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a b s t r a c t 

Recent technological developments have resulted in the availability of miniaturised spectral imaging sen- 

sors capable of operating in the multi- (MSI) and hyperspectral imaging (HSI) regimes. Simultaneous 

advances in image-processing techniques and artificial intelligence (AI), especially in machine learning 

and deep learning, have made these data-rich modalities highly attractive as a means of extracting bio- 

logical information non-destructively. Surgery in particular is poised to benefit from this, as spectrally- 

resolved tissue optical properties can offer enhanced contrast as well as diagnostic and guidance infor- 

mation during interventions. This is particularly relevant for procedures where inherent contrast is low 

under standard white light visualisation. This review summarises recent work in surgical spectral imag- 

ing (SSI) techniques, taken from Pubmed, Google Scholar and arXiv searches spanning the period 2013–

2019. New hardware, optimised for use in both open and minimally-invasive surgery (MIS), is described, 

and recent commercial activity is summarised. Computational approaches to extract spectral information 

from conventional colour images are reviewed, as tip-mounted cameras become more commonplace in 

MIS. Model-based and machine learning methods of data analysis are discussed in addition to simula- 

tion, phantom and clinical validation experiments. A wide variety of surgical pilot studies are reported 

but it is apparent that further work is needed to quantify the clinical value of MSI/HSI. The current trend 

toward data-driven analysis emphasises the importance of widely-available, standardised spectral imag- 

ing datasets, which will aid understanding of variability across organs and patients, and drive clinical 

translation. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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er; CNN, Convolutional neural network; CT, Computed tomography; DMD, Dig- 

tal micromirror device; DPF, Differential pathlength factor; EMCCD, Electron- 

ultiplying charge-coupled device; FIGS, Fluorescence image-guided surgery; 

WHM, Full-width at half-maximum; GI, Gastrointestinal; HSI, Hyperspectral imag- 

ng; INN, Invertible neural network; LCTF, Liquid crystal tuneable filter; LED, Light 

mitting diode; LOOCV, Leave-one-out cross validation; MIS, Minimally-invasive 

urgery; MRI, Magnetic resonance imaging; MSI, Multispectral imaging; NBI, Nar- 

owband imaging; NIR, Near infrared; OEM, Original equipment manufacturer; RGB, 
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FDI, Spatial frequency domain imaging; SNR, Signal-to-noise ratio; SSI, Surgical 

pectral imaging; SVM, Support vector machine; VOF, Variable optical filter. 
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. Introduction 

Advances in interventional and surgical techniques have been

riven by technological developments in instrumentation and

maging that have enhanced the surgeon’s ability to diagnose and

reat patients with greater precision. Continuous advances in illu-

ination, detection and display technology are beginning to ad-

ress limitations and enhance the information available to the

linician beyond that naturally observable by the human eye or

nder conventional white light visualisation. Spectrally-resolved

easurements of reflected light offer a particular opportunity to

xplore and exploit inherent contrast between different tissues

nd pathologies during both open and minimally-invasive surgery

MIS). This review summarises the clinical context for this technol-

gy, recent hardware and software advances, and discusses how it

ay be translated into practice. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2020.101699
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101699&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:n.clancy@ucl.ac.uk
https://doi.org/10.1016/j.media.2020.101699
http://creativecommons.org/licenses/by/4.0/


2 N.T. Clancy, G. Jones and L. Maier-Hein et al. / Medical Image Analysis 63 (2020) 101699 

Fig. 1. (a) Light propagation in a multi-layered tissue such as the bowel. Some light is regularly reflected, with the rest penetrating the surface where it may be scattered and 

absorbed (indicated by the shift in colour of the arrows). Autofluorescence emission may also occur. After sufficient scattering a fraction may re-emerge from the tissue and 

be detected. Red wavelengths penetrate the tissue significantly deeper, due to lower absorption by haemoglobin, than blue or green. (b) Optical properties of major absorbers 

in surgical imaging applications (absorption data taken from compilation by Prahl (2018) ). Haemoglobin (molar concentration 2.33 mM) is the overwhelming chromophore, 

while the water contribution (55 M) is negligible in the visible range. Bilirubin (20.5 μM) has a peak in the blue but normal physiological concentrations are low. The main 

lipid (molar concentration unknown, see van Veen et al. (2004) for details) absorption peaks are found at blue and NIR wavelengths. The scattering curve shown, with values 

indicated on the secondary axis, is constructed using Eq. (2) and typical values for bowel tissue from Jacques (2013) . Shaded areas represent typical RGB filter coverage in 

the visible range. (c) Eight-band MSI datacube of a segment of porcine bowel tissue. The same information is collected by colour cameras in three 100 nm-wide red, green 

and blue bands (RGB) which, when combined, produce a colour image. 
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1.1. Biophotonics and surgery 

When light penetrates the surface of tissue it may be ab-

sorbed, scattered or transmitted. Additionally, after absorption,

some molecules may reradiate fluorescent light of longer wave-

length ( Fig. 1 (a)). Therefore, when light is reflected from tissue it

carries the fingerprint of the molecular make-up and constituents

of that tissue. Other weaker interactions, such as inelastic scatter-

ing ( Lin et al., 2018a ), and non-linear processes may offer addi-

tional contrast ( Palero et al., 2011 ), but are not considered here.

Fig. 1 (b) shows the chief attenuators of light in surgically-exposed

tissue, i.e., under the skin. Absorption by oxygenated and deoxy-

genated haemoglobin (HbO 2 and Hb, respectively) is dominant,

while fat (lipids) has a small peak in the visible range. Water

has a much weaker effect, that increases beyond NIR wavelengths.

Yellow pigments like bilirubin have an appreciable peak in the

blue-green region of the spectrum ( Jacques, 2013 ) but, outside

of areas with high concentrations of bile (e.g., the gall bladder

( Wirkert et al., 2017 ) or in cases of bilirubinaemia ( Halder et al.,

2019 )), the volume fraction is low. Elastic scattering occurs due to

refractive index discontinuities at a range of length scales from

nanometres (cell membrane) to hundreds of microns (fat cells)

( Tuchin, 2015a ). The strength of these interactions varies with

wavelength, meaning that spectrally-resolved measurements may

be used to unmix and quantify the individual contributors. The

field of biophotonics seeks to accomplish this disentanglement

through controlled illumination and detection hardware in tandem

with mathematical modelling, simulation and data-driven analysis

of the light-tissue interaction. 

1.2. Optical imaging in surgery 

Colour digital cameras are the primary sensing tools used to

guide surgeons during MIS ( Mirota et al., 2011 ). These mimic the

sensitivity of the human eye by detecting visible wavelengths of

light in the red, green and blue (RGB) spectral regions. These

are mounted on the proximal end of rigid endoscopes ( Fig. 2 (e)),

which relay images of the tissue via a system of Hopkins rod

lenses, while illumination is provided by a high-brightness white

light source ( Cockett and Cockett, 1998 ). Flexible endoscopes (and,

recently, some rigid endoscopes) have distal tip-mounted sensors

to provide high definition images. These allow detection and in-

spection of lesions within luminal structures, such as the gastroin-

testinal (GI) tract and bronchus, enabling complex interventions
o be performed ( Shen et al., 2019 ). Some specialist procedures,

uch as inspection of the pancreatic and bile ducts, are carried

ut using a fibre optic imaging bundle ( Fig. 2 (f)) that transmits

 low resolution image to a camera at the instrument’s proxi-

al end ( Voaklander et al., 2016 ). The most common surgical op-

ical imaging device outside of MIS is the operating microscope

 Fig. 2 (g)), and variations on its design are used for microsurgical

asks in neurosurgery, otolaryngology, ophthalmology, gynaecology,

entistry and plastic surgery ( Kriss and Kriss, 1998 ; Uluç et al.,

009 ). Although primarily used by the surgeon for direct, magni-

ed, vision of the operating field, many systems have additional

orts that can be used to mount cameras or additional eyepieces

 Hoerenz, 1980 ). 

Standard colour cameras are chiefly used to relay images of

he operating field to the surgeon, particularly in MIS or micro-

urgery. Therefore, beyond improvements in resolution, magnifica-

ion and access to challenging anatomical sites, enhancement of

he surgeon’s ability to assess the viability of a tissue or charac-

erise the extent of disease is limited to what would be observable

nder direct vision. As a result many decisions are still subjective

 de Cunha et al., 2004 ) and heavily dependant on the experience of

he operator ( Ignjatovic et al., 2009 ). Surgery has increasingly been

ooking to advanced optical instrumentation to improve this by

roviding objective assessments of tissue health in real time. Some

ptical imaging modalities have gained clinical adoption, such as

arrowband imaging (NBI), which uses a narrow range of green

nd blue wavelengths to generate high contrast images of blood

essels. This technology has had limited success in delivering on

ts diagnostic potential as subjective human interpretation is still

equired ( Ignjatovic et al., 2009 ; Rees et al., 2016 ). Exogenous flu-

rescent contrast agents are also capable of identifying blood ves-

els and recent trials have indicated potential for detection of can-

er ( DSouza et al., 2016 ). Although several specialised agents with

olecular specificity are undergoing in vivo trials ( Nagaya et al.,

017 ), routine imaging capabilities are still restricted to a small

umber of clinically-approved dyes. 

.3. Spectral imaging 

Spectral imaging techniques capture the reflectance spectrum of

he tissue over an entire surface, assembling a datacube consist-

ng of one spectral and two spatial dimensions ( Fig. 1 (c)). Depend-

ng on the number of bands acquired the imaging system may be

ermed multispectral (MSI; up to 10 s) or hyperspectral (HSI; up
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o 100 s). Lu and Fei (2014) describe the main approaches used

o assemble the datacube, which may be broken down into scan-

ing (either in the spatial or spectral dimensions) and snapshot

acquiring spatial and spectral information simultaneously) modal-

ties. These spectral data can then be used to generate maps of

issue function ( Tetschke et al., 2016 ; Kawauchi et al., 2019 ), struc-

ural abnormalities ( Bedard et al., 2013 ) or enhanced contrast be-

ween different organs and structures ( Akbari et al., 20 08a , 20 08b ).

