micro-scale transport phenomena, integral trans-

forms, inverse problems, lumped models, biodiesel synthesis, micro-reactors 
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1. INTRODUCTION  

Global demands for water, energy and food are estimated to increase by 40%, 50% 

and 35%, respectively, by 2030 [1], mainly due to global population increase and 

growth of middle class and its associated consumption pattern, with the inherent 

consequences on climate change and environmental impact as a whole. Thus, the 

development of increasingly more sustainable processes is a driving force on most 

of the recent research efforts in engineering [2], including transport phenomena-

based processes where the design of improved heat and mass exchange equipment 

is an essential technological goal [3]. For instance, over the last few decades, heat 

exchangers employing micro- and mini-channels have been progressively preferred 

in applications that require high heat removal demands and/or limited dimensions 

[3-7].  

The research reported here originated through a UK-Brazil Newton Fund-

FAPERJ collaborative development project, offering a holistic approach to address 

the complex nexus challenges from the societal demand for food, water, energy and 

need for environmental care. The motivation involved a combined system, harness-

ing electrical energy from high efficiency water cooled HCPVs and using the re-

sulting waste heat for water desalination and continuous biodiesel production, mak-

ing use of nano and micro-scale transport phenomena analysis tools recently 

employed in different thermal engineering applications [8-11]. The original aspects 

of the present research includes problem formulation and simplification strategies, 

modern analytical-numerical solution methods for differential equations, parametric 

and functional identification through inverse analysis, symbolic computation tools, 

nano and micro-fabrication, non-intrusive optical techniques in micro-scale heat 

and fluid flow, employed individually or jointly, as needed to answer the basic ques-

tions raised by the applications to be advanced. This chapter starts by describing the 

so-called hybrid approach that combines the computational-analytical-experimental 

tools to analyze a system and its behavior [12-13]. The impact of nano- and micro-

technologies on transport enhancement has already been illustrated through some 

fundamental analysis around the three major paths [8], namely, miniaturization of 

heat exchange devices, thus bringing transport characteristic dimensions to the mi-

cro-scale, functionalization of the materials (solids and fluids) at the nanoscale, thus 

augmenting thermophysical properties, and geometrical structuring of micro-sys-

tems and passages, thus altering the transport or mixing mechanisms. These funda-

mental ideas and the hybrid analysis framework are here exemplified in a selected 

application involving the continuous synthesis of biodiesel in micro-reactors.  

2. THE HYBRID APPROACH 

Figure 1 depicts the various steps in simulating a typical advanced engineering 

application [12-13], starting with the construction of a physical model of the 

(usually intricate) real problem. Quite frequently, working on nano- and micro-



3 

technologies implementation, requires the problems to be modeled within a 

multiphysics and multiscale framework. The various stages depicted in Fig. 1 are 

interconnected; hence, in most simulation processes parallel improvements in each 

stage are necessary, in order to achieve a desirable combination of accuracy 

improvement and simulation cost reduction in the overall development.  

 

 

 

Fig. 1. Summary of the simulation process in engineering development. 

 

Starting at the mathematical model stage, the hybrid approach is already 

handy in providing mixed lumped-differential formulations, specifically employed 

to solve diffusion and convection-diffusion problems. The idea behind the partial or 

total lumping of partial differential formulations lies in the elimination of space 

variables from the formulation through an averaging process, once the local 

information in that particular coordinate or coordinates is not essential to the 

problem solution. However, the process involves an approximation, whereby the 

local boundary information in the coordinate to be eliminated, which reappears 

within the partial differential equation during the averaging process, needs to be 

expressed analytically in terms of the averaged potential. The classical lumped 

system analysis assumes negligible gradients along that coordinate and equates the 

average and boundary potential values. This is in general not sufficiently accurate 

and is thus of limited use. Higher order approximations that provide a more 

informative relation between boundary and average potentials are thus quite useful 

in model reduction efforts. The Coupled Integral Equations Approach (CIEA) [14-

20] is a systematic methodology for constructing improved lumped-differential 

formulations, based on approximating the integral expressions for the average 

potential and its associated flux through Hermite formulae for integration, which 

employ only the function and its spatial derivatives at the boundary points [21]. 

Then, more informative expressions relating average and boundary potentials are 



4  

achieved, which are then incorporated in the averaged differential formulation.  

Accuracy is significantly improved over the classical lumping approach, while 

retaining the benefits such as the reductions in mathematical complexity and in 

simulation time/effort compared to the solution of the original fully differential 

problem formulation. Also of great relevance in the mathematical modeling stage is 

the reformulation of problems in heterogeneous media and/or complex geometrical 

arrangements as a single domain mathematical problem, which can be essential for 

a proper hybrid numerical-analytical treatment. The concept of a single domain 

formulation was formalized in the context of natural convection in porous media 

and conjugated heat transfer problems [22-25], and progressively employed to 

handle other classes of problems. The idea is simply that of rewriting a system of 

coupled equations for a composite/multi-component system, with various common 

interfaces, as a single region in which the functions associated with physical 

properties and sources are rewritten in the form of coefficients with space 

variability, accounting for the transitions through the different phases or 

components. 

The direct problem solution stage in any simulation process is by far the 

most extensively studied in the literature. The advent of the electronic computer 

brought together a revolution on the numerical analysis and simulation tools for 

partial differential equations, through the best-known numerical techniques such as 

finite difference, finite element, and finite volume methods [26], which markedly 

changed the advanced engineering practice. Nevertheless, after decades of 

substantial scientific and technological progress on both software and hardware, 

such methodologies are still not universal or fully reliable, despite the considerable 

efforts of extension, generalization, and automatic error control. Particularly, from 

a computational cost perspective, they yet remain quite demanding and even 

prohibitive in computationally intensive tasks. As examples of situations when the 

direct problem solution needs to be obtained several thousands of times, one can 

recall the identification of parameters and functions in inverse problems analysis, 

the geometrical and parametric optimization of process performance, and the 

stochastic analysis of uncertainty propagation. While the classical analytical 

approaches for partial differential equations can be very restrictive in terms of 

classes of problems that can be dealt with, over the last three decades, hybrid 

numerical-analytical approaches have been developed in different physical 

contexts, at a much more modest pace in comparison to purely numerical methods, 

based on different analytical tools. The Generalized Integral Transform Technique 

(GITT), based on the classical integral transform method [27-29], has introduced a 

hybrid nature to this eigenfunction expansion approach [30-32], yielding error-

controlled solutions to a large number of linear and nonlinear convection-diffusion 

problems, as reviewed in various sources [33-39]. The interest in analytical solution 

methodologies for PDE´s might not be so evident to the less experienced researcher 

in the field, but it has been experiencing a noticeable revival, mainly for the 

following reasons: 

 

1. Exact solutions:  analytical methods lead to computationally costless so-

lutions, with user prescribed accuracy, though such solutions might not be 
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obtainable when the formulation complexity increases; 

2. Trends and asymptotic behaviors: analytically obtained solutions offer 

minimal computational effort, besides yielding parametric analysis and 

limiting behavior identification even with very little computational work; 

3. Reference benchmark results:  independent analytical benchmark results 

are essential in verification of numerical methods and codes; 

4. More straightforward and feasible: symbolic computation platforms 

have enabled a number of ideas on analytically-based methodologies that 

were either abandoned or never even considered; 

5. Intensive computational tasks:  the advantage of analytical solutions are 

even more evident in costly computations, such as parameters and func-

tions inverse analysis identification, process optimization, and stochastic 

simulation for uncertainty propagation; 

6. Bridge to build hybrid numerical-analytical approaches: they are in-

strumental in the search for higher precision and robustness in classes of 

problems that are not solvable through classical analytical methods. 

