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A B S T R A C T

Multi-parametric quantitative MRI (qMRI) of the spinal cord is a promising non-invasive tool to probe early
microstructural damage in neurological disorders. It is usually performed in vivo by combining acquisitions with
multiple signal readouts, which exhibit different thermal noise levels, geometrical distortions and susceptibility to
physiological noise. This ultimately hinders joint multi-contrast modelling and makes the geometric correspon-
dence of parametric maps challenging. We propose an approach to overcome these limitations, by implementing
state-of-the-art microstructural MRI of the spinal cord with a unified signal readout in vivo (i.e. with matched
spatial encoding parameters across a range of imaging contrasts). We base our acquisition on single-shot echo
planar imaging with reduced field-of-view, and obtain data from two different vendors (vendor 1: Philips Achieva;
vendor 2: Siemens Prisma). Importantly, the unified acquisition allows us to compare signal and noise across
contrasts, thus enabling overall quality enhancement via multi-contrast image denoising methods. As a proof-of-
concept, here we provide a demonstration with one such method, known as Marchenko-Pastur (MP) Principal
Component Analysis (PCA) denoising. MP-PCA is a singular value (SV) decomposition truncation approach that
relies on redundant acquisitions, i.e. such that the number of measurements is large compared to the number of
components that are maintained in the truncated SV decomposition. Here we used in vivo and synthetic data to
test whether a unified readout enables more efficient MP-PCA denoising of less redundant acquisitions, since
these can be denoised jointly with more redundant ones. We demonstrate that a unified readout provides robust
multi-parametric maps, including diffusion and kurtosis tensors from diffusion MRI, myelin metrics from two-pool
magnetisation transfer, and T1 and T2 from relaxometry. Moreover, we show that MP-PCA improves the quality of
our multi-contrast acquisitions, since it reduces the coefficient of variation (i.e. variability) by up to 17% for mean
kurtosis, 8% for bound pool fraction (myelin-sensitive), and 13% for T1, while enabling more efficient denoising
of modalities limited in redundancy (e.g. relaxometry). In conclusion, multi-parametric spinal cord qMRI with
unified readout is feasible and provides robust microstructural metrics with matched resolution and distortions,
whose quality benefits from multi-contrast denoising methods such as MP-PCA.
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List of symbols and abbreviations

AD Axial Diffusivity
b Diffusion weighting strength (b-value)
BPF Bound Pool Fraction
CNR Contrast-to-noise Ratio
CoV Coefficient of Variation
CSF Cerebrospinal Fluid
Δfc Off-resonance pulse offset frequency
DW Diffusion-weighted
EPI Echo Planar Imaging
FA Fractional Anisotropy
FFE Fast-Field-Echo
FOV Field-of-view
FSL FMRIB Software Library
g Diffusion weighting gradient direction
GM Grey Matter
GREASE Gradient Echo Asymmetric Spin Echo
IQR Interquartile range
IR Inversion Recovery
k Free-to-bound pool exchange rate
MD Mean Diffusivity
MK Mean Kurtosis
MP Marchenko-Pastur
MRI Magnetic Resonance Imaging

MT Magnetisation Transfer
mTE, multi-TE Multi-echo time
PCA Principal Component Analysis
θ Off-resonance pulse flip angle
qMRI Quantitative Magnetic Resonance Imaging
qMT Quantitative Magnetisation Transfer
ρ Relative Proton Density
RARE Rapid Acquisition with Refocussed Echoes
RD Radial Diffusivity
rFOV Reduced Field-of-view
SCT Spinal Cord Toolbox
SNR Signal-to-noise Ratio
SPGR Spoiled Gradient Echo
SV Singular Value
T1 Macroscopic longitudinal relaxation time
T2 Macroscopic transverse relaxation time
TB
2 Bound-pool transverse relaxation time

TF
2 Free-pool transverse relaxation time

TE, TE Echo time
TEDDI TE-Dependent Diffusion Imaging
TI, TI Inversion time
TR, TR Repetition time
WM White Matter
ZOOM Zonally-magnified Oblique Multi-slice
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1. Introduction

The spinal cord is a small but functionally important structure of the
human central nervous system, affected in several common disorders.
These are often associated with high disability (Hendrix et al., 2015), and
include: multiple sclerosis (Ciccarelli et al., 2019), amyotrophic lateral
sclerosis (van Es et al., 2017), spinal cord injury (Ahuja et al., 2017) and
many others (Lorenzi et al., 2020). Routine anatomical magnetic reso-
nance imaging (MRI) plays an important role in the diagnosis and
management of these conditions (Kearney et al., 2015). However, it only
offers macroscopic descriptors of tissue damage that lack specificity for
pathophysiology, have limited prognostic value and fail to guide treat-
ment and rehabilitation personalisation (Cohen-Adad, 2018; Stroman
et al., 2014; Wheeler-Kingshott et al., 2014). The gradual adoption of
quantitative MRI (qMRI) techniques may help overcome the limitations
of conventional anatomical MRI. Based on either well-validated bio-
physical models or parsimonious signal representations (Novikov et al.,
2018), qMRI promises to provide estimates of biologically meaningful
characteristics, which would make parametric maps vendor-independent
(Cercignani and Bouyagoub, 2018). The latest multimodal qMRI tech-
niques exploit the complementary information from different contrasts
(De Santis et al., 2016; Stikov et al., 2015), for example relaxometry and
diffusion, to better quantify the parameters of tissue microstructure
(Benjamini and Basser, 2019; Hutter et al., 2018; Kim et al., 2017;
Lemberskiy et al., 2018; Ning et al., 2019; Slator et al., 2019; Veraart
et al., 2018).

In vivo qMRI of the spinal cord is increasingly popular (Battiston
et al., 2018a, 2018b; By et al., 2017; By et al., 2018; Duval et al., 2017;
Grussu et al., 2015, 2019; Ljungberg et al., 2017; Massire et al., 2016;
Schilling et al., 2019; Taso et al., 2016) due to recent advancements in
scanner hardware (Barry et al., 2018; Duval et al., 2015) and analysis
software (De Leener et al., 2017). However, its development is currently
hampered by the following two challenges.

Firstly, multi-contrast qMRI in the spinal cord in vivo typically relies
on specialised techniques with dedicated signal readout for each contrast
(Duval et al., 2017; Massire et al., 2016; Taso et al., 2016). The variety of
readouts is not compatible with joint computational modelling of
2

voxel-wise multi-contrast signals, and also limits the alignment of
multimodal metrics due to different distortions and susceptibility to
physiological noise (Campbell et al., 2018). The second major challenge
is related to the fact that data quality in spinal cord imaging remains
lower compared to the brain. This is due to the need for high spatial
resolution (the spinal cord cross sectional area is about 1 cm2), which is
challenged by artifacts from pulsation (Morozov et al., 2018; Summers
et al., 2006) and local magnetic field inhomogeneities (Vannesjo et al.,
2018; Verma and Cohen-Adad, 2014). Improving the intrinsic data
quality is therefore imperative to facilitate the application of the latest
qMRI techniques to the spinal cord, which are still in their infancy as
compared to those in the brain (Cohen-Adad, 2018; Wheeler-Kingshott
et al., 2014).

In this paper, we propose a unified acquisition for state-of-the-art
multimodal qMRI of the spinal cord in vivo that addresses both chal-
lenges. Our protocol relies on a unified signal readout based on single-
shot spin echo planar imaging (EPI) with reduced field-of-view.
(rFOV). Our acquisition provides images whose spatial encoding is
identical across a range of MRI contrasts, and thus have the same intrinsic
resolution and susceptibility artifacts (i.e. distortions). Importantly, the
unified acquisition also enforces the same noise statistics across multiple
signal contrasts, thus enabling overall data quality enhancement via
denoising of the whole multimodal image set.

Several denoising methods have been proposed in MRI, some of them
being promising to enhance the quality of multi-contrast image sets.
Examples include total variation (Blomgren and Chan, 1998), non-local
(Kafali et al., 2018; Kim et al., 2016; Manj�on et al., 2009), wavelet
(Scheunders and De Backer, 2007), principal component (Manj�on et al.,
2015; Sonderer and Chen, 2018) or k-space (Haldar and Liang, 2008; Kim
et al., 2016) methods. Here we provide a first demonstration of the
usefulness of multi-contrast denoising in in vivo spinal cord settings, as
enabled by the unified signal readout. For this practical demonstration,
we adopt the MP-PCA technique (Veraart et al., 2016b), since it is a
promising, open-access and easy-to-use method that has proven to be
useful in a number of MRI contexts (Adanyeguh et al., 2018; Does et al.,
2019; McKinnon et al., 2018; Tax et al., 2019). Also, MP-PCA enables the
analysis of multi-contrast reconstructed images without the need to
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obtain raw k-space of complex-valued (Cordero-Grande et al., 2019)
data, which is typically not very practical in most real-life clinical set-
tings. Different denoising approaches could have also been tested, and we
aim to consider them in future work.

