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A bstract

This thesis uses numerical, asymptotic and flow structural techniques to examine 
various aspects of rotor blade flows and ground effect. It explores two- and three- 
dimensional flows, generally concentrating upon regimes that have a degree of rel­
evance to typical rotor blade flows. Chapter 2 considers, as a first step towards 
understanding a general rotor blade system in ground effect, a finite rotating disc 
near horizontal ground. More specifically, it concentrates on determining the layer 
shape beyond the disc rim that, due to the presence of the ground, cannot remain 
flat without violating a pressure condition across it. Chapter 3 examines the flow 
past many blades in ground effect using both a numerical approach and consider­
ing various limits of interest to illuminate some of the important features such as 
enhanced lift and sheltering effects. Chapter 4 then extends this by exploring the 
many blade limit, whereby the flow develops a periodic structure once sufficiently 
many blades have been passed.

We then move on to three-dimensional configurations. Chapter 5 takes the previ­
ous work further by considering the interactive case that arises after a very large 
number of blades have been passed, generating a pressure-displacement interaction 
in the boundary layer. We examine the case of three-dimensional blades, consid­
ering the full triple deck problem and then the short blade limit, investigating the 
flow structure for this physically relevant case. Chapter 6 considers the flow past 
a three-dimensional hump on a blade of a rotor, examining the flow structure and 
solution and tentatively using this to propose a description of the flow past the 
trailing corner of a typical rotor blade. Finally Chapter 7 returns to ground effect, 
exploring the flow past a single, three-dimensional blade near the ground. It uses 
a compact difference technique to examine the flow solution for a particular blade 
shape and investigates the idea of change-over points, where the effective leading 
edge becomes a trailing edge switching the boundary conditions, these points being 
generally unknown in advance.
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Chapter 1

Introduction

Fluid flows induced by a rotor blade have much practical importance, not least with 

respect to helicopter aerodynamics. For many years the helicopter has played an im­

portant role in both military and civilian air transportation, from troop deployment 

to offshore air taxis, traffic reporting to medical emergencies. The usefulness of a 

helicopter over other aircraft is its ability to perform tasks that fixed wing vehicles 

cannot, such as vertical take off and landing and the capacity to hover. In fact, 

this maneuverability is one of the driving forces behind helicopter use and one of 

the major design considerations is the ability to operate efficiently for long periods 

in hover. There are many other practical applications of rotor blade studies, for 

example in fans, propeller blades, food mixers, hover mowers, and so on, but we 

shall mostly have the helicopter applications in mind.

However, the aerodynamics of a helicopter are very challenging as the flow it gen­

erates is extremely complicated and difficult to measure. Aside from the increased 

complexity generated by interaction with the tail rotor, effects of the helicopter

16



CH APTER 1. INTRODUCTION  17

body, of vibration, of other aircraft, of buildings and of ground effect (to name a 

few), the flow induced by the rotor alone (even with only a single blade present) is 

not easy to understand. An isolated system of rotor blades has many difficulties of 

its own to be considered. Among these are the development of the rotor wake and 

the shedding of tip vortices, as well as the importance of blade-vortex interactions 

where the tip vortices shed from a blade collide with the subsequent one.

There is a vast array of literature considering helicopter blade flows, see for example 

the books by Gessow and Myers (1952), Bramwell (1976), Johnson (1980), Step- 

niewski and Keys (1984), Seddon (1990) and Newman (1994) which examine basic 

helicopter dynamics in various flight regimes. There are also many reviews of more 

specific topics such as those by Gessow (1986) who compares predictive capabilities 

in the 1940’s and 1950’s with those of the 1980’s and Johnson (1986) who reviews 

advances in the aerodynamics of rotary wings. Also of great interest are McCroskey 

(1995) and Garadonna (1992) who detail the computational techniques used in the 

calculation of rotor blade and wake flows. Reviews of helicopter design and a history 

of helicopter development are given by Reichert (1985) and Phillipe et al (1985). 

More recently Conlisk (1997) presents a review of current trends in computational 

and experimental investigations into rotor blade flows.

Experimental measurements are the foundation of helicopter design, see for example 

Garadonna and Tung (1981), Parthasarathy et al (1985), Hoad et al (1988), Hoad 

(1990), Lorber (1991) and McAlister et al (1995) among many, many others. How­

ever, experiments are both expensive to perform and difficult to conduct. Moreover, 

the analysis of the very complicated flow field is tricky and the many interactions 

present can mask the underlying physical mechanisms at work. It is therefore de-
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sirable to carry out analytical and computational investigations, both to attem pt to 

limit (or focus) the use of experiments and to obtain a better grasp of the underlying 

fluid dynamics governing and driving the flow.

The classical momentum representation of a rotor, or the actuator disc, was first 

introduced by Glauert (1937) based on earlier work for marine propellers. Up until 

the 1960s it provided the basis for helicopter design and is still consulted in assessing 

the basic trends of rotor performance today. As a rotor blade produces upwards 

thrust it drives a column of air through the rotor plane. The idea of the momentum 

theory is that the rotor is conceived as an ’actuator disc’ across which there is a 

uniform jump in pressure. It is then possible, considering energy conservation in the 

form of Bernoulli’s theorem, to derive an expression for the thrust imparted by the 

disc on the fluid and the flow velocity through the disc in terms of the velocity far 

downstream in the rotor wake. See for example Seddon (1990) or Bramwell (1976) 

for the full details. However, while this gives a useful rule-of-thumb with regard 

to measuring rotor performance, with a simple measure of wake velocity giving an 

approximation of the thrust imparted by a particular rotor, it is quite simplistic. 

If detail of the rotor wake itself is required, or any consideration of tip vortices or 

blade wake interactions is necessary (all of which are important aspects of helicopter 

design in reality), then the actuator disc concept has to be largely abandoned and 

the presence of genuine individual blades needs to be recognised.

The other main thrust of research into rotor blade flows comes from computational 

approaches, see for example Bliss and Miller (1990), Egolf and Sparks (1986), Ra- 

machandran et al (1993) again amongst many. Also of interest is Srinivasan and 

Sankar (1995) who review various computational approaches to capturing the flow
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and Conlisk (1997) who gives a more detailed discussion and a more exhaustive list 

of references. For the most part computations are based either upon inviscid poten­

tial methods or on direct numerical simulations of the Navier-Stokes equations. The 

inviscid models generally require a coupling with a model of viscous effects near the 

blades. This tends to limit their usefulness as the empirical formulae used are either 

too simplistic, ignoring blade-vortex interactions for example, or are invalid for cer­

tain parts of the flow, particularly near blade tips. Likewise, the accuracy of direct 

numerical simulations is generally accepted to be limited due to the complexity of 

the flow structure, especially at higher Reynolds numbers. Difficulties arise in re­

solving the crucial blade-vortex interactions, in examining the impact of tip vortices 

and in tracking wake positions. Two studies which focus on this aspect of blade- 

vortex interaction are Hassan et al (1992) who approach the problem numerically 

and Gorton et al (1995) who present some experimental results. A major problem 

is that the numerical approaches can capture only a little of the blade-vortex events 

that are observed in experiments.

There are generally three approaches to considering the rotor wake: rigid wake and 

prescribed wake methods (see Landgrebe (1972)), and free wake methods. Each has 

its own limitations. The rigid wake model, although simple to implement, ignores 

varying wake shape (or contraction) and as such is now rarely used. The prescribed 

wake method uses experimental data to fix the wake shape before carrying out any 

computations. It is computationally efficient and has reasonable agreement with 

experiment but it requires experimental data for the wake and so in that sense is 

not predictive. Finally the free-wake method calculates the wake shape as part of 

the overall solution. This is very expensive computationally but with the advent of
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increasingly powerful computers the free wake method is becoming the standard.

It seems clear that addressing the blade-wake and the tip vortex interactions present 

a considerable challenge. This is, as discussed before, without beginning to consider 

other effects such as the impact of the other helicopter components on the rotor 

blade and the influence of external bodies. In particular, hovering in ground effect 

is an area of interest due to the change in aerodynamics as the rotor nears the 

ground, with the lift generated being found in practice to be enhanced when the 

vehicle is within about a rotor diameter from the ground. This has implications 

both for safety and control of the aircraft near the ground as well as providing the 

opportunity to exploit the phenomenon. In fact, the earliest helicopters could only 

achieve hover near the ground as they were not powerful enough to hover without 

the enhanced lift acquired near the ground. There has been much investigation into 

ground effect on an aerofoil, see for example Newman (1982), Widnall and Barrows 

(1970), Tuck and Bentwich (1983) and references therein, and in particular Jones 

(2000) who includes viscous effects as well as the inviscid mechanisms considered in 

the earlier articles. There has been less investigation of the mechanisms important 

for the rotor near the ground. See for example Lighthill (1979), who adapts the 

actuator disc concept to a ground effect context, and Zbrozek (1950). However, 

there seems to be little investigation with regard to viscous effects.

Despite the Reynolds number typically being large in many practical helicopter 

configurations, until recently relatively little effort had been made with regard to 

boundary layer studies, see for example Crabtree et al (1963) and Loitsianskii (1962). 

Smith and Timoshin (1996a) began to address this by examining the boundary layer 

flow induced by a system of rotating blades. Considering symmetric cases primarily.
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they developed a robust numerical scheme to investigate a variety of rotor configu­

rations, varying the number of blades, the sizes of the blades and the gaps between 

them among other aspects. Several interesting limits were considered such as the 

axisymmetric terminal form at large radial distances which was shown to be common 

to all blade configurations. It was also shown that, for many blades, a double viscous 

structure appears in the boundary layer. Several new interactions were found in this 

multiple blade setting such as blade-wake interactions and viscous-inviscid interac­

tions, especially near corners and blade tips. Possibly the most significant of these 

is the concept of inner-outer interaction, whereby the inner boundary layer solution 

and the inviscid outer solution become coupled. This is caused by introducing non­

symmetry into the rotor and requires the two parts to be solved hand-in-hand rather 

than sequentially as is usually the case. In order to examine these new interactions 

in more detail Smith and Timoshin (1996b) examined multiple blade-wake interac­

tions in a two-dimensional setting, which is comparable with a rotor blade under 

certain circumstances, specifically at large radial distances and in the many blade 

limit. This article investigated the importance of inner outer interaction, solving 

both the many blade boundary-layer problem and the outer inviscid problem. Non­

symmetry introduces a pressure difference across each blade. However, the wake 

cannot support a pressure jump and so this pressure difference has to be reduced 

to zero at the trailing edge (due to the K utta condition requiring the flow to be 

smooth) and throughout the wake. The wake shape therefore has to adjust to en­

able this pressure continuity condition to be satisfied. Moreover, the wake position 

must be determined in order for the initial conditions for fiow over the next blade 

to be known. Once again the many blade limit is found to be of interest, with a pe­
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riodic inner tier to the boundary layer and a relatively simple slowly growing outer 

tier. Several viscous-inviscid effects peculiar to multi-blade flows were identified, 

including sheltering effects.

Bowles and Smith (2000a) then considered interactive flow past symmetric multiple 

blades, where the leading order pressure in the boundary layer is no longer pre­

scribed. This regime arises once the flow has passed over many blades and wakes, 

and has settled down to a streamwise periodic state, each period consisting of a 

single blade and wake. The authors found that a pressure-displacement interaction 

law covers the entire blade wake period (unlike most interactive flows which are 

generally local in nature). Numerical results were presented and the short blade 

limit, where the length of the blade is small compared to the length of the period, 

was examined. The flow structural representation of the flow field with short blades 

present is driven by the need to balance a sharp drop in pressure along the blade 

with a slow growth in pressure through the wake in order to satisfy the necessary 

periodicity conditions. Bowles and Smith (2000b) then extended this to examine the 

interactive pressure-displacement problem for a periodic array of two-dimensional 

non-symmetric blades. The interaction is complicated this time as, in addition to 

the interaction law mentioned just above, the flow must also adjust to enable the 

pressure continuity condition at the trailing edge and throughout the wake to be 

satisfied. This happens by way of a pressure jump at the leading edge.

The aim of the present thesis is to continue the basic boundary layer-cum-inviscid 

zone investigations into rotor blades discussed above. We will attem pt to examine 

ground effect and the influence of three-dimensionality on a rotor blade flow. The 

Navier-Stokes equations are our starting point for the investigations that follow and
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are given in detail in Chapter 2, for the axisymmetric case, in Chapter 3, for the 

two-dimensional case, and Chapter 5, for the three-dimensional case, along with the 

relevant non-dimensionalisations and definitions of the Reynolds number.

In Chapter 2, as a first step towards considering a genuine rotor blade in ground 

effect, we examine the fiow induced by a finite disc rotating at a fixed height above 

the ground. Smith and Timoshin (1996a) determined that the far-field response 

of any slender bounded rotor blade system is the same regardless of the number 

of blades it has, or if it is a complete disc. Similarly they also discovered an in­

teresting limit when many blades are present, whereby from outside the boundary 

layer the mean fiow is seen to be Von Karman fiow (Von Karman (1921)), i.e. the 

axisymmetric fiow due to a complete rotating disc. Both of these limits suggest that 

investigation of the ground effect on a rotating disc fiow may have some relevance, 

albeit asymptotically, to the influence of the ground on a genuine rotor system with 

blades and wakes present.

The need for the layer shape to be distorted from the horizontal position it occupies 

in the absence of the ground is discussed in Chapter 2 before the far-field response 

is determined. The problem of evaluating the entire layer shape is then considered, 

initially via an approximate pressure continuity condition across the layer. A nu­

merical scheme is developed based upon using a ring sink representation of the layer 

and a panel method (Hess (1990)) description of the disc. Various results are then 

presented for differing heights of the disc above the ground and also an investigation 

of the impact of including a body shape beneath the disc. Finally, we reinstate 

the full pressure condition of a pressure jump across the layer proportional to its 

curvature (Papageorgiou and Smith (1988) and references therein) and adapt the
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solution method by introducing ring vortices along the layer (De Bernardinis and 

Moore (1986)).

Chapter 3 investigates the ground effect on a sequence of several blades in two di­

mensions. Jones (2000) examined a single wing in ground effect, and this chapter 

aims to extend the examination to several blades, considering blade-vortex inter­

actions and resolving the viscous-inviscid coupling discussed above. The solution 

requires the viscous boundary layer and the inviscid outer problem to be solved 

simultaneously. The outer problem is solved to yield a singular integral equation 

for the lift which is then evaluated hand-in-hand with a many-blade boundary layer 

calculation. Results are presented for varying numbers of blades, various heights and 

different angles of attack for blade shapes which are flat plates. We also examine 

two limits: that of large ground clearances which reduces, at leading order, to the 

case of no ground effect examined by Smith and Timoshin (1996a), and the case 

of small ground clearances where we show the flow takes on a simple form beneath 

each blade and that the lift generated is proportional to the inverse of the ground 

clearance.

In an extension of Chapter 3, Chapter 4 examines the case of many two-dimensional 

blades in ground effect where the flow solution becomes two tiered in effect with 

a periodic inner tier and a slowly growing outer tier as in Smith and Timoshin 

(1996b). The outer solution from Chapter 3 is modified to incorporate the now 

periodic viscous displacement from the boundary layer. Comparison with the results 

from Chapter 3 indicates that ’many’ equates in practice to only three or four blades, 

thus making this a useful limiting case.

In Bowles and Smith (2000a) and Bowles and Smith (2000b), the authors considered
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the interactive flow past many two-dimensional blades, a regime which develops once 

sufficiently many blades have been passed, firstly for symmetric cases and then for 

non-symmetric lifting cases. In Chapter 5 we attem pt to extend these studies to 

examine interactive flow past three-dimensional blades. We limit ourselves here to 

symmetric blades, initially formulating the full three-dimensional problem before 

examining the physically relevant case of short blades. The regime of short blades 

is of interest as in a typical rotor blade there is far more ’gap’ than blade. The flow 

structure in this regime is considered, consisting of five regions, and we present some 

predicted solutions for the pressure.

We seek in Chapter 6 to develop a representation of the three-dimensional flow 

past a trailing corner. The importance of tip vortices and blade wake interactions 

(Conlisk (1997)) make an understanding of how they are shed from the trailing 

edges of a rotating blade significant. However, there is something of a dilemma at 

the trailing corner (blade tip). Away from the corner the basic flow structure is 

known; in one direction it is the jet dominated double-deck structure of Smith and 

Duck (1977) while along the other edge it is the two-dimensional triple deck structure 

of Stewartson (1969) (among others) tha t is key. These two structures are observed 

at different length scales and how they combine consistently at the corner is not 

clear at the onset. As a first step to resolving this we examine the flow past a three- 

dimensional hump embedded within a three-dimensional boundary layer (this is an 

issue with its own significance as rotor blades are not in general smooth). There 

has of course been many studies of three-dimensional triple-deck type problems, 

see for example Sykes (1980), Duck and Burggraf (1986), Davis (1991), Rhyzov 

and Terent’ev (1997), Ovenden (2001) and references therein. Here we obtain the
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solution of this hump problem by considering the linearised case and exploiting the 

Fourier transform in a similar manner to Smith et al (1977), is presented and the 

interaction between the double- and triple- deck structures is then considered. This 

leads to a proposed structure for the trailing corner problem.

Chapter 7 returns to ground effect, investigating the flow past a three-dimensional 

blade very close to the ground. This has particular relevance to racing car under­

tray design as well as being a useful starting point for considering many blades in 

hover. The two dimensional case was investigated by Jones (2000) and Jones and 

Smith (2000), the latter of which introduced the three-dimensional problem. After 

a discussion of the extra complications induced by a three-dimensional blade, such 

as determining the appropriate boundary conditions on the planform edge, we de­

velop a fourth order accurate compact difference scheme (Spotz (1995)) to examine 

a particular three-dimensional problem, that of a rectangular planform at incidence.

The final chapter. Chapter 8, contributes a summary of the work in this thesis and 

contains some suggestions on follow-up research.



Chapter 2

A D isc R otating Near Horizontal

Ground

2.1 Introduction

As a first step towards understanding the ground effect on a general rotating blade 

system, we consider here a finite horizontal circular disc rotating with a uniform 

angular velocity at a constant distance above horizontal ground. This is of interest, 

not just because it has some similarity to a general rotor system, but also as it 

has some more direct parallels. Specifically, the far field response of any slender 

bounded rotor system is the same (Smith and Timoshin (1996a)) with any azimuthal 

dependence eroding away with increasing distance from the rotor axis and so the 

responses here are relevant to a system with genuine blades and wakes present. 

Another limit of particular relevance is that of a rotor with many blades. In this 

case (again see Smith and Timoshin (1996a)) the flow is seen to have a two tiered

27
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structure: a fast varying inner tier incorporating the blade-wake interactions and a 

slowly varying outer tier containing mean Von Karman flow, where the viscous Von 

Karman flow is the solution for an inflnite rotating disc in free space (see appendix 

A). Therefore from outside the boundary layer we effectively see the same solution 

in both the many-blade and the present configurations.

For a finite disc rotating with uniform velocity in free space the solution is well 

known. The disc acts as a centrifugal pump, pulling fluid vertically into the disc 

boundary layer and throwing it out radially in a thin entraining layer. For a disc 

near the ground the boundary layer part of the calculation is the same; the disc 

still pulls in the same amount of fluid and creates a thin layer beyond its rim. 

However, consideration of the outer inviscid flow shows that, due to the influence 

of the ground, the free layer shape can no longer remain flat without violating the 

required pressure condition across the wake.

Our aim is to investigate what influence, if any, the presence of the ground has on 

the shape of the layer beyond a finite rotating disc. We take as our starting point the 

steady, axisymmetric, incompressible, non-dimensionalised Navier-Stokes equations 

with no swirl velocity (and hence are valid only in the outer inviscid flow),

f  = ».

The radial and vertical velocities are given by U (r, z) and V  (r, z) respectively, and 

Re  is the non-dimensional Reynolds number based on Q, the angular velocity, R, 

the disc radius, and ly the kinematic viscosity of the fluid. We assume Re = —  ^  1.
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The flow geometry (see flgure 2.1) is that of an impermeable disc of radius unity 

rotating at an 0(1) height h above the ground. This generates a thin entraining 

layer on the disc and continuing beyond the disc rim. The unknown shape of this 

curve is described as C. The entrainment velocity into the lower side of the layer 

is Re~^v~{s) and into the upper side is Re~^v^{s)  where s is the distance along C 

from the axis of the disc. The unit normal n to the curve and disc is chosen so that 

n  • z > 0 where z is a unit vector along the z-axis. The disc can also be attached 

to an arbitrary stationary axisymmetric body, a case which is taken up later; the 

boundary of the body and the disc is then denoted by H  and h  describes the normal 

to the layer, disc and body.

Figure 2.1: The flow geometry: a flnite horizontal disc rotating at a constant distance 

h above horizontal ground, together with an arbitrary fixed body shape H.

In section 2.2 below we set out the problem, subject initially to an approximate
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pressure condition, and examine two limits of interest: namely that of the large 

r response of the layer shape and the flow induced by an inflnite disc near the 

ground. Given this starting point we then turn, in section 2.3, to the full problem of 

determining the complete layer shape from the disc rim to the far field. We derive 

an integral equation which allows us to pose a minimization problem to calculate the 

required shape. We then present some results for various h values for the disc with 

no body shape present and also consider the case with a body shape to investigate 

what influence this has on the shape of the viscous shear layer. The case of small

h is considered in 2.3.3 and the layer shape is shown to have inflnite curvature

at the disc rim which compares well with the results from the integral equation 

calculations. Finally, in section 2.4, we consider the full pressure condition across the 

layer, revising the integral equation readily to accommodate the new requirements, 

and compare these new results with the model from 2.3.

2.2 The problem

2.2.1 Governing equations

As the inviscid flow of interest here is driven solely by matching with the entrainment 

velocities into boundary layer we expand the velocities and pressure as

U{r,z) = 0 +  eu(r, z) +  . . .  (2.4)

V{r,z) = 0 P e v { r , z ) . (2.5)

P{r, z) = Poo +  e^p(r, z) + . . .  (2.6)



u dv 
H----- fr dz =  0,

du du dp
dr

dv dv dp
dz
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where e =  Re~^!'^. Substituting these into (2.1) - (2.3) along with the assumption 

tha t R e ^ l  leaves us with the axisymmetric Euler equations for u, v and p:

dr ' r ' dz
i i

(2 ,8) 

(2.9)

It is reasonable to assume initially that the flow is irrotational and by the principle 

of conservation of vorticity it will then remain so for all time. It is therefore possible 

to pose the full problem in terms of the velocity potential 0  where u = d ^ / d r  and 

V = d ^ jd z .  The velocity potential, continuous through all space outside of the body 

H, satisfles

1 a #  ^2^
V^^ =  ^  +  - ^  +  ^  =  0 in r > 0 , z > 0 , (2.10)

with

—  =  0 on z = 0, r  > 0 , (2.11)

—— =  0 on H, (2.12)
on

^  =  -n+ (s) on ABD+, (2.13)

—  =  Ug (s) on ABD . (2.14)

These conditions are the inviscid tangential flow condition on the ground, on the 

body, and the entrainment into the boundary layer along either side of the disc and 

the layer. In the full problem there may be some inner-outer interaction, causing 

the entrainment velocities v f  to depend upon the layer shape Z (r) but we are going

to model the entrainment velocities as known and the boundary layer flow to be
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independent of the shape of the viscous shear layer. We also have a relation on 

the pressures at the wake. We first make the approximation that the pressure is 

continuous across the layer and later turn to the more accurate case where the 

pressure jump across the layer is proportional to its curvature. So, for the time 

being, we also require

— p~(s) — 0 across the wake BD, (2.15)

as a model. The model is found to yield a significant result for the far-field re­

sponse and to generate an accurate computational approach for more general cases 

considered in section 2.4. For a rotating disc in the absence of ground effect the 

entrainment velocities are given by

7 on A B
' ê ='^e = \  (2.16)

I 7 / r  on C

where 7 is a constant. The first relation in (2.16) comes from the Von Karman 

solution and the second is from Smith and Timoshin (1996a) which shows the decay 

in entrainment of fluid into the boundary layer going a s l / r .  This is not the complete 

story however as, in reality, the entrainment velocities vary smoothly, with a small 

region over the disc rim smoothly connecting the entrainment from the constant 

velocities along the disc to the 1/r decay into the layer beyond the rim. As this is 

very local it is thought not to have an impact on the overall solution. As the problem 

is linear, the choice of the constant 7 is unimportant and is, for convenience, set as

7 =  1/ 2-
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0 r

Figure 2 .2: The far-field problem 

2.2.2 The far field response

From the far field the disc and the ground can be viewed as effectively coincident, 

leaving two distinct regions: one above and one below the entrainment layer which 

is assumed to asymptote to a straight line through the origin of an unknown slope 

(given by an angle a). The problem to be solved, in terms of the velocity potential 

0 , but in spherical coordinates {s,6), is given by (2.10) subject to

when 6 = 0,

7T
when ^ ,

when 6 =

(2.17)

(2.18) 

(2.19)

which are a symmetry condition, the no penetration ground condition and the re­

quirement of entrainment velocities into the layer, respectively (see figure 2.2). The
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angle a  is the inclination of the layer to the vertical and is to be determined. We 

also require the pressure to be continuous across the layer. Solving these equations 

yields the velocity potential 0  as

a
^ = {  " (2.20) 

—j42 In(ssin^) if 6 > a

and Stokes’s streamfunction ^  as

(Ais[cos0 — 1] if 9 < a
(2 .21 )

^25 cos ^ if 6 > a

respectively, where ^ 1, 4̂2 are constants adjusted to satisfy the entrainment con­

dition (2.19). The deflection angle a  is now determined from applying Bernoulli’s 

theorem along the layer. This gives us the requirement that ( |f )^  +  (“ | | ) ^  needs, 

in order to give pressure continuity across the layer, to be the same on either side,

i.e. àt 9 = a^.  Applying this it becomes apparent that this can only be satisfied for

«  =  I  (2 .22)

These solutions form the far field solution for any bounded rotating blade system 

in the proximity of the ground. It holds for the rotating disc considered here but, 

to repeat, it also holds when there are genuine blades and wakes present as in a 

rotor blade, because the azimuthal dependence erodes away as r increases leaving 

the same far-field form regardless of the initial rotor set up.
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2.2.3 Flow induced by an infinite disc rotating above the  

ground

We temporarily consider an unbounded rotating disc near the ground. This is of 

interest as it is gives an idea of what is happening beneath a finite disc near to the 

ground and is useful in the small h analysis near the disc rim considered in subsection 

2.3.3. Above the disc we have the Von Karman solution with fiuid constantly fiowing 

in axially. However, beneath the disc the no penetration condition at the ground 

prevents this from happening; so what form does the fiow take there?

