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12Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Accepted 2020 February 13. Received 2020 January 15; in original form 2019 March 2

ABSTRACT
There are several supervised machine learning methods used for the application of automated
morphological classification of galaxies; however, there has not yet been a clear comparison
of these different methods using imaging data, or an investigation for maximizing their
effectiveness. We carry out a comparison between several common machine learning methods
for galaxy classification [Convolutional Neural Network (CNN), K-nearest neighbour, logistic
regression, Support Vector Machine, Random Forest, and Neural Networks] by using Dark
Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project
(GZ1). Our goal is to determine the optimal machine learning methods when using imaging
data for galaxy classification. We show that CNN is the most successful method of these ten
methods in our study. Using a sample of ∼2800 galaxies with visual classification from GZ1,
we reach an accuracy of ∼0.99 for the morphological classification of ellipticals and spirals.
The further investigation of the galaxies that have a different ML and visual classification
but with high predicted probabilities in our CNN usually reveals the incorrect classification
provided by GZ1. We further find the galaxies having a low probability of being either spirals
or ellipticals are visually lenticulars (S0), demonstrating that supervised learning is able to
rediscover that this class of galaxy is distinct from both ellipticals and spirals. We confirm that
∼2.5 per cent galaxies are misclassified by GZ1 in our study. After correcting these galaxies’
labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of
0.994 is our best result).

Key words: methods: data analysis – methods: statistical – galaxies: structure.

1 IN T RO D U C T I O N

The morphological classification of galaxies is a very important tool
for understanding the history of galaxy assembly. It not only tells

� E-mail: ting-yun.cheng@nottingham.ac.uk

us about the evolution of galaxies, but it can also reveal the stellar
properties of galaxies, and thus their histories. Since the pioneering
work by Hubble (1926), nearby galaxies can be easily and clearly
classified into two main types: early-type galaxies (ETGs), which
include elliptical galaxies and lenticular galaxies, which are mostly
massive, with older stellar populations, and no spiral structure;
and late-type galaxies, which include spiral galaxies and irregular
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galaxies, often with spiral arms, and which consist of a younger
population. These two types are the basic classifications of galaxies
in local universe and have remained so for nearly a century.

Along with the data explosion by more and more survey projects
in astronomy, e.g. the Sloan Digital Sky Survey (SDSS),1 the
Large Synoptic Survey Telescope (LSST),2 and the Dark Energy
Survey (DES)3 (DES Collaboration 2018), which will image more
than hundreds of millions of galaxies, the traditional manual
classification analysis by experts is obviously impossible to deal
with this enormous amount of data.

The series of the Galaxy Zoo projects (Lintott et al. 2008, 2011;
Willett et al. 2013) is one of the most successful tools to solve the
problem of large-scale morphological analysis. It allows amateurs
to do the classification by answering a series of questions based
on galaxy images. However, classification analysis is complex
and difficult such that background knowledge and experience are
essential when doing it. In addition, while visual morphological
classification with Galaxy Zoo is faster than for single individuals,
it is also time-consuming. For example, the Galaxy Zoo Project
spent around 3 yr on obtaining the classifications of ∼300 000
galaxies, due to the need for so many individual classifications
per object. DES and LSST, for instance, would take on the order
of >100 yr to classify with the Galaxy Zoo project. Therefore,
an efficient automated classification method by computational
science is essential for the future of this field. The way forward
is clearly through machine learning, although we are still learning
the best ways to apply this to galaxy morphology and other areas
of astronomy, e.g. star–galaxy separation (Odewahn 1992; Weir,
Fayyad & Djorgovski 1995; Ball et al. 2006), the Galaxy Zoo
challenge (Chou 2014), and the Strong Gravitational Lens Finding
Challenge (Metcalf et al. 2019).

The concept and application of machine learning in computa-
tional science have been around for some time (Fukushima 1980),
and the application in astronomy started in the 1990s. However, it
has not been widely used in astronomy until the last few years due
to the big improvement of the computation ability of computers and
the development of this technology. The first application of machine
learning on morphological classification can be traced to Storrie-
Lombardi et al. (1992). They applied a neural network with an input
layer of 13 parameters, e.g. stellar properties, brightness profile, etc.,
which gave an output of five different types of galaxies. Since then, a
slew of studies in astronomy have appeared utilizing the technology
of machine learning (e.g. Huertas-Company et al. 2008, 2009,
2011; Shamir 2009; Polsterer, Gieseke & Kramer 2012; Hocking
et al. 2017; Sreejith et al. 2017), neural networks (e.g. Mähönen &
Hakala 1995; Naim et al. 1995; Lahav et al. 1996; Goderya &
Lolling 2002; Ball et al. 2004; de la Calleja & Fuentes 2004;
Banerji et al. 2010), and Convolutional Neural Networks (CNN;
e.g. Dieleman, Willett & Dambre 2015; Huertas-Company et al.
2015, 2018; Domı́nguez Sánchez et al. 2018) for the morphological
classification of galaxies.

There are now several different methods in machine learning
used to carry out morphological classifications. However, although
machine learning has been highly developed for decades, there is
not a clear quantitative comparison between these different methods
yet especially concerning imaging data. In our study, we carry out
a comparison of the simplest classification – binary morphological

1https://www.sdss.org
2https://www.lsst.org
3https://www.darkenergysurvey.org/

Table 1. The list of machine learning methods tested in
this study.

Labels Machine learning algorithms

1 K-Nearest neighbour (KNN)
2 KNN+Restricted Boltzmann Machine

(KNN+RBM)

3 SVM
4 SVM+Restricted Boltzmann Machine

(SVM+RBM)

5 Logistic regression (LR)
6 LR+Restricted Boltzmann Machine

(LR+RBM)

7 Random Forest (RF)
8 RF+Restricted Boltzmann Machine

(RF+RBM)

9 Multi-Layer Perceptron Classifier
(MLPC)

10 CNN

classification of ‘ellipticals’ and ‘spirals’ (follows the classification
of the Galaxy Zoo 1 project) – between several common methods
in machine learning (listed in Table 1) using imaging data.

In previous studies, except for the application of CNN, there
were very few studies that directly exploited imaging data when
using other machine learning algorithms, such as neural networks
or SVM. Therefore, we imitate the application of face and hand-
writing recognition in computational science (Bishop 2006) that
directly input image pixels as features to all the methods we
compared for a fair comparison of different methods.

In this study, we use DES imaging data that has better resolution
and deeper depth than SDSS images (see Section 2). With our
machine learning algorithm, these properties of DES data help us
to build a larger, deeper, and better catalogue of galaxy morphology
containing the largest sample to date. We therefore also discuss
galaxies that ‘fail’ in our training algorithms, and discuss how these
systems are often misclassified in Galaxy Zoo. We also discuss
systems that have a low probability of being either an elliptical or
a spiral and how these systems are visually classifiable on the DES
imaging as lenticulars.

The arrangement for this paper is as follows. Section 2 describes
the data resources, the procedure of pre-processing, and the data
sets we use in this paper. The descriptions of each method are
discussed in Section 3. We present the main results in Section 4 and
include a further discussion in Section 5. The conclusion is shown
in Section 6.

2 DATA SETS

For the images in this analysis we use the subset of DES Year 1
(Y1) GOLD data – DES observation of SDSS stripe 82, selected at
magnitude i < 22.5 and redshift z < 0.7 (Drlica-Wagner et al. 2018).
DES data covers 5000 square degrees (∼1/8 sky) and partially
overlaps with the survey area of the SDSS, but has a better seeing
than the SDSS images from Galaxy Zoo. Dark Energy Camera
(DECam; Flaugher et al. 2015), the new installed camera used in
DES, which is mounted on the Victor M. Blanco 4-meter Telescope
at the Cerro Tololo Inter-American Observatory (CTIO) in the
Chilean Andes, improved the quantum efficiency in the infrared
wavebands (>90 per cent from ∼650 to ∼900 nm), and gives a
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Automatic galaxy morphology classification 4211

Figure 1. Pre-processing procedure pipeline. The pipeline starts from the initial coadd images, then we chop the coadd images into different sizes according
to the size of galaxies. After rotation, we chop and downsize the images to the required sizes: 50 by 50 pixels. The details of the procedure is in Section 2.1.

better quality images for the observation of very distant objects
than previous surveys with the spatial resolution of 0.263 arcsec per
pixel and the depth of i = 22.51 (DES Collaboration 2018).