There are a variety of surgical imaging techniques with spectral

ensitivity, each bringing particular advantages in depth penetra-

ion (photoacoustic tomography; ( Zhu et al., 2018 )), separation of

bsorption and scattering effects (spatial frequency domain imag-

ng (SFDI); ( Gioux et al., 2011 )) and specificity (fluorescence guid-

nce; ( Zhou and El-Deiry, 2009 )). Despite their advantages, these

ethods inevitably come with caveats related to hardware com-

lexity, motion artefacts or the need for exogenous contrast agents.

lthough some of the demand for spectral imaging technology has

een motivated by the increasing availability of fluorophores for

iagnostics and guidance ( Debie and Hernot, 2019 ), a detailed dis-

ussion of this field is outside the scope of this paper and rele-

ant reviews may be found elsewhere ( DSouza et al., 2016 ). In this

eview we concentrate on purely reflectance-based MSI and HSI

mplementations due to their increasing availability, compatibility

ith other clinical instruments, and the growing range and power

f data processing tools. 

A review by Lu and Fei (2014) summarised the principal hard-

are designs and general medical applications of spectral imaging.

ther relevant reviews have also been published, focussing on spe-

ific medical applications such as neuroimaging ( Giannoni et al.,

018 ), wound assessment ( Thatcher et al., 2016 ) and gastroenterol-

gy ( Ortega et al., 2019 ). However, the ongoing growth of this re-

earch field, coupled with increasing commercial interest, has pro-

ided the motivation to write this review. In this article we aim

o: 

• Focus on surgical applications with particular emphasis on MIS

and MIS-compatible approaches 
• Describe current clinically-approved commercial systems 
• Discuss new computational methods including estimation of

spectral detail from conventional colour images 
• Discuss methods and data for training and validating imaging

systems as well as for understanding fundamental variability

across organs and patients. 

Papers for this review were drawn from the Pubmed database,

oogle Scholar and arXiv with an emphasis on those published

fter spring 2013, which was the end of the period covered by

u and Fei (2014) . The search terms used were spectral imaging

including multi/hyperspectral), surgery (including minimally inva-

ive, minimal access, and open) and in vivo . 

In this paper we first outline the major developments in imag-

ng hardware designs, separated by acquisition method, discussing

heir relative merits with reference to specific clinical applica-

ions. Commercial spectral imaging cameras are highlighted, in-

luding complete systems optimised for clinical use. Data analysis

s covered in Section 3 , beginning with a brief overview of light-

issue interaction theory and modelling before progressing to re-

ression methods, classification problems and machine learning.

ection 4 discusses methods of validating SSI systems, including

omputer simulations, tissue phantoms and real tissue ( ex vivo and

n vivo ), and their ability to quantify performance. The discussion

n Section 5 identifies the major challenges facing SSI technology

n its push toward routine clinical use, and proposes ways the re-

earch community may focus their efforts to overcome them. 
. Surgical spectral imaging (SSI) hardware 

The continued growth in spectral imaging activity has seen fur-

her increases in the application and scope of SSI methods, as ev-

denced by Table 1 . Detailed descriptions of datacube acquisition

echanisms are described in other reviews, therefore we sum-

arise the main types relevant to SSI ( Sections 2.1 to 2.3 ), along

ith a discussion of practical and application-specific constraints. 

.1. Spectral scanning 

Spectral scanning methods sequentially acquire images at dif-

erent wavelengths. One common approach is to flood the scene

ith broadband illumination and include a bandpass filter in front

f a monochrome camera to image the reflected light. A differ-

nt wavelength is acquired by mechanically switching using a

lter wheel ( Fig. 2 (a)) ( King et al., 2015 ; Wirkert et al., 2016 ;

lancy et al., 2018 ), or by using an electronically-tuneable de-

ice such as a liquid crystal tuneable filter (LCTF) or acousto-

ptical tuneable filter (AOTF). This has the advantage of being com-

atible with currently-used high-brightness xenon surgical light

ources, while the relatively simple detection hardware can be

onnected directly to clinical optical imaging instruments as the

ransmission filter is the only addition to the beam path. There-

ore, with minimal modification, filter-based SSI devices can be at-

ached to rigid endoscopes ( Arnold et al., 2011 ; Kavvadias et al.,

013 ; Clancy et al., 2015 ) and operating microscopes ( Ma et al.,

016a ), or positioned on an articulated arm for open or external

maging procedures ( Orfanoudaki et al., 2005 ; Holmer et al., 2018 ;

ulcke et al., 2018 ). Relative tissue-camera motion may cause arte-

acts in the datacube, particularly during long sequences, although

his may be rectified post-acquisition using registration techniques

 Clancy et al., 2012b ; Du et al., 2015 ). 

Scanning may also be implemented in illumination, using a

hite light source and monochromator ( Regeling et al., 2016 ), fil-

er wheel ( Gu et al., 2016 ; Han et al., 2016 ; Wisotzky et al.,

018 ), variable optical filter (VOF) ( Kavvadias et al., 2013 ), AOTF

 Hohmann et al., 2017 ) or digital micromirror device (DMD;

ig. 2 (b)) ( Koh et al., 2009 ; Zuzak et al., 2011 ). Triple bandpass

llumination filters overlapping with RGB detection can be used

o achieve a degree of parallelisation and higher acquisition rates

 Fawzy et al., 2015 ). The increasing availability of high-power light-

mitting diodes (LEDs) at multiple wavelengths has enabled cre-

tion of light-efficient MSI sources capable of switching at high

peed ( Guevara et al., 2013 ; Bélanger et al., 2016 ) and at low-

ost ( Bolton et al., 2018 ). With a high quantum efficiency sen-

or, such as an electron-multiplying charge-coupled device (EM-

CD) or scientific complementary metal oxide semiconductor (sC-

OS), a strobed LED source can also incorporate fluorescence exci-

ation along with reflectance measurements, as demonstrated by

a et al. (2016a) . This allows quantification of haemodynamic

vents, which can further be used to correct the observed fluores-

ence signal ( Ma et al., 2016b ). The disadvantages of LEDs are in-

fficient fibre-coupling, which is problematic for MIS applications,

nd inconsistent spectral resolution across the visible and near-

nfrared range. Low-loss multiplexing using light guides is possible

 Clancy et al., 2012a ) but is difficult to scale to a large number of

avelengths. The challenge for practical implementation of tune-

ble light source-enabled SSI is the need to achieve fast electronic

r software-enabled synchronisation with the camera, which re-

uires interfaces that are not typically available on standard clini-

al MIS or tip-mounted endoscopic cameras. In open surgery cases,

mbient light is an added complication as there is no rejection of

he out-of-band signal, nor can the spectrum of the background be

easured. This reduces the overall signal-to-noise ratio (SNR) to a

reater degree than in systems where scanning is accomplished on
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Table 1 

Comparison of recent SSI methods compatible with both open surgery and MIS. Datacube processing time, where available, is given in brackets beside the frame rate. 

Author Scan Method Dispersive element Spectral Range 

(nm) 

Spectral 

Resolution (nm) 

No. Bands Spatial Resolution 

(Px) 

Frame Rate (fps) Application Target Tissue 

Hohmann et al. (2017) Spectral AOTF 400–650 12–20 6 350 × 370 2 (1.55 s) Gastroscopy Stomach 

Halicek et al. (2017) ; 

Halicek et al. (2019) 

Spectral LCTF 450–900 7–20 91 1392 × 1040 0.02 (4 min) Head and neck 

cancer ex vivo 

Tongue, pharynx, larynx, mandible 

Lu et al. (2015) Spectral LCTF 450–900 20 45–226 1392 × 1040 0.008 (1 min) Small animal 

tumour 

Various abdominal 

Clancy et al. (2015) Spectral LCTF 460–690 7–20 24 1024 × 768 0.14 (45 s) Laparoscopy Bowel 

Han et al. (2016) Spectral Filter wheel 405–665 10 27 582 × 752 0.24 (not given) Colonoscopy Bowel 

King et al. (2015) Spectral Filter wheel 420–972 10 8 1392 × 1040 - (not given) Open Skin 

Wirkert et al. (2016) ; 

Ayala et al. (2019) 

Spectral Filter wheel 470–700 20–25 8 1228 × 1029 2.5 (0.18 s) Laparoscopy, open Bowel, brain 

Olweny et al. (2013) Spectral Tuneable source 

(DMD) 

520–645 5 > 100 3 (0.2 s) Laparoscopy Kidney 

Kavvadias et al. (2013) Spectral Tuneable source 

(VOF) 

400–1000 11–14 15 1920 × 1440 0.5 (not given) Hysteroscopy Endometrium 

Bolton et al. (2018) Spectral Tuneable source 

(multi LED) 

400–950 11–100 13 2592 × 1944 0.03 (not given) Erythaema Skin 

Fawzy et al. (2015) Spectral Tuneable source 

(filter wheel) 

400–760 15 18 659 × 494 15 (2.4 s) Bronchoscopy Lung 

Wisotzky et al. (2018) Spectral Tuneable source 

(filter wheel) 

400–700 20 16 1920 × 1080 - (not given) Otolaryngology Mastoid, parotid, gland 

Ma et al. (2016a) Spectral Tuneable source 

(multi LED) 

530–630 18–33 2 512 × 512 ~10 (not given) Neuroimaging Brain 

Luthman et al. (2018) Snapshot Mosaic sensor 470–630 

600–1000 

< 15 16 (VIS) 

25 (NIR) 

512 × 256 

409 × 218 

90 (10 min) Gastroscopy Oesophagus 

Wirkert et al. (2018) Snapshot Mosaic sensor 470–630 < 15 16 512 × 256 90 (7.5 ms) Laparoscopy Kidney 

Nishidate et al. (2013) ; 

Akter et al. (2017) 

Snapshot RGB 450–690 – 25 1024 × 768 15 (~5 s) Open Skin, liver 

Jones et al. (2017b) Snapshot RGB 500–620 – 13 1024 × 768 30 (33 ms) Laparoscopy Bowel 

Clancy et al. (2014) Snapshot RGB 470–635 25/60 3 1024 × 768 7 (~3 ms) Laparoscopy Bladder, bowel 

Kester et al. (2011) ; 

Bedard et al. (2013) ; 

Shadfan et al. (2017) 

Snapshot IMS 480–656 4–10 8–60 200 × 200 8–10 (not given) Gastroscopy Oesophagus 

Lin et al. (2018b) Snapshot Fibre bundle + spec- 

trograph 

460–690 6 24 1024 × 768 2 (500 ms) Laparoscopy, 

otolaryngology 

Bowel, larynx 

Khoobehi et al. (2012) ; 