It is important to point out that unified, multi-contrast readouts are
well known in MRI literature, given the growing interest in multi-
parametric approaches. As compared to such previous approaches
(Benjamini and Basser, 2019; Hutter et al., 2018; Kim et al., 2017; Ning
et al., 2019; Slator et al., 2019), this paper provides several original
contributions. Firstly, multi-contrast MRI approaches have not been
demonstrated in the spinal cord in vivo, given the intrinsic challenge to
deal with physiological noise, non-rigid motion and distortions. Here we
tackle these challenges using a cardiac-gated, reduced field-of-view
readout. Secondly, to our knowledge we present the richest in vivo
multi-contrast spinal cord protocol. Modality-wise, we focus on dif-
fusion-weighted (DW), quantitative magnetisation transfer (qMT),
inversion recovery (IR) and multi echo time (multi-TE) imaging (T1 and
T2 mapping). These techniques provide microstructural measurers that
are potential biomarkers in neurodegenerative and demyelinating dis-
eases (Battiston et al., 2018a; Kearney et al., 2015). Each of these
quantitative methods is potentially useful on its own. However, their
joint acquisition enables multi-contrast analyses, where the comple-
mentary information of the different indices can be fused to obtain novel
metrics such as indices of myelin g-ratio (Cercignani and Bouyagoub,
2018; Duval et al., 2017). Importantly, our work is the first to charac-
terise in detail multi-contrast denoising for application in the spinal cord
in vivo against real-life confounders (e.g. signal/noise drifts during the
acquisition; non-rigid motion; updates in scanners gains). Therefore, it
provides the community with quantitative figures related to image
quality and metrics variability that are useful for the design of sample
sizes in future clinical studies.

2. Background on MP-PCA

MP-PCA denoising (Veraart et al., 2016b) is a singular value (SV)
decomposition truncation method. MP-PCA denoises noisy input
matrices A ¼ ½ai;j� of size M � N constructed by arranging M MRI mea-
surements along rows from N neighbouring voxels along columns, such
that M < N without loss of generality.

MP-PCA studies the squared SVs of A, which we indicate as fλ1; …;

λMg s.t. λk�1 � λk for k ¼ 2; …; M, and selects a threshold at the P-th SV
λP by identifying an MP distribution on the distribution of the remaining
M � P smallest SVs of A, which are fully-random in the limit case of
infinitely large matrices (Baik et al., 2005; Hoyle and Rattray, 2004).
Once the threshold λP has been identified, MP-PCA sets the M� P SVs λk
(k > P) to zero and outputs a matrix Aden ¼ ½adeni;j �, i.e. a denoised version
of A, as well as the simultaneously estimated noise standard deviation σ
and the number of SVs P that survive truncation. As far as the output
matrix Aden is concerned, it is important to keep in mind that not all
original noise-free signal components might be recovered, since some
unrecoverable signal may be represented in the M � P nullified
components.

It should be noted that the P remaining SVs are corrupted with
thermal noise, such that the signal-to-noise ratio (SNR) gain can be
roughly estimated as

ffiffiffiffiffiffiffiffiffiffi
M=P

p
(Veraart et al., 2016a, 2016b). This moti-

vates the application of MP-PCA on large redundant image series, i.e. such
that they are characterised by M ≫ P. This fuels the hypothesis that
bundling contrasts together to increaseM may improve the performance
of MP-PCA, thus motivating our work.

Importantly, several other methods for low-rank matrix denoising
have been proposed in the literature (Bunea et al., 2011; Giraud, 2011;
Kargin, 2015; Nadakuditi, 2014), including statistical/information the-
ory (Johnstone, 2006) approaches deriving optimal asymptotic matrix
denoisers (Donoho et al., 2018; Gavish and Donoho, 2014, 2017; Sha-
balin and Nobel, 2013). Notably, the optimal shrinkage approach (Gavish
3

and Donoho, 2017) not only sets to zero SV below the optimal SV
threshold λP, but also reduces the values of λk for k � P, improving
denoising performance compared to hard SV truncation. Here we used
MP-PCA to provide a practical demonstration of multi-contrast applica-
tions unlocked by our unified readout. MP-PCA is an open-source tool
developed in the imaging context that is well-known and widely adopted
within the MRI community, having shown utility and robustness in
real-life scenarios (e.g. in presence of signal, noise or frequency drifts as
well as of physiological noise) (Adanyeguh et al., 2018; Does et al., 2019;
McKinnon et al., 2018; Tax et al., 2019). Other multi-contrast denoising
approaches could also show benefit, and we reserve them for future
investigation.

3. Methods

We synthesised multimodal MRI scans encompassing modalities with
different redundancy, emphasising protocols that could be realistically
implemented in the spinal cord in vivo, and evaluated the performance of
MP-PCA denoising when performed on each modality independently or
on multiple modalities jointly.

We also acquired multi-contrast MRI data with unified readout on
scanners from two vendors (vendor 1: Philips; vendor 2: Siemens), and
characterised the quality of several qMRI metrics as obtained following
MP-PCA denoising or without denoising. The shared readout enables the
assessment of whether denoising modalities characterised by limited
redundancy can be improved if these are denoised jointly with more
redundant acquisitions.

In the following sections, we will describe simulations first, as these
provide the context for the interpretation of findings in vivo. All analyses
were performed using in-house scripts, which are made openly available
(http://github.com/fragrussu/PaperScripts/tree/master/sc_unireadout).

3.1. In silico study

3.1.1. Signal synthesis
We synthesised realistic spinal cord scans using anatomical infor-

mation from the Spinal Cord Toolbox.
(http://github.com/neuropoly/spinalcordtoolbox) (SCT) (De Leener

et al., 2017), which contains a high-resolution MRI template with
voxel-wise volume fractions of white matter (WM, vWM), grey matter
(GM, vGM) and cerebrospinal fluid (CSF, vCSF) (L�evy et al., 2015).

Firstly, we used NiftyReg (http://niftyreg.sf.net) reg_resample

(Modat et al., 2010) with default options to downsample the voxel-wise
volume fractions vWM, vGM and vCSF to a resolution that is plausible for
quantitative MRI of the spinal cord based on EPI (By et al., 2018; Duval
et al., 2015; Grussu et al., 2015), i.e. 1 � 1 � 5 mm3 along R-L, A-P and
S–I directions, ensuring realistic partial volume effects. Afterwards, we
cropped the field-of-view (FOV) along the foot-head direction to 200 mm
(40 slices), in order to keep a tractable number of synthetic spinal cord
voxels to analyse (i.e. 1700 voxels).

We used custom-written Matlab (The MathWorks, Inc., Natick, MA)
code to synthesise signals for a rich multimodal quantitative MRI pro-
tocol encompassing of DW, qMT, IR and multi-TE imaging with shared
imaging readout (protocol in Table 1, matching our rich in vivo MRI
protocol). The total voxel-wise noise-free magnitude signal STOT was
obtained as the weighted sum of the signals from WM, GM and CSF, i.e.

STOT ¼ vWM SWM þ vGM SGM þ vCSF SCSF; (1)

where vWM þ vGM þ vCSF ¼ 1.
For each measurement characterised by sequence parameters ðTE, TI,

b, g, θ, ΔfcÞ (respectively: echo time, inversion time, diffusion-weighting
strength or b-value, diffusion gradient direction, off-resonance pulse flip
angle, off-resonance pulse offset frequency), we synthesised each of SWM,
SGM and SCSF as:

http://github.com/fragrussu/PaperScripts/tree/master/sc_unireadout
http://github.com/neuropoly/spinalcordtoolbox
http://niftyreg.sf.net


Table 1
Sequence parameters used to simulate synthetic multimodal spinal cord scans. In the table, DW, qMT, IR and multi-TE stand respectively for diffusion-weighted,
quantitative magnetisation transfer, inversion recovery and multi-echo time. All of DW, qMT, IR and multi-TE imaging rely on the same spin echo EPI readout with
long TR (i.e. such that it is hypothesised that TR ≫ T1). For qMT, each of the 4 repetitions of 11 MT-weighted measurements is characterised by a different delay
between the end of the off-resonance pulse train and the readout, i.e. {17, 95, 173, 251} ms. The off-resonance pulse train in qMT was made of 25 sinc-Gaussian pulses
(bandwidth: 122 Hz), each lasting 15 ms and with inter-pulse delay of 15 ms (Battiston et al., 2018a).