 

The basic steps in the GITT approach can be summarized as follows [33-39]: 

 

1. Select an analytical filtering solution: to improve convergence behavior 

of the eigenfunction expansions, if required. Filtering to achieve homoge-

neous boundary conditions and/or reduce the importance of equation 

source terms is always helpful. Filtering can also be applied recursively if 

necessary, or implicitly, such as in the case of a nonlinear filter. 

2. Choose the associated eigenvalue problem: which should desirably in-

corporate characteristic linear behaviors of the original problem formula-

tion represented by the coefficients of the differential operators. Both dif-

fusive or convective eigenvalue problems may be adopted. More recently, 

nonlinear eigenvalue problems have also been employed with marked im-

provement on convergence. 

3. Develop the integral transform pair: obtain the transform and inversion, 

that define the integral transform operation and explicitly recover the po-

tential. 

4. Solve the eigenvalue problem: either in analytical form and symbolic 

computation [40], or through the GITT approach itself, transforming the 

chosen differential eigenvalue problem into an algebraic one. 

5. Integral transform the original PDE: obtain the transformed differential 

system, which shall be an ODE system for a total transformation, when all 

the independent variables are eliminated except one. It can result in an in-

itial value problem, for an original parabolic or hyperbolic-type problem, 

or in a boundary value problem, for an original elliptic formulation. A par-

tial transformation may also be applied, when two independent variables 

are kept in the transformed system, yielding a partial differential trans-

formed system. The partial transformation option may also be adopted in 

solving a boundary value problem via a pseudo-transient formulation. 

6. Compute transformed system coefficients: the coefficients are integrals, 
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single or multiple, which involve the eigenfunctions. When analytical ex-

pressions are not obtainable through symbolic computation [40], there is a 

marked advantage in promoting semi-analytical integrations, when the os-

cillatory nature of the eigenfunctions is analytically handled while the non-

oscillatory portion of the integrand is approximated by piecewise polyno-

mial interpolation. Traditional numerical integration may also be em-

ployed and, again, the knowledge about the oscillatory behavior of the ei-

genfunctions can be advantageous in defining appropriate domain 

partitions to reduce computational costs in adaptive integration, especially 

for higher order eigenvalues, which represent the higher oscillation fre-

quencies. 

7. Solve transformed system: numerically (or analytically when applicable) 

solve the resulting coupled ODE or PDE system for the transformed po-

tentials, which needs to be truncated to a sufficiently large order for nu-

merical evaluation. Reliable automatic solvers are readily available for the 

numerical solution of stiff ODE systems, and even for one-dimensional 

systems of PDE´s with adaptive remeshing, such as in the routine NDSolve 

of the Mathematica system [40]; 

8. Recall inversion formula: to analytically reconstruct the hybrid solution 

of the desired potential. At this point, the inversion formula can be em-

ployed for accuracy testing, once the intermediate tasks were accom-

plished under error control, and thus allowing for best selection of the 

transformed system truncation orders. Error estimates are then automati-

cally provided at any desired position and time. 

 

This hybrid approach has been extensively used as a benchmarking tool, aiding 

in the verification of more general and flexible numerical codes, but also as a 

production tool itself, as previously discussed, especially in highly intensive 

computational jobs and/or precision demanding applications. The various classes of 

problems so far treated by the GITT include linear and nonlinear diffusion, 

convection-diffusion, and reaction-convection-diffusion problems, moving 

boundary problems, eigenvalue problems of unknown analytical solution, irregular 

domains, heterogeneous media, boundary layer equations, and Navier-Stokes 

equations [30-39]. Fairly recently, an open source general purpose symbolic-

numerical code was implemented, coined as the UNIT code (Unified Integral 

Transforms) [41-42] and implemented in the Mathematica platform [40]. It offers 

all of the basic analytical and numerical steps in the GITT implementation, allowing 

for a more straightforward utilization of this methodology. 

The next stage in the simulation process involves using both the direct problem 

solution and the experimental data from the adjacent stage in Fig.1, to perform the 

inverse problem analysis, as required, for parameter and function identification or 

even state estimation [43-44]. However, this analysis may also be employed ahead 

of the experimentation, aimed at achieving an optimal design for the experimental 

procedure and setup [43]. In the identification of properties and source terms, the 

direct problem solution is employed first for the sensitivity analysis of the quantities 

to be estimated and to produce simulated data, so as to evaluate the inverse problem 
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solution ahead of employing actual experimental data. Bayesian inference has been 

preferred for the inverse analysis in the present context [45-52], first of all due to 

its inherent robustness, but also due to advantages in being able to account for a 

priori information on the parameters. The drawback of this statistical approach, 

associated with the usually large number of evaluations of the direct problem 

required for an appropriate statistical inference through the Monte Carlo Markov 

Chain method, is alleviated by the use of the present hybrid solution pathways with 

reduced computational cost. Also, in two other aspects the hybrid direct problem 

solution is particularly beneficial to the cost reduction in the inverse problem 

analysis. Firstly, the experimental data acquired by the non-intrusive experimental 

techniques, to be discussed later, is often available in large quantities, in both space 

and time, resolving a certain region in the overall domain in great detail. Therefore, 

it is feasible and interesting to work within the integral transformed domain, by 

performing the same integral transformation process of the direct problem solution, 

onto the spatially distributed experimental data. Such is the case, for example, with 

temperature measurement fields obtained by infrared thermography (IRT) or laser 

induced fluorescence (LIF) methods, velocity and concentration distributions 

obtained with particle image velocimetry (PIV) and LIF methods. A marked data 

reduction effect then occurs, with an additional regularization effect on the inverse 

problem solution. Secondly, for a function estimation process, the unknown 

function can itself be expressed as an eigenfunction expansion, as a choice of 

parametrization, which permits obtaining analytical expressions for the transformed 

system coefficients, thus further reducing computational costs by avoiding 

numerical integration at the direct problem solution stage. Figure 2 summarizes the 

interconnections that characterize the hybrid approach advocated here, involving 

the four stages of mathematical model, direct problem, inverse problem, and 

experiments. 

 

 
 

Fig. 2. The hybrid approach in mathematical modeling and direct-inverse problem 

analysis. 