Khoobehi et al. (2014) 

Snapshot Fibre bundle + spec- 

trograph 

– 1 – 458 fibres 

(~22 × 22) 

Fundus camera Optic nerve head 

Clancy et al. (2016b) Spatial Spectrograph 350–750 5 > 200 1000 × 50 0.5 (not given) Colonoscopy Bowel 

Kiyotoki et al. (2013) ; 

Mori et al. (2014) ; 

Kumashiro et al. (2016) 

Spatial Spectrograph 400–800 5–10 72 640 × 480 0.06–0.2 

(~10–90 s) 

Colonoscopy, 

neurosurgery, 

gastroscopy 

Stomach, brain, bowel 

Tetschke et al. (2016) Spatial Spectrograph 500–1000 5 100–750 640 × 480 0.1 (40 s) Machine perfusion Kidney 
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Fig. 2. Representative selection of spectral detection mechanisms: (a) Spectral scanning using a filter wheel (or, alternatively, an LCTF/AOTF, Section 2.1 ) in front of a camera 

sensor; (b) Spectral scanning using tuneable light source comprised of broadband light dispersed onto a DMD (alternatively, a filter wheel, monochromator or multi-LED 

source, Section 2.1 ) and coupled into a fibre bundle (FB); (c) Spatial scanning with a hyperspectral line sensor. The galvo mirror scans the image over the entrance slit 

to a prism-grating-prism (PGP) spectrograph (or other imaging spectrograph or variable filter, Section 2.2 ); (d) Snapshot sensors with mosaic and tiled filter arrangements 

attached directly onto the sensor (for other field-splitting arrangements see Section 2.3 ). Commonly-used clinical imaging devices, excluding chip-on-tip instruments, are 

shown, with cross-sections illustrating imaging mechanisms: (e) laparoscope with rod lens image relay and optical fibres running inside the shaft to carry illumination 

light; (f) fibrescope with flexible fibre image guide and fibre optic illumination; (g) operating microscope with co-axial illumination; (h) externally-mounted imager for open 

surgery using camera lens and ring light illumination. The lenses at the eyepiece/camera port must be chosen to form a suitably-magnified image on the sensor, if employing 

SSI types (a, d), or to produce parallel rays, if using an additional scanning mechanism as in (c). 
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he detection side and ambient light may be accounted for during

ystem spectral correction. 

.2. Spatial scanning 

Spatial scanning involves acquiring the spectral information

rom a single point (whisk-broom ( Qiu et al., 2010 )) or line (push-

room, Fig. 2 (c); ( Khoobehi et al., 2004 ; Clancy et al., 2016b ;

etschke et al., 2016 )) and scanning across the field-of-view us-

ng galvanometer (galvo) mirrors or robotic actuation mechanisms

 Avila-Rencoret et al., 2015 ). Spectrometers and imaging spectro-

raphs enable high spectral resolution (a few nm, band full-width

t half-maximum (FWHM)) at hundreds of wavelengths. Spatial

esolution is limited to the number of scan lines acquired and

he constraints imposed by any motion in the target tissue. The

ecessity to house multiple dispersive optical elements, particu-

arly in the case of pushbroom imagers, has made miniaturisa-

ion of these systems a challenge. However, developments such as

ensor-mounted Fabry-Pérot interference filters, have enabled the

anufacture of hyperspectral devices with spectral sensitivity in-

egrated along one dimension of the sensor ( Pichette et al., 2017 ).

his means that the system footprint is limited by the scanning

echanism employed. 

The main limitation to surgical application of this method

s its sensitivity to motion artefacts and the difficulty in align-

ng the spatial slices post acquisition. In vivo imaging of inter-

al anatomy using flexible endoscopes has been demonstrated

ith this technique ( Clancy et al., 2016b ), with scan times min-

mised to limit the effect of motion and deformation during

ata capture ( Kumashiro et al., 2016 ). Alternatively, simultane-

us wide-field imaging using a second camera can allow motion-

orrection ( Yoon et al., 2019a ). External anatomy and more rigid

nternal organs, less prone to gross motion and deformation have

ielded high resolution results in wound-healing ( Calin et al., 2015 ;
olmer et al., 2016 ), neuroimaging ( Mori et al., 2014 ; Fabelo et al.,

018 ) and flap transplantation monitoring ( Kulcke et al., 2018 ). 

.3. Snapshot acquisition 

Snapshot imagers capture all three dimensions of the datacube

imultaneously. This is usually done by distributing both spatial

nd spectral information across a single image sensor. A compre-

ensive review of snapshot spectral imaging devices and a detailed

reatment of their operating principles is presented by Hagen and

udenov (2013) . Their principal disadvantage is that fast acquisi-

ion is achieved by compromising on spatial resolution. Depend-

ng on the mechanism used, this effectively limits the number of

avebands to the MSI domain. For example, for a 9-band snap-

hot imager based on a 2048 × 1088 sensor, the final spatial res-

lution will be 0.25 MP, but for 25 bands this drops to 0.09 MP.

his approach has found particular use in applications where the

ensor size is not the limiting factor for spatial resolution, such as

brescopes. ( Shadfan et al., 2017 ). Improved spectral performance

an be achieved using fibre bundles to map spatial locations to in-

uts on a spectrograph ( Khoobehi et al., 2012 ), while spatial res-

lution can be improved through combination with simultaneous

GB imaging ( Lin et al., 2018b ). 

Snapshot detectors using multiple optical elements, such as

risms and image-slicing mirrors, may add significant weight

hrough glass components and metal enclosures, which constrains

heir use. Their complex bespoke design further limits the range of

pplications in which they can be used. For these reasons snapshot

magers have remained relatively inaccessible for general research

pplications until recently, with the advent of spectral imaging

ensors. A number of companies now offer products in this area,

ith spectral filters positioned directly onto the sensor. These are

onfigured as tiled , consisting of an array of relatively large filters

overing 10 0 0s of pixels, and mosaic , having a repeating pixel-level

attern over the entire sensor, designs ( Fig. 2 (d)). They are cur-
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rently available both in OEM form and as part of a complete cam-

era package ( Pichette et al., 2016 ). Like the spectral scanning sys-

tems, discussed in Section 2.1 , these cameras can be placed directly

in place of existing clinical digital cameras on rigid endoscopes

( Wirkert et al., 2018 ), fibrescopes ( Luthman et al., 2018 ), and op-

erating microscopes. 

2.4. Applications and system choice 

The hardware configuration to be used for a particular SSI ap-

plication must be made with an appreciation of the advantages

and disadvantages of each approach and is a question that can-

not be answered by a single metric. Variable filters such as the

LCTF and AOTF offer the advantages of being free from mov-

ing parts, having electronic control and flexibility in wavelength

choice. However, the devices are optically inefficient: for exam-

ple, LCTFs optical transmittance ranges from 5% at 420 nm to ap-

proximately 35% at 700 nm ( CRi, 2019 ; Thorlabs, 2019 ), necessitat-

ing long camera integration times or sophisticated high-sensitivity

sensors to collect enough light. Cameras employing sCMOS, inten-

sifiers or EMCCDs ( Martin et al., 2006 ; Arnold et al., 2010 ) have

been used in these systems to operate at speeds approaching video

rates. Due to the sequential nature of the acquisition process, the

datacube may be subject to artefacts induced by cardiac, peri-

staltic or respiratory motion. This can cause significant misalign-

ment in the image stack, particularly if a large number of wave-

lengths are required, resulting in errors in the spectra recorded

at particular spatial points. These errors can be corrected using

a separate colour camera to track motion and apply correspond-

ing adjustments to the spectral channel via photogrammetry tech-

niques ( Clancy et al., 2012b ). Alternatively, computer vision tools

for non-rigid registration can be used to align the spectral images

using contrast and intensity-based features ( Stoyanov et al., 2012 ;

Du et al., 2015 ). 

Pushbroom hyperspectral sensors are desirable for applications

where high spectral resolution is required. For example, to achieve

spectral unmixing of multiple absorbers and scattering contribu-

tors ( Randeberg et al., 2010 ) or classify lesions ( Kumashiro et al.,

2016 ). Pushbroom HSI cameras offer great application versatility

as they provide high resolution data at hundreds of wavelengths.

One of the main practical drawbacks of these devices for surgical

use is that they are much more sensitive to motion, lacking spatial

cues in individual scan lines, rendering vision-based registration

techniques unsuitable. There are practical limitations to mount-

ing these cameras on surgical imaging equipment. Scanning mech-

anisms need to be mounted with imaging spectrographs, adding

weight, complexity and the potential for misalignment. Further-

more, even the most compact spectrograph designs are relatively

large even without the imaging sensor, which would prevent their

use in hand-held devices such as laparoscopes (typical MIS cam-

eras weigh < 100 g). New systems, such as the Snapscan (IMEC,

Belgium) aim to counter these limitations by integrating scanning,

spectral dispersion and detection in a single unit. Although a much

more robust design, its weight (~500 g) remains a factor when

considering mechanical constraints. 

The footprint of snapshot devices, particularly sensors of the

type shown in Fig. 2 (d), is comparable to conventional cameras

already used clinically and the design is mechanically robust.

The strength of this method in surgery is that it is immune to

motion-induced misalignments, thus enabling capture of fast pro-

cesses and delivery of functional information to the clinician in

real-time. These devices have been demonstrated in neurosurgery

( Pichette et al., 2016 ), flexible endoscopy ( Luthman et al., 2018 ;

Wang et al., 2018 ), and retinal imaging ( Firn and Khoobehi, 2015 ).

Nevertheless, there remains some important considerations when

considering a sensor of this type. Snapshot acquisition requires
he 3D datacube to be distributed on a 2D sensor, meaning that

apture speed comes at the expense of spatial resolution and/or

he number of available wavebands. The type of filter used by the

ensor should also be considered when choosing an application-

pecific imager. Signal cross-talk between adjacent pixels may be-

ome significant in mosaic-type sensors, where pixel-level filters

re used, leading to further degradation of spatial resolution. In

he case of interference filters, the transmission bandwidth and

entre wavelength is dependant on the distribution of angles of

ncoming light ( Frey et al., 2015 ). Therefore, careful characterisa-

ion of the imaging optics is needed, with the final spectral reso-

ution determined by the ratio of the camera focal length to the

iameter of the entrance pupil (the system’s F-number). This may

ary significantly between surgical scenarios and the optical instru-

ents shown in Fig. 2 (e–h). Interpretation of signals from these

ixel-level sensors is also complicated by the spectral response of

he filters themselves, with some containing prominent side-lobes

nd secondary passbands, which result in significant cross-talk be-

ween the blue and red ends of the spectrum ( Wirkert et al., 2018 ;

isotzky et al., 2019 ). 