Scan
Echo time TE [ms] Inversion time TI [ms] Diffusion encoding strength b [s/mm2] Off-resonance pulse flip

angleθ [�]
Off-resonance pulse offset
frequencyΔf c [KHz]

DW
imaging

72 No inversion pulse used {0, 300, 1000, 2000, 2800} s/mm2with {8, 4,
10, 18, 28} directions

No off-resonance pulse
used

No off-resonance pulse used

qMT
imaging

24 No inversion pulse used No diffusion encoding used 4 repetitions of {0, 426,
433, 524,
1429, 1438, 1440,
1459, 1460, 1462, 1465}

4 repetitions of {0.00, 1.07, 1.00,
2.70,
14.13, 3.78, 13.60,
1.05, 1.01, 3.76, 8.39}

IR
imaging

24 12 linearly spaced in
[200, 2300] ms

No diffusion encoding used No off-resonance pulse
used

No off-resonance pulse used

multi-TE
imaging

{25, 40, 55, 70, 85,
100, 200}

No inversion pulse used No diffusion encoding used No off-resonance pulse
used

No off-resonance pulse used
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S ¼ ρe�
TE
T2

����1� 2e�
TI
T1

����e�bgTððAD-RDÞzzTþRDIÞg wB@θ;Δf ;T ;TF; k;TB;BPFCA:
�
��

�
��

0
c 1 2 2

1

(2)

Above, I is the 3 � 3 identity matrix, w describes MT-weighting, z ¼
½0 0 1�T is aligned with the cord longitudinal axis and (ρ, T1, T2, AD, RD,
k, TF

2, T
B
2, BPFÞ are tissues-specific parameters, in this order: relative

proton density (Mezer et al., 2013), macroscopic longitudinal and
transverse relaxation rate (Smith et al., 2008), axial and radial diffusivity
(Basser et al., 1994), free-to-bound pool exchange rate, free pool trans-
verse relaxation rate, bound pool transverse relaxation rate, bound pool
fraction (Henkelman et al., 1993). Eq. (2) models water relaxation as
mono-exponential; diffusion as Gaussian, described by an axially sym-
metric diffusion tensor with primary diffusion direction aligned with the
cord longitudinal axis; exchange between free and bound (i.e. myelin)
protons according to the two-pool MT model (Henkelman et al., 1993).
The MT-weighting factor w was calculated via direct numerical integra-
tion of the two-pool Bloch equations (details in Supplementary Material
S1), assuming a super-Lorentzian line shape for bound protons and
simulating off-resonance pulse trains made of 25 sinc-Gaussian pulses
(bandwidth: 122 Hz), each lasting 15 ms and with inter-pulse delay of 15
ms, as used before in spinal cord applications (Battiston et al., 2018a).

We synthesised a unique noise-free signal profile in each tissue voxel
by simulating within-tissue variability in WM and GM. This ensures that
each synthetic voxel has its own unique sources of signal, avoiding
obvious redundancies within the set of synthetic signals, as these could
lead to overestimation of the performances of MP-PCA denoising (Ade-
s-Aron et al., 2018). In practice, we drew voxel-wise values for each of ðρ,
T1, T2, AD, RD, k TF

2, T
B
2, BPFÞ from a tissue-specific Gaussian distribu-

tion, with parameters inspired by values known from literature (Battiston
et al., 2018a; Grussu et al., 2015; Smith et al., 2008) (parameters in
Table 2).

The synthetic spinal cord phantom is made openly available online
(http://github.com/fragrussu/PaperScripts/tree/master/sc_unirea
dout/sc_phantom).

3.1.2. Denoising
We corrupted the synthetic signals with Gaussian and Rician noise at

different SNRs (300 unique noise realisations on 1700 voxels), ranging
from 10 to 40 (SNR evaluated with respect to the b ¼ 0 signal in WM for
the DW measurements).

Afterwards, we used the Matlab implementation of the MP-PCA al-
gorithm (http://github.com/NYU-DiffusionMRI/mppca_denoise) to
denoise the synthetic spinal cord images at the various SNRs.

For our simulations, we processed MP-PCA matrices constructed by
arranging spinal cord voxels within an individual MRI slice along rows
4

and different MRI measurements along columns (i.e. slice-by-slice cord
denoising). We implemented three different denoising strategies:

1. Individual denoising of each modality among DW, IR, multi-TE and
quantitative MT imaging respectively (importantly, IR, multi-TE have
limited redundancy and would not theoretically qualify for MP-PCA,
which is expected to remove little to no noise);

2. Joint denoising of all modalities concatenated as one large set of
measurements;

3. Joint denoising of DW imaging concatenated with each of IR, multi-
TE and qMT imaging in series respectively, which would be useful
to describe cases when only one modality other than DW imaging is
acquired.

3.1.3. Analysis
We evaluated the performance of MP-PCA denoising by studying the

percentage relative error ε between the denoised signals STOT;denoised and
the ground truth (noise-free) signal STOT. We estimated accuracy and
precision of the different denoising strategies by calculating respectively
the median of ε (such that the closer to zero, the higher the accuracy) and
interquartile range (IQR) of ε (such that the lower, the higher the pre-
cision) within the synthetic spinal cord over the 100 noise instantiations.

Additionally, we performed the SV decomposition on noisy, noise-
free and MP-PCA denoised signal matrices (Matlab function svd( )) at
various SNRs (both Gaussian and Rician noise) for a representative
synthetic MRI slice. This enabled the visualisation of the MP-PCA
threshold given the set of matrix SVs.

3.2. In vivo study

We performed clinically viable, multi-contrast spinal cord qMRI scans
on healthy volunteers and analysed them to characterise the performance
of MP-PCA denoising on different qMRI modalities, devising denoising
strategies for acquisitions with different levels of redundancy. The
experimental sessions were approved by local research ethics
committees.

Our qMRI protocols exhibit a unified signal readout, which is based
on spin echo EPI, a typical choice for DW imaging. The shared readout
ensures comparable noise characteristics across the different qMRI mo-
dalities, thus enabling joint denoising of different qMRI contrasts. The
MRI protocol in vendor 1 encompasses DW, qMT, IR and multi-TE im-
aging, while in vendor 2 includes DW and multi-TE imaging. The MRI
protocol in vendor 2 is less rich due to practical availability of pulse se-
quences. Nonetheless, it suffices to demonstrate the potential of joint
multi-contrast denoising of modalities with different redundancies, and
is representative of protocols required in multi-contrast techniques such
as TEDDI (Veraart et al., 2018).

http://github.com/fragrussu/PaperScripts/tree/master/sc_unireadout/sc_phantom
http://github.com/fragrussu/PaperScripts/tree/master/sc_unireadout/sc_phantom
http://github.com/NYU-DiffusionMRI/mppca_denoise
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In all systems, MRI scans were performed axially-oblique at the level of
Table 2
Tissue parameters used to generate the synthetic spinal cord scans. Values are inspired by previous literature (Battiston et al., 2018a; Grussu et al., 2015; Smith et al.,
2008). For white/grey matter, within-tissue variability was simulated by drawing parameter values from a Gaussian distribution and assigning the obtained values to
different voxels. The mean and standard deviation of the Gaussian distributions are reported in the table (standard deviation within brackets, equal to 10% of the mean).
For the cerebrospinal fluid (CSF), tissue parameters were fixed to the same values across all CSF-containing voxels.

Tissue
Relative
proton
density
ρ

Longitudinal
relaxation time
T1 [ms]

Transverse
relaxation
time
T2 [ms]

Axial
diffusivity AD
[μm2/ms]

Radial
diffusivity RD
[μm2/ms]

Free-to-bound
proton
exchange rate k
[1/s]

Free proton
transverse
relaxation time
T2
F [ms]

Bound proton
transverse
relaxation time T2

B

[μs]

Bound pool
fraction
BPF

White
matter

0.70 (0.07) 1000 (100) 70 (7) 2.10 (0.21) 0.40 (0.040) 2.3 (0.23) We fix
T2
F ¼ T2

12 (0.12) 0.14
(0.014)

Grey
matter

0.80 (0.08) 1200 (120) 80 (8) 1.60 (0.16) 0.55 (0.055) 1.7 (0.17) We fix
T2
F ¼ T2

12 (0.12) 0.08
(0.008)

CSF 1.00 4000 800 3.00 3.00 Not defined
(BPF ¼ 0)

We fix
T2
F ¼ T2

Not defined (BPF
¼ 0)

0.00
the cervical cord, with field-of-view centred at the C2–C3 intervertebral
disk (foot-head coverage of 60 mm). The whole set of MRI sequence
parameters used for both vendors is reported in Supplementary Material
S2.

3.2.1. MRI: vendor 1
The protocol developed on a 3T Philips Achieva machine, located at

the UCL Queen Square Institute of Neurology (London, UK) consisted of
multi-contrast, single-shot spin echo EPI scans with unified signal
readout based on reduced FOV (rFOV) ZOOM technology (Wheel-
er-Kingshott et al., 2002), which enable 4 contrast mechanisms to be
exploited: DW imaging, qMT imaging, IR imaging and multi-TE imaging
(mTE, i.e. acquisitions of single-shot images at different TE). Salient
sequence parameters, including information on b-values, echo/inversion
times, off resonance saturation and cardiac gating are reported in
Table 3.

