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Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have
been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus
(Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and
transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of
the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially
methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and
vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution
after whole-genome duplications, and find that—in vertebrates—over 80% of broadly expressed gene families with
multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression,
and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their
expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding
of the regulatory principles that underlie key vertebrate innovations.

All vertebrates share multiple morphological and genomic novelties'.  facilitated the evolution of vertebrate morphological innovations,
The most prominent genomic difference between vertebrates and  at least in part through the preferential retention of ‘developmental’
non-vertebrate chordates is the reshaping of the gene complement that ~ gene families and transcription factors after duplication®*. However,
followed the two rounds of whole genome duplication (WGD)—the  duplicate genes and their associated regulatory elements were initially
2R hypothesis—that occurred at the base of the vertebrate lineage>®.  identical and could not drive innovation without regulatory and/or
These large-scale mutational events are hypothesized to have protein-coding changes.
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Fig. 1 | Functional genome annotation of amphioxus. a, Summary

of the 94 amphioxus samples generated in this study, comprising eight
functional-genomic datasets. The number of biological replicates is
indicated for each sample type. div., diverticulum; MethylC/RRBS,
methylC sequencing and reduced representation bisulfite sequencing;
Premet., premetamorphic. b, Genome browser excerpt showing a selection
of available tracks, including gene annotation, sequence conservation
(using phastCons), repeats and several epigenomic and transcriptomic
datasets. Green rectangle highlights the APRE tested in e. ¢, Numbers

and proportions of amphioxus and zebrafish APREs according to their

To date, the effect of vertebrate WGDs on gene regulation have
remained poorly understood—both in terms of the fates of duplicate
genes and the acquisition of the unique genomic traits that are charac-
teristic of vertebrates. These traits include numerous features that are
often associated with gene regulation, such as unusually large intergenic
and intronic regions>®, high global 5-methylcytosine (5mC) content and
5mC-dependent regulation of embryonic transcriptional enhancers’.
To investigate these traits, appropriate species must be used for compar-
isons. Previous studies have largely focused on phylogenetic distances
that are either too short (such as human versus mouse) or too long
(such as human versus fly or nematode), resulting in limited insights.
In the first case, comparisons among closely related species (for exam-
ple, between mammals®~'!)—for which the orthology of non-coding
regions can be readily determined from genomic alignments—
have allowed fine-grained analyses of the evolution of transcription-
factor binding. In the second case, three-way comparisons of human, fly
and nematode by the modENCODE consortium revealed no detectable
conservation at the cis-regulatory level'? and very little conservation of
gene expression!”. Moreover, the genomes of flies and nematodes are
highly derived!416. Thus, we lack comprehensive functional genomic
data from a slow-evolving, closely related outgroup that would enable
an in-depth investigation of the origins of the vertebrate regulatory
genome and of the effect of WGDs on gene regulation.

Unlike flies, nematodes and most non-vertebrates, amphioxus
belongs to the chordate phylum. Therefore, although amphioxus lacks
the specializations and innovations of vertebrates, it shares with them
a basic body plan and has multiple organs and structures homologous
to those of vertebrates'. For these reasons, amphioxus has widely been
used as a reference outgroup to infer ancestral versus novel features
during vertebrate evolution. Here, we undertook a comprehensive study
of the transcriptome and regulatory genome of amphioxus to inves-
tigate how the unique functional genome architecture of vertebrates
evolved.

genomic location. Promoters, within 1-kbp upstream and 0.5-kbp
downstream of an annotated TSS; gene body, within an orthology-
supported gene; proximal, within 5-kbp upstream of (but not overlapping
with) a TSS; distal, not in the aforementioned categories. d, Cumulative
distributions of the distance between each APRE and the closest annotated
TSS in each species. e, Lateral view of a representative transgenic zebrafish
26-hpf embryo showing GFP expression driven by an amphioxus APRE
associated with Pax1/9 (‘Pax1/9-126 highlighted in b) in pharyngeal
arches (PA; n = 4/4). Positive-control enhancer was expressed in the
midbrain (MB). Scale bar, 250 pm.

Functional genome annotation of amphioxus

We generated an exhaustive resource of genomic, epigenomic and tran-
scriptomic data for the Mediterranean amphioxus (B. lanceolatum),
comprising a total of 52 sample types (Fig. 1a and Supplementary
Data 2, datasets 1-5). These datasets were mapped to a B. lanceolatum
genome that was sequenced and assembled de novo, with 150 x cover-
age, a total size of 495.4 Mbp, a scaffold N50 of 1.29 Mbp and 4% gaps
(Extended Data Fig. 1a—c). To facilitate access by the research com-
munity, we integrated these resources into a UCSC Genome Browser
track hub (Fig. 1b; available at http://amphiencode.github.io/Data/),
together with an intra-cephalochordate sequence conservation track
and a comprehensive annotation of repetitive elements (Extended
Data Fig. 1d-f) and long non-coding RNAs (Extended Data Fig. 1g
and Supplementary Data 2, dataset 6). To enable broader evolutionary
comparisons, we reconstructed orthologous gene families for multiple
vertebrate and non-vertebrate species (Supplementary Data 2, data-
set 7), generated several equivalent datasets for zebrafish and medaka
(Extended Data Fig. 2a), and built a dedicated server for synteny com-
parisons (Extended Data Fig. 1h).

A comprehensive functional annotation of the B. lanceolatum
genome identified 88,391 putative cis-regulatory elements of DNA as
defined by assay for transposase-accessible chromatin using sequencing
(ATAC-seq) (these elements are hereafter referred to as APREs), as well
as 20,569 protein-coding genes supported by orthology. We divided
the APREs into promoters—around transcription start sites (TSSs),
which were highly supported by cap analysis gene-expression sequenc-
ing (CAGE-seq) data, Extended Data Fig. 2b—and gene-body, prox-
imal and distal APREs (Fig. 1c). Equivalent analyses using zebrafish
data yielded 256,018 potential regulatory regions, with a significantly
higher proportion of these being distal APREs (Fig. 1c; P < 2.2 x 10716,
one-sided Fisher’s exact test). A significantly larger global TSS distance
in APREs was observed for all vertebrates compared to amphioxus
(Fig. 1d), even after correcting for differences in average intergenic
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Fig. 2 | 5mC patterns and dynamics in the amphioxus genome.

a, Percentage of methylated CpG dinucleotides in oyster (mantle,

n = 14,779,123), amphioxus (8 hpf, n = 19,657,388) and zebrafish (1,000-
cell stage, n = 38,989,847) samples. Low, >0-20%; medium, 20-80%; high,
>80%. b, k-means clustering (n = 2) of 5mC signal over hepatic-specific
APREs. ¢, Percentage of methylated CpG dinucleotides as assessed by
whole-genome bisulfite sequencing (WGBS) and reduced representation
bisulfite sequencing (RRBS) in embryos and adult tissues in APREs from b.
d, Distribution of expression levels for genes associated with APREs
displaying distinct 5mC patterns in b. Cluster 1: 1,114 genes; cluster 2:
1,594 genes. cRPKM, corrected (per mappability) reads per kb of
mappable positions and million reads. Hep, hepatic diverticulum.

e, Genomic distribution of regions with distinct 5mC patterns from b.
Hep. dyn., dynamic APREs active in the hepatic diverticulum.

length among species (Extended Data Fig. 2¢c; P < 2.2 x 107! for all
vertebrate-versus-amphioxus comparisons, one-sided Mann-Whitney
tests). Amphioxus APREs showed enrichment for enhancer-associated

chromatin marks (Extended Data Fig. 2d), which were highly dynamic
during embryo development (Extended Data Fig. 2e-g), and consist-
ently drove GFP expression in zebrafish or amphioxus transgenic
assays (93% (14/15), Fig. 1e and Extended Data Fig. 2h, i). Moreover,
89% (32/36) of previously reported amphioxus enhancers overlapped
APREs defined by our data. Therefore, a large fraction of APREs pro-
bably act as developmentally regulated transcriptional enhancers.