A DES survey image has more than 500M pixels. Each tile is 1/2
square degrees. The coadd (tile) images are 10 000 by 10 000 pixels
in size with a pixel scale 0.263 arcsec. The total number of the data
in this subset is around 1.87 million galaxy stamps with photometric
redshift, and photometry information in 308 i-band coadd images.

In order to train our machine learning algorithm, we match the
DES data with the visual morphological classifications from the
Galaxy Zoo 1 project (GZ1, hereafter)4 (Lintott et al. 2008, 2011).
We only exploit the visual classifications that have agreements
(votes rates) over 80 per cent and have been bias corrected by
Bamford et al. (2009) for both ellipticals and spirals in GZ1.
However, the matching of DES data with visual classifications
from GZ1 only gives 2862 objects in total, with the number ratio
between ellipticals and spirals being 1–3. Their magnitude ranges
from ∼12.5 to 18 in i band, and the redshift z ≤ 0.25 (peak at z
∼ 0.1). To avoid overfitting while carrying out the ML training,
we apply data augmentation in the pre-processing procedure in our
study (Section 2.1.1). To improve the performance of our machine
learning methods, we apply other techniques including feature
extraction, i.e. Histogram of Oriented Gradient (HOG; Dalal &
Triggs 2005) to extract other informative features from galaxy
stamps (Section 2.1.3).

2.1 Pre-processing

Before data pre-processing, we separate our 2862 galaxies with
DES data and the GZ1 classification randomly into training sets, and
testing set, to prevent repeated galaxies in both sets. Our data pre-
processing has four main steps: (1) data augmentation; (2) stamps
creation; (3) feature extraction; and (4) rescaling. The details are
shown below.

2.1.1 Data augmentation

Data augmentation is of great importance while using pixel inputs in
machine learning. Since Dieleman et al. (2015), data augmentation

4https://data.galaxyzoo.org/

by rotating images has been widely used within CNN for the
morphological classification of galaxies. In this paper, we have
2862 galaxies with visual classifications from GZ1, 759 ellipticals
and 2103 spirals, respectively, to train and test our methods. In order
to prevent overfitting during training, we rotate each galaxy image
by 10 deg differences from 0 to 350 deg to increase the number of
training samples. Hence, the available number of training samples
increase to ∼100 000. After rotation, we add Gaussian noise to the
rotated images (Huertas-Company et al. 2015). This noise is small
enough to not to influence the visual appearance and structures
of the galaxies (namely, remain the same visual classification),
but it is big enough to make a detectable but change of pixel
values.

Although data augmentation through rotating images is a well-
known method used in machine learning application (e.g. Dieleman
et al. 2015; Huertas-Company et al. 2015), the effect of these rotated
images is unexplored. Therefore, we investigate the difference of
performance between partially and fully using rotated images in the
datasets in Section 4.2.

2.1.2 Creation of the galaxy stamps

Fig. 1 shows the pre-processing procedure used in our study. Using
the galaxy catalogue from DES, we cut the coadd images with units
of size 10 000 by 10 000 pixels into millions of galaxy stamps with
sizes of 50 by 50 pixels. The size of galaxy stamp is based on the
size distribution of galaxies in the DES Y1 GOLD data (stripe 82),
where over 99 per cent of galaxies are smaller than a threshold of
25 by 25 pixels. Therefore, the size of our stamp is 50 by 50 pixels,
which is twice as large as the threshold in the size distribution of
galaxies.

Fig. 1 shows that before chopping the stamp to the size of 50
by 50 pixels, we create the galaxy stamps with an initial size of
200 by 200 pixels when the galaxy size is smaller than 30 by 30
pixels, and 400 by 400 pixels when the galaxy size is larger than
30 by 30 pixels. For smaller galaxies, we rotate the 200 by 200
pixels stamps first, then reduce them in size to 50 by 50 pixels; for
larger galaxies, we rotate 400 by 400 pixel stamps, reduce them in
size to 200 by 200 pixels, then downsize them to 50 by 50 pixels by
calculating the mean value of pixels in a size of 4 by 4 pixel cell. This
procedure is designed to prevent empty pixel values showing up at
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Figure 2. Examples of images from Histogram Oriented Gradient (HOG)
with the cell size of 2 by 2 pixels. Left: HOG images. Right: Original images
in linear scale. Top: Spirals. Bottom: Ellipticals.

the corner of stamps when we rotate images with non-90 degrees
rotations.

2.1.3 Feature extraction

In our study, we apply the HOGs on both our original and
rotated stamps to investigate the impact of this feature extractor
on supervised machine learning. HOG is a feature extractor which
is able to extract the distribution of gradients with their direction
from each pixel value. It is useful for characterizing the appearance
and the shape of objects (Dalal & Triggs 2005). It calculates the
gradients of the horizontal (x) and vertical (y) direction of stamps.
The magnitude and orientation of the gradient are calculated as
below:

|G| =
√

G2
x + G2

y, θ = arctan

(
Gy

Gx

)
, (1)

where |G| is the gradient magnitude of each pixel, Gx is the gradient
magnitude measured in x-direction, Gy is the gradient magnitude
measured in y-direction, and θ is the orientation of the gradient
for each pixel in the images. It then measures the contribution of
gradients from each pixel in the cell with the size of 2 by 2 pixels, and
uses a histogram to describe the contribution of gradient magnitude
to each orientation of gradient. The input of HOG image is the direct
output of this feature extraction process, and we rescale the pixel
value to the range between 0 and 1 (Section 2.1.4). Examples of
HOG images are shown in Fig. 2.

HOG is very popular within pattern recognition studies, e.g.
human detection, face recognition, and handwriting recognition
(e.g. Dalal & Triggs 2005; Shu, Ding & Fang 2011; Kamble &
Hegadi 2015); however, it is not popular yet in astronomy studies for
the usage of machine learning algorithms. One of the applications
is the detection of gravitational lensing images (Avestruz et al.
2018), and a few previous works on the galaxy morphology (e.g.
The Galaxy Zoo challenge Chou 2014). However, none of these
studies have examined the influence of HOG on the performance
of machine learning algorithms. In this study, we apply HOG on
our images to investigate not only the effect of it on automated
morphological classification of galaxies, but also the impact of

Table 2. The arrangement of training data sets in this paper. The content
included in the data sets are shown in the second column, and the third
column shows that the ratio between ellipticals and spirals and the total
number of training data in each data set.

Labels i (raw), ii (HOG), iii (combination, for CNN)

1 Original images+rotated images E:S∼1:3, Training=10 448
2 Original images+rotated images E:S∼1:1, Training=11 381
3 Only rotated images E:S∼1:3, Training=11 448
4 Only rotated images E:S∼1:1, Training=12 381

it on the performance of different machine learning algorithms
(Section 4.4).

2.1.4 Rescaling

Rescaling is a very important process in the application of machine
learning. Different galaxies have different brightness due to their
different properties and their distances, so the pixel values of each
image have significant variation between galaxies. This would
cause difficulties for machine learning algorithms when defining
the boundaries between different classes. Therefore, we rescale
the pixel values of each image (raw and HOG images) to the
range between 0 and 1 through normalizing by the maximum
and minimum pixel value of each image. We are aware that
intrinsic brightness can be a classification criteria, including surface
brightness. However, in this study we are interested in the structure
only and not on other properties that might correlate with a class of
galaxy such as surface brightness.

2.2 The data sets

In this study, we create four different data sets (see Table 2). The
first two data sets (1 and 2) contain both the original images and the
rotated images, and the last two (3 and 4) contain only the rotated
images. This setting is used for investigating the influence of rotated
images on the performance (Section 4.2).

On the other hand, the data sets 1 and 3 are unbalanced that
contain more spiral galaxies than elliptical galaxies in the data
sets, while the data sets 2 and 4 have an equal number of spiral
galaxies and elliptical galaxies in each data set. We balance the
number of each type by adding different numbers of rotated images
to each type. For example, we rotate images of the ellipticals
seven times, but only two times for the images of spirals in
data set 2, and three times for both types in data set 1. We use
this setting to investigate the effect of the balance between the
number of each type in training samples (Section 4.3). In addition,
we also reduce the differences in the number of total training
samples between each data set to reduce the probable bias from
this.