Recognising the trade-offs that must be made between spa-

ial, spectral and temporal resolution, and bound by experimental

onstraints, many researchers have adopted a two-stage develop-

ent process, using high spectral resolution HSI scanning devices

or initial exploratory work and then proceeding to more stream-

ined and efficient MSI systems. This necessitates data reduction

echniques to isolate the spectral bands in HSI datacubes that

ontain the most clinically-significant information without com-

romising on specificity or sensitivity. Wirkert et al. (2014) anal-

sed surgical datacubes comprised of 30 wavelengths, captured

sing an LCTF-based system, and used an information theory-

ased approach to identify eight optimal bands for oxygen sat-

ration estimation. This meant that the imaging hardware could

e switched to a fast filter-wheel platform. A similar approach

as taken by ( Kiyotoki et al., 2013 ) to identify five bands that

ould optimally discriminate between adenomatous and normal

issue in the colon. Reducing the number of wavebands brings sev-

ral advantages, including reducing the data storage burden, en-

bling use of high throughput transmission filters, and limiting

he impact of tissue motion through faster datacube acquisition

ime. 

Given the dynamic nature of the operating theatre, speed re-

ains an important performance metric of surgical imaging sys-

ems in general. Of the SSI systems surveyed here and listed in

able 1 it is unsurprising that the snapshot methods boast the

ighest acquisition rates. Those based on RGB camera hardware

an typically operate at 30 fps while more recently-developed

iled/mosaic sensors can acquire at up to 90 fps. Both spatial

nd spectral scanning methods are considerably slower, with most

chieving framerates of less than 0.5 fps. Just one of the cases

eported speeds approaching video rate, using an optimised fil-

er wheel setup running at 15 fps ( Fawzy et al., 2015 ). The next

losest to this used fast-switching light sources ( Hohmann et al.,

011 ; Olweny et al., 2013 ; Ma et al., 2016a ) and filter wheels

 Wirkert et al., 2016 ). The most significant remaining bottleneck

hough, is the processing method used. The computation times as-

ociated with each of the techniques is less than 1 fps in most

ases, with the 133 fps convolutional neural network (CNN)-based

ethod quoted by Wirkert et al. (2018) standing alone as a truly

ideorate/realtime example. Even allowing for the wide variety of

rocessing techniques, datacube sizes, computer hardware and im-

lementation it seems clear that handling these datasets remains

 challenge. With this in mind it is worth considering what ‘real-

ime’ means in the context of the surgical application before pur-

uing speed over other performance metrics. For example, a single

rocessed image showing a map of oxygenation or perfusion, pro-
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Fig. 3. Top: Intraoperative oxygenation mapping during transection of the large 

bowel. Maps of SO 2 show a well-defined border between perfused and non- 

perfused tissue after separation of the marginal artery. The location of this bor- 

der differs from that chosen by a surgeon, indicated by the steel instrument, fol- 

lowing inspection. See Table 2 for acquisition details. Image taken from Jansen- 

Winkeln et al., 2019 , Reprinted by permission from Springer Nature Customer Ser- 

vice Centre GmbH: Springer International Journal of Colorectal Disease (Determina- 

tion of the transection margin during colorectal resection with hyperspectral imag- 

ing (HSI), Boris Jansen-Winkeln et al.)© (2019). Bottom: choosing a site to create an 

oesophagogastric anastomosis, with SO 2 indicating a well-vascularised region. Im- 

age taken from ( Köhler et al., 2019 ). Reprinted by permission from Springer Nature 

Customer Service Centre GmbH: Springer Surgical Endoscopy (Evaluation of hyper- 

spectral imaging (HSI) for the measurement of ischaemic conditioning effects of the 

gastric conduit during esophagectomy, Hannes Köhler et al.)© (2019). 
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c  
essed in a couple of seconds, may be just as clinically valuable

s a continuous, realtime measure of the same scene. Conversely,

n SSI-supported vision system to identify early-stage precancer-

us lesions during exploratory procedures would have much higher

emporal demands. 

.5. Commercial systems and clinical translation 

Commercial activity in spectral imaging devices has increased

teadily over the past decade and there are now several options

rom OEM-scale sensors to complete systems spanning a range

f application areas. Table 2 summarises the range of currently-

vailable systems, along with references to research articles in

hich they have been cited. Perhaps the most notable recent de-

elopment is the continued refinement of snapshot sensors, which

ave dramatically reduced the hardware footprint and increased

cquisition speed, both prerequisites for surgical use. As this tech-

ology begins the mature the variety of sensors has grown. The

cean Insight (formerly Ocean Optics/Pixelteq) PixelCam can de-

iver six bands in the visible range, while IMEC have a range of

iled and mosaic sensors available from different camera manu-

acturers (Ximea, PhotonFocus) spanning visible and near-infrared

avelengths. The CMS range from Silios Technologies includes mo-

aic sensors comprising eight filtered and one monochrome (i.e.,

nfiltered) channel. 

Commercial spectral scanning devices using tuneable light

ources are available from Optronic Laboratories (OL-490), but

canning in detection is more common, with LCTF (Perkin Elmer

uance/Maestro) and filter wheel options (Ocean Insight Spec-

roCam). Pushbroom scanning imagers, like the Hyspex (Norsk

lektro-Optikk), have been most commonly-used in skin imaging,

here there is a greater degree of control over potential tissue-

amera motion. 

Clinical translation remains limited, with few systems on the

arket for human use. The hyperspectral TIVITA series imagers

Diaspective Vision GmbH, Germany) have options for general

issue imaging, wound-healing and surgery, and have demon-

trated potential utility in gastric anastomoses ( Köhler et al., 2019 )

nd colorectal transection margins ( Jansen-Winkeln et al., 2019 )

 Fig. 3 ). The multispectral HyperView (Hypermed Imaging, Inc.,

SA) and Snapshot NIR (Kent Imaging, Inc., Canada) are hand-

eld devices for perfusion and oximetry ( Hartwig et al., 2016 ). An

arlier iteration of the HyperView system, the OxyVu, was also

sed to characterise burn depth in animal models ( Chin et al.,

016 ). Both can generate maps of relative haemoglobin concen-

ration and oxygen saturation, while the TIVITA system provides

dditional indices relating to perfusion and water content. Com-

lete systems for small animal imaging in vivo , such as the Maestro

Perkin Elmer, Inc., USA), have been used to collect spectral imag-

ng data from head-and-neck cancer xenografts ( Lu et al., 2015 ;

alicek et al., 2019 ). 

. Spectral image analysis 

After acquisition, the most fundamental processing step that is

arried out on the datacube is to convert the reflected intensity

easurements to reflectance spectra by correcting for the system’s

pectral sensitivity, normally achieved using a reference reflectance

tandard measurement ( Lu and Fei, 2014 ). These spectra can be

urther converted to absorbence by taking the negative logarithm

f reflectance. Interpretation of these results and quantification of

issue properties can then be achieved using light-tissue interac-

ion models ( Section 3.1 ) or data science techniques ( Section 3.2 ). 
.1. Light propagation models for surgery 

If it is assumed that the forward process of light propagation

s well-described by mathematical models or simulations then the

nverse problem may yield the tissue properties of interest from

pectral measurements. An approximation of the total absorption

oefficient of a tissue ( μa,tissue ) under investigation can be calcu-

ated, using Eq. (1) , as a linear sum of the contributors described

n Section 1.1 : 

a,tissue = ε Hb c Hb + ε Hb O 2 c Hb O 2 + ε water c water + ε fat c fat + ε bili c bili 

(1) 

here c [M or mol cm 

−3 ] and ε [ M 

−1 cm 

−1 ] represent the con-

entration and specific molar extinction coefficient, respectively, of

eoxyhaemoglobin ( Hb ), oxyhaemoglobin ( HbO 2 ), water, lipids ( fat )

nd bilirubin ( bili ). Jacques (2013) has compiled a set of numeri-

al values and typical volume fractions for various organs that can

e used with Eq. (1) to generate a realistic tissue absorption spec-

rum. Losses due to scattering from the continuum of particle sizes

ay be described by Mie scattering theory, which assumes spher-

cal scatterers and generally predicts a smooth decrease with in-

reasing wavelength. Subcellular particles having diameters smaller

han the wavelength of light are subject to the Rayleigh limit

 Tuchin, 2015b ). Therefore, the observed reduced scattering coeffi-

ient ( μs ’ ) is a combination of both regimes and is often described

y the empirical model shown in Eq. (2) ( Hidovi ́c-Rowe and Clar-

dge, 2005 ; Jacques, 2013 ; Mourant et al., 2014 ; Pichette et al.,

016 ): 

′ 
s = a λ−b (2) 

here λ is wavelength, a is a scaling factor and b is termed the

cattering power , indicating the strength of the effect. 

A common method to obtain the absorption and scattering

oefficients from reflectance data is to perform iterative fitting
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Table 2 

Commercial spectral imaging devices and systems for research and clinical use. 