Disentangling vertebrate bidirectional promoters
Analyses of core promoters, defined by CAGE-seq, at single-nucleotide
resolution revealed that amphioxus promoters display a mixture of
pan-metazoan, pan-vertebrate and unique features (Extended Data
Fig. 3 and Supplementary Information). These analyses also identified
that 25% (3,950/15,884) of neighbouring protein-coding genes were
arranged in bidirectional promoters. Bidirectional promoters were
most common among ubiquitous promoters (Extended Data Fig. 4a),
displayed a marked periodicity in the distance between promoters
(Extended Data Fig. 4b, ¢) and were associated with genes that were
significantly enriched in housekeeping functions (Extended Data
Fig. 4d). Notably, the fraction of bidirectional promoters defined by
CAGE-seq decreased progressively from amphioxus to mouse (12.83%
(1,752/13,654)) and to zebrafish (7.84% (1,098/14,014)), which sug-
gests a disentanglement of ancestral bidirectional promoters after each
round of WGD (two in tetrapods and three in teleosts). Consistently,
the majority of a set of 372 putatively ancestral, bidirectional promot-
ers were lost in vertebrates—particularly in stem vertebrates (54.5%)—
with only very few amphioxus-specific losses (5.3%) (Extended Data
Fig. 4e, f).

Developmental DNA demethylation of APRESs

Similar to other non-vertebrates'’~'?, the amphioxus genome exhibited
very low levels of CpG methylation (Fig. 2a); nearly all of the 5mC
occurred in gene bodies, in which the proportion of methylated CpGs
correlated positively with gene-expression levels but negatively with
the density of H3K27me3 and H3K4me3 histone marks and CpG
dinucleotides (Extended Data Fig. 5a-c). However, as in zebrafish and
frogs’, global levels of 5mC displayed a decrease during development
(Extended Data Fig. 5d-g), coinciding with the onset of expression
of the amphioxus orthologue of TET demethylase (Extended Data
Fig. 5h).
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Fig. 3 | The hourglass model and chordate embryogenesis. a, Stages of
minimal transcriptomic divergence (using the Jensen-Shannon distance
metric) from four vertebrate species to each amphioxus stage. The grey
box outlines the period of minimal divergence, with the corresponding
vertebrate periods indicated (the range is given by the two less divergent
stages). Dispersions correspond to the standard deviation computed

on 100 bootstrap re-samplings of the orthologue sets (amphioxus-
chicken: 5,720; amphioxus-zebrafish: 5,673; amphioxus—frog: 5,883;
and amphioxus-medaka: 5,288). HH, Hamburger-Hamilton stage.

b, Heat map of pairwise transcriptomic Jensen-Shannon distances
between amphioxus (vertical) and zebrafish (horizontal) stages. A smaller
distance (red) indicates higher similarity. dpf, days post-fertilization.
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¢, Zebrafish and amphioxus pairwise Pearson correlation of relative
enrichment z-scores for transcription-factor (TF) motifs in dynamic
APREs, active at different developmental stages. Top, maximal correlation
for each amphioxus stage against the zebrafish stages. Bottom, heat map
with all pairwise correlations. 80 epi, 80% epiboly stage; 8 som, 8-somite
stage. d, Sequence conservation levels within the cephalochordates of
active APREs at each developmental stage, visualized as the distribution
of average phastCons scores. The number of APREs at 8 hpf = 5,282; at
15 hpf = 17,387; at 36 hpf = 21,089; at 60 hpf = 22,674; and in hepatic
diverticulum (hep) = 16,551. Dots correspond to the mean values and
lines represent the interquartile range.
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Fig. 4 | Transcriptomic and cis-regulatory
conservation of adult chordate tissues.

a, Heat map showing the level of raw statistical
significance of orthologous gene overlap between

modules produced by weighted correlation

network analysis (WGCNA), from amphioxus

(vertical) and zebrafish (horizontal) as derived

from upper-tail hypergeometric tests. b, Heat
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between the modules of the two species, based on

the relative z-scores of transcription-factor motifs

for each module (242 super-families of motifs).

Modules are clustered as in a. ¢, Distribution of
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To assess whether these 5mC dynamics may have regulatory poten-
tial, we identified adult hepatic diverticulum-specific APREs that
are inactive during development. Unlike embryo-specific APREs
(Extended Data Fig. 6a), the clustering of these adult APREs on the
basis of 5mC content revealed two distinct subsets, one with hepatic-
specific and one with constitutive hypomethylation (Fig. 2b).
Differentially methylated APREs (cluster 1) also displayed robust
hypomethylation in other adult tissues (Fig. 2c), which suggests that
demethylation at these APREs occurs organism-wide. Both groups
of hepatic-specific APREs were enriched for binding sites of liver-
specific transcription factors—such as Hnf4a—as well as broadly
expressed transcription factors such as Foxa (Extended Data Fig. 6b),
which is a pioneer factor that participates in 5mC removal at regulatory
regions in mammals®.

APREs from both clusters were preferentially associated with
genes with metabolic functions (Extended Data Fig. 6¢). However,
only APREs with hepatic-specific hypomethylation (cluster 1) were
primarily associated with genes that displayed steady widespread
expression (Fig. 2d and Extended Data Fig. 6d, e); these APREs were
mainly located within gene bodies (Fig. 2e). These data suggest that
demethylation of these APREs may contribute to their identification
as adult-specific, transcriptional cis-regulatory elements within contin-
uously hypermethylated gene-body contexts, which is characteristic of
non-vertebrate species. Fourteen zebrafish gene families contained dif-
ferentially methylated APREs in introns that are orthologous to those
identified in amphioxus—amongst these are four genes that encode
components of the Hippo pathway, including the transcriptional effec-
tors Yap (yapl and wwirl) and Tead (teadla and tead3a) (Extended
Data Fig. 6f, g).

Z-score

The hourglass model and chordate embryogenesis
Previous comparative analyses among vertebrate transcriptomes
showed a developmental period of maximal similarity in gene expression
that coincides with the so-called phylotypic period, consistent with the
hourglass model?*. However, similar comparisons with tunicates and
amphioxus have thus far not resolved a phylotypic period shared across
all chordates?. Pairwise comparisons of stage-specific RNA sequencing
(RNA-seq) data from developmental time courses of amphioxus against
zebrafish, medaka, frog (Xenopus tropicalis) and chicken revealed a
consistent period of highest similarity (Fig. 3a, b and Extended Data
Fig. 7) that occurred slightly earlier than those reported for vertebrates;
in amphioxus, this corresponds to the neurula at the 4-7-somite stage
(18-21 hours post fertilization (hpf)). At the regulatory level, pairwise
comparisons between the relative enrichment of transcription-factor
motifs in sets of dynamic APREs that were active at each stage were also
consistent with an earlier hourglass model** (Fig. 3c). By contrast, at a
shorter timescale, comparisons between different species of amphioxus
showed that the sequence conservation for the same APREs was higher
after the putative chordate phylotypic period (Fig. 3d).

21,22

Regulatory conservation shapes chordate body plan

Additional comparisons of embryo transcriptomes and neighbourhood
analysis of conserved co-expression?® showed a high conservation
of developmental and global expression patterns and of gene func-
tions between amphioxus and vertebrates (Extended Data Fig. 8 and
Supplementary Information). Further pairwise comparison of co-
regulated gene modules across tissues between amphioxus and zebrafish
revealed multiple pairs with highly significant levels of orthologue over-
lap (Fig. 4a). These included modules with conserved tissue-specific
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expression that were enriched for coherent Gene Ontology catego-
ries, including genes with high expression in organs with ciliated cells
(for example, spermatozoa and gill bars) (labelled ‘1" in Fig. 4a—c)
as well as neural, muscle, gut, liver, skin and metabolism-related
modules (Supplementary Data 1). We also found a significant positive
correlation between relative motif-enrichment scores for many pairs of
modules (Fig. 4b); the most-enriched transcription-factor motifs
within each cluster were highly consistent between amphioxus and
zebrafish (Fig. 4d).

Higher regulatory information in vertebrate genomes

To investigate the effect of WGDs on the evolution of vertebrate
gene regulation, we first asked whether the number of putative reg-
ulatory regions per gene is higher in vertebrates than in amphioxus.
We observed significantly more APREs in the regulatory landscape
of each gene (as defined by the ‘Genomic Regions Enrichment of
Annotations Tool’ (GREAT)?S) in zebrafish than in amphioxus
(Fig. 5a). This difference is particularly evident for gene families that
have retained multiple copies after WGD (known as ohnologues;
Fig. 5b), for which the number of APREs is very uneven between cop-
ies, with marked regulatory expansions observed for some ohnologues
(Fig. 5¢). The same patterns were detected for all developmental stages
of amphioxus and zebrafish, as well as for medaka and mouse genomes,
and were highly robust to down-sampling of ATAC-seq coverage in ver-
tebrates (Extended Data Fig. 9a—c). We also detected a higher number
of peaks associated with regulatory genes (‘trans-dev’ genes that are
involved in the regulation of embryonic development) compared to
housekeeping genes in all species (Extended Data Fig. 9d), consistent
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with the higher frequency of retention of trans-dev genes in multiple
copies after WGD? (Fig. 5b). Comparison of regulatory landscapes—
determined experimentally using circular chromosome conformation
capture followed by sequencing (4C-seq)—for 58 genes from 11 trans-
dev gene families in amphioxus, zebrafish and mouse showed similar
results (Extended Data Fig. 9e).

