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Abstract. We extend the results by R.P. Langlands on representations of (connected)
abelian algebraic groups. This is done by considering characters into any divisible
abelian topological group. With this we can then prove what is known as the abelian case
of the p-adic Langlands program.

Introduction.

In [Lan97Lan97], Langlands relates representations of the Weil group of a finite Galois
extension K of a number field F into the L-group of an algebraic torus T , with
representations of T (AF )/T (F ) into C×. The main goal of this paper is to extend these
results by allowing representations of T (AF )/T (F ) into a more general class of groups.
In particular, we want to look at representations into C×p (the units of the completion of
an algebraic closure of Qp), which gives us what is called the abelian case of the p-adic
Langlands program. These results are well-known to the experts but there appears to
be no source in the literature for them. We have tried to stay faithful to the main ideas
in Langlands’ paper [Lan97Lan97], but aim to present the results in more detail and in more
generality.

Before stating our main theorem let us setup some notation. Recall that there is
one-to-one correspondence between algebraic tori defined over a field F , that split over
a finite Galois extension K of F , and equivalence classes of lattices on which Gal(K/F )
acts. Here by lattice we mean a finitely generated free Z-module (i.e. isomorphic to Zn
for some n ∈ Z≥0). If T is an algebraic torus and it corresponds to the lattice L, then the
group T (K) of K-rational points corresponds to the Gal(K/F )-module Hom(L,K×).
Moreover, we have that T (K)Gal(K/F ) = T (F ).

Notation. (1) We let F be any local or global field and K a finite Galois extension
of F and let WK/F denote the relative Weil group as defined in [Tat79Tat79].

(2) Let L̂ = Hom(L,Z) and T̂D = Hom(L̂,D), where D is any divisible abelian
topological group with trivial Gal(K/F )-action.

(3) Let

CE =

{
the idele class group of E if E is a global field

E× if E is a local field.

(4) If A,B are two topological groups, we let Homcts(A,B) represents the group
of continuous group homomorphisms from A to B, and similarly Z1

cts(A,B),
B1
cts(A,B) represent the continuous 1-cocycles and 1-coboundaries, respectively,

and H1
cts = Z1

cts/B
1
cts.

Our main theorems are as follows:
1
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Theorem. There is a canonical isomorphism

H1
cts(WK/F , T̂D)

∼−→ Homcts(HomGal(K/F )(L,CK), D).

where WK/F has the usual topology as defined in [Tat79Tat79, Definition 1.1], and T̂D has the
topology induced from D.

If F is a global field, we say an element in H1
cts(WF , T̂D) is locally trivial if it restricts

to zero in H1
cts(WFv

, T̂D) for all places v of F .

Theorem. (a) IfK is a local field, thenH1
cts(WK/F , T̂D) is isomorphic toHomcts(T (F ), D).

(b) LetD′ be a divisible abelian topological group such that for any finite groupG, Hom(G,D′)
is finite, and let

T̂D′ = Hom(L̂,D′).

If K is a global field, then there is a canonical surjective homomorphism

Ĥ1
cts(WK/F , T̂D′) −→ Homcts(T (AF )/T (F ), D′),

and the kernel of this homomorphism is finite. Furthermore, if D′ is also Hausdorff, then
the kernel consists of the locally trivial classes.

A particular case of interest is when we set D = C×p . It is well-known that, as fields,
C and Cp are isomorphic, but not as topological fields. We will see that the topology on
D is irrelevant for the first theorem and is only needed for the last part of the second
theorem, so since C×p is a divisible abelian topological group and for any n ∈ Z>0 we
have that the number of elements of order dividing n is finite, which means Hom(G,C×p )
will be a finite group for any finite group G, furthermore it is Hausdorff since it is a
metric space. So we have that both theorems apply, from which we can then deduce the
abelian case of the p-adic Langlands program. In general, we can let D = A×, where A
is any Hausdorff topological field, like for example Fp,Qp or C. The case D = C× was
what was originally proved by Langlands in [Lan97Lan97].

The paper is split into three sections. In Section 1 we setup some notation and recall
some basic facts about Weil groups. Section 2 contains the main technical results (which
are largely, calculations in homological algebra), culminating in the proof of the first
stated theorem in the introduction. Finally, in Section 3, we show how to use the results
from Section 2 prove second stated theorem.

Acknowledgements. I wish to thank Kevin Buzzard for suggesting this problem and
encouraging me to write this paper. This work was part of the authors masters thesis
under his supervision.

1. Setup and notation

In what follows we will do many calculations involving cohomology classes in homology,
cohomology and Tate cohomology groups. For this we well use the following notation:

Notation 1.0.1. (1) Throughout, we will denote Gal(K/F ) simply by G.
(2) If G is any group and A is a G-module, then for x ∈ Zn(G,A) (a n-cocyle) we

let [x] represent its class in Hn(G,A), and we do the same for cohomology and
Tate cohomology groups.
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(3) Throughout, we will denote Tate cohomology group by Ĥi. We recall that for
i ≥ 1, Ĥi = Hi and for i < −1, Ĥi = Hi. So they only differ in degree −1 and 0,
where, for G a finite group and A a G-module, we have Ĥ0(G,A) = AG/NG(A)

and Ĥ−1(G,A) = ker(NG)/IGA where NG is the norm mapaa and IG is the
augmentation ideal. Lastly, we let AG = A/IG denote the coinvariants.

Remark 1.0.2. Note that from the action of G on L, we can define a G-action on L̂
by setting (gλ)(x) = λ(g−1 · x), for λ ∈ L̂, x ∈ L and g ∈ G. Similarly, we define the
action of G on T̂D as (gα)(λ) = α(g−1 · λ) where α ∈ T̂D , λ ∈ L̂ and g ∈ G.

For our purposes we will use the following simple description of the Weil groupWK/F .

Proposition 1.0.3. The Weil group WK/F fits in an exact sequence

0 −→ CK −→WK/F
σ−→ G −→ 0,

corresponding to the fundamental class [uK/F ] in H2(G,CK).

Proof. See [Tat79Tat79, (1.2)]. �

Notation 1.0.4. We fix once and for all {wg | g ∈ G} to be the set of left coset
representatives of CK in WK/F .

Proposition 1.0.5. Let F be a global field and for each place v of F let Fv denote the
completion at v. Furthermore, let WF (resp. WFv

) denote WF/F (resp. WFv/Fv
) where F

and F v are fixed separable algebraic closures. Then we have a commutative diagram:

WFv

σv //

��

Gal(F v/Fv)

��

WF
σ // Gal(F/F )

Proof. See [Tat79Tat79, Proposition 1.6.1]. �

In what follows we will be concerned with representations of WK/F into the group

LTD = T̂D oG

(when D = C×, this group is known as the L-group of T ). We want to study continuous
homomorphisms

φ : WK/F −→ T̂D oG

that make
WK/F

σ //

φ

��

G

T̂D oG // G

a commutative diagram; these are called admissible homomorphisms. Two admissible
homomorphisms α, β fromWK/F to LTD are called equivalent if there exists t ∈ T̂D such

that α = tβt−1. Now, note that we can write φ = f × σ, where f ∈ Z1
cts(WK/F , T̂D),

aThis sends a to
∑

g∈G ga.
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from which it follows that two admissible homomorphisms α = fa × σ and β =
fβ × σ from WK/F to LTD are equivalent if and only if fα and fβ represent the same

cohomology class of H1
cts(WK/F , T̂D).