Manufacturer Model Spectral 

resolution (nm) 

Spatial Resolution Bands Spectral Range 

(nm) 

Datacube Acquisition 

Time (s) 

Citing articles 

Diaspective Vision GmbH TIVITA (formerly TI-CAM) 5 640 × 480 100–750 500–1000 5 Holmer et al. (2016) ; Tetschke et al. (2016) ; 

Holmer et al. (2018) ; Kulcke et al. (2018) ; 

Jansen-Winkeln et al., 2019 ; Köhler et al., 

2019 

Hypermed, Inc. HyperView/OxyVu ‡ ‡ 8 400–700 < 1 Yudovsky et al. (2011) 

Kent Imaging, Inc. Snapshot NIR ‡ ‡ 4 670–940 < 1 ∗ Hartwig et al. (2016) 

IMEC CMV2K-SSM4 × 4–9.2.10.3 

Ximea xiQ 

15 512 × 256 16 470–630 0.01–1 Luthman et al. (2018) ; Wirkert et al. (2018) 

IMEC SSM5 × 5 5.4.20.8 

Ximea xiQ 

15 409 × 218 25 600–1000 0.01–1 Luthman et al. (2018) 

Optronic Laboratories OL-490 5 NA ǁ > 100 380–780 NA ǁ Zuzak et al. (2011) ; Olweny et al. (2013) 

Ocean Insight (Pixelteq) PixelCam 60 2048 × 2048 6 400–1000 0.067 ( Vemuri et al., 2019 ) 

Ocean Insight (Pixelteq) SpectroCam 10–100 2456 × 2058 8 400–1000 0.27 Clancy et al. (2013) ; Moccia et al. (2018) ; 

Wirkert et al. (2018) 

Ocean Insight (Fluxdata) FD-1665-MS 50 1628 × 1236 3–7 400–1000 0.01 Sohaib and Robles-Kelly (2015) 

Photonfocus MV1-D2014 × 1088-HS03 15 2048 × 1088 16 470–630 0.02 Wang et al. (2018) 

Photonfocus MV1-D2048 × 1088-HS05-G2 10–12 2048 × 1088 150 470–900 42 fps † 

Norsk Elektro Optikk HySpex VNIR 1800 3.26 1800 182 400–1000 260 fps † Bjorgan and Randeberg (2015) ; 

Paluchowski et al. (2016) 

IMEC Snapscan NIR 

Snapscan VNIR 

10–15 3650 × 2048 > 100 

> 150 

600–970 

470–900 

0.2 

IMEC Linescan NIR 

Linescan VNIR 

< 10 2048 > 100 

> 150 

600–1000 

470–900 

2720 lines/s † 

Silios Technologies CMS-C 

CMS-V 

CMS-S 

40 426 × 339 8 500–830 

650–930 

0.02 Waterhouse et al. (2017) 

Perkin Elmer Nuance/Maestro 7–20 1392 × 1040 500 450–950 5 (16 bands) § Lu et al. (2015) ; Halicek et al. (2017) ; 

Halicek et al. (2019) 

Surface Optics Light Shift 25 512 × 512 16 400–1000 0.0333 

∗Includes haemoglobin estimation processing. † Acquisition rate for individual spatial line. Needs line-scanning mechanism for image formation. ‡ Information not available. §dependant on number of bands and camera integration 

time. ǁSystem is a stand-alone multispectral light source; camera/detector is user-dependant. 
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n a forward model based on diffusion theory ( Spott et al.,

998 ). This has been used successfully with point probes

n the pancreas to identify adenocarcinomas and pancreatitis

 Wilson et al., 2009 ). This was expanded to HSI of the skin by

andeberg et al. (2010) and allows calculation of relative concen-

rations of absorbers, scatterer size and distribution, and estima-

ion of blood vessel density ( Randeberg et al., 2005 ). This is a

omputationally-expensive process for imaging, given the complex-

ty of the model and number of free variables, to solve the inverse

roblem iteratively and requires more advanced parallel computing

ethods ( Bjorgan and Randeberg, 2015 ). 

A simpler approach uses the modified Beer-Lambert law

 Villringer and Chance, 1997 ), which states that absorbence ( A ) is

roportional to the concentration ( c ) of the light-absorbing com-

ound and the distance that the light travels through the tissue

 L ). The constant of proportionality is the extinction coefficient ( ε)

nd there is an offset term ( G ) to account for scattering losses, ap-

roximated as being wavelength-independent ( Eq. (3) ): 

 ( λ) = Lcε ( λ) + G ;μa = cε (3)

A differential pathlength correction factor ( DPF ), determined

xperimentally ( Pichette et al., 2016 ), or using computer simula-

ions ( Hillman, 2007 ), may also be included to correct wavelength-

ependant variations in L . To simplify calculations for SSI an ‘equal

athlength’ assumption can be made, and the DPF and L incorpo-

ated with c , which becomes a relative concentration . 

If A is measured using the SSI device, and ε is known a pri-

ri , then Eq. (3) can be solved using linear least squares regres-

ion to compute the relative concentrations and G . Subsequent

alculation of total haemoglobin ( THb = c HbO2 + c Hb ) and oxy-

en saturation ( SO 2 = c HbO2 / THb ), can then be easily achieved.

q. (3) can be solved analytically, making it attractive for fast

rocessing over an entire image, and has been used to quan-

ify haemoglobin and perfusion-related variables in the heart

 Nighswander-Rempel et al., 2003 ), bowel ( Clancy et al., 2015 ),

terus ( Clancy et al., 2016a ), skin ( Zuzak et al., 2002 ) and mam-

ary carcinomas ( Sorg et al., 2005 ). Calculations can also be sig-

ificantly simplified if some experimental constraints are applied.

f temporal changes are relevant, in a study of brain activity to var-

ous stimuli, for example, then SSI data acquired from the same

tationary tissue area can be analysed to calculate changes in

hromophore concentration, as the pathlength terms cancel out

 Bouchard et al., 2009 ). 

Computer simulations of photon propagation in tissue can be

sed to form a forward model, avoiding some of the assumptions

ade by diffusion theory and Beer-Lambert. Claridge and Hidovi ́c-

owe (2014) have developed an image analysis method based on

 multilayer Monte Carlo (MC) model for examining pathologi-

al changes in the mucosa of bowel tissue ex vivo . The model is

sed to simulate reflectance spectra for ranges of tissue optical

roperties. These spectra are fitted to experimental results in a

ast iterative process that uses the Kubelka-Munk approximation

f diffuse reflectance as part of the optimisation process ( Hidovi ́c

nd Rowe, 2004 ; Hidovi ́c-Rowe and Claridge, 2005 ; Claridge et al.,

007 ). Wirkert et al. (2016) also employed a forward Monte Carlo

odel to estimate the tissue properties. In this case, multiple sim-

lations for varying tissue oxygenation and blood volume condi-

ions were used to train a random forest regressor and achieve

apid processing of high-resolution multispectral images during

IS (imaging and regression times of 400 ms and 180 ms, respec-

ively). 

.2. Multivariate regression and classification algorithms 

The previous section included an outline of analytical and lin-

ar regression methods used to unmix individual spectral contrib-
tors to the observed reflectance signal based on some assump-

ions and a priori knowledge of the principal chromophores. How-

ver, a purely data-driven method using a statistical model treating

pectral data as predictors can avoid the assumptions of physical

odels. These are well-suited for imaging applications due to their

omputational efficiency and ability to detect subtle differences be-

ween classes. This is an attractive proposition in surgical segmen-

ation problems, where lesions or anatomical structures of interest

ay have broadly similar reflectance characteristics to background

issue. 

The review by Lu and Fei (2014) contains an overview of many

f the most commonly-used statistical analysis methods applied to

edical spectral images in general. For HSI this can include an ini-

ial dimensionality-reduction step, achieved using principal com-

onent analysis (PCA), minimum noise fraction (MNF) or indepen-

ent component analysis (ICA), to extract the most information-

ich spectral features and reduce redundancy in the data. These

echniques transform the data into a subspace where it is arranged

ccording to the amount of variance, thus enabling separation of

ifferent contributors to the signal, such as tumourous and healthy

issue ( Lu et al., 2014 ; Chung et al., 2016 ). In addition to identi-

cation of diagnostic signals, this type of approach can also be

sed to reduce noise in the datacube by keeping only the trans-

ormed bands with high signal-to-noise ratio ( Bjorgan and Ran-

eberg, 2015 ). Dimensionality reduction helps to avoid overfitting

roblems associated with unsupervised methods such as k-means

lustering, when used as a pre-processing step ( Torti et al., 2018 ).

-means, which iteratively assigns pixels to ‘cluster centres’ by

inimising their Euclidian distance, has been used to identify can-

er of the breast ( Khouj et al., 2018 ), colon ( Baltussen et al., 2019 )

nd brain ( Torti et al., 2018 ), as well as hyperplasia in the en-

ometrium ( Kavvadias et al., 2013 ). 

Examples of supervised classifiers that have been used with SSI

ata are support vector machines (SVM) and spectral angle map-

ing (SAM). An advantage of SVMs is that they are robust to noisy,

igh-dimensional data, thus not requiring a feature selection step

 Camps-Valls and Bruzzone, 2005 ). Akbari et al. (2012) used an

VM to classify cancerous and normal tissue in lung and lymph

issue histology slides, achieving 93–96% sensitivity and 98% speci-

city, while Hohmann et al. (2017) reported 57–66% sensitivity

nd 52–62% specificity for fresh tissue samples of gastric adeno-

as. Han et al. (2016) conducted an in vivo colonoscopy study

ith a five-band MSI system and classified adenomas with 95%

ensitivity and 89% specificity. Spectral features can also be com-

ined with measures of local texture to improve classification ac-

uracy of SVM ( Zhang et al., 2016 ). Intrinsic measures of uncer-

ainty, using the Gini coefficient, have demonstrated further im-

rovements in performance ( Fig. 4 ) by identifying and excluding

ow accuracy superpixel subregions ( Moccia et al., 2018 ). This al-

ows automatic tagging of tissues in vivo with 96% accuracy when

sed with an 8-band multispectral datacube. SAM treats individual

pectra as high-dimensional vectors, differentiating regions or tis-

ue types using the angle between them. This has the advantage

f being robust to variations in illumination strength or shadows

 Martin et al., 2012 ). 

Artificial neural networks (ANNs) and, more specifically, deep

earning with CNNs have recently seen growth in detection, classi-

cation and segmentation problems in a variety of medical imag-

ng modalities due to their efficient architecture and use of local

ontext ( Shen et al., 2017 ). Recent applications in spectral imag-

ng analysis include use of CNNs to differentiate abdominal organs

 Akbari et al., 2008b ), and detect gastric ( Hu et al., 2019 ) and head-

nd-neck cancers ( Halicek et al., 2017 , 2019 ). Reported accuracy in

hese studies is high ( > 95%) and a recent comparative study also

uggests that CNNs may out-perform competing supervised clas-

ification methods, such as SVMs ( Halicek et al., 2017 ). CNNs can
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Fig. 4. Improving classification accuracy through awareness of uncertainty in the 

data. (a) Spectral input image. (b) Input image after creation of texture-based su- 

perpixels. (c) Classification result showing only high-accuracy superpixels, as iden- 

tified in (d) confidence map. See Table 2 for acquisition details. Adapted from 

Moccia et al. (2018) .© 2018 IEEE. Reprinted, with permission, from Sara Moccia 

et al., Uncertainty-aware organ classification for surgical data science applications 

in laparoscopy. IEEE Trans. Biomed. Eng. 65 (11), 2649–2659. 
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incorporate multiple processing steps within the overall network

architecture, including pre-processing calibration steps, within the

network, which optimises speed when compared to other regres-

sors such as random forests ( Ayala et al., 2019 ). By avoiding more

tailored regression approaches, CNNs may capture subtle signal

variations that support interpretation or classification much more

effectively. This would be logical given the performance increases

demonstrated through deep learning in general computer vision

and signal analysis problems. 