We have to solve the Euler equations in the region between the disc and the ground 

subject to no penetration on the ground and constant entrainment into the layer on 

the disc. We consider r  )$> 1 and, assuming v is independent of r at large distances, 

we write

v { r ,z )= v{z ) ,  (2.23)

which, along with the Euler equations, imply the forms

u{r,z) = ru{z), (2.24)

p{r,z) =  r'^p + Po{z), 

where p is a constant. Substituting these into the Euler equations reduces them to

2u + v' =  0, (2.25)

a^ + vü' = -2p ,  (2.26)

vv' = -p'o, (2.27)

subject to

v{h) = 7 , (2.28)
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%(0) =  0, (2.29)

where 7 is the constant entrainment into the discs boundary layer and ' denotes 

differentiation with respect to z. Integrating (2.27) immediately yields

Po = “ 2 ^^’ (2.30)

Differentiating (2.26) and substituting for v' from (2.25) gives

vu” = 0. (2.31)

Solving this, and applying a zero vorticity condition so that u =  0, yields the simple 

form for the velocities and pressure as

u = - g ,  (2.32)

V =  (2.33)

7*̂ 7̂  7 ^2;̂
"  =  - w - k -

So this determines the flow between an inflnite disc and the ground, or the flow 

beneath a disc close to the ground but away from the disc rim. See also Debuchy et 

al (1998) who consider a similar limit for two inflnite co-rotating discs at small h.

2.3 Determ ining the layer shape

2.3.1 An integral equation for the layer shape

We now seek to derive an integral formulation of the global problem in order to flnd

the layer shape between the disc rim and the far-field form determined above. Let
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G{r, ro, z, zo) be the Green’s function satisfying

=  0(z — zo)0(r — ro)/ro, (2.35)

so that G is the velocity potential at (r, z) due to a ring source of total strength 2tt

at (ro, zo)' Two forms for G are

1
G { r , r o , z , z o )  =  -  /  Jo{kro)Jo{kr)e^~^^''~^^^^dk

-  (2.36)Trî i Ri

where K  is the complete elliptic integral of the first kind and Rf = (r +  ro)^ +  (z — 

zq)^. The first of these is from Morse and Feshbach (1953) who derive it from the 

streamfunction for a ring source and the second is from an integral relation given in 

Gradstein and Ryzhik (1965). The Green’s function thus has a single logarithmic 

singularity when simultaneously r  =  Tq ^  0 and z =  zq. The second form listed in 

(2.36) is the most useful for our purposes. Let C be described as z = Z{r).

Now consider the source velocity potential

^s{r ,z)  = -  ro[v~{so)+v^{so)]G{r,ro,z,Z{ro))dso 
Jc

-  [  ro[v~{so)-\-v^{so)]G{r,ro,z,-Z{ro))dso. (2.37)
Jc

The first integral gives a distribution of ring sources of total strength — 27rro(u“ ) 

per unit distance along C  and the second the image of these ring sources in the plane 

z =  0. This form for 0^ satisfies the governing equation, the ground condition and 

gives pressure continuity across the layer. The jump in d ^ s / d n  in crossing from 

z > Z(r) to z < Z{r) is now

-(« )]c  =  - K  («) +  »'?(»)]> (2-38)dn
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with and its derivatives continuous away from C.

This holds for the layer but as yet we have taken no account of the disc (and possible 

body underneath). Let the normal velocity induced on H  by the presence of $5  be

~  \hi (2.39)

where // is some convenient coordinate describing the surface H. Now define the 

body velocity potential sls the half-space potential that, when added to the 

source-induced fiow on H,  gives the required entrainment velocities there, i.e. sat­

isfying

= 0, (2.40)

—  =  0 on z = 0, r  > 0, (2.41)
oz

—  =  -u^{ij,) -  on H, (2.42)

where is non-zero only on the disc AB. This linear external Neumann problem 

can be solved straightforwardly by any convenient method.

The total potential

^  = + (2.43)

then satisfies the governing equation (2.10), the no penetration conditions (2.11)

, (2.12) and the pressure condition (2.15). To satisfy the remaining entrainment 

conditions on the normal velocities at C  it is sufficient to add to the jump condition 

(2.38) the requirement that the difference of the entrainment velocities on each side 

of C is v~ — and so fixing the correct entrainment on either side of the layer. 

Thus we introduce
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~ J~ ^o[Ve (so) +  To, z, %(ro))dso
r QQ

~ J  ^obe (^o) +  t-q,-2, —-^(ro))dso, (2.44)

where the first integral is a Cauchy principal value. The necessary conditions are 

satisfied provided

— ^{'^7 ~ f o r  all r  > 1. (2.45)

Together (2.44) and (2.45) give a singular integral equation determining Z{r) and

thus the shape of the layer cross-section C.

Since the unit normal to C  has been chosen so that fi • z > 0,

n =  ( -Z '( r ) f  -f- z ) /{ l -f [Z'{r)]‘̂ }^. (2.46)

The length ds is

ds =  d r / |n  • z| =  {1 -h [Z'{r)]‘̂ }^dr. (2.47)

Thus (2.44) becomes

roo
-  j-  'f'oKiro)-\-v:^{rQ)]{—  -  Z'{r)— ){r,rQ,z,Z{ro))H(r,ro)dro

/ OO

T q [v ^ ( r o )  +  ^ ^ ( ^ o ) ] ( - ^  — ^ % ^ ) - ^ ) ( ? ^ , ^ 0 ,^ 5  — ^ ( ? ^ o ) ) ^ ( r , r o ) d r o

(2.48)

where
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2.3.2 The numerical solution of the integral equation

The solution of the integral equation (2.48), coupled with (2.45), for A(r) is now 

a numerical task. Before being able to determine A(r) we need to describe Z{r) 

through some form of parameterization and we also need an efficient method of ob­

taining There are many possible ways of doing both but the methods presented 

here are thought to be sensible and appear to work well.

As C is expected to be very smooth it seems most efficient to use a Tchebyshev 

expansion to describe Z{r) since the coefficients of the higher terms will decay 

exponentially fast, leading to an efficient representation of the layer shape. Further,

it is convenient to map the region 1 < r  < c x d  onto a finite region. To increase

the resolution at the edge B  (see figure 2.1) where Z'{r) changes most rapidly it

is convenient to map this point to —1. Also to avoid unnecessarily high resolution

at infinity where Z'{r) changes most slowly it is convenient to map this to 0. The 

mapping used depends on the value of h. For most h values the mapping

(  =  - 1 / r  ( -1  <  (  < 0) (2.50)

is used. However, as will be seen, for /i < <  1 it is more useful to use the mapping

(  =  - l / r "  ( - ! < ( <  0). (2.51)

Whichever is used, we then describe Z'{r), the fundamental quantity in (2.48), as

OO

Z'{r) = f { 0  = E , a „ U 0 ,  (2.52)
n=0

where T„ is the nth Tchebyshev polynomial

^ n ( 0  =  COS ( n  COS" ̂  ^ ) .  ( 2 . 5 3 )
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Since / ( f )  is a polynomial, Z{r) can be obtained readily from Z ’{r) by the analytic 

integration

Z{r) = h-]-J^ / ( —l / r ' ) d /  (2.54)

for (2.50) and similarly for (2.51). In order to immediately satisfy the far field and 

disc rim conditions Z'{oo) = l / \ / 3  and Z'{0) = 0, we impose the requirements that 

/ ( —I) =  0 and /(O) =  1 /V ^  and so (2.52) gives

OO

ao = l / \ / 3  -  ^ a „ T n (0 ) ,  (2.55)
n=2

OO

tti =  Qq +  anTn{—l). (2.56)
n —2

The undetermined coefficients are thus 02, 03, 04, . . . ,  as Oq and ai are determined 

from the linear relations above, equations (2.55) and (2.56).

The chosen method for determining the body potential is an axisymmetric panel 

method. See Hess and Smith (1967) for a detailed discussion of the method and Hess 

(1990) for a more recent review; we will give a brief overview here. The disc, and 

if present the body, is described as a series of source panels. The profile curve (i.e.

at ^ =  0 say) is approximated by a series of J  line segments. These segments, when

rotated through 27T radians, describe the entire body. Each of these line segments 

then describes a line of ring sources with constant, but as yet undetermined, strength 

cTj, where i is a typical panel. The centre point of each line segment is called the 

control point. See also figure 2.3.

The potential and velocities ui,ui at a point (r, z) due to a ring source of unit 

strength and radius a lying in the plane z = h are given by
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Control point

A typical line segment

Figure 2.3; An example of the panel method discretisation of the disc and body 

shape, showing the line segments and control points. Shown here there are only 

fourteen panels. In practice many more were taken in order to ensure a closer and 

more accurate representation of the body shape.

Ui =

Vi =

4a(z -  b)E(ki)
[(r -  ay  + (z -  +  a)^ + (z — 6)̂ ]2

2a
y[(r + a y  +  (2 -  6)̂ ] 2 (r — a y  + (2 — by

(2.58)

(2.59)

where
4ar

(2.60)
(r +  a y  + {z — by  ’

and K^E  are complete elliptic functions. The potential, 0*̂ , and velocities, and 

induced at a given control point i due to a different line segment k can then 

be calculated by simply integrating the relevant equation from (2.57) - (2.59) along 

the line segment k. The segment i also induces a potential and velocities at its own 

control point. This is somewhat less straight forward as the integrals are singular
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and must be considered as principal values. The problem is addressed in Hess and 

Smith (1967) where the authors develop a series expansion near to the singular 

point, which eflfectively carries out the integrals as principal values, and integrates 

as before away from the singular point. Using this technique to calculate it" 

and u", we are in a position to determine the potential and velocities induced at 

each control point due to the presence of the entire representation of the body. The 

relevant quantities are given by

J

f  = (2.61)
A : = l

J

û  = Y^akUff,  (2.62)
k=l 

J

v''= 'Y^GkVH- (2.63)
k=l

We can now apply this to our problem (2.40) - (2.42). Firstly, in order to satisfy

(2.41) we introduce an image of the body in the plane z =  0 where the original 

line segment and its image both have the same strength cr%. Finally, we need to 

determine values of cr% such that (2.42) is satisfied at each control point. This is 

relatively simple as the required velocities (2.42), evaluated at each control point, 

combined with (2.62) and (2.63) give a set of J  linear, algebraic equations for the 

undetermined cr̂ . When solved the cr% and source panels give a representation of (f)H- 

Calculation of on the layer C  in (2.48) can be carried out using these calculated 

panel strengths and (2.57) - (2.59).

Now for any given Z{r), A(r) can be calculated and so we are in a position to set 

up an iteration to determine the required layer shape. The iteration is posed as a
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minimization of the integral

/OO 1

[A(r) -  ~(v~ -  v+){r)fw(r)dr,  (2.64)

where w{r) is a weighting function, chosen here to be a sum of delta functions 6(r%), 

corresponding to a least squares minimization over the collocation points {r%}. These 

are distributed in a similar manner to the mapping (2.50) or (2.51), with more points 

near to the disc rim than in the far field.

For a given set of coefficients, 02, . . . ,  a^v, the value of I  can be determined straight­

forwardly:

1. First calculate Uq and ai from (2.55) and (2.56) to satisfy the far field and disc 

rim conditions on the layer shape.

2. Using the current Z{r) guess, determine the induced velocities at the control 

points of the panel representation of the body from (2.42).

3. W ith the required control point velocities known, we can solve the necessary 

linear system to calculate each of the panel strengths ai fixing the body po­

tential ^H-

4. It is now possible to calculate A (r) from (2.48), and hence the value of I  can 

be determined for (2.64).

5. Check convergence, then either have a new guess at ü2 , . . .  ,aN and return to 

item (1) or finish.

The new guess at ü2 ,. . . , a ^  required in item (5) is made using the NAG library 

routine E04FYF which uses a combined Gauss-Newton and modified Newton algo­

rithm. One advantage of the panel method discussed earlier is that the solution of
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the algebraic equations for ai (item (3) above) is in effect only done once throughout 

the entire minimization. The only change at each iteration is the required velocities 

at the control points so inverting the whole system of equations (2.62) - (2.63) is 

only carried out once for each body shape and height. As far as carrying out the 

integrals in (2.48) is concerned we truncate them at some point Too Z$> 1 and then, 

assuming the far-held form from 2.2 .2, carry out the integrals beyond this point 

analytically while numerically determining them for 1 < r  < roo- The value of r̂ Q 

used was Tqo =  100 and this was varied to ensure that there was no sensitivity in 

the solutions to our choice.

The typical number N  of Tchebyshev polynomials required varies with h but is 

generally between 20 and 24 to give ^  x/Ë, where E  is the least squares error. 

The expected exponential decay of the coefhcients o, can be seen clearly as in hgure 

2.4. The method was also applied without setting oq, Ui (i.e. minimising over all 

N  T  1 Tchebyshev coefhcients) to check the far-held and near disc conditions were 

satished even when they were not initially forced. Although the minimization took 

longer to converge, the results were identical.

The results are shown in hgure 2.5 for a disc with no body shape beneath it. It can 

be seen clearly that as h decreases the dehection of the layer is increased. The far 

held response can also be seen to emerge as r increases. As h is reduced further 

the layer shape, rather than monotonically tending towards the 30° far held angle, 

overshoots it and tends to the far held form from above. This arises from the layer 

shape having inhnite curvature at the disc rim as is shown in the next section.

Also shown, in hgures 2.6 - 2.8, are some examples of the disc with a body shape 

beneath it. The body shape used was that of a sphere joined to the disc by a short
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Figure 2.4: The expected exponential decay of the Tchebyshev coefficients for the 

case h =  5.

stem. The results show that for relatively large h a sphere of small radius has very 

little impact on the layer shape as a whole, as might be expected. For a large sphere, 

the layer shape is deflected up further than usual. This suggests that the body shape 

effectively brings the ground nearer. This can be seen easily by visualising, instead 

of a sphere, a cylinder of radius much greater than 1 as in flgure 2.8. Here the disc 

will only see the body shape near the disc rim and so it will be this, rather than the 

ground effect, that forces the distortion of the layer shape and thus effectively the 

body replaces the ground near the disc. The same is true for the sphere except that 

the impact is slightly less severe. As h decreases it is observed that even a small 

sphere can have a considerable impact on the layer shape.
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Figure 2.6: Comparison of the layer shapes for a disc with and without a spherical 

body shape at two different heights, h = 5 and h = 2. The body shape is shown 

and has a radius of 0.4. The solid line is the layer shape with the body present.
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Figure 2.7: Comparison of the layer shapes for a disc at a height h = 1 with and 

without a spherical body shape. The body shape is shown and has a radius of 0.4. 

The solid line is the layer shape with the body present.

2.3.3 Small h

As can be seen from the numerical results the deflection of the layer shape becomes 

quite severe near the disc rim for <C 1. To examine why the flow solution behaves in 

this manner we now turn to the limit of small h. We consider an 0{h)  by 0{h)  region 

around the disc rim by writing z =  h-\-hz^ r  =  1+  /if, Z(r) =  /iZo(r) +  /i^Zi(f) +  . .. 

and, in view of the inflnite disc results from 2.2.3, expand the velocities and pressure 

as

(u+,u+,p+) =  ( u j +  . . . , u ^  +  . . . , p j +  . . .),  (2.65)

{u ,v  ,p ) = {—̂  + Uq +  . . . ,Uq +  . . . , - ^  H— ^  +  . . . ) (2.66)
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Figure 2.8: Comparison of the layer shapes for a disc at a height h = 1 with and 

without a large cylindrical body shape. The solid line is the layer shape with the 

body present while the lowest line is the disc without any body shape and the top 

line is a disc with no body shape but at a height h = 0.1 (the length of the stem 

joining the disc and cylinder)

above and beneath the disc and layer respectively. We then need to solve the Euler 

equations subject to

V =  0 when z = —1, (2.67)

v~ =  c when z = 0, r  < 0, (2.68)

v~ - Z [ { f ) u - = c when z = 0, f  > 0, (2.69)

p+ = p~ on z = Z{r), (2.70)

P-) —> infinite disc solution as f  —>■ — oo, (2.71)
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which are the no penetration condition on the ground, constant entrainment into 

the disc boundary layer, the known normal entrainment into the layer, pressure 

continuity across the layer. The final condition (2.71) actually emerges as part of 

the solution. Substituting the velocity expansions into the Euler equations and 

applying the relevant conditions yields the leading order terms beneath the system 

immediately as,

%:i =  (2 72)

P-2 = (2.73)

;2o(f) =  0, (2/T4)

In order to maintain pressure continuity it is necessary to add an 0 (l//i^ )  constant

to p'^ to match with this region. The next order equations yield Laplace’s equation

for Vq and pZi subject to

%0 =  0 on z  =  - l , (2.75)

Vq =  C on 2 =  0, f  <  0, (2.76)

V q  = C(1
- f )

on 2 =  0,  f  >  0, (2.77)

P Z i  =  0 on z =  0 . f  > 0 , (2.78)

where the fourth of these conditions is necessary as p_^ is not a constant and is too 

large to be matched by the fiow solution above the layer (also see figure 2.9).

To solve this problem we map the region into the complex z-plane using the mapping 

z =  where z = f  + iz. This leaves us with a half-plane problem subject to

mixed boundary conditions along the Æ-axis. So we need to find and both
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Vn =  C

V ^ = 0

P-1 =  0

- 1

Figure 2.9: The next order small-/i problem showing the Vq and pZi boundary 

conditions. Both Vq and pZi satisfy Laplace’s equation.

satisfying the Cauchy-Riemann equations, and subject to

=  0 on ÿ =  0, T > 0 ,

Vq = c on ÿ = 0, —1 < Æ < 0 ,

pZi =  0 on ÿ =  0, X < —1.

Now consider the complex function

(2.79)

(2.80) 

(2.81)

g(z) = {z + l ) - ^ P  + iV),

analytic in the upper-half plane y > 0. We can write

|æ +  1| i {V  — iP) for a: < —1, y = 0

\x+  l \ ~ i ( P +  iV)  for X  > ÿ = 0

(2.82)

(2.83)
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and use Cauchy’s integral formula to relate the real and imaginary parts of g{z), 

giving

.  i r  (2-84)
^  J-oo S ^

This gives us, writing = P, Vq = V  and applying conditions (2.79) - (2.81),

X +  %  ( i  <  - 1 )  1 c  /•"

î  +  l |- l/2  > -1 ) (( +  ! ) : / ! ( ( - 2 ) ' (2.85)

Carrying out this integral, using the substitution ^ = 9^ — 1, and mapping back to

the original plane gives the velocity on z =  0, f  > 0 as

2c 1
(f > 0, 0) =  — arctan( ). (2.86)

7T — 1

and the layer shape, from (2.77), as

A T  1
Z i { r ) = 2 r  /  arctan( )d^. (2.87)

Jo V — 1

So right at the disc rim, i.e. for f  <C 1,

=  c -  2c (-) '/^  +  . . . ,  (2.88)
7T

which gives the layer shape as

=  +  (2.89)

This has infinite curvature at the rim and explains the rapid change in the layer

shape in the numerical results near the disc. The result also indicates why the 

mapping x = —1/r^  in the parameterisation of the layer shape works better for 

small h than the — 1/ r  one. The other limit of interest is as f  —> oo. There f^  0

and the layer shape is given by

Zi(f) - 2 f +  . . . ,  (2.90)
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So we have just outside the disc rim region, i.e. for f  Z$> 1,

Z(v) = h h^[———— -) +  . . .  =  h(l  +  2{r — 1)) 4- 0 {h ? \  (2.91)

which, when compared to the far field result Z{r) ^  explains the overshooting 

of the far field angle seen in the numerical results. A comparison of this small h 

analysis and the numerical calculation is shown in figure 2.10 where good agreement 

can be seen.

z

0.6

0.4

0.2

- 0.2
1 1.1 1.2 1.3 1.4 1.51.5 r

Figure 2.10: Comparison between the small h analytical result near the disc rim 

(solid line) and the layer shape for h =  0.1 from the numerical calculations.

2.4 The full pressure condition

As mentioned earlier the pressure condition used so far is a model one, adopted for 

starting purposes and to highlight the infiuences of entrainment and body shape. In
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reality the layer can also support a pressure jump across it and so we now aim to

include this effect here. Thus the previous pressure condition (2.15) across the layer 

is now replaced by the model

=  M =  (2.92)

where the function A{r) is determined from the viscous shear layer. This model 

is based upon Papageorgiou and Smith (1988) and is an attem pt to introduce a 

pressure jump into the problem. Roughly A{r) % u^ô where ü is the radial velocity 

in the boundary layer and 6 is the boundary layer thickness. Typically ü decays as 

1/r  while ô grows as r. Hence we model A{r) as

/l(r) =  (2.93)

where a  is a constant, assumed known from the boundary layer flow. We will

consider solutions for a variety of magnitudes of a.

An important point, which adds strength to the discussion in the previous sections, 

is that the far fleld analysis considered earlier (section 2.2.2) is still applicable as the 

straight line predicted there has Z"{r) being zero and so (2.92) reduces to (2.15), 

leaving the problem as before. The question now is, can we adapt the existing 

method of section 2.3 to encompass this new pressure jump condition? The answer 

is yes. We effectively add to the existing series of ring sources a sheet of ring vortices 

along the layer. This, given the correct strength of vortices, keeps the normal velocity 

into the layer unchanged while introducing a jump in the tangential velocity (and 

therefore in p) allowing (2.92) to be satisfled.

In the original formulation we now introduce the potential due to this series 

of ring vortices with unknown strength to give the necessary jump in u across the
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layer. This generates two important changes to the original set up. Firstly (f>y causes 

a different velocity to be induced on the body so that (2.39) becomes

but otherwise the (()h determination is the same still requiring the solution of (2.40)-

(2.42). The total potential is now defined as

^ — 4̂h +  0s +  (2.95)

and satisfies the governing equation (2.10), the no penetration conditions and the 

new pressure condition (2.92). Again, as before, the remaining entrainment condi­

tions are satisfied provided that the difference in normal entrainment velocities on 

each side of C is v~ — . So we introduce

with A(r) as in (2.44). Then once again the necessary conditions are satisfied by 

(2.45) (with A replaced by A%). All that remains to be done now is to determine 

0u, or more accurately We introduce

r+(n) =  (r,z)-\-n'n, (2.97)

r_{n) = (r,z) -  nr], (2.98)

so that r+,22-  are displaced normally off the sheet by a small distance 77, where (r, z) 

is the point at which we are trying to find We then have

^  ^ ‘̂ (.'^o)iS.i{L+,ro,Z{ro)) +  Gi{r_,ro,Z{ro)))dro

1 r°°+ % / y {̂'^o){Gi{r ,̂ro,Z{—ro))-\-Gi{r_,ro,Z{—ro)))dro,
I  Ji

(2.99)
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where V^{r)  is the strength of the vortex rings required in order to satisfy (2.92), 

the second integral gives the effect of the image system and is discussed below. 

The streamfunction for a single vortex ring is given by Lamb (1932) as

7/;(r, z, ro, Zq) = ( r r o )^ ( ^  -  k)K{k) -  ^E(/c)} (2.100)

where

and K{k)  and E{k) are the complete elliptic functions of the first and second kind 

respectively. Using this, can be constructed as

G_i{r, z,rQ, Zq) = z,ro, Zq). (2.102)

We now have everything we need to calculate where

if we can calculate the integrals on the right hand side of (2.99). To calculate these 

we make use of the integral formula derived in De Bernardinis and Moore (1986). 

They, in a method akin to that of Hess and Smith (1967) for the singularity in the 

panel method, derive a series expansion for Gi near the singularity before attempting 

integration. The integration of this local expansion effectively becomes a straight 

forward principal value integral which can be calculated analytically and then usual 

numerical integration elsewhere enables the integrals to be approximated. This 

method is shown by De Bernardinis and Moore (1986) to be accurate away from 

the symmetry line r = 0 but for r  close to zero there is a great loss of accuracy. 

However, this loss should not be a problem in the current regime as we only need
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to apply the integral formula for r  > 1. The procedure is then as before; we define

/oo 1

[Ai(r) -  ~(v~ -  v^)(r) fw{r)dr,  (2.104)

the equivalent of (2.64), and perform a least squares minimisation as before to 

determine the layer shape. 
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Figure 2.11: Comparison between the layer shapes for the pressure jump case (solid 

line) and the no pressure jump case (dotted line) for h =  2 with a  = 1.

Results are presented in figures 2.11 - 2.14 for a variety of heights and values of a. 

Several aspects, when compared to the original results of section 2.3, are apparent. 

The far field result is seen to be still holding for large r, giving the slope tt/6  of 

section 2.2 .2. The same trends again appear with the defiection of the layer shape
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Figure 2 .12: Comparison between the layer shapes for the pressure jump case (solid 

line) and the no pressure jump case (dotted line) for h, =  0.3 with a = 1.
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Figure 2.13: Comparison between the layer shapes for the pressure jump case (solid 

line) and the no pressure jump case (dotted line) for h = 0.1 with a = 1. Note the 

similarity in the linear layer shape for the pressure jump case here and for h = 0.3 

case in figure 2.12.
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increasing as h decreases. The new results generally lie beneath the original ones,

and the larger the designated value of a  the less the overall deflection. For small h

values we no longer have the abrupt change in the layer shape at the disc rim and

we also no longer see the overshooting of the far fleld solution. It seems clear that

for large A  the right-hand side of (2.92) dominates, requiring Z ”{r) to be zero to

leading order and hence Z{r) to be linear in r. The tying together of the two main

slopes, zero at the disc and t t / 6  in the far-fleld, should thus be of future interest,

given the near-linear results for the wake shape in the computations. 
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Figure 2.14: Comparison between the layer shapes for h =  5 and varying the value

of A  from a  =  0, the uppermost solid line, through a  =  0.1 and o; =  1 to a  =  10

the lowest line.