2. The duality theorem

In this section we will prove the following:

Theorem 2.0.1. There is a canonical isomorphism

H1
cts(WK/F , T̂D)

∼−→ Homcts(HomGal(K/F )(L,CK), D).

We begin by proving that there exists an isomorphism

Ψ : H1(WK/F , T̂D) −→ Hom(HomGal(K/F )(L,CK), D),

(this will follow from 2.0.62.0.6 and Proposition 2.0.82.0.8) and then we prove that Ψ([f ]) is a
continuous homomorphism if and only if f ∈ Z1

cts(WK/F , T̂D) (this is Proposition 2.3.12.3.1).
In what follows we extend the natural action of G on CK , to that of WK/F on CK ,

by letting WK/F act by conjugation. Since CK is an abelian normal subgroup of WK/F ,
we see that CK will act trivially on itself and hence we get an induced G-action, which
agrees with the standard Galois action of G on CK . Also all G-modules can be viewed
as WK/F modules, and therefore can also be viewed as CK-modules, where CK will act
trivially.

Remark 2.0.2. Throughout we will be proving results about (co)homology groups and
in the proofs we will always work with n-(co)cycles and usually ignore n-(co)boundaries,
since in all of these cases the maps involved are maps between (co)homology groups
which will automatically send (co)boundaries to (co)boundaries, so all that we need to
check is how the maps in question act on the n-(co)cycles.

Proposition 2.0.3. There is a natural G-isomorphism of H1(CK , L̂) with Hom(L,CK).

Proof. Since CK acts trivially on L̂ then

H1(CK , L̂) ∼= CK ⊗Z L̂

since if a group X acts trivially on a X-module A, then H1(X,A) ∼= X/[X,X] ⊗Z A
where [X,X] denotes the commutator subgroup (see [Wei95Wei95, p. 164] ). So in this
case, since CK is an abelian group we get the result above and note this will be a G-
isomorphismbb. Furthermore, we have a natural G-isomorphism CK⊗Z L̂→ Hom(L,CK)

where for λ̂ ∈ L̂ and a ∈ CK we send a⊗ λ̂ to the homomorphism λ → a〈λ,λ̂〉 where
λ ∈ L and 〈−,−〉 is the natural bilinear paring 〈−,−〉 : L × L̂ → Z, and this is a
G-isomorphism. Combining these two isomorphisms, we get a G-isomorphism

H1(CK , L̂) −→ Hom(L,CK)

�

Under this isomorphism we see that a 1-cycle x ∈ Z1(CK , L̂), will map to the
homomorphism

λ 7−→
∏
a∈CK

a〈λ,x(a)〉, for λ ∈ L.

bHere G acts on 1-cycles x ∈ Z1(CK , L̂) as g · x(a) = gx(g−1 · a) for all a ∈ CK , and G acts diagonally
on CK ⊗ L̂.
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Note the homomorphism makes sense as the support of the 1-cycles and 1-boundaries is
always finite.

Now, from the Universal Coefficients Theorem we have the following:

Proposition 2.0.4. Let G be any group, and let D be a divisible abelian group with
trivial G-action. Then for all n > 0 we have an isomorphism Hn(G,Hom(B,D)) →
Hom(Hn(G,B), D), for any left G-module B.

Proof. This follows from [Rot09Rot09, Corollary 7.61]. �

Remark 2.0.5. For n = 1, the isomorphism from Proposition 2.0.42.0.4 can be seen to be
induced by the paring

H1(G,Hom(B,D))×H1(G,B) −→ D,

which sends a 1-cocycle f and a 1-cycle x to
∑
g∈G〈f(g), x(g)〉.cc

2.0.6. We can now use this result to reduce the task of finding an isomorphism

Ψ : H1(WK/F , T̂D) −→ Hom(HomGal(K/F )(L,CK), D),

to finding an isomorphism

H1(WK/F , L̂) −→ H1(CK , L̂)G,

since once we have this, setting n = 1, B = L̂, and G = WK/F in Proposition 2.0.42.0.4
and using Proposition 2.0.32.0.3 gives Ψ. To find this isomorphism we use the fact CK is a
normal subgroup of WK/F and of finite index |G| together with the following:

Proposition 2.0.7. Let G be any group, and let H be a subgroup of G of finite index with
{gi} denoting left coset representatives of H in G. Then for n ≥ 0 and any G-module A,
there exists unique homomorphisms Trn : Hn(G,A)→ Hn(H,A), such that:

(1) For n = 0, and all a ∈ A, we have Tr0(a) =
∑
i gia, where on the left a denotes the

image of a in AG and on the right gia denotes the image of gia in AH .

(2) If 0
i−→ A −→ B

p−→ C −→ 0 is an exact sequence of G-modules, then there is a
commutative diagram

Hn(G,B)
p′

//

Trn

��

Hn(G,C)
δ //

Trn

��

Hn−1(G,A)
i′ //

Trn−1

��

Hn−1(G,B)

Trn−1

��

Hn(H,B)
p′

// Hn(H,C)
δ // Hn−1(H,A)

i′ // Hn−1(H,B)

Proof. See [Rot09Rot09, Proposition 9.93]. �

Thus the transfer maps give us homomorphisms Trn : Hn(WK/F , L̂)→ Hn(CK , L̂).
Our goal now is to prove:

Proposition 2.0.8. The map Tr1 : H1(WK/F , L̂)→ H1(CK , L̂)G is an isomorphism.

Since we are working with the idele class group CK , the Tate–Nakayama Lemma
(see [SG80SG80, Chapter IX, Section 8] ) tells us that we can use cup products to obtain

cHere by 〈f(g), x(g)〉 we mean f(g)(x(g)).
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isomorphisms between Tate cohomology groupsdd. So we can use Tate–Nakayama to form
the following diagram (which will be referred to as (A))

Ĥ−2(G, L̂)

H1(CK , L̂) H1(WK/F , L̂) H1(G, L̂) 0

0 NG(H1(CK , L̂)) H1(CK , L̂)G Ĥ0(G, H1(CK , L̂)) 0

Ĥ0(G, L̂⊗ CK)

NG

Cor

Tr1

Coinf

∼

Here the top sequence is derived from the standard Lyndon–Hochschild–Serre spectral
sequence, the bottom sequence comes from the definition of the Tate cohomology groups
and the fourth vertical arrow is given by taking cup products with the fundamental class
[uK/F ]. Since we will be trying to show this diagram commutes, it will be useful to recall
how the maps involved are defined

• If x ∈ Z1(CK , L̂), then Cor([x]) is in the class containing the 1-cycle y ∈
Z1(WK/F , L̂) such that y(w) = x(w) if w ∈ CK and y(w) = 0 elsewhere.

• If x ∈ Z1(WK/F , L̂), then Coinf([x]) = [y], where y is the 1-cycle in Z1(G, L̂)
such that

y(g) =
∑
a∈CK

x(awg),

where wg is as in 1.0.41.0.4.