As expected, the higher number of APRESs in zebrafish was associated
with larger intergenic regions in this species (Extended Data Fig. 9f).
However, the differences in APRE complements were not attributable
only to an increase in genome size in vertebrates, as subsets of amphi-
oxus and zebrafish genes with matched distributions of GREAT or
intergenic-region lengths also displayed a higher number of APREs in
zebrafish (Extended Data Fig. 9g, h). Further investigation of matched
distributions showed that these differences were particularly great in
genes with large regulatory landscapes (>50 kb) (Fig. 5d). Thus, larger
regions in amphioxus did not scale at the same rate as in vertebrates
in terms of regulatory complexity (Fig. 5e), which is consistent with
the overall lower proportion of distal APREs identified in this species
(Fig. 1c, d). In summary, these analyses reveal a large increase in the
number of regulatory regions during vertebrate evolution (and/or a
decrease in these regions in amphioxus)—particularly of distal reg-
ulatory elements—and that this trend is enhanced for specific gene
copies retained after the WGDs, pointing to unequal rates of regulatory
evolution for different ohnologues.

More-complex regulation in specialized ohnologues

The duplication-degeneration-complementation (DDC) model
hypothesizes that the retention of duplicate genes could be driven by
reciprocal loss of regulatory elements and restriction of paralogues
to distinct subsets of the ancestral expression pattern®’. In particular,
the DDC model predicts that individual paralogues would each have
more restricted expression than an unduplicated outgroup, but that
their summation would not. To test this, we binarized the expression
(‘on’ or ‘off’) of each gene in nine homologous expression domains
in amphioxus, zebrafish, frog and mouse (Fig. 6a). When comparing
genes that returned to single-copy status after WGDs, we detected no
expression bias between amphioxus and vertebrates (Fig. 6a, b and
Extended Data Fig. 10a, b). By contrast, when vertebrate ohnologues
were compared to their single amphioxus orthologues, the distributions
were strongly skewed and many vertebrate genes displayed far more
restricted expression domains (Fig. 6b and Extended Data Fig. 10a, b;
similar results were obtained by comparing 7 values?, Extended Data
Fig. 10c-e). The symmetrical pattern was fully recovered when the
expression of all vertebrate members was combined, or when the raw
expression values were summed for each member within a paralogy
group (Fig. 6a, b and Extended Data Fig. 10a, b).

Although the above findings are consistent with the DDC model,
they are also compatible with an alternative model in which a subset
of duplicate genes becomes more ‘specialized’ in expression pattern
while one or more paralogues retain the broader ancestral expres-
sion?’. To distinguish between these alternatives, we analysed a
subset of multi-gene families in which both the single amphioxus
orthologue and the union of the vertebrate ohnologues—and thus
probably the ancestral gene—were expressed across all nine samples
that we compared. We then identified (i) gene families in which all
vertebrate paralogues were expressed in all domains (termed ‘redun-
dancy’), (ii) gene families in which none of the vertebrate members
had expression across all domains (termed ‘subfunctionalization’)?’
and (iii) gene families in which one or more vertebrate ohnologues
were expressed in all domains, but at least one ohnologue was not
(termed ‘specialization’) (Fig. 6¢). We obtained very similar results
for the three vertebrate species we studied (Fig. 6d): between 80 and
88% of gene families were subfunctionalized or specialized, which
implies that ancestral expression domains have been lost in at least
one member. Moreover, specialization was consistently more fre-
quent than subfunctionalization as a fate for ohnologues with broad
ancestral expression.

© 2018 Springer Nature Limited. All rights reserved.
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a, Schematic of the analysis shown in b. Expression is binarized for each
gene across the nine homologous samples (‘on, black dots; normalized
cRPKM > 5). b, Distribution of the difference in positive domains
between zebrafish (domainsp,.) and amphioxus (domainsg,) for 1-to-1
orthologues (2,478 gene pairs; yellow), individual ohnologues (3,427 gene
pairs in 1,135 families; lilac) and the union of all vertebrate ohnologues
in a family (purple). Bottom left, log, of the ratio between zebrafish

genes with negative and positive score for each category. ‘Sum’ (black),
binarization of family expression after summing the raw expression values
for all ohnologues. ¢, Schematic of the analyses shown in d, representing
the three possible fates after WGD. d, Distribution of fates after WGD

for families of ohnologues. e, Number of ohnologues with strong

Ohnologues that have experienced strong specialization (<2 remain-
ing expression domains) retained expression more often in neural tissues
(Fig. 6e and Extended Data Fig. 10f-i) and were generally not expressed
in additional vertebrate-specific tissues (Supplementary Information).
Furthermore, they showed the fastest rates of sequence evolution (Fig. 6f
and Extended Data Fig. 10j-1), consistent with an optimization of their
coding sequence to perform their function in a specific tissue and/or with
the evolution of novel functions (neofunctionalization). Ohnologues from
specialized families that have lost expression domains showed signifi-
cantly more associated APREs than ohnologues with the full ancestral
expression (Fig. 6g). We observed a strong positive relationship between
the number of ancestral expression domains lost and the number of
APREs associated with specialized ohnologues (Extended Data Fig. 10m).
This implies that the specialization of gene expression after WGD does not
occur primarily through loss of ancestral tissue-specific enhancers, but
rather by a complex remodelling of regulatory landscapes that involves
recruitment of novel, tissue-specific regulatory elements.

Discussion
By applying functional genomics approaches to the cephalochordate
amphioxus, we have deepened our understanding of the origin and

specialization in zebrafish expressed in each domain. Tis., tissue.

f, Distribution of the percentage of nucleotide sequence similarity between
human and mouse by family type. Ohnologues from specialized families
are divided into ‘spec. equal’ (which maintain all expression domains),
‘spec. mild’ (which have lost some but maintained more than two
expression domains) and ‘spec. strong’ (<2 expression domains remain).
Subfunct., subfunctionalized. g, Distribution of the number of APREs
within GREAT regions for zebrafish ohnologues for each category. Only
statistical comparisons within specialized families are shown. P values in
f and g correspond to two- and one-sided Wilcoxon sum-rank tests
between the indicated groups, respectively. *0.05 > P value > 0.01,
##0.01 > Pvalue > 0.001, ***P value < 0.001. Exact P values and sample
sizes are provided in Supplementary Data 2, dataset 8.

evolution of chordate genomes. We identified APREs in amphioxus,
the activation of which is tightly associated with differential DNA
demethylation in adult tissues—a mechanism previously thought
to be specific to vertebrates. Additional cases may be subsequently
found in other non-vertebrate species when similar multi-omics
datasets are analysed. In amphioxus, APREs of this type usually fall
within gene bodies of widely expressed genes, which suggests that gene
regulation by demethylation could have originated as a mechanism
to allow better definition of enhancers in a hyper-methylated intra-
genic context. If so, this mechanism could have been co-opted into
new genomic contexts—that is, distal intergenic enhancers—later in
the evolution of vertebrate genomes, which are characterized by their
pervasive, genome-wide hypermethylation.

We also found a consistently higher number of open chromatin
regions per gene in vertebrates than in amphioxus. This pattern is
observed at a genome-wide level, but is particularly evident for distal
APREs and in gene families that retain multiple ohnologues after WGD;
these families are enriched for regulatory genes with large regulatory
landscapes. Finally, we detected a large degree of specialization in
expression for retained ohnologues, with the vast majority of multi-
gene families with broad ancestral expression having at least one member
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that restricted its expression breadth. Through this mechanism, verte-
brates have increased their repertoire of tightly regulated genes, which
has potentially contributed to tissue-specific evolution. Gene-expression
specialization was accompanied by faster evolution of protein-
coding sequences, and by an increase-rather than a decrease—in the
number of regulatory elements. Taken together, these observations
indicate that the two rounds of WGD not only caused an expansion and
diversification of gene repertoires in vertebrates, but also allowed func-
tional and expression specialization of the extra copies by increasing the
complexity of their gene regulatory landscapes. We suggest that these
changes to the gene regulatory landscapes underpinned the evolution
of morphological specializations in vertebrates.

Online content

Any methods, additional references, Nature Research reporting summaries, source
data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/s41586-018-0734-6.
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METHODS

No statistical methods were used to predetermine sample size. The experiments
were not randomized and investigators were not blinded to allocation during
experiments and outcome assessment.