 



8  

In parallel to the advancement of inverse problem analysis tools, experimental 

techniques have experienced significant progresses along recent years, such as in 

the case of infrared thermography for non-intrusive temperature measurements [53-

59]. Microscopic lenses can also be employed to refine further the spatial 

information, and pixels of the order of 20 microns are fairly common in the present 

commercial IRT systems. However, these temperature measurements are in general 

restricted to external surfaces of the micro-systems, unless IR transparent windows 

are employed to capture the internal fluid interface temperatures. Nevertheless, the 

inverse problem analysis may provide estimates of internal temperatures, working 

as a virtual sensor. Other non-intrusive experimental techniques have been 

employed in the context of this joint research effort, such as Micro particle image 

velocimetry (µPIV) for velocity measurements and Micro laser induced 

fluorescence (µLIF) for temperature and concentration measurements [59-65]. 

µPIV is a non-intrusive quantitative imaging technique that uses statistical cross-

correlation algorithms to detect the particle motion of tracer particles seeded in the 

microscale flows. By determining the particle displacement in the flow, µPIV 

enables measurements of the actual velocity field of the imaged microfluidic 

systems. Fluid temperature measurements in microscale devices can be obtained 

using a μLIF system by means of a suitably selected fluorescent dye injected in the 

flow to sense local temperature. 

The stage of algorithm implementation follows the simulation process shown 

schematically in Fig. 1. At least three possibilities are shown in the graph; namely 

the employment of an object-oriented platform, such as the well-known commercial 

multiphysics simulations software systems, the preparation of dedicated algorithmic 

codes through one of the well-established high level programming languages, and 

the use of modern symbolic computation environments. All of these tools add up to 

a successful engineering development effort. In the present research, particular 

emphasis is given on the mixed symbolic-numerical Mathematica platform [40]. 

3. APPLICATION TO MICROSCALE TRANSPORT 

PHENOMENA 

Microsystems based on flowing fluids have been extensively developed along the 

last few decades, including among others, micro-mixers, micro-pumps, micro-reac-

tors, and micro-heat exchangers, benefiting from the larger surface area/volume ra-

tion aimed at enhancing and accelerating transport phenomena. Such technological 

development efforts have required advancing not only experimental techniques at 

the micro-scale, but also formulation and methodological extensions for the simu-

lation of these micro-devices. While the continuum mechanics hypotheses are usu-

ally valid within the range of dimensions of such systems, there are sensible differ-

ences in the relative importance of the various possible effects in comparison to the 

more usual macro-systems. For instance, conjugated heat transfer with the device 

substrates, axial diffusion along the fluid currents, viscous dissipation effects, fluid 



9 

slip in liquid flows over superhydrophobic surfaces, and flow rarefaction at the 

channel walls for gaseous flows, are examples of phenomena that may play a major 

role when modelling fluid flow and heat and mass transfer at the micro-scale. Since 

the computational analysis of transport phenomena in microsystems usually in-

volves multiple scales in geometry and physical parameters, the costs associated 

with traditional numerical methods tend to markedly increase, thus making the pre-

sent hybrid method more attractive in such classes of problems, as illustrated in 

[10].   

 In this chapter, the hybrid methodology will be illustrated by considering a 

microreactor analysis for continuous synthesis of biodiesel.  The findings presented 

are part of an ongoing collaborative research aiming to improve the design of the 

microreactors recently demonstrated for biodiesel synthesis [66], targeting resi-

dence times of around one minute or less. For this purpose, the hybrid approach has 

been employed throughout the development and design of this microfluidic system 

[67-71], then validated through experimental tests employing high speed and ther-

mal imaging infrared cameras [72]. Advanced additive micro-manufacturing plat-

forms were also used to propose a more economical fabrication of multiple micro-

reactors to assemble a modular prototype [72]. There are key process parameters, 

such as oil and alcohol flow rates, geometry, concentration and type of catalyst, and 

substrate temperature, that can be optimized to reach increased efficiency of the 

basic unit within the prototype, which will then lead to the parallel arrangement of 

a sufficiently large number of microreactors for demonstration. It has also been em-

ployed to develop an innovative device for recovery of rejected heat from other 

processes, such as combustion engines or high concentration photovoltaic panels 

[73], through an integrated micro-heat exchanger mounted on the same microreac-

tor substrate. For the sake of brevity, these aspects are not fully addressed here. 

 

3.1  Problem Formulation 

 

Biodiesel is a biodegradable product that can be used as an alternative fuel since its 

physico-chemical properties are very similar to those of conventional diesel, but 

with the advantages of being a clean and renewable source of energy and 

contributing to the reduction of pollution and greenhouse effect. The most common 

biodiesel production route is via the transesterification reaction that occurs in three 

successive steps [74]. Fatty acid esters (biodiesel) are obtained in each step of the 

reaction, ethyl ester in case ethanol is used as the alcohol, and methyl ester if 

methanol is used [74]. The three steps of the transesterification reaction are then 

written as: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

4

5

6

k

k

k

k

k

k

Triglyceride TG  + Alcohol A   Diglyceride (DG) + Ester B

Diglyceride DG + Alcohol A   Monoglyceride (G) + Ester B

Monoglyceride MG  + Alcohol A   Glycerol GL + Ester B

⎯⎯→⎯⎯

⎯⎯→⎯⎯

⎯⎯→⎯⎯
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where k1, k2, k3, k4, k5 and k6 are the kinetics coefficients that need to be determined 

for the proper simulation of the biodiesel synthesis process. 

The design of microdevices for biodiesel production via transesterification 

reaction is a complicated task due to the complex liquid-liquid reactant flow that 

takes place within the microchannels [75-78]. Thus, the computational simulation 

is an important tool that helps to understand the physical-chemical phenomenon 

and, consequently, to determine the suitable conditions that maximize the 

conversion of triglycerides during the biodiesel synthesis. The mathematical model 

is obtained through a steady-state mass balance that considers diffusive-convective-

reactive effects to describe the transesterification route for biodiesel synthesis in a 

microreactor of rectangular section [67-72], as represented in Figure 3.  
 

 
Fig. 3. Geometry and coordinates system of micro-reactor for biodiesel synthesis 

(triglyceride – green region, alcohol+catalyst – red region). 

 

The dimensionless mass transfer equations for the species concentrations, 

considering second order consecutive elementary and reversible reactions 

preferably in the triglyceride phase, under isothermal conditions and with constant 

physical properties, can be written as: 

 

( )
2 2 2

2 2 2

( , , ) ( , , ) ( , , ) (1 , )
,TG s

s s s s

s

s

F F F
U Y Z G

X Pe X Y

F X Y Z X Y Z X Y Z X

Z

Z    
= +  +  +  

    

  (1a) 

(0, , ) 1;TGF Y Z =    (0, , ) 0,sF Y Z =
 
   s= A, DG, MG, GL, B              (1b,c) 

1 0 0 1

0s s s s

X Y Z Z

F F F F

X Y Z Z
= = = =

   
= = = =

   
,   for all species s           (1d-g) 

0
( ,1, )A AF X Z F= ;     

1

0s

Y

F

Y
=


=


,

  

  s = TG, DG, MG, GL, B           (1h,i) 

 

where Fs are the dimensionless concentrations and the kinetic expressions for each 

species, Gs, are given by [69]: 
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 1 2TG TG A DG Bk F F kG F F= − +                                            (1j) 