Note that both of these maps will send cycles to cycles and boundaries to boundaries,
so they are well-defined. Our goal is to first show (A) commutes. Once we have this, it
follows at once (by a simple diagram chase) that Tr1 is surjective; we will then prove that
Tr1 is injective to finish the proof of Proposition 2.0.82.0.8.

2.1. Tr1 is surjective. Before proving surjectivity we first need to define Tr1 and show
that its image in in H1(CK , L̂)G. To do this the strategy is to use dimension shifting and
the definition of Tr0.

We begin by noting that for any g ∈ G and w ∈WK/F , we have that wgw ∈WK/F

belongs to a unique left coset of CK in WK/F . Therefore there is a unique element
u(wg, w) ∈ CK and a unique j(g) ∈ G, such that

wgw = u(wg, w)wj(g),

where j is just a permutation of the elements of G. This can be related to the funda-
mental class [uK/F ] ∈ H2(G, CK), by noting that the 2-cocycle uK/F representing the
fundamental class has the property that for each g, g′ ∈ G, wgwg′ = uK/F (g, g′)wgg′ .
Therefore, if w = awg′ ∈WK/F , then

u(wg, w) = wgaw
−1
g uK/F (g, g′).

dThe conditions of the Tate–Nakayama Lemma hold by class field theory and the fact that TorZ1(L̂, CK) = 0

since L̂ is a free and hence flat Z-module.
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Proposition 2.1.1. If x ∈ Z1(WK/F , L̂), then, for all a ∈ CK , we have a well-defined
map

(Tr1(x)) (a) =
∑

u(wg,w)=a

wgx(w),

Here the sum on the right is taken over all g ∈ G and w ∈WK/F such that u(wh, w) = a.

Furthermore, the image of Tr1 is in H1(CK , L̂)G.

Proof. We begin by considering the exact sequence

0 −→ IW −→ Z[WK/F ]
ε−→ Z −→ 0

where ε is the augmentation map
∑
i nigi →

∑
i ni and IW is the augmentation ideal

from 1.0.11.0.1 (3). This is split over Z, so it remains exact when tensored with L̂, and thus we
get the exact sequence of WK/F modules

0 −→ IW ⊗ L̂ −→ Z[WK/F ]⊗ L̂ −→ Z⊗ L̂ −→ 0.

Note that in this sequence we have WK/F acting diagonally on each of the terms, but
we can find a WK/F -module isomorphism that gives the middle term an action only on

the first term of the tensor product; this then makes Z[WK/F ]⊗ L̂ an induced module,
which means that, for any subgroup S of WK/F , we have

Hn(S,Z[WK/F ]⊗ L̂) = 0, for n > 0.

If we now identify Z⊗ L̂ with L̂, then we get the exact sequence

0 −→ IW ⊗ L̂ −→ Z[WK/F ]⊗ L̂ −→ L̂ −→ 0

where the middle term, is an induced module, so we can use dimension shifting to get a
well-defined isomorphism

δ : H1(WK/F , L̂)
∼−→ H0(WK/F , IW ⊗ L̂),

that sends [z] ∈ H1(WK/F , L̂) to the class of∑
w∈WK/F

(w−1 − 1)(1⊗ z(w)) (here the action is diagonal).

Now by Proposition 2.0.72.0.7 (2), we get the following commutative diagram

H1(WK/F , L̂)

Tr1
��

∼ // H0(WK/F , IW ⊗ L̂)

Tr0
��

H1(CK , L̂)
∼ // H0(CK , IW ⊗ L̂).

with the horizontal isomorphisms given by δ, defined above. Now take a 1-cycle
x ∈ Z1(WK/F , L̂), under δ, its image in H0(WK/F , IW ⊗ L̂) is in the class of∑
w∈WK/F

(w−1 − 1)(1 ⊗ x(w)). If we then apply Tr0, we get that it maps to the
class of

∑
g,w

wg · (w−1 − 1)(1⊗ x(w)) =
∑
g,w

(wgw
−1(1⊗ x(w))− wg(1⊗ x(w)))

=
∑
g,w

wgw
−1(1⊗ x(w))−

∑
g,w

wg(1⊗ x(w))(�)
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in H0(CK , IW ⊗ L̂). Now, since we can write wgw = u(wg, w)wj(g), we can use this
and the fact that j is just a permutation of the elements of G, to write (�) as∑

h,w

u(wh, w)−1wh(1⊗ x(w))−
∑
g

∑
w

wg(1⊗ x(w))

which after changing the summation index in the second term gives∑
h,w

(u(wh, w)−1 − 1)wh(1⊗ x(w)).

This can be rewritten as∑
a∈CK

(a−1 − 1)
∑

u(wh,w)=a

wh(1⊗ x(w))

 .

Recall that we define the action of wg ∈WK/F on a⊗ b as wg(a⊗ b) = wga⊗wgb and
also note that

(wh − 1)⊗ whx(w) = wh(1⊗ x(w))− (1⊗ whx(w)),

but the term on the left is clearly in IW ⊗ L̂ so by definition of H0 we have that the sum
above is in the same class as∑

a∈CK

(a−1 − 1)
∑

u(wh,w)=a

1⊗ whx(w)

 ,

in H0(CK , IW ⊗ L̂). But this is just the image under δ of the class of the 1-cycle
y ∈ Z1(CK , L̂), where y is defined as

y : a 7→
∑

u(wh,w)=a

whx(w).

Observe that this is indeed a 1-cycle, since CK acts trivially on L̂, so
∑
a∈CK

a−1y(a) =∑
a∈CK

y(a). Furthermore it has finite support since x has finite support. So by dimen-
sion shifting, it follows that Tr1([x]) = [y].

Lastly, we need to show that the image of Tr1 is in H1(CK , L̂)G, for which it suffices
to show that for all g ∈ G and x ∈ Z1(WK/F , L̂), the class of g ·Tr1([x]) is the same as
the class of Tr1([x]). From the definition of Tr0, it follows that the image of Tr0 is in
H0(CK , IW ⊗ L̂)G. Therefore we have the following commutative diagram.

H1(WK/F , L̂)

Tr1
��

∼ //

g·Tr1

//

H0(WK/F , IW ⊗ L̂)

Tr0
��

Tr0

oo

H1(CK , L̂)
∼ //

g·
��

H0(CK , IW ⊗ L̂)

g·
��

H1(CK , L̂)
∼ // H0(CK , IW ⊗ L̂)

From this and [Rot09Rot09, Proposition 9.93] we get that the class of (g ·Tr1)([x]) is the same
as the class of Tr1([x]) for all x ∈ Z1(WK/F , L̂). So the image of Tr1 is in H1(CK , L̂)G.

�

Proposition 2.1.2. The square
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H1(CK , L̂)NG H1(WK/F , L̂)

NG(H1(CK , L̂)) H1(CK , L̂)G

Cor

Tr1

is commutative.

Proof. We only need to show that Tr1 ◦Cor = NG. This follows from [Bro82Bro82, Chapter
III, Proposition 9.5]), but the proof is simple so we include it for completeness. First note
that, if [x] ∈ H1(CK , L̂), then Cor([x]) only has support in CK , so Tr1(Cor([x])) = [y],
with y ∈ Z1(CK , L̂), such that

y(a) =
∑

u(wh,w)=a

wh(Cor(x))(w) =
∑

whbw
−1
h =a

whx(b),

for b ∈ CK . Now we simply note that
∑
h∈G h · x(a) = (NG(x))(a).