Chapter 3

Planar Flow Past M any Blades in 

Ground Effect

3.1 Introduction

Continuing our investigation of the ground effect on a hovering rotor blade system, 

in this chapter we turn to the case of the flow past multiple blades near horizontal 

ground. Although we limit ourselves to two dimensional flow here it still has some 

direct relevance to the full three dimensional case in the regimes of large r and 

that of the many-blade limit, as discussed in Smith and Timoshin (1996b) and the 

previous chapter.

This chapter effectively combines two previous studies in similar regimes. Firstly, 

Smith and Timoshin (1996b) considered the planar flow past many blades but with 

no ground effect. An important new interaction is encountered in their article due to 

non-symmetry, namely inner-outer interaction, whereby the entire boundary layer

62
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and inviscid flows are coupled and must be solved simultaneously. This is discussed 

below and is of vital importance in the current regime also. Secondly, Jones (2000) 

considers the flow past a single aerofoil near the ground. There the author derives a 

solution for the outer flow given the presence of the ground but has no inner-outer 

coupling as there is only one blade present. Here we combine these two problems, 

examining the flow past many blades in ground effect, and we need to include both 

the inner-outer interaction aspect and the solving of the inviscid problem for many 

blades with the ground present. We extend the analysis of Jones (2000) for the outer 

flow past a single blade, to find the equivalent relation in this flow past many blades 

context, and develop a method to solve it in tandem with the inner boundary layer 

flow.

We take as our starting point the steady, two dimensional, incompressible, non- 

dimensionalised, Navier-Stokes equations

+  +  +  (3.2)

+  (3.3)

where Re  is the Reynolds number defined to be Re = UooL/i', where i/ is the 

kinematic viscosity of the fluid, [/qo is the velocity of the free stream and L is a 

typical length scale, taken here as the length of a representative blade.

The configuration of the problem is that of n thin aerofoils, the zth one running 

from its leading edge x  = ai to its trailing edge x = bi. The blade shapes are 

given by y = Re~^f^{x)  where f ^{x) ,  f~{x)  give the upper and lower blade shapes 

respectively and are assumed to be smooth and typically 0(1). We also require that
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=  f~(x)  at leading and trailing edges. These blades are positioned in a slip- 

streaming arrangement at an 0 (1) distance h above the ground and in an otherwise 

uniform stream with non-dimensional velocity t/oo =  1- The ground is taken to be 

moving at the same speed as the free stream velocity. We take the first leading edge 

ai to be the origin. See also figures 3.1 and 3.2.

In section 3.2 we set out the two parts of the problem, both the boundary layer’s 

multi-blade flow and the outer inviscid fiow, driven by displacement effects from 

the boundary layer. We also discuss in more detail the all-important inner-outer 

interactions introduced above. Having set up the outer problem in terms of needing 

to find an analytic function in the complex plane, we turn in section 3.3 to solving 

the inviscid problem, determining integral equations for the velocity and pressure, 

and then solve these to enable us to calculate the outer fiow. We move in section 3.4 

to consider the numerical solution of the boundary layer problem from 3.2 and the 

outer fiow from 3.3. Results are presented in 3.5 for several configurations, varying 

the number, the ground clearance and angle of attack of the blades. Finally in 3.6 

we consider two limits of interest, those of large and small heights h. For large 

heights, we derive an expression for the leading order ground effect, recovering the 

no ground effect case of Smith and Timoshin (1996b). In the case of small h we 

find a relatively simple form for the pressure and velocities with good qualitative 

agreement with the relevant results from 3.5.
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oo
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—h

Figure 3.1: The flow conflguration of n[= 4 here) blades at a distance h above 

horizontal ground.

3.2 Problem formulation

3.2.1 The boundary layer problem

The aim here is to resolve the viscous boundary-layer and wake motions for the flow 

past all the blades near the ground. Although the ground is outside the bound­

ary layer, the effect of the ground does enter through coupling the solution of the 

boundary layer with considerations from the outer inviscid flow by means of un­

known y-shifts in the wake shapes at each leading edge, as discussed briefly in the 

previous section and developed in more detail below.

We introduce the scaled boundary-layer coordinate Y  in the normal direction given 

by y = Re ~ ^ f { x )  Y  Y] where f{x)  is the shape of the blade/ wake centre line. The
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Figure 3.2: A typical aerofoil showing the definitions of /+(%) and /  (x).

governing equations (3.1) - (3.3) then become, for the scaled velocity components 

u[= U],v[= Re ^V — üf'{x)],

du dv
â ï  +  â ÿ  =

_dü _dü ^ d^ü

subject to the no-slip and free stream conditions

(3.4)

(3.5)

u = V = 0 at y  =  0 on each blade,

u —y 1 as Y  —y zhoo.

(3.6)

(3.7)

in turn, with the velocities being continuous in the wakes. There is also a starting 

condition at the first leading edge requiring

u = 1 at X = 0, for Y  ^  0. 

The pressure on the other hand takes the form

(3.8)

p = Re ^ pg {x ) +Re  ^Pb {x ,Y) , (3.9)



CHAPTER 3. M ANY-BLAD ES IN  GROUND EFFECT  67

with the leading order pressure being independent of the scaled normal co-ordinate

y .

The Prandtl shift used above is known on the blades, with f ( x )  = /^ (x ) , but is 

unknown in the wakes as the wake centre line shape is unknown in advance. With 

a single aerofoil this does not affect the boundary layer calculation; you have the 

Blasius flow for an aligned finite flat plate over the aerofoil and a Goldstein-type flat 

plate wake beyond the trailing edge regardless of the wake shape which can then 

be obtained independently by examining the outer flow. However in the present 

multi-blade case the wake shape is crucial. Without knowing the position of the 

wake centre line as the wake hits the following blade the position of the leading 

edge in relation to the oncoming flow is unknown and must be determined before we 

can accurately obtain the flow solution in the boundary layer. The y-shifts in each 

wake flow, the distance by which the wake centre lines are deflected at the onset of 

each leading edge, are determined by considering the outer flow introduced in the 

next section. Likewise the inviscid flow, driven by the presence of the boundary 

layer, cannot be calculated until the boundary layer, and hence the displacement 

effects driving the problem, have been resolved. It is this that causes the inner-outer 

interaction mentioned in 3.1, with each aspect of the problem requiring the solution 

to the other.

We take this opportunity to define the scaled viscous displacement thicknesses 

as

5±(æ) =  ±  /  (1 -  ü(x, Y))dY,  (3.10)
Jo
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which implies the normal velocity takes the form

V -4- ES’̂ {x)  as Y  ±oo, (3.11)

in the outer reaches of the boundary layer.

3.2.2 The outer inviscid problem

Outside the boundary layer discussed in the previous section the free stream U = 1 

is only slightly disturbed by the presence of the sequence of thin aerofoils and related 

boundary layers and as such we expand the velocities and pressure as

U = 1 e u { x , y ) , (3.12)

V  = 0 +  eu(a:,2/) +  . . . ,  (3.13)

P  = Poo + ep(a:, ?/) +  . . . ,  (3.14)

where e = Re~^!'^. Substituting these into (3.1) - (3.3) leaves us with the linearized 

Euler equations,

S + l = 0’

£ =

Combining (3.15) and (3.16) to eliminate u from these equations we are left with 

the Cauchy-Riemann equations for v and p, namely

dy dv
dx dy
dp dv
s . -  I:»)

a, a,
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In order to solve this problem we consider it in the complex z-plane. We express 

the problem in terms of the complex function w{x +  iy) = p{x,y)  +  iv{x,y)  which 

is analytic and required to be bounded in the far field and we define

w{x-\-Oi) = p+{x) P iv^{x),  (3.20)

w{x — Oi) = p_{x) T  iv-{x),  (3.21)

w{x — hi) = p={x)-\-iO, (3.22)

as the pressures and velocities just above and below the boundary layer, and the 

pressure on the ground (with v= = 0 being the ground boundary condition), respec­

tively. We also impose pressure continuity across the wake which requires

p+{x) = p-{x)  in the wakes. (3.23)

This condition is required since the largest pressure jump that each wake can support 

is typically 0{Re~^)  at most.

The outer flow is driven by displacement effects from the boundary layer. These 

enter this outer problem via velocity boundary conditions from the boundary layer 

Sit y = 0±.  Matching these two regions requires that v±{x) are given by

s'{x) X < 0

v± = < P{x) ±  It'{x) ±  ô'^(x) X on blades (3.24)

s'(x) ±  (5 (̂a;) X in wakes

where ec{x) = e{f'^{x) +  f~{x) ) /2  is the camber of the blade, et{x) = e(/+(x) — 

f~{x))  is the thickness of the blade, e5(a:)(= /+(%) =  f~{x)  in the wakes) is the 

wake centre line shape and 5±(x) are the viscous displacement thicknesses given 

by (3.10). For given blade shapes, c{x) and t{x) are known while s{x) is unknown
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and must be determined as part of the whole inviscid solution. Also, 5±(a:) can be 

determined from the boundary layer through equation (3.10) only once g(z), and 

hence the y-shifts, are computed.

3.3 Solving the outer problem

3.3.1 The solution

We now turn to solving the inviscid problem of finding the bounded analytic function 

w(x  +  iy) subject to (3.20) - (3.23) and the boundary conditions (3.24). This will 

enable us to couple the inner and outer parts of the solution and hence lead us to 

a method of solving the problem. Firstly, in order to satisfy the ground condition 

(3.22), we introduce the image of the system of blades at y = —2h. This changes 

the problem to being the requirement to find the complex function w(x + iy) — 

p(x,y)  4- iv(x,y),  analytic in the complex plane and bounded in the far field but 

now satisfying

w(x  4- Oz) =  p+{x) + iv+{x). (3.25)

w(x — Oi) = p - { x )+ i v - { x ) , (3.26)

w(x — 2hi 4- Oz) = p-(x)  — iv-(x), (3.27)

w{x — 2hi — Oz) = p + (z )--%«+(%), (3.28)

p+(z) =  P - ( x )  in thé wakes. (3.29)

We solve this problem, following the method employed by Jones (2000) for a single
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blade, by applying Cauchy’s Integral Formula for w(x  +  iy), namely

=  à  /
using the contour F =  F+ +  F= +  P_ in the complex (-plane as in figure 3.3 at a

point away from y = 0. Carrying this out and considering the limi^_^oo, where R  is

the radius of the semi-circles in F±, summing the resulting terms and imposing the 

boundary conditions (3.25)-(3.28) gives

where we now using the notation

M(3:) =  %+(%) -  %-(%), (3.32)

< V > {x) = v+{x) +  v-{x),  (3.33)

\p]{x) = p+{x) -  p.{x) ,  (3.34)

< p >  (x) =p+{ x) +p -{x ) ,  (3.35)

for the differences and sums of the velocities and pressures on each side of the

boundary layer. Taking real and imaginary parts of (3.31) we obtain the pressure

and normal velocity as

(3.36)

v { x , y ) =  5;  ̂/ ^ ( (Ç _  J ) 2  +  j/2 +  (Ç _  J )2 +  (y +  2/j)2)  [*'1

 L  /~°° 7 K -  ___________ (€ -sc) ^FnhYldr
2 r̂ F o o b f  -  + (Ç -  + {y +

(3.37)
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and to determine u we can simply apply equation (3.16) giving

u{x,y) = -p{x ,y) .

72

blades
r=

X

ground

image

r_

(3.38)

Figure 3.3: Contours F+, F= and F_ for a point away from y = 0.

However, while \p]{x) is known to be zero in the wakes (from equation (3.29)), the 

pressure difference is unknown on the blades. To determine the outer solution we 

must determine \p]{x) for all x. In order to achieve this we again employ Cauchy’s 

Integral Formula but this time at a point on i/ =  0 and use the new contours F+, 

F=, F_ where F+, F= now circumnavigate the point x  with a small semi-circle of 

radius e as in figure 3.4. We consider the double limit limi2_>.oo lime_).o and sum the 

resulting terms to obtain

w{Ç +  Oz) — w{^ — Oz)
w{x 4- Oz) +  w{x — Oi) = ^  [

7TZ J _

d

-d?
^  — X

1 r°° w{^ — 2hi 4- Oz) — w{^ — 2hi — Oz) 
7TZ J   ^  — X  — 2hi d e

(3.39)
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blades
r=

ground

image

r_

Figure 3.4: Contours F+, F= and F_ for a point on ^ =  0, circumnavigating the 

point z.

Applying the boundary conditions (3.25) - (3.28) gives us, in terms of our new 

notation (3.32) - (3.35),

<  p  >  { x )  +  i  <  V >  [ x ) - f7TZ

- f7T2

-o o  ^  ^

°° (MK) -  ^ +  2M)
(^ — x )2 +  4/i2

(3.40)

Taking real and imaginary parts of (3.40) yields the integral relations

I  poo 1 r°° 1
< v >  = -  l { ^ - x ) [ v ] { ^ ) d ^ - ~ -------( - --------- y^^K-a;))[p](()d(,

7T J -o o  J -o o  Ç ^

< P > = —
7T
1 F°° 1 1
-  /  ( t —  +  2;)b](Ç)dÇ>
^  J -o o  ^  ^  J -o o

(3.41)

(3.42)
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where we define l(x) and m(x)  as

l{x)

m{x)

2h
x^ +  ’

X

+  4/i^

(3.43)

(3.44)

These integral equations (3.41) and (3.42) for the velocity and pressure sums must 

be solved subject to the boundary conditions

0 for T < 0

H (^) — t ' { x ) { S ' ,  0'_){x) on blades (3.45)

in the wakes

< V > {x) —

b lW  =

< p > {x) =

in the wakes

2c' {x){S'_^ — S'_){x) on blades 

?

? on blades 

0 in the wakes

? on blades 

? in the wakes

(3.46)

(3.47)

(3.48)

from (3.23) and(3.24), where ? denotes that the quantity is unknown in that interval 

and is to be determined.

Equations (3.41) and (3.42) are important; it is these that are to be used to determine 

the unknowns in (3.45) - (3.48). Possibly the most significant quantity is < u > (x) 

in the wakes as it is this, via (3.24), that will allow us to calculate the y-shifts 

required in the boundary layer calculation. Determining these y-shifts is considered 

towards the end of section 3.4 below. However, < v > {x) cannot be determined 

from (3.41) until we have discovered [p](x) on the blades (as [u](x) is known for all
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X through (3.45) and so once we know \p]{x) the integrals on the right-hand side of

(3.41) can be evaluated). Once we have \p]{x) everything else follows from (3.41),

(3.42), (3.45) - (3.48) along with the simple relations

%±(%) =  ^ (<  ?; > (T) ±  M(T)), (3.49)

P±{x) = ^ ( < p >  (T)d: [p](a:)). (3.50)

3.3.2 The solution of the integral equations

The basic task is now to use our knowledge of < "u > (x) on the blades to determine 

the unknown pressure difference \p\{x) on the blades. In order to do this we consider 

the integral equation (3.41) and apply the pressure continuity condition (3.23) that 

[p]{x) =  0 in the wakes. After a slight rearrangement, equation (3.41) becomes

-  /   ̂  m (?-a :))b ](Ç )dÇ =  1  /  ; ( ^ - x ) b ] ( f ) d f - <  j; >  (x), (3.51)
Jhlades^Z -  ^  ^  V-oo

where

This is a singular Fredholm equation of the first kind for [p](a:) where the right- 

hand side can be calculated from the boundary layer calculation and the boundary 

conditions (3.45), (3.46). This type of integral equation is notoriously difficult to 

solve and we must reduce it to an integral equation of the second kind in order to 

resolve it. It has a Cauchy type kernel and we find its solution with the help of 

Muskhelishvili (1946).

We first re-write (3.51) as

;  /blades ^  ;  /blades
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where
1 /*°°

f ( x)  = -  / ( ( -  T )M (()d (-  < v >  (x). (3.54)
7T V-oo

We then use a result from Muskhelishvili (1946) that gives the solution of

-  [  = 9{x), (3.55)
^  J L S  ^

where L is a set of n line segments along the x-axis running from ai to bi with i 

being a typical segment, subject to the constraint that 0 (6%) =  0 for all z, as

S-i(a;) /" 5'i(()^^(()

where
n, s _  (x -  ai)(x -  a s ) . . .  (x -  a„)

( ' ( x - 6i ) ( x - 62) . . . ( x - 6„)  ■  ̂ )

However (3.55) is exactly our equation (3.53) with

g{x) = f ( x)  +  [  m (( -  T)[p](()d(, (3.58)
V blades

0  =  [p]; and [p](6%) =  0 is the K utta condition requiring the solution to be smooth 

at the trailing edges. Applying this, which is effectively an inverse integral operator, 

to our problem (3.53) we obtain

\p\{x) = S ~ ^ x ) \ h ( x )  P -  f  M (x ,0 [p ](0 d d , (3.59)
L ^ V blades

where for convenience we have introduced

and

M (x ,?) =  - ! / ’ (3.61)
^  /blades u  ~  ^
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So we have now reduced our Fredholm equation of the first kind (3.51) to one of 

the second kind (3.59) which is far easier to solve. To simplify matters somewhat 

further, pre-empting problems in calculating (3.59), we introduce

= S^{x)\p]{x) (3.62)

to give us

'ip{x) = h{x) +  -  /* S~^{^)M{x,^)i;{^)dC (3.63)
^ Vblades

Equation (3.63) now determines, via (3.62), the required pressure differences on the 

blades and hence the entire outer solution as discussed earlier. There are a variety of 

ways to tackle the solution (3.63). For simplicity we solve it iteratively as presented 

in the next section.

3.4 Numerical m ethods

3.4.1 The boundary layer calculation

To execute the boundary layer calculations we adopt a semi-explicit finite-difference 

approach of second order accuracy as in Smith and Timoshin (1996a) and Smith 

and Timoshin (1996b). The main reason for this is that it is, as in those papers, 

both robust and accurate, and does not appear to have too much difficulty in dealing 

with the leading and trailing edge irregularities present in such multi-blade flows.

We discretize the momentum equation (3.5) as

{Uij -  Üi-ij) Üij+i -  Üij-i Üij+i -  2üij + Üij-i fo a A\
“■- «— Â: — + ^ —  = --------- Âî:---------
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where üÿ- {j = — J  to J) are the unknown ü quantities at the x-station, for 

Y  values j A y  with step sizes Aa;, Ay in the x  and y directions respectively. Along 

with the relevant boundary conditions from (3.6) - (3.7), this determines all of the 

required Uj values at the current station. We discretize the continuity equation (3.4) 

similarly as
Uij -  Ui-ij _  Vij+i -  Vij-i

A : -  2Â ;  ’

allowing us to determine the Vij values at any given x-station once the üÿ have been 

calculated from (3.64).

These discretisations are second order accurate in Y  but as yet only first-order ac­

curate in X .  Second order a:-accuracy is obtained by employing a double-stepping 

procedure. We make two approximations to for each j ,  firstly with a single step 

length of Aa;, giving and then with two steps of length A^/2  giving another ap­

proximation ufj. Extrapolation from these two values give an O(A^) approximation 

to Uij as

Uij = — Û j, (3.66)

and similarly for Vij. Typically Aa; =  0.005, Ay =  0.05 and J  = 20 were sufficient to 

obtain accuracy to with 0 (10“®) except perhaps far downstream with many blades 

present.

There is one remaining issue of significance. As mentioned earlier the position of each 

leading edge with respect to the oncoming velocity profile is unknown in advance. 

The outer problem serves to give an approximation of the y-shifts at each leading 

edge and these need to be incorporated here. So at each of the rc-stations a* — Â , a 

careful interpolation of the approaching flow is necessary in order to have the correct 

profile to integrate over the ith blade. Rather than just sweeping as before at these
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points we know the leading edge to be at the point V  = /+(&%) and we re-align 

the oncoming profiles of üj-ij  and Vi-ij  by interpolating them using cubic spline 

approximations and then shift them up or down by the relevant distance calculated 

through the y -shift from the inviscid region. This is how the ground effect, via the 

inviscid problem, permeates the boundary layer calculation.

3.4.2 Num erically determ ining 'ip

Our task now is to enable -0 to be determined numerically from (3.63), giving \p]{x) 

and hence the entire outer solution through equations (3.36) - (3.37) and (3.41) -

(3.42). There are several parts to determining 'ip- We need to calculate h{x) and 

M{x,^)  in (3.63), taking care of the square root singularities and the Cauchy-type 

kernels. We then need to solve (3.63) for 'ip for a given distribution of displacement 

thicknesses 6̂ (%) from the boundary layer calculation. This enables us to resolve 

the outer problem and then allows us to calculate new guesses for the y-shift values 

needed for the boundary layer calculation in 3.4.1.

Throughout the rest of this chapter we will limit our discussion to blades of unit 

length, i.e. we take hi — = 1, and also to gaps of unit length, i.e. =

1. We do this in order to be able to illustrate the method of solution, and the 

solutions themselves, without excessive complication. This should not be too great 

a limitation as the main features of the flow are still present although it does prevent 

us from investigating the effect of varying blade lengths and gap sizes. Similar 

substitutions and methods to those presented below exist for non-uniform blade 

lengths although the final equations are more complicated.
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Firstly we consider the calculation of

W . - l /  (167)
^ /blades ^ ~  ^

We introduce Sj{x) where

Sj{x) = ^ ^  S{x),  (3.68)

which gives, on substituting into (3.67),

There are two problems to be addressed: on each blade the integral has a square 

root singularity (at ^ =  bi) and, if x  is on the blade, also has a Cauchy-type kernel. 

To deal with the square root singularity we make the substitution

^ = bj — cos^ 9 = sin^ 9 aj, (3.70)

for each integral, where j  is the relevant blade. (Note for the more general case of

irregular length blades and varying gap sizes the substitution is given by

^ — bj — (6j — CLj) cos^ 9 = üj (bj — üj) sin^ 9, (3.71)

and similarly for the following substitutions. Again, for clarity we are limiting

ourselves to the case given by (3.70).) We also, for convenience, write

X = sin^ ^  + tti. (3.72)

Substituting (3.70), (3.72) into (3.69) and rearranging gives us

h(sin^ (f) -f Of) = -------\  I —
SI]

5 /(sin^^ +  a ,)/(sin^^  +  g,) .

Iq sm{9 +  (f)) sm{9 — 0) +  {aj — u%)

2 (sin^ 9 +  aj){9 -  ÿ) /(sin^ 9 -f aj) . 2 n.n
7T J q sin{9 -f (f)) sin{9 — (f)) {9 — (p)

(3.73)
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where the first of these integrals is no longer singular and the second is now a Cauchy 

Principal Value integral. The first is straightforward to evaluate numerically. To 

calculate the second we make use of a NAG library routine DOIAQF. This is now 

possible as the non-Cauchy part of (3.73) is no longer singular since

Making similar substitutions for the calculation of M  gives us

7T Jo sin((9i -f (j)) sin(0i -  (/)) Y  (ot -  &%)

2 5i(sin^(9i -haj)(6>i -  (j))m{sm'^ 9i - ( )  .
ttJ q sm{9i + (t))sm{6i -  (f)){9i -  (j)) ^

(3.75)

These can be evaluated in a similar manner to the h{x) integrals.

We are now in a position to determine -0 from (3.63). To solve this Fredholm 

equation of the second kind we adopt a very simple iteration procedure. We make 

an initial guess p̂o and then set up an iteration using equation (3.63), i.e. we use

0 jfc+i(sin  ̂(f)-\-ai) = h(sin^ 0 +  G%) +

— I S~^ {sin^ 9 + ai)M{sinJ(l)-\-ai,sin^ 9 F üj) sin 9 cos 9'ipk{9)d9.
^  Vblades

(3.76)

Typically to obtain convergence such that — ~  0 (10“ )̂ we required around

one-hundred iterations of (3.76).

Finally we need the outer problem to yield values of the y-shifts at each leading 

edge for the sake of the boundary layer calculation. We find these through (3.24).
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In the wake we have that

v± = s'{x) ±  (3.77)

Considering the velocity sum < v > (x) we obtain

< u > (z) = 2s'{x) +  -  S'_){x). (3.78)

Rearranging and integrating with respect to x  gives us

s{x) = s{xo) +  -  f  {< f  > (^) — (<^+(0 “  (^!_(^))}d^. (3.79)
«/Xo

So in the wake between blades i and z 4-1, this gives the wake shape as

s{x) =  s{bi) +  2 y* ^  K) “  ~  (3.80)

and the y-shift Ys{ai+i) at the leading edge of blade 2 -f 1 as

^s(<^z+i) =  s{bi) +  2 y* > (0  “  (^+(f) “  ^-(0)}<^^5 (3.81)

where s{bi) is known from the position of the previous trailing edge, < v > (x)

is calculated from (3.41) and ^±(a;) from the boundary layer calculations. We can 

use this relation (3.81) to give an updated guess of the y-shift values for the next 

boundary layer sweep.

3.4.3 The iteration procedure

We now summarize the iteration procedure used to determine the complete boundary 

layer and inviscid flows.

1. Make an initial guess at the y-shift at each leading edge; typically Ys(aj) = 0 

V j  is a sufficiently good first estimate.
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2 . Sweep through the boundary layer solution, interpolating where necessary to 

satisfy the current y-shift guesses.

3. Compute and hence [u](a:), using (3.10) and the boundary layer solution.

4. Calculate [p](a;) by iterating (3.63), calculating f ( x )  from the new [u](rr).

5. Using the \p\{x) values, calculate < v > {x) through (3.41) and hence recalcu­

late new y-shift approximations from (3.81).

6 . Check on convergence; return to 2 and re-sweep, or finish.

Once the procedure has converged we can then calculate all the necessary p, u, v 

values in the outer problem. Depending on the configuration this iteration typically 

takes between 4 and 8 complete cycles to give accuracy to the order of 10~® in 

successive y-shift approximations.