On the other hand, we have 2 (or 3 in CNN) different types of input
data (i, ii, iii). The first type (i) is the raw image with linear scale,
and the second type (ii) is the HOG image from feature extraction.
The third type, ‘combination input (iii)’, is special for CNN due to
the characteristic structure of CNN that we can combine both the
raw images (i) and HOG images (ii) as input without increasing
the number of features. This is an new way to combine data using
CNN, whereas people used to restore the images with different
colours in the third dimension of CNN in previous studies. We
then also investigate the effect of this combination input (iii) and
compare it with the other two types (i and ii) (Section 4.4).
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For the testing set, we randomly pick 500 galaxies from 2862
galaxies for each type (ellipticals and spirals). The rest of unselected
galaxies are training set. Therefore, we have 1000 galaxies in total
for testing and the ratio between ellipticals and spiral is 1:1.

3 MO D E L S O F M AC H I N E L E A R N I N G

The concept of machine learning can connect with the invention
of calculators (Turing 1950) that we program machine to obtain
the information we want through the input numbers or charac-
ters (features). The breakthrough of visual pattern recognition in
machine learning started from Fukushima (1980) which proposed
a hierarchical and multilayered neural network – Neocognitron.
Machine learning stood on the stage of astronomical applications
since the 1990s (e.g. Odewahn 1992; Storrie-Lombardi et al. 1992;
Weir et al. 1995).

There are two main types of features, ‘parameter input’ and
‘pixel input’, that can be fed into machine. In the studies of galaxy
morphological classification, the ‘parameter input’ is where we
use parameters, which have clear correlations with galaxy types
(e.g. Storrie-Lombardi et al. 1992; Naim et al. 1995; Lahav et al.
1996; Ball et al. 2004; Huertas-Company et al. 2008, 2009; Banerji
et al. 2010; Huertas-Company et al. 2011; Sreejith et al. 2017). For
example, the ‘parameter’ input can be surface-brightness profile,
colour, C–A–S system (Conselice 2003), and Gini Coefficient
(Abraham, van den Bergh & Nair 2003).

On the other hand, the ‘pixel input’ means that we treat each
pixel of an image as a feature to feed machine learning algorithms.
The ‘pixel input’ is the most straightforward feature used in two
for machine to learn, although it significantly increases the number
of features for computation. However, it is uncommon in previous
studies of automated classification of galaxy morphology to use
‘pixel input’ (e.g. Mähönen & Hakala 1995; Goderya & Lolling
2002; de la Calleja & Fuentes 2004; Polsterer et al. 2012) until
the application of CNN become popular in recent years (Dieleman
et al. 2015; Huertas-Company et al. 2015; Domı́nguez Sánchez et al.
2018).

We use ‘pixel input’ for each method in this study to investigate
the effect of ‘pixel input’ on different machine learning algorithms
(Table 1). Restricted Boltzmann Machine (RBM; Smolensky 1986;
Hinton 2002; Salakhutdinov et al. 2007), shown in Table 1, is the
simplest neural network with one hidden layer, which we treat as a
feature extractor for in this study (Section 3.1).

All of the codes in this study are built on PYTHON. The main
packages we use in this paper are SCIKIT-LEARN5 (Pedregosa et al.
2011) for most of methods: Theano,6 Lasagne,7 and nolearn8 for
CNN.

3.1 Restricted Boltzmann Machine

RBM (Smolensky 1986; Hinton 2002; Salakhutdinov et al. 2007)
contains one hidden layer which is the simplest neural network
architecture (more explanation for the architecutre of neural network
in Section 3.6). This is a useful algorithm for dimensionality
reduction and feature learning; therefore, in this paper, the RBM
is used as a feature extractor to connect each feature. It extracts

5http://scikit-learn.org/stable/
6http://deeplearning.net/software/theano/
7http://lasagne.readthedocs.io/en/latest/
8https://pythonhosted.org/nolearn/

the features that are more interlinked with each other before we
feed them to other machine learning algorithms. The combination
of machine learning algorithms such as logistic regression (LR;
Chopra & Yadav 2017) and RBM is actually widely used in face
and handwriting recognition.

In this study, the setting of RBM is identical amongst all methods
that we apply a fixed learning rate (=0.001), 1024 numbers of
hidden units, and 500 iterations for RBM in training, where the
learning rate determines how far to move the weights each time
towards the local minimum of loss function. The number of
iteration is approximately determined by where the maximum of
log-likelihood is shown.

3.2 K-Nearest neighbours

K-Nearest neighbour (KNN) is the simplest non-parametric ma-
chine learning algorithm (Fix & Hodges 1951; Cover & Hart 1967;
Short & Fukunaga 1981; Cunningham & Delany 2007). This is
one of the most common methods in pattern recognition and has
several applications in clustering and classification problems (in
astronomy e.g. Kügler, Polsterer & Hoecker 2015). The concept of
KNN is to find highly similar data, where similarity is defined by
the ‘distance’ in the feature space between data. Parameter k is the
number of nearest neighbours counted in the same group. This factor
controls the shape of the decision boundary for the distribution of
data.

Increasing the value of k decreases the variance in the classifi-
cation but also increases the bias of the classification. We chose
the value of k by plotting the accuracy (equation 5) versus different
values of k, and the value we ultimately use is k = 5. The distance
metric for calculating the distance between each data is defined by
the Euclidean metric.

3.3 Logistic regression

LR is a generalized linear model (McCullagh & Nelder 1989) that
uses the sigmoid function 1

1+e−x (or logistic function) to output the
probability of classification. The application in astronomy such as
Huppenkothen et al. (2017) studies the variability of galactic black
hole binary.

The combination of LR and RBM is commonly used in face and
handwriting recognition (Chopra & Yadav 2017). The improve-
ment of this combination is rather significant in LR while using
‘pixel input’ because of the characteristics of neural networks (see
Section 4).

3.4 Support Vector Machine

The concept of Support Vector Machine (SVM) algorithm is to
find a hyperplane with the maximal distance to the nearest data
for each type (support vector) (Cortes & Vapnik 1995; Vapnik
1995). In this study, we use a non-linear SVM, in particular, the
Radial Basis Function (RBF) kernel function (Orr 1995): (�x, �x ′

) →
K(�x, �x ′

) = exp(−γ ‖�x − �x ′ ‖2
). The detailed introduction of the

SVM algorithm is given in the Appendix.
SVM was expecting to be an alternative option for the neural

network due to the capability of dealing with high-dimensional data
(Zanaty 2012). The application of this in astronomy is very popular,
e.g. Gao, Zhang & Zhao (2008), Huertas-Company et al. (2008),
Huertas-Company et al. (2009), and Kovács & Szapudi (2015). In
this study, we use Nu-SVM that was first introduced by Schölkopf &
Smola (2002) and apply the PYTHON package NUSVC. The value of
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Input Layer    Hidden Layer    Output Layer

1

X1

X2

1

f1

f2

f1’
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Y1

Y2

w0
w1

w2

Figure 3. Illustration of a neural networks. This structure is for illustration
only and this includes one hidden layer, and two hidden units. Two input
features, X1 and X2, work with the activation functions, f1 and f2, then obtain
the outputs, Y1 and Y2.

nu is determined by the PYTHON package GRIDSEARCHCV (Hsu,
Chang & Lin 2003).

3.5 Random forest

Random forest (RF) is an ensemble learning method developed
by Breiman (2001) that aggregates the results from a number of
individual decision trees to decide the final classification (Fawagreh,
Gaber & Elyan 2014). Each tree is trained by a randomly picked
subset from the training set. The RF is a well-known machine
learning technique applied in Astronomy using ‘parameter input’
(e.g. Dubath et al. 2011; Beck et al. 2018), but the application that
directly using pixel such as our study is untested.

We use RandomForestClassifier from the scikit-learn module
(Pedregosa et al. 2011). The number of trees (n estimators) used
in this study is determined by plotting the accuracy (equation 5)
versus different values of n estimators, and we ultimately use 200
trees. The maximal number of features to consider for each split
(max features) is equal to

√
Nf , where Nf is the total number of

features. Each tree grows until all leaves are pure or all leaves
contain the number of leaves less than 2.