�

Before continuing, we first need a way to express the action of taking cup products in
terms of cycles and cocycles, for which we have the following three results.

Lemma 2.1.3. Let G be a finite group and let A,B be G-modules where we make the
notational convention that for a ∈ A with NG(a) = 0, we let [a]0, [a]−1 denote the
canonical images of a in Ĥ0(G,A), Ĥ−1(G,A) respectively.
Let a ∈ A with NG(a) = 0 and [r] is the class of a 1-cocycle r ∈ Z1(G,B). Then

[a]−1 ∪ [r] = [c]0,

where
c = −

∑
g∈G

ga⊗ r(g).

Proof. See [SG80SG80, Lemma 2, p. 176–177.]. �

This lemma is just what we need to be able to express the action of taking cup products
in terms in cycles and cocycles. Recall that for any finite group G and G-module B we
can form the exact sequence

0 −→ IG ⊗B −→ Z[G]⊗B −→ B −→ 0

as we did in Proposition 2.1.62.1.6. Similarly, since the category of G-modules has enough
injectives, we can find G-modules B′, B′′ such that

0 −→ B −→ B′ −→ B′′ −→ 0

is an exact sequence and B′ is an induced module. From which we get isomorphisms

δ : Ĥn(G,B)
∼−→ Ĥn+1(G, IG ⊗B);

∂ : Ĥn(G,B′′)
∼−→ Ĥn+1(G,B).

In particular, when n = −1 the isomorphisms are induced by NG. So we get

δ : Ĥ−1(G,B) −→ Ĥ0(G, IG ⊗B)

[y] 7−→

∑
g∈G

g ⊗ g.y


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and

∂ : Ĥ−1(G,B′′) −→ Ĥ0(G,B)

[x] 7−→

∑
g∈G

g.x

 .
Proposition 2.1.4. Let G be a finite group, and let A,B be G-modules. If f ∈ Ẑ1(G,A) is
a 1-cocycle and x ∈ Ẑ−2(G,B) is a 1-cycle, then [x] ∪ [f ] is in the class of

F := −
∑
g∈G

x(g)⊗ f(g)

in Ĥ−1(G,B ⊗A).

Proof. First note that since we have an isomorphism Ĥ−1(G,B⊗A) ∼= Ĥ0(G, IG⊗B⊗A)
induced by NG, which we denote by δ. In order to prove the result, it is enough to check
that the class of δ([x]∪ [f ]) = δ([x])∪ [f ] in Ĥ0(G, IG ⊗B ⊗A) is the class containing

δ(F ) = −
∑
g,h∈G

h⊗ hx(g)⊗ hf(g).

Now, as before, we have that under δ the image of [x] in Ĥ−1(G, IG ⊗B) is in the class
of

b =
∑
g∈G

(g−1 − 1)(1⊗ x(g)).

Note that

NG(b) =
∑
g,h∈G

(hg−1 − h)(1⊗ x(g)) =
∑
g,h

hg−1(1⊗ x(g))−
∑
g,h

h(1⊗ x(g)).

Since we are working in IG⊗B we have that this can be rewritten as
∑
g,h 1⊗hg−1x(g)−∑

g,h 1 ⊗ hx(g). But now recall that since x is a 1-cycle, we have
∑
g∈G g

−1x(g) =∑
g x(g), which combined with the above, tells us that NG(b) = 0. Therefore we can

apply Lemma 2.1.32.1.3 with A and B replaced by IG ⊗B and A respectively, to get that the
class of [b] ∪ [f ] in Ĥ0(G, IG ⊗B ⊗A) is the class containing

−
∑
h

h.b⊗ f(h) = −
∑
h,g

hg−1 ⊗ hg−1x(g)⊗ f(h) +
∑
h,g

h⊗ hx(g)⊗ f(h)

= −
∑
h,g

h⊗ hx(g)⊗ f(hg) +
∑
h,g

h⊗ hx(g)⊗ f(h).

However, since f is a 1-cocycle we have that f(hg) = f(h) + hf(g), which after
substituting gives

−
∑
g,h∈G

h⊗ hx(g)⊗ hf(g).

�

Now we can use this to get a result for 2-cocycles.
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Proposition 2.1.5. Let G be a finite group and let A,B be G-modules. If f ∈ Ẑ2(G,B) is
a 2-cocycle and x ∈ Ẑ−2(G,A) is a 1-cycle, then the class of [f ] ∪ [x] in Ĥ0(G,B ⊗A) is
the class containing ∑

g,h∈G

f(g, h)⊗ gx(h)

Note that, in this case, [f ] ∪ [x] = [x] ∪ [f ].

Proof. (Based on J.P Serre [SG80SG80, Lemma 4, p. 178.]) We begin by noting that since we
have an exact sequence 0 → B → B′ → B′′ → 0, with B′ an induced module, then
H2(G,B′) = 0. This means we can find a 1-cochain f ′ : G→ B′, such that

f(g, h) = gf ′(h)− f ′(gh) + f ′(g).

If we compose f ′ with the map B′ → B′′, we get a 1-cocycle f ′′ : G → B′′, such that
∂([f ′′]) = [f ]. We can then use this and the previous proposition to see that

[f ∪ x] = [∂([f ′′]) ∪ [x]] = δ([[f ′′] ∪ [x])
(2.1.42.1.4)
== δ

([∑
h∈G

f ′′(h)⊗ x(h)

])

=

 ∑
g,h∈G

g · f ′(h)⊗ gx(h)

 .(†)

(In the last equality we change from f ′′ to f ′ since by definition of δ we must first lift to
B′.)

Now, we know that g · f ′(h) = f(g, h) + f ′(gh) − f ′(g), so (†) becomes the class
containing ∑

g,h∈G

{f(g, h) + f ′(gh)− f ′(g)} ⊗ gx(h)

which we expand as∑
g,h

f(g, h)⊗ gx(h) +
∑
g,h

(f ′(gh)− f ′(g))⊗ gx(h).

Therefore, in order to finish the proof we have to show that the second term is actually
zero. By changing summation indexes we have∑

g,h

(f ′(gh)− f ′(g))⊗ gx(h) =
∑
g,h

f ′(gh)⊗ gx(h)−
∑
g,h

f ′(g)⊗ gx(h)

=
∑
g,h

f ′(g)⊗ gh−1x(h)−
∑
g,h

f ′(g)⊗ gx(h)

=
∑
g

f ′(g)⊗ g

(∑
h

(h−1 − 1)x(h)

)
= 0.

with the last equality due to x being a 1-cocycle. �

Now with this result we can prove:

Proposition 2.1.6. The square
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H1(WK/F , L̂)

Tr1
��

Coinf // H1(G, L̂)

∪[uK/F ]
��

H1(CK , L̂)G // Ĥ0(G,Hom(L,CK))
is commutative.

Note that once we have the commutativity of this square we will at once have that
diagram (A is commutative (after using the isomorphism H1(CK , L̂) ∼= Hom(L,CK)).