( ) ( )1 3 5 2 4 6A TG DG MG A DG MG GL Bk F k F k F FG k F k F k F F= − − − + + +                (1k) 

( ) ( )1 3 2 4DG TG DG A DG MG BG k F k F F k F k F F= − + − +                               (1l) 

( ) ( )3 5 4 6MG DG MG A MG GL BG k F k F F k F k F F= − + − +                             (1m) 

5 6GL MG A GL Bk F F k FG F= −                                                (1n) 

( ) ( )1 3 5 2 4 6B TG DG MG A DG MG GL BG k F k F k F F k F k F k F F= + + + − − −                (1o) 

 

while the velocity profiles for the vegetable oil and the alcohol, assumed fully 

developed and in laminar stratified regime, are given by [69]: 

 

( )
( )

( ) ( )

( ) ( )

1
2

1

2
, 1

2
1

2

A

TG i

i TG

TG TGA

TG

TG TG

i H yi Hi
u y z sin z S sinh sinh

w w w w

H H i i H H y
sinh sinh

w w

i H H y i H H y
sinh sinh

w w



=

   −        
= + − + +        

           

 −   − +    
+ − + +     

      

 − −  − +   
− −   

   



2
i y

sinh
w

  
+  

 

(2a) 

 

( )

( ) ( )

( ) ( )

1
2

1

2
, 1

2 2
1

2

TG

A i

i A

TG TGTG

A

TG TG

i Hi i y
u y z sin z S sinh sinh

w w w w

H H i i H y
sinh sinh

w w

i H H y i H H y
sinh sinh sin

w w



=

            
= + − + +         

          

 −   −    
+ − + +     

      

 − −  + −   
− − +   

   



( )i H y
h

w

 − 
 

 

         (2b) 

with i = 1,3,5,... and

( )
( )

( )

5
2

3 3

2 2

2
i

TG

TG A TG A

w P
S

H H i Hi
i L sinh sinh

w w

− 
=

 −    
  − +  +    

    

    

    

 (2c) 

 

The associated dimensionless groups are given by: 

 

TG

TG

TGo

C
F

C
= ; 

A

A

TGo

C
F

C
= ; 

DG

DG

TGo

C
F

C
= ; 

MG

MG

TGo

C
F

C
= ; 

B

B

TGo

C
F

C
= ; 

GL

GL

TGo

C
F

C
= ; 

*

A

Ao

TGo

C
F

C
= ; 

TG

y
Y

H
= ; 

x
X

L
= ; 

z
Z

w
= ; ( )

( )

,

,
,

TG

TG

TG AV

u Y Z
U Y Z

u
= ;

,

TGo

TG AV

LC

u
 = ;  
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2

,

s

s

TG AV TG

LD

u H
 = ;

,TG AV

s

s

u L
Pe

D
= ; 

2

2

TGH

w
 =       (3a-o) 

 

where C’s and D’s are the dimensional concentrations and the mass diffusion 

coefficients of each species, ,TG AVu  is the average flow velocity for the layer 

containing the triglyceride species, μ represents the dynamic viscosities of the 

fluids, H is height of the microchannel, HTG is the height of the fluids interface, L 

represents the length and W the width of the microreactor, and P is the total 

pressure drop along the microreactor. 

HTG, the height of triglyceride layer, can be numerically computed for 

specific experimental values from the ratio between the volumetric flow rates of the 

two phases present in the microsystem (triglyceride and alcohol), using the 

following relation: 

 

( )

( )

0 0

0

,

,

TG

TG

Hw

TG

TG

w H

A

A

H

u y z dydz
Q

Q
u y z dydz

=
 

 

                                                 (4) 

 

where QTG and QA are the triglyceride and the alcohol volumetric flow rates, 

respectively, while the pressure drop ΔP is obtained from the equation for the 

volumetric flow rate of the triglyceride phase. 

In order to evaluate the influence of temperature on the reaction conversion 

rate under isothermal conditions, the Arrhenius equation can be used to estimate the 

kinetic constants at different temperature levels, as follows [70]: 

 

,1

1

, 1, 2, ..., 6i

i i

E
k Exp i

RT

 
= − = 

 
                                                 (5a) 

 

where ki,1 is the kinetic constant at the temperature T1. Manipulating eq. (5a), the 

ratio of the kinetic constants at different temperature levels can be readily obtained 

from:  

 

 

,2

,1 1 2

1 1
ln ,  1, 2, ..., 6

i i

i

k E
i

k R T T

   
= − =    

  

                                             (5b) 

 

where ki,2 is the kinetic constant at the temperature T2. 

The consumption of triglyceride along the biodiesel synthesis is influenced by the 

time the species remain inside the micro-channel, also called the residence time. Since 

it is assumed that the reaction occurs only in the triglyceride phase, then the residence 
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time may be determined from the ratio of the triglyceride layer volume and its 

volumetric flow rate, as: 

 

𝜏 =
𝐿𝑊𝐻𝑇𝐺

𝑄𝑇𝐺
                                                           (6a) 

 

The triglyceride consumption is evaluated in terms of the fractional conversion, 

according to: 

 

, ,

,

(0) (1)
(%) 100

(0)

TG AV TG AV

TG AV

F F
ConversionTG

F

 −
=   
 

                          (6b) 

 

 

3.2  GITT Solution of the 3D Microreactor Problem 

 

Equations (1) constitute a nonlinear system of three-dimensional partial differential 

equations, coupled through the kinetic expressions for each species, which has been 

solved by the Generalized Integral Transform Technique (GITT) [69-70]. First of 

all, in order to homogenize the boundary condition of the alcohol species in the Y 

direction and ensure improved convergence behavior, a simple filter is proposed as: 

 

( ) ( ), , , ,A Ah AoF X Y Z F X Y Z F= +                                        (7) 

 

To satisfy the boundary conditions and establish the basis to represent the 

concentrations as eigenfunction expansions, two different eigenvalue problems 

were adopted, one for the alcohol species and the other for the remaining species. 

In [70], two different possibilities were investigated, either accounting for the 

velocity profile in the eigenvalue problem or just considering the simplest constant 

coefficients formulation. Here, only the second alternative is detailed to illustrate 

the methodology, as in [69], but results are compared later on for both solution 

paths. Thus, the eigenvalue problem for the alcohol concentration equation can be 

defined as: 
2 2

2

2 2
( , ) 0i i

i i Y Z
Y Z

   
+ +  =

 
                                                  (8a) 

0 0 1

0, (1, ) 0, 0, 0i i i

i

Y Z Z

Z
Y Z Z

= = =

  
=  = = =

  
                              (8b-e) 

 

Problem (8) is then solved by Separation of Variables, leading to a couple of one-

dimensional problems to represent the original eigenfunction ( , )Y Z  in accordance 

with Table 1 below. One can then express the normalized eigenfunction ( , )Y Z and 

the corresponding eigenvalues as: 
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( ) ( ), 1, 2,( , )m n m nY Z Y Z =                                                   (9a) 

 
2 2 2

, 1, 2,m n m n= +                                                            (9b) 

 

 

Table 1. Auxiliary eigenvalue problems for eigenfunction ( , )Y Z :  

a) Eigenvalue problems; b) Normalized eigenfunction; c) Norm; d) Eigenvalues 

 

 Coordinate Y Coordinate Z 

a) 

( )
2

1, 2

1, 1,2

1,

1,

0

0

0, (1) 0

m

m m

m

m

Y

d
Y

dY

d

dY
=

+ =

= =


 




 

( )
2

2, 2

2, 2,2

2, 2,

0 1

0

0, 0

n

n n

n n

Z Z

d
Z

dZ

d d

dZ dZ
= =

+ =

= =


  

 
 

b) ( )
( )1,m

1,

1

cos
m

Y
Y

N
=




  ( )

2,

2,2,

2,2

1 if 0
1

cos if  0

n

nn

n

Z
ZN

=


=  
 

 









 

c) ( )
1

2

1 1,

0

1

2
mN Y dY= =   ( )

1
2,

2

2 2,

2,0

1    if 0

1    if 0
2

n

m

n

N Y dZ
=

= = 








 

d) 1,

(2 1)
, 1,2,...