The protocol also included an anatomical 3D FFE scan (flip angle of
7�, TE of 4.1 ms, TR of 20 ms, resolution of 0.75 � 0.75 � 5 mm3 and
field-of-view of 180 � 240 � 60 mm3 along R-L, A-P, S–I directions;
Table 3
Salient sequence parameters for the qMRI protocol with unified readout implemented
diffusion-weighted, quantitative magnetisation transfer, inversion recovery and multi-
by a different delay between the end of the off-resonance train and the readout, i.e.
pulses (bandwidth: 122 Hz), each lasting 15 ms and with inter-pulse delay of 15 ms

Scan TE
[ms]

TR [ms] RL-AP
field-of-
view
[mm2]

Resolution
[mm2]

Slices

DW

imaging

71 12000
(peripheral
gating, delay of
150 ms)

64 � 48 1 � 1 12 slices,
5 mm-
thick,
3
packages

qMT
imaging

24 7246 64 � 48 1 � 1 12 slices,
5 mm-
thick,
3
packages

IR
imaging

24 8305 64 � 48 1 � 1 12 slices,
5 mm-
thick,
3
packages

multi-TE
imaging

Various 12000 (1 dummy
scan per TE)

64 � 48 1 � 1 12 slices,
5 mm-
thick,
3
packages
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ProSet fat suppression, 3 signal averages, scan time of 3 min: 30 s) and
standard B0 and B1 field mapping for accurate qMT analysis. Both B0 and
B1 mapping were based on 3D FFE acquisitions with resolution of 2.25�
2.25 � 5 mm3 and FOV of 215 � 206 � 60 mm3 along R-L, A-P, S–I di-
rections. B0 mapping was performed with the double-echo method
(Jezzard and Balaban, 1995), with parameters: flip angle of 25�, TE of
6.9 ms and 9.2 ms, TR of 50 ms, scan time of 1 min: 40 s. B1 mapping was
instead performed via actual flip angle imaging (Yarnykh, 2007), with
parameters: flip angle of 60�, TE of 2.5 ms, TR of 30 ms, TR extension of
120 ms, scan time of 1 min: 40 s.

For signal reception, the vendor’s 16-channel neurovascular receive-
only coil was used. The nominal acquisition time was roughly 47 min,
with variations depending on subject’s heart rate. We scanned 4 healthy
volunteers twice (2 males, age range 28–40), with the rescan performed
within one month of the first scan.

3.2.2. MRI: vendor 2
For vendor 2, we performed scans on two separate 3T Siemens Prisma

systems, located at the New York University School of Medicine (USA)
and at the Neuroimaging Functional Unit of the University of Montreal
on vendor 1 (Philips Achieva, London, UK). DW, qMT, IR and multi-TE stand for
echo time. Consistently with simulations, in qMT each repetition is characterised
{17, 95, 173, 251} ms. qMT off-resonance trains were made of 25 sinc-Gaussian
(Battiston et al., 2018a).

Bandwidth
[Hz/pixel]

Acceleration Parameters for quantitative
imaging

Nominal
scan
time

2132 Half-scan
factor of 0.6

8 b ¼ 0;
b ¼ {300, 1000, 2000, 2800}s
mm�2 with {4, 10, 18, 28}
gradient
directions

16 min:
41 s

2132 Half-scan
factor of 0.6

1 non-MT weighted, 10 MT-
weighted; 4 repetitions with
different slice ordering (same off-
resonance pulses as in Table 1)

16 min:
18 s

2132 Half-scan
factor of 0.6

12 linearly-spaced inversion
times TI in [100; 2300] ms;
spacing of 200 ms

4 min:
50 s

2132 Half-scan
factor of 0.6

7 echo times TE:
{25, 40, 55, 70, 85, 100, 200} ms

2 min:
48 s



Table 4
Salient sequence parameters for the qMRI protocol with unified readout implemented on vendor 2 (Siemens Prisma systems in New York, USA and Montreal, Canada).
DW and and multi-TE stand respectively for diffusion-weighted and multi-echo time.

Scan TE
[ms]

TR [ms] RL-AP
field-of-
view
[mm2]

Resolution
[mm2]

Slices Bandwidth
[Hz/pixel]

Acceleration Parameters for
quantitative imaging

Nominal scan
time

DW
imaging

85 9194
(peripheral
gating, delay of
200 ms)

64 � 64 1 � 1 12 slices,
5 mm-thick,
12
concatenations

1240 6/8 Partial
Fourier
Imaging

4 b ¼ 0; b ¼ {300,
1000, 2000, 2800}
s mm�2 with {6, 12, 20,
30} directions in NY
and {20, 20, 20, 30}
directions in Montreal

11 min: 02 s in NY;
14 min: 24 s in
Montreal (a higher
number of DW
images acquired in
Montreal)

multi-TE
imaging

various 13000
(peripheral
gating, delay of
200 ms)

64 � 64 1 � 1 12 slices,
5 mm-thick,
12
concatenations

1240 6/8 Partial
Fourier
Imaging

7 echo times TE:
{45, 60, 75, 90, 105,
120, 200} ms

1 min: 31 s
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(Canada).
The protocol consisted in exploiting 2 contrast mechanisms including

DW imaging and multi-TE imaging with unified readout based on syngo
ZOOMit rFOV technology (Rieseberg et al., 2002) (salient parameters
including b-values, TEs and cardiac gating are reported in Table 4). The
protocol also included a 3D MEDIC scan for anatomical depiction (flip
angle of 30�, TE of 15 ms, TR of 625 ms, resolution of 0.50 � 0.50 � 5
mm3 and FOV of 128 � 128 � 60 mm3 along R-L, A-P, S–I directions; 3
signal averages, scan time of 6 min: 24 s).

The total scan time was 18 min: 57 s in the New York Prisma and 22
min: 19 s in the Montreal Prisma, with the scan time difference due to
slightly higher number of diffusion directions being acquired in Mon-
treal. Two subjects were scanned in New York (1 male, 28 years old; 1
female, 25 years old) and one subject (male, 28 years old) in Montreal
after obtaining informed written consent. The vendor-provided 64
channel head-neck coil was used in both cases for signal reception.

3.2.3. Denoising
We implemented the same denoising strategies as in simulations:

1. Individual denoising of each modality separately;
2. Joint denoising of all modalities together;
Fig. 1. Accuracy and precision of different denoising strategies as obtained from perc
ground truth signals) in simulations. Panels A to D (top) show median percentage at d
higher the accuracy; DW imaging in A, qMT imaging in B, IR imaging in C, mTE ima
ranges at different SNR levels, and represent a measure of precision (the closer to zero
mTE imaging in H). The SNR is evaluated with respected to the white matter signal
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3. Joint denoising of DW imaging concatenated with each of IR, multi-
TE and qMT imaging in series (multi-TE only for Prisma).

We performed denoising slice-by-slice to account for the anisotropic
voxel-size and to limit the effect of potential between-shot signal fluc-
tuations due to physiological noise (Summers et al., 2006). We proceeded
as follows:

� the spinal cord was identified on the mean DW image with SCT
sct_propseg (De Leener et al., 2014);

� all cord voxels of an MRI slice were arranged as one matrix and
denoised with MP-PCA;

� noise floor (Gudbjartsson and Patz, 1995) was subsequently mitigated
on the denoised signals with the method of moments (Koay and
Basser, 2006). Note that for both vendors we study magnitude im-
ages, which exhibit a noise floor. Also, it is well known that scanner
reconstruction software may perform certain filtering operations in
the background. Therefore, overall the noise distribution in vivo is
not expected to be Gaussian.

We estimated voxel-wise SNR in vivo and for both vendors by taking
as reference the mean non-DW image (mean b ¼ 0 image). For this
purpose, we normalised the mean non-DW image by the MP-PCA
entage relative errors (percentage errors between denoised signals and noise-free
ifferent SNR levels, and represent a measure of accuracy (the closer to zero, the
ging in D). Panels E to H (bottom) show percentage relative error interquartile
, the higher the precision; DW imaging in E, qMT imaging in F, IR imaging in G,
on the synthetic DW scan at b ¼ 0.