Proof. We begin by taking a 1-cycle x ∈ Z1(WK/F , L̂). From Proposition 2.1.12.1.1, its image

in H1(CK , L̂)G under Tr1 is in the class of the 1-cycle

y : a 7−→
∑

u(wh,w)=a

whx(w).

As before the sum is taken over all h ∈ G and w ∈ WK/F such that u(wh, w) = a.

Under the isomorphism of Proposition 2.0.32.0.3 and the natural map H1(CK , L̂)G →
Ĥ0(G, H1(CK , L̂)), we get that the image [y] in Ĥ0(G,Hom(L,CK)) is in the class
containing the homomorphism

λ 7−→
∏
a∈CK

a〈λ,y(a)〉 =
∏
a

∏
u(wh,w)=a

a〈λ,whx(w)〉 =
∏
h,w

u(wh, w)〈λ,whx(w)〉.

Since each w ∈WK/F can be written as awg for some g ∈ G and a ∈ CK , we have

u(wh, w) = whawh
−1uK/F (h, g).

So we can rewrite the homomorphism above as

λ 7−→

∏
g,h,a

(whawh
−1)〈λ,whx(awg)〉


∏
g,h,a

uK/F (h, g)〈λ,whx(awg)〉

 .

Now note that the first term is the image of a norm, so since we are working in the zeroth
Tate cohomology group, we get that this homomorphism is in the same class as

β : λ 7−→
∏
g,h,a

uK/F (h, g)〈λ,whx(awg)〉 =
∏
g,h

uK/F (h, g)〈λ,hz(g)〉,

where
z(g) =

∑
a∈CK

x(awg), for all g ∈ G.

Alternatively, if we take x ∈ Z1(WK/F , L̂) and go along the top of the square we have
that Coinf([x]) = [z]. So in order to show the square commutes we must show that
[[z] ∪ [uK/F ]] = [β].

Now let B = CK and A = L̂ in Proposition 2.1.52.1.5, then we can take f(h, g) =
uK/F (h, g) so that [uK/F ] is the fundamental class, and we take x to be z. Then

Proposition 2.1.52.1.5 tell us that the class of [z] ∪ [uK/F ] in Ĥ0(G, L̂⊗ CK) is∑
g,h∈G

hz(g)⊗ uK/F (h, g),

which maps to the homomorphism

β : λ 7−→
∏
g,h∈G

uK/F (h, g)〈λ,hz(g)〉
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in Ĥ0(G,Hom(L,CK)) as required.
�

Thus we have that the second square in diagram (A) commutes. As we mentioned
before, this now tells us that Tr1 is surjective (this is just a simple diagram chase). We
are left proving that Tr1 is injective.

2.2. Tr1 is injective. Note that, from the commutativity of (A), its enough to show that
the kernel of the map

Cor : H1(CK , L̂) −→ H1(WK/F , L̂)

is equal to the kernel of the map

NG : H1(CK , L) −→ H1(CK , L̂).

In other words, we want to show that the kernel of the corestriction consists precisely of
the elements of norm zero. This is equivalent to showing that the the image of

Cor′ : Hom(H1(WK/F , L̂),Q/Z) −→ Hom(H1(CK , L̂),Q/Z),

consists of homomorphisms that vanish on elements of norm zeroee. Here Cor′ denotes
the map induced by Cor. Now using Proposition 2.0.42.0.4, we have isomorphisms

F′ : Hom(H1(WK/F , L̂),Q/Z)
∼−→ H1(WK/F ,Hom(L̂,Q/Z))

F : Hom(H1(CK , L̂),Q/Z)
∼−→ H1(CK ,Hom(L̂,Q/Z)).

So, its enough to show that the image of

H1(WK/F ,Hom(L̂,Q/Z)) −→ H1(CK ,Hom(L̂,Q/Z)),

consists of elements corresponding (under F) to homomorphisms that vanish on elements
of norm zero. In other words, we want to show that given [ψ] ∈ H1(CK ,Hom(L̂,Q/Z)),
we can extend this to a [Ψ] ∈ H1(WK/F ,Hom(L̂,Q/Z)) if and only if [ψ] = F(ϕ),
where ϕ is a homomorphism vanishing on elements of norm zero. Following Langlands
[Lan97Lan97, p.13], we reformulate this problem as follows: recall from Proposition 1.0.31.0.3 we
have the following exacts sequence

0 −→ CK −→WK/F
σ−→ Gal(K/F ) −→ 0,

whose class in H2(G, CK) is [uK/F ] (the fundamental class). Also, we can use the action

of G on L̂, to give Hom(L̂,Q/Z) a G-action, by letting G act trivially on Q/Z, and we
can form the semi-direct product Hom(L̂,Q/Z)oG. Now suppose we have the following
commutative diagram

0 // CK //

ψ
��

WK/F
σ //

Ψ
��

G //

id

��

0

0 // Hom(L̂,Q/Z) // Hom(L̂,Q/Z) oG // G // 0.

We can define a 1-cochain f by Ψ(w) = f(w)×σ(w) and, in fact, f ∈ Z1(WK/F ,Hom(L̂,Q/Z)).

Conversely, given f ∈ Z1(WK/F ,Hom(L̂,Q/Z)) we can define Ψ = f × σ, such that Ψ

eNote that Hom(−,Q/Z) is an exact contravariant functor since Q/Z is divisible.
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together with its restriction ψ to CK will make the above diagram commute. Now what
we want to prove is that given a homomorphism

ψ : CK −→ Hom(L̂,Q/Z),

we can extend this to a homomorphism

Ψ : WK/F −→ Hom(L̂,Q/Z) oG

making the diagram commute if and only if ψ corresponds (under F) to a homomorphism
ϕ : H1(CK , L̂)→ Q/Z that vanishes on elements of norm zero. By [AT67AT67, Theorem 2]
ψ will extend to Ψ if and only is ψ is G-invariant andff ψ∗([uK/F ]) = 0, where ψ∗ is the
map induced by ψ.

Now, if ψ : CK → Hom(L̂,Q/Z), corresponds (under F) to

ϕ : H1(CK , L̂)→ Q/Z,

then it is easy to see that for all a ∈ CK and λ̂ ∈ L̂, we have (ψ(a)) (λ̂) = ϕ(λ̂ ⊗ a),
where we are using the fact that H1(CK , L̂) ∼= L̂ ⊗ CK . So we want to show that
ψ is G-invariant if ϕ vanishes on elements of norm zero. But, by the above, we see
that ψ is G-invariant, if and only if for all λ̂ ∈ L̂, a ∈ CK and all g ∈ G, we have
ψ(g · a)(λ̂) = ψ(a)(g−1λ̂), which is true if and only if ϕ(λ̂⊗ ga) = ϕ(g−1λ̂⊗ a). Now
the latter will hold if for all a⊗ λ̂ ∈ CK ⊗ L̂, we have

g · (λ̂⊗ a)− (λ̂⊗ a) ∈ ker(ϕ)

which is true if ϕ vanishes on elements of norm zero.
So it remains to prove that ψ∗([uK/F ]) = 0. For each pair of homomorphisms