2
m

m
m

−
= =


  2,n , 0,1,2,...n n= =    

 

 

The eigenvalue problem for the other remaining species can be defined as: 

 
2 2

2

2 2
( , ) 0i i

i i Y Z
Y Z

   
+ +  =

 
                                                (10a) 

0 1 0 1

0, 0, 0, 0i i i i

Y Y Z Z
Y Y Z Z

= = = =

   
= = = =

   
                           (10b-e) 

  

Again, problem (10) is readily solved analytically and the solution is expressed 

through the one-dimensional eigenvalue problems as presented in Table 2. Then, the 

normalized eigenfunction  and its eigenvalues can be written as: 

 

( ) ( ), 1, 2,( , )m n m nY Z Y Z =                                                     (11a) 

 
2 2 2

, 1, 2,m n m n= +                                                                (11b) 
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Table 2. Auxiliary eigenvalue problems for eigenfunction ( , )Y Z : 

a) Eigenvalue problems; b) Normalized eigenfunction; c) Norm; d) Eigenvalues 

 

 Coordinate Y Coordinate Z 

a) 

( )
2

1, 2

1, 1,2

1, 1,

0 1

0

0, 0

m

m m

m m

Y Y

d
Y

dY

d d

dY dY
= =

+ =

= =


 

 
 

( )
2

2, 2

2, 2,2

2, 2,

0 1

0

0, 0

n

n n

n n

Y Y

d
Y

dY

d d

dY dY
= =

+ =

= =


  

 
 

b) ( )
( )

1,

1,

1, 1,1

1 if 01

cos if  0

m

m

m m

Y
YN

=
= 






 
 ( )

2,

2,2,

2,2

1 if 0
1

cos if  0

n

nn

n

Z
ZN

=


=  
 

 









 

c) ( )
1

1,m
2

1 1,

1,m0

1    if 0

1   if 0
2

mN Y dY
=

= = 








 ( )

1
2,

2

2 2,

2,0

1    if 0

1   if 0
2

n

m

n

N Z dZ
=

= = 








 

d) 1, , 0,1, 2,...m m m= =   
2, , 0,1,2,...n n n= =    

 

 

 

After solving the related eigenvalue problems, the following integral transform 

pairs for each of the species involved in the transesterification reaction can be defined: 

 

 

- Transforms 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

0 0

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

i

i

i

i

i

i

TG i TG

Ah i Ah

DG i DG

MG i MG

B i B

GL i GL

F X Y Z F X Y Z dYdZ

F X Y Z F X Y Z dYdZ

F X Y Z F X Y Z dYdZ

F X Y Z F X Y Z dYdZ

F X Y Z F X Y Z dYdZ

F X Y Z F X Y Z dYdZ

= 

= 

= 

= 

= 

= 

 

 

 

 

 

 

                              (12a-f) 
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- Inverses 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

, , , , , , ,

, , , , , , ,

, , , , , , ,

i i

i i

i i

TG i TG Ah i Ah

i i

DG i DG MG i MG

i i

B i B GL i GL

i i

F X Y Z Y Z F X F X Y Z Y Z F X

F X Y Z Y Z F X F X Y Z Y Z F X

F X Y Z Y Z F X F X Y Z Y Z F X

 

= =

 

= =

 

= =

=  = 

=  = 

=  = 

 

 

 

(13a-f) 

 

It can be noticed that the eigenfunction expansions in eqs. (13) have been 

represented with a single index i, thus combining the eigenvalues and eigenfunctions 

of the one-dimensional auxiliary problems by reordering the summation terms in 

decreasing order of importance, adopting the sum of the squared eigenvalues as the 

sorting criterium [16,69]. Finally, the integral transformation of eqs. (1a-o), after 

filtering with eq.(7), is accomplished employing the integral transform operator with 

the respective eigenfunction for each species along both the Y  and Z  domains. The 

transformed ODE system then becomes: 

 
2

1 2

,2
1

1
, where , , , ,

j j

i

s s

ij s i s s ijk

j s

dF d F
O F G s TG DG MG B GL

dX Pe dX
  



=

= − + =    (14a) 

2

2 2

,2
1

1j j

i

Ah Ah

ij A i Ah Ah ijk

j A

dF d F
O F G

dX Pe dX
  



=

= − +                      (14b) 

 ( ) ( ) ( )1, 2,0 , 0 , 0 0, where , , ,
i i iTG i Ah Ao i sF f F F f F s DG MG B GL= = − = =    (14c-e) 

1

0,  for all speciesis

X

dF
s

dX
=

=                        (14f) 

The term ,s ijkG  represents the transformed reaction kinetic terms, according to: 

 

( )3 4

1 2 1

1 1
j k j k iijk TG Ah ijk DG B Ao TG

k j

G k O F F k O F F k F F
 

= =

= − + −TG,ijk
                  (14g) 

( )

( ) ( )

5

1 3 5

1 1

6 7

2 4 6 1 3 5

1

j j j k

j j j k j j j

ijk TG DG MG Ah

k j

ijk DG MG GL B Ao ij TG DG MG

j

G O k F k F k F F

O k F k F k F F F O k F k F k F

 

= =



=

= − − − +


+ + + − − −






A,ijk

  (14h)           

( ) ( )

( )

3 4

1 3 2 4

1 1

1 3

j j k j j k

i i

ijk TG DG Ah ijk DG MG B

k j

Ao TG DG

G O k F k F F O k F k F F

F k F k F

 

= =

 = − + − +
 

+ −

DG,ijk

   (14i)               
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( ) ( )

( )

3 4

3 5 4 6

1 1

3 5

j j k j j k

i i

ijk DG MG Ah ijk MG GL B

k j

Ao DG MG

G O k F k F F O k F k F F

F k F k F

 

= =

 = − + − +
 

+ −

MG,ijk

        (14j)          

( )3 4

5 6 5

1 1
j k j k iijk MG Ah ijk GL B Ao MG

k j

G k O F F k O F F k F F
 

= =

= − +GL,ijk
                  (14k) 

( )

( ) ( )