3.6 Multilayer Perceptron Classifier

Multi-Layer Perceptron Classifier (MLPC) is a supervised artificial
neural network with multiple hidden layers (Rosenblatt 1957;
Fukushima 1975; Fukushima, Miyake & Ito 1983). Hidden layers
that have several hidden units are invisible layers between input
and output layer in neural networks, and are used to connect input
features with each other. Each hidden unit is an activation function
calculated by the product of weights and input. Using a neural
network with one hidden layer as an example (Fig. 3), X1 and X2
are input features, f1 and f2 are the activation functions of hidden
units calculated by (using f1 as an example) f1 = f(w0 · 1 + w1X1 +
w2X2), where w are weights and f represents an activation function
as well. Through the calculation, it connects each input feature
with hidden units by weights. Therefore, more hidden layers and
more hidden units in each hidden layer can form more complicated
connections of input features; however, the architecture with more
hidden layers and hidden units is more time-consuming and can
lead to overfitting problems. Similarly, the output layer can also be
calculated from this concept.

MLPC uses a back-propagation algorithm (Werbos 1974; Rumel-
hart, Hinton & Williams 1986), which returns the error of predicted
classification compared with the true label to the algorithm when the
neural network is activated and the preliminary output is obtained.
Algorithm adjusts the weights through the error until the error is
lower than the tolerance which we set 10−5. There are two hidden

layers and 1024 hidden units for each hidden layer in MLPC method
we used. The learning rate is fixed to 0.001.

3.7 Convolutional Neural Networks

CNN started from the design of LeNet-5 (LeCun et al. 1998).
However, CNN were not applied to the morphological classification
of galaxies untill Dieleman et al. (2015) in the Galaxy Zoo
Challenge.9 There are two main differences between artificial neural
networks (e.g. MLPC) and CNN. One is that CNN has convolutional
layers that are able to extract notable features from the input images
by applying several filter matrices, and the other difference is the
dimension of the input.

Most machine learning algorithms are designed for dealing with
1D array input (e.g. parameter input), but some of them (e.g. SVM
and neural networks) are able to deal with higher dimension data.
However, the input still needs to be reshaped to 1D arrays for SVM
and MLPC. On the contrast, CNN is designed for image input with
3D arrays which means that in addition to the image itself, CNN
has an extra dimension to store more information of image such as
colours (RGB).

Fig. 4 shows the architecture of CNN that we use in this study.
The input size of image is 50 by 50 pixels (Section 2.1.2). We have
three convolutional layers with filter sizes of 3, 3, 2, respectively,
and each of them is followed with a pooling layer with size 2. These
are then connected with two hidden layers with 1024 hidden units
for each layer. Additionally, two dropout layers are used to prevent
overfitting, one follows the third convolutional layer (pooling layer),
and the other comes after two hidden layers. The rectification of
non-linearity is applied for each convolutional layer and hidden
layer, and the softmax function is applied to the output layer to
get the probability distribution of each type (all from the PYTHON

package lasagne.nonlinearities). We use Adam Optimiser, Nesterov
momentum, and set momentum = 0.9 according to Dieleman et al.
(2015), and the learning rate 0.001 and maximum 500 iterations for
the CNN training.

4 R ESULTS

4.1 The evaluation factors for models

We use the Receiver Operating Characteristic curve (ROC curve;
Fawcett 2005; Powers 2011) to examine the performance of each
method and data set. On an ROC curve, the y-axis is the true
positive rate (TPR) and the x-axis is the false positive rate; therefore,
the closer the ROC curve gets to the corner (0,1), the better the
performance is. The definitions of true positive and the false positive
are shown in Fig. 5 in terms of the confusion matrix. Therefore, the
TPR and false positive rate (FPR) are defined as follows:

TPR = TP

TP + FN
; FPR = FP

FP + TN
. (2)

The definition of TPR is identical to ‘recall (R)’ in statistics that
represents the completeness that shows how many true types have
been picked, while ‘precision (Prec)’ indicates the contamination
that means how many picked types (predicted types) are true types.
We are doing binary classification – positive: spirals and negative:
ellipticals. Therefore, the recalls for spirals and ellipticals are shown
as follows:

9https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Figure 4. The schematic overview of the architecture of CNN. The architecture starts from an input image with size 50 by 50 pixels, then three convolutional
layers (filter: 32, 64, and 128). Each convolutional layer is followed a pooling layer. Two hidden layers with 1024 hidden units for each are following the third
convolutional layer. One dropout (p = 0.5) follows after the third convolutional layer and the other follows after the second hidden layer. At last, there are two
outputs in our CNN, ‘ellipticals’ and ‘spirals’.

Figure 5. The confusion matrix. The x-axis label is the predicted label and
the y-axis label is the true label. The ‘0’ means negative as well as ellipticals
type, while ‘1’ represents positive signal and spirals type in this study.

Prec = TP

TP + FP
; (3)

R(1) = TP

TP + FN
; R(0) = TN

TN + FP
. (4)

Additionally, we also use the factor – the area under the ROC
curve (AUC) as a performance evaluation for machine learning
(Bradley 1997; Fawcett 2005). The meaning of AUC is the prob-
ability that a classifier ranks a randomly chosen positive example
greater than a randomly chosen negative example. This factor also
indicates the separability – how well the classifications can be
correctly separated from each other.

4.2 The impact of rotated images

The ROC curves of each method and data sets are shown in Fig. 6.
We show the results of raw images input (i) in this figure. Different
colours represent different data sets such that the yellow, orange,
cyan, blue lines represent data sets 1, 2, 3, 4, respectively (Table 2).
The data sets 1 and 2 contain both the original images and the rotated
images, and the data sets 3 and 4 only contain the rotated images.

Meanwhile, the data sets 1 and 3 have an unbalance number of each
type, conversely, the data sets 2 and 4 have an identical number
for each classification. The lighter colour shadings are the scatters
defined by the minimum and maximum over three reruns. The black
diagonal dashed line indicates a random classification.

First, the results of the LR and SVM methods, with and without
combining with neural network, RBM show an improvement for
LR and SVM when combining with RBM in Fig. 6. On the
contrary, the performance of RF+RBM method shows slightly
worse performance than the one of the RF method. Secondly, the
scatters of the three reruns show small variance for each data
set, confirming the consistency of the reruns with each other.
Additionally, as can be seen there are not large differences in the
results between the different data sets. However, the slight shifts of
the ROC curve occur within a few methods between the different
data sets (e.g. MLPC). These are due to the slight differences in the
total number of training samples for different data sets (Table 2).
For example in MLPC, the data set 4 has the maximum number of
training data within the four data sets used (∼12 400 galaxies), so
the performance of this data set is the best in MLPC; the data sets
2 and 3 have very similar number of training data (the differences
in number is only 67), thus they have a similar performance to each
other. The data set 1 has the least number of training data (∼10 400
galaxies); therefore, the performance is relatively worse. The shifts
seen are also influenced by the condition of the balance between
the ratio of each type (e.g. SVM and RF); for example, the data
sets 1 and 3 are the unbalanced training data, so the shapes of their
ROC curve are similar to each other. This is also the case for the
data sets 2 and 4. To summarize, from Fig. 6, data augmentation
through rotated images works fair to improve the performance of
classification with machine learning.

4.3 Balance or unbalance?

Here, we investigate the influence of the balance between the
number of each type in training data. Fig. 7 shows the recalls of
ellipticals and spirals for the different data sets using the different
methods. The colour representation is the same as the ROC curve
of Fig. 6, and the different methods are marked by the different
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KNN

KNN+RBM

LR

LR+RBM

SVM

SVM+RBM

RF RF+RBM
MLPC CNN

Figure 6. The ROC curve of each method and each data set using the raw images input (i). The abbreviation of the methods are the same as Table 1. Different
colours are for the different data sets (Table 2). Yellow, orange, cyan, blue are for data sets 1, 2, 3, 4, respectively. The lighter colour shading shows the scatters
defined by the minimum and maximum of three reruns, and the lines inside are the averages of the three reruns. The black diagonal dashed line represents a
random classification.

Figure 7. The recalls of the ellipticals and spirals for all methods and the
different types of the input data used. The colours represent the different
data sets, while the different shape markers are the different methods. The
different types of filled-points represent the different types of input. The fully
colour-filled markers are the raw images only (i), the diagonal-line-filled
markers are the HOG images (ii), and those with dots are the combination
input of the raw and HOG images (iii) which is only for CNN. The black
dashed line represents the condition that R(0) = R(1) (equation 4). The black
dotted lines indicate that the differences in the recalls between these two
types are within ±0.1. The error bars are from the standard deviation of the
three reruns.

shape markers. We obtain the value of the recall from equation (4)
for Fig. 7 by averaging the values from the three reruns. Different
pattern types represent different types of input. The colour-filled
points are the raw images input (i) while the points with diagonal-
filled marker are the HOG images (ii), and with dotted-filled marker
are the combination input (iii). The black diagonal dashed line shows
the condition that R(0) = R(1) (equation 4), and the black dotted
lines show that the recall differences between these two types are
within ±0.1.