3.5 Results

In figures 3.5 - 3.16 we present results for various flow geometries, varying the 

number of blades, the blade height h and the angle of attack through c{x) . These 

figures show the viscous displacement thicknesses (a;), wake shapes s{x) and the 

pressures p±, p=. Although there is an infinity of different configurations possible 

we consider mainly two in detail, presenting results for two and five blades, varying 

h and considering three sample cases: that of flat blades and two examples of non­

symmetry where the blades have positive and then negative angle of attack.
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Figure 3.5: Displacement thicknesses and wake shapes g(z) for five flat blades

at heights from h =  4 to h =  1/2.
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Figure 3.6: As figure 3.5 except that h ranges from 1/4 to 1/64.
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Figure 3.7: Plots of the above, below and ground pressures p'^{x),p (x) and p~{x),

for the case of five fiat blades, with h values ranging from h =  4 to h =  1/2.
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Figure 3.8: As figure 3.7 except that h ranges from 1/4 to 1/32.
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Firstly we consider the case of five flat plates, each with zero camber and thickness. 

Figures 3.5 and 3.6 show the displacement thicknesses and figures 3.7 and 3.8 show 

the pressures for a variety of heights ranging from h = 4 to h = 1/32. There are 

several points to note. There is very little variation in the pressures with varying 

h for values of h > I. As h is decreased p -  increases rapidly while is relatively 

unchanged. Closer inspection of the small h cases suggests p_ increasing like I,  a 

case which is explored further in the next section. Another striking feature of the 

small h cases is the very flat shapes in the lower displacement thicknesses in the 

wake. Physically this is due to the pressure requirement causing relatively little 

fluid to be entrained from beneath the wake compared to above and forcing the 

downward deflection of s{x). The flow appears to have a relatively simple form 

here and we examine it in more detail in section 3.6 below. There also appears to 

be distinct leading and trailing edge regions, similar to those considered by Jones 

(2000), where «(x) and the pressure adjust rapidly. We also present, in figures 3.9 

and 3.10, a few examples of the displacement thicknesses for five blades at positive 

and negative angle of attack. Features similar to those discussed above can be seen.

In figure 3.11 we present similar results for two flat blades, seeing similar features 

to the five blade case. We also present, in figures 3.13 and 3.14 the case of two 

blades at an angle of attack with c{x) no longer zero, considering in turn both 

positive and negative angles. Similar features are again observed here, with the 

flattening wake shape and increasing [p] with reduced h still clearly visible. Other 

configurations of possible interest include having each blade with a different camber 

and also experimenting with varying the thickness of the blades also but these are 

not featured here.
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Figure 3.9: Displacement thicknesses and wake center line shapes for five blades at

positive angle of attack for various heights.
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Figure 3.10: Displacement thicknesses and wake center line shapes for five blades at

negative angle of attack for various heights.
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Figure 3.11: Displacement thicknesses (5 (̂a:) and wake shapes s{x) for two flat 

blades.

In flgure 3.15 we present the lift profiles, the integral of the pressure differences \p]{x) 

along each blade, for the five, flat blade case at each of the values of h considered. 

Away from the ground this configuration will not normally generate any lift; so 

any lift here is solely as a direct result of the influence of the ground. There are a 

few things to note. Firstly for the larger h values (greater than one half) there is 

effectively no lift generated. As h is reduced and there is a non-zero lift produced 

sheltering effects are clearly visible with more lift created on the first blade compared 

with the following ones. Finally, the lift can be seen to increase as 1 /h  as h is reduced 

even further.

Finally, we also present a single case of nine blades, at a height h = 1/32, in flgure
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Figure 3.12: Pressures p~ (solid line), (dotted line) and p (dashed line) for two 

flat blades.

3.16. Note the very periodic nature of the wake shape beyond the third or fourth 

blade and the similar (5±(x) shapes, ignoring the gradual growth for now. This 

suggests there are two important length scales present here: one shorter scale from 

leading edge to successive leading edge with a fast varying and periodic nature, and 

a longer slowly varying scale containing the steady growth in size of the boundary 

layer. This is considered in more detail in Chapter 4 where we consider periodic 

cases.
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Figure 3.13: Displacement thicknesses ô'^(x) and wake shapes s(x) for two blades 

at positive angle of attack for heights h = 2 to h = 0.0625 as in figure 3.11.

3.6 Inviscid limits

3.6.1 Large blade heights h:$> 1

We consider here large ground clearances, where the distance between the blades 

and the ground is large. We take as our starting point the integral equations (3.41) 

and (3.42) which we repeat here for clarity:

< u > ( 2 :) =  - f  l { Ç - x ) [ v ] { Ç ) d Ç - ~  [  ( 7 ^ - m ( Ç - x ) ) [ p ] ( Ç ) d f ,
^ J-oo ^ J —oo S ^

(3.82)

1 /■°° 1 1 /■“’
< p > { x )  =  - ------ ( - -----+ m (Ç -x ) ) [ î ; ] (Ç )d f - -  /  -  x)[p](Ç)dÇ.

7T y_<x, Ç -  3: ÎT J _ ^
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Figure 3.14: Displacement thicknesses and wake shapes s(a;) for two blades

at negative angle of attack for heights h = 2 to h = 0.0625 as in figure 3.11.

We expand the velocity and pressure sums and differences as

(3.83)

< v > ( x )  = < V > 0  (x) + —  < V >i (x) .

[ î i ] ( x )  =  H o ( x )  +  ^ H i ( x )  +  . . . ,

< p >  (x)  =  <  P >0 (x) +  - ^  <  p > i  (x) + .

M W  =  b l o W  +  ^ M i W  +

(3.84)

(3.85)

(3.86)

(3.87)

respectively and write

l(x) =
2h

x^ 4- 4h^
- d  +  —  (2h)2

) - i  =  i  —
2/t (2h)3 + (3.88)
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Figure 3.15: Non-dimensional lift on each of the five fiat blades for the various 

heights presented earlier

where these expansions hold for large h when x <^h.  Care must be taken for cases 

where T h 1 so as to ensure all the necessary terms are retained at each order. 

Substituting these expansions into (3.82), (3.83) yields, to leading order,

[P]o( 0
< V > Q

< P  > 0 W  =  1  / ;  M o m .

(3.90)

(3.91)
— OO ^  ^

We can invert (3.90) in a similar manner to the Fredholm equation of the first kind
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Figure 3.16: The wake centre line shapes and viscous displacements for nine blades 

at angle of attack. Note the near periodicity in s(x).

in (3.53) to give

5 - 5(1 )
I

< u >0 (()d(. (3.92)
^ /blades ^ ~  ^

This is, reassuringly, identically the equation in Smith and Timoshin (1996b) for the 

flow past multiple blades with no ground present. The entire leading order solution 

can now be calculated as before, with [u]o known everywhere and < u >0 known 

on the blades from the boundary conditions, (3.92) giving the unknown pressure 

difference on the blades (with [p]o known to be zero in the wakes), (3.90) giving 

the unknown velocity sum and wake shape, and (3.91) giving the unknown pressure 

sums.
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To next order, using the expansions from (3.88) and (3,89), we obtain the equations

< n > i ( x )  =  -  r M o ( ( ) d ( - -  r  (3.93)
^  J— OO ^  J— OO S  ^

< p >1 (x) =  -  r  ÿ ^ d (  -  -  r[p]o(Ç)dÇ . (3.94)
^  J— OO s  ^  J— o o

This is not the complete story however as it ignores the region alluded to earlier of 

^ ~  h. If we consider part of the second integral in (3.82) in this case we have that

1 ^ — T 1 r°° f  _
-  /-CO ( ( - x ) 2  +  (2h)2M ° K K  =  -  / _  Wo(2hf +  x)à i  (3.95)

where ^ — x = {2h)^. We also know that

\p\o(2h^ + x) ^  -  [  — — (3.96)
^ J —oo (2h)^

to leading order. Combining (3.95) and (3.96) yields an 0 ( l/2 h )  term rather than 

just the 0 ( l / ( 2h)^) one that is present in the x = 0 (1), ^ =  0 (h) case and so this 

must be included in (3.93). Including this term in (3.93) (and the equivalent term 

in (3.94)) we obtain the complete expressions as

< v  >i (x) = — [  ([u]o— < V > o )(f)^^-----[  v ^ " 'd ^ j  (3.97)
^  J— o o  ^  J— o o  S  ^

< p > i { x )  =  f  ([p]o—< P >o)(^)d^ H—  f  y ^ ^ d ^ ,  (3.98)
^  J— o o  ^  J — o o  ^  ^

Equations (3.97), (3.98) can be inverted as before to yield an expression for \p]i{x) 

on the blades and hence give the complete solution. This is the first sign of the 

effect of the ground; the 0 ( l / 2h) correction is the leading order ground effect for 

large h. Notice that as ([u]o— < v >o)(a;) =  2v-(x)  (and likewise for the p terms), 

the first integrals in (3.97) and (3.98), which drive the solution at this order, are 

dependent only upon the leading order behaviour beneath the blade system. The 

solution of the complete problem is still a numerical one however with the boundary 

layer solution giving [u]q.
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3.6.2 Small ground clearan ces A 1

We now turn to the other extreme of small ground clearances, although still suffi­

ciently large that the ground is entirely outside the boundary layer. To do this we 

return to the original Cauchy-Riemann equations for v and p,

I  =

f
Turning to small h we write y h = hy and expand the velocities and pressures 

below the system of blades as

v^{x,y)  = (3.101)

p- (x ,y )  =  ^P Z i+ P o -- - -  (3.102)

Above the blades the leading order terms are 0(1) in both the pressure and normal 

velocity but we do not consider these here. Substituting into (3.99), (3.100) yields 

the leading order governing equations as

dpZi Ovq

dx
dpZi

(3.103)
uy

= 0. (3.104)
dy

These must be solved subject to the boundary conditions at the underside of the 

blade, y = I, namely

î;^(x, 0) =  0, (3.105)

v^(a;, 1) =  d{x) — ^t%T) — S'_{x) on the blades, (3.106)

V q { x , 1 )  = s'{x) — ô'_{x) in the wakes, (3.107)

pZi =  0 in the wakes, (3.108)
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where the velocity conditions are from the inviscid tangential velocity condition on 

the ground and (3.24) and we require (3.108) as the leading order pressure above 

the blades is 0 (1) and so for continuity across the wakes the pressure beneath must 

be zero at this order.

Differentiating (3.103) with respect to y, and substituting from (3.104) leaves =  

0 which we integrate to give

Vq = A{x)y P B{x). (3.109)

The ground condition Vq = 0 at y = 0 implies B{x)  =  0 and applying (3.106) gives

Vq = {d{x) -  ÿ '[x ) -  ô'_{x))y. (3.110)

This, via equation (3.103), gives the leading order pressure underneath blade i as

p--i(x) =  (3.111)

=  P-i{p,i) — c(x) + -t(Ç) +  <5_(̂ ) , (3.112)
L ^  J

where the constant of integration pIi(O) is unknown.

This analysis shows that, to leading order, the pressure is independent of y beneath 

the blades, i.e. p_ =  p=, which can be clearly seen emerging in the results for small h 

presented in section 3.5. Also for the flat plate case presented in figure 3.6, c{x) and 

t{x) are zero and so (3.112) gives the pressure responding as <^_(x). Again this can be 

seen in the pressure plots for the relevant cases in 3.5. Perhaps more importantly it 

shows the pressure beneath the system increasing a s l / h  while that above the system 

remains 0 (1), giving an increasingly large pressure difference across the blade and 

so greatly enhancing any lift or downforce produced. A further feature of interest in
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the numerical results is the flat shape of the lower displacement function S-(x)  in 

the wakes. This can also be explained here, as in the wakes pZi = 0 implies =  0 

with no fluid being entrained to leading order. The boundary condition (3.107) then 

implies

s(x) = 6 - ( x ) D ,  (3.113)

where D is a constant of integration and so the graphs, showing s(x) — 6̂ (%), would 

indeed be expected to be flat to leading order. We do not consider the leading 

and trailing edge regions discussed above in the present investigation although it is 

thought that the analysis of a single blade in Jones (2000) could be extended to the 

current many blade situation, fixing the unknown constants pIi(O) and D.



Chapter 4

M any Blades in Ground Effect - a 

Periodic Approach

4.1 Introduction

The results of the previous chapter show that, for the case of the flow past many 

blades near the ground, a seeming near-periodicity appears in the wake centre line 

shapes s(x) of successive blades, downstream of the first three or four blades. In 

this chapter we explore the possibility of there being a periodic solution when many 

blades are present and consider the relevant flow structure. The method of the 

previous chapter works for this many blade case but computation time becomes 

very prohibitive as the number of blades increases and so from that perspective this 

limiting case is also useful to explore.

Below we present an analysis of the flow structure based on three distinct regions. 

The typical single boundary layer of Chapter 3 effectively splits into two: an outer

101
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region varying relatively slowly in x  and shown to be mean Blasius flow, and an 

inner viscous subregion. This inner region shelters the rest of the flow from the 

leading and trailing edges to some extent and varies over a far shorter length scale. 

We assume, guided by numerical results from the previous chapter and the analysis 

of the flow structure, that this inner tier is periodic. Finally the third region is the 

outer, inviscid one which is much the same as before, subject to a slight change in the 

displacement conditions driving the flow at the match between the outer and viscous 

regions. Implications of the periodicity assumption simplify the integral equations 

derived in the previous chapter somewhat but the basic premise remains largely the 

same; the outer, inviscid region determining an otherwise unknown y-shift in the 

innermost of the viscous layers which then in turn generates the displacement effects 

forcing the inviscid flow. In other words, the inner-outer interaction that is of prime 

importance in the previous work is still vital here.

The current structure appears once a large number of blades, n ^  1, have been 

passed, up until n ~  with Re  also still large. Beyond this number of

blades a new regime occurs with a new interaction in the boundary layer itself, 

causing a displacement driven pressure gradient to appear within the innermost 

region I, as discussed in Bowles and Smith (2000a), Bowles and Smith (2000b) and 

also in chapter 5. The issue of periodicity is an important one, particularly with 

regard to rotor blade flows as discussed in Chapter 1. Further, the periodic structure 

presented here is also valid in the case of a rotor blade with many blades, at large 

radial distances where rotational effects are not significant at leading order. The 

major difference is that region II contains mean Von Karman, rather than mean 

Blasius, flow.



CHAPTER 4. A  PERIODIC APPROACH  103

Section 4.2 sets out the proposed structure, based ou the symmetric cases of Smith 

and Timoshiu (1996a), Smith and Timoshiu (1996b), and discusses each of the three 

regions in turn: region II covering the majority of the boundary layer flow, region I, 

the viscous sublayer, and the inviscid region III, an extension of the outer solution 

from the previous chapter. Section 4.3 examines the solution method used, solving 

the periodic viscous flow in region I and exploring the solution of the outer region III 

problem. Again as before these are required to be solved hand-in-hand to determine 

the y-shift and displacement simultaneously. This section goes on to present some 

comparisons between the current proposed structure and the results of Chapter 3

4.2 The flow structure

The periodic problem we are examining here is that of a single blade with leading 

edge at X =  0, trailing edge at x = t and the next leading edge at x = L, all at a 

distance h from horizontal ground. As in the previous chapter y is the outer normal 

scale and Y  = R e ~ \y  is the inner viscous normal scale. It is assumed that the flow 

has already come over a large number of identical L-periods upstream of the blade- 

wake pair of interest and likewise has a large number still to pass subsequently, see 

figure 4.1

The results for many blades using the method of the previous chapter suggest, 

along with similar analysis in Smith and Timoshin (1996a) and Smith and Timoshin 

(1996b) , a two tiered structure to the flow in the boundary layer. In figures 4.2 

and 4.3 we present the u velocity profiles mid-blade and mid-wake in each relevant 

period for a representative ten blade case, obtained using the method of chapter 3.
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Figure 4.1: A single blade-wake period

The seemingly periodic nature of the inner tier can be seen in the relatively constant 

flow for small Y  after about three or four blades in each flgure but with a changing 

profile through the period. There is also a slowly growing outer viscous tier, with 

little change going from one blade into the following wake but gradual growth as 

many blades are passed. These results suggest a two tiered structure in Y  in the 

boundary layer. The periodicity can be seen even more clearly in flgure 4.4 which 

compares successive wake centre-line shapes.

After passing over a large number of blades, n say, there are two streamwise length 

scales of significance: one a longer, slowly varying scale over all the blades passed 

so far with x = nxi and the other having a fast varying dependence on the local 

shifted X = Xg near the current blade. As such we express the x  dependence in the



CHAPTER 4. A PERIODIC APPROACH 105

10

5

0

•5

-10
0.5 1.5 20 1 2.5

Figure 4.2: The scaled u velocity profiles mid-blade in the boundary layer for a ten 

blade case. Note the near periodicity for small y and the gradual growth for large 

y. The scales used are those determined below for the innermost layer.

boundary layer as

X = Xs Y  nxi, (4.1)

At a streamwise distance of order n  downstream the normal viscous scale is of order 

as expected. The normal scaling of the inner tier is implied by the viscous- 

inviscid balance in the governing boundary layer equations between ^  along 

with the known scalings Xs ~  0(1) and u ~  0{Yn~^^‘̂). These imply ~

and give the normal scaling as T  ~  in the inner tier.
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Figure 4.3: The scaled u velocity profiles mid-wake in the boundary layer for a ten 

blade case. Note the near periodicity for small y and the gradual growth for large 

y. The scales used are those determined below for the innermost layer.

We now discuss each region in more detail.

4.2.1 Region II

Firstly we consider region II covering the bulk of the boundary layer fiow, see figure 

4.5 for the proposed structure. Our starting point in this rotational region, and 

in the following sublayer region I, is the boundary layer equations (3.4), (3.5). As 

discussed just above we introduce the scaled normal co-ordinate Y, where Y  =
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Figure 4.4: A Comparison of the wake-center line shapes for a ten blade case. The 

uppermost line is wake one, the lowermost wake nine. Notice the near periodicity 

as increasingly more blades are passed.

{Y being the scaled normal boundary coordinate) and expand the scaled velocities 

in this region as

u = Uq{xi , Ÿ ) n ^^^Ub{xs,Ÿ) + n ‘̂ ^^Uc{xs,Ÿ) P n ^Ui{xs,Ÿ) P . . . ,

= n}^^Vb{xs,Ÿ) P n  ^/^Vc{xs,Ÿ) P n  ^̂ ‘̂ vi{xs,Ÿ) P . . . ,

(4.2)

(4.3)
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Figure 4.5: Schematic of the proposed flow structure, with regions I and II being 

viscous, and region III being inviscid and containing the ground.
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where all the components are unknown and uq is independent of the fast varying 

scale Xs- The terms with fractional powers of n come from the requirement to

match the velocities here with those in the innermost region I considered in the next

section. Substituting into the governing boundary layer equations (3.4), (3.5) these 

expansions yield, to leading order.

Substituting from (4.4) into (4.5) and rearranging gives us

=  0 (4.6)

which, when solved using an integrating factor, leads to

where b±{xg) are unknown functions of integration with ±  referring to the solution 

above and beneath the inner tier I respectively. Then (4.7) and (4.4) imply

Ub = b ± { x s ) ^ .  (4.8)
o Y

These functions b±{x) correspond to a small displacement effect from region I either 

side of the blade-wake, with uq effectively evaluated at ± (T  -f n~^^^b±{x) -f- ...)  

rather than ± Y  both above and below.

At next order the governing equations become

=  »•
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Substituting for Ub,Vb from (4.7),(4.8) and using (4.9) to eliminate from (4.10) 

we obtain

Again using an integrating factor this becomes

where c±{xs) are unknown functions of integration. Then (4.9) implies

+  ( « 3 ,

Once again this corresponds to a displacement effect from region I, now equivalent 

to evaluating Uq at ± ( ÿ  +  n~^^^b±{x) +  n~^^^c±{x)) as

uo{Ÿ PebPe'^c)  =  U q { Ÿ )  P  {eb P  e ^ c ) ^  +  +  • .  ■,
o Y  /  a r  ^

(4.14)

duo , , duo

by using the Taylor series, where e = n is small.

The next order governing equations obtained are given by,

dui duo dvi _

etc, (%r, a ir  '

dui duo duc dub duo duc dub
UQ— ---- \-Ub-z H Ug—------hUi—-=-\-VbT̂  1“ Uc ----------------

(4.16)

dxs dxi dxs dxs dV  dxg dxg dY"^
(4.17)

The problem here is that equations (4.16), (4.17) contain both the longer xi scale 

and the shorter Xs scale. However at this point we are able to make use of our
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assumption of periodicity over the shorter Xs scale. If we integrate (4.16) and (4.17) 

with respect to Xg over the entire period L, applying L-periodicity in ui and using 

our expressions for Ub, Uc, Vb, Vc, we obtain

=  s # '  < - )
where vm = l is the mean value of Vi over the period. The relevant

boundary conditions at the wall are

Uo =  Vm =  0 at Ÿ  = 0±, (4.20)

Uq —̂ 1 as T  —̂ ibcxD, (4.21)

as discussed in Smith and Timoshin (1996a). Equations (4.18), (4.19) along with 

the requirements (4.20), (4.21) are exactly the equations of the Blasius semi-infinite 

flat plate boundary layer, with a well known solution as shown in appendix A. So 

this region has primarily mean Blasius fiow, somewhat sheltered from the successive 

leading and trailing edges by the inner sublayer region I. It also serves however 

to communicate displacement effects from region I through to the inviscid fiow in 

region III.

4.2.2 Region I

We turn now to the viscous sublayer region I. Here, covering a single blade and wake,

we have a y-scale given by T  =  from the viscous-inviscid balance discussed

above, which implies the forms

Ü = - f - +  . . . ,  (4.22)
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V = +  n~^^‘̂V2 +  . . . ,  (4.23)

for the transverse and normal velocities respectively where the û scaling follows from 

V  and region II and the v scalings from continuity. Substitution into the governing 

boundary-layer equations (3.4),(3.5) gives the leading order problem in this region

as

ê  - 1  = »■

subject to the conditions

ûi = Vi = 0 at y  =: 0 on the blade, (4.26)

> ±A as y  —)■ ±oo, (4.27)
a y

L — periodicity in Xg, (4.28)

y — shift at leading edge, (4.29)

where (4.26) is the usual no-slip condition on the blade, (4.27) is a shear flow require­

ment needed to match with the flow in region II, i.e. with Uq as V  —>■ 0± implying 

A =  ^ ( 0 ) ,  while (4.28) is the short scale periodicity assumption discussed earlier 

and (4.29) is the manifestation of the adjustment of this sublayer to enable pressure 

continuity across the wake in region III in a similar manner to chapter 3. Further, 

as part of the solution of this region the displacement effects b^(x) are determined, 

namely

ûi ~  ±A(|y| +  6±(rCs)) as Ÿ —>■ ±oo, (4.30)

t)i ~  as y -4 ± o o , (4.31)
ax.
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in accordance with the behavior of region II as ÿ  —>■ 0±. The 0(1) factor A is given

by

^ ^  (4.32)

where the function F(x)  is the Blasius function and where the constant F"(0) =

0.3321 is known. So A is effectively constant over this shorter Xs length scale.

For completeness we also consider the next order to demonstrate how c±(x) can be 

determined. The governing equations become

The boundary conditions here are given by

Û2 = V2 = 0 at y  =  0 on the blade, (4.35)

—IT- —̂ 0 as y  —y io o , (4.36)
a y

L  — periodicity in Xs, (4.37)

which are the no-slip, the match with region II and periodicity conditions, respec­

tively. Then c±{x) can be determined as

Û2 ~  TAcj:(Ta) as T  -> oo, (4.38)

as, due to the lack of streamwise pressure gradient, there is no O (y^) term in Uq in

the main deck.

4.2.3 Region III

Finally we move to the inviscid region III. This region is effectively that discussed 

in the previous chapter. However the major change is that now, rather than be-
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ing driven by the complete viscous displacement thicknesses instead the im­

portant driving factor is the current local viscous displacement quantities b±{xs) 

determined by the innermost region I.

In order to match with region II the velocities and pressures in this outer region are 

expanded as

u = n}^^Ui -f . . . ,  (4.39)

V = H- . . . ,  (4.40)

P

where u, v ,p  are the 0{Re~^^'^) perturbations of the free-stream discussed in section 

3.2.2. We now limit ourselves to considering only the leading order displacement 

effects, neglecting the influence of c± on this outer region. The next order terms 

satisfy the same governing equations and similar boundary conditions and the so­

lution at next order can be determined in a way similar to that presented below. 

Substituting into the governing linearised Euler equations leaves them unchanged to 

leading order, once again becoming the Cauchy-Riemann equations for the normal 

velocity and pressure, here given by

?   ̂ g .

The boundary conditions once again require pressure continuity across the wake and 

that the normal velocities match with the boundary layer as y —>• 0±. The required
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velocity conditions for this flat blade case are given by

±b'^{xs) Xs on blades
V\±  =  < (4.44)

d: h'^{xs) Xs in wakes

where s'{x) is the shape of the wake centre line, to leading order, in the innermost 

region, and b±{x) are the displacements determined in region I and communicated 

through region II as discussed above. We could incorporate blade shapes and thick­

nesses (assuming the blades lie entirely within region I) which would add camber 

and thickness effects to the boundary conditions but we only consider flat blades 

here. Now we have to solve exactly the same problem as before, flnding an analytic 

function w{z) = Pi+iVi  in the complex plane satisfying mixed boundary conditions. 

Following through the same analysis as in Chapter 3 we obtain the same integral 

equations with the velocity and pressure sums and differences given by

. (b\ b'_)(xs) on blades
[yi](x) =  C  (4.45)

{b'_̂  -f b'_){xs) in the wakes

(b', — b'_)(xs) on blades 
< V i > { x )  = {  ̂ * (4.46)

? in the wakes

? on blades
[Pi](x) = { (4,47)

0 in the wakes

? on blades
< P i >  (x) = { (4.48)

? in the wakes,

in this case.