Animal husbandry and embryo staging. Amphioxus gametes were obtained by
heat stimulation as previously described®*>!. Embryos were obtained by in vitro
fertilization in filtered seawater and cultured at 19 °C. Staging was done based
on previous publications*>*3; correspondence between developmental stages and
hpf are provided in Supplementary Table 1. All protocols used for vertebrate spe-
cies (zebrafish and medaka) have been approved by the Institutional Animal Care
and Use Ethic Committee (PRBB-IACUEC, for CRG) or the Ethics Committee
of the Andalusian Government (license numbers 450-1839 and 182-41106, for
CABD-CSIC), and implemented according to national and European regulations.
All experiments were carried out in accordance with the principles of the 3Rs
(replacement, reduction and refinement).

Genome sequencing and assembly. Genomic DNA was extracted from a sin-
gle B. lanceolatum adult male collected in Argeles-sur-Mer, France. The genome
was sequenced using a combination of Illumina libraries from a range of inserts
at Genoscope (897 million reads in total, with a paired-end coverage of 150 ;
Supplementary Table 2). A diploid assembly was generated using SOAPdenovo
assembler> using a k-mer of 71. After gap closing, haplotypes were reconciled
with Haplomerger®.

Genome annotation. We generated deep coverage RNA-seq for 16 developmental
stages and 9 adult tissues (4.16 billion reads in total). The bulk of strand-specific
transcriptomic data was assembled de novo with Trinity*®, aligned and assem-
bled into loci with the PASA pipeline®. De novo gene models were built using
Augustus®® and subsequently refined with EVM® using PASA assemblies and
aligned proteins from other species. In parallel, all strand-specific RNA-seq reads
were mapped to the genome using Tophat2*’, assembled using Cufflinks*! and
open reading frames were predicted using Trans-decoder*. Models obtained using
both these approaches were reconciled yielding a total 218,070 transcripts from
90,927 unified loci, of which 20,569 were protein-coding and had homologues
in at least one of the other studied species (see ‘Comparative genomics’). Gene
Ontology (GO) terms were assigned to amphioxus proteins based on their PFEAM
and Interpro domains, as well as blastp hits against human proteins (1 x 107°).

Repeats were annotated and filtered with RepeatMasker using a custom library

generated with RepeatModeller. Long non-coding RNAs were identified by filter-
ing all transcripts for protein-coding potential using CPAT*? trained with zebrafish
transcripts, and further discarding those that had a positive hit in a HMM search
against the NR and PFAM databases (Extended Data Fig. 1g).
Comparative genomics. We used OMA* to reconstruct gene families and infer
homology relationships based on well-established phylogenetic relationships
between species®’, and further merged families sharing Ensembl paralogues with
‘Euteleostomi’ or ‘Vertebrata’ ancestry. To define the set of high-confidence ohno-
logue families (Supplementary Data 2, dataset 9), we retained families with two to
four copies in three out of five vertebrates (excluding teleosts) and subjected them
to phylogenetic reconciliation.

To assess genome sequence conservation, reciprocal whole-genome alignments
of Branchiostoma floridae, Branchiostoma belcheri and B. lanceolatum were per-
formed using LASTZ and processed with phastCons*® to produce conservation
scores. The distribution of phastCons scores in APREs was determined using
‘dynamic’ ATAC-seq peaks that showed no temporal discontinuity in activity.
Comparative transcriptomics. To investigate the evolutionary conservation of
chordate development at the molecular level, newly generated data from zebrafish,
medaka and amphioxus, as well as available data from the SRA (frog and chicken),
were compared (Supplementary Data 2, dataset 3 and Supplementary Table 3).
Gene expression was estimated with Kallisto*” using Ensembl transcriptome anno-
tations (Supplementary Table 4), and summing up transcripts per million (TPMs)
from all transcript isoforms to obtain one individual gene-expression estimate
per sample. We used single-copy orthologues to pair genes and used the Jensen-
Shannon distance metrics after quantile normalization of TPMs to score distance
between pairs of transcriptomes:
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Statistical robustness towards gene sampling was assessed by calculating tran-
scriptomic distances based on 100 bootstrap replicates and estimating the standard
deviation over these replicates.

To obtain groups of genes with similar dynamics of expression during devel-
opment, genes were clustered based on their cRPKMs*® using the Mfuzz pack-
age®. For this purpose, eight comparable stages were selected in amphioxus and
zebrafish on the basis of conserved developmental landmarks such as fertilization,
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gastrulation and organogenesis (Supplementary Table 5). The statistical signifi-
cance of the orthologous gene overlap between pairs of clusters was assessed using
upper-tail hypergeometric tests.

Modules of co-expressed genes across stages and adult tissues were inferred
using WGCNA® with default parameters in amphioxus (17 samples) and zebrafish
(27 samples) (Supplementary Table 6). The statistical significance of the ortholo-
gous gene overlap between pairs of clusters was assessed using upper-tail hyper-
geometric tests. The numbers of transcription-factor binding-site motifs detected
in APREs in the basal regions of genes from any given cluster were standardized
using z-scores.

To have a general assessment of the extent of conservation or divergence in gene
expression among chordates at adult stages, we used neighbourhood analysis of
conserved co-expression (NACC)?, a method developed to compare heterogene-
ous, non-matched sample sets across species. NACC relies on comparisons of
average distances between pairs of orthologous (genes A and B), the 20 genes with
the closest transcriptomic distance (A and B) and their reciprocal orthologues in
the other species (AB and BA), and is calculated as follows:

NACC= %[(E—A) + (BA—B)]

NACC calculations were performed for each family that contained a single
amphioxus member and up to eight members in zebrafish and were also performed
with randomized orthology relationships as a control.

Regulatory profiling. ATAC-seq. For amphioxus, medaka and zebrafish, ATAC-
seq was performed in two biological replicates by directly transferring embryos
in the lysis buffer, following the original protocol®"*2. ATAC-seq libraries were
sequenced to produce an average of 66, 83 and 78 million reads for amphioxus,
zebrafish and medaka, respectively. Reads were mapped with Bowtie2 and
nucleosome-free pairs (insert < 120 bp) retained for peak-calling using MACS2%,
and the irreducible discovery rate was used to assess replicability. Nucleosome
positioning was calculated from aligned ATAC-seq data using NucleoATAC™*
Chromatin immunoprecipitation with sequencing (ChIP-seq). Embryos of unde-
termined gender were fixed in 2% formaldehyde and ChIP was performed as
previously described for other species®®. Chromatin was sonicated and incubated
with the corresponding antibody (H3K4me3: ab8580, H3K27ac: ab4729 and
HeK27me3: ab6002, from Abcam). An average of 30 million reads per library was
generated. Reads were mapped with Bowtie2 and peaks called with MACS2%,
assuming default parameters.

4C-seq. Embryos of undetermined gender were fixed in 2% formaldehyde and
chromatin was digested with DpnlI and Csp6. Specific primers targeted the TSSs of
the studied genes and included Illumina adapters. An average 5 million reads were
generated for each of the two biological replicates. After mapping, reads were nor-
malized per digestion fragment cut and interactions were identified using peakC>
with low-coverage regions excluded.

MethylC-seq and RRBS. Genomic DNA was extracted as previously described®’,
sonicated, purified and end-repaired. Bisulfite conversion was performed with
the MethylCode Bisulfite Conversion Kit (Thermo Fisher Scientific). After
Ilumina library construction, an average of 73 million reads per sample were
sequenced. RRBS libraries were prepared similarly to those for MethyC-seq, but
with restriction digestion with Mspl instead of sonication and PCR amplification.
An average of 46 million reads per sample was generated. Reads were mapped to
an in silico, bisulfite-converted B. lanceolatum reference genome”>®. Differentially
methylated regions in the CpG context were identified as previously described’.
Differential transcription-factor motif enrichment was obtained with DiffBind
from Bioconductor.

CAGE-seq. Libraries were constructed using the non-amplifying non-tag-
ging [llumina CAGE protocol®’. Mouse CAGE-seq data were obtained from
FANTOM5®. Reads were aligned using Bowtie. Nearby individual CAGE TSSs
were combined using the distance-based clustering method in CAGEr® to produce
tag clusters, which summarize expression at individual promoters. Tag clusters
were clustered across samples to produce comparable promoter regions, referred
to as ‘consensus clusters. The consensus clusters were then grouped by expression
patterns using a self-organizing map®2. We investigated the relative presence and
enrichment of the following features: TATA box, YY1 motif, GC and AT content, SS
and WW dinucleotides, first exons and nucleosome positioning signal. Heat maps
were plotted for visualization by scanning either for exact dinucleotide matches or
for position weight matrix matches at 80% of the maximum score. Position weight
matrices for TATA and YY1 were taken from the JASPAR vertebrate collection.
Cis-regulatory comparisons. Depending on the analysis, an APRE was associated
with a specific gene if it was located within: (i) the ‘basal’ region of the gene (—5 kb
to +1 kb of the TSS; for comparisons of enriched motif composition) or (ii) the
GREAT region of the gene (up to =1 Mb of the TSS unless another basal region
was found; for comparing the number of APREs per gene)?. Stratification of gene
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sets by GREAT or intergenic-region size between amphioxus and zebrafish was
done using the function stratify from the matt suite®, with a range of 500 bp.