The main limitation of these machine learning methods in gen-

eral is that accuracy depends on the available labelled training

data. This is a problem in surgical imaging, where a well-defined

gold standard is lacking, and inter and intrapatient variability is

large but the quantity of datasets is extremely limited. Common

solutions used to boost training data are to use transformations

(e.g., rotation, translation), pretrained networks and to use image

patches ( Shen et al., 2017 ). Previous work in other medical imaging

modalities has also combined separate datasets in an effort to bet-

ter represent variability across patients ( Shin et al., 2016 ). Trans-

fer learning, where a pre-trained network is adapted for use in a

new setting, is a potential solution, and has already seen use in

other medical image analysis problems, where available training

data are insufficient ( Signoroni et al., 2019 ). Wirkert et al. (2017)

have recently demonstrated the potential of using this technique

to adapt a network, trained on a generic simulated tissue, to unla-

belled in vivo datasets. Recent efforts in developing unsupervised

learning may translate to SSI problems and additional potential

could be explored by training on phantom or controlled environ-

ments prior to fine tuning networks using small datasets of clinical

data. In histopathology some recent effort s have shown that net-

works could capture information typically extracted through con-

trast agents and staining ( Pei et al., 2019 ; Talo, 2019 ) and a similar

methodology could be pursued in SSI. 

Another challenge related to variability, and inherent in the

ambiguous nature of the problem, is the fact that the map-

ping between measured optical signals and estimated physiolog-

ical variables may not be one-to-one. To address this problem

Ardizzone et al. (2019) has proposed invertible neural networks
INNs), which aim to learn the posterior probability distribution

nd represent ambiguity in the solution. This has recently been ap-

lied to MSI imaging of the brain ( Adler et al., 2019 ). 

.3. Estimating spectral information from RGB 

Deducing the underlying spectral properties of tissue using

tandard colour cameras would be a convenient way to realise

n SSI system. The challenge here is that the inverse problem is

ll-posed, with many different combinations of component spec-

ra capable of producing a given RGB response. Regression mod-

ls between MC-simulated spectra and observed RGB values en-

ble calculation of relative concentrations of HbO 2 , Hb and melanin

 Nishidate et al., 2008 , 2011 ). Their accuracy, however, is subject

o the MC model being a good match to reality. Variation in tis-

ue layer thickness and/or scattering properties are not accounted

or and contribute to errors in the estimated concentration val-

es. Wiener estimation, alternatively, predicts the reflectance spec-

rum of an object using a priori knowledge of the camera’s spec-

ral sensitivity and the reflectance spectrum of the object un-

er test ( Stigell et al., 2007 ). This has been used to estimate

elanin and haemoglobin concentrations in skin ( Nishidate et al.,

013 ), scattering variables in the brain ( Yoshida et al., 2015 ;

asnat et al., 2016 ) and bowel oxygen saturation ( Jones et al.,

016 ). Lin et al. (2017) demonstrated that a CNN could be used to

stimate fine spectral data from RGB laparoscopic images. Strong

ualitative agreement with reference MSI data was shown, al-

hough large errors at some wavelengths were noted. Subsequent

ork improved accuracy by adding sparsely-sampled high spectral

esolution data to update and refine the CNN result ( Lin et al.,

018b ). Li et al., 2019 has modified this approach using a condi-

ional generative adversarial network (cGAN) to bypass the spectral

stimation step and generate maps of oxygen saturation directly. 

. Data assessment and validation 

A clear validation process is necessary to understand the ca-

abilities of a given SSI system, quantify its accuracy and under-

tand variability across different hardware configurations and clin-

cal settings. Validation data may be obtained from experiments

sing computer simulation, tissue phantoms, resected tissue, or in

ivo measurements. 

.1. In silico 

Monte Carlo models have become the gold standard for pho-

on transport simulations in tissue. Their flexible configuration al-

ows for modelling of simple semi-infinite homogeneous media to

omplex multi-layered tissue ( Prahl et al., 1989 ; Wang et al., 1995 )

ith inclusions simulating blood vessels ( Jones et al., 2017b ) or le-

ions ( de Jode, 20 0 0 ). This offers advantages in accuracy over com-

eting simulation and mathematical modelling techniques such as

hose based on diffusion theory ( Flock et al., 1989 ) and it has

een widely applied in biomedical photon propagation simulation

roblems ( Zhu and Liu, 2013 ; Periyasamy and Pramanik, 2017 ). In

pectrally-resolved imaging studies MC modelling has shown par-

icular utility in estimating the wavelength dependence of the DPF

 Ma et al., 2016a ; Thatcher et al., 2016 ) and in generating inverse

odels to extract quantitative tissue optical properties via error

inimisation ( Saccomandi et al., 2016 ; Wirkert et al., 2016 ). 

More recently, Wirkert et al. (2016) and Ayala et al. (2019) have

sed MC simulation to quantify the performance of a random for-

st estimator using varying noise and SNR conditions, and demon-

trated improved accuracy data compared to least-squares re-

ression. They were also able to optimise the computationally-

xpensive training step by demonstrating that the absolute error
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tabilised after 10 4 training samples. Jones et al. (2017b) used a

esh-based Monte Carlo model, based on blood and submucosa

ptical properties, to generate a synthetic reflectance dataset. This

llowed comparison of an RGB-based oxygen saturation estimation

lgorithm with a multispectral Beer-Lambert-based regression. The

imulation results were convolved with known spectral sensitiv-

ty curves of a standard colour camera and an LCTF MSI system

o generate digital datacubes, demonstrating an improvement in

rediction accuracy of 10% in the RGB result when using Tikhonov

egularisation. 

It is essential that these MC models are capable of encap-

ulating the full range of real, physical, variability in tissue if

ccurate measures of physiological properties can be inferred.

rincipal component analysis provides a useful measure of as-

essing how well real data can be explained by the model.

irkert et al. (2017) were able to demonstrate that 97% of the

ariance in their in vivo data lay on the simulated data’s first

hree principal components. It was also illustrative to see that

ne particular organ, the gallbladder, was an exception and fell

utside this, indicating a limitation in the MC simulation (pos-

ibly consideration of bile as a significant absorber). Similarly,

tyles et al. (2006) showed that simulation results did not encom-

ass the space occupied by in vivo data from fundus imaging ex-

eriments, but a correction in the form of an empirical scaling fac-

or could correct the problem. 

.2. Phantom and in vitro 

A common first step in validation of spectral measurement ac-

uracy is to test the imaging system against a set of standard-

sed targets with varying spectral properties, such as a Macbeth-

ype colour-checker card ( Clancy et al., 2016b , 2018 ; Wang et al.,

018 ). These provide a set of calibrated colour tiles with smoothly-

arying reflectance spectra. A mean spectrum for a small region-

f-interest within each tile is calculated and compared to a gold

tandard spectrum obtained with a high-resolution spectrometer.

his allows researchers to assess the performance of the SSI system

cross the spectral range. These targets are useful for establishing

evice baseline spectral accuracy and SNR, although the broad na-

ure of the reflectance features make them unsuitable for quanti-

ying spectral resolution or evaluating spectral unmixing. An esti-

ate of an SSI system’s ability to recover chromophore concentra-

ions on a diverse background of optical loss mechanisms can only

e achieved with more realistic tissue models. 

In vitro models with tuneable optical properties provide an op-

ortunity to test more complex functionality of the imaging sys-

em under more realistic, but still controlled, conditions ( Fig. 5 (a)).

hese so-called phantoms can, in their simplest form, be dye solu-

ions to test spectral unmixing methods ( Pichette et al., 2016 ) and

he ability of the system to resolve the spatial location of differ-

nt chromophores. More complex and physiologically-realistic op-

ical properties can be achieved with multi-layer agar-based phan-

oms, with absorption and scattering properties set using India ink

nd intralipid, respectively ( Nishidate et al., 2011 , 2013 ). More rele-

ant phantoms incorporate blood or haemoglobin, and include ref-

rence gas probes in tandem with temperature, pH, flow and oxy-

enation control ( Saito and Yamaguchi, 2015 ; Sakota et al., 2015 ;

etschke et al., 2016 ; Gehrung et al., 2019 ). Realistic models include

oth solid and liquid elements, with simulated vessels running

hrough an agarose tissue ( Luthman et al., 2018 ). The simulated

essels can further be formed into complex patterns, using rapid

rototyping techniques, based on images of real vascular networks

 Ghassemi et al., 2015 ). The phantom material’s temporal stability

ust be considered if repeat measurements are needed, as agar

nd gelatine are vulnerable to decay and bacterial growth without

pecialist storage and treatment ( Pogue and Patterson, 2006 ). Al-
ernative materials such as gelwax ( Maneas et al., 2018 ), polyvinyl

hloride plastisol ( Fonseca et al., 2016 ), silicone ( de Bruin et al.,

010 ) and polymer gels ( Cabrelli et al., 2017 ) are capable of offer-

ng long-term stability. The complexity of these models does not

ypically extend to include confounding absorbers, such as biliru-

in, or complex structures, such as colonic crypts, that may affect

easured spectra. Apart from flow, dynamic effects such as peri-

talsis or inflammatory response are also difficult to replicate. 

.3. Ex vivo 

Spectral imaging systems are increasingly being looked to as

otential tools for optical biopsy . That is, to obtain quantitative di-

gnostic information which is currently the preserve of histological

nalysis. Diagnosis of disease in its early stages or separation of le-

ions depending on their malignant potential are examples of such

roblems. In these cases the lesions may be small and superficial,

nd their appearance may be indistinguishable from surrounding

ormal tissue under white light illumination. Investigation of po-

ential optical sensitivity to these pathologies, with their myriad

iochemical differences, is outside the scope of synthetic models

nd can only be accomplished in real tissue. The initial step is to

orm a picture of the optical properties of each tissue type of inter-

st. Assuming there is no a priori knowledge this means acquiring

igh resolution spectral data at as many wavelengths as possible.

hese data can then be analysed to determine where spectral dif-

erences may lie. 