We observe that the unbalance training data set 1 (yellow) and
data set 3 (cyan) are all above the upper dotted line that means that
these two data sets generally have relatively higher recalls for spirals
compared to ellipticals, and the differences of the recalls between
spirals and ellipticals are larger than 0.1. For example, the result
of the LR with the raw images input (i) (using the data set 3 as an
example shown as the leftmost cyan square in Fig. 7) has the recall of
(0.34, 0.81) for ellipticals and spirals, respectively. We also observe
that the LR, LR+RBM, SVM, and SVM+RBM methods have more
seriously unbalanced results than other methods when using the
unbalanced data sets (close to the top-left in Fig. 7). This situation
is due to the characteristics of these methods. For example, LR
simply uses logistic functions to determine the decision boundary
which can be easily shifted by unbalanced number of each type. On
the other hand, Wu & Chang (2003) discusses the skewed decision
boundary of SVM caused by an unbalanced data such that the
decision boundary is likely to be dominated by the support vector
for the majority class.
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KNN

KNN+RBM

LR

LR+RBM
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SVM+RBM

RF RF+RBM
MLPC CNN

Figure 8. The ROC curve for different types of input within each method. Different colours are for different input types of data. Cyan, orange, and blue are
for raw images (i), HOG images (ii), and combination input (iii), respectively. The lighter colour shadings show the scatters defined by the standard deviation
calculated through three runs of the balanced data sets 2 and 4. The lines inside the shading are the averages of the three reruns of the data sets 2 and 4. The
black diagonal dashed line represents a random classification. The subplot in the CNN method is the zoom-in area from 0.75 to 1.0 in y-axis and from 0.0 to
0.25 in x-axis.

On the other hand, most of the balanced data set 2 (orange) and
data set 4 (blue) are located within two dotted lines that implies
that these two data sets have similar recalls between ellipticals and
spirals (the differences are smaller than 0.1). However, a few results
of the balanced data sets in KNN have a higher recall of ellipticals,
but a relatively lower recall of spirals (the orange and blue stars
which are below the lower dotted line). KNN algorithm obtains the
similarity between two images by calculating the ‘distance’ between
each pixel of two images (Section 3.2). Spirals have various shapes
(e.g. different numbers of the spiral arms), while ellipticals have a
relatively simple appearance similar to one another. Therefore, it is
easier for KNN to recognize ellipticals than spirals when we have
the same numbers of both types within the training data.

We apply ten different common machine learning algorithms in
this study and they show the consistent result in their balance except
for KNN which we have discussed above; therefore, according to
this discussion, the balance between the number of each type in
training process is of great importance while using pixel input in
most machine learning algorithms. In this figure, we also observe
that the CNN method with a balanced data sets obtains the best
recalls of both ellipticals and spirals.

4.4 The effect of different types of input data

Here we show the comparison results between the different types
of input for each method (Fig. 8). We have 2 (3 for CNN) different
types of input – the raw images (i), the HOG images (ii), and
the combinations input (iii) (for CNN only). Different colours in

Fig. 8 indicate different types of input such that cyan, orange,
and blue are for the raw images (i), the HOG images (ii), and the
combination input (iii), respectively. According to the discussions
in Sections 4.2 and 4.3, the results of the balanced data sets 2 and
4 are basically equivalent, and are better representations in our four
data sets (Table 2). Therefore, we show the averages of the balanced
data sets 2 and 4 after three reruns in Fig. 8, and the lighter colour
shadings show the scatters defined by the standard deviation of the
three reruns.

Fig. 8 shows that the HOG images input successfully improves
the performance in most of methods, except for KNN. Although the
HOG image is able to extract the characteristics of the morphologies
according to the value of the gradients, it also loses some of the
detailed information (i.e. the smaller fluctuations or gradients) and
the smooth structure as well. Therefore, for KNN, the loss of the
smooth structure in HOG images causes difficulties in determining
the correct decision boundary. This result can be significantly im-
proved by combining KNN with RBM when using the HOG images.

On the other hand, we observe that the application of HOG images
shows an unapparent effect when combining RBM in LR+RBM,
SVM+RBM, and RF+RBM. We infer that this phenomenon is
caused because that the RBM interlinks with the HOG features
that have less information in the images than the raw images input.
Therefore, it ‘annihilates’ the effects of RBM and HOG that leave
an unapparent change in these three methods. This effect is shown
in both MLPC and CNN as well such that the HOG images input
shows only a slight improvement in these two methods as well.
However, increasing the number of hidden layers or more neurons
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Figure 9. The average accuracy (equation 5) of the three reruns versus each method with the different data sets and the different types of input shown. The
y-axis is from 0.5 to 1.0. Colours represent different data sets such that yellow, orange, cyan, blue represents data set 1, 2, 3, 4 (Table 2), respectively. The
different styles of shading are the different types of input data such that the fully-filled, the diagonal-line-filled, the dotted-filled represents the raw images (i),
the HOG images (ii), and the combination input (iii), respectively. The labels above bars are the highest value of the accuracy for each method.

Table 3. The comparison of the computing time (per ∼1000 galaxies) for
each method. The ‘accuracy’ is the best accuracy shown in Fig. 9. The first
10 methods were run on the 2.3GHz Intel Core i5 Processor with 16GB
2133 MHz LPDDR3 memory, while the sixth method ‘CNN (GPU) was run
on the NVIDIA GeForce GTX 1080 Ti GPU.

Methods Training time (s) Testing time (s) Accuracy

KNN ∼0.2 ∼45 0.782 ± 0.027 (raw)
KNN+RBM ∼3000 ∼45 0.830 ± 0.007 (HOG)
LR ∼7–8 ≤1 0.682 ± 0.040 (HOG)
LR+RBM ∼3000 ≤1 0.810 ± 0.012 (HOG)
SVM ∼800 ≤8 0.764 ± 0.029 (HOG)
SVM+RBM ∼3000 ≤8 0.762 ± 0.001 (HOG)
RF ≤1 ≤5 0.913 ± 0.009 (raw)
RF+RBM ∼3000 ≤5 0.870 ± 0.031 (raw)
MLPC ∼18 ≤3 0.857 ± 0.010 (HOG)
CNN ∼3000 ≤5 0.951 ± 0.005 (comb)
CNN (GPU) ∼360 ≤5 0.951 ± 0.005 (comb)

in the neural networks helps to connect the HOG features with each
other. Therefore, the improvements with HOG images in MLPC
and CNN are qualitatively better than LR+RBM, SVM+RBM,
and RF+RBM. A more qualitatively significant improvement is
shown in CNN when we combine both the raw images input and
the HOG images input (blue colour in CNN plot of Fig. 8).

4.5 Comparison between methods

The definition of the accuracy used in Fig. 9 is shown as follows:

Accuracy = TP + TN

TP + FP + TN + FN
, (5)

such the meaning of this is defined as how many successfully
classified samples there are out of all the samples tested. The
comparison of the accuracy for the different data sets and the
different methods is shown in Fig. 9. Through this figure we can
observe the same situations as we have discussed in Section 4.4
such that most methods have a better performance when using
the HOG images as input, except for the KNN where the HOG
image input slightly reduces the performance, and the LR+RBM,
SVM+RBM, and RF+RBM methods that the HOG images input
gives no apparent improvement in performance. We also make
another comparison of efficiency between all methods (Table 3).
Most methods were run on the 2.3GHz Intel Core i5 Processor
with 16GB 2133 MHz LPDDR3 memory except for the ‘CNN
(GPU)’ which was run on the NVIDIA GeForce GTX 1080
Ti GPU.

Interestingly, the performance of RF wins the performance of
MLPC with a faster computation time (Table 3) using raw images
that was totally unexpected. The further investigation for the
capability of the RF on imaging data will be very helpful considering
both the computing speed and a high accuracy the RF can reach.
On the other hand, we can see that KNN and MLPC need less
computation time but can reach a relatively good accuracy compared
to other methods. Therefore, KNN and MLPC can be a good option
when using pixel input. Additionally, although the KNN method
has lower accuracy than MLPC, it applies raw images input which
saves the pre-processing time that generates the HOG images (or
other types of scaling).