Fig. 2. Top: examples of noise-free (A), noisy (B) and denoised (C) matrices from the synthetic spinal cord phantom. Bottom (D): SV decomposition of the noise-free
and noisy matrices shown in A and B, alongside MP-PCA cut off (i.e. edge of noisy SV MP distribution). MP-PCA nullifies all SVs starting from the cut off to the right,
while it preserves those to the left. The figure reports results from the simulation conducted with Gaussian noise at an SNR of 15, and considers joint denoising of the
whole set of 131 MRI measurements from one spinal cord slice made of 44 voxels (concatenation of DW, qMT, IR and mTE imaging).
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estimate of noise standard deviation obtained by denoising the DW scan
alone. Afterwards, we calculated the mean SNR within the spinal cord for
each subject and scan.

3.2.4. Post-processing
We performed motion correction on the concatenation of all acquired

EPI images within an MRI session. Practically, we ran slice-wise rigid
motion correction with sct_dmri_moco on the non-denoised scans,
treating qMT, IR and multi-TE images as b ¼ 0 scans. The estimated
registration transformations were stored and used to correct all the
Fig. 3. Examples of MP-PCA denoising in one subjects who was scanned with vend
different strategies. DW imaging: panel A; qMT imaging: panel B; IR imaging: pan
subject’s anterior, posterior parts and right and left sides.

7

denoised versions of each qMRI modality, as well as the non-denoised
data. This was done to focus our analysis on the effect that thermal
noise removal has on qMRI metrics.

Afterwards, we segmented the whole cord and the grey matter in the
anatomical spinal cord scan respectively with sct_propseg and with
sct_deepseg_gm. We also segmented the spinal cord in the mean DW
EPI image with sct_propseg.

Lastly, we co-registered the anatomical spinal cord scan to the mean
EPI image with sct_register_multimodal, using dilated spinal
cord masks in the two image spaces to guide registration (dilation
or 1. Panels A, B, C, D show raw and denoised images, obtained according to
elC; mTE imaging: panelD. Anterior, Posterior, Right, Left respectively indicate



Fig. 4. Examples of MP-PCA denoising in two subjects, scanned with vendor 2
respectively in New York and in Montreal. Panels A, B, C, D show raw and
denoised images, obtained according to different strategies. DW imaging: im-
ages in panels A and C; mTE imaging: images in panels B and D. Ant., Post., Right,
Left respectively indicate subject’s anterior, posterior parts and right and
left sides.
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performed with NifTK seg_maths, available at http://github.com/Ni
fTK/NifTK). The estimated warping field transformation was used to
warp the grey matter mask to EPI space, which was subsequently used to
obtain a white matter mask by subtracting it from the whole-cord mask.
For vendor 1, the warping field was also used to resample the B0 and B1
magnetic field maps to the EPI space for downstream model fitting.

3.2.5. Evaluation of quantitative metrics
We fit quantitative models/signal representations for the different

contrasts and obtain popular metrics that are promising imaging bio-
markers. These were:

� diffusion kurtosis imaging (Jensen et al., 2005; Veraart et al., 2011)
on DW data (both vendors) with DiPy dipy.reconst.dkimodule

(http://dipy.org), obtaining voxel-wise diffusion and kurtosis tensors,
of which fractional anisotropy (FA), mean diffusivity (MD) and mean
kurtosis (MK) were considered for downstream analyses;

� mono-exponential T2 relaxation onmulti-TE data (both vendors) with
MyRelax getT2T2star.py (http://github.com/fragrussu/
myrelax), obtaining voxel-wise macroscopic T2;

� mono-exponential T1 relaxation on IR data (vendor 1 only), with
MyRelax getT1IR.py, obtaining voxel-wise macroscopic T1;

� two-pool qMT model on qMT data (vendor 1 only) with custom-
written Matlab code (Battiston et al., 2018a), obtaining voxel-wise
bound pool fraction BPF, exchange rate k and bound pool trans-
verse relaxation TB

2, of which BPF and k were considered for down-
stream analyses. For qMT fitting, static/transmitted fields were
8

corrected on a voxel-by-voxel basis using the B0 and B1 field maps
warped to EPI space.

3.2.6. Analysis
We characterised values of all qMRImetrics by calculating the median

within grey and white matter for all denoising strategies (including no
denoising).

Furthermore, we quantified each metric variability by calculating a
percentage coefficient of variation (CoV) within grey matter and within
white matter for all denoising strategies (including no denoising). We
defined CoV as

CoV ¼ 100% � IQR
median

; (3)

where IQR is the interquartile range of a metric within grey/white
matter, measuring the metric variability, while median is the median
value of the metric within the same tissue. We hypothesise that effective
denoising would reduce noise-induced metric variability, resulting in
lower IQR and unchanged median and hence lower CoV, under assump-
tion that variability due to noise is much larger than the biological
variability (please see Fig. 4 of (Ades-Aron et al., 2018)). We also provide
estimates of the intrinsic scan-rescan variability of each metric m in both
WM and GM as

variability¼ 100% � IQRðm1 � m2Þ
median

�
m1þ m2

2

� ; (4)

where m1 and m2 are the voxel-wise values of the metric at first scan and
rescan. For the evaluation of Eq. (4), we warped parametric maps at
rescan to the first scan by estimating and affine transformation with
NiftyReg reg_aladin on the mean DW image.

Finally, we also evaluated the sharpness of the WM/GM contrast-to-
noise ratio (CNR) for all metrics, all denoising strategies, all subjects
and scans as

CNR¼ j medianðmWMÞ � medianðmGMÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIQRðmWMÞ=1:349Þ2 þ ðIQRðmGMÞ=1:349Þ2

q ; (5)

where mWM and mGM respectively represent voxel-wise values of the
generic parametric map m in WM and GM.

4. Results

4.1. In silico study

Fig. 1 shows percentage relative error accuracy (top row: error me-
dian) and precision (bottom row: error IQR) of the denoised signals
compared to the noise-free ground truth, for different qMRI modalities
and different denoising strategies (Gaussian noise). While plots do not
highlight any noticeable differences in terms of accuracy for the different
denoising strategies (i.e. joint denoising or individual denoising, since
their confidence intervals overlap perfectly), they do suggest that better
precision (i.e. error IQR closer to zero) can be achieved for modalities
that are intrinsically limited in redundancy, when these are denoised
jointly with more redundant modalities. For example, IQR drops from 8%
to 5% at SNR¼ 10 for mTEwhen it is denoised jointly with all modalities,
as compared to when mTE is denoised alone. No appreciable improve-
ment of denoising performance is observed with joint multi-contrast
denoising for modalities that intrinsically feature high redundancy.
This is apparent for qMT and even more so for DW imaging, since their
percentage error IQR does not change when these are denoised jointly
with other modalites.

Fig. 2 shows an illustrative example of noise-free, noisy and denoised
signal matrices (Gaussian noise case, simulated SNR of 15, evaluated in
white matter for the synthetic diffusion scan at b ¼ 0). Note that, strictly

http://github.com/NifTK/NifTK
http://github.com/NifTK/NifTK
http://dipy.org
http://github.com/fragrussu/myrelax
http://github.com/fragrussu/myrelax


Fig. 5. Examples of quantitative maps from
vendor 1. From top to bottom: FA, MD, MK
(DW imaging); BPF, k (qMT imaging); T1 (IR
imaging); T2 (mTE imaging). Different rows
illustrate the metrics obtained according to
different denoising strategies (no denoising;
independent denoising of each modality;
various combinations of joint multi-modal
denoising). Quantitative maps are overlaid
onto the mean non-DW image and shown
within the cord only. The same anatomical
conventions with regard to subject’s ante-
rior, posterior parts and right and left sides as
in Fig. 3 are used.
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speaking, such set of measurements is not redundant, since the noise-free
SV spectrum is continuous and none of noise-free SVs are exactly zero.
However, the SVs widely vary in their value, over 8 orders of magnitude,
such that only a few of them are quite large and dominate the signal. The
figure demonstrates that the SV spectrum gets rearranged in the presence
of noise in such a way that the contrast exhibited by the smallest SVs is
flattened and buried in noise. MP-PCA preserves a few significant SVs
that are above the noise floor, while nullifying the rest. The figure focuses
on multi-contrast denoising enabled by the unified readout, as this is the
main element of novelty of this work. Supplementary Material S3 shows
results from all other denoising strategies (including single-contrast
denoising), which are in line with Fig. 2.

Supplementary Material S4 shows results from simulations conducted
with Rician noise. Results are generally in line with the case considering
Gaussian noise. However, residual noise floor biases are apparent at the
lowest SNR levels. Supplementary material S5 shows examples of dis-
tributions of normalised residuals (i.e. difference between input and
output of denoising algorithm).
9

4.2. In vivo study

The SNR in vivo on the b ¼ 0 images is estimated to be (mean 	
standard deviation across subjects and scans): 21.7 	 2.7 for vendor 1;
17.1 	 2.4 for vendor 2.