The DNA-binding specificity of each transcription factor was predicted on the
basis of the binding domain similarity to other transcription-factor family mem-
bers, as previously performed®. Transcription-factor motifs from CIS-BP version
1.02%* were downloaded and clustered using GimmeMotifs®® (P < 0.0001). Two
hundred and forty-two clusters of motifs were assigned to one or more orthologous
groups in both amphioxus and zebrafish and used for all analyses (Supplementary
Data 2, dataset 10). These motifs were detected in APREs using the tools gimme
threshold and gimme scan from GimmeMotifs®.
Effect of WGDs on gene expression. Gene expression was binarized (1 if the nor-
malized cRPKM > 5, and 0 otherwise) across nine comparable samples in amphi-
oxus and three vertebrate species (mouse, frog and zebrafish) (Supplementary
Table 7). Then, for each amphioxus gene and vertebrate orthologue, the expression
bias was measured by subtracting the number of positive-expression domains in
amphioxus from that of vertebrates (Fig. 6a). The amphioxus gene-expression
pattern was also compared to the union of the ohnologues, as well as the pattern
after binarizing the expression for the sum of cRPKM values of all family members.
The analysis was restricted to families with a single member in amphioxus

Next, we selected those ohnologue families for which the ancestral expression
included the nine studied domains, as inferred from having expression in the single
amphioxus orthologue and in the union of the family. For each gene family, we
then defined (Fig. 6¢): (i) redundancy (all vertebrate paralogues were expressed
in all domains), (ii) subfunctionalization (none of the vertebrate members had
expression across all domains®’), and (iii) specialization (one or more vertebrate
ohnologues were expressed in all domains, but at least one ohnologue was not).
Members of the later type were subdivided into ‘strong’ and ‘mild’ specialization
if they retained < 2 or more expression domains. We examined the transcript
sequence similarity as well as the dN/dS between human and mouse (retrieved
from Biomart), and the number of APREs associated with genes from differ-
ent categories. Finally, we computed the 7 tissue-specificity index as previously
described?, to assess more broadly the tissue specificity of ohnologues.
Transgenic assays in zebrafish and amphioxus. Enhancer reporter assays in
zebrafish embryos were performed as previously described®. Selected peaks
were first amplified, cloned into a PCR8/GW/TOPO vector and transferred into a
detection vector (including a gata2 minimal promoter, a GFP reporter gene and a
strong midbrain enhancer (z48) as an internal control)®’. Transgenic embryos were
generated using the Tol2 transposon and transposase method®®. Three or more
independent stable transgenic lines were generated for each construct as reported
in Supplementary Table 8. For amphioxus reporter assays, selected peaks were
amplified and transferred into a detection vector (including the Branchiostoma
minimal actin promoter, a GFP reporter gene and piggyBac terminal repeats).
Transgenic embryos were generated by the piggyBac transposase method.
In situ hybridization. Gene fragments that were synthetically designed or ampli-
fied by PCR from cDNA were sub-cloned into pBluescript II SK and used as
templates for probe synthesis using the DIG labelling kit (Roche) and T3 RNA
polymerase. Embryos at different developmental stages were fixed in PFA 4% dis-
solved in MOPS-EGTA buffer and in situ hybridization carried out as previously
described®, using BCIP/NBT as a chromogenic substrate.
Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this paper.
Code availability. Custom code is available at https://gitlab.com/groups/
Functional Amphioxus.

Data availability

Next-generation sequencing data have been deposited in Gene Expression
Omnibus (GEO) under the following accession numbers: GSE106372 (ChIP-
seq), GSE106428 (ATAC-seq), GSE106429 (CAGE-seq), GSE106430 (RNA-seq),
GSE102144 (MethylC-seq and RRBS) and GSE115945 (4C-seq). Raw genome
sequencing data and the genome assembly have been submitted to European
Nucleotide Archive (ENA) under the accession number PRJEB13665. UCSC hub
and annotation files are available at http://amphiencode.github.io/.
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Extended Data Fig. 1 | Summary of genomic assembly and repeat
annotation. a, Spectrum of 25-mers in Illumina sequencing data that
shows the bimodal distribution that is characteristic of highly
polymorphic species. b, Heat map showing k-mer decomposition (y axis)
across GC content (x axis). Both peaks show comparable GC content,
which is consistent with them representing haploid versus diploid
k-mers. ¢, Flow chart of the steps followed to obtain the B. lanceolatum
assembly. d, Repeat landscape and its evolutionary history, shown by the
proportion of repetitive elements with a given divergence (K2P) to their
consensus in the repeat library (repeatScout). e, Percentage of methylated
CpG dinucleotides within repetitive elements, at three developmental
stages and in the adult hepatic diverticulum. f, Distribution of average
levels of 5mC of different repeat families. Colour key indicates the
percentage of repeats in each family with corresponding levels of average
methylation. g, Computational pipeline to identify long non-coding RNAs
(IncRNAs). Categories: antisense, IncRNA overlaps with a protein-coding
gene in the reverse strand; intragenic, IncRNA overlaps with a protein-
coding gene in the same strand; bidirectional, within 1 kbp of a TSS of

a protein-coding gene in the antisense strand, probably a product of a
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bidirectional promoter; intergenic, IncRNA does not overlap with any
protein-coding gene. The total number in each category is indicated, with
the number of those that are multi-exonic in parentheses. h, Quadruple
conserved synteny between amphioxus and human. Top, amphioxus
scaffold Sc0000001 aligned against the four human chromosomes with
which it shares the highest number of orthologues (chrl, chr5, chr9 and
chr19). In this scaffold, 277 out of 551 genes have clear orthologues in
human, and 203 of these have orthologues on at least one of the four
mentioned chromosomes. The black horizontal line represents the
amphioxus scaffold, and each vertical coloured box an orthologous gene
on the corresponding human chromosome. Bottom, modified view from
Genomicus that is centred on the BL22073 gene and spans Sc0000001:
7,736,434-8,850,041. On the top line, each amphioxus gene with at

least one orthologue in the nine reference species is represented with

an oriented coloured box. Human genes located in the four ohnologous
chromosomes are aligned underneath, in boxes of colours that correspond
to those of their amphioxus pro-orthologues. The Genomicus server
dedicated to amphioxus can be accessed at http://genomicus.biologie.ens.
fr/genomicus-amphioxus.
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Extended Data Fig. 2 | Dynamics of chromatin marks on APREs and
reporter assays. a, Summary of the zebrafish and medaka RNA-seq

and ATAC-seq datasets generated for this study. Dashed lines indicate
equivalent developmental stages in the two species, based on aprevious
study’®. The number of biological replicates is indicated for each
experiment. Zebrafish 24-hpf ATAC-seq data are from a previous study®”.
b, Cumulative distribution of the distance between CAGE-seq peaks

and the closest annotated TSSs for genes with expression cRPKM > 5 in
any of the samples covered by CAGE-seq (see Fig. 1a). Only CAGE-seq
peaks within 1 kbp of an annotated TSS were tested (amphioxus: 10,435
peaks; zebrafish, 23,326 peaks; and mouse, 23,443 peaks). ¢, Cumulative
distribution of distances between each APRE and the closest annotated
TSS normalized by the average intergenic distance of the species
(amphioxus, 83,471; zebrafish, 252,774; medaka, 174,139; and mouse,
216,857 APREs, as per Fig. 1c¢). d, Signal distribution of different marks
within functional-genomic regions in amphioxus. log; of read counts of
H3K4me3, H3K27ac and ATAC-seq, and raw read counts of CAGE-seq
in promoters of homology-supported, protein-coding genes (n = 26,501),
other APREs (‘O. APREs), all APREs that do not overlap a TSS from any
gene model; n = 48,341), proximal APREs (n = 24,622), distal APREs