The most successful methods when using pixel input in our study
according to both the ROC curve (Fig. 8) and the comparison of
accuracy (Fig. 9) between each method is certainly CNN. Both
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Table 4. The comparison between the different types of input in CNN when
using the data sets 2 and 4 (Table 2). The total number of testing images is
1000 galaxies. The definition of the accuracy is according to equation (5).
The value of R01 is the recall value of ellipticals and spiral (equation 4) after
taking a weighted average, and the value of this is shown in the table as the
three reruns average of R01.

Input types Accuracy R01

Raw (i) Data set 2: 0.924 ± 0.013 0.933
Data set 4: 0.906 ± 0.018 0.907

HOG (ii) Data set 2: 0.943 ± 0.016 0.940
Data set 4: 0.940 ± 0.003 0.940

Comb (iii) Data set 2: 0.945 ± 0.004 0.947
Data set 4: 0.951 ± 0.005 0.953

of these two figures indicate that the HOG image input helps the
performance of CNN (Table 4).

Additionally, we create a new way to utilize the third dimension
in CNN when we combine the raw image (i) with the HOG
images (ii) which together we call a ‘combination input (iii)’. This
shows a slight but qualitatively great improvement when using the
combination input (iii) to do training in CNN (see CNN plot in
Fig. 8). With the combination input (iii) and the balanced data sets,
we can reach ∼0.95 accuracy with CNN using pixel input in this
study (Table 4).

On the other hand, Sreejith et al. (2017) proposes an ‘unanimous
disagreement’ indicating an object that all the classifiers agree
with each other but disagree with the visual classification. In our
study, we found only three galaxies out of 1000 galaxies show
an unanimous disagreement when considering all classifiers. These
galaxies are all labelled as spirals by the Galaxy Zoo 1 classification
(GZ1) but classified as ellipticals by our classifiers. We also visually
confirmed that these galaxies are indeed ellipticals. This unanimous
disagreement is more likely caused by the debias process applied
in GZ1 to statistically adjust the population of galaxies at a higher
redshift rather than a simple visual misclassification.

5 FURTHER DISCUSSION

We have already discussed some of our results in Section 4, while
presenting the results. In the last section, we concluded that the
best method of these 10 supervised machine learning methods is
CNN, the further analysis and the discussion of CNN is essential
for all future usage (Section 5.1), as well as the investigation
of misclassification and galaxies with low predicted probabilities
(Section 5.2).

5.1 Analysis of CNN

Here, we discuss in more detail the results of our CNN machine
learning classification. We use a default criterion for the classifi-
cation in CNN such that the probability (p) > 0.5 is the criterion
for classification; namely, ellipticals or spirals with p > 0.5 will be
classified as that type. When we change the criterion to p ≥ 0.8,
namely any types with p ≥ 0.8 are classified as the predicted type,
and if both types have p < 0.8 then that galaxy will be classified as
‘Uncertain type’. With this criterion, we separate our testing data
into three different classes: ellipticals, spirals, and uncertain. Using
the combination input (iii), the accuracy of classification increases
to ∼0.97 (Table 5).

Table 5. The average result of the classification success with the classifica-
tion criterion p > 0.8 through using CNN for data set 2, data set 4 (Table 2),
and the result of the maximum available number of training data in our study
with the combination input (iii) which includes both raw and HOG images.
The total number of testing galaxies is 1000. The definition of accuracy
(equation 5) and the meaning of R01 are same as in Table 4. Nclassifiable and
Nuncertain are the number of testing data which are classifiable (namely, p ≥
0.8) and uncertain [probabilities of both types (p) < 0.8], respectively.

Accuracy R01 Nclassifiable Nuncertain

Data set 2 0.974 ± 0.004 0.973 912 88
Data set 4 0.974 ± 0.003 0.973 927 73
Maximum 0.987 ± 0.001 0.99 958 42

Figure 10. The accuracy versus the number of training data with different
types of input. Different colours show different types of input such that
cyan, orange, blue are for the raw images (i), the HOG images (ii), and
the combination input (iii), respectively. The lighter colour areas show the
scatters of the standard deviation calculated by the five reruns, and the
lines inside shadings show the average of the five reruns. The two dotted
horizontal lines indicate the accuracy of 0.95 and 0.97.

Secondly, increasing the number of training samples should intu-
itively improve the performance; however, we investigate whether
this assumption is correct. We increase the number of our training
samples by the rotated images, and keep the balance between
the number of both types of galaxies. The maximum balanced
number of the training data in our study is 53 663 (S: 26 839;
E: 26 824).

In Fig. 10, we observe that the increased rate of accuracy remains
basically positive, but this decreases as the number of training data
increases. This shows that there is likely a maximum accuracy
limitation within the CNN method for galaxy classification. This
indicates that our combination input (iii) has a better performance
than the other two types of input data, as we increase the number
of training data, and the combination input (iii) is the only one
which is able to reach over the accuracy of ∼0.97 without any
condition.

Therefore, we apply our maximum number of training data
(53 663) with the combination input (iii) to do the training, and
combine it with the classification criterion p = 0.8. We then obtain
a high accuracy of ∼0.987 in the morphological classification of
galaxies. The result is shown in the third row of Table 5.
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Table 6. The fraction of the samples out of 1000 testing
galaxies, and the fraction of misclassification within a certain
probability range calculated by being divided by the sample
number. The results are the average of five reruns.

Probability Sample fraction Misclassification

p ≥ 0.8 0.958 0.0142
0.7 ≤ p < 0.8 0.0184 0.239
0.6 ≤ p < 0.7 0.0302 0.132
0.5 ≤ p < 0.6 0.0114 0.368

5.2 Origin of classification failures

As shown in the above section, we are able to reach a high
classification accuracy of ∼0.987 by using CNN with the maximum
number of the training data with a combination of input (iii), and
the criterion of the probability p ≥ 0.8. However, the <100 per cent
accuracy indicates that there are a few galaxies misclassified but
with high predicted probabilities (p ≥ 0.8). On the other hand, there
are also a few galaxies (∼42 out of 1000 testing galaxies) that
are non-classifiable (lower predicted probability p < 0.8 in both
ellipticals and spirals). Table 6 shows the fraction of the samples
within a range of probability (out of 1000 testing galaxies), and the
number of misclassification out of the galaxies within a probability
range. It indicates that the classifications with higher probabilities (p
≥ 0.8) are much less often misclassified. However, it also shows that
galaxies with the predicted probabilities between 0.7 and 0.8 have
a higher misclassified rate than the predicted probabilities between
0.6 and 0.7. This means that there are some galaxies with relatively
higher predicted probabilities but which are misclassified by our
CNN.

In this section, we define two types of failures by our CNN. One
is the misclassification with the comparison to the Galaxy Zoo 1
classification with high-predicted probabilities (p ≥ 0.8) that are
galaxies that were classified with high probabilities with CNN but
which later turned out to have a different classification in Galaxy
Zoo. The other type of ‘failed’ classification are those galaxies with
low predicted probabilities (p < 0.8 in both types) of being either
elliptical or spiral. We investigate the origin of these ‘failures’ in
this section.

5.2.1 The failure with high probability: the misclassification of the
classifiable galaxies

We rerun five times the best combination of our method (i.e. the
CNN trained by the maximum balanced number of training data
and the combination input (iii), and classified by the criterion p =
0.8), and we then collect all the misclassification of the classifiable
galaxies from these five reruns together, obtaining 22 galaxies in
total (Fig. 11). Misclassification in this sense is that what we get
from our CNN analysis differs from the Galaxy Zoo classification.
Most of these 22 galaxies are repeatedly misclassified between these
five reruns, in Fig. 11, objects 1–7 only show up once, objects 8–
17 are repeated more than twice, and objects 18–22 are repeatedly
showing up in five reruns. There are two main probable reasons
for these misclassifications with a high probability through our
CNN method. One is that we use the galaxy images with linear
scale (including HOG images) on our CNN training, so in some
cases, even if it shows the feature of spirals in logarithmic scale,
it is just a point source, a round object, or a large bright area in
linear scale. Therefore, they prefer to be classified as ellipticals

Figure 11. The misclassified galaxies with high probabilities (p ≥ 0.8)
comparing the classification of Galaxy Zoo 1 and our CNN. On the top of
the images shows the probabilities of being ellipticals, E(0) and spirals, S(1)
by our CNN. The line below the image shows the ID number of the galaxies
in DES, and the second row shows the classifications by Galaxy Zoo and
our CNN.

rather than spirals in our CNN. This will be further discussed in the
Section 5.2.3.