Figs. 3 and 4 show examples of acquired and denoised in vivo images.
Fig. 3 illustrates information for vendor 1, while Fig. 4 for vendor 2. For
both vendors, improvements in image quality are visually and observed,
especially for DW imaging. Residual distributions from both simulations
and in vivo data exhibit a Gaussian behaviour on visual inspection and
are reported in Supplementary Material S5 for illustrative purpose
(normally-distributed, spatially-uncorrelated residuals with standard
deviation comparable to the noise level are a necessary condition for
good denoising (Ades-Aron et al., 2018; Veraart et al., 2016b), although
not sufficient).

Figs. 5–7 show examples of quantitative parametric maps obtained in
one representative subject from vendor 1 (Fig. 5; DW, qMT, IR and mTE
imaging) and from the vendor 2 (New York system in Fig. 6, Montreal
system in Fig. 7; DW and mTE imaging) for different denoising strategies.
Visual inspection suggests that MP-PCA denoising generates less noisy



Fig. 6. Examples of quantitative maps from vendor 2
(Siemens Prisma system located in New York, USA).
From top to bottom: FA, MD, MK (DW imaging); T2
(mTE). Different rows illustrate the metrics obtained
according to different denoising strategies (no
denoising; independent denoising of each modality;
various combinations of joint multi-modal denois-
ing). Quantitative maps are overlaid onto the mean
non-DW image and shown within the cord only. The
same anatomical conventions with regard to subject’s
anterior, posterior parts and right and left sides as in
Fig. 4 are used.
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maps, especially for vendor 1. The most striking examples of improved
parameter estimation are seen in both vendors for DW imaging param-
eter MK. Additionally, improvements on visual inspection are apparent
for other qMRI metrics such as BPF and T1, especially for joint multi-
modal denoising. Supplementary Material S6 shows voxel-wise differ-
ences of all quantitative maps when obtained with and without
denoising. No biases in quantitative metrics obtained after denoising are
apparent on visual inspection, and the differences between maps ob-
tained with/without denoising appear stronger when multiple contrasts
are denoised together.

Tables 5 and 6 report median values of all qMRI metrics in grey and
white matter for the different denoising strategies (Table 5: vendor 1;
Table 6: vendor 2, pooling together results from the two systems). The
tables reveal contrasts between grey and white matter in various metrics.
Examples that are consistent between vendors include: higher FA andMD
in white compared to grey matter; similar MK in grey/white matter;
slightly higher T2 in white compared to grey matter. Other examples
from vendor 1 include: similar BPF and T1 in grey/white matter; higher
exchange rate k in grey compared to white matter. The tables also show
that systematic differences between the data sets acquired with the two
vendors exist, as for example: higher T2 and MK and lower MD in data
from vendor 2 compared to 1; different grey/white matter contrasts in
FA. Notably, Tables 5 and 6 also demonstrate that denoising introduce
little to no biases in the quantitative parametric maps. In all cases and for
both vendors the tissue-wise medians never differ for more than 5%
compared to the values obtained without any denoising.

Tables 7 and 8 report within-grey and within-white matter CoV for
the various qMRI metrics and for different denoising strategies. Table 7
reports figures from vendor 1, while Table 8 from vendor 2 (data from
both systems from vendor 2 pooled together). The tables show that MP-
PCA denoising leads to reductions of CoV for various metrics of 5% or
more compared to the case with no denoising, as for example for FA, MK,
BPF and T1 for vendor 1 and MK for vendor 2. Some increases of CoV are
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observed (for example for MD in white matter for vendor 2). For vendor
1, the strongest reductions in CoV are observed for joint multimodal MP-
PCA denoising. For comparison, we also report the intrinsic scan-rescan
variability of the metrics when no denoising is applied (vendor 1 only),
which is in WM/GM: 25.2/25.5% for FA; 43.6/31.5 for MD; 63.8/63.1%
for MK; 77.4/54.9% for BPF; 61.3/43.3% for k; 47.4/14.5% for T1; 48.5/
30.4% for T2.

Supplementary Material S7 shows results from WM/GM CNR calcu-
lations. Denoising increases WM/GMCNRmore than 5% for FA, MK, BPF
and T2 in vendor 1 and for MK in vendor 2. Additionally, CNR decreases
for MD in vendor 1 more than 5% when DW imaging is denoised jointly
with qMT or qMT, IR and mTE imaging.

5. Discussion

5.1. Summary and key findings

This work demonstrates the advantages of multimodal qMRI of the
spinal cord in vivo with unified MRI signal readout. The unified readout
enables matching resolution and distortions across different contrasts,
thereby also facilitating joint analyses and computational modelling of
multi-contrast signal. Here we provide a practical demonstration by
studying joint multi-contrast denoising, an example of which is given via
MP-PCA denoising. The unified readout enables efficient MP-PCA
denoising of modalities that feature a limited number of measure-
ments, when these are denoised jointly with modalities whose protocols
is much richer.

Our key findings are that a unified readout enables reliable and
detailed microstructural characterisation of the human cervical spinal
cord in clinical setting, providing metrics of relaxometry and diffusion as
well as myelin-sensitive indices with matched resolution and distortions.
Moreover, MP-PCA appears as a valid tool to improve the intrinsic quality
of unified readout acquisitions, as supported by both in vivo and in silico



Fig. 7. Examples of quantitative maps from vendor 2
(Siemens Prisma system located in Montreal, Can-
ada). From top to bottom: FA, MD, MK (DWI); T2
(mTE). Different rows illustrate the metrics obtained
according to different denoising strategies (no
denoising; independent denoising of each modality;
various combinations of joint multi-modal denois-
ing). Quantitative maps are overlaid onto the mean
non-DW image and shown within the cord only. The
same anatomical conventions with regard to subject’s
anterior, posterior parts and right and left sides as in
Fig. 4 are used.

Table 5
Median values in grey and white matter of qMRI metrics obtained with a scanner from vendor 1 following different denoising strategies. Median values from different
subjects and scans are pooled so that figures in the table report mean and standard deviation (in brackets) across subjects and scans. In all cases, values of metrics
obtained after denoising are less than 5% different from the values obtained with no denoising.

No denoising Individual denoising Joint denoising DWI-mTE Joint denoising DWI-IR Joint denoising DWI-qMT Joint denoising of all

FA (DWI) GM: 0.70 (0.05)
WM:0.73 (0.04)

GM: 0.70 (0.06)
WM:0.73 (0.04)

GM: 0.70 (0.06)
WM:0.74 (0.04)

GM: 0.70 (0.06)
WM:0.73 (0.04)

GM: 0.71 (0.06)
WM:0.74 (0.04)

GM: 0.71 (0.06)
WM:0.73 (0.04)

MD [μm2/ms] (DWI) GM: 1.01 (0.08)
WM:1.24 (0.09)

GM: 1.02 (0.08)
WM:1.24 (0.09)

GM: 1.02 (0.08)
WM:1.24 (0.10)

GM: 1.02 (0.08)
WM:1.24 (0.10)

GM: 1.03 (0.08)
WM:1.24 (0.10)

GM: 1.03 (0.08)
WM:1.24 (0.10)

MK (DWI) GM: 0.75 (0.18)
WM:0.75 (0.13)

GM: 0.75 (0.18)
WM:0.76 (0.11)

GM: 0.75 (0.20)
WM:0.77 (0.11)

GM: 0.74 (0.21)
WM:0.76 (0.11)

GM: 0.76 (0.19)
WM:0.78 (0.11)

GM: 0.76 (0.19)
WM:0.77 (0.11)

BPF (qMT) GM: 0.11 (0.01)
WM:0.10 (0.01)

GM: 0.11 (0.01)
WM:0.10 (0.01)

NA NA GM: 0.11 (0.01)
WM:0.10 (0.01)

GM: 0.11 (0.01)
WM:0.10 (0.01)

k [1/s] (qMT) GM: 1.73 (0.14)
WM:1.52 (0.07)

GM: 1.75 (0.13)
WM:1.53 (0.07)

NA NA GM: 1.75 (0.14)
WM:1.53 (0.08)

GM: 1.75 (0.13)
WM:1.54 (0.08)

T1 [ms] (IR) GM: 1108 (22)
WM:1131 (5)

GM: 1111 (22)
WM:1131 (5)

NA GM: 1110 (22)
WM:1130 (5)

NA GM: 1108 (21)
WM:1130 (6)

T2 [ms] (mTE) GM: 83.8 (5.9)
WM: 94.8 (2.9)

GM: 82.7 (5.6)
WM: 93.4 (3.1)

GM: 83.3 (5.8)
WM: 94.2 (2.9)

NA NA GM: 83.0 (6.2)
WM: 93.8 (2.8)
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data. Finally, this approach is feasible on 3T MRI systems from two major
vendors.