The solution of this problem can be carried out as before; however periodicity allows 

some rearrangement/ simpliflcation. Firstly we consider (3.58) which we repeat for
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clarity

In the current situation we assume what is in effect an infinite array of blades in 

both directions rather than a finite number of blades n. Therefore (4.49) becomes 

for the present regime

E  r  (4.50)

Exchanging the order of the sum and the integral and substituting for ^ such that 

we are integrating over a single period, i.e. ^ =  (  + iL, with L = ai^i — ai = bi+i—bi, 

aj = jL ,  bj =  jZ, +  gives

1 /*̂ 1 
s ;" ( 0 / ( a (  E  w " )

using the fact that f{x)  is periodic, being dependent only on the periodic boundary 

conditions, and where the new periodic version of S{x), Sp{x), is given by

oo . Yn x - j L - t
j= -oo

The streamwise co-ordinate x  is now given hy x = nL P Xs and is dependent on

which blade we are considering and the shorter streamwise scale Xg. We can carry

out the same procedure on the other relevant integral equations from chapter 3, with

(3.59) becoming

i=—oo

and (3.52) becoming

1
/ W  = -  J M K)( X I  P i L -  x ))d ^ -  < u > (x). (4.54)
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The Predholm equation of the second kind (3.61) for ^  becomes

1 C °°
i/;{x) = h{x) + -  I M {x ,^  + kl))dC. (4.55)

k=—oo

To simplify the notation we introduce a new quantity M{x,^) ,  where

oo

M { x , 0  =  M { x , ^  +  kl),
k——oo

-  ±
k=—oot=—oo

(4.56)

i^ix) = h{x) P -  f  (4.57)
7̂ Jo

again changing the order of the sum and the integral. This leaves (4.55) as

'0

where

ip{x) = Sy^{x)[p]{x). (4.58)

The unknown ^-shift can be determined by integrating the relevant boundary con­

ditions from (4.44).

4.3 Solution m ethod and comparisons

To make further progress we have to consider regions I and III numerically. For 

the viscous layer region I, the problem is very similar to that before in Chapter 3 

only with there now being a periodicity requirement (4.28). The technique is also 

much as previously, with the same discretisation, changing the |ÿ | —> oo condition 

appropriately to satisfy (4.27). Satisfying the periodicity condition is achieved by
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repeatedly iterating over the L-period until the velocity profiles at a; =  L are iden­

tical, to within a reasonable accuracy, to their values on the previous sweep. So, 

given a starting profile, we sweep the boundary-layer solution over the blade and 

wake period to x = L. We then apply the necessary ?/-shift calculated from region 

III discussed below and this then yields the starting profile for the next sweep if 

convergence has not been attained. Once converged the necessary displacements b± 

can be determined.

The problems involved in evaluating the integrals in region III are again as before 

with Sp(x) introducing a square root singularity and there remains the need to treat 

the integrals as principal values. As before we substitute for ^ and x  in order to 

remove the square root singularities which transforms the Predholm equation (4.57) 

to

'ip(tsin'  ̂(/)) = h{t sill‘d (/))-\------ /  cos^ 0)M(tsin^ (f),tsin^ 0)'ip(tsin'^ 0)dd
Jo

(4.59)

where

Sp(^) =  (4.60)

K=1 ' ^

Equation (4.51) for h(x) becomes

Of 1
= s i n ^ 9 S y \ t s u . H ) f i t s i n ^ e ) ( Y :  ^ ^

i = —oo
(4.62)

and (4.56) for M{x,^)  becomes

Of  c f
M{ts\TL^ (f),ts\T^ 9) =  / 6iSp{tsiT^ 6i)G{6,6i,phi,t)dO.  (4.63)

7T Jo



CHAPTER 4. A PERIODIC APPROACH  119

where

j= —ooi=—oo

These integrals can now be evaluated by truncating the sums and taking care of the 

Cauchy- type kernels where necessary using the NAG library routine as described 

earlier. The truncation of the sums was tested to ensure the final solution was not 

excessively dependent on it.

The solution is then determined iteratively. Firstly, starting from an initial y-shift 

guess, we solve the boundary layer region I until periodicity is achieved which deter­

mines the unknown b±(x) displacements. These then feed into the outer problem in 

region III which is solved by iterating the Predholm equation (4.59) as in Chapter 

3, to determine the velocity and pressure distributions and hence yielding a new 

y-shift guess and wake shape s(a;). This then passes back into the region I solution 

and the process starts again until successive y-shift estimates have converged to a 

specified accuracy, typically 0 (10"^).

We present, in figures 4.6 and 4.7, two comparisons between the current solution 

method and the method of the previous chapter. The figures present the wake shapes 

for h = 0.25 and h = 0.0625, calculated both by the periodic approach and shown 

with the fourth wake shape from the five blade calculations presented in the previous 

chapter, with L = 2 and t = 1 in this case. The comparisons add weight to the 

structure proposed in this chapter with good agreement in both cases, particularly 

for the smaller h case where the solution appears to settle down into a periodic state 

far quicker than the large h case. Better agreement could probably be achieved by 

including the c±{x) effects, but these results appear encouraging with regard to the
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validity of the three region structure and the periodicity assumption. In figures 4.8 

and 4.9 we also present comparisons between the pressures beneath the blades at 

the same heights, comparing this periodic case with the pressure found under blade 

4 of the five blade calculations presented earlier.

y
3
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■2

■3
0.4 0.6 1.4 1.6 1.80 0.2 0.8 1 1.2 2

X

Figure 4.6: Comparison between the wake shapes s(x) for the current periodic 

method and blade 4 of the five blade case from chapter 3 for /i =  0.25. The shape 

from this chapter is the lower of the two.
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Figure 4.7: Comparison between the wake shapes s{x) for the current periodic

method and blade 4 of the five blade case from chapter 3 for h =  0.0625. The shape

from this chapter is the lower of the two.
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Figure 4.8: Comparison between the underneath pressures p~ for the current peri­

odic method and for blade 4 of the five blade case from chapter 3 for A =  0.25. The

shape from this chapter is the lower of the two.
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Figure 4.9: Comparison between the underneath pressures p~ for the current peri­

odic method and for blade 4 of the five blade case from chapter 3 for =  0.0625.

The shape from this chapter is the lower of the two.



Chapter 5

Three-Dim ensional Interactive

M ulti-B lade Flow

5.1 Introduction

We now abandon ground effect for the time being and instead consider some three- 

dimensional flows. In this chapter we examine interactive flow past many three- 

dimensional blades. As discussed in the previous chapter once many blades are 

passed a new structure emerges with the boundary layer effectively splitting into 

two, with one slowly growing tier containing mean Blasius flow and an inner tier 

containing periodic flow. However a new interaction appears once an 0{Re^/^) 

number of blades have been passed as discussed in Smith and Timoshin (1996b), 

Bowles and Smith (2000a), Bowles and Smith (2000b), and chapter 4 with a pressure- 

displacement interaction developing in the boundary layer. Here we consider a 

similar case but now with three dimensional blades. We consider the flow structure

124
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and formulate the problem for the general case of three dimensional blades and then 

move on to examine a particular limit, that of short blades. The short blade limit, 

whereby the streamwise length of the blade becomes small compared to the length of 

the period whilst the spanwise length remains 0 (1), is of interest as the dimensions 

of a typical rotor blade are similar.

The set-up of the problem is that of a large array of identical three dimensional 

blades, assumed flat here, and we focus on a single periodic region from one leading 

edge to the following leading edge. There are various mechanisms by which an 0(1) 

z-scale becomes important. One situation is that, as well as periodicity in x, we 

have a periodic structure in the z direction also, with the z-period Li say being 

0(1). This corresponds to the blade having a three dimensional form repeated 

many times along it. Another possibility is that the geometry of the blade is such 

that there is three-dimensionality conflned to an 0 (1) length scale beyond which 

the blade is two-dimensional. In this case, rather than periodicity, we would require 

the three-dimensional solution to tend to the two-dimensional case at large spanwise 

distances.

The governing equations here are the non-dimensionalised, three-dimensional Navier- 

Stokes equations

#  +  %  +  %  =

du du du dp 1 , d'^u d“̂u d‘̂u.
+  +  +  (S.2)

dv dv dv dp 1 , d'^v d'^v d'^v, _

dw dw dw dp 1 .d'^w d‘̂ w di^w. . .
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where the Reynolds number Re, based on the free stream velocity U = 1, the length 

of the j;-period L  and the kinematic viscosity of the fluid, is once again assumed to 

be large.

In section 5.2 below we set out the full three-dimensional problem, with what is 

effectively a triple-deck structure covering the entire period. The three decks are 

a periodic inner tier, a middle tier again containing mean Blasius flow and trans­

ferring displacement effects from the innermost viscous tier to the inviscid region 

outside, and the outer, inviscid tier serving to provide a relation between the pres­

sure and displacement in the innermost tier as usual. The so-called condensed case 

is discussed before moving on, in section 5.3, to consider the short blade limit, in­

troducing a new short x-scale while keeping the z-scale as before. The proposed 

flow structure in the innermost layer is based upon five regions, the sizes and forms 

of which are determined. We also consider some possible solutions for the pressure, 

which is found to drops abruptly across the short blade before slowly changing in 

the relatively long wake in order to satisfy the required periodicity in x.

5.2 The full three dimensional problem

The many blade limit considered in the previous chapter with no pressure-displacement 

interaction has boundary layer and wake thicknesses of 0 (R e “ ^/^). The current 

structure emerges after a large number of blades have been passed, at a streamwise 

distance of 0{Re^^^), where the boundary layer thickness is then 0{Re~^^^) as dis­

cussed in Smith and Timoshin (1996a). At this stage the previously small outer 

pressure is now comparable with advective terms in the inner part of the bound­
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ary layer and the flow becomes interactive with the pressure feeding back into the 

boundary layer equations. As in the previous chapter there are three y-scales of 

importance here now given by ~  0{Re~^^^) which is the viscous sublayer contain­

ing periodic flow, y ~  0{Re~^^^) the boundary layer thickness, and y ~  0 (1) for 

the outer inviscid flow. The three-dimensionality is assumed to enter the problem 

by way of three-dimensional blade shapes with, for example, a varying shape of the 

leading and/or trailing edge. This ^-dependence holds for all n blades which are 

taken to be identical.

It is possible in the current regime to carry out very similar analysis to the periodic 

many blade case in the previous chapter and we present an outline here to formulate 

the full three-dimensional interactive pressure-displacement problem before turning 

to a particular limit of interest. Once again there are two relevant a;-scales, now 

described by X  =  x -H Re^^^xi. We obtain what is effectively a three-dimensional 

triple deck problem, albeit with a global rather than the usual local interaction. If 

we first consider the middle deck with normal co-ordinate given by y = Re~^^^yi we 

expand the velocities and pressure, guided by the many blade limit considered in 

the previous chapter, as

u = Uo{xi,yi) +  Re~'^^^ui{x,yi,z) 4- Re~'^^^U2 {x,yi, z) 4- Re~^^^U3 {x,yi, z) 4- . . . ,

(5.5)

V = Re~‘̂ ^^vi{x,yi,z)-b Re~^^^V2{x,yi,z) + Re~'^^^vs(x,yi,z) + . . . ,  (5.6)

w = Re~‘̂ ^^wi{x,yi,z)-b Re~^^^W2 {x,yi ,z )-b . . . ,  (5.7)

p = Re~^^^P{x, z) 4- Re~^^^p2 {x, yi ,z) + —  (5.8)

Substituting into the governing equations (5.1) - (5.4) leads to the usual middle deck
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result (see for example Smith et al (1977)),

ui = A { x , z ) ^ ,  (5.9)

dA
Vi = — (5. 10) 

. 1  =  (5.11)Uq

where

and A{x, z), D{x, z) are unknown displacement effects. Determining the higher order 

terms in (5.5) - (5.8) is examined in Appendix B. It is shown there that this middle 

deck has, as in the two dimensional and the non-interactive cases, predominantly 

two-dimensional mean Blasius flow. This is initially perhaps somewhat surprising 

but given that in the two-dimensional case Blasius flow was generated regardless of 

the position of the trailing edge, even if the blade was very small compared to the

size of the gap, it does appear to make sense here also as the precise blade geometry

appears to be secondary.

In the upper deck where y is 0(1), the disturbances to the free stream u =  1, 

u =  w =  p =  0, are all 0{Re~ ‘̂l^) and the pressure is governed by Laplace’s 

equation. Matching the velocities between here and in the main deck leads to, as in 

Smith et al (1977), the pressure-displacement law
52 A1 nco noo

J _ ^  J _ ^  (5.13)

Moving into the lower deck where y = Re~'^^^Y, the periodic velocities and pressure 

expand as

(u, u, w,p) = {Re~^^% Re-^/^V, Re~^f^W, Re~'^/^P) -h . . . ,  (5.14)
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and the equations of motion become the three-dimensional boundary layer ones:

=  «■

The boundary conditions are given by

U — V  = W  = 0 on the blade at F  =  0, (5.18)

dU d W
—  = V  = -gÿT in the wake at F  =  0, (5.19)

U ~  X{y + A[x,z))  as F  —)■ oo, (5.20)

W  ~  as r ^ - c o ,  (5.21)
Ai

U, V, W, P  L-periodic in x, (5.22)

along with the pressure-displacement law (5.13). These conditions correspond to

no-slip on the blade, wake symmetry, the match of U and W  with the main deck

and the required periodicity, respectively. We also have some conditions in the z 

direction depending on the problem in question. For example if we have periodicity 

in z we require that

U, V, W, P  Li-periodic in z. (5.23)

Alternatively this condition could be replaced by a requirement of recovering the 

two-dimensional case as |z| —>■ oo.

If we allow the size of the x-period L  to become small whilst maintaining the gov­

erning equations (5.15) - (5.17) we reach the so called condensed case discussed in

Bowles and Smith (2000a), Smith and Walton (1998) and references therein. This
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short period implies using a new x  scale given by x  = Lx.  In order to maintain the 

governing equations with this shorter streamwise scale the other co-ordinates, the 

velocities, the pressure and the displacement scale as

(Y, z, U, V, W, P, A)  ~  Lz,  2 '/% , L^l^w, Û'^p,  (5.24)

where the z scale is so as to maintain the aspect ratio of the problem, the U scale 

follows from the shear flow condition (5.20), the W  and V  scales are from continuity, 

the P  scale follows as P  ~  and the scale of the leading order displacement 

also follows from (5.20). Substitution into the governing equations and boundary 

conditions leaves them unchanged. However the pressure-displacement interaction 

is less straightforward. The lefthand side of (5.13) scales as P , i.e. The

righthand side, on the other hand, scales as =  L~‘̂/^. Therefore in order to

satisfy (5.13) we require the right-hand side to be identically zero, in other words 

we must have

g  =  0 (5.25)

implying that

À = b{z)x + c[z)^ (5.26)

where b, c are unknown functions of z. Streamwise periodicity requires that A{x = 

L) = A[x  =  0), flxing 6(z) as zero and leaving us with the requirement

A = c(z). (5.27)

It is this condensed case, equivalent to ^  =  0, that we consider in the remainder of 

this chapter. Note it is important to include this function c(z) here and not simply 

to take A =  0 as it was shown in Bowles and Smith (2000a) a periodic solution
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could not be found without a non-zero displacement. Physically this condensed case 

corresponds to the situation with Re^.

5.3 The short blade limit

Short blades, where the streamwise chord of the blade is small compared to the 

streamwise period L  and the z scale which both remain 0(1), are physically impor­

tant as, typically, a rotor blade has far more ’gap’ than blade, with the distance from 

a trailing edge to the subsequent leading edge being much larger than the width of a 

blade. Guided by the two-dimensional case of Bowles and Smith (2000a) we propose 

a five region structure as in figure 5.1. This is based upon the assumption that any 

vorticity generated locally on the blade will not have diffused very far in the normal 

direction before the trailing edge is encountered. This suggests the local effects of 

the blade are confined to a thin layer surrounding it. This was shown to be the 

case in Bowles and Smith (2000a) and the assumptions seem sound here also. The 

relevant ^/-scales are unknown at present and are to be determined.

The short blade is assumed to be of length 0(e), where e is small, and as such we 

introduce a new streamwise variable X  where x  =  eX.  We also take it to have a 

straight leading edge (z-independent) and a trailing edge given by X  =  T{Z)  that 

varies in Z. We assume the outer layer to have thickness 0 (e“”) where n  is unknown 

but expected to be positive; this constant n  is to be determined as part of the entire 

solution. There are two other y scales to be determined, that of the short, innermost 

layer covering the blade and near wake I and that of the middle layers II, III. The 

former is determined from the expected Blasius-type response on the blade. This
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Figure 5.1: The proposed five region structure with the as yet undetermined y scales.

suggests the introduction of a normal coordinate 77 such that y — where

a{z) is the leading order scaled streamwise slip velocity at the blade/wake centre line 

in the outer regions IV and V. This implies a y scale of O ( e ^ )  for the innermost 

region. To determine the final y-scale we note the Goldstein far wake spreads like 

so once the wake has reached the next leading edge x = L, then X  ~  0 (e “ ^), 

implying y ~  0 ( e ^ ) 0 ( e “ ^) = (the initial y-scale multiplied by the expected 

growth through the region).

We now consider each region in more detail.

5.3.1 Region I

In region I, the ?/-scalings discussed above suggest introducing the new normal co­

ordinate V, where y = e ^ Y .  We have the short x-scale given by X  and z is 0(1)
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as it is throughout this section. The expected Blasius and Goldstein type responses 

in this region lead us to expect a viscous-inviscid balance between the U^  and 

terms in the streamwise momentum equation. This implies that the leading order 

U scale is given by and the continuity equation then implies the leading order 

V  scale and the velocities are expanded as

=  e-"[/o(% ,y,z) +  . . . ,  (5.28)

V  =  e - ’̂ V o ( X , Y , z )  + . . . ,  (5.29)

where neither W  nor P,  which are of and respectively, appear

to leading order. These yield the leading order governing equations as

subject to

Uo —>■ cr{z) as T  —)■ oo, (5.32)

Uq = Vo =  0 on the blade, (5.33)

=  Vb =  0 in the wake, (5.34)

which are the match with region II and the usual no-slip and wake continuity con­

ditions, respectively. The governing equations are quasi-two-dimensional with any

z dependence being secondary. The solution on the blade is effectively the Blasius 

one given by

Uo = o'(z)/b(ï?), (5.35)

Vo = -  feir])), (5.36)
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where the Blasius function /b (t7) satisfies f'^ +  | / n / s  =  0 and tj is as defined above. 

(Details can be found in Appendix A.)

The solution in the wake, starting from the Goldstein near wake form at the trailing 

edge X = T{z) and extending to the far-wake form at large X  is given by

Uo =  a(2:)(l -  (5.37)

Vo = (5.38)

where d =  2/^(0), and 77 is now given by

due to the uncertainty in the trailing edge position. The varying position of the 

trailing edge causes this region to be quasi-two-dimensional, described by the quan­

tity q{z) in (5.39), as the switch from Blasius to Goldstein occurs at different X  

values as z is varied. This region also generates a viscous displacement thickness

/•oo
d(A, z) =  ( 7 - 2 /  (1 _  [/o(,^))d77, (5.40)

Jo

that is now z-dependent. It is 6{X, z) that transfers the three-dimensionality to the 

upper layers IV and V, with region IV also being quasi-two dimensional but region 

V being fully three-dimensional.

5.3.2 Region II

This region is effectively a passive buffer layer, passing displacements from the inner 

tier region I through to region IV. It is quasi-two-dimensional as it accommodates
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the unknown disturbed wake profile which is z-dependent. The relevant x-scale is 

the short 0(e) one and the normal variable is given by y =  e”/^F.

The velocities and pressure expand in a form guided by the expressions in the adja­

cent regions, namely

u = e“"a(z) +  e”/^û 4- . . . ,  (5.41)

V = +  , . .  _ (5.42)
C'A

W  =  0(e("+i)/2) (5.43)

p  =  0(e<^-">/2), (5.44)

where the leading order velocities are determined by substituting into the governing 

equations and applying the matching conditions

u a{z) as ÿ —>• oo, (5.45)

V -> as ÿ -> 0, (5.46)

from region IV and I respectively. The next order velocity ü is determined in the 

next region below.

5.3.3 Region III

This longer region with the same y scale as region II arises from the spreading of 

the Goldstein far wake from region I to the next leading edge. The y coordinate is 

still Ÿ  as in region II while we now have the 0(1) T-scale. On this scale the implied 

velocity and pressure expansions are given by

u = c~^g {z) -t- H- . . . ,  (5.47)
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V = e^vi +  . . . ,  (5.48)

w = (5.49)

p = (5.50)

The main governing equation is from the streamwise momentum balance leading to 

the diffusion equation

This must be solved subject to the boundary conditions

= 0 at Ÿ  = 0, (5.52)
a y  ^

üi —y A i(z)ÿ T  as ÿ  —y oo, (5.53)

known starting profile at x = 0+, (5.54)

L — periodicity in x, (5.55)

where (5.52) is required for wake symmetry, (5.54) is comprised of the far-wake

form from region I and the unknown profile i i{Ÿ,z)  from region II. Equation (5.55) 

requires that

ui{x = L^Ÿ, z) = û{Ÿ, z), (5.56)

determining the unknown û from region II once fti is known.

If we integrate (5.51) with respect to Ÿ  from 0 to oo we obtain

a{z) r  = \^{z),  (5.57)

where Xi{z) = ^ ( Ÿ  = oo). Applying the continuity equation, this implies

Vi —y  as ÿ  —y oo. (5.58)
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In order to find the solution of üi we make the substitution

ûi = X z) +  X\{^z)V +  ^(z) +  Û (5.59)

which leaves U satisfying the same governing equation (5.51) but now subject to the 

boundary conditions

—— -- — Ai(z) at ÿ  =  0, (5.60)
a y

t j  —V 0 as ÿ  —̂ oo, (5.61)

t j  —y p(ÿ , z) as X  —y 0+, (5.62)

L - ^ / ^ G ( ^ j j ^ , z )  + Ü {L ,Ÿ ,z )  =  g{Ÿ,z )  at x = L -  (5.63)

where G{rj, z) is the z-dependent far wake form from equation (5.37) and g{Ÿ, z){= 

Ü — A i(z)ÿ — /5(z)) is unknown. The solution of (5.51), (5.60) - (5.63) can be 

determined using the Fourier cosine transform in Y  defined here as

/♦ (k) =  y f  f i x ) cos(&ÿ)dy, (5.64)

where * denotes the transformed quantity. Applying this transform to (5.51) we 

obtain
d f j *

( j { z ) ^ ^  + k^U* = \\{z).  (5.65)

Solving this simple first order equation and applying the transform of the boundary 

condition (5.62) leads to the expression

^  -  i Xi k ,  z) -  (5.66)

for t j * .  The constraint (5.63) then requires that

1 — e ‘
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Now from (5.37), G =  ̂ which has a Fourier cosine transform given

by Gradstein and Ryzhik (1965) as

G* = - J i { z ) e - ^ ,  (5.68)

where /i =  /x(^)^/^. So performing the inverse transform gives

9{ÿ,  z) =  ^  '  +  p )  cos(fcÿ)dfe. (5.69)
^ ^0 1 — e ~ ~  ^

However, in order for the inverse transform to converge at A: =  0, we also require 

that Ai(z) =  —G*{0,z). Thus, finally we obtain the well-behaved form for g{Ÿ,z):

9{ÿ,  z) =  -  ^ ^ 1 / 2  ( g - w  _  j cos{kŸ)Ak, (5.70)

giving Û as discussed above. The solution for U then follows by applying the inverse 

transform to (5.66) with g now known.

5.3.4 Region IV

We are looking here at the short X-scale and the largest normal scale y =  e~'^Ÿ. 

The velocities and pressure are expanded as follows, guided by the properties of 

regions I and II and guessing the size of the pressure to be such that the pressure 

gradient is comparable here with the leading order advective terms. Therefore we 

write

u = e-"Do(F, z) +  (%, ÿ ,  z) +  . . . ,  (5.71)

V =  6-("+W 2i^(% ,ÿ,z) +  . . . ,  (5.72)

w =  e<"+i)/^lÿi(ÿ,^) +  . . . ,  (5.73)

p =  e('-")/2Po(^,2) +  ---.  (5.74)
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Both Üq and Wi turn out to be arbitrary but with Üq(0,z) = cr(z). Substituting

into the governing equations we find the leading order equations as

= V
+ -  - w -

Matching with region II yields the boundary condition

ÿ„(X ,0,z) =  a ^ ^ ^ ^ .  (5.77)

The three-dimensionality in 6{X,z)  causes this region, similarly to region I, to be 

quasi-two-dimensional. Combining equations (5.75) and (5.76) and using the bound­

ary condition (5.77) leads to the following equation for the pressure gradient:

—  -  (5 78)

A straightforward integration then determines the total pressure change through the 

region as

Po(oo, z) -  Po(0, z) = • (5.79)

where
r°° 1

7(z) =  y  ^ d ÿ ,  (5.80)
'0

as (5(oo,z) is 0(1) and ( (̂0, z) =  0.

5.3.5 Region V

In this region we return once again to the original streamwise variable x  while the 

normal variable is that of region IV, namely Ÿ . In order to balance the viscous term
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and the pressure gradient with the leading order advective terms, we expand the 

velocities and pressure in this region as

u = € z) +  (ic, 2̂ ) +  . . . ,  (5.81)

V = T^Vq{ Ÿ  ̂z) +  . . . ,  (5.82)

w = e^^Wi(x,Ÿ, z) + . . . ,  (5.83)

p = e^Po{x, z) + . . .  (5.84)

The leading order streamwise velocity Uq{= Üq) is still arbitrary but must satisfy 

Üq ^  Ÿ  T  Co(z), where c{z) = e~^Co{z) +  . . . ,  as ÿ  oo, in view of (5.27) and 

match with region III at F  =  0. Likewise Wi is arbitrary but must match with the 

adjoining regions and satisfy (5.21). These expansions lead, once substituted into 

equations (5.15) - (5.17), to the linear viscous equations

for the leading order velocity and pressure terms.