(n = 11,881), previously validated enhancers (# = 43; Supplementary
Table 9), random regions (n = 88,413) and negative regions (excluding
ATAC-seq peaks, n = 88,413). For region designation, see Fig. 1c. For
clarity, whiskers and outliers are not displayed. e, k-means clustering of
APREs based on H3K27ac signal in three developmental stages. Cluster 1
and 3 APREs were considered as active and inactive, respectively. Average
H3K27ac profiles are represented in the top panels. The number of
APRE:s per cluster and stage are provided in Supplementary Data 2,
dataset 8. f, Alluvial plot that shows the dynamics of each APRE among

the clusters described in e. APREs that remained active (cluster 1 in all
stages) along the three developmental stages are represented in blue,
constitutively inactive APREs (cluster 3 in all stages) in dark grey and
dynamic APREs in red or orange (if inactivated or activated, respectively,
during development). Five groups of APREs of special interest are
highlighted with stronger colours and named GR1-GR5. g, Representative
enriched DNA motifs found in each of the groups described in f. GR1
APRESs were enriched in early motifs (for example, Smad3 and Oct4,

Sox2 and Nanog); GR3 APREs in motifs of transcription factors involved
in the generation of the three germ layers (for example, Foxo3, Sox6

and Sox17); GR4 APRE:s in tissue-specific transcription factors (for
example, Foxa2, Otx2 and Crx); and GR5 APREs in CTCF and CTCF-
like (BORIS) motifs. q values as provided by Homer. h, Lateral views

of embryos from stable transgenic zebrafish lines at 24 hpf (except for
Foxa-243, at 48 hpf) showing GFP expression driven by the amphioxus
APREs listed in Supplementary Table 8 and highlighted in Supplementary
Fig. 1. The number of independent founders with the same expression
were as follows: Six1/2-182 (5/5), Foxa-243 (3/3), Foxa-251 (4/4), FoxC-
3067 (6/6) and Pax1/9-157 (3/3). Midbrain expression corresponds to

the positive-control enhancer included in the reporter constructs. EN,
endoderm; HB, hindbrain; MY, myotomes; PA, pharyngeal arch; SC,
spinal cord. Scale bar, 250 pm. i, Lateral views of transient transgenic
amphioxus embryos, showing GFP expression driven by the APREs
highlighted in Supplementary Fig. 1a, b (Foxa-251 (n = 46 out of 52)

and Foxc-3067 (n = 27 out of 35), respectively) and in a previous study’!
(Hox-1655, n = 72 out of 80). For each element, left panels correspond to
3D rendering from sub-stacks and right panels to z-stack sagittal sections.
Scale bar, 50 pm. Anterior is to the left and dorsal to the top.
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Extended Data Fig. 3 | Features of amphioxus promoters derived from
CAGE-seq. a—c, Heat maps showing AT and CG signal, nucleosome
positioning (derived from the NucleoATAC signal), promoter width
(interquantile (IQ) range), first exon length and YY1 (a) or TATA box

(b, ¢) motifs around ubiquitous (a, n = 3,710), embryonic-specific

(b, n = 1,451) and tissue-specific (¢, n = 4,154) promoters, sorted by
promoter width. Position 0 corresponds to the main TSS. d, Ubiquitous
promoters show strong evidence for a nucleosome positioned downstream

of the CAGE TSS, as judged from the 12-bp periodicity of W and S
nucleotide density. e, Per cent of promoters of each category that have
associated TATA box or YY1 motifs. Number of promoters: embryo, 1,451;
female gonads, 1,494; hepatic, 2,420; neural tube, 1,734; and ubiquitous,
3,710. f, IQ width distribution of ubiquitous promoters (1 = 3,710) with
and without an associated YY1 motif. P value corresponds to two-sided
Wilcoxon sum-rank tests.
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Extended Data Fig. 4 | Characteristics and evolution of bidirectional
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identified for each regulatory category. P values correspond to two-sided
Fisher’s exact tests against ubiquitous promoters. b, Distribution of
distance between bidirectional promoters in each species (amphioxus,
1,975; zebrafish, 549; and mouse, 876 pairs of promoters). The distance
between amphioxus peaks closely corresponds to integral nucleosome
spacing. ¢, Heat maps of TA, CG and nucleosome occupancy (derived
from the NucleoATAC signal) around bidirectional promoter pairs

in amphioxus (n = 1,975), mouse (n = 876) and zebrafish (n = 549),
arranged by the distance between the two CAGE TSSs. In amphioxus,
both TA and NucleoATAC signals indicate regions in which 0, 1 or

2 nucleosomes separate promoters. d, Enriched GO terms for genes
associated with bidirectional promoters in amphioxus. Uncorrected P
values correspond to two-sided Fisher’s exact tests as provided by topGO.
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e, Inferred evolutionary dynamics of 372 putatively ancestral bidirectional
promoters among chordate groups. Red, number of inferred losses and
disentanglements; black, number of detected bidirectional promoters

by CAGE-seq (in brackets) or microsynteny (neighbouring genes in a

5’ to 5’ orientation) for each species. In parentheses, number of lost and
disentangled (red) or retained (black) bidirectional promoters when
considering only the cases supported by CAGE-seq. f, In vertebrates,
disentanglement was not accompanied by a general increase in the fraction
of bidirectional promoters with antisense non-coding transcription, as
shown by the relative number of CAGE clusters identified as bidirectional
promoters that are composed of two protein-coding genes (‘Prot-Prot’)

or of one protein-coding and one non-coding or non-annotated locus
(‘Prot-NC’). The total number of uniquely annotated, protein-coding-
associated CAGE promoters was amphioxus, 11,789; mouse, 13,654; and
zebrafish, 14,014.
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Extended Data Fig. 5 | 5mC dynamics in amphioxus. a, 5mC levels
across gene bodies (n = 20,569) from different expression deciles (0™, not
expressed; IO‘h, highest expression). TTS, transcription termination site.
b, Scatter plots of levels of 5mC and CpG density, H3K4me3, H3K27me3
and H3K27ac in 1-kbp genomic bins sorted on the basis of feature rank.
The red line tracks anti-correlation between feature density and rank
number (a low rank number implies high feature density). The golden line
represents a smoothing spline of 5mC signal versus feature rank number.
Pearson correlation coefficients (R) are displayed in the top right corner of
each panel. ¢, UCSC browser excerpt of 5mC patterns for selected regions.
d, Percentage of methylated CpG dinucleotides in 8-hpf (n = 19,657,388),
15-hpf (n = 21,247,615), 36-hpf (n = 21,702,000) and hepatic (adult,

n = 19,240,245) amphioxus samples. Black line indicates the fraction
between methylated and non-methylated CpGs at each stage. e, Box

plots of average 5mC levels in different types of differentially methylated
regions (DMRs) at each stage. AmCG denotes the change in the fraction
of methylated CpGs between the two stages used for identification of
DMRs (red (hyper) and blue (hypo) boxes). The number of DMRs were as
follows: 8 hpf(+)-15 hpf(—), 768; 8 hpf(—)-15 hpf(+), 701; 15 hpf(+)-
36 hpf(—),1,066; 15 hpf(—)-36 hpf(+), 1,025; 36 hpf(+)-liver(—), 22,333;
and 36 hpf(—)-liver(+), 4,154. The coordinates for all DMRs are provided
in Supplementary Data 2, dataset 11. f, Distribution of DMR sizes (in

bp). g, Genomic distribution of DMRs identified for each sample. ‘Other
trans, DMRs that overlap with gene models that were not defined as being
supported by orthology. h, Expression ((RPKMs) of the amphioxus Tet
orthologue in embryos and adult tissues. Error bars represent standard
error of the mean (the number of replicates for each RNA-seq dataset is
provided in Fig. 1a).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Developmental 5mC dynamics at APREs in
amphioxus. a, k-means clustering (n = 2) of 5mC signal over embryo-
specific open-chromatin regions (that is, APREs), assessed by ATAC-
seq (Supplementary Table 10). b, The most significantly enriched
transcription-factor binding-site motifs in APREs that display different
developmental 5mC patterns in Fig. 2b. Uncorrected P values as provided
by MEME. All plotted motifs had Benjamini-corrected g values of 0.