3

1 3 5

1 1

4

2 4 6 1 3 5+

j j j k

j j j k i i i

ijk TG DG MG Ah

k j

ijk DG MG GL B Ao TG DG MG

G O k F k F k F F

O k F k F k F F F k F k F k F

 

= =

= + + +


− − − + + +


B,ijk

         (14l)          

 

where the coefficients produced by the integral transformation procedure are given by: 

 
1 1 1 1 1 1

1 2 3

0 0 0 0 0 0

1 1 1 1 1 1

4 5 6

0 0 0 0 0 0

1 1 1 1

7

1, 2,

0 0 0 0

, , ,

; ;

; ;

ij TG i j ij TG i j ijk i j k

ijk i j k ijk i j k ijk i j k

ij i j i i i

O U dYdZ O U dYdZ O dYdZ

O dYdZ O dYdZ O dYdZ

O dYdZ f dYdZ f

=   =   =   

=    =    =   

=   =  =

     

     

   
1 1

0 0

idYdZ 

  (15a-i) 

 

Once the transformed concentrations have been numerically determined from 

solving the ODE system (14), the original concentrations can be recovered through the 

inverse formulas defined in eqs. (13a-f) and in the filter, eq. (7). The concentrations can 

also be presented in terms of flow averaged potentials, defined as follows:  

 

( )

1 1

0 0

s, 1 1

0 0

( , ) ( , , )

, , , , , ,

( , )

TG s

AV

TG

U Y Z F X Y Z dYdZ

F X s TG A DG MG GL B

U Y Z dYdZ

= =
 

 

       (16) 

 

By introducing the eigenfunction expansions for the dimensionless concentrations of 

the species, the following average concentrations can be obtained: 

 
1 1

1 0 0

, 1 1

0 0

( , ) ( , ) ( )

( ) , , , , ,

( , )

iTG i s

i

s AV

TG

U Y Z Y Z dYdZF X

F X s TG DG MG GL B

U Y Z dYdZ



=



= =



 

  (17a) 
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1 1

1 0 0

, 1 1

0 0

( , ) ( , ) ( )

( )

( , )

iTG i Ah

i

A AV Ao

TG

U Y Z Y Z dYdZF X

F X F

U Y Z dYdZ



=



= +



 

                   (17b) 

  

The built-in function NDSolve of the Mathematica system [40] is a suitable 

computational tool for numerically handling the coupled nonlinear transformed 

system, eqs.(14), since it provides automatic error controlled solutions and allow for 

expressing the dependence of the transformed fields along the variable X as continuous 

interporlation functions. 

 

3.3  CIEA for Improved Lumped-Differential Formulation 

 

The Coupled Integral Equations Approach (CIEA) [14-20] aims at reducing the 

number of independent variables in partial differential equations, via averaging 

(lumping) operations in the coordinates selected to be eliminated, but partially 

preserving the local information in these space variables through the corresponding 

boundary conditions. The use of Hermite formulae to approximate the averaging 

integrals [21] provides improved formulations when compared to the classical 

lumped system analysis [20], which is the simplest possible lumped approximation. 

The partial differential three-dimensional model shown in eqs. (1) is here 

reformulated using the CIEA technique, yielding a nonlinear coupled mathematical 

model composed only of first order ODEs that enables simulations with reduced 

computational costs [14-20].  

Following the CIEA procedure, the lumping was applied in the transverse and 

vertical directions, coordinates Z and Y, respectively [71]. The approximation H0,0, 

which corresponds to the trapezoid rule, was used to approximate the average mass 

flow of the species, while the approximation H1,1, which corresponds to the cor-

rected trapezoid rule, was used to approximate the average species concentrations. 

In general form, the approximations H0,0 and H1,1 are given by: 

 

( ) ( ) ( )( )0,0

0

0
2

h
h

H f x dx f f h  +                                    (18a) 

 

( ) ( ) ( )( ) ( ) ( )( )
2

' '

1,1

0

0 0
2 12

h
h h

H f x dx f f h f f h  + + +                 (18b) 

 

The dimensionless average concentrations in the transverse direction (Z 

coordinate), F̅s, and the Z-averaged velocity field, ( )TGU Y , are defined as: 
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1

0

1

0

( , ) ( , , )

( , )

( , )

TG s

s

TG

U Y Z F X Y Z dZ

F X Y

U Y Z dZ






      (19a) 

1

0

( ) ( , )TG TGU Y U Y Z dZ=                                                 (19b) 

The species balance equations, eqs. (1), are first averaged in the transverse Z 

coordinate, neglecting the axial diffusion term in light of the high values of the Pe-

clet number encountered in this application, as reported in [70]. Next, the resulting 

equations are averaged in the vertical direction (Y coordinate) and a system of first 

order ordinary differential equations is obtained for the transversally averaged con-

centrations, given by [71]: 

 

( )
TG s

sdF X
U G

dX
= 

   

where s= TG, DG, MG, GL, B   (20a) 

( )* *3
( )

( )TG A A

A

A

dF X
U F G

d
XP

X
Q+=  +          (20b) 

(0) 1,TGF =
  

(0) 0,sF =
   

where s= A, DG, MG, GL, B  (20c,d) 

 

where, 

 

 
1

0

( ) ,TG TGU U Y dY=   
( )

*

* 6 (1)

1

TG

TG

A U
P

U

−
= , 

0

* *

1

1
(1) 4

(1)

TG

A

TG Y

U
Q A F

U Y
=

 
= −   

, 

( )*

0 1

1 1
3 TG

TG TG

Z Z

A Y U
U U

Z Z
= =

 
 
 = −
  
 

  

                      

 

(21a-d) 

 

The averaged expressions for the non-linear source terms sG , for the different 

species in the transesterification reaction, are given by [71]: 

 

( )1 2TG TG A TG DG BG k MF F NF k OF F= − + +                                  (22a) 

( ) ( )

( )

1 3 5 1 3 5

2 4 6

A TG DG MG A TG DG MG

DG MG GL B

G k F k F k F MF k F k F k F N

k F k F k F OF

= − − − + − − − +

+ + +

      (22b) 

( ) ( ) ( )1 3 1 3 2 4DG TG DG A TG DG DG MG BG k F k F MF k F k F N k F k F OF= − + − + − +     

(22c) 
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( ) ( ) ( )3 5 3 5 4 6MG DG MG A DG MG MG GL BG k F k F MF k F k F N k F k F OF= − + − + − +     

(22d) 

5 5 6GL MG A MG GL BG k MF F k NF k OF F= + −                                   (22e) 

( ) ( )

( )

1 3 5 1 3 5

2 4 6

B TG DG MG A TG DG MG

DG MG GL B

G k F k F k F MF k F k F k F N

k F k F k F OF

= + + + + + +

+ − − −

            (22f) 

 

where, 

 

( ) ( ) ( ) ( )

( ) ( )

2

2

0 1

2

0 1

3 1 6 0 1 2 1

1 4 1

TG TG
TG TG TG

Y Y

TG TG
TG TG

Y Y

U U
U B B U U

Y Y
M

U U
U U

Y Y

= =

= =

     
 − + +          

=
    

−        

     (22g) 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

0

2

2

1 0 1

2

0 1

12 0 1 2 1 1 2 1

2 1 4 1

TG TG TG
A TG TG TG TG

Y Y Y

TG TG
TG TG

Y Y

U U U
F U B U U B U

Y Y Y
N

U U
U U

Y Y

= = =

= =

        − − + +                =
    

−        

   (22h) 

( ) ( ) ( )

( )

2 2

2

0 1

2 2

0 1

18 1 0 2 1

4 1
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3.4  Inverse Problem Analysis 

 
Inverse problem analysis is an essential tool in engineering design for the identifi-

cation of parameters, such as physical properties, and functions, such as equation 

and boundary condition source terms. Besides, such methodologies have evolved 

towards experimental planning and optimum design procedures [43-52].  