5.2. In silico study

We have designed and run computer simulations to test whether a
unified readout offers opportunities for MP-PCA denoising of qMRI mo-
dalities that exhibit limited redundancy (a number of measurements
comparable to the number of SVs that would not be zeroed by MP-PCA,
11
i.e. M e P), for which effective MP-PCA denoising remains challenging.
Our simulations suggest that a unified readout has indeed the po-

tential of supporting more efficient MP-PCA denoising for modalities
limited in redundancy, as for example mono-exponential and multi-
exponential (Does et al., 2019) relaxation mapping. Denoising these
modalities jointly with more redundant modalities enables more efficient
noise mitigation in the former. Interestingly, joint multimodal denoising
did not affect the denoising performance on modalities that are already
redundant, as for example DW imaging.



Table 6
Median values in grey and white matter of qMRI metrics obtained with scanners
from vendor 2 following different denoising strategies. Median values from
different subjects and scans are pooled so that figures in the table report mean
and standard deviation (in brackets) of across subjects and scans. In all cases,
values of metrics obtained after denoising are less than 5% different from the
values obtained with no denoising.

No denoising Individual
denoising

Joint denoising
DWI-mTE

FA (DWI) GM: 0.68
(0.02)
WM: 0.78
(0.01)

GM: 0.68 (0.02)
WM: 0.78 (0.01)

GM: 0.68 (0.02)
WM: 0.78 (0.01)

MD [μm2/ms]
(DWI)

GM: 0.99
(0.09)
WM: 1.07
(0.08)

GM: 0.98 (0.09)
WM: 1.07 (0.08)

GM: 0.98 (0.09)
WM: 1.07 (0.08)

MK (DWI) GM: 0.83
(0.05)
WM: 0.83
(0.06)

GM: 0.81 (0.07)
WM: 0.83 (0.06)

GM: 0.82 (0.06)
WM: 0.83 (0.07)

T2 [ms] (mTE) GM: 89.1 (2.7)
WM: 104.6
(1.2)

GM: 87.8 (2.7)
WM: 102.7 (2.0)

GM: 88.4 (2.7)
WM: 104.1 (1.9)
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Moreover, calculations on simulated data suggest that MP-PCA finds
the SV threshold in a zone of the SV spectrum where the between-SV
contrast is flattened by the presence of noise. Importantly, those SVs
are various orders of magnitude smaller than the SV that survive MP-PCA
thresholding for SNR levels that are realistic in the spinal cord in vivo.
Therefore, our analysis suggests that the salient characteristics of the MRI
contrast are preserved by MP-PCA.

Finally, the improved denoising accuracy and precision for joint
multi-contrast denoising are seen when both Rician and Gaussian noise
are considered, giving further confidence on the generalisability of our
simulation results to in vivo settings (i.e. in presence of strong noise
floors).
5.3. In vivo study

In this paper we tested multi-parametric qMRI of the spinal cord with
unified readout using 3T MRI scanners from two major vendors (Philips
and Siemens), and studied to what extent MP-PCA improves the quality
of such MRI data.

Our multi-vendor data demonstrate the feasibility of implementing
reliable multi-parametric qMRI of the spinal cord with unified readout. A
unified readout provides matched resolution and distortions across MRI
Table 7
Percentage CoV in grey and white matter for the various qMRI metrics obtained from v
100 iqr/median, where iqr and median are respectively the interquartile range and th
scans are pooled so that figures report mean and standard deviation (in brackets) of
compared to the case with no denoising are labelled in bold font, with the percentage
than 5% is observed).

No denoising Individual denoising Joint denoising DWI-m

FA CoV [%] (DWI) GM: 23.9 (3.3)
WM: 24.3 (2.8)

23.7 (3.3)
24.2 (3.0)

23.6 (3.6)
23.8 (3.1)

MD CoV [%] (DWI) GM: 31.2 (15.5)
WM: 56.7 (3.3)

30.7 (14.4)
58.3 (4.1)

30.7 (13.5)
58.0 (4.2)

MK CoV [%] (DWI) GM: 70.6 (65.5)
WM:58.9 (44.0)

64.3(59.6),-8.9%
53.4 (39.7),-9.3%

69.2 (76.6)
51.9(37.9),-11.9%

BPF CoV[%](qMT) GM: 44.5 (7.4)
WM:73.4 (12.3)

42.5 (8.7)
72.5 (14.6)

NA

k CoV [%] (qMT) GM: 38.0 (9.9)
WM:75.6 (16.6)

38.8 (11.0)
74.1 (15.6)

NA

T1 CoV [%] (IR) GM: 11.7 (6.9)
WM:41.7 (39.8)

10.9(5.4),-6.8%
41.5 (40.1)

NA

T2 CoV [%] (mTE) GM:27.8 (9.5)
WM:44.4 (13.3)

28.2 (10.2)
44.6 (13.4)

27.5 (10.5)
44.7 (13.8)
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contrasts, and ensures comparability of signals across a rich set of qMRI
measurements. Moreover, it enables the development of unified analysis
pipelines, spanning from motion correction, to data denoising and
potentially model fitting, paving the way to joint modelling of multi-
contrast signals (Kim et al., 2017). Importantly, it may be useful in
techniques that combine information from diffusion with
relaxation/myelin-sensitive indices, as for example g-ratio MRI (Camp-
bell et al., 2018; Duval et al., 2017; Stikov et al., 2015)), where matched
EPI distortions (Irfanoglu et al., 2015) are crucial (Campbell et al., 2018).
Here, we demonstrate our approach in the spinal cord in vivo, but pre-
liminary investigation suggest that it may be useful even in the brain
(Grussu et al., 2017).

Innovative elements of this work are the use of MP-PCA denoising
across various MRI contrasts, and its application in vivo in the human
spinal cord. Our analyses demonstrate that MP-PCA effectively mitigates
noise in all modalities and for both vendors. Importantly, quantitative
analysis of parametric maps suggests that the performance of MP-PCA in
enhancing the quality of modalities with limited redundancy (i.e. IR and
mTE imaging) can be improved by denoising these modalities jointly
with more redundant schemes.

Our joint multimodal denoising relies on the hypothesis of noise
homoscedasticity across MRI contrasts. Supplementary material S8
shows that the estimated noise level on modalities other than DWI fol-
lows the same trends as those of estimates from DWI in both simulations
and in vivo. The supplementary document also demonstrates that esti-
mating the noise level is a very challenging task: noise level estimates are
highly variable per se. Moreover, Supplementary material S8 reveals
systematic differences between noise standard deviation estimates from
DW imaging compared to other modalities, such as qMT. This is likely
attributed to the stronger departures from the hypothesis of Gaussian
noise underlying MP-PCA in DW imaging, due to lower SNR and stronger
noise floor effects (Koay and Basser, 2006), and to the fact that qMT
suffers from stronger physiological noise that may resemble thermal
noise (qMT is not cardiac gated). Nonetheless, it should be remembered
that MP-PCA noise levels estimated on modalities with limited number of
measurements (e.g. multi-TE imaging) are not reliable, as the limited
number of measurements does not allow the MP distribution to be
detected accurately (Veraart et al., 2016b). Importantly, such differences
in terms of noise level estimates among modalities introduce little to no
bias in downstream quantitative parameter maps, and therefore do not
appear to be a concerning issue for practical MP-PCA deployment.

We also investigated the effect of MP-PCA denoising on the quality of
popular parametric maps. To this end, we studied median values of
metrics within grey/white matter as well as metric variabilities as
quantified by a CoV. Our experiments show that MP-PCA introduces little
endor 1 (London, UK) with different denoising strategies. The table reports CoV¼
e median of a metric within grey/white matter. CoV from different subjects and
CoV across subjects and scans. Reductions in mean CoV with more than 5% as
reduction of CoV reported explicitly (note that no increase of mean CoV greater

TE Joint denoising DWI-IR Joint denoising DWI-qMT Joint denoising of all

24.4 (4.5)
23.8 (3.1)

23.2 (4.7)
23.2 (2.7)

22.6(4.6),-5.4%
23.3 (2.8)

30.5 (13.9)
57.8 (4.1)

29.6 (15.0)
57.6 (2.7)

29.1(15.8),-6.7%
57.6 (3.4)

71.1 (81.6)
52.7(39.3),-10.5%

61.7(73.2),12.6%
50.7(39.1),-13.9%

59.3(70.0),-16.0%
50.9(39.2),-13.5%

NA 42.3 (8.1)
71.5 (15.7)

40.9(7.1),-8.1%
70.9 (14.9)

NA 37.9 (10.4)
73.5 (15.8)

37.1 (10.0)
73.2 (15.8)

10.9(6.3),-6.8%
41.7 (40.2)

NA 10.2(6.6),-12.8%
39.9 (40.6)

NA NA 26.5 (6.8)
43.7 (13.1)



Table 8
Percentage CoV in grey and white matter for the various qMRI metrics obtained
from vendor 2 (New York, NY, USA and Montreal, Canada) with different
denoising strategies. The table reports CoV ¼ 100 iqr/median, where iqr and
median are respectively the interquartile range and the median of a metric within
grey/white matter. CoV from different subjects and scans are pooled so that
figures report mean and standard deviation (in brackets) of CoV across subjects
and scans. Improvements of mean CoV greater than 5% compared to the case
with no denoising (i.e. lower CoV) are labelled in bold font, with the percentage
reduction of CoV reported explicitly (note that no increase of mean CoV greater
than 5% is observed).