The other reason for the differences is due to misclassifications
by the Galaxy Zoo 1 (GZ1). We apply visual classifications that
have over 80 per cent agreement between volunteer classifiers in
the GZ1 catalogue in which we use to label our DES data.
When we compare the SDSS imaging to the DES imaging,
we can see some GZ1 classifications based on the SDSS data
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Figure 12. Examples of the incorrect label from GZ1 with SDSS imaging. The figures under each number show the galaxy images of DES and SDSS, and
their ID numbers. The label of ‘CNN’ shows the predicted label from our method, and which of ’GZ’ shows the label from the Galaxy Zoo 1 catalogue.

were simply wrong. Some examples are shown in Fig. 12. Most
of them are revealed to be misclassifications due to the better
resolution and deeper depth of the DES data than the SDSS
data. With higher resolution of the DES data, we reveal more
detailed structure than the SDSS data (e.g. the numbers 4 and
8 in Fig. 12 that show clear spiral structures in the DES data
but nothing in the SDSS data). We will further discuss this in
Section 5.2.4.

On the other hand, we also discover that some galaxies with
large, bright, and oval structure are easy to misclassify using our
method. These galaxies are lenticular galaxies when examined on
the DES imaging. The main reason for their misclassifications is
because there is not a class for lenticular galaxies in the Galaxy Zoo
project. Lenticular galaxy is difficult to see by visual classification
and typically requires high resolution and deep imaging, even for
nearby galaxies. Some of them are therefore classified as spirals,
and some of them are recognized as ellipticals in the GZ1 catalogue.
The details will be discussed in the next section (Section 5.2.2) as
most of these galaxies generally have lower predicted probabilities
of being either elliptical or spiral.

5.2.2 The failures at low probability: uncertain type

In this section, we investigate the galaxies with lower predicted
probabilities (p < 0.8) for classification as either elliptical or spiral
in the five reruns of our best method. The majority of the samples
with lower probabilities are repeated between five reruns, and some
of them also show up in the previous section (Section 5.2.1) which
are misclassified but with high probabilities. The probabilities of
these galaxies vary significantly between each rerun.

The appearance of these galaxies can be separated into two types.
One type are the galaxies which look large, oval, and bright (top 1–
12 in Fig. 13), and the other types are those which do not appear this
way, e.g. galaxies which are relatively fainter or with large bulge
and spiral structure at the same time, or the target galaxy is shifted
significantly away from the centre of the image (bottom 1–12 in
Fig. 13).

The galaxies with large and oval structure are lenticular galaxies
that we discussed in the previous section (Section 5.2.1). As
discussed there is not a lenticular galaxy class in the GZ project,
nor can these types be easily seen in SDSS data; therefore, the
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Figure 13. Examples of the galaxies with low probabilities of classification
as either spiral or elliptical. Top 1–12: these objects are turned out to be
lenticular galaxies (S0) in cluster inspection. Bottom 1–12: the other types
of galaxies.

classification of these galaxies in the GZ1 catalogue are such that
half of them are classified as spirals, and half of them are classified as
ellipticals. Because lenticulars are neither spirals or ellipticals, their
structure confuses our CNN such that it gives lower probabilities
for these galaxies to be of either type. This is a ‘rediscovery’ of
lenticulars and shows the power of machine learning for discovering
new types of galaxies, as we did not expect this to occur.

5.2.3 Combined with logarithmic scale images

According to the discussion in the Section 5.2.1, we investigate
the impact on our classification with CNN when using images with
logarithmic scale (hereafter, log images) to train our CNN algorithm
by using the data sets 2 and 4 (Table 2). In addition to the log images,
we also combine the log images with our combination input (iii) as
the input to train our CNN. The comparison of the results are shown
in Table 7.

Comparing Table 7 with Table 4 shows a significant improvement
when using the log images, and the combination of the log images
and our combination input (iii) shows a better accuracy than just
using the log images as input.

Table 7. The comparison of the accuracy (equation 5) and the recalls (same
as Table 4) between the inputs of the log images and the combination of
log images and combination input (iii) by using the data set 2, data set 4
(Table 2), and the maximum number of training data.

Combination input(iii)
Log image +log image
Accuracy R01 Accuracy R01

Data set 2 0.950 ± 0.006 0.947 0.952 ± 0.006 0.950
Data set 4 0.954 ± 0.004 0.953 0.964 ± 0.007 0.967
Maximum 0.973 ± 0.002 0.970 0.971 ± 0.005 0.973
Max (p = 0.8) 0.987 ± 0.004 0.987 0.987 ± 0.003 0.987

Table 8. The criteria for selecting the suspected misclassified galaxies by
the Galaxy Zoo project and purifying the training set.

Criteria

Confirmed (1) Appearing ≥4 times in total failures.
(2) Appearing at least once in the high-p failures.

Suspected (1) Appearing ≥2 but ≤4 times in total failures.
(2) Does not satisfy the criteria for ‘confirmed’.

Not misclassification (1) Appearing ≤1 time in the test of new models

However, comparing Table 7 with Table 5 shows that there are
not significant differences in the performance from log images input
to the other three types of input, (i), (ii), (iii), when we train our
CNN through the maximum available number of the training data.
This means that there is an intrinsic limitation of our method. This
limitation can also be seen in Fig. 10 in Section 5.1.

Therefore, we conclude that although adding the log images as
input helps the performance, it still has no apparent difference from
our result when we apply the maximum number of training data to
our CNN.

5.2.4 The advantage of dark energy images and the
misclassifications by Galaxy Zoo project

We have discussed the incorrect labels by Galaxy Zoo in previous
sections. As discussed, the main reason to reveal the misclassifica-
tion by SDSS imaging Galaxy Zoo is because of the better resolution
(0.263 arcsec per pixel) and deeper depth of DES data (i = 22.51)
(DES Collaboration 2018).

These wrong labels not only influence the results of our CNN
but also contaminate the training set. Therefore, we remove the
potential misclassified galaxies from the training set. We purify our
training set by excluding the suspected misclassified galaxies then
use the criteria shown in Table 8 to confirm or dismiss our suspected
misclassifications. We then rerun our CNN classification five times
on each new training set and obtain five new CNN models on the
new classifications. After carrying out this purification twice, and
then retraining and updating our list of suspects, we obtain two lists
of these galaxies: one is the confirmed misclassified galaxies by the
Galaxy Zoo, and the other are the suspected misclassified galaxies.

The images of these systems are shown in Figs 14 and 15.
There are ∼2.5 per cent misclassified galaxies in the Galaxy Zoo 1
catalogue out of 2800 in our study as revealed by using DES images
and our CNN, and ∼0.56 per cent are suspected candidates in our
study. We then correct our training set according to these two lists.
We change the label of the confirmed misclassified galaxies and
exclude the suspected misclassified galaxies from the training set,
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Figure 14. The confirmed list of the misclassified galaxies in the Galaxy Zoo 1 catalogue. The first row underneath the images is the ID numbers of galaxies,
and the second row shows the classification by Galaxy Zoo (GZ) and our CNN (CNN).
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Figure 15. The suspected list of the misclassified galaxies in the Galaxy Zoo 1 catalogue. The first row underneath the images is the ID numbers of galaxies,
and the second row shows the classification by Galaxy Zoo (GZ) and our CNN (CNN).

Table 9. The testing result after using the purified training set. The meaning
of each column are same as Table 5. There are eight suspected misclassified
galaxies out of 1000 testing galaxies. The first row is the testing result
excluding suspected galaxies. The second row shows the result with the
suspected galaxies that retain their initial labels from the Galaxy Zoo
catalogue. The third row is the result with the suspected galaxies but their
initial labels changed – for instance, the label changes to Elliptical if the
initial label was spiral.

Accuracy R01 Nclassifiable Nuncertain

No suspected galaxies 0.991 ± 0.003 0.990 976 16
With suspected galaxies 0.989 ± 0.001 0.990 981 19
Label changed 0.987 ± 0.003 0.986 981 19

Figure 16. The best testing result which we changed the label of the
confirmed misclassified galaxies and excluded the suspected misclassified
galaxies in both training and testing set. Top: Confusion matrix. The ‘0’
means ellipticals and ‘1’ represents spirals. The colour bar shows the fraction
of each true label (Galaxy Zoo), and the number shows the corresponding
number of the fraction. Bottom: The ROC curve of this testing result.

then do the training with the maximum available number which is
53 141 galaxies in total (E: 26 344; S: 26 797). We then change the
label of the confirmed misclassified galaxies in the testing set as
well.