Substituting (5.85) into (5.86) and rearranging gives

This yields, on integration with respect to Ÿ,

r i P  1 d^po r Ÿ  a  ^
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for the normal velocity and

for the pressure, where I{z)  is as defined above. The function B q{z) = is

required in order to match with region III as discussed in 5.3.3.

However we can now make use of the pressure periodicity to fix the unknown index 

n.  We know, in order for the pressure to be periodic, that the sum of the pressure 

change in this region and the pressure change in region IV must be zero, hence we 

can write

e’‘{Po{i, z) -  A ( 0 ,  z))  = (5,91)

and the unknown scale n  is determined by the requirement

n  =  —-— , (5.92)

implying n =  1/3, and also

A ( 4  Z) -  Po(0, z )  =  (5.93)

If we now differentiate (5.90) with respect to x  we obtain

Substituting for Wi  from equation (5.87) and carrying out the z differentiation inside 

the integral gives us

o 2  p  1  ro o  d^pQ o p  dÛp

v - i L

leading to the governing equation for Pq
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where
9 /*oo ^ d V

So the pressure in this region must satisfy the governing equation (5.96), subject to 

the constraint (5.90) and the known pressure change through this region given by 

(5.93). To simplify the problem somewhat we introduce a new quantity Q, where

g  =  Po- (5.98)

Following through the same analysis as above we arrive at the following problem for

+
where J[z) is as before and

d̂ Ûn
ay:

'0 %
This must be solved subject to the single condition

1 poo d'^Ûo td

-  7 /  ^  f - <*■“ “ >

Unfortunately, due to the arbitrariness of Ùq in this region completely determining 

Q, and consequently the pressure, is difficult. However, as an attem pt to shed 

some light on the pressure solution we consider a few possible cases here. We will 

concentrate on the case of periodicity in z but the essentials should carry over to 

other relevant cases. Thus we also require

to be Li-periodic in Z, (5.102)

%
in the analysis that follows.
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Firstly, if we assume that the z-scale is considerable longer than the x-scale, taking 

Li L, we write z =  L \ Z  and expand the quantities in (5.99) - (5.101) as

Q{x,Z)  = Q o { x ) - r - Q i { x ,  Z ) , (5.103)

K{Z)  = Ko{Z) + T k i (Z) + . . . ,  (5.104)
L\

J{Z) = y —e / i ( . Z ^ ) , (5.105)
L\

=  5^(Z) P ^ 6 ^ ( Z )  T  . . . .  (5.106)
1 Li

Substituting into (5.99) gives the leading order governing equation as

%
dx"̂

subject to

=  ;To(%), (5.107)

^ { L ,  Z) -  ^ ( 0 ,  Z)  =  5o(^). (5.108)

A simple integration of (5.107) and application of (5.108) gives Qq as

Qo =  +  G{Z)x  +  H(Z),  (5.109)

where G and H  are arbitrary functions of the integration. Finally this determines 

the leading order pressure as

Po = ^ ^ ^  + G(Z),  (5.110)

to within an arbitrary function of Z.  The pressure is quasi-two dimensional and is 

identically the solution, as one might expect given the far longer z-scale, for the two 

dimensional case discussed in Bowles and Smith (2000a) with the pressure growing 

linearly through the present region. So from our analysis we can recover the two- 

dimensional case considered previously.
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If we consider the opposite extreme with the 2-scale being shorter than the x-scale, 

Li <C L, we write x  = L X  and, to leading order, the term does not appear in 

the governing equation leaving the leading order problem as

Rearranging and using an integrating factor leads to

A ( ^ e - r  (5.112)
oz oz

Integrating this twice with respect to z leads to

Q =  f  g f y  i;i:(2 j)e -r‘ -^fe)<i«dzi +  yl]dz (5.113)

where A is a constant of integration. This expression for Q cannot satisfy the 

required pressure change through the region as it is not dependent on x. The 

explanation is believed to be that the pressure growth required in region V therefore 

does not happen on this length scale, rather it happens over a shorter x-scale given 

by X  =  L i X  with z — L\Z^ reinstating the entire governing equation.

We now consider the x and z scales being comparable but assuming that the forcing 

term J(z) is small. This reduces the governing equation to

g  + S  =  (5.114)

to leading order. This has the general solution

Q = (v4e^ 4- Be~^^) cos(Az - \ - / 3 ) K  (5.115)

where K{z)  is a particular integral of K{z)  such that (5.114) is satisfied, i.e. =  

K{z).  Periodicity in z, equation (5.102), requires

^ _  2m7T m =  0 , 1 , 2 , . . . ,  (5.116)
L\



(5(z)
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and the known change in (5.101) requires that

oo

— Bjn€. — Am +  Bm) COs(Az +  /?) =  ^
n=0

This in turn gives a relation for Am and Bm,

X[Am{^^^ — 1) — Bm{G — 1)] =  - —-  f  — C O s(A z +  ^)dz.
Jo J
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(5.117)

(5.118)

0.5

-0.5

-1.5
0.6 0.80 0.2 0.4 1

X

Figure 5.2: A sample pressure solution, varying in x  for various z values, with

2t t z

L \  L \  ^ u i i i y  2/1Li =  1, L =  1 with J  =  s in ( ^ ) ,  K  =  c o s ( ^ ) ,  J =  s in ( ^ )

We can also, assuming possible forms for J(z), K(z)  and 6(oo, z), attem pt to solve 

(5.99) numerically. This was done by introducing an artificial ^  term into the 

governing equation and then, using a simple finite difference approximation, iterating
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until a steady state was reached, i.e. ^  =  0, giving the desired Q profile. Presented 

in figures 5.2 and 5.3 are some P  solutions for given J , K  and 6 profiles, varying 

the L  : Li  ratio as a check on some of the analysis above.

P

0.5

-0.5

-1.5

0.6 0.80 0.2 0.4 1

X

Figure 5.3: A sample pressure solution, varying in x  for various z values, with

Li = 20, L = 1 with J , K, 6 as in figure 5.2. Note the pressure solution is nearly

linear as suggested in the analysis in the text.



Chapter 6

Three-Dim ensional

Boundary-Layer Flow over a 

Hump; and Past a Trailing Corner

6.1 Introduction

This chapter considers two significant aspects of the fiow structure of a rotor blade 

system. Firstly we consider the fiow past a surface roughness and then, using the 

solution for the hump as guidance, propose a possible structure for the fiow past a 

trailing corner (or blade tip ).

For the hump fiow, we consider a small hump embedded deep within the bound­

ary layer. The major difference between this and previous investigations of three- 

dimensional hump flows. Smith et al (1977) for example, is that, rather than the 

fiow approaching the hump being two-dimensional, here the on-coming profile is

147
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three-dimensional also. The reason in the context of the present thesis is that the 

boundary layer induced by a rotor blade is comprised of a Blasius-type flow, from 

the flow past many blades in the azimuthal direction, and a radial jet, generated 

by the rotation as in the Von Karman solution. Outside the boundary layer, taking 

the coordinates to be rotating with the blade and there to be no external stream, 

the flow is only in the azimuthal direction to leading order with the other quantities 

being small perturbations of this free stream. Therefore in order to investigate the 

flow past a surface roughness in the current rotor blade regime we must take the 

approaching boundary layer to be of this three-dimensional form.

The trailing corner problem is also important but is difficult to formulate directly. 

The flow structure on the two trailing edges, away from the corner, is known (see 

figure 6.1). On the trailing edge perpendicular to the outer motion the Blasius-type 

flow dominates and we effectively find the traditional two-dimensional triple-deck 

problem. However on the other trailing edge, perpendicular to the jet, we find the 

radial flow becoming dominant and we obtain the double-deck structure of Smith 

and Duck (1977). See also figure 6.1. These two structures must match or combine 

at the trailing corner but the two effects happen on different streamwise scales with 

the triple-deck occuring at 0{Re~^!^) while the double deck structure has a scale of 

0 (i?e“^/^). So direct matching is not possible and how the two fit together is not 

explicitly clear. However, using the analysis from the hump problem below, we are 

able tentatively to propose a possible structure.

The starting point is, as in chapter 5, the three-dimensional, non-dimensionalised, 

Navier- Stokes equations (5.1) - (5.4). In section 6.2 below, we consider the hump 

flow problem, describing the three-dimensional boundary layer, and set out the
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T wo-dimensional 
Double-Deck structure

Jet dominated flow

BLADE

T wo-dimensional 
triple-deck structure

/ /  Blasius dominated flow
Oncoming boundary layer

Figure 6.1: Sketch in planform of the trailing corner problem, illustrating the double- 

and triple- deck regions away from the corner and the unknown matching as the 

trailing corner is approached.
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flow structure in this regime. In section 6.3 we examine the linearised problem, 

using the Fourier transform to determine the transformed solution for the pressure, 

displacement and velocities. In section 6.4 we seek to invert these transformed 

solutions using both a numerical Fast-Fourier Transform and certain asymptotic 

analysis; this reveals two corridor effects in the displacement: one aligned with 

the flow in the boundary layer and the other aligned with the outer free stream, 

a phenomenon confirmed by both approaches. In section 6.5, we investigate the 

influence of the double deck type structure in the context of the hump flow problem 

which, although the jet effect is secondary in this hump case, becomes important in 

the trailing corner context as the match between the two interactions is not obvious. 

Finally, in section 6.6, we explore a proposed formulation for the trailing corner 

problem, addressing the match between the triple-deck and double deck structures, 

based upon the findings of the jet effect analysis.

6.2 Problem formulation

The set-up of this hump flow problem is that of a three-dimensional hump embedded 

deep inside the boundary layer. The motion far upstream of the hump consists 

of a three-dimensional boundary layer, with classical thickness 0{Re~^^'^) in non- 

dimensional terms. The boundary layer is, as discussed above, assumed to be a 

combination of a Blasius-like boundary layer (taken to be in the x  direction), induced 

by the flow passing over many blades, and a Von Karman type jet (in the z direction) 

triggered by the rotation of the entire rotor blade. See figure 6.2 for a sketch of the 

assumed velocity profiles. Outside of the boundary layer the flow is essentially
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uniform with u = l ^ v  = w =  p = Oto  leading order.

151

Figure 6 .2: Sketches of the assumed oncoming velocity profiles uq and Wq, which are 

of Blasius and Von Karman types, respectively.

The structure of the flow over the hump is of a three-dimensional triple-deck form. 

We explore each of the three decks in turn here. It is this, rather than the double 

deck structure, that dominates as the triple-deck quantities (velocities, pressure and 

^/-scales) are larger and so the double-deck, or jet, effect is not significant to leading 

order. As discussed below in 6.5 the jet effect can be observed but only at large 

distances in z, with z remaining small; otherwise its impact is negligible. The 

hump, as shown in figure 6.3, is assumed to have dimensions of O(e^) in the x  and 

z directions and to be of height O(e^), where e =  Re~^^^ has been introduced for 

convenience. As such we introduce the new scales X  and Z  deflned to be T =  e^X 

and z =  e^Z, respectively. The ^/-scales of the three decks are, as usual, given by 

y ~  in the main deck, y ~  O(e^) in the upper, inviscid deck and y ~  O(e^) in 

the lower deck.
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z

X

Figure 6.3: Sketch of the hump showing the length scales discussed in the text. 

6.2.1 Main deck

In this deck, containing the bulk of the boundary layer flow, we introduce a new 

normal scale ÿ given by y = with e as defined above. The velocities and pressure 

are given by

u — Uo{y) +  eA{X, Z ) uq +  . . . ,  

2 /

w =  w o { ÿ ) ^A{X, Z) w q  ̂ ,

p = e^P(X, Z) +  . . . ,

(6 .1)

(6 .2)

(6.3)

(6.4)

to leading order, where A{X, Z)  is an unknown displacement function. These can be 

easily verified as providing a valid flow solution by substituting into the governing 

Navier-Stokes equations. The leading order velocities uq and wq describe oncoming 

three-dimensional boundary-layer flow as discussed above and shown in figure 6.2.
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In order to match with the outer uniform flow these must satisfy

uo(ÿ) -4- 1, Wo{ÿ) -4- 0, as ÿ ^  oo, (6.5)

and it follows from (6.2) that

dA _ . ,
as 2/ —> oo. (6.6)

This deck is, as usual in a triple deck problem, passively transferring displacement 

effects from the viscous sublayer, the lower deck, through to the inviscid upper deck 

and in turn determining the pressure-displacement law as discussed below.

6.2.2 Upper deck

In this upper region the y-scale is given by y =  e^ÿ. The velocities and pressure are 

expanded here as

(u ,v ,w,p)  = {1 e^v, e^p) +  . . . ,  (6.7)

which corresponds to a small perturbation of the free stream driven by

matching with the main deck via equation (6.6). The governing equations become, 

on substitution of (6.7) into the Navier-Stokes equations, the three-dimensional lin­

earised Euler ones, namely

§ + # + #  = «■ («) 
Ê  -

È  “ “S ’
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subject to

as ÿ —y 0, (6.12)

from matching with the main deck, equation (6.6). We also require that the pertur­

bation quantities are suitably bounded in the far-held. Also, in order to match with 

the main deck,

p —y f  (A, %) as ÿ — 0. (6.13)

These governing equations, (6.8) - (6.11), yield Laplace’s equation for p. This prob­

lem, as in Smith et al (1977) and chapter 5, leads to the relation

the pressure-displacement interaction law.

Later, in 6.5, we consider the relation between the triple deck interaction law de­

rived above and the double deck interaction law where P  = is the pressure-

displacement relation, the derivation of which is discussed in Smith and Duck (1977) 

and Smith (1978). The pressure in the double deck problem is 0{Re~‘̂^ )̂ however 

(compared to P  ~  0 (P e “ /̂®) in the present structure) and so is secondary to leading 

order.

6.2.3 Lower deck

In this innermost layer we introduce the normal scale y = e^Y. We expand the 

leading order quantities as

(u,v ,w,p)  = {eU,e^V,eW,e‘̂ P) -f . . . ,  (6.15)
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and substitute into the Navier-Stokes equation to give the leading order problem in 

this region as the boundary-layer equations

These are to be solved subject to the requirements

U = V  = W  = 0 on Y  = h f ( X , Z ) ,  (6.19)

A i(y4-v4(% ,Z)) ag y - 00, (6.20)

ly  ^  A2(y  +  A (x ,z ) )  ag y - v o o ,  (6 .21)

A(^X, y ) —̂ 0 as AT —y —oo, Z  —y —oo, (6.22)

which are the no-slip conditions on the solid surface and hump which is described 

by y =  h f { X , Z )  where h is a constant, two conditions from matching U and W  

between here and the main deck, and finally zero-disturbance far upstream of the 

hump, respectively. The constants Ai, A2 are the magnitudes of the shear flows in 

the streamwise and spanwise directions, respectively.

6.3 The linearised problem and its solution

One useful aspect of addressing this hump problem, equations (6.16) - (6.22) and 

(6.14), is that it admits a linear solution. If we consider the problem with the height 

of the hump h being small, the velocities and pressures expand as

{U, V, W, P, A) = (AiT, 0, A2y, 0,0) H- h{ü, v,w,p, À) , (6.23)
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and the governing equations become

Ê  + &  + Ê  = «> _ _

Xi Y ^  + \ 2 Y ^  + X2V = + (6.26)

now subject to

Ü = —Ai/ at y  =  0, (6.27)

w = —A2/  at y  =  0, (6.28)

V =  0 at y  =  0, (6.29)

u —y X\A as y  —y 00, (6.30)

V —y A2.A as y  —y 00, (6.31)

where (6.27) and (6.28) are from a Taylor expansion of (6.20) and (6.21), respectively, 

and the others follow straightforwardly from (6.23).

In order to solve this problem we make use of the double Fourier Transform defined 

here as

/ o o  poo
/ e-'’‘̂ - ' ‘̂ F { X ,Y ,Z ) d X d Z ,  (6.32)

■OO J — o o

for any F,  where ** denotes the transformed quantities. Applying this transform to 

the governing equations (6.24) - (6.26) gives

dv **
iku** T  T ilw** = 0, (6.33)

i Y [ X \ k X 2 l ) u * * X i v * *  = —ikp** +  - , (6.34)

i Y  [X\k +  X2l)w** +  X2V** = —Up** +  Qy-2 • (6.35)
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The transform of the pressure-displacement law (6.14) is given by

{k^ +  =  k'^A". (6.36)

The boundary conditions become, on applying the transform,

Û** = - X iP *  at Y  = 0, (6.37)

=  -A z f*  at y  =  0, (6.38)

V** =  0 at y  =  0, (6.39)

tZ** AiÂ** as y -4^00, (6.40)

w** —y A2.A** as y  —y 0 0 . (6.41)

In order to solve this problem we introduce four new quantities, 7 , r ,  and 77 where

7 =  \ 2 Ü **-Xiw*\  (6.42)

r  =  X i ü * * X2 W**, (6.43)

fi =■ X\k +  X2 I, (6.44)

7] =  A2A: — Xil, (6.45)

w h ere  fi a n d  77 are c o -o r d in a te s  sk ew ed  a lo n g  a n d  n o r m a l to  th e  d ir e c tio n  o f  th e  flow  

in  th e  m a in  d eck , re sp e c tiv e ly , an d  7  an d  r  are th e  v e lo c it ie s  in  th o se  d ir e c tio n s .

Considering two linear combinations of equations (6.34) and (6.35) in order to elim­

inate flrst r  and the 7 , we obtain the governing equations in terms of our new 

quantities, namely

•[/XT 4-JJ7]- I - — —  =  0, (6.46)
(Af-f Ai)‘'  ̂ d Y

if iY^ = - ' i r j P * * (6.47)

i f jYr  -f (Aj -f Xl)v** = —i/J-p** +  Qy2' (6.48)
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Similar treatment of the boundary conditions lead to the new constraints

T  =  - {X l  + X l ) f  at y  =  0, (6.49)

7  =  0 at Y  = 0, (6.50)

T —̂ (Aj +  Â )./!** as Y  —̂ oo, (6.51)

'y —y 0 as —y oo. (6.52)

Equation (6.47) yields its solution first. After a slight rearrangement (6.47) becomes

^  = ir]p*\ (6.53)

This is virtually a driven Airy’s equation for 7 and has solution

7 = ^ i ( t ) ,  (6.54)
( l / i )5

where
2 /*°° 1 7T

~  “ 3Ï72 y  sin(-^^ +  - - )d^ ,  (6.55)

and

t = (iiT)^Y. (6.56)

This solution comes from knowing that the solution of

-  Î7 =  (6.57)

is given by

7 = - ^ ^ ,  (6.58)
7T

with L(0) =  L(oo) =  0. Substituting the form of t for Y  from (6.56) and rearranging

causes (6.53) to have the same form as (6.57).
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Now we must determine r . To do this we consider (6.48), differentiate with respect

to Y  and substitute for from the transformed continuity equation (6.33), and

obtain the following differential equation for r:

d^T ôt
=  (6.59)

Once again we have a forced Airy’s equation, but for ^  now. Equation (6.59) has 

solution

—  =  B{k, l)Ai{t) +  ^ ^  .L'{t) , (6.60)
ot (%//)-3

where

B { k , l ) A i ' { 0 ) + ' ^ = ' - ^ ,  (6.61)
(tH)l

from considering (6.48) at T  =  0 . Integrating (6.60) with respect to Y  from 0 to oo 

along with the boundary conditions (6.49) - (6.52) gives

(A? + A^)A" + (A? +  X D r  =  (6.62)

If we then combine (6.62) with (6.61) and apply (6.36) we obtain, substituting for 

/ i, ?7 , an expression for the pressure transform:

r**

^  ^  fc2+/2 (fc2+̂2)l/2 (6-63)
a(z(Aifc+A2/))®/̂

a =  3Æ'(0), (6.64)

=  -0 .7764, (6.65)

where

to four decimal places.
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The other quantities follow and are given by

A "  =  (6 .66)

6.4 Results

We now need to invert the transformed solutions for the pressure and displacement 

in order to determine their solutions. To perform the inversions we adopted a 

fast-Fourier-transform (FFT) numerical approach adapted from that in Press et al 

(1990). The accuracy of the method was tested by reproducing the results of Smith 

et al (1977), with which good agreement was found, and by varying the grid size 

and integration range to ensure sufficient accuracy. When needed in the calculations 

we take A1/A2 =  1.

We take the hump shape to be given by

f { X , Z )  = cos^(L(% " +  for X ‘̂ + Z ^ < 1 ,  (6.69)

=  0 otherwise. (6.70)

The results for the pressure P{X,  Z)  and the displacement A(%, Z)  are displayed in 

figures 6.4 and 6.5.

The numerical results indicate two corridors of interest in the solution of the dis­

placement A[X^ Z)\  one centred on the x-axis, aligned with the outer fiow, and the 

other in the X{ = N~^{XiX +  A2Z)) direction, aligned with the boundary layer fiow
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Figure 6.4: Contour Plot of the Pressure solution. The dashed line corresponds 

toP  =  0. Between the lines P  < 0 and P  is positive elsewhere. The contour 

intervals are 0.02
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Figure 6.5: Contour Plot of the displacement A.  The contour interval is 0.04.

in the main deck, where N"  ̂ =  Aj +  Â . As these regions appear to be of some 

significance we consider now the limits of large x  and X ,  or equivalently in Fourier 

space small k and k{= N~^{Xik +  A2/)).

At large radial distances, T  )$> 1, the pressure takes on a relatively simple 

form. If we consider equation (6.63) for <C 1, it reduces at leading order to

p * *  = (6.71)(A;2 +  Z2)i/2 '

If we invert (6.71) we obtain the asymptotic form of the pressure given by

This is a relatively simple solution and leaves no suggestion of a corridor effect (a 

fact borne out by the numerical results).
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We now consider the displacement A  where we expect to find the aforementioned

corridor effect, with this quantity decaying more slowly in two narrow regions as

discussed just above compared to the global decay. If we examine initially along the

rc-axis we have the transformed displacement A** given by

  £ * *

^  fc2(fc2+̂ 2)V2 • (6.73)
cr(i(Aifc+A20)®/3

Considering large x, this corresponds to small k, so for A; ^  1, / ~  0(1), (6.73) 

becomes

^  - I  \ l \ k ^  ' •

As k is small we can expand this as

Performing the inverse transform on this expression, using the relation

r(n)(ifc)-" 4» H { X ) X ’' - \  (6.76)

where 4* denotes a Fourier transform pair and H(x)  is the Heaviside function, gives

A ^ - f  + (6.77)

with

«'(') -  T s I # -  («■’«>
We can invert (6.78) using the knowledge that

|/|/**(0,0 4^ C ^ d r , ,  (6.79)
J-oo ^  -  V

where

/ oo
f { X , Z ) d X ,  (6.80)

•OO
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from Smith et al (1977). Then G{Z)  is obtained by performing a convolution of the 

right hand side of (6.79) with \ (the inverse transform of (iA2/)~^^^)- This 

yields

f " -
The aspect of this solution that is of most interest is the decay of the displacement 

with X  given by A  f  ^  X~^,  which is compared below with the decay outside of 

this narrow corridor.

If we now consider the X  direction, we introduce N k  =  AiA:H-A2  ̂and Nl  = A2A: —Ai/, 

transforming (6.73) into

= (G.82)
cr{iNk)̂ /^

We now consider large X ,  requiring us to consider A: <C 1, / ~  0(1). This assumption 

reduces (6.82) to

1 + ai

where a\ = As <C / we can rewrite (6.83) as

to leading order. Performing the inverse transform once again we obtain

where
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Equation (6 .86) can be inverted in much the same way as (6.79), multiplying top 

and bottom of the right-hand side by |/| and performing a convolution; we obtain

determining the form of the solution and the decay with increasing X.

In order to confirm that the corridors are distinct from the rest of the flow we 

now consider large distances but not specifically inside either corridor, i.e. consider 

both X  and Z  becoming large. We once again examine (6.73) but this time with 

/î ~  / «C 1. This assumption leads to the equation

To invert this equation we firstly consider the part. The inverse transform

of this is given by

4* ^ r ( - i / 2) {x^  + z y / ^ '

It follows that

k { k + l ) l  4» —  r { - l / 2) +  Z 2)3/2)>

-1  r(3/2) (12X^ -  ZZ^)
27T r ( - l / 2) (%2 +  Z2)7/2 ■

If we now consider the other part of the transform [i(AiA: we write this

as (i^)“ /̂  ̂ which has an inverse given by

^  (6.92)

=  G, say. (6.93)
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From now on we will take Ai =  A2 =  1 for simplicity. In order to determine the 

inverse transform of (6 .88) we need to convolute (6.91) and (6.92). We do this by 

first writing (6.91) in terms of the x  and z  co-ordinates with

1 2 % ^ _  9X^-1-9Z2-k30%Z
(% 2  +  %2)7/2 -  (% 2  +  %2)7/2 '

=  F,  say. (6.95)

We can now perform the convolution

F * G = r  r  -  X)5{i  - Z ) { s -  X f l ^ A s A l  (6,96)
J-OO J-OO +

Doing the i  integration first, making use of the properties of the delta-function, gives 

= r " ^ ^ ^ ^ I ^ H ( s - X ) { s - X f l ^ é s ,  (6.97)

(6.98)

— OO 

/ ‘ OO

Jx

on

L

removing the Heaviside function. Now Gradstein and Ryzhik (1965) give 

~^{x^ 4- $ ^ y ( x  — uy~^dx =

(6.99)

provided 0 < // < A — 2z/, where 3 F 2 { a , b , c ; d , e ,  / 3 )  is a generalized hypogeometric 

series, see Gradstein and Ryzhik (1965) or Abramovich and Stegun (1972). The 

necessary constraint is satisfied in this case and so we can write, inverting (6 .88),

A + f  = x " “'/^ G ( |)  (6.100)

where

= Fi(2)Fi(—2, —Î) + —ri(l)tF i(—1, —t) + PPi(0)Fi(0, t), (6.101)
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and r  1 and Fi are given by

rr(A) =  ’ (6 .102)

=  31 2̂( 2 ) 2 “  Y ’ 2 2 ’ 2 2 ’^ '  (6.103)

This solution is plotted in figure 6.6, based on using a NAG library routine. The 

solution shows the function G becoming singular along the two corridors where this 

solution breaks down and must be replaced by the more slowly decaying results 

from the corridor analysis presented earlier. The major point to note however is 

the comparison between the rates of decay along the % =  0 and Z  = 0 line and 

the decay more globally. It is clear that the corridors, decaying at R~^ and 

persist further than the more global fiow which decays as where R  denotes

the radial distance.

