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Abstract

Objective: To characterize disease evolution in amyotrophic lateral sclerosis

using an event-based model designed to extract temporal information from

cross-sectional data. Conventional methods for understanding mechanisms of

rapidly progressive neurodegenerative disorders are limited by the subjectivity

inherent in the selection of a limited range of measurements, and the need to

acquire longitudinal data. Methods: The event-based model characterizes a dis-

ease as a series of events, each comprising a significant change in subject state.

The model was applied to data from 154 patients and 128 healthy controls

selected from five independent diffusion MRI datasets acquired in four different

imaging laboratories between 1999 and 2016. The biomarkers modeled were

mean fractional anisotropy values of white matter tracts implicated in amy-

otrophic lateral sclerosis. The cerebral portion of the corticospinal tract was

divided into three segments. Results: Application of the model to the pooled

datasets revealed that the corticospinal tracts were involved before other white

matter tracts. Distal corticospinal tract segments were involved earlier than

more proximal (i.e., cephalad) segments. In addition, the model revealed early

ordering of fractional anisotropy change in the corpus callosum and subse-

quently in long association fibers. Interpretation: These findings represent

data-driven evidence for early involvement of the corticospinal tracts and body

of the corpus callosum in keeping with conventional approaches to image anal-

ysis, while providing new evidence to inform directional degeneration of the

corticospinal tracts. This data-driven model provides new insight into the

dynamics of neuronal damage in amyotrophic lateral sclerosis.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is now recognized as

both a clinically and pathogenically heterogeneous disor-

der.1 This poses new challenges for understanding disease

evolution in relation to the underlying molecular and cel-

lular mechanisms of neurodegeneration.

Thus far, schemes for studying the evolution and stag-

ing of these diseases have depended on the selection of

phenotypic and biomarker criteria (broadly defined to

include a wide range of clinical, molecular, and neu-

roimaging measures). Examples include the King’s and

MiToS systems for clinical in vivo staging2,3 that prede-

fine milestones representing stages by involvement of

body regions and by functions. The Braak postmortem

histopathological staging schemes4,5 applied to Alzhei-

mer’s disease and ALS, depend on a priori assumptions

on the pattern of pathological change, which are by defi-

nition end-stage. In this latter context, the notion of stage

is necessarily an inference from the observed patterns of

pathological change. The same caveat applies to neu-

roimaging staging systems that (for example) select cer-

tain tracts for analysis (e.g.6) based on similar a priori

assumptions derived from the postmortem model. Subjec-

tive inferences must be drawn regarding disease spread,

since it is conceivable that the areas in which changes

appear over time were affected at baseline, but at a level

below detection by the techniques applied. In other

words, there is a problem of sensitivity and selection of

criteria of change, even in longitudinal neuroimaging

studies. In addition, missing data7,8 is likely to introduce

bias into longitudinal analyses since missingness is unli-

kely to be random in ALS.9

In order to address these problems, a number of data-

led approaches have been developed, but are as yet not

integrated into prospective phenotyping studies or clinical

trials. In ALS, a data driven study using latent class clus-

ter analysis has identified prognostic and clinical sub-

groups that are distinct from those derived from analyses

based on subjective clinical subgroupings.10 More ambi-

tious data-driven models have been developed to under-

stand the sequence of biomarker changes in Alzheimer’s

disease11–15 and Huntington’s disease:11 probabilistic gen-

erative models are designed to provide a natural staging

scheme while also characterizing the uncertainty of the

ordering of biomarkers without requiring a priori clinical

diagnostic information or explicit biomarker threshold

criteria.