¢, GO enrichment for genes associated with cluster 1 (top) or cluster 2
(bottom) APREs from Fig. 2b. Uncorrected P values correspond to
two-sided Fisher’s exact tests as calculated by topGO. d, Distribution of
expression values (cCRPKMs) across all samples for genes associated with
cluster 1 (top, n = 1,114) or cluster 2 (bottom, n = 1,594) APREs from

ARTICLE

Fig. 2b. e, Distribution of the coefficients of variation for genes associated
with cluster 1 or cluster 2 APREs from Fig. 2b, as well as all (n = 19,710),
trans-dev (n = 357) and house-keeping (# = 862) amphioxus genes.

f, Example of a potentially conserved (zebrafish to amphioxus) DMR
associated with yap1I, a major transcription factor of the Hippo pathway.
The inset corresponds to the region highlighted in green. The two
ohnologous genomic regions in zebrafish are shown in Supplementary
Fig. 2. Additional cases included genes that contained APREs that are
likely to regulate neighbouring liver-specific genes (‘bystander’ genes)
(Supplementary Table 11). The number of replicates for each experiment
displayed in each track is provided in Fig. 1a.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparison of temporal gene expression
profiles in amphioxus and zebrafish. a, Heat map showing the
significance of orthologous gene overlap between Mfuzz clusters across
eight matched developmental stages in amphioxus and zebrafish as
derived from an upper-tail hypergeometric test. Some clusters with highly
significant overlap are highlighted, and their corresponding temporal
expression profiles are shown. The profiles of all clusters for the two
species are included in Supplementary Figs. 3, 4. Exact P values and sample
sizes are provided in Supplementary Data 2, dataset 8. b, Distributions

of NACC values for orthologous genes (in red) or random orthology
assignments (blue) for each species against human. Lower NACC values
imply higher conservation of relative expression. Solid lines show the
median, and the dashed lines mark the interquartile range. The number
of orthologue pairs were as follows: mouse, 15,109; zebrafish, 16,480;

and amphioxus, 8,633. ¢, Differentially enriched GO terms among pairs
of zebrafish and amphioxus Mfuzz clusters with significant orthologue
overlap (P < 10~ '° upper-tail hypergeometric test) with homochronic
(48 pairs) and heterochronic (35 pairs) patterns. The GO enrichment

of a group was calculated as the number of cluster pairs with significant
enrichment for that given term (Supplementary Data 2, dataset 12). d, Top,
per cent of zebrafish genes from each developmental pathway we studied,
based on the temporal similarity of their corresponding Mfuzz cluster
(homochronic, heterochronic or intermediate). Only genes belonging to
clusters with significant orthologue overlap were analysed; the number
of genes is provided in parenthesis below the pathway name. Bottom,
pairwise comparisons between developmental pathway distributions.

P values correspond to Bonferroni-corrected, two-sided, three-way
Fisher’s exact tests.
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Extended Data Fig. 9 | Higher regulatory content in vertebrate
genomes. a, Distribution of the number of APREs per the regulatory
landscape of a gene (as determined by GREAT?®), at different
developmental stages or cell lines of four chordate species (amphioxus,
zebrafish, medaka and mouse). Orthologous gene families are split
according to the number of ohnologues that are retained per family
(from 1 to 4, using mouse as a reference species for the ohnologue
counts). The percentage of developmental regulatory genes (trans-dev,
TD) in each category is indicated. b, P values of one-sided Mann-Whitney
U tests against the amphioxus peak-number distribution using 100% of
the minimum read coverage for different levels of down-sampling of the
zebrafish and medaka samples. ¢, Distribution of the number of APREs
in the GREAT region of the gene, called after down-sampling the reads
of the two vertebrate samples to different fractions of the sample with
the minimum effective coverage in our study (~21 reads per kbp for the
36-hpf sample in amphioxus). Asterisks correspond to the significance
of the P values of Mann-Whitney U tests against the amphioxus peak-
number distribution using 100% of the minimum-read coverage. The
number of genes per box was as follows: amphioxus, 20,569; zebrafish,

20,053; and medaka, 15,978. d, As in a, but with gene families separated
according to functional categories (housekeeping, trans-dev and others).
e, Number of APREs per regulatory landscape determined using 4C-seq,
for 58 members of 11 trans-dev families. The number of genes probed in
each species is indicated on the x axis. f, Distribution of the length of the
intergenic regions from the genes plotted in a for the indicated stages.

g, Distributions of GREAT-region sizes (left) and number of APREs per
gene (right) for a subset of 10,186 pairs of genes with matched GREAT-
region size distributions (500 bp) in amphioxus and zebrafish.

h, Distributions of intergenic-region sizes (left) and number of APREs

per gene (right) for a subset of 13,941 pairs of genes with matched
intergenic-region size distributions (+500 bp) in amphioxus and zebrafish.
P values correspond to Mann-Whitney U tests: *0.05 > P value > 0.01,
*%0.01 > P value > 0.001, ***P value < 0.001. In a and d, all comparisons
between each distribution of a vertebrate species and the equivalent
distribution in amphioxus produced significant P values (P value < 0.001);
for simplicity, in these panels asterisks are not shown. Exact P values and
sample sizes are provided in Supplementary Data 2, dataset 8.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Regulatory evolution after vertebrate WGD. developmental stage. h, i, Representative in situ hybridization assays in

a, b, For each mouse (a) or frog (b) gene, the number of positive- zebrafish embryos for different members of specialized families (right)
expression domains across nine equivalent samples is subtracted from and for the single amphioxus orthologue (left) (Chordcl and Itgb1bp2 (h)
the number of domains in which the single amphioxus orthologue is and Rab11 (i)). Zebrafish image data for this paper were retrieved from the
expressed. The distribution of the difference in domains between the Zebrafish Information Network (ZFIN), University of Oregon, Eugene, OR
amphioxus and the vertebrate species is plotted for 1-to-1 orthologues 97403-5274; (http://zfin.org/, accessed May 2018) and are used with the
(2,450 and 2,484 gene pairs for mouse and frog, respectively; yellow), permission of B. Thisse. Amphioxus in situ hybridization was performed
individual ohnologues (3,011 and 2,637 gene pairs in 1,212 and 1,094 once using 10 embryos per probe, all of which showed the same expression
families for mouse and frog, respectively; lilac) and the union of all pattern. j, Distribution of the dN/dS ratio between human and mouse
vertebrate ohnologues in a family (purple). Bottom left, log, of the ratio for different classes of ohnologues based on their fate after WGD.

between the sum of all mouse (a) or frog (b) genes with negative versus k, 1, Distribution of the percentage of nucleotide sequence similarity (k)
positive score for each orthology group. ‘Sumy’ (black), binarization of or dN/dS ratio (1) between human and mouse for ohnologues grouped
family expression is performed after summing the raw expression values by the number of expression domains lost. m, Distribution of the

for all ohnologues. c-e, Density scattered plot of the 7 values for pairs number of APREs within GREAT regions for zebrafish ohnologues

of mouse (¢, n = 1,502), frog (d, n = 1,495) and zebrafish (e, n = 1,498) grouped by the number of expression domains lost. P values in

and amphioxus orthologues from multi-gene families in vertebrates. j—m correspond to Wilcoxon sum-rank tests. *0.5 > P value > 0.01;

f, g, Number of ohnologues with strong specialization (<2 remaining #%0,01 > P value > 0.001; ***P value < 0.001.

expression domains) in mouse (f) or frog (g) expressed in each tissue or

© 2018 Springer Nature Limited. All rights reserved.
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Data collection Images of reporter assays in zebrafish embryos were collected using cell Sens Entry 1.6 from Olympus Corporation, amphioxus ISH
images with QED Capture Version 2.0.33 and amphioxus reporter assays with LAS AF (Leica Application Suite Advanced Fluorescence,
version 2.7.3.). CAGE data from the FANTOM repository were obtained with CAGEr. Zebrafish CAGE-seq data were obtained through the
ZebrafishDevelopmentalCAGE R package available at http://promshift.genereg.net/CAGEr/.

Data analysis Custom code is available at: https://gitlab.com/FunctionalAmphioxus
The following packages and software were used:

. FastXend, based on fastx v0.0.13.1 (https://github.com/institut-de-genomique/fastxtend)
. SOAP de novo (v2.04, release 13 Jul 2012)

. Bowtie2 (v 2.2.6)
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Next generation sequencing data have been deposited in Gene Expression Omnibus (GEO) under the following accession numbers: GSE106372 (ChIP-seq),
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GSE106428 (ATAC-seq), GSE106429 (CAGE-seq), GSE106430 (RNA-seq), GSE102144 (MethylC-seq and RRBS), and GSE115945 (4C-seq). Raw genome sequencing
data and genome assembly have been submitted to European Nucleotide Archive (ENA) under the accession number PRJEB13665.
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

[ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. For each cross-species transcriptomic and epigenomic comparisons as many
orthologous genes as possible were used. Samples sizes for each analysis in the figures are indicated in the legends, Supplementary Dataset 8
and/or Supplementary Information. For each next generation sequencing experiment, for each of the biological replicate we used as many
embryos or amount of adult tissues as necessary to obtain the enough amount of RNA/DNA for library preparation and sequencing, according
to previous experience in the lab and previous publications (PMIDs: 26829752, 26928226, 23624103). These numbers are indicated in the

corresponding sections of the Supplementary Information.