6.5 Jet effect

In order to investigate the trailing corner problem we need to examine how the 

triple-deck structure discussed above interacts with the double deck structure of 

Smith and Duck (1977). To that end we examine here the impact of introducing 

the double-deck effect into the pressure-displacement relation. Originally this was 

thought to require elongating the hump in the ±o;-directions, triggering the double 

deck structure at large |a:| values, the only region in which the double- and triple­

deck structures are of comparable size, in the existing triple-deck regime. However it 

is now thought, from considering the analysis below, that this effect is present even 

with the current non-elongated hump shape. W hat follows is effectively a composite
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Figure 6 .6 : Plot of the farfield A(x) solution for varying where tan ^ =  xf z .  Note 

the corridor effects at 0 =  0®, 45® where the solution is singular.
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approach, see also Rhyzov and Terent’ev (1997), Davis (1991) and references therein.

The only change to the main governing equations generated by introducing this new 

interaction is in the pressure-displacement law. The lower deck governing equations 

remain the same but the pressure-displacement law becomes

where ci is a small parameter corresponding to the relative strength of the double 

deck effect. This new term is small compared to the triple deck relation as the 

pressure in the double deck problem is 0 (i?e“ /̂^) while in the triple deck context 

the pressure is 0 (R e“ /̂®). As examined below the ci effect is only substantial at 

large |X | values with Z  ~  0(1). Elsewhere the jet effect term is small compared to 

the triple-deck effect.

Considering the problem with this new pressure-displacement law leads, by carrying 

through the same analysis as before, to the adapted transformed pressure solution

p** = _________- r ' j k ,  I)_________
I (k^+p) ^O.iuo;

A;2—ei/2(/j2^^2p/2 £r[i(AiA:+A2/)]®/^

which is much the same as in section 6.3. As ei is small the jet effect is generally 

secondary but it is significant if we consider A: <C 1, / ~  0(1) (i.e. as \X\ -4- oo,

z - O ( l ) ) ,

p ..----------------------------------------------------------------------(6 .106)
+A:2-eZ2|Z| ^

To leading order this is given by

P »  = X  + (6.107)
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i.e we have

P "  = +  (6.108)

= Prpj  ̂+ (6.109)

where Ppj-) before and

%  =  (6 .110)

Equation (6.109) can be inverted to give the leading order pressure at large upstream 

distances —(%) ^  1 as

=  (6 .111)

from (6.72), and
q 2 roo

Fjet = - ^ i ^ y  J { X , Z ) d X .  (6.112)

Similar analysis can be carried out for the displacement A(X,  Z)  which once again 

splits into two parts, the first being the same as the triple-deck solution and the

second being specific to this double-deck case and only significant for |X | ^  1,

Z  <C 1. So it appears that the two structures join by means of the triple-deck 

solution decaying as X  —)• —oo, % 1 and becoming comparable in scale and

size with the double-deck solution of Smith and Duck (1977), whilst outside of this 

region the triple-deck structure describes the solution to leading order.

6 . 6  The trailing corner problem

In the present section, guided by the previous analysis in this chapter, we present a 

possible structure for the flow past the trailing corner, as drawn in figure 6.1. The
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governing equations are the interactive boundary layer ones given by

" S + ''sF  *  " ' S  ■

We require the no-slip conditions on the blade (locally a quarter plane),

U = V  = W  = 0 for X  < 0 and X < 0, (6.116)

and symmetry conditions beyond the trailing edge

dU d W
= V  = = 0 for X  > 0 or % > 0. (6.117)

Once again the main deck implies the matching conditions

U ~  Xi { Y- h A{ X , Z ) )  as X o o ,  (6.118)

W -  A2(y  +  A (X ,Z )) as y ^ o o .  (6.119)

The major change between this and a normal three-dimensional triple-deck problem 

comes in the pressure-displacement law which now includes a term. Guided 

directly by the results in the previous section we propose it takes the form

where the small parameter C2 is unknown.

To determine the order of magnitude of 62 we compare the size of the two pressure 

terms in the triple and double deck structures as X  ^  —00. First however we need 

to determine the pressure decay in the triple deck structure as. At the trailing edge
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Z  = 0 as X  —>•—oowe expect a non-zero shear flow (W) coming off the blade. This 

impies, in view of the local behavour in Hakkinen and Rott (1962) that

P _ P ( 0 ) ~ 2 2 / 3  Jqj. (6.121)

locally. Meanwhile in the farfield, A  ~  for —^ < 9 < i r  (while ^  <g 1 on the

blade, —tt < 0 < — | )  from consideration of the general triple-deck problem (here 

tan 6 = x/z) .  The pressure displacement law for the triple deck then implies that

P  ~  (6.122)

say. Balancing (6.121) and (6.122) far upstream implies ~  as X  ^  —oo

{0 ~  tt), i.e. \Z\ |X |“  ̂ is the scale of the local thickness, implying

P  ~  (6.123)

there and giving the unknown pressure decay as X  -> —oo near the blade edge. 

Therefore as X  —>• — oo the combined pressure is given by

A
P  ~  Re-^/‘ \X\-^/^f(0) -  (6.124)

where the powers of Re are known from the respective triple- and double-deck scal­

ings. The two terms in (6.124) are comparable far upstream when

|X | ~  0 (R ê< ^) ,  (6.125)

or in terms of the 0 (1) quantity x,

\x\ ~  0 (Re"^/2®). (6.126)

This suggests the flow at the corner is primarily governed by the triple-deck struc­

ture, with the double deck structure being secondary until X  is of the order given 

in equation (6.125).



Chapter 7

Three-Dim ensional Car Undertray  

Flows, and Blades Near the

Ground

7.1 Introduction

In this chapter we return to considering ground effect, primarily examining the flow 

past a solitary three-dimensional blade operating very close to the ground so that, 

unlike the regime of Chapter 3, the ground is now inside the boundary layer with 

the ground clearance being of

The motivation for the work in this chapter is twofold. Firstly, this regime of a blade 

very close to the ground has implications in the design of car undertrays and front 

wings which seek to exploit ground effect to enhance and maximise downforce. Jones 

(2000) considered the two-dimensional case and Jones and Smith (2000) took this

173
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further and also introduced the three-dimensional case considered here. Secondly, if 

we wish to extend the two-dimensional multi-blade problem of Chapter 3 to include 

even smaller ground clearances than were considered there, or to introduce three- 

dimensional blades, there are various aspects of this single blade case that need to 

be resolved before an attem pt to increase the number of blades can be made.

This chapter sets out both the two-dimensional, single and many blade cases, and the 

single three-dimensional blade problem, looking in particular at large ground clear­

ances within the 0{Re~^^^) range which, as discussed in Jones and Smith (2000), 

tends to be the most realistic range in applications. This limit simplifies the prob­

lem somewhat, causing it to become essentially inviscid, in particular in the gap 

between the ground and the underside of the blade. We briefly explore this limit in 

two dimensions with several blades present before turning to the three-dimensional 

case. A major problem in the three-dimensional regime, which is by no means fully 

resolved here, is determining the cross-over points, where inflow edges become out­

flow edges, which are generally unknown in advance. Whereas in two dimensions the 

difference between the leading and trailing edge is well deflned it is not so obvious in 

three dimensions where the distinct boundary conditions should be applied (these 

conditions being a pressure jump at a leading or inflow edge and zero pressure at a 

trailing or outflow one).

Section 7.2 below reviews the single, two-dimensional blade regime considered in 

Jones (2000), Jones and Smith (2000), describing the necessity of a pressure jump 

condition at the leading edge and goes on to examine the case of many blades in 

the large-height limit where the flow takes on a relatively simple structure. This is 

shown to be consistent with the small height analysis of Chapter 3. In order to try
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to exploit this relative simplicity, section 7.3 examines the three-dimensional case of 

a single three-dimensional blade. Section 7.4 then proceeds to present a numerical 

approach to solving a specific problem using an accurate compact-difference

approach and section 7.5 presents various results for a rectangular planform aligned 

at various angles to the oncoming flow. Finally, section 7.6 investigates several 

regions of interest highlighted by the results of 7.5, including the flow solution as an 

inflow (or leading) edge almost becomes an outflow (trailing) edge.

7.2 The two-dimensional problem

In this section we summarise the two-dimensional case of a blade with the ground 

within the boundary layer, as discussed above. We present the formulation of the 

problem here and then go on to consider the case with many blades present and an 

examination of a large height, inviscid limit.

The set-up of the problem is that of a single blade operating very close to the ground 

with h ~  0 (i?e“ ^/^), where his  à measure of the height of the blade from the ground. 

As such we write h = Re~^h  where h is 0(1). The blade shape is described by the 

functions f{x)  and g{x) where y = f{x) ,  y = g{x) describe the underside and 

upperside of the blade surface respectively and y is the scaled boundary-layer co­

ordinate. Both f {x )  and g(x) are assumed to be 0(1) and /(O) =  g(0) = h. This 

is distinct from the structure examined in Chapter 3 where the ground clearance h 

was assumed to be 0(1) whilst the blades were slender and 0(i?e~^/^). The ground 

now enters the boundary layer calculation directly via a moving ground condition 

requiring the ground to be moving with the free stream.
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IV

X,  u

Figure 7.1: The flow structure and setup of the two-dimensional problem.

The flow structure is based upon four regions: region I is the gap between the 

underside of the blade and the ground, region II is above the blade, region III is 

beyond the trailing edge of the blade (the entire wake) and flnally region IV is a 

distinct small region in the vicinity of the leading edge. See also flgure 7.1. In 

regions I-III the leading order velocities and pressure are given by

(U, V, P)  =  (u, Re-^/^v,p)  with {X, Y )  =  {x, ReT^IS) ■ (7.1)

The governing equations are then the two-dimensional interactive boundary-layer 

equations

du dv 

du du dp d^u

0 =  ÿ .
dy

(7.2)

(7.3)

(7.4)

These equations must be solved in each of the regions I, II and III subject to the
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conditions

U = IjV =  0 at y =  0, (7.5)

U = V =  0 at y — f  (37), (7.6)

u —  Uo, p  — Pq at X  — OT , (7.7)

p(l) =  0, (7.8)

in the gap region I, which are the moving ground condition, the no-slip requirements

at the underside of the blade described by y =  /(^ ) , an inflow condition which is

described in more detail below and a pressure continuity condition at the trailing

edge, respectively. The pressure there is required to be zero as above the blade

p[x) = 0 because the latter pressure must match with the free-stream U =  1, P  =  0 

as y —> oo. So above the blade, region II, we have the boundary conditions

u = V = 0 at y = g{x), (7.9)

u -> 1 as y ^  oo, (7.10)

p{x) = 0, (7.11)

which are for no slip on the upper side of the blade y = g{x), matching with the 

free-stream velocity and matching the ^/-independent pressure with the zero pressure 

in the free-stream. The requirements in region III are given by

u = l , v  = 0 at y = 0, (7.12)

u —y 1 as ?/ —y oo, (7.13)

p{x) = 0, (7.14)

as described for the other regions. The starting condition for region III at rr =  1 is a 

profile comprising of the flow at the trailing edge from regions I and II evaluated at
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X = 1. Finally region IV determines the starting conditions in regions I and II. The 

K utta condition requiring zero pressure at the trailing edge poses a slight problem 

with a non-zero pressure expected beneath the blade needing to become zero at the 

trailing edge. This implies a pressure jump at the leading edge (as the pressure is 

also zero upstream). This can be resolved by introducing a small region IV across 

which there is a streamwise jump of the pressure in the gap. The full solution in 

this region is given in Jones (2000) but we give the main features of this small Euler 

region IV here. Firstly, the Bernoulli quantity p +  is conserved through the 

region so that in the gap:

p(0+) — po{= -  -  -Ug), (7-15)

where Uq and po are constants, unknown in advance and are effectively fixed by the 

trailing edge condition. The starting velocity profile in the gap region is simply 

u{x,y) = Uq. Secondly, considering the solution above the blade implies that both 

the pressure and velocity remain unchanged across this leading edge region giving a 

starting profile with u =  1, p =  0 for all y.

Details of the solution and important features of the above problem are given in 

Jones and Smith (2000). One limit of particular importance is that of large heights 

as these tend to be the most realistic configurations in practice. The flow becomes 

essentially inviscid for large /  values and conservation of vorticity implies that u is 

independent of y in the gap region I. The solution is relatively simple with

“ = W Y
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where

«0 =  (7.18)

It is this relatively simple but physically important limit that inspires the work in 

the next section, which seeks to examine this limit but for a three-dimensional blade. 

There are several extra problems to address when working in the three-dimensional 

context as discussed below but it is hoped that the current limiting case may simplify 

the problem sufficiently to allow some progress to be made.

Before moving to the three-dimensional case we want to make a brief mention of 

the possibility of extending the present work to a multiple blade context (as, for 

example, in chapter 3). There appears to be one major challenge in general. The 

problem is due to the local leading edge region IV. Whereas in the situation discussed 

above the oncoming flow was known (simply u =  1) allowing an analytic solution, 

in a multi-blade case any subsequent blades are subject to an unknown, non-simple 

starting profile. This means the current leading edge solution will not be valid except 

for the first blade (or if the blades were very widely spread) and so a new approach 

to dealing with the leading edge region would be required, possibly along the lines 

of the leading edge pressure jump region in a different context described by Bowles 

and Smith (2000b). This is equivalent to the unknown ^-shifts discussed in Chapter 

3.

However some progress can be made in the large height limit where this leading 

edge problem effectively reduces to the single blade case at every leading edge. As 

set out above the flow between the ground and the underbody takes on a simple 

form given by (7.16) -(7.18), while above the blade we have the free-stream. At the
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trailing edge x =  1 the velocity profile in the gap is given by

“ = W Y
=  1, (7.20)

from the known value of uq from (7.18). Therefore the starting profile for the wake 

region III is simply u =  1, p =  0 for all y, and so throughout region III until the 

next blade is encountered. Introducing an extra blade is straightforward then with 

each being effectively independent and

“  -  # '

where fi describes the underside of blade i which has a trailing edge at x = ti. 

Outside of the gap the flow is the free-stream u = 1, p =  0.

The small h analysis examined in 3.6.2 considered the flow past several thin blades

as the 0(1) height h was reduced. This should yield a range of h similar to that 

considered in the current limit of an 0{Re~^^^) height h as h ^  oo, if we reduce the 

0(1) blades to being slender here also. To this end we write fi = h-t- fsi where the 

fsi describing the underside of the blades are small. The underbody shapes fsi are 

assumed to include the thickness of the boundary layer here. Equations (7.21) and 

(7.22) then become

U = 1 +  ^(/sz(^i) — /sz(^)) +  • • • 5 (7.23)

p  =  (7.24)

In chapter 3, the pressure pg in this limit is given by

Ps = ^(P3i(0) +  fsii^)  +  (3;)), (7.25)
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from equation (3.112), where f^i describes the underside of the slender blade i. How­

ever (/si 4- (a;)) is simply the thickness of the blade and boundary layer combined

(= fsi) and so setting the constant P3i(0) to satisfy the zero pressure condition at 

the trailing edge we obtain

P3 = — fsiiU)), (7.26)

the same relation as (7.24). Hence the inviscid limit here is, as would be expected, 

equivalent to the small h limit from Chapter 3.

7.3 The three-dimensional problem

Encouraged by the simplification offered by considering large h in the two-dimensional 

case, we now begin an investigation of a three-dimensional blade very near to the 

ground. Assuming the same structure holds for the three-dimensional case the gov­

erning boundary layer equations are given by

5 + % + S = «■ (-)
du du du dp d'^u

0 =  (7.29)

dw dw dw dp d'^w .  ,

These are to be solved subject to the boundary conditions in the gap between the 

body and the ground

u = 1, V = w = ^ at y =  0, (7.31)
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u =  V = w = 0 at y = f {x ,z ) ,  (7.32)

u cos /3 +  It; sin /? =  cos p  at inflow edges, (7.33)

p =  0 at trailing edges, (7.34)

where tan 13 = ^  and K±{x) is such that z =  K±{x)  describes the edges of the blade

planform. These boundary conditions correspond to the moving ground condition, 

no-slip on the underside of the blade, an inflow condition derived by considering 

the equivalent of the thin region IV from the two-dimensional case (and ensures no 

jump in the tangential velocity) and finally the by now familiar K utta condition of 

pressure continuity at the trailing edge.

While equations (7.27) - (7.34) describe the entire problem we are still missing one 

factor, namely where the inflow and outflow conditions are appropriate. In the two- 

dimensional case the edge a; =  0 is obviously inflow while the a: =  1 edge is an 

outflow (or trailing) edge. Unfortunately in three-dimensions we cannot generally 

make similar assumptions of the positions of inflow and outflow edges in advance 

nor, therefore, where each type of boundary condition is appropriate. The positions 

of the two distinct types of edges will be determined by the planform shape and the 

thickness f {x ,z ) .

Heartened by the success of the limiting case in the two-dimensional regime we 

turn now to the limit of large h which, to repeat, tends to be the most realistic 

range. Considering the governing equations (7.27) - (7.30) indicates that u and w 

may be independent of the normal coordinate y throughout the gap. It follows that 

u =  —î / ( | |  -1- ^ )  from (7.27) and tangential motion on the underside of the body 

implies +  =  0. Introducing the velocity potential (j), where ^
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leads to the single governing equation

or

for (j). From an application of Bernoulli’s equation the pressure is given by

and so the boundary condition at outflow edges requires that p =  0 or, from (7.37)

— 1 3,t outflow edges. (7.38)

At inflow edges however p,u and w are unknown (as there is a jump in p and

the normal velocity via the now quasi-two-dimensional region IV. These jumps are 

unknown in advance and are effectively fixed by the need to satisfy the trailing edge 

condition). However we do have the constraint

(j) =  X  at inflow edges, (7.39)

from an integration of (7.33) with respect to x.

As discussed above, further progress on determining a solution is generally dependent 

on finding some method of distinguishing leading and trailing edges (or the cross­

over points where the two interchange). However here we adopt a simple geometry 

where the inflow and outflow edges are explicitly known or can be assumed so, within 

certain bounds as we shall see. The specific planform we investigate is a rectangle 

of side 1 in the x  direction and 1/2 in the z direction with the oncoming stream
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aligned at an angle of incidence a  (see figure 7.2). This is equivalent to having the 

planform at an angle in the uniform stream in the x  direction as described above. 

Assuming the angle a  is not too small or too close to tt/2 the sides x = 0 and z = 0 

are both known (or taken) to be infiow edges, while the other two sides x = 1 and 

z = 1/2 are outfiow edges. We take the underbody shape to be given by

f{x,  z) — {1 — r rr(l — x) ‘̂ z‘̂ {-  — z)^), (7.40)

where F is a constant and is taken as F =  30 in the numerical calculations that 

follow.

X

Figure 7.2: Rectangular planform and direction of the oncoming fiow.

For clarity then we repeat the problem to be solved, with co-ordinates aligned with 

the planform. The single governing equation is

dx“̂ dz^ f  dx dx dz dz ’
(7,41)
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and must be solved subject to

(j) = X cos a  +  z sin O! at inflow edges x =  0 or z =  0, (7.42)

=  1 at outflow edges x =  1 or z =  (7.43)
ox dz  2

We now seek to develop an accurate numerical scheme to solve this problem.

7.4 Compact difference solution

In this section we describe the compact difference discretisation used to solve the 

problem defined by equations (7.41) - (7.43). We are attempting to obtain a fourth- 

order accurate solution. The method used is adapted from that described in Spotz 

(1995), Carey and Spotz (1997), Spotz (1998) and references therein. We rewrite 

the governing equation (7.41) as

where

and

d{x,z) — (7.46)

In what follows we assume a grid evenly spaced in both x and z, and define (f)ij to 

be

,ÿ̂ j =  (^(2A,jA), (7.47)

and likewise for other quantities, where A is the step size. Throughout this section 

we make use of various centred difference approximations and their errors all of 

which are defined and given in appendix C.
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In order to derive a fourth order accurate discretisation of the problem we firstly 

replace the derivatives in (7.44) with the standard centred difference operators to 

give

—ô‘̂(j)ij — 6y(l)ij +  Cij5x(t>ij +  dijôy^ij — Tij = 0, (7.48)

where ôx and ôy are the centred difference operators and are all defined in appendix 

C. For example

5.0,, =  (7,49)

and so on. The quantity Tij is the total truncation error from introducing the centred 

difference approximations in (7.48) and is given by

Ignoring this truncation error Tij gives an O(A^) accurate discretisation of the prob­

lem. (It should be noted tha t a second-order accurate method has been attempted 

for the current problem of interest but convergence could only be achieved for a very 

narrow range of alignment angles a.) However, in order to secure O(A^) accuracy 

we now seek approximations to the derivatives in (7.50) in order to include them in 

the finite difference formulation (7.48). We obtain expressions for these derivatives 

by differentiating the governing equation (7.44) to yield

^  d̂ (f) d ‘̂(t) dcd(j) d'̂ (f> dd dcj)
dx^ dxdz^ ^dx^ dx dx dxdz dx dz^
d̂ (j) &̂(j) d̂ (j) dcd^(l) d^cdcf)
dx^ dx'^dz'^ ^ dx^ dx dx"̂  dx"̂  dx

d̂ (j) _  d̂ (f) dî cj) dcd(j) d ‘̂(f) dddcj) . .
dz^ dx “̂dz ^dxdz dz dx dz “̂ ^  dz dz^
d̂ (j) d̂ (j) d̂ (j) dc d̂ (f) d'aède!)
dz^ dx'^dz'^ dxdz"^ dz dxdz dz"̂  dx
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Now each of the (j) derivative terms on the right-hand sides of equations (7.51) -

(7.54) has compact O(A^) approximations at each node i j  (see appendix C for a 

complete list of the approximations and operators). For example if we take the first 

of the derivatives in equation (7.51), it can be expressed as

d̂ (f)  ̂ 2, d̂ (f) d̂ (f) ,  ,  4,

dxdz-^ -  -  12

and so on for all the other terms. All of the terms on the left-hand side of equations 

(7.51) - (7.54) therefore have O(A^) accurate approximations.

If we return to considering the truncation error each of the derivative terms 

on the right hand side of (7.50) can now be replaced by the expressions given in 

equations (7.51) - (7.54). In turn the derivatives on the right-hand side of (7.51) -

(7.54) can be replaced by the compact approximations as discussed just above along 

with 0{h?) errors, as demonstrated in equation (7.55). The O(A^) errors from these 

difference approximations now lead to O(A^) errors in the truncation error equation 

and as such are now incorporated into the O(A^) terms.

Replacing the truncation error as described above the discretisation of (7.44) be­

comes

~ + Cijôx(j>ij + Dij5z(f>ij +
A2
g ~  G j^ x ^ l^ ij  — dijôl.6z(t>ij — Gijôxàz(i>ij] +  O(A^) — 0,

(7.56)

where

A2
Aij — 1 + — {ĉ j — 2SxCij), (7.57)
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Bij (7.58)

Cij
A^

=  Cij T d" ^̂ .Cij CijôxCij — dijôzCij), (7.59)

Dij
A2

=  dij +  ' ^ {d ld i j  +  S^dij — Cijôxdij — dijôzdij), (7.60)

Cij — dzCij T dxdij Cij dij. (7.61)

The O(A^) terms in (7.56) - (7.60) are from the expansion of the truncation error.

Finally, expanding the forms for the finite difference operators in equation (7.56) 

(as given in appendix C), we obtain the complete compact discretisation, accurate 

to O(A^). It is given by

NW4>i-ij^i + N(j)ij+i + NE(j)i^ij^i + W  <f)i-ij 

-\-M<pij +  E(f)i+ij +  SW(j)i-ij-i 4- S(pij-i +  SE(f)i^ij-i = 0,

(7.62)

where the coefficients are:



CHAPTER 7. CAR UNDERTRAYS AND BLADES NEAR THE GROUND 189

So this determines the discretisation of the governing equation and we are now 

left to determine an O(A^) accurate way of fixing the boundary condition on the 

outfiow edge, equation (7.43). In other words we need to find an O(A^) accurate 

discretization of the boundary condition

+  =  (7.72)

If we consider the term first, the centred difference approximation is given by

Expanding this equation and ignoring terms of O(A^) leads to

{ ^ r  =  (774)

However, as determined earlier, we can replace by a centred difference approxi­

mation with an O(A^) error (as in equation (7.51)). Performing this operation, and 

carrying out the identical procedure for gives

A2
 —  +  C i j ^ x ^ i j  +  d Ô x à z< i> ij)

A2
— — ôz4>ij{—Szôl(l)ij 4- Cijôxôz(l)ij +  dijSl(l)ij) = 1, (7.75)

to fourth order accuracy. On each boundary then we also have to deal with grid 

points laying beyond the planform boundary (at x =  1-t-A for example). As usual we 

deal with these points by applying the discretisation of the governing equation on the 

boundary (at x =  1 for example) and combine it with the boundary condition (7.75) 

to eliminate the extra points from the discretisation. The other major problem is 

the nonlinearity of the boundary conditions. This can prove problematic but with 

the iteration regime employed here, iterating point-by-point around the planform.
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the condition is simplified to solving a quadratic equation for <j)ij at each boundary 

point. An alternative, which also proved successful, is to lag the non-linear terms 

in <f)ij, using the previous guess for the solution at the current station, enabling the 

solution to be iterated line-by-line.

Unfortunately there still remains an unresolved issue at the outfiow-outflow corner 

a; — 1, z =  1/2. This is somewhat problematic as, due to the restricted geometry, 

we were unable to derive a compact difference formulation using the above method. 