Here, we report the application of a probabilistic

event-based model (EBM)11,12 to ALS. Our aim was to

adapt the EBM of 12 for application to ALS and here we

describe that modeling process. We then tested the ALS

EBM model on a specific imaging parameter as ‘proof of

concept’; while previous EBM studies have modeled volu-

metric, cortical thickness, or connectivity changes, we

chose fractional anisotropy (FA) derived from diffusion

MRI, as this is the quantitative MRI modality that has,

overall, revealed the most consistent changes in ALS to

date.16 Although we selected the key white matter path-

ways for inclusion in our analysis based on existing neu-

roimaging studies, it is important to emphasize that, in

keeping with this being an unbiased approach, we had no

a priori hypothesis about the expected ordering of

involvement of these cerebral white matter tracts.

Materials and Methods

Data description

Five datasets were available for use in this study. Set E

was acquired on a GE Signa Horizon HDxt 1.5T clinical

scanner (General Electric, Waukesha, WI) at the Brain

Research Imaging Centre, University of Edinburgh

between 2010 and 2012. The diffusion MRI protocol con-

sisted of seven T2-weighted (b� 0 s mm�2) and sets of

diffusion-weighted (b = 1000 s mm�2) whole brain sin-

gle-shot spin-echo echo-planar imaging (EPI) volumes

acquired with diffusion encoding gradients applied in 64

noncollinear directions.17 The acquisition parameters

were: (1) field of view 256 9 256 mm; (2) imaging

matrix 128 9 128; and (3) 72 9 2 mm thick contiguous

axial slice locations giving 2 mm isotropic voxels. The

repetition and echo times for the single-shot spin-echo

EPI sequence were 16.5 sec and 98.3 msec respectively.

Sets F and K were acquired between 1999 and 2011 at

the Centre for Neuroimaging Sciences, King’s College

London. Set F was obtained on a 1.5T GE Signa HDx sys-

tem (General Electric, Waukesha, WI). The protocol

included diffusion-weighted EPI with diffusion gradients

applied along 64 directions and maximum b-value of

1300 s mm�2. Each volume was acquired using a multi-

slice peripherally gated doubly refocused spin echo EPI

sequence, from 60 contiguous near-axial slice locations

with anisotropic (1.875 9 1.875 9 2.5 mm) voxels. The

echo time was 101.3 msec, while the effective repetition

time varied between subjects in the range 12 and 20 RR

intervals, depending on individual participants’ heart

rates. Set K was obtained on a 3T GE Signa HDx system

(General Electric, Waukesha, WI) between 2008 and 2011.

The protocol included diffusion-weighted EPI, with diffu-

sion gradients applied along 32 noncollinear directions

and maximum b-value of 1300 s mm�2. Each volume

was acquired using a multislice peripherally gated doubly

refocused spin echo EPI sequence, from 60 contiguous

near-axial slice locations with 2.4 mm isotropic voxels.

The echo time was 104.5 msec, while the effective
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repetition time varied between subjects in the range 12

and 20 RR intervals, depending on individual partici-

pants’ heart rates. Full image acquisition details are given

in.17

Set N was obtained on a 1.5T Siemens Avanto system

(Siemens AG Medical Solutions, Erlangen, Germany) at

the Clinical Imaging Sciences Centre, Brighton and Sussex

Medical School between 2014 and 2016. Multishell diffu-

sion-weighted images were acquired with single-shot,

twice-refocused pulse-gradient spin-echo EPI, using three

b-values (nine directions with b = 300 s mm�2, 30 direc-

tions with b = 800 s mm�2, and 60 diffusion directions

with b = 2400 s mm�2), optimized for neurite orientation

dispersion and density imaging (NODDI).18 Ten nondif-

fusion weighted (b = 0) volumes were acquired. A parallel

imaging (GRAPPA) speed up factor of 2 was used; echo

time/repetition time = 99 msec/8400 msec; 2.5 mm iso-

tropic voxel size. Full image acquisition details are given

in.19

Set O was obtained on a 3T Siemens Trio scanner (Sie-

mens AG Medical Solutions, Erlangen, Germany) at the

Oxford Centre for Clinical Magnetic Resonance (OCMR)

between 2009 and 2013, as part of the Oxford Study for

Biomarkers in MND (“BioMOx”). The protocol included

diffusion-weighted whole-brain EPI, with diffusion gradi-

ents applied along 60 isotropic directions and maximum

b-value of 1000 s mm�2; echo time/repetition

time = 94 msec/10,000 msec; 2 mm isotropic voxel size.