The statistical approach for the solution of inverse problems is briefly reviewed 

here, following the Markov chain Monte Carlo (MCMC) method [79-81]. The 
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MCMC method is used in conjunction with the Coupled Integral Equations Ap-

proach for the solution of the inverse problem of estimating the kinetic coefficients 

in the transesterification reaction, in order to obtain low cost inverse problem solu-

tions, as detailed in [71]. 

The MCMC method represents a Bayesian approach to parameter estimation. 

Bayes theorem is given by: 

 

( ) ( )
( ) ( )

( )

prior

posterior = =
 

 


P Y P
P P Y

Y
      (23) 

 

where P is the parameter vector, Y is the vector of measurements, πposteriori(P) is the 

posterior probability density, πprior(P) is the prior density, π(Y|P) ) is the likelihood 

function and π(Y) is the probability density of the measurements, which represents 

a normalization constant. 

Assuming that the measurement errors are additive, uncorrelated, with Gaussian 

distribution of zero mean, and known covariance matrix, the likelihood function is 

given by: 

1/2/2 11
( ) (2 ) exp [ ( )] [ ( )]

2

I T

e e 
−− − 

= − 
 

Y P W Y - Y P W Y - Y P       (24) 

where Ye (P) is the solution of the direct problem, obtained with a sample of the 

parameter vector P and W is the covariance matrix of the errors in Y. 

It is in general not possible to analytically obtain the posterior probability 

density, thus the MCMC method is used to draw samples of all possible parameters. 

One of the most widely used algorithms for implementing the MCMC method is 

known as the Metropolis-Hasting algorithm, as described in [79]. 

 

3.5  Results and Discussion 
 

The reagents chosen in the present illustration are soybean oil 

(triglycerides) and methanol, with sodium hydroxide as catalyst. The hybrid 

approach here reviewed is then employed to report the direct-inverse problem 

analysis through the evolution of triglyceride conversion  in terms of residence time 

and reaction temperature, with available data for the chosen reagents [69-71,75], as 

summarized in Table 3. The Generalized Integral Transform Technique (GITT) was 

employed to handle both the two- and three dimensional formulations of the 

complete mass transfer problem, eqs. (1) [67-70]. Both situations of a constant 

coefficients eigenvalue problem and the alternative of including the velocity profile 

in the eigenvalue problem formulation have been dealt with [69-70], with relative 

merits that shall be briefly discussed in what follows. Also, the results obtained 

through the reduced model obtained with the Coupled Integral Equations Approach 

were verified comparing the reformulated first order ordinary differential equations 

system with the three-dimensional model results for micro-reactors with square 

cross-sections (200x200 μm and 400x400 μm), and length of 2.33 cm. 
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Table 3. Data for the direct-inverse problem analysis of biodiesel synthesis in mi-

croreactors [69-71, 75]. 

 

Parameters Values Parameters Values 

Alcohol  Methanol k1[mol/(m³.s)] 4.368×10-6  

Oil Soybean k2[mol/(m³.s)] 9.623×10-6  

QTG/QA 3.4 k3[mol/(m³.s)] 1.88×10-5  

μTG[Pa.s] 5.825×10-2  k4[mol/(m³.s)] 1.074×10-4  

μA[Pa.s] 5.47×10-4  k5[mol/(m³.s)] 2.117×10-5  

DTG[m²/s] 1.58×10-9  k6[mol/(m³.s)] 9.0×10-7  

ρTG[kg/m3] 885   

Reaction 

 

Activation energy 

[J.mol-1] 

DA[m²/s] 1.182×10-10  TG→DG 55.0355  

DDG, DMG, DGL, 

DB [m²/s] 

1.38×10-9  DG→TG 
41.5833  

CTGo[mol/m³] 1014  DG→MG 83.1498  

FAo 4.4 MG→DG 61.2906  

R[J.mol-1.K-1] 8.314  MG→GL 26.8834  

  GL→MG 40.1430  

 
 

The eigenfunction expansions for the average concentrations of the triglyceride and 

biodiesel species were first analyzed in terms of convergence rate, taking the tem-

perature T = 298 K and residence time τ = 30s, for each of the eigenvalue problem 

choices, as shown in Table 4. The GITT solution obtained with the eigenvalue prob-

lem accounting for the velocity profile presents an improved behavior in terms of 

convergence rate, since it needs around 50 terms to reach up to four fully converged 

significant digits, while the simpler eigenvalue problem with constant coefficient 

requires, for the same case, around 100 terms. These results highlight the gain, in 

terms of convergence rates that can be achieved considering more informative ei-

genvalue problems, which in the present case is the one that considers the velocity 

profile in its formulation. 

Figure 4 illustrates the evolution with residence time of the dimensionless average 

concentration of each species at the 400x400 microns microreactor outlet, as ob-

tained by GITT with increasing truncation orders of the eigenfunction expansions, 

namely, NT = 1, 5 and 40. It can be noticed that to the graph scale the results for 

fairly low truncation orders, such as NT=5, are already in excellent agreement with 

the fully converged results with the higher truncation order of NT=40 terms. This 

observation opened up the possibility of using another reduced model, based on low 

truncation order approximations of the integral transform solution, as successfully 

accomplished in [70]. The triglyceride concentration, as expected, reduces with the 

increase of the residence time, while the other species are formed. Thus, the inter-

mediate species reach a maximum value and then start to decrease as well, leading 

to the formation of biodiesel. 
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Table 4. Convergence of eigenfunction expansions for the average concentrations 

of triglyceride and biodiesel in a square micro-reactor  

(L=233x10-4 m, H=W=100x10-6 m). 

 

Eigenvalue problem: constant coefficients 

 
 X = 0.3 X = 0.5 X = 0.7 

NT ,TG AvC  
,B AvC  

,TG AvC  
,B AvC  

,TG AvC  
,B AvC  

20 0.955411 0.049206 0.904022 0.117023 0.844553 0.210476 

40 0.955648 0.048923 0.904303 0.116622 0.844850 0.209973 

60 0.955815 0.048725 0.904513 0.116322 0.845079 0.209585 

80 0.955802 0.048740 0.904492 0.116351 0.845054 0.209627 

100 0.955752 0.048799 0.904426 0.116445 0.844981 0.209751 

Eigenvalue problem: variable coefficients 

 X = 0.3 X = 0.5 X = 0.7 

NT ,TG AvC  
,B AvC  

,TG AvC  
,B AvC  

,TG AvC  
,B AvC  

10 0.955449 0.049150 0.904122 0.116853 0.844666 0.210240 

20 0.955705 0.048851 0.904378 0.116504 0.844923 0.209831 

30 0.955751 0.048798 0.904427 0.116438 0.844977 0.209748 

40 0.955761 0.048785 0.904438 0.116423 0.844988 0.209729 

50 0.955766 0.048781 0.904444 0.116415 0.844997 0.209717 

 

 

Figures 5.a,b present the triglyceride conversion as a function of residence time for 

the 200x200 μm and the 400x400 μm cross-sections, respectively, with T=45ºC. 