The results are shown in Table 9. The first row of Table 9 is
the testing result excluding 8 suspected misclassified galaxies out
of 1000 testing galaxies. Compared this result with the results in
Table 5, our new models predict the highest accuracy, and end up
having a resulting fewer number of uncertain type (about half the
original number) than the previous results. Therefore, Fig. 16 shows
the best testing result in our study. In this result, we change the label
of the confirmed misclassified galaxies and exclude the suspected
misclassified galaxies in testing set. We obtain the accuracy of 0.994
for the best model within five reruns, and the average accuracy of
five reruns is 0.991.

The second and third rows of Table 9 show the results including
suspected galaxies that retain the initial label from the Galaxy Zoo in
test and change the label of them to the opposite label, respectively.
We have lower accuracy in these two conditions than the result of
the first row. This indicates that part of our suspected galaxies have
incorrect labels in Galaxy Zoo catalogue, and part of them are not,
based on our CNN. Some examples of the successful classifications
by the purified CNN training are shown in Figs 17 and 18.

6 C O N C L U S I O N S

In this study, we have examined 10 supervised machine learning
methods to determine the most successful method for classifying
galaxies into ellipticals and spirals using only pixel input on a single
band (i band). As part of the investigation, we have also tested how
using rotated images with various angles of rotation with 10 deg
increments to augment our data influences on our classification. In
addition, we also confirmed that the balance between the number
ratio of each type is rather important when using pixel input in
machine learning.

We show that the machine learning algorithms, LR and SVM,
improve the performance of machine learning when combining with
neural networks features, such as RBM. However, we find that using
the image input along with the HOG image helps the performance
in most methods, except for KNN. We also observe that the
application of HOG images gives less help when combining with a
neural network (e.g. LR+RBM, SVM+RBM, RF+RBM) because
the RBM interlinks the HOG image features which have less
information than the raw images. However, increasing the number
of hidden layers and neurons qualitatively helps the connection
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Figure 17. Successful examples of classified ellipticals. The ‘prob’ on the top of the images show the predicted probability of being ellipticals.

Figure 18. Successful examples of the classified spirals. The ‘prob’ on the top of the images show the predicted probability of being spirals.

between the HOG image features according to the performance of
Multi-Layer Perceptron Classifier (MLPC) and CNN.

According to the ROC curve, the computing accuracy and the
efficiency of each method, the performance of RF is comparable
with a neural network (i.e. MLPC) with a faster computation time.
In addition to RF, both the KNN and MLPC are alternative options
can be considered when using pixel input because both of them
have a relatively good accuracy with much less computing time
than other conventional machine learning algorithms (e.g. LR and
SVM) shown in this study (Table 3). The most successful method
within the 10 methods we test is the CNN with the combination input
of raw images and HOG images and when using a balanced training
data. Through this we are able to reach an accuracy of ∼0.95 using

∼12 000 galaxies (including rotated images) as the initial training
set. When using a classification criterion for the probability of the
predicted type, p > 0.8, we increase the accuracy to ∼0.97 and we
are able to separate the classification into three types – ellipticals,
spirals, and uncertain. In the final test, when we apply the available
maximum number of training data to train our CNN, and classified
our testing galaxies by the criterion p > 0.8, we reach a very high
accuracy of ∼0.987 in the automated morphological classification
of ellipticals and spirals.

In the discussion, we investigate the probable reasons for the
failures in a small number of our classifications. We separate the
failure into two situations – galaxies with high probabilities but still
misclassified according to Galaxy Zoo, and galaxies with lower
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probabilities of being either elliptical or spiral. Most of galaxies
in these two situations are repeated between the five reruns we
do; therefore, these galaxies have some features in common which
cause the difficulties within our CNN algorithm.

We conclude that these ‘failures’ are not true failures of the CNN.
First of all, there is not a class for lenticular galaxy classification
in the Galaxy Zoo catalogue, therefore, the confusion of lenticular
galaxies with various labels cause difficulties to our CNN, resulting
in low-probability classifications for both ellipticals and spirals.
Secondly, the better resolution (0.263 arcsec per pixel) and deeper
depth (i = 22.51) of DES data compared to the SDSS data reveals
a more detailed structure of our sample of galaxies. Ultimately, this
reveals incorrect labels from the Galaxy Zoo catalogue, due to the
lower resolution and shallower depth of that data. As a result we
find a few misclassifications by the Galaxy Zoo project, identified
through our machine learning. We find that about 2.5 per cent of
the ellipticals and spirals are mislabelled out of ∼2800 galaxies
from Galaxy Zoo. After correcting the labels of these confirmed
misclassified galaxies by Galaxy Zoo, we reach an average accuracy
of over 0.99 (0.994 in the best result within five reruns, Fig. 16) on
the classification of ellipticals and spirals by our CNN.

In summary, the purpose of this paper is to pick the most success-
ful machine learning method through pixel input for future usage
in DES. With this method, we can quickly classify over millions of
galaxies in DES data using a pre-trained model. Meanwhile, with
current classification catalogues from other surveys and our own
visual classification for galaxies in fainter bands, we can cross-
validate and statistically analyse our classification by this optimal
method on DES data. The most optimal method found amongst
the 10 methods used in this paper is CNN. Ultimately, we will
apply our CNN models trained by corrected labels of galaxies
on DES data to build the largest morphological catalogue ever
with machine learning classifications. There is not a catalogue of
morphological classification of galaxies for DES yet. Therefore,
this catalogue as a reference will be useful for a comparison or
further investigation with other studies. The binary classification
in our paper has an advantage for direct blind tests of machine
learning comparisons but otherwise has very limited application,
therefore, we will also extend our algorithm to do more complicated
morphological classifications of galaxies afterwards.

In the longer term, we are developing the usage of Unsupervised
Machine Learning (UML) for galaxy classification using pixel
input. UML has no need for (much) pre-labelled data, so it can
reduce the bias from human influences and interference as much
as possible. At the same time, it saves time which would otherwise
be used to labelling data. With the development of UML and the
Big Data from DES data, it will be very interesting to investigate
the scenario of the evolution of galaxies and different possible
classifications through machine learning.
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A P P E N D I X : S U P P O RT V E C TO R M AC H I N E

SVM algorithm is to find a hyperplane defined as follows:

�w · �x − b = 0, (A1)

where �w is a weighted vector, �x is the input data, and b is the
bias, with the maximum distance to the nearest data for each
type (support vector): | �w · �x − b| = 1 (Cortes & Vapnik 1995;
Vapnik 1995). For example (see the top of Fig. A1), in two-class
classification, { �xj , yj }, �xj is a vector that represents input data, and yj

represents the classification. The j means the jth data. yj ∈ {1(circle),
−1(square)}. While the parameter b

‖ �w‖ determines the distance
between the hyperplane to the support vectors, finding the maximum
of this parameter is finding the minimum ‖ �w‖. After determining
the decision boundary, data above the boundary: �w · �x − b ≥ 1 is
classified as a circle, the below one: �w · �x − b ≤ −1 is classified as
a square.

When using a non-linear SVM, the algorithm uses a kernel
function K to the data: (�x, �x ′

) → K(�x, �x ′
) to map the data. The

margin

Feature space

margin

Input space

ma
rgin

Linear SVM

Non-linear SVM Non-linear SVM

Figure A1. Illustration of the linear and non-linear SVM method. Different
markers represent two different classifications. Top: Linear SVM. Bottom
left: Non-linear SVM in input space. Bottom right: Non-linear SVM in
feature space (kernel space).
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bottom of Fig. A1 shows a 2D illustration of an example of non-
linear SVM with a circular transformation. In this example, we
assume each point is (ak, bk), and we transform the data into
a new feature space which is defined as c =

√
a2

k + b2
k (circular

transformation); therefore, the decision boundary is shown as the
circular shape in the input space (i.e. a−b space), but shown lines
in feature space (c space).

There are two standard regularization parameters for SVM: C-
SVM and Nu-SVM (Schölkopf & Smola 2002) methods. Both C

and Nu are the parameter of regularization that are related to the
number of support vectors and the number of misclassification. The
range of C can be any positive value, but the range of Nu is limited
to 0 and 1 which is easier to control.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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