Four nondiffusion weighted (b = 0 s mm�2) volumes

were acquired. Full image acquisition details are given

in.7

Specific eligibility criteria for Sets E, F, K, N, and O

are given in;7,19–22 at the time of enrollment, all patients

were systematically screened for cognitive impairment.

Only patients with a diagnosis of probable or definite

ALS were selected for inclusion in this study. One

patient was removed from Set E, due to fulfilling the

criteria for possible behavioral variant FTD. Seven and

three participants were removed from Sets F and K,

respectively, due to poor image quality. Eighteen patients

were removed from Set O due to having a diagnosis dif-

fering from probable or definite ALS. Two controls were

removed from Set O due to their young age. Basic

demographic and clinical characteristics of all five data-

sets as included in this study are summarized in

Table 1.

Magnetic resonance imaging analysis

All diffusion-weighted EPI volumes were corrected for

involuntary motion and eddy current distortions using

affine registration and the FMRIB’s Linear Registration

Tool (FLIRT), included in FSL 5.0.7, which is

documented and available freely online (https://fsl.fmrib.

ox.ac.uk). The images were skull-stripped using FMRIB’s

Brain Extraction Tool (BET). All datasets were manually

inspected for low signal to noise ratio and movement

artifacts.

For all diffusion imaging analysis, the single tensor

(ST) model was used to derive FA measurements. The ST

model was fitted with weighted least squares, using

FMRIB’s dtifit.

Normalization into MNI space was performed using

ANTs 2.1.0, which is documented and available freely

online (http://stnava.github.io/ANTs/). A study-specific

template was created for each of the five datasets. Each

subject’s FA map was warped to the corresponding tem-

plate, and all templates were warped to the JHU ICBM-

DTI-81 FA 1 mm atlas,23 included in FSL 5.0.7. These

warps were combined to produce a single warp for each

subject, which was then applied to their FA map.

To reduce the impact of scanner and site effects, the

FA voxel data were harmonized using the ComBat statis-

tical approach. ComBat is a batch adjustment method

developed for genomics data and adapted for diffusion

MRI.24 Age and patient/control status were included as

covariates during the harmonization process.

A two-tailed t-test (equal variances) for the combined

cohorts for the difference in mean age between controls

and patients showed P = 0.053. A voxel-based analysis

was therefore performed to model and correct for the

effects of age on FA, using the existing normalization. A

generalized linear model was fitted to the FA data of con-

trols only, using SPM12 (r7487). The effects of age were

regressed out of the FA maps, and the mean regional val-

ues that entered the EBM were computed from the resid-

ual images.

Event set

Seven white matter (WM) tracts were selected for analysis

(Table 2, Fig. 1) based on their likely involvement in ALS

pathology from analysis of the pathological and neu-

roimaging literature. ALS diffusion tensor imaging (DTI)

studies have most consistently reported that finding

decreased FA within the corticospinal tracts (CST).16,25,26

Multiple DTI studies have reported FA decreases in the

corpus callosum (CC),27–31 with the strongest FA

decreases appearing to be located in the middle-posterior

parts of the CC, which link the motor and premotor cor-

tices.30

Other WM regions are less consistently reported in

ALS DTI studies. Significant changes of DTI metrics

within the CST, CC, and superior longitudinal fasciculus

(SLF) have been found to correspond with a higher bur-

den of upper motor neuron (UMN) involvement in

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 3

M. C. Gabel et al. Evolution of White Matter Damage in ALS

https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk
http://stnava.github.io/ANTs/