The dashed lines are for the reduced model, eqs. (22), solved through the NDSolve 

algorithm [40]. The dotted lines are for the GITT solution of the three-dimensional 

model, eqs. (1) [69-70]. One can observe the reasonable agreement of the two 

solutions, corresponding to the reduced model and to the GITT simulations of the 

three-dimensional model, especially for smaller and larger residence times. After 

the reduced model has been verified, it may be used in the estimation of the kinetic 

constants, with considerable reduction on the computational effort in the analysis of 

the inverse problem. 
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Fig. 4. Average dimensionless concentrations of the different species at the micro-

reactor outlet as computed from the three-dimensional model via GITT for the 

truncation orders NT=1, 5, and 40. 
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(a) 200x200 microns channel 

 

 
(b) 400x400 microns channel 

Fig. 5. Comparison of triglycerides conversion in terms of residence time as 

obtained by the improved lumped-differential formulation (CIEA) and the 

complete three dimensional model solved by GITT. 

 

In the estimation of the kinetic constants, emphasis is given to the use of the 

nonlinear coupled first-order ordinary differential system, eqs.(22), using the 

Coupled Integral Equations Approach (CIEA) for model reduction [71]. The 

Markov Chain Monte Carlo method (MCMC) is the tool in the inverse problem 

analysis, using simulated experimental data to estimate the kinetic constants, 

including low triglyceride conversion rates at shorter residence times and lower 

temperatures. Simulated data is taken at these less efficient conditions so as to 

achieve higher concentrations of the intermediate species and provide sensitivity to 

the parameters to be estimated in the inverse problem solution [71].  
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A few results are provided below to demonstrate the MCMC method. The GITT 

solution for the fully converged three dimensional model, eqs. (1), is employed to 

construct this synthetic experimental data, obtained with the input data from the 

literature provided in Table 5, while maintaining the CIEA reformulation for the 

direct problem solution in the inverse analysis. For the construction of the vector of 

simulated experimental measurements, results were obtained at twenty different 

residence times (0.5, 1.0, 1.5, 3.0, 3.5, 4.0, 5.5, 6.5, 8.0, 8.5, 9.5, 10.0, 12.0, 13.5, 

14.0, 14.5, 16.0, 17.5, 18.5 and 19.0 min), for the corresponding volumetric flow 

rates of the triglyceride species of 0.399, 0.199, 0.133, 0.0660, 0.0570, 0.0498, 

0.0362, 0.0307, 0.0249, 0.0234, 0.0210, 0.0199, 0.0166, 0.0148, 0.0142, 0.0137, 

0.0125, 0.0114, 0.0108 and 0.0105 ml/h, respectively. The simulated experimental 

results were obtained for four species, triglyceride, diglyceride, monoglyceride, and 

biodiesel. To capture the effect of uncertainties, experimental standard deviation for 

the synthetic measurements was taken as 5% of each concentration maximum value, 

as computed from the three-dimensional model [71]. Table 5 presents the estimated 

kinetic constants with their relative deviations from the exact values, now 

employing the simulated experimental data from the complete three dimensional 

model and introducing the experimental error. The parameters k1 and k2 lead to the 

largest deviations (14% and 13%, respectively), but overall a good agreement with 

the exact values is achieved. It should be recalled that the deviations in the present 

results also incorporate the errors in the simplified reduced model, which provides 

a marked reduction in the computational cost [71]. For instance, the inverse analysis 

for 100,000 states in the MCMC algorithm, using the CIEA for the direct problem 

solution, leads to a CPU time reduction of around 9 times with respect to the GITT 

solution of the three dimensional model with N=5 terms in the eigenfunction 

expansions. Nevertheless, the GITT solution is still more accurate than the CIEA 

solution, even for this reduced truncation order. The concentration profiles at the 

microreactor outlet (at X=1) were then computed with the exact and estimated 

kinetic constants, for all four species, TG, DG, MG and B, as shown in Figure 6. An 

overall good agreement of the estimated and exact concentrations was achieved, 

even though a reduced model has been adopted for the direct problem solution. For 

the 99% confidence intervals, as expected, larger bounds are achieved upon 

including the experimental error. 

   

Table 5 – Estimated kinetic constants and relative errors for the case of simulated 

data with experimental error   

 

Kinetic 

constants 

Exact 

[mol/m³.s] 

Estimated  

[mol/m³.s] 

Relative 

Error (%) 

k1  4.368×10-6 3.729×10-6 14.62 

k2  9.623×10-6 8.313×10-6 13.61 

k3  1.880×10-5 2.038×10-5 8.39 

k4  1.074×10-4 1.174×10-4 9.28 

k5  2.117×10-5 1.942×10-5 8.25 

k6  9.000×10-7 8.507×10-7 5.48 
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As mentioned above, the kinetic constants are essential parameters to be 

identified in this reaction-convection-diffusion model. The present hybrid approach 

is thus able to simultaneously estimate all the unknown parameters in the transport 

phenomena modeling and design the micro-device to meet specific requirements. 

In the present illustration, methanol has been selected as the alcohol phase, in 

accordance with the majority of previous works in biodiesel synthesis. However, 

the final goal of the research was to develop a microsystem for biodiesel synthesis 

employing the ethanol route [72]. In fact, after obtaining dedicated experimental 

results and undertaking the proper estimation of the associated kinetic constants, 

new promising synthesis results have demonstrated a high convergence rate of 

99.9% of TG in 99.6% of biodiesel in less than 35 seconds, using a molar ratio of 

20:1 (ethanol/soybean oil) and NaOH as catalyst [72]. 

 

  
Fig. 6. Estimated and exact concentrations distributions at the micro-reactor exit 

(X=1) in terms of residence time, including the 99% confidence level bounds 

(with experimental error). 

4 CONCLUSIONS 

A hybrid computational-analytical-experimental approach has been reviewed for 

the analysis of heat and mass transfer phenomena, with emphasis on microscale 

applications. The approach combines various tools such as a lumped-differential 

problem reformulation strategy for model reduction, known as the Coupled Integral 

Equations Approach (CIEA), a hybrid numerical-analytical solution method for 

partial differential equations based on the Generalized Integral Transform 

Technique (GITT), and an inverse problem solution implemented in the Bayesian 
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inference framework. Following an overall description of the approach and the 

pertinent literature review, the potential of the proposed hybrid approach is 

illustrated through an actual application dealing with continuous biodiesel synthesis 

in microreactors. 
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