ψ : CK → Hom(L̂,Q/Z) and ϕ : H1(CK , L̂) → Q/Z with ψ = F(ϕ), we have the
following commutative diagram

L̂⊗ CK
id⊗ψ

//

��

L̂⊗Hom(L̂,Q/Z)

��

H1(CK , L̂)
ϕ

// Q/Z

where the first vertical arrow is the isomorphism (see 2.0.32.0.3) that sends λ̂⊗a to the 1-cycle
that is zero except at a where it is λ̂, for λ̂ ∈ L̂ and a ∈ CK . Now, if ψ (and hence ϕ) is
G-invariant we get the following commutative diagram:

Ĥ−3(G, L̂)⊗ Ĥ2(G, CK)
id⊗ψ∗ //

µ
��

Ĥ−3(G, L̂)⊗ Ĥ2(G,Hom(L̂,Q/Z))

ν
��

Ĥ−1(G, H1(CK , L̂))
ϕ′

// Ĥ−1(G,Q/Z),

where the vertical arrows are given by taking cup products, the map ϕ′ is induced by ϕ.
Note that for γ ∈ Ĥ−3(G, L̂), the map γ → µ(γ ⊗ [uK/F ]), gives an isomorphism

Ĥ−3(G, L̂) −→ Ĥ−1(G, H1(CK , L̂)).

This is the isomorphism given by taking cup-product with the fundamental class [uK/F ].

Similarly, for β ∈ Ĥ−3(G, L̂) and γ ∈ Ĥ2(G,Hom(L̂,Q/Z)) the map β → ν(β ⊗ γ)

fThis is because the class representing a semi-direct product is zero.
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is an isomorphism for all γ ∈ Ĥ2(G,Hom(L̂,Q/Z)). For a proof of this see [Bro82Bro82,
Corollary 7.3] and note that in this case, both Ĥ−3(G, L̂) and Ĥ2(G,Hom(L̂,Q/Z))
are finite groups (see 2.3.42.3.4). So, from the diagram, we see that ψ∗([uK/F ]) = 0 if and

only if for all β ∈ Ĥ−3(G, L̂)

ν(β ⊗ ψ∗([uK/F ])) = 0.

Now going around the diagram in the other direction we see that, since the map
γ → µ(γ ⊗ [uK/F ]) is an isomorphism, we have that ψ∗([uK/F ]) = 0 if and only if ϕ′

is the zero map. This, by definition of ϕ and Ĥ−1, is true if and only if ϕ vanishes on
elements of norm zero. This now completes the proof that Tr1 is injective and thus we
have proven Proposition 2.0.82.0.8.

2.3. Continuity. Note here that by using Proposition 2.0.32.0.3, we can give H1(CK , L̂) a
topology by using the natural topology on Hom(L,CK), and consequently we get a
topology on H1(WK/F , L̂) by using the fact that Tr1 is an isomorphism. Our goal now
is to prove the following:

Proposition 2.3.1. If x ∈ Z1(WK/F , T̂D), then

Ψ([x]) ∈ Homcts(HomG(L,CK), D)

if and only if x is a continuous 1-cocycle.

The proof will require several results. We begin with some basic lemmas.

Lemma 2.3.2. IfM is a finitely generatedG-module andG is a finite group, then Ĥi(G,M)
is a finite group.

Proof. See [Wei69Wei69, Proposition (3-1-9)]. �

Lemma 2.3.3. Let A be a topological group and let H and S be subgroups of A with H open
in A. If H ∩ S is closed in H then S is closed in A.

Proof. This is elementary.
�

With this we now have the following proposition:

Proposition 2.3.4. For all i ∈ Z, Ĥi(G,Hom(L,CK)) is a finite group.

Proof. Since we have a G-module isomorphism between Hom(L,CK) and L̂⊗ CK , it is
enough to prove that Ĥi(G, L̂⊗ CK) is a finite group. Now from the Tate–Nakayama
Lemma we have that for all i ∈ Z

Ĥi(G, L̂) ∼= Ĥi+2(G, L̂⊗ CK).

So we can reduce the problem to showing that Ĥi(G, L̂) is finite. But since L is a finitely
generated Z-module, L̂ will also be a finitely generated Z-module and consequently L̂
will also be a finitely generated Z[G]-module, so Lemma 2.3.22.3.2 applies, giving the result.

�

Next we have the following key result.

Proposition 2.3.5. A homomorphism α : HomG(L,CK)→ D is continuous if and only if
α ◦NG is continuous.
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In order to prove this, it suffices to prove that NG(Hom(L,CK)) (the image under
NG) is an open subgroup of HomG(L,CK), since a homomorphism of topological
groups is continuous if and only if it is continuous at the identity. It follows that a
homomorphism will be continuous on HomG(L,CK) if and only if it continuous on an
open subgroup. In particular, using this result and Proposition 2.0.32.0.3, we may replace
HomG(L,CK) with Hom(L,CK) ∼= H1(CK , L̂) in Proposition 2.3.12.3.1.

Applying Proposition 2.3.42.3.4 with i = 0, gives that NG(Hom(L,CK)) has finite index
in HomG(L,CK). Therefore in order to prove Proposition 2.3.52.3.5 it suffices to prove that
NG(Hom(L,CK)) is closed in HomG(L,CK), since any closed subgroup of finite index
is automatically open. Now observe that if K is a local field or a global function field,
then we have a natural homomorphism from CK into Z, whose kernel UK is known to be
compact. Similarly, if K is a number field, then there is a natural map from CK to R>0,
whose kernel we once again denote by UK and is also compact (see [NS99NS99, Theorem 1.6]).
With this we can form the exact sequence of abelian groups

(∗) 1 −→ UK −→ CK −→MK −→ 1,

where we set MK = Z or MK = R>0 ∼= R accordingly, and we call the two cases the
“Z-Case” and “R-Case” respectively.

2.3.1. Z-Case. Since L is a free Z-module (hence projective) we can use (∗) to form the
exact sequence

0 −→ Hom(L,UK)
λ−→ Hom(L,CK)

µ−→ Hom(L,MK) −→ 0,

where we think of this as a sequence of G-modules by giving MK the trivial action. Note
that in the Z-case we have

Ĥi(G,Hom(L,MK)) = Ĥi(G, L̂), for all i ∈ Z

and Lemma 2.3.22.3.2 tells us that all of these groups are finite.

Proposition 2.3.6. There is an injective map ψ, from

(NG(Hom(L,CK)) ∩Hom(L,UK)) /NG(Hom(L,UK))

to
Ĥ−1(G,Hom(L,MK))/µĤ−1(G,Hom(L,CK)).

In order to ease notation in the proof, we set

B = NG(Hom(L,CK)) ∩Hom(L,UK)

and
V = Ĥ−1(G,Hom(L,MK))/µĤ−1(G,Hom(L,CK)).

Note that once we have this result, it will follow thatNG(Hom(L,UK)) has finite index
in B, since V is finite by the comment above.

Proof. We begin by taking x ∈ Hom(L,CK) such that z = NG(x) ∈ Hom(L,UK). If we
let y = µ(x) with µ as above, then by exactness and the fact that µ is a homomorphism
we have

NG(y) = NG(µ(x)) = µ(NG(x)) = 0.