sporadic ALS patients.32 Decreased FA has also been

demonstrated in the uncinate fasciculus (UF).33

Diffusion tensor tractography techniques have demon-

strated correlations between performance in cognitive

tasks and DTI changes in the CC, CST, and major long-

range association tracts: the cingulum, inferior longitudi-

nal fasciculus (ILF), inferior fronto-occipital fasciculus

(IFOF), and UF.34

For each fiber bundle, region of interest (ROI) masks

were created from the JHU DTI-based white-matter trac-

tography atlases23 included in FSL 5.0.7. The ROI masks

for the CST, IFOF, ILF, and SLF were created from the

JHU white-matter tractography atlas, thresholded at 50%;

all other ROI masks were created from the ICBM-DTI-81

atlas. FMRIB’s fslstats was used to calculate mean FA val-

ues for each ROI, and these values were used as biomar-

ker readings.

To allow the investigation of a directional progression

of ALS WM neurodegeneration, the CST was split in the

inferior to superior direction. The boundaries were set at

boundaries of the posterior limb of the internal capsule

as given in the ICBM-DTI-81 atlas (MNI z-axis coordi-

nates: CST inferior z ≤ �5, CST middle � 4 ≤ z ≤ 18

and CST superior 19 ≤ z). The CC was divided into three

ROIs, consisting of body, genu, and splenium, using the

JHU atlas boundaries.

Subdividing the CST and CC created a total of 11 WM

regions, each of which comprised a tract ROI combined

across both cortical hemispheres. To allow for investiga-

tion of bilateral asymmetry in ALS progression, all tracts

apart from the CC were further subdivided by cortical

hemisphere, giving a second set of 19 WM regions from

which FA biomarker values were derived. The EBM was

applied separately to both sets of biomarkers.

The event-based model

We estimated the most likely ordering of events and their

uncertainty across the cohort, using a version of the EBM

adapted for ALS. The EBM defines a disease as a series of

events, where an event is the change of a biomarker from

a “healthy” state to a “diseased” state. The cut-off point

determining this change for each biomarker is not deter-

mined a priori, but instead derived from the biomarker

data during the modeling process. Full mathematical

details of the EBM are given in11,12 and briefly summa-

rized below.

Fitting the EBM to the data requires evaluating the

likelihood P(S|X) of a particular event ordering S given

the data X. For biomarker i and patient j, this is achieved

by fitting simple models for the likelihood function P(xij|
Ei) on the measurement xij given that event Ei has

occurred, and similarly P(xij|pEi) on the measurement xij
given that event Ei has not occurred. These simple models

are derived from a two-component Gaussian mixture

model, fitted to each biomarker.

It is important to highlight some differences between

our approach and previous applications of the EBM.

First, we applied the model to data from ALS patients.

The ALS patient population is clinically distinct from the

control population; this may not apply to dementia, in

which there is likely to be a continuum in biomarker dis-

tribution between normal aging and symptomatic

Table 1. Demographics at time of neuroimaging for the five datasets E, F, K, N, and O.

Demographics Set E Set F Set K Set N Set O

Controls N 30 22 24 23 29

Gender (M/F) 16/14 (53%) 14/8 (64%) 19/5 (79%) 14/9 (61%) 14/15 (48%)

Age at scan (years, mean � SD) 59.1 � 11.5 49.8 � 15.6 47.3 � 8.2 61.5 � 9.3 52.5 � 11.7

ALS N 29 35 28 23 39

Gender (M/F) 16/13 (55%) 20/15 (57%) 25/3 (89%) 16/7 (70%) 25/14 (64%)

Age at scan (years, mean � SD) 58.3 � 11.3 54.0 � 12.1 52.6 � 11.8 64.3 � 8.0 57.6 � 10.5

Age at onset (years, mean � SD) 57.4 � 9.9* 51.2 � 13.4** 50.5 � 11.8 62.0 � 8.1 54.9 � 11.0

ALSFRS-R score (mean � SD) 38.8 � 6.9 37.7 � 6.6** 40.6 � 4.1 40.0 � 5.2 33.9 � 5.4

*N = 28.

**N = 27.

Table 2. White matter regions selected for analysis.