However, depending on the tissue in question, the ability to ob-

ain in vivo data may be limited due to challenging experimen-

al conditions. In these cases exploratory data is usually acquired

rom tissue after it has been resected. The advantages of this are

hat data collection has minimal impact on the surgical work-

ow, imaging can be performed in a controlled, motion-free, en-

ironment, and the sample will subsequently proceed to pathology

or ground truth histological confirmation. This approach has been

sed to study the spectral characteristics of cancers in head & neck

 Akbari et al., 2012 ), colon ( Leavesley et al., 2016 ) and pancreas

 Kiris et al., 2015 ). The major limitation is that the blood supply

s immediately cut off once the tissue is excised. Given the influ-

nce of haemoglobin on tissue reflectance, the effect on the optical

roperties may be significant and unpredictable. Disease-specific

ignatures based on oxygenation become less distinct. A complex

eries of events characterise tissue degradation and drift in tissue

ptical properties in the first few hours post excision, including

smosis, shrinkage and ischaemia-induced scattering changes, de-

ending on how the sample is stored ( Hsiung et al., 2005 ). 

Machine perfusion techniques, developed to preserve harvested

rgans for transplantation, may offer a potential solution to some

f the challenges associated with validation of SSI in physiolog-

cally realistic scenarios ( Fig. 5 (b)). These machines pump blood

hrough the organ’s vessels while maintaining normothermic con-

itions and can allow oxygenation control ( Tetschke et al., 2016 ).

areful preparation of the organ in question is required, using sim-

lar protocols to transplantation retrieval, to ensure minimal dam-

ge to the tissue. 

.4. In vivo 

Intraoperative validation remains a challenging task due to the

imited control over physiological variables and multiple sources

f measurement noise from both biological signals and motion-

nduced artefacts. Nevertheless this is an essential testbed in the

evelopmental cycle of a surgical imaging system, providing in-

ight into its future clinical utility. One approach to mitigating

he influence of the aforementioned complications is to tempo-

ally measure relative changes in response to a stimulus, such as a



12 N.T. Clancy, G. Jones and L. Maier-Hein et al. / Medical Image Analysis 63 (2020) 101699 

Fig. 5. Validation. (a) Top: haemoglobin-based liquid phantoms can be temperature and oxygenation controlled and have the gold standard measurement probes placed in 

situ (top) ( Saito and Yamaguchi, 2015 ). Adapted, with permission, from Saito and Yamaguchi, Optical imaging of haemoglobin oxygen saturation using a small number of 

spectral images for endoscopic application, J. Biomed. Opt. 20, 2015. Bottom: this blood can be pumped through 3D-printed flow phantoms and used to verify perfusion 

maps ( Ghassemi et al., 2015 ). Adapted, with permission, from Ghassemi et al., Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging, 

J. Biomed. Opt. 20, 2015. (b) Machine perfusion of solid organs enables a very close simulation of in vivo conditions, allowing control over oxygen levels and temperature 

( Tetschke et al., 2016 ). Image reproduced with permission from the authors. (c) Top: in vivo SSI data can be used to validate hardware optimisation strategies such as 

band selection techniques, comparing them to a hyperspectral dataset ( Wirkert et al., 2014 ). Reprinted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Lecture Notes in Computer Science, (Endoscopic Sheffield index for unsupervised in vivo spectral band selection, Wirkert et al.) © (2014). Bottom: blood gas analysis 

can be used as a gold standard SO 2 reference for samples withdrawn from a corresponding SSI-imaged region-of-interest. Adapted, with permission, from ( Clancy et al., 

2015 ), Optical Society of America. 
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vessel occlusion, and monitor the instrument’s response. This has

been reported in imaging experiments, following mechanical oc-

clusion, on the skin ( Nishidate et al., 2013 ), bowel ( Clancy et al.,

2015 ) and kidney ( Best et al., 2011 ). Similar induction of hypoxia

has also been achieved in rodents by restricting the fraction of in-

spired oxygen ( Akter et al., 2017 ; Nishidate et al., 2018 ). Estima-

tion of in-band noise and camera signal-to-noise ratio were made

by Wirkert et al. (2016) during vascular occlusion of a pig bowel

segment and correlated to in silico experiments. 

Absolute quantification of tissue constituents in vivo is more

difficult due to the lack of gold standard measurement modali-

ties that are directly comparable to optical imaging results. Per-

haps the most recognisable clinical oxygen saturation device, the

pulse oximeter, provides measurements of systemic arterial, rather

than local tissue, oxygenation. Machines for biochemical analysis of

blood, such as the co-oximeter, are another frequently used clini-

cal tool, and can provide detailed biochemical information. This in-

cludes gas partial pressures, haemoglobin concentrations and lac-

tate levels, which is a surrogate marker of oxygenation. Imaging

results have been validated using blood gas analysis from locally-

drawn samples ( Clancy et al., 2015 ) and, in an SFDI study, cal-

ibrated optical oxygenation probes ( Gioux et al., 2011 ). Interpre-

tation of these types of single-point validation measurements is

inevitably complicated by the fact that each technique probes a

different volume of tissue, leading to some deviation in absolute

values, although temporal trends agree. The problem is especially

acute for blood gas analysis, where even microlitre-scale samples

must be drawn from a comparatively large vessel that is not nec-

essarily representative of the mixture of arterial and venous mi-

crovessels running through the organ-of-interest. 
Models for delineating tumour boundaries have been evalu-

ted in terms of accuracy ( Panasyuk et al., 2007 ), and true and

alse positive rates when compared to histological gold standard

nd manually-segmented images ( Panasyuk et al., 2007 ; Han et al.,

016 ). In vivo classification accuracy has also been assessed, using

eave-one-out cross-validation (LOOCV), for an SVM-based algo-

ithm to identify atherosclerotic plaques ( Chihara et al., 2016 ) and

eep neural network methods to predict tissue reflectance spectra

 Lin et al., 2018b ). While diagnostic accuracy in a single lesion can

e evaluated in this way, there is still a question over the accuracy

f the margin delineation. This is due to the small sample size of

he gold standard, which ultimately is derived from a biopsy sec-

ion a few millimetres in diameter. 

Despite the difficulties associated with in vivo validation of

ptical properties, intraoperative MSI and HSI datasets are well-

uited to testing the performance of computational RGB-to-SSI ap-

roaches. In these cases the spectral datacubes themselves can be

reated as the ground truth ( Fig. 5 (c)). Jones et al. (2017a) derived a

est set of RGB images from an intraoperative MSI dataset using the

pectral sensitivity curves of a standard colour camera. The pro-

osed computational method predicted SO 2 with mean error less

han 10%, compared to the MSI result. A similar approach was used

y Lin et al. (2018b) to test the accuracy of a deep neural network

pectral reconstruction algorithm, showing that mean relative er-

ors as low as 0.63% between predicted and reference spectra could

e achieved. Nishidate et al. (2013) incorporated a beam-splitter

n the set-up to obtain reflectance spectra from the surface of the

kin in parallel with RGB measurements, enabling them to demon-

trate qualitative similarity between the spectra with an average

elative SO 2 estimation error of 54.5%. 
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There are some well-known resources for established med-

cal imaging modalities such as CT/MRI where researchers

ay access annotated image data. Examples include The Can-

er Imaging Archive (TCIA; https://www.cancerimagingarchive.net/ )

 Clark et al., 2013 ), open-CAS ( http://opencas.webarchiv.kit.edu ),

he EndoVIS challenge ( https://endovis.grand-challenge.org ) and

eepLesion ( https://nihcc.app.box.com/v/DeepLesion ) ( Yan et al.,

018 ). The largest of these databases is still 3–4 orders of magni-

ude smaller than natural image datasets such as ImageNET ( http:

/www.image-net.org ). SSI is lagging much further behind still and

here are very few publicly-available datasets. As an initial step re-

earchers in the field should make their data available on insti-

utional servers, following the example of groups working in en-

oscopy ( Yoon et al., 2019a , 2019b ), neuroimaging ( Fabelo et al.,

019b , 2019a ), ophthalmology ( A. Gebejes et al., 2016 , 2016 ) and

istology ( Awan et al., 2018b , 2018a ). When published, these data

hould be accompanied by a readme file containing a brief descrip-

ion of the study and associated protocol, links to related publica-

ions and a clear statement on any usage restrictions. The key aim

s to enable an external researcher to reproduce the results of the

riginal team using the information supplied. 

While a DICOM-equivalent standard for SSI may still be some

ay off, metadata, either embedded or stored as a separate file,

hould be included with each acquisition. A suggested format

s to include Patient/Subject ID (anonymised), timestamp, spec-

ral channel information (e.g., central wavelength, band FWHM,

ixel-to-wavelength calibration data [for push/whiskbroom sys-

ems]), camera/detector settings (exposure time, gain, bit depth),

eference reflectance spectrum and background intensity measure-

ents. For SSI systems where the spectral characteristic of a par-

icular channel is not easily described by a Gaussian shape, the

lter/illumination spectrum data or a link to manufacturer speci-

cations should be provided. A second layer of related information

ould include image annotations, either in the form of regions-

f-interest with defined co-ordinates or binary masks to delin-

ate separate organs, tissues or lesions. Labels linked to these spa-

ial data would identify the feature in question and/or the results

f histological evaluation. Beyond this, future large-scale curated

maging databases will require national or international initiatives

ith dedicated funding and resources to maintain submissions and

nsure quality control. Following the TCIA template this would al-

ow for rigorous validation, version control and accommodation of

orroborating data such as histology slides, clinical information or

ther medical imaging modalities. 

. Discussion 

Spectral imaging has become recognised as a valuable method

f obtaining functional and structural information on tissue non-

nvasively. It has gained widespread uptake in clinical research,

ith the list of applications now spanning dermatology, gas-

roenterology, gynaecology, otolaryngology, cardiology, haematol- 

gy, neurology, ophthalmology, bronchoscopy, nephrology and hep-

tology ( Table 1 ). Strong contrast due to haemoglobin has en-

bled imaging of blood volume and oxygenation, both important

ariables in the assessment of tissue perfusion and its ability

o recover from injury. Physiological processes, such as tumour-

ssociated angiogenesis or the proliferation of dysplastic cells, can

e detected through their impact on the absorption and scatter-

ng components of the tissue’s reflectance spectrum. Selection of

avelengths that maximise the spectral difference between organs

r pathologies can be used to optimise SSI device design, and

olve image segmentation and classification problems. Statistical

nd computational tools have allowed this process to be optimised,

ncreasing robustness and resolving differences not appreciable un-

er standard white-light illumination, for example, differentiating
he thyroid and parathyroid ( Barberio et al., 2018 ). Its usefulness

s a collaborative tool has also been demonstrated, providing valu-

ble context for other imaging modalities and showing potential in

ssisting guidance and clinical decision-making. 