We claim there is a well-defined map ψ, such that ψ(z) = y where y is the image
of y in V . Note that if x ∈ Hom(L,UK), then y will be zero. To prove this claim,
observe that the image of y will be independent of x since on the right we quotient out
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by µĤ−1(G,Hom(L,CK)). Therefore, if we had z = NG(x) = NG(x′), then letting
x− x′ = r, we would have NG(r) = 0 and

y = µ(x) = µ(x′) + µ(r) = y′ + µ(r).

So when we look at y and y′ we can clearly see they will represent the same element in
V , hence ψ is well-defined.

In order to show the ψ is injective, it suffices to show that if ψ(z) = 0 for z =
NG(x), and x ∈ Hom(L,CK), then we can chose an x′ ∈ Hom(L,UK) such that
NG(x) = NG(x′). So suppose that ψ(NG(x)) = ψ(z) = 0, then we have µ(x) = y ∈
IG(Hom(L,MK)) (by definition of Ĥ−1), hence

y =
∑
g

(g−1 − 1)vg, for some vg ∈ Hom(L,MK).

Now since µ is surjective we can pick ug ∈ Hom(L,CK), such that µ(ug) = vg and we
can also pick x ∈ Hom(L,Ck) such that µ(x) = y. Now consider

x′ = x−
∑
g

(g−1 − 1)ug,

it must lie in Hom(L,UK) since µ(x′) = µ(x)−
∑
g(g
−1 − 1)vg = 0, but we also have

NG(x) = NG(x′), so we are done. �

With this result we can now show that in the Z-case, NG(Hom(L,CK)) is closed
in HomG(L,CK). First note that L ∼= Zn as abelian groups (for some n ∈ Z≥0), and
since UK is compact and Hausdorff, then Hom(L,UK) ∼= (UK)n is also compact and
Hausdorff (being the direct sum of compact and Hausdorff groups). Also since NG

is a continuous map, we have that NG(Hom(L,UK)) must be closed in Hom(L,UK)
(being a compact subgroup of a Hausdorff group). Therefore, since B is a subgroup
of Hom(L,UK) and NG(Hom(L,UK)) is closed in Hom(L,UK), we must have that
NG(Hom(L,UK)) is also closed in B. We also know NG(Hom(L,UK)) is of finite
index in B. Therefore we can write

B =
n⋃
k=1

bkNG(Hom(L,UK))

for some bk ∈ B, and it follows that B is closed in Hom(L,UK). Now recall that a
normal subgroup H of a topological group G, is open if and only if the quotient topology
on G/H is discrete. So since MK = Z we must have that UK is an open subgroup of
CK since we know that UK is closed in CK and CK/UK ∼= Z. Therefore HomG(L,UK)
is an open subgroup of HomG(L,CK). To finish the proof that NG(Hom(L,CK)) is
closed in HomG(L,CK) we can use Lemma 2.3.32.3.3, by letting

A = HomG(L,CK), H = HomG(L,UK), S = NG(Hom(L,CK)),

and noting that we are in the situation of Lemma 2.3.32.3.3 since

B = NG(Hom(L,CK)) ∩Hom(L,UK) = NG(Hom(L,CK)) ∩HomG(L,UK),

is closed in H . Hence in the Z-case we have that NG(Hom(L,CK)) is closed in
HomG(L,CK).
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2.3.2. R-case. Here we are in a slightly easier situation, since in this case the exact
sequence

1 −→ UK −→ CK −→ R>0 −→ 1

splits as a sequence of G-modules. Therefore the sequence

0 −→ Hom(L,UK)
λ−→ Hom(L,CK)

µ−→ Hom(L,MK) −→ 0

also splits as a sequence of G-modules, so we get

(‡) Hom(L,CK) = Hom(L,UK)×Hom(L,R),

and
NG(Hom(L,CK)) = NG(Hom(L,UK))×NG(Hom(L,R)).

Furthermore, if we look at the zeroth cohomology groups of (‡) , we get

HomG(L,CK) = HomG(L,UK)×HomG(L,R).

Proposition 2.3.7. In the R-case we have that Ĥ0(G,Hom(L,MK)) = 0.

Proof. First note that

Ĥ0(G,Hom(L,MK) = Ĥ0(G,Hom(L,R)) = HomG(L,R)/NG(Hom(L,R))

so the result will follow if we can show that any G-linear homomorphism from L to R can
be written as the norm of some homomorphism from L to R. Now since G acts trivially
on R, we see that for any ϕ ∈ HomG(L,R) we have NG(ϕ) = mϕ where m = |G|.
Therefore, since R is a divisible group, θ = (1/m)ϕ is also a homomorphism from L to
R, and thus ϕ = NG(θ), which gives the result.

�

Now the proposition above tells us that NG(Hom(L,R)) = HomG(L,R) and, as
before, NG(Hom(L,UK)) is closed in HomG(L,UK). It then follows that

NG(Hom(L,UK))×NG(Hom(L,R))

is closed in
HomG(L,UK)×HomG(L,R).

Hence NG(Hom(L,CK)) is closed in HomG(L,CK).
So we have shown that in both the Z-case and R-case NG(Hom(L,CK)) is closed in

HomG(L,CK) and of finite index. Thus NG(Hom(L,CK)) is open in HomG(L,CK),
which proves Proposition 2.3.52.3.5.

Proposition 2.3.8. A 1-cocycle in Z1(WK/F , T̂D) is continuous if and only if its restriction
to CK is continuous.

Proof. Clearly if x ∈ Z1
cts(WK/F , T̂D), then its restriction to CK will also be continuous,

so we only need to prove the other direction.
If x ∈ Z1(WK/F , T̂D) is continuous on CK , define σ(a) = x(wa), where w ∈WK/F ,

a ∈ CK , then in order to prove that x is continuous on the coset wCK we only need to
prove that σ is continuous. Now, since x is a 1-cocycle, we have

σ(a) = x(wa) = wx(a) + x(w).

So as a goes through CK , we have that wx(−) is continuous since x(−) is continuous
on CK and the action of WK/F is continuous (since it is induced from the continuous

action of G on T̂D). Therefore, since x(w) is just a constant, σ is continuous and hence
x is continuous on wCK . From this it follows that x is continuous on all of WK/F .
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�

Now observe that we have the following diagram:

H1(WK/F , T̂D)

Res
��

∼ // Hom(H1(WK/F , L̂), D)

Cor′
����

H1(CK , T̂D)
∼ // Hom(H1(CK , L̂), D),

where the horizontal arrows are isomorphisms given by Proposition 2.0.42.0.4, Res is the
standard restriction map on cohomology groups, and Cor′ is the surjective map induced
from

Cor : H1(CK , L̂) −→ H1(WK/F , L̂).

Now it is easy to show this diagram is in fact commutative since if we take a 1-cocyle
f ∈ Z1(WK/F , T̂D) and first move along the top of the diagram, then by Remark 2.0.52.0.5
and the definition of Cor for homology, we get that f maps to the homomorphism
sending x ∈ H1(CK , L̂) to ∑

a∈CK

〈f(a), x(a)〉.