White matter region Abbreviation Illustration (Fig 1.)

Corticospinal tract CST

Inferior/middle/superior Inf/Mid/Sup 1-3

Corpus callosum CC

Genu/body/splenium 4-6

Cingulum (dorsal section) Cingulum 7

Superior longitudinal fasciculus SLF 8

Inferior longitudinal fasciculus ILF 9

Inferior fronto-occipital fasciculus IFOF 10

Uncinate fasciculus UF 11

With the exception of the corpus callosum, all tracts were further sub-

divided by hemisphere. Biomarker readings were taken as the mean

FA value of each region.
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disease.35 This distinction allowed for constraining the

mixture fitting: a Gaussian distribution was fitted to

the control data, and the 95% confidence intervals of the

resulting parameters were used as constraints for the first

mixture model component. The second model compo-

nent and mixing proportion were left unconstrained. Fol-

lowing the fitting, the components were separated and

used to model P(xij|Ei) and P(xij|Ei) respectively.
Second, we used FA as a biomarker, as opposed to

volumetric and cortical thickness measures11,12,15 or con-

nectivity.36 The EBM is potentially sensitive to individual

variation of biomarker readings, due to its dependence

on Gaussian mixture models, the fitting of which can be

biased by the presence of outliers. This is particularly

important when using biomarkers such as FA, which is

susceptible to noise and varies between anatomical

regions.37 To reduce the effects caused by outliers, the

mixture models were fitted 1000 times from boot-

strapped samples. Samples for which the mixing propor-

tion had collapsed to 0 or 1 were then excluded to avoid

biologically unrealistic solutions. The mixing proportion

of ILF (right hemisphere) was constrained to be >0.5, in
order to prevent consistent fitting failure. To obtain the

final mixture model parameters, the median of the

remaining bootstrapped parameters was taken. This is an

addition to the EBM which was not used in previous

applications.

Following the fitting of the mixture models, estimation

of the most likely ordering of events (the “inferred event

order”) and characterization of their uncertainty was per-

formed using a Markov chain Monte Carlo (MCMC)

algorithm to sample from the posterior event distribution

P(S|X). We note that the MCMC sampling was performed

on only the patient biomarker data, as justified by the

clinically distinct control and patient populations of ALS.

Finally, cross-validation was performed as described in
12,15 with the mixture models and the most likely event

sequence re-estimated for a further 10,000 bootstrap sam-

ples. Two further weak constraints were used during

cross-validation: mixing proportions were constrained to

be ≥ 0.01 and ≤ 0.99, and for the second model compo-

nent, the standard deviation r was set to be ≥ 0.001. For

each sample, the mixture models were directly fitted with-

out further bootstrapping, in order to minimize the risk

of underestimating the cohort variability. Cross-validation

overstates the uncertainty of the inferred event order, giv-

ing a more conservative picture than that of the MCMC

samples.

Ethics approval

All participants gave written informed consent at inclu-

sion, in accordance with the Declaration of Helsinki.

Participants in Sets E, N, and O explicitly gave consent

for their data to be used in further studies. We

obtained additional ethical approval to use participant

data from Sets F and K in this study from NRES

Committee London – Stanmore (REC reference 14/LO/

1484).

Results

Inferred order of events – combined
hemispheres

Figure 2A is a positional variance diagram, showing the

inferred order of events on the y-axis (top to bottom),

and each event’s variation across the MCMC samples.

This variation may be considered to represent the uncer-

tainty of an event’s ordering, and is represented by the

intensity of each square: higher certainty corresponds to

darker squares.

The event sequence shows with high confidence that

the earliest changes detected are in the CSTs and CC

body; the distal CST is more susceptible to MRI degener-

ative change than the proximal segment as reflected by

changes in FA in the three segments of the CSTs. The

next regions affected are the CC splenium and body,

which are followed by a cluster comprised of the SLF,

ILF, and cingulum. The final ROIs to be affected are the

IFOF and UF.