No denoising Individual
denoising

Joint denoising DWI-
mTE

FA CoV [%]
(DWI)

GM: 32.6
(1.0)
WM: 23.2
(1.4)

33.1 (1.7)
22.8 (2.0)

33.1 (2.8)
22.9 (1.9)

MD CoV [%]
(DWI)

GM: 29.7
(7.1)
WM: 39.7
(4.1)

30.1 (7.3)
41.0 (3.4)

28.9 (4.7)
40.6 (4.9)

MK CoV [%]
(DWI)

GM: 46.9
(7.8)
WM: 52.0
(6.7)

39.7 (9.2),-15.4%
44.1 (4.3),-15.2%

38.9 (8.1),-17.1%
44.3 (5.8),-14.8

T2 CoV [%]
(mTE)

GM: 26.3
(1.9)
WM: 39.4
(8.1)

25.3 (2.5)
40.1 (8.1)

26.5 (0.9)
39.7 (7.9)
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to no biases in any of the metrics, irrespectively of the chosen denoising
strategy (joint multimodal denoising vs modality-wise denoising). The
difference in median values between metrics obtained with denoising
compared to the case with no denoising are 	5% or less. These differ-
ences, which are very low, likely reflect the intrinsic susceptibility of the
different model fitting routines to noise fluctuations and noise floors, and
are therefore expected since noise-floor mitigation (Koay and Basser,
2006) was performed following MP-PCA denoising. Conversely, MP-PCA
does decrease metric variability, as it leads to considerable reductions of
tissue-wise CoV, as for example for MK (�16% for vendor1, –17% for
vendor 2), FA, BPF and T1 (–13% for vendor 1). The reduction in vari-
ability is the highest for metrics like MK, which carry important infor-
mation about tissue microstructure, and that are notoriously difficult to
estimate (Veraart et al., 2011). It should be noted the using CoV as a
metric to evaluate denoising performance has some intrinsic limitations,
since CoV can potentially increase simply because of increased blurring.
Our supplementary analysis of sharpness based on GM/WM CNR (Sup-
plementary Material S7) suggests that this is unlikely for most MRI
metrics considered here (we observe increases of CNR higher than 5% for
FA, MK, BPF and T2). However, it is possible that certain MRI metrics
such as MD are more prone to blurring as compared to other metrics,
given that we observe a reduction of CNR for this index.

Our parametric maps follow known trends and contrasts, with some
differences in terms of relaxometry metrics, e.g. low contrast white/grey
matter contrast for T1 and T2. This difference may be explained by re-
sidual CSF pulsation that corrupts neighbouring white matter signals,
and by the fact that literature values for T1 and T2 are typically obtained
with different readout strategies compared to the employed single-shot
EPI (Smith et al., 2008). Another explanation, especially for vendor 1,
may be related to the coarse resolution of the anatomical scan, required
to limit scan time, as this was used for grey matter segmentation
potentially introducing partial volume effects in the tissue masks. Over-
all, while grey/white matter contrasts in parametric maps are similar in
data from both vendors, systematic differences between metric values
(Table 5 vs Table 6) and variability (Table 7 vs Table 8) are seen. Several
factors may have contributed to these differences between vendors,
namely in: intrinsic SNR; reduced field-of-view technique; resolution of
the anatomical scan used for grey/white matter segmentation; parallel
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imaging/reconstruction technique; qMRI protocol; between-subject bio-
logical differences.

In this study, we employed cardiac gating for some of the contrasts,
but not for others, due to practical implementation challenges (e.g. DW
imaging was cardiac-gated with a relatively long TR; qMT and IR were
not as the variable TR introduced by gating would pose issues to model
parameters computation). As a consequence, the non-gated contrasts are
likely to suffer from stronger physiological noise than gated modalities.
This difference is likely to be preserved after denoising, since MP-PCA is
limited to detecting signatures in matrix SVs that are specific to thermal,
rather than physiological noise (Veraart et al., 2016a, 2016b). Also, none
of our in vivo acquisitions were respiratory-gated. Therefore, all contrasts
are likely to be affected by respiratory motion in a similar way.

Finally, we point out that we took care to use the same registration
transformations to correct for motion in all denoising strategies, esti-
mating motion on the non-denoised data. We followed this motion
correction strategy on purpose, as our focus was to study the effects of
thermal noise mitigation on parametric maps. It is possible that the
benefits of MP-PCA may extend beyond thermal noise mitigation and
may also improve post-processing such as motion correction, as shown in
other studies (Ades-Aron et al., 2018), which will be the subject of future
investigations. Importantly, we performed motion correction after
MP-PCA to avoid altering the noise characteristics. This implies that
input MP-PCA signal were affected by motion-induced fluctuations.
However, such physiological fluctuations are distinct from thermal noise,
and therefore may be still present in the MP-PCA output especially when
affecting the part of SV spectrum that survives MP-PCA thresholding
(Veraart et al., 2016a, 2016b).

5.4. Methodological considerations

We acknowledge a number of potential limitations of our approach.
Firstly, our unified protocol was more comprehensive on the system

from vendor 1 as compared to vendor 2. This was due to the practical
availability of MRI sequences at the time of acquisition of the data.

Secondly, the DW imaging protocol for the vendor 2 differed between
the system in New York and the one in Montreal, with the latter being
slightly longer. This was due to a choice in the design of the protocol in
Montreal, which would enable the inclusion of the scan in other ongoing
group studies.

Thirdly, it must be acknowledged that a unified acquisition based on
reduced-field-of-view EPI has some intrinsic limitations. For instance,
other readouts could be used for in vivo relaxometry of the spinal cord, as
for example spin echo, spoiled gradient echo (SPGR) or gradient echo
asymmetric spin echo (GREASE) imaging (Duval et al., 2017; Ljungberg
et al., 2017; Smith et al., 2008). In particular the use of EPI for T2
mapping results in substantially longer echo times, which practically
limits the possibility of measuring signal from short T2 components. Such
components may be relevant contributors to the T2/T2* contrast, given
the high levels of myelin water in the spinal cord (Ljungberg et al., 2017).
On the one hand, a unified readout facilitates the joint computational
modelling of multi-contrast signals compared to a mixed readout
approach, while also matching distortions. On the other hand, these
advantages come at the expense of potential reductions in SNR and hence
intrinsic quantitative map quality (e.g. T1 and T2 maps in (Smith et al.,
2008); note that single-shot EPI has lower SNR compared to other
multi-shot readouts). Importantly, it should be noted that the EPI readout
for spinal cord imaging is sensitive to the effects of physiological noise
(Summers et al., 2006). These can lead to residual edge artifacts at the
WM/CSF boundary, where strong partial volume is likely. This is
apparent for instance in our T1 and T2 maps (e.g. higher T2 in WM
compared to GM), and is more generally a well-known issue in quanti-
tative spinal cord MRI (Duval et al., 2017; Ljungberg et al., 2017).

An additional limitation of our work regards the use of median, CoV
and CNR of parametric maps to evaluate the effect of the denoising.
Metrics such as CoV have their own limitations, since they could decrease
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(i.e. point towards reduced metric variability) simply because of
increased blurring. However, this is a common approach when analysing
in vivo data, where no “noise-free” ground truth is available. When scan
time allows, a different approach to validate an image quality enhance-
ment method could be that of acquiring additional, high SNR scans,
which could act as bench mark data.

Finally, we highlight that our analysis on MP-PCA is intended to
provide a practical demonstration of the potential of multi-contrast an-
alyses unlocked by a unified readout in the spinal cord. Several different
denoising strategies could have also been used (Donoho and Gavish,
2014; Donoho et al., 2018; Gavish and Donoho, 2014; Shabalin and
Nobel, 2013), and we aim to consider them in future works focussing on
comparisons of denoising methods.

6. Conclusions

Multi-parametric qMRI of the spinal cord with unified readout (i.e.
with matched resolution and distortions) is advantageous and provides
robust microstructural metrics sensitive to axonal characteristics, such as
the diffusion propagator, relaxometry and myelin. Our unified acquisi-
tion paves the way to joint modelling of multi-contrast signals, and offers
unique opportunities for image quality enhancement via joint denoising
of multiple contrasts. A practical demonstration of this is provided with
the MP-PCA technique, which is shown to be a useful pre-processing step
in spinal cord MRI analysis pipelines.
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