But this is clearly the same as going around the diagram in the other direction.
This diagram together with Proposition 2.3.52.3.5 and Proposition 2.3.82.3.8, reduce Proposition

2.3.12.3.1 to proving the following:

Proposition 2.3.9. Let

Ψ : H1(CK , T̂D)
∼−→ Hom(H1(CK , L̂), D).

If f is a 1-cocycle in Z1(CK , T̂D), then f is continuous if and only if Ψ([f ]) is a continuous
homomorphism in Hom(H1(CK , L̂), D) or, what is the same, in Hom(L̂⊗ CK , D).

Proof. In this case we can see what f maps to. It will correspond to the homomorphism
Ψ([f ]) ∈ Hom(L̂⊗ CK , D)

Ψ([f ]) : λ̂⊗ a 7−→ 〈λ̂, f(a)〉

where, in this case, we have that 〈−,−〉 is the natural bilinear mapping 〈−,−〉 :

L̂× T̂D → D. This bilinear map can easily be seen to be continuous by observing that
L̂ has the discrete topology and T̂D has topology induced by that of D. Then with
this it is clear that f will be a continuous 1-cocycle if and only if Ψ(f̄) is a continuous
homomorphism. �

Hence we have proven Proposition 2.3.12.3.1, which completes the proof of Theorem 2.0.12.0.1.

3. Applications to algebraic tori

Our next goal is to use this to say in a bit more detail how Theorem 2.0.12.0.1 relates to
algebraic tori. Recall that at the start we identified T (K) (the group of K-rational points)
with Hom(L,K×). In the case that K is a global field, we have an exact sequence

1 −→ K× −→ A×K −→ CK −→ 1,
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which, since L is free (and hence projective), gives us the exact sequence

0 // Hom(L,K×) // Hom(L,A×K) // Hom(L,CK) // 0.

T (K) T (AK)

Hence we can identify T (AK)/T (K) with Hom(L,CK). Also from this we obtain a
long exact sequence

0 −→ T (F ) −→ T (AF ) −→ HomG(L,CK) −→ H1(G, T (K)) −→ · · · ,

which we will use later. Next we need a result that allows us to switch between WK/F

and WF .

Proposition 3.0.1. Let D be a Hausdorff divisible abelian topological group. Then the
inflation map

Inf : H1
cts(WK/F , T̂D) −→ H1

cts(WF , T̂D)

is bijective.

Proof. (See [Mil06Mil06, p. 111]) First recall that the inflation map is always injective and so is
its restriction to H1

cts, so we only need to prove that in this case it is also surjective. So
take a continuous 1-cocycle f : WF → T̂D, this will restrict to a continuous 1-cocycle in
Z1
cts(WK , T̂D). Now the kernel of f must contain the commutator group of WK since

T̂D is commutative. Furthermore, since T̂D is Hausdorff, the kernel of f must also be
closed. So f must be trivial on W c

K (the closure of the commutator group) and hence it
must factor through WF /W

c
K = WK/F , giving that Inf is also surjective.

�

Recall that for F a global field, we say an element in H1
cts(WF , T̂D) is locally trivial

if it restricts to zero in H1
cts(WFv

, T̂D) for all places v of F .

Theorem 3.0.2. (a) IfK is a local field, thenH1
cts(WK/F , T̂D) is isomorphic toHomcts(T (F ), D).

(b) LetD′ be a divisible abelian topological group such that for any finite groupG, Hom(G,D′)
is finite, and let

T̂D′ = Hom(L̂,D′).

If K is a global field, then there is a canonical surjective homomorphism

Ĥ1
cts(WK/F , T̂D′) −→ Homcts(T (AF )/T (F ), D′),

and the kernel of this homomorphism is finite. Furthermore, if D′ is also Hausdorff, then
the kernel consists of the locally trivial classes.

Proof. (a) This follows immediately from Theorem 2.0.12.0.1, since in this case CK = K×

and therefore T (F ) = T (K)G = HomG(L,CK), and the isomorphism in question
is exactly the one we found in Theorem 2.0.12.0.1.

(b) We begin by considering the following commutative diagram

0 // T (K) // T (AK) //

NG

��

Hom(L,CK) //

NG

��

0.

0 // T (F ) // T (AF ) // HomG(L,CK) // · · ·
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From before, we already know both rows are exact and the commutativity of the
diagram tells us that we must have NG(Hom(L,CK)) contained in T (AF )/T (F ). By
Proposition 2.3.42.3.4 we know that NG(Hom(L,CK)) has finite index in HomG(L,CK),
so it follows that T (AF )/T (F ) has finite index in HomG(L,CK). Therefore we have
the following exact sequence

0 −→ T (AF )/T (F ) −→ HomG(L,CK) −→ G −→ 0

where G is some finite group. If we then apply the functor Hom(−, D′) (which is an
exact functor since D′ is Z-injective) we get the exact sequence
0→ Hom(G,D′)→ Hom(HomG(L,CK), D′)→ Hom(T (AF )/T (F ), D′)→ 0.

Now by assumption Hom(G,D′) is a finite group, so it follows by Theorem 2.0.12.0.1 that
we have a homomorphism from H1

cts(WK/F , T̂D′) onto Homcts(T (AF )/T (F ), D′)
with finite kernel.

Next we want prove that if D′ is Hausdorff, then the kernel consists of locally
trivial classes. With this in mind we use 3.0.13.0.1 and 1.0.51.0.5 to form the commutative
diagram

H1
cts(WF , T̂D′) //

��

Homcts(T (AF )/T (F ), D′)

��∏
vH

1
cts(WFv

, T̂D′)
∼ //

∏
v Homcts(T (Fv), D

′).

From part (a) we have that the lower horizontal arrow will be an isomorphism and
the result will follow if we can prove that the second vertical arrow is injective.

Let χ : T (AF )/T (F ) −→ D′ be a continuous homomorphism, whose restriction
to T (Fv) is the trivial homomorphism for all places v. We want to show that this is
in fact the trivial homomorphism. Note that we have⊕

v

T (Fv) ⊆ kerχ.

Now since D′ is Hausdorff, we have that kerχ is closed in T (AF )/T (F ). Therefore
the result will follow if we can show that

⊕
v T (Fv) is dense in T (AF ), since this

would mean that T (AF ) is also in the kernel of χ, which makes χ trivial. Now, since
T (AF ) is the restricted topological product of T (Fv) with respect to T (Ov), it is
easy to see that any non-empty open set in T (AF ) meets

⊕
v T (Fv). Hence the

result follows.
�

If we now take D = C×p then the above theorem relates admissible homomorphisms

WK/F → T̂C×p oG to continuous representations of T on the "p-adic Banach space" C×p .
This can be seen as the GL1 case of more general conjectures of the p-adic Langlands
programme for GLn which link admissible n-dimensional representations of Gal(Qp/Qp)
to certain continuous n-dimensional representations of GLn on p-adic Banach spaces
(cf. [Mil06Mil06, p. 116]). Specifically, if one takes a more general reductive group G with
Langlands dual group LG, then the Langlands program links admissible homomorphisms
WK/F → LG with irreducible automorphic representations of G (which are the analogue
of our group Homcts(T (F ), D)). For more details and survey of what is known about
the p-adic Langlands programme we refer the reader to [Bre10Bre10].
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