Spectral imaging has reached something of a crossroads in

he surgical field. Although the principles of the technique have

ong been established the number of attempted clinical stud-

es has recently increased rapidly. Fuelled by growing indus-

rial and remote-sensing demand, readily-available computational

ower and newly-developed software techniques, truly useful SSI

evices may soon be ready to make the leap into clinical practice. 

The main factors for translation of a new imaging modality in-

lude three interconnected problems: clinical validation, usability

nd ease-of-interpretation. While SSI has certainly demonstrated

tility across a wide range of specialties and is clearly sensitive

o a variety to relevant biological variables ( Table 1 ), it has yet to

ddress the crucial question of whether or not it can improve out-

omes for the patient. This is the difficult next step for the field

s it requires collection of a large amount of data in carefully-

esigned clinical studies. Despite the number of publications on

he subject very few in vivo studies have been conducted ( Shapey

t al., 2019 ), most have small sample sizes and are not correlated

ith surgical outcomes. For example, while many studies show

ensitivity to tissue perfusion and oxygenation none can conclu-

ively estimate the range of SSI values that represents a ‘healthy’

lood supply. Similarly, there is undoubted applicability in tissue

lassification and disease detection, but no study that proves that

SI can have a significant impact on tumour recurrence rates. Clin-

cal efficacy studies are needed to answer these questions. 

Collection of data to answer clinical efficacy questions requires

tudies on a larger scale than are currently being attempted. This

laces demands on hardware performance and robustness, and

onnects to the second of the aforementioned problems, which in-

ludes device resolution, speed and mechanical properties. That is,

 new technology should not compromise the surgeon’s vision of

he tissue, or their ability to navigate the internal anatomy safely,

nd should have equivalent handling characteristics, i.e., weight,

ize, rigidity, to standard tools. Acquisition and processing speed

re important, to avoid delays to the normal delivery of care to the

atient. This problem may be on the cusp of being solved, as the

ap between high resolution and high-speed systems is becoming

ess distinct. Table 2 shows that commercially-available snapshot

ensors can now capture MSI datacubes comprising 6–25 spectral

ands at up to 90 fps. There are also cameras, such as IMEC’s Snap-

can , that sacrifice some speed to achieve hyperspectral detection

t megapixel spatial resolution. These devices are monolithic in de-

ign, with single sensor snapshot cameras in particular offering a

ight weight option. This means that they can be integrated in ex-

sting surgical optical imaging devices, such as laparoscopes and

perating microscopes, in an equivalent manner to standard colour

ameras. 

The third problem emphasises that the processing results

hould be displayed in a concise and efficient manner. i.e., SSI

hould not increase the cognitive burden on the surgeon. The solu-

ion to this lies in efficient and accurate computation of physiolog-

cal variables, delineation of diseased tissue and intuitive display of

he information to the clinician. The question of the optimal way to

elay this information to the surgeon remains open. Existing scopes

ith enhanced imaging facilities typically allowing the user to tog-

le between different modes or to choose an overlay. Augmented

eality systems ( Bernhardt et al., 2017 ) may be one platform to de-

iver this information, allowing the surgeon to seamlessly switch

o SSI or another imaging modality overlay during a procedure. 

The range of acquisition systems summarised in Table 1 and the

uances of their individual characteristics illustrates the full range

f complexity open to a researcher in acquiring data for a specific

https://www.cancerimagingarchive.net/
http://opencas.webarchiv.kit.edu
https://endovis.grand-challenge.org
https://nihcc.app.box.com/v/DeepLesion
http://www.image-net.org
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need. Unfortunately, it has resulted in a disparate dataset, lacking

standardisation, that has hindered development of efficient compu-

tational algorithms and independent validation and benchmarking.

The robustness of processing algorithms based on learning will de-

pend on the reliability of the training data available. This is espe-

cially important as the reflectance spectral signatures of tissue con-

stituents are broad, and the ability of SSI devices to identify ‘fin-

gerprints’ of specific compounds is limited. A well-documented SSI

dataset is essential in understanding the applicability and limits of

any newly-developed algorithm. Furthermore, built-in algorithmic

awareness of variance and uncertainty in a particular model’s per-

formance will help to ease safety concerns, by restricting diagnos-

tic decisions to those based on ‘high confidence’ measurements. 

Computational spectral estimation methods using RGB data are

an exciting proposition as they have the potential to bridge the gap

between high resolution and high-speed devices, and introduce

the possibility of software-enabled SSI from conventional cam-

eras. Accuracy remains a challenge due to the inherent low spec-

tral resolution of RGB which, at ~100 nm, washes out fine spec-

tral features that distinguish, for example, oxygenated and deoxy-

genated haemoglobin. Model and AI-based approaches will need

to be tested across a wider variety of image data to avoid over-

fitting to a narrow range of physiological properties. An SSI imag-

ing database, from which RGB images can also be synthesised, of

multiple test subjects, organs and pathologies matched with histol-

ogy is needed. This is a field that may become more important as

rigid endoscopes begin to transition from rod lenses to chip-on-tip.

Some of the major endoscope manufacturers already have products

in this area, such as Karl Storz (TIPCAM, C-MAC VS) and Olympus

(Endoflex 3D), and more can be expected as sensor miniaturisation

continues. 

Idealised databases are challenging to create, requiring mone-

tary and resource investment in a multi-centre collaboration. The

time taken to design, set up and conduct the required measure-

ments is significant. However, previous medical imaging work us-

ing transfer learning ( Litjens et al., 2017 ) has shown that this task

can be simplified by using networks trained for other tasks or on

different sam ples ( Lin et al., 2017 ). This field includes methods that

can be trained on synthetic data and, with minimal retraining, be

reconfigured to work on real data or a completely different sce-

nario. Thus SSI results could be generalised more easily and each

new clinical application would not require a separate large-scale

study to obtain sufficient annotated training data ( Wirkert et al.,

2017 ). 

SSI could also take some inspiration from fluorescence image-

guided surgery (FIGS), which has recently enjoyed an explosion of

interest, particularly using near-infrared light which does not in-

terfere with the standard colour imaging. Despite its relative com-

plexity, which requires exogenous agents and use of a specialised

camera system, there are now several general systems available

for use in open, MIS and robotic-assisted MIS. These clinically-

approved devices are being used in several studies to explore the

full utility of the technique and determine its efficacy in improv-

ing surgical procedures. While clinical spectral imaging systems do

exist, aimed principally at dermatology, a MIS-compatible camera

is not currently available. This will be needed to instigate long-

term clinical studies, especially for applications where the problem

is significant but the incidence is low. 

Health economics will play a significant role in whether or not

SSI devices are widely adopted in practice. Ultimately the new

technology will have to demonstrate that its cost can be recov-

ered. Miniaturised spectral imaging sensors, although increasingly

available, are still approximately five orders of magnitude more

expensive that standard colour sensors. Given the scale of ex-

pense associated with some of the clinical problems mentioned
 d
ere, such as management of patients following anastomotic leaks,

ransplant failure, or unnecessary removal of hyperplastic lesions,

 convincing financial case for spectral imaging devices might still

e formed despite the high initial outlay. Furthermore, SSI meth-

ds can point to a major advantage over current surgical imaging

ompetitors, fluorescence-guidance, in that running costs related to

urchase of dyes do not apply. Thus, while SSI devices are unlikely

o become similarly priced to RGB hardware due to the economy of

cale of manufacturing, they may at least become a realistic com-

etitor to FIGS. This remains an open question, and one that re-

uires appropriately-structured clinical trials to yield an answer. 

The above challenges are echoed by recent attempts to

ormalise the translational route for new optical technologies

 Waterhouse et al., 2019 ). This notes, in addition to the points al-

eady discussed here, that there is a general problem with a lack

f standardisation in optical techniques, including metrics of expo-

ure safety limits. 

. Conclusions 

Interest in spectral imaging for clinical applications continues

o grow along with the variety and performance of the technology.

otential uses have been found in guidance, viability monitoring

nd disease-detection, exploiting endogenous contrast in the visi-

le and near-infrared wavelength range. Increased commercial in-

erest has seen the development of lightweight, snapshot devices

quivalent in size to standard cameras that can now be mounted

n endoscopes or operating microscopes, while high-resolution hy-

erspectral devices can be mounted on articulated arms. Advances

n computational modelling, including the use of statistical tech-

iques and deep learning, has augmented the hardware to increase

peed and accuracy. Nevertheless, some significant challenges re-

ain. 

While SSI has seen increased use in research, most studies are

mall or at proof-of-concept stage and there is still no clinical ap-

lication where the technique is used routinely. Clinical trials are

equired to establish correlations between SSI signals and surgical

utcomes. Demonstrating the potential health and economic im-

act of the technology will not be possible without this. 

To reach this milestone some hardware refinements are still

eeded to provide seamless switching between real-time colour

isualisation and spectral acquisition, avoiding the need for ex-

ert set-up and maximising clinical uptake. The system must pro-

ide equivalent white light imaging performance to currently-used

edical cameras to avoid disruption of the clinical workflow and

atient care. Current surgical imaging configurations, particularly

n MIS, vary widely, are highly application-specific and commercial

ystems are not yet optimised for this task. 

Creation of standardised databases of SSI sequences, with ac-

ompanying acquisition and calibration metadata, will be essential

o allow benchmarking of processing algorithms, development of

omputational techniques and independent validation of spectral

easurements. This will become increasingly important with the

rowing trend toward data-driven processing. This will help to es-

ablish validation of the measurement technique in vivo in addition

o any in silico and ex vivo experiments. Computational spectral-

rom-RGB estimation imaging techniques, which are still in their

nfancy, would benefit from these databases, allowing researchers

o increase their robustness and applicability. 

These challenges must be met in collaboration with both indus-

rial and clinical partners. A consistent and robust hardware set-up

ill allow reliable data acquisition across multiple hospital depart-

ents and sites, maximising the impact of any study that is con-

ucted. 
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