We note that the inferred event sequence shows fibers

ordered by type; projection fibers are the first affected,

followed by commissural fibers, and finally long associa-

tion fibers.

Cross-validation reveals a similar picture, with

increased uncertainty across all biomarkers (Fig. 2B). The

CST biomarkers are the events with the highest positional

confidence, reflecting the CST’s role as the tract most

consistently implicated in ALS DTI studies.

Inferred order of events – separate
hemispheres

Qualitatively, the inferred order when considering hemi-

spheres separately (Fig. 2C) is broadly similar to that for

the combined hemispheres (Fig. 2A), although there are

differences within the ordering of the association fibers.

Again, the distal over proximal degeneration of the CSTs

is apparent, with the event sequence not favoring one

hemisphere over another; i.e., showing no clear evidence

for bilaterally asymmetric progression within the CSTs.

We note that ILFR required an extra constraint during

mixture fitting to avoid consistent fitting failure; the need

for this constraint may indicate reduced accuracy of tem-

poral staging for this biomarker.
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As before, cross-validation (Fig. 2D) shows similar

event positional variance, albeit with increased uncer-

tainty across all biomarkers; the positional uncertainty is

greatest for the long association fiber regions and the

extremities of the CC, qualitatively corresponding with

the increased variability seen in Figure 2B.

Imaging biomarker staging

The EBM also possesses fine-grained staging capabili-

ties,12,15 whereby each person is assigned a biomarker

stage that best reflects their measurements. In order to

maximize the accuracy of stage assignment, we applied

the staging process to the combined hemisphere biomar-

ker set, as this has the most distinct event ordering. The

staging proportions for all participants are shown in Fig-

ure 3, differentiated by control/patient status. Unlike pre-

vious applications of the EBM to Alzheimer’s disease, we

do not find strong separation between the diagnostic

groups (i.e., patients and controls) when performing this

subject-specific staging. We note that most previous

applications of the EBM leave out biomarkers that do not

show statistically significant differences between patients

and controls. However, our aim here is more to elucidate

the sequence of change than to stage patients so we retain

all biomarkers, but acknowledge that the ordering may

not be reliable for markers that do not discriminate

patients and controls.

Discussion

Using an event-based probabilistic model developed for

ALS on the basis of similar approaches in Alzheimer’s

disease and Huntington’s disease,11,12 we infer a temporal

susceptibility of MRI-based pathological involvement in

key white matter pathways in ALS, using FA as a biomar-

ker of axonal damage.

Our main findings can be summarized as follows. First,

the model suggests that the earliest detectable MRI-based

intracerebral white matter FA changes are in the CSTs.

Second, FA changes in the CSTs may have a directional

susceptibility, with FA changes occurring distally prior to

proximally. Third, the CC is involved next in sequence to

the CSTs, with detectable FA changes occurring in the CC

body, then in the splenium and finally in the genu.

Fourth, the long association fiber tracts are affected after

the CSTs and CC body. Fifth, we have found that sub-

ject-specific staging reveals a significant overlap between

controls and ALS patients.

Regarding the CSTs, all longitudinal MRI studies to

date identify this as the earliest white matter tract in

which MRI-based abnormalities are detectable,16 in keep-

ing with the outcome of our EBM. However, our observa-

tions suggest that the pathological dynamics affecting the

CSTs is a ‘dying-back’ process or distal axonopathy.38

Classical histopathology cannot, by definition, identify

dynamic aspects of CST degeneration, but in accord with

our findings pathological changes along the proximal-dis-

tal are usually more evident in distal compared to more

proximal portions of the pathway,39 and in keeping with

a so-called ‘dying-back’ process. There has been much

debate as to whether the degenerative process is driven by

changes in the primary motor cortex as an anterograde

form of neurodegeneration or is retrogradely initiated

from somatic motor neurons.40 However, this dualism is

likely to be misleading, since the perikaryon, dendrites,

Figure 1. White matter regions selected as biomarker regions (only the left hemisphere portions are visible). 3D render of the ROI masks in MNI

space; each cube is equal to a 1mm isotropic voxel. 1–3 = corticospinal tract inferior/middle/superior, 4–6 = corpus callosum genu/body/splenium,

7 = cingulum, 8 = superior longitudinal fasciculus, 9 = inferior longitudinal fasciculus, 10 = inferior fronto-occipital fasciculus, 11 = uncinate

fasciculus.
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and axon form a unified functional and, presumably,

pathophysiological unit. Data-driven approaches to old

controversies may help to resolve this issue, if indeed it is

a meaningful dichotomy.