Data exclusions  For the CAGE-seq analysis, the muscle sample was excluded, as it did not fulfill the standard quality checks. Exclusion criteria for CAGE data
are not predetermined, however it is long established that CAGE data has a characteristic variation in widths (e.g. Carninci et al. 2006, Nature
Genetics 38 (6): 626—35), and this, along with the very low number of reads recovered (Supplementary Dataset 1) was the rationale for
exclusion, as explained in Section 7.1 of Supplementary Information.
Replication Nearly all the findings reported in this study correspond to computational analyses of next generation sequencing data. We provide the code
and guidelines to reproduce all the analyses (https://gitlab.com/FunctionalAmphioxus). We also perform two main types of experiments,
largely for validation purposes: (i) generation of transgenic assays and (ii) in situ hybridization of specialized families. For (i), we provide the
number of independent founders identified for each tested element and a description of the patterns obtained for each founder in
Supplementary Table 8. For (ii), we have performed the in situ hybridization only once, using ten embryos for probe, and all of them showed
the same pattern.

Randomization  We did not have experimental groups that apply here. In our study we compared either (i) different tissues and developmental stages within a
species, or (ii) matched samples for different species.

Blinding Blinding was not relevant to our study since we did not have experimental groups to compare.

Reporting for specific materials, systems and methods

Materials & experimental systems Methods

=)

/a | Involved in the study n/a | Involved in the study

|:| Unique biological materials

Antibodies
|:| Eukaryotic cell lines

|:| |X| ChlIP-seq
|X| |:| Flow cytometry

|Z| |:| MRI-based neuroimaging

|:| Palaeontology
Animals and other organisms

XOX XX

|:| Human research participants

Antibodies

Antibodies used -Rabbit polyclonal to Histone H3 (tri methyl K4) - ChIP Grade (#ab8580, Abcam), 1:200
-Rabbit polyclonal to Histone H3 (acetyl K27) - ChIP Grade (#ab4729, Abcam), 1:200

-Mouse monoclonal to Histone H3 (tri methyl K27) - ChIP Grade (#ab6002, Abcam), 1:200
Validation The three primary antibodies used are all high-quality commercial antibodies against Histone H3 modifications, validated as ChIP
grade by the manufacturer (Abcam):
https://www.abcam.com/histone-h3-tri-methyl-k4-antibody-chip-grade-ab8580.html
https://www.abcam.com/histone-h3-acetyl-k27-antibody-chip-grade-ab4729.html
https://www.abcam.com/histone-h3-tri-methyl-k27-antibody-mabcam-6002-chip-grade-ab6002.html
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the Histone Antibody Specificity Database (http://www.histoneantibodies.com, PMID : 26212453) and the Antibody Validation
Database (http://compbio.med.harvard.edu/antibodies/). Furthermore, these antibodies have been validated by ChIP-seq in
previous publications in a wide range of animal species, all of which have 100% amino acid identity in their Histone 3 sequences
(PMIDs: 24642862, 22593555, 22196729).

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For zebrafish and medaka data, embryos were obtained from crosses of adult animals of the AB and Cab strains, respectively.
Gender was not determined, since we have used pools of embryos.

Wild animals The study did not involve animals in the wild.

Field-collected samples Most of the next-generation sequencing data generated in this study is from the amphioxus Branchiostoma lanceolatum, a
marine, non-cephalopod invertebrate. As indicated in the Methods section, adult specimens were collected from the wild at the
Racou beach near Argelés-sur-Mer, France, (latitude 42° 32" 53” N and longitude 3° 03’ 27” E) with a specific permission
delivered by the Prefect of Region Provence Alpes Cote d’Azur. Branchiostoma lanceolatum is not a protected species. Gametes
are collected by heat stimulation. Embryos are collected from in vitro fertilization after induced spawning, and often batches of
several dozens or hundreds of mixed embryos are used for the experiments (detailed in Methods). Adult tissues are collected
from several individuals of both genders, except for male and female gonads.

ChlP-seq

Data deposition

|X| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|X| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106372
May remain private before publication.

Files in database submission GSM2836695  ChlPseq amphioxus H3K27ac 15h replicate 1 Oct 31, 2020 approved BED
GSM2836696  ChlPseq amphioxus H3K27ac 15h replicate 2 Oct 31, 2020 approved BED
GSM2836697  ChlPseq amphioxus H3K27ac 36h replicate 1 Oct 31, 2020 approved BED
GSM2836698  ChlPseq amphioxus H3K27ac 36h replicate 2 Oct 31, 2020 approved BED
GSM2836699  ChlPseq amphioxus H3K27ac 8h replicate 1 Oct 31, 2020 approved BED
GSM2836700 ChlPseq amphioxus H3K27ac 8h replicate 2 Oct 31, 2020 approved BED
GSM2836701  ChlPseq amphioxus H3K27me3 15h replicate 1 Oct 31, 2020 approved BED
GSM2836702  ChlIPseq amphioxus H3K27me3 15h replicate 2 Oct 31, 2020 approved BED
GSM2836703  ChlIPseq amphioxus H3K27me3 36h replicate 1 Oct 31, 2020 approved BED
GSM2836704  ChlPseq amphioxus H3K27me3 36h replicate 2 Oct 31, 2020 approved BED
GSM2836705 ChlPseq amphioxus H3K27me3 8h replicate 1 Oct 31, 2020 approved BED
GSM2836706 ChlPseq amphioxus H3K4me3 15h replicate 1 Oct 31, 2020 approved BED
GSM2836707  ChlPseq amphioxus H3K4me3 15h replicate 2 Oct 31, 2020 approved BED
GSM2836708 ChlPseq amphioxus H3K4me3 36h replicate 1 Oct 31, 2020 approved BED
GSM2836709  ChlPseq amphioxus H3K4me3 36h replicate 2 Oct 31, 2020 approved BED
GSM2836710 ChlPseq amphioxus H3K4me3 8h replicate 1 Oct 31, 2020 approved BED
GSM2836711  ChlPseq amphioxus H3K4me3 8h replicate 2 Oct 31, 2020 approved BED

Genome browser session https://genome-asia.ucsc.edu/cgi-bin/hgTracks?db=hub_78274 Bralan2
(e.g. UCSC)
Methodology
Replicates As described in Fig 1A, all samples were done in duplicates, with the exception of H3K27me3 for 8hpf, for which only one

library could be constructed.

Sequencing depth H3K27ac_8hpf_a 8 hpf 49 SE 18,380,227
H3K27ac_8hpf b 8 hpf 49 SE 47,674,217
H3K27ac_15hpf_a 15 hpf 49 SE 11,788,559
H3K27ac_15hpf b 15 hpf 49 SE 15,294,563
H3K27ac_36hpf_a 36 hpf 49 SE 42,320,156
H3K27ac_36hpf_b 36 hpf 49 SE 35,867,629
H3K27me3_8hpf_a 8 hpf 49 SE 11,896,658
H3K27me3_15hpf_a 15 hpf 49 SE 40,188,161
H3K27me3_15hpf_b 15 hpf 49 SE 39,334,807
H3K27me3_36hpf_a 36 hpf 49 SE 11,969,177
H3K27me3_36hpf_b 36 hpf 49 SE 12,496,630
H3K4me3_8hpf_a 8 hpf 49 SE 53,565,742
H3K4me3_8hpf b 8 hpf 49 SE 23,484,131
H3K4me3_15hpf_a 15 hpf 49 SE 11,831,374
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Antibodies

Peak calling parameters

Data quality

Software

H3K4me3_15hpf_b 15 hpf 49 SE 58,501,168
H3K4me3_36hpf_a 36 hpf 49 SE 33,948,863
H3K4me3_36hpf_b 36 hpf 49 SE 32,457,194

-Rabbit polyclonal to Histone H3 (tri methyl K4) - ChIP Grade (#ab8580, Abcam)
-Rabbit polyclonal to Histone H3 (acetyl K27) - ChIP Grade (#ab4729, Abcam)
-Mouse monoclonal to Histone H3 (tri methyl K27) - ChIP Grade (#ab6002, Abcam)

Reads were mapped against the amphioxus reference genome using Bowtie, and peaks were called using the MACS2
software with default parameters.

Chip-seq peaks were only used to overlap with the ATAC-seq peaks in multiple cross-validation analyses. Since we used
MACS?2 by default, all peaks were below FDR 5%.

Reads were mapped against the amphioxus reference genome using Bowtie, and peaks were called using the MACS2
software with default parameters. The overlap between ATAC-seq and ChIP-seq peak was calculated using Bedtools.
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