Several methods of applying the boundary condition at this corner point were tried, 

of which two proved successful. Firstly, we attem pted to used only an O(A^) ac­

curate version at the corner point (while keeping O(A^) accuracy elsewhere). The 

method seemed to work but is obviously not satisfactory in an overall O(A^) ac­

curate scheme. Secondly, we decided to maintain the 0(A'^) accuracy and instead 

abandon the compact grid at the corner point. As such we used an 0(A'^) accurate, 

five point one-sided difference expansion at the corner. So for example at the 

corner is given by

^  =  Ŷ [25</>ATxAr̂  — +  ‘̂^4>Nâ -2Nz — (7.76)

where Nx = 1/A, Nz = 1/(2A) are the number of grid points in the x  and z 

directions, respectively. The term is treated similarly.

So we now have a full, O(A^) accurate, discretisation of our problem and are in a 

position to solve it. In light of the nonlinear boundary conditions on the outflow 

edges it was found to be easier to iterate point-by-point rather than line-by-line as 

the boundary conditions were more straightforward to apply, effectively becoming 

linear in the iteration. It was also necessary to use under-relaxation in order to
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achieve convergence at some angles a.

7.5 Results

In this section we present numerical results, obtained using the method detailed in 

7.4, showing the velocities and pressure produced for various alignment angles a  

ranging from a  = 45° to ct =  7.5°. Figures 7.3 to 7.6 show these quantities as x  

varies for various values of z.

Obtaining convergence at modest angles (15 < a  < 45) is relatively straightforward, 

however if we reduce the angle further convergence becomes increasingly more dif­

ficult to obtain. In fact the smallest angle for which we achieved convergence was 

a = 7.5°, the results for which are presented in figure 7.7. One m atter to note 

from this small angle case is the normal velocity, w, along z =  1/2. Whereas in the 

previous examples the velocity was 0(1 ), it now appears to be tending towards zero 

with a minimum only just above zero near x = 0.65. It is thought that reducing a  

further could mean that this ceases to be an outfiow point altogether and we would 

have a cross-over point, with the outfiow switching to infiow. This could explain 

the failure of the numerical scheme as the assumption that the cross-over points are 

only at the corners would no longer be valid, and at present the method does not 

incorporate a change-over of boundary conditions.

Further evidence that a cross-over point may be approaching is given in figures 7.8 

and 7.9 which show the streamlines for the a = 25° case and the small angle a  =  7.5° 

case. It can be seen that, while in the 25° case the streamlines clearly enter through 

the X = 0 and z  = 0 edges, leaving through the trailing edges, in the a  = 7.5° case
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X

Figure 7.3: Velocity profiles and pressure for a  = 15°, showing the values as x  varies 

for different z values.
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Figure 7.4; As figure 7.3 but for a  = 25°.
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Figure 7.5: As figure 7.3 but for a = 35°.
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Figure 7.6: As figure 7.3 but for a = 45°.
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Figure 7.7: As figure 7.3 but for a  =  7.5".
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it is not so clear as the streamlines run almost parallel to the z = 1/2 edge, once 

again suggesting the outflow is being signiflcantly reduced.

0.5

0.4

0.3

0.2

0
0.60.2 0.4 0.80 1

X

Figure 7.8: Streamlines for a = 25®.

Observe in the results the reduced pressure and increased velocities in the middle 

in line with the presence of the narrowest gap there. The well of reduced pressure 

points to a downforce on the blade. These results are found to agree with those 

presented in Jones and Smith (2000).

7.6 Local analysis

There are four localised regions that, guided by the numerical results, seem worthy of 

further investigation: the local flow near the corners ( inflow-inflow, outflow-outflow
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Figure 7.9: Streamlines for a = 7.5°.
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and inflow-outflow) and the case where an inflow edge is on the verge of becoming 

an outflow one when the normal velocity becomes small. We consider each in turn 

here.

7.6.1 Inflow-inflow corner

Firstly we consider the inflow-inflow corner around x =  0, 2: =  0 as in flgure 7.10.

4> = z sin a

X
4> =  X cos a

Figure 7.10: Flow geometry and co-ordinates for the inflow-inflow corner.

We introduce the local co-ordinates x  and z given by x =  ex and z = ez, respectively. 

This change of co-ordinates gives the local undertray shape as

f { x , z )  = l - e ^ j x z \ (7.77)

Substitution of the new co-ordinates and the expansion of the underbody shape 

implies the form

(j){x,z) =  x c o s a  +  z  sin a  +  6̂  (j)2 , (7.78)
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for the velocity potential which satisfies the boundary conditions at the edges x =  0

and z =  0 and leads to the problem

V ^ 2  =  0, (7.79)

to be solved subject to, in polar co-ordinates (see figure 7.10)

<l>2 = 0 on e =  0 , ^ .  (7.80)

The solution of this problem is given by

<̂2 =  sin 29, (7.81)

where 02 is an undetermined constant, dependent on the global solution. If we 

consider this solution at ^ =  0 for example we obtain the velocities given by

u = c o s a + . . . ,  (7.82)

w =  sina + e^a2X   (7.83)

The implied linear trend in w and u being effectively a constant varying with a

both fit comfortably with the numerical results presented in section 7.5 near the 

infiow-infiow corner.

7.6.2 Outflow-outflow corner

We move from the infiow-infiow corner to examine the flow at the opposite end near 

the outflow-outflow corner in the vicinity of x =  1, z =  1/2 as in figure 7.11. As 

such we consider the local co-ordinates defined as

X = l-\-ex,  (7.84)

z = — ez. (7.85)
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Figure 7.11; Flow geometry and co-ordinates for the outflow-outflow corner.

Substituting into the form for /  these co-ordinates imply

/ (x, z) — 1 — —x^z^ +  . . . (7.86)

Considering the governing equation along with these expansions suggest the form

(f) = {x c o s  CK -I- z s i n  a )  -I- e^(f)s{x, z) - f  . . . ,  (7.87)

for the velocity potential (f). Substituting the form of ÿ, along with the local co­

ordinates and expanded form for / ,  shows the governing equation and boundary 

conditions identically satisfled at leading order (by the {x cos a  -t- z sin a) part) and 

the problem for 03 to be Laplace’s equation

V^03 =  0, (7.88)

subject to the boundary conditions which at this order become

#03 , . #^3 n _ n j  -  n
C O S  CK-;— 4- S i n  =  0 o n  z =  0 a n d  o n  x = 0.

ox oz
(7.89)
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We solve this using polar coordinates defined as x =  —rcos6, z = —rsinO (see also 

figure 7.11) and arrive at the solution

</>3 =  sin(30 +  a) +  h r  sin(^ +  a), (7.90)

where 63 and h  are unknown constants. So for example, on 0 =  0 (or alternatively

z =  0) the velocities expand as

u = cos a  — sin a (8630;̂  +  61), (7.91)

V = sin a  +  cos a (8630:̂  +  61), (7.92)

which once again appear consistent with section 7.5.

7.6.3 Inflow-outflow corner

(f) = z sin a

Figure 7.12: Flow geometry and co-ordinates for the infiow-outfiow corner.

We move now to examine the fiow at the infiow-outfiow corner in the vicinity of 

X = 0, z =  1/2 as in figure 7.12. In contrast to the previous two corners this
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time we must deal with mixed boundary conditions. As before we introduce local

co-ordinates, now defined as

X = ex, (7.93)

z = — 4- ez. (7.94)

Substituting into the form for /  these co-ordinates imply

f{x , z) = l -  -f . . . .  (7.95)

Considering the governing equation along with these expansions suggest the form

(j) = {x cos CK -I- z sin a) -I- e^^{x, z) , (7.96)

for the velocity potential 4>. Substituting the form of (j), along with the local co­

ordinates and expanded form for / ,  shows the governing equation and boundary 

conditions identically satisfied at leading order (by the {x cos a  + z sin a) part) and 

the problem for ^ to be Laplace’s equation

= 0, (7.97)

subject to

^ =  0 on 6  = ——, (7.98)

008 0 ^  +  — ^  =  0 on e = 0, (7.99)
or r oz

with polar co-ordinates as defined earlier. Laplace’s equation yields solutions in the 

form
oo

ÿ =  ^  r"(a„ cos(nû) 4- bn sm(n6)). (7.100)
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Equation (7.98) requires
riTT UTT i n i  \a„cos— =  o„sin— , (7.101)

while boundary condition (7.99) requires

a„ cos a = —bn sin a, (7.102)

in order to be satisfied. Combining these gives

TITT TiTT
an(coso;sin —  +  cos —  sina) =  0, (7.103)

implying

and that

s i n ( ^  +  o;) =  0, (7.104)

2 a
n = 2 k  , with A; =  1, 2 ,3 , . . .  (7.105)

7T

such that n > 1 for the solution to remain finite. So, for example, with a  =  7r/4  we 

obtain
OÛ OÛ

(f) r^^‘̂{a^j2 cos(— ) +  63/2 sin(— )) +  0(r^^^). (7.106)

Once again this can be reasonably compared with the numerical results of the pre­

vious section 7.5. For example see figure 7.6 near z =  1/2, T =  0 where (7.106) 

implies

u; ~  cosa H - (7. 107) 

comparing well with the numerical results. Likewise for other a  values.

7.6.4 Nearing an infiow-to-outflow (cross-over) point

As discussed earlier the numerical method works well if the angle of alignment of the 

blade a  is not too close to either zero or 7t/2. Once a  leaves this range convergence
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(j) =  X  cos a (j) =  X  cos a X

Figure 7.13: Flow geometry and co-ordinates for the inflow edge near Xq where the 

normal velocity approaches zero as a potential cross-over point is reached

is impossible to obtain and this is believed to be caused by the assumption that the 

cross-over points are situated at the corners breaks down. Instead, at least on one 

side if not both, there is numerical evidence that the flow is approaching a cross-over 

point with the velocity perpendicular to the edge going towards zero. In order to 

examine this local region we look at the side z = 0  and, assuming the velocity is 

approaching zero near a; =  Xq, we introduce the local coordinates

X  = X o - \ -  ex, 

z = ez,

(7.108)

(7.109)

with e once again small. Once again the shape of the undertray is unimportant to 

leading order and we expand the velocity potential as

(j) — X q C O S  ex cos a  + ê ej) -I-. . . , (7.110)

where the lower order terms satisfy the governing equation and single boundary 

condition ÿ =  xc o sa  on z =  0 identically. The normal velocity ry =  ~  O(e^) is

also small (as assumed) and we are left with

=  0, (7.111)
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subject to

0 =  0 on z = 0. (7.112)

Once again we adopt polar coordinates (now defined as Æ =  r  cos 6 , z = r sin 6 ) and,

using the standard known solutions of Laplace’s equation we obtain

3

0 =  ^  sin(n0). (7.113)
1

As we have assumed xq to be the cross over point, in order to have the minimum 

perpendicular velocity there we require û2 =  0 giving

0 =  sin(30) +  a ir  sin ^ (7.114)

and the tangential and normal velocities as

u =  cos a  +  e^fiag^z +  . . . ,  (7.115)

w =  e [̂3a3(x^ +  z^) +  Oi] +  . . . ,  (7.116)

respectively. This implies that locally the normal velocity w should have a parabolic 

form. Such a form is in qualitative agreement with the numerical results for a = 7.5°. 

As discussed above, for smaller angles the numerical method breaks down.



Chapter 8

Conclusions and Further Work

8.1 Summary

In Chapter 2 we studied the flow induced by an axisymmetric disc rotating close to 

the ground; specifically concentrating on the distortion of the layer shape beyond 

the disc rim induced by the presence of the ground. The relevance of the problem 

to a general rotor blade was discussed and the far-fleld response for any slender, 

bounded rotor blade was determined. The full problem was then considered, initially 

via an approximate pressure continuity condition, examining the impact of varying 

the height of the disc above the ground and the impact of a body shape positioned 

beneath the disc. As might have been expected the layer shape becomes increasingly 

distorted from the horizontal as the height of the disc is decreased. The solution 

method was then shown to be readily extendable to a more physically accurate 

pressure condition dependent on the layer shape.

We considered in Chapter 3 the flow past a sequence of thin aerofoils traveling
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parallel with and close to the ground. This required treatm ent of both the viscous 

boundary layer problem and the inviscid potential flow which become coupled in 

this many blade context. The outer, inviscid problem required pressure continuity 

upstream, in each of the wakes and at each trailing edge. The inviscid solution was 

determined in the form of two coupled singular integral equations; one of which 

had to be solved first to give the lift distribution across each of the blades before 

the remainder of the solution could be determined. This then fed back into the 

boundary layer problem via unknown y-shifts in the wake centre-line shapes. Two 

asymptotic limits were considered, those of small and large ground clearances. The 

pressure difference (or lift) on each blade was seen to increase as the inverse of the 

ground clearance as the height of the blades was reduced.

In Chapter 4 the periodic limit of the problem discussed in Chapter 3 was examined. 

This arises after sufficiently many blades have been passed at which stage the flow 

was shown to take on a relatively simple form. The boundary layer part of the 

solution effectively splits into two parts, one slowly growing as increasingly more 

blades are passed and an inner layer that is periodic, varying only over the shorter 

leading edge to leading edge period. The problem still required coupling with the 

inviscid problem which was solved as above except that now the periodicity allowed 

some simplification.

Abandoning ground effect temporarily, the subject of Chapter 5 was interactive flow 

past multiple three-dimensional blades. It was shown tha t once an 0{Re^f^) number 

of blades have been passed a new interaction appears which is distinct from those 

discussed before, with the pressure now entering the boundary-layer equations. Once 

again a two tier structure was detected in the boundary layer and the solution in the
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periodic innermost tier was considered before examining a physically important case 

of short blades. The flow structure and some possible solutions were determined, 

driven by the requirement tha t the pressure be periodic across each blade-wake 

period. The pressure was found to drop abruptly across the short blade requiring the 

pressure to grow slowly through the relatively long wake to match at the subsequent 

leading edge.

In Chapter 6 the flow past the trailing corner of a rotating blade was considered via 

a prior investigation of the flow past a three-dimensional hump embedded within a 

three dimensional boundary layer. The linearised version of the flow past a hump 

was examined using the Fourier transform and two distinct corridor effects were 

observed and confirmed by analytical considerations. The solution shed much light 

on the trailing corner problem, specifically presenting a possible mechanism for the 

triple deck structure and the jet-induced double deck structure combining at the 

corner.

Finally, Chapter 7 returned to investigating ground effect, studying a solitary, three- 

dimensional blade in extreme ground effect, operating very close to the ground. The 

two-dimensional problem and the relevance to the many blade case were discussed 

before a compact-difference numerical scheme was derived to investigate a particular 

three-dimensional case. The specific problems associated with a three dimensional 

blade were discussed, where the inflow and outflow edges (and their distinct bound­

ary conditions) are unknown in advance.

The highlights of the present study are felt to be within Chapters 3, 5 and 7, 

speiflcally the handling of the unusual viscous-inviscid interactions including ground 

effect, the examination of three-dimensional blade-wake interactions and the likewise
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new features found for a three-dimensional blade very near the ground.

8.2 Further work

The investigations in this thesis have thrown up various avenues for further work.

In the opinion of the author some of the most interesting include the following:

1. Further investigation is necessary into the flow with three-dimensional blades 

discussed in chapter 7. In particular a greater understanding of the inflow- 

outflow cross-over points is required before further progress can be made on 

a general blade shape. One possible technique for determining their position 

could be to assume their location initially, solve the problem and then check 

if the inflow and outflow edges are all consistent with the initial assumption, 

leading to an updated guess at the cross-over positions.

2. Greater study of the three-dimensional interactive cases of chapter 5 could 

prove fruitful. It may be possible to extend the short blade analysis to cover 

the case of flnite blades, examining the blade tip, or to non-symmetric blades 

(for small non-symmetries in the current regime). Short blade analysis could 

also be extended to cover general non-symmetric three-dimensional blades, or 

lifting cases, possibly requiring pressure adjustment at the leading edge as in 

Bowles and Smith (2000b). Study of the full problem for general blades, both 

symmetric and non-symmetric, would also be appropriate.

3. Further investigation into the trailing corner problem of chapter 6 could like­

wise prove useful. Not only is confirmation required on the assumed structure
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but a detailed examination of the blade tip problem could lend some insight 

into the generation of tip vortices.

4. Obviously the solution for a general three-dimensional non-symmetric system 

of rotor blades (near to or away from the ground) is still very difficult but 

some progress may be made there also. It would require a coupling of a three- 

dimensional boundary-layer solution with the solution of the outer inviscid 

problem. While the boundary layer part can be solved (Smith and Timoshin 

(1996a)) the major sticking point remains the outer problem requiring a so­

lution of Laplace’s equation for the pressure on each side of the rotor subject 

to matching with the boundary layer and pressure continuity in the wakes. 

Whether the axisymmetric approach used for the disc in chapter 2 could be 

extended (perhaps via a panel method for the entire problem) remains to be 

seen.



A ppendix A

Some Standard R esults

This Appendix outlines various standard results utilised in the main text. No a t­

tempt is made to derive the solutions here. All the quantities in this appendix are 

assumed to be suitably non-dimensionalised.

A .l The Blasius solution for the flow past a flat 

plate

Firstly we consider the boundary layer on the surface of a flat plate as considered

by Blasius (1908). It is a solution of the two dimensional boundary layer equations

S + l  = 0’
du du d'^u

+ %  -  W   ̂  ̂ ^

These need to be solved subject to the boundary conditions

u =  u =  G on y =  0, (A.3)
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u —)• 1 as y oo, (A.4)

u = 1  upstream, (A.5)

which are the no-slip conditions on the plate and matching with the free-stream 

u = 1 , both for large y and upstream.

The Blasius solution takes the form

u = /'(??), (A.6)

f  -  /(»?)). (A.7)

where

(A.8)

and the function f{rj) satisfies the ordinary differential equation

r  +  =  0. (A.9)

The boundary conditions become, in terms of / ,

/(O) = /'(O) =  0, /'(oo) =  1. (A.10)

A .2 The Von Karman solution for the flow in­

duced by an inflnite rotating disc

The Von Karman solution. Von Karman (1921), is the solution for an infinite rotating 

disc lying in the plane z=0. In this case the velocities {u, v, w) are given, in terms 

of cylindrical polar co-ordinates {r,z,9), by

u = r f \ z ) ,  (A .ll)
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V = - 2 f{ z ) ,  (A.12

w =  rg{z). (A.13

The unknown functions /  and g are found to satisfy the equations

( / ? - 2 / / " =  0, (A.14

= g \  (a.15

which must be solved subject to

/(0 ) =  /'(0 ) =  0, S(0) =  1, (A.16

f '  —y 0, g —y 0 us z —y oo. (A.17

A .3 The triple-deck structure

The triple-deck structure introduced by Stewartson (1969) and Messiter (1970) was 

found to be necessary to resolve the flow at the trailing edge of a flat plate. It has 

subsequently been applied to many other problems such as the flow past a surface 

roughness and the separation of a boundary layer. It is based upon a three-tier 

representation of the flow structure: an inner viscous sublayer, the lower deck, the 

viscous main deck and an inviscid outer tier, the upper deck. The structure has an 

T-scale defined by a; =  Re~^/^X.

In the main deck, where y = Re~^I^Y^ the solution takes on the relatively simple 

linearised form

u (X ,Y )  = Ui{Y) + Re-^l'^A(X)u[{Y) + (A.18) 

v (X ,Y )  = -R e-^ /^A '{X )u t(Y )  + (A.19)
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p (X ,Y )  = R e - ' /“P (X )  + . . . ,  (A.20)

where A (X )  is an unknown function and Uf, is the oncoming Blasius flow.

In the upper deck, where y = Re~^^^y, we find

u{X ,y)  =  l  + R e - ^ / ^ ( X ,y )  + . . . ,  (A.21)

v{X ,y  =  Re~^f^v{X,y) + (A.22)

p{X,y)  =  Re-^/^p{X,y) + . . . .  (A.23)

The solution in this region leads to the pressure-displacement interaction law which 

takes the form

P(x) = r  ^ d Ç .  (A.24)
^  4 - 0 0

The lower deck, where y =  Re~^l^ÿ, has a solution of the form

u{X,y)  =  R e - ' ' l \ { X ,y )  + (A.25) 

v{X ,y)  =  Re-^'^v{X ,y) + (A.26) 

p(X ,y)  = Re-^ '^P{X).  (A.27)

The problem to be solved in this lower deck is then

i - S  -

subject to no-slip or symmetry conditions at ÿ =  0, a matching condition with the

main deck and a matching condition upstream. A{X)  is determined by matching

with the main deck via the condition

ü ^ \ { ÿ  + A{X))  as ÿ oo, (A.30)
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where A denotes dub/dY  at y  =  0. This lower deck problem must be solved in 

conjunction with the pressure displacement law (A.24).

A .4 The double-deck structure

While the triple-deck structure is appropriate as Blasius flow or any boundary layer 

beneath a non-zero stream passes over a trailing edge (or a surface roughness, etc.), a 

different representation is required when a wall jet approaches a trailing edge, such 

as at the rim of a rotating disc. This problem was investigated by Smith (1978) 

and Smith and Duck (1977). The important x  length scale in this case is given by

X =  Re~^UX  rather than the 0{Re~^/^) scale for the triple deck case. In the current

circumstances the solution essentially divides into two parts (the double deck).

Firstly in region I, when y ^  0(J7e“ ^/^), the velocities take the form

u = uo{y) + R e ~ ^ ^ ^ U i { X , y ) , (A.31)

V = i?e-^/^Si(X,?/)-h. . . ,  (A.32)

p = y) -f . . . ,  (A.33)

where Uo{y) > 0 is the velocity profile of the approaching jet, satisfying Uo(oo) =  0, 

uo(0) =  0, Uq(0) =  A. These lead to the solutions

ui = A{X)uQ{y), (A.34)

vi = -A '{X)uo{y),  (A.35)

^  =  - u o { y ) ^  = A"{X)ul,  (A.36)
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where A{X )  is an unknown function. This then yields the relation

Pr{X,y) = P {X )  +  A"{X) f  ulAy. (A.37)
J O

In order to ensure ^  0 as y —>■ cxd we require

poo
P{X)  = —j A ”{X) where 7  =  / uldy. (A.38)

Jo

Taking 7  =  1 gives the pressure-displacement interaction law

f  (X) =  (A.39)

The second region occurs near the wall, with y = Re~^^^y. The velocities and 

pressure are expanded as

u = Re~^^'^u +  . . . ,  (A.40)

V = +  . . . ,  (A.41)

p =  7(e-^/'^P(%), (A.42)

leading to the viscous governing equations

These must be solved subject to

Û = V =  0  at ^ =  0, (A.45)

u ~  ̂ A(p +  A(X)) as ÿ —>• 00, (A.46)

which are the no-slip conditions and matching with zone I.



A ppendix B

M ean Blasius Flow in the

Interactive Regim e

This appendix determines the higher order terms in the main deck of chapter 5. The 

next order governing equations are given by

= ». <■>■«

=  - S '
Substituting from equation (B.l) for U2 into (B.2) and inserting the known expres­

sions for ui, Ui, Wi from chapter 5, we obtain, after a little rearrangement,

+  %  -  % .  (B.4)dy uo ox oy uq Uq Uq

Integrating with respect to y gives an expression of U2:

218



APPEND IX B. M EAN BLASIUS FLO W  IN  THE IN TERAC TIVE REGIME  219

where B { x , z )  is an arbitrary function corresponding to a displacement effect. Con­

tinuity, equation (B.l), then yields U 2  as

At the next order still the continuity and streamwise momentum equations are given 

by

.  0. (B.7)
o x l  o x  o y  o z

d u o  d u 2  d u 3  d u i
 1~  i--------- H '^2-^”o x  L o x  O x  O x

Considering (B.7) first, if we integrate over the L-period with respect to x ,  followed 

by integrating over the Li-period with respect to z we obtain

where Jq  ̂ v s d x d z  is the mean value of V3  in x  and z.

If we now consider (B.8) we re-write it as

d u o  , d u 3  d u o  d  d u 2 , d u i  d u i  d p 2  , d'^ uo . . .

Most of the terms here can be dealt with directly by integrating over the relevant 

period as in the previous paragraph. However three of the terms require closer 

inspection, namely

where all the velocity terms are known. Substituting the known forms from chapter 

5 and from above these terms (B .ll) become, after some rearrangement,

-  - 5 ^ 1  t  -  f  )-i
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(B.12)

It can be shown that integration of this expression (B.12) over the x  and z periods, 

applying periodicity in the velocities, pressure and displacements, leaves zero; some 

terms giving zero directly with others requiring an integration by parts first. Thus 

if we integrate (B.8) over the x  and z periods and apply the periodicity conditions 

we obtain

Equations (B.9) and (B.13) are those for the Blasius boundary layer and, as in 

chapter 4, satisfy the same boundary conditions. Therefore in this three-dimensional 

case we still find that, as in the two-dimensional and non-interactive cases for many 

blades, the middle deck contains mean Blasius flow.



A ppendix C

Truncation Errors and Difference

Operators

We list here the difference operators and the associated truncation errors for various 

derivative terms used in chapter 7 of the thesis.

C .l Difference operators

The expansions of various differentials used in the main text:

^  (C.l)

+  (0,3)
dxdz  6 dx^dz dxdz^

r c2 / d̂ (f) d̂ (f) , , 4,
-  ), (C.4)dxdz"^  ̂ 12 dx^dz dx^dz^

_ 2 r  j_ . o-  X̂̂ z(j>i3 -  +  2 „] +  0 (A  ), (C.5)dx'^dz ^ 12 dx'^dz dx"^dz^
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=  5 l S % , ~ ^ [ ^  + ^ ^ ]  + 0 (à ^ ) .  (C.6)dx^dz^ a: z J 22 dx^dz^ dx'^dz^

C.2 The 5-operators

The definitions of the various 5 difference operators used in the text and above:

a .* ,  =  (C.7)

(C.8)

~ + (C.9)

r2jT  ̂ — 0 ij+ i)  +  4> i + \ j+ \  —
O x O z Çi j  —  2 ^ 3  ’

(CTO)

2A3

(CTl)

X2r2 J _  — 0ÎJ+1 +  (f>i j - l )
^ x ^ z Y i j  —  ^ 4

, ^ i + l j + 1  +  ( l > i+ l j - l  +  0 i - l j + l  +  ( l > i - l j - l  in \
■1 ^
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