Likewise, involvement of the CC has been a consistent

finding in MRI studies in ALS.7,30,32 In the EBM, the stag-

ing of CC involvement evolved from the body, to the sple-

nium and the genu. This is in keeping with the notion that

the callosal fibers most affected in ALS are those that con-

nect the primary motor areas of the hemispheres.41 The

EBM results are broadly keeping with the Braak staging sys-

tem5 regarding the CSTs and CC. However, in contrast

with recent studies6,8,26 that have sought to confirm this

pathological staging system using cross-sectional and longi-

tudinal neuroimaging data, our EBM makes no a priori

assumptions on the ordering of white matter involvement.

Figure 2. Event-based models of amyotrophic lateral sclerosis progression. Positional variance diagrams (PVDs) for (A,B) 11 white matter regions

(combined across cortical hemispheres) and (C,D) 19 white matter regions (subdivided by cortical hemisphere). The inferred event order is given

along the y-axis (top to bottom). The grayscale intensity of each square is proportional to the posterior confidence with which a biomarker

occupies a position in the event sequence; higher intensity corresponds to lower positional variance and thus greater confidence. Left: PVDs of

MCMC samples from the event-based model. Right: PVDs from cross-validation through bootstrapping. These diagrams overstate the uncertainty

of the inferred event order, giving a more conservative picture than that of the MCMC samples. CST = corticospinal tract, CC = corpus callosum,

Cingulum = cingulum (dorsal section), IFOF = inferior fronto-occipital fasciculus, ILF = inferior longitudinal fasciculus, SLF = superior longitudinal

fasciculus, UF = uncinate fasciculus. Inf/mid/sup = inferior/middle/superior, L/R = left/right hemisphere.
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Turning to the other white matter tracts included in

our modeling: the cingulum, SLF, ILF, IFOF, and UF

have all been identified as showing changes in DTI met-

rics in ALS.32–34 Furthermore, their involvement has been

linked to cognitive changes across several domains includ-

ing attention and executive functions,22,34,42 and language

processing (the ILF, IFOF and UF).42–45 The ordering of

these long association fibers comprises the main differ-

ences between the inferred event orders for combined and

separate hemispheres (Fig. 2A and C). The involvement

of these tracts in ALS DTI studies is less consistently

reported than the CSTs and CC,16,25–31 suggesting a smal-

ler effect size and greater heterogeneity of FA values

within the long association fiber ROIs; the differences in

inferred event orders may be reflective of this. An alterna-

tive explanation is the reduced signal-to-noise ratio in the

case of separate hemisphere ROIs.

Our selection of white matter tracts could be criticized

in that we did not include in our EBM specific pathways

that have been prioritized on the basis of the pathologi-

cally based hypothesis of disease spread.5,6,26,46 We had

reservations about the self-fulfilling nature of the selection

based on this hypothesis and chose to focus initially on

the pathways identified in studies not based on this

presupposition.7,32,34 However, it will be important to

add these pathways to the model in future applications

and developments of the EBM.

The mean FA values were extracted using atlas-defined

ROIs; this approach relies on registration to standard

space and does not account for individual anatomical dif-

ferences. An alternative approach is to use tractography

to reconstruct the tracts of interest on a participant-wise

basis. Tractography, however, is strongly affected by data

acquisition parameters, such as maximum b-value and

number of diffusion directions. Given the variability in

the acquisition protocols used for the datasets included in

this study, we opted for minimizing the bias using prede-

fined ROIs.

As well as finding the most likely event order, the EBM

is capable of staging disease progression in fine detail.

Unlike previous applications of the EBM to Alzheimer’s

disease, we find poor separation between the diagnostic

groups (i.e., patients and controls) when performing this

subject-specific staging. The assignment of controls to late

biomarker stages is likely due to the limited sensitivity

and specificity of FA as a biomarker for ALS.16 DTI is

limited in its sensitivity to tissue microstructure47 and

more sophisticated approaches, such as NODDI, could

Figure 3. Proportion of patients and controls allocated to each biomarker stage by maximum likelihood. The stages are in the same order as

given in Figure 2A.
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improve on these results. However, as this study relied on

historical data it was not possible to use such approaches.

Future studies employing biomarkers with greater diag-

nostic accuracy should be able to demonstrate improved

separation between ALS patients and controls.

By setting Stage 1 as the cut-off point (i.e., Stage

0 = healthy, Stage 1 and above = ALS), the subject-

specific staging distinguished between patients and con-

trols with a sensitivity of 66.9% and specificity of

75.8%. This is comparable to that of other FA-based

ALS biomarkers.48 The proportions of participants

assigned to various biomarker stages are also informa-

tive: Figure 3 shows that 33.1% of patients are assigned

to biomarker stage 0, equivalent to none of the included

biomarkers being in a diseased state. While the hetero-

geneity of ALS should be considered as a causal factor,

another plausible explanation is that relevant biomarkers

have not been included in this analysis; i.e. this biomar-

ker staging could suggest that detectable changes in the

mean FA of the CSTs do not represent the beginning of

ALS pathology.

The EBM method is subject to the difficulties inherent

in any data-driven approach: the model finds patterns

within the data, and these patterns require interpretation

within the context of the pathology of the disease. More-

over, the probabilities are based on the variable sensitivity

of water diffusion-based metrics, which are known to vary

physiologically along the length of many tracts, and are

influenced by crossing fibers.49 Any interpretation must

be subjective to a certain degree, particularly when estab-

lishing the biological significance of the modeling output,

given that the precise relationship between MRI metrics

and histology is still being uncovered.50 Likewise, as with

any modeling process, simplifications and assumptions

about the disease process are unavoidable. In particular,

the EBM assumes that the event sequence is consistent

over all patients, which is unlikely to hold for a heteroge-

neous disease such as ALS. We have tried to mitigate the

impact of disease heterogeneity by using bootstrapping to

fit the mixture models, thus reducing the effects of indi-

viduals and giving an “average disease progression” across

the entire cohort.

As with any data-driven method, sample size and

heterogeneity must be taken into consideration when

drawing conclusions; the clinical cohorts available to us

were relatively small, which warrants caution when gener-

alizing results beyond this study. While the cohorts show

differences in demographic and prognostic characteristics,

especially age and gender distribution, such variations are

unlikely to invalidate the analysis of tract involvement in

the context of EBM but might contribute to greater vari-

ability in the ordering of events. It is therefore all the

more striking that the ordering of change in FA along the

CSTs is highly consistent, as is the involvement of the

CC. Finally, historical cohorts such as ours pose chal-

lenges derived from older technology and lack of stan-

dardization of scanning protocols between cohorts.

In summary, we have adapted the EBM and applied it

to five independent ALS cohorts, using FA as the most

robust measure of white matter damage in this disease.

The model clearly and consistently demonstrates the

dynamic of pathological involvement in ALS, which is in

keeping with known pathological processes derived from

more subjective approaches.7 Having shown here that the

EBM can be applied to a relevant biomarker in ALS, the

next stage will be to take a more inclusive approach

incorporating a much wider range of biomarkers. The

field of data-driven modeling applied to progressive neu-

rological diseases is relatively new, but this study indicates

that the EBM has great potential to inform understanding

of the dynamics of the underlying biological processes in

ALS.
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