
Chapter 5.5 Species Delimitation

Bruce Rannala
Department of Evolution and Ecology, University of California Davis [One Shields Avenue,
Davis CA USA]
brannala@ucdavis.edu

https://orcid.org/0000-0002-8355-9955

Ziheng Yang1

Department of Genetics, Evolution and Environment, University College London [London
WC1E 6BT, United Kingdom]
z.yang@ucl.ac.uk

https://orcid.org/0000-0003-3351-7981

Abstract
Species delimitation is the process of determining which groups of individual organisms constitute
different populations of a single species and which constitute different species. The problem goes
back to the earliest days of taxonomy and formalized processes for describing new species exist
and are widely used, although the methods are time-intensive and problematic for some species.
Genomic data carries extensive information about the degree of genetic isolation among species
and about ancient and recent introgression. For this reason, genomic data can play an important
role in species delimitation under many existing species concepts. Here we review the history
of molecular species delimitation leading up to the current genomic era. We then describe the
most widely used computational methods for species delimitation using single- and multi-locus
genomic data. Relative strengths and weaknesses of the approaches are discussed and a new
method for delimiting species based on empirical criteria is proposed.
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1 What is Species Delimitation?

Species play a central role in all branches of biological research and are the fundamental
unit to measure biodiversity. The current rate of extinction of species on the planet due
to anthropogenic activity is difficult to precisely estimate both because species boundaries
are in some cases unclear and because millions of species have yet to be described. it
is estimated that 80 to 90% of species on planet Earth are undiscovered, and it is likely
that numerous contemporary species have already become extinct without scientists ever
having documented their existence. Species delimitation is therefore an activity central to
conservation of biodiversity. Several large initiatives are underway to either barcode most
species (for example, by sequencing a single locus for millions of species) (International
Barcode of Life http://ibol.org/), or sequencing whole genomes of all known species and
discovering the remaining species (Earth Biogenome Project https://www.earthbiogenome.
org/). Taxonomists are presently in a race to document the species in many groups that are
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en route to extinction. All these efforts require methods for determining which individuals
constitute new species (species delimitation) or should instead be assigned to an existing
species (species assignment). Genomic species delimitation, the topic of this chapter, is
therefore at the forefront of modern biodiversity science.

Taxonomic science has at least three distinct, but interdependent, roles in biology: the
assignment of individual organisms into pre-existing species categories (species assignment),
the assignment of species to higher categories (genus, family, etc), and the designation of new
species categories to accommodate individual organisms that do not fit into an existing species
category (species delimitation). Historically, all three roles were performed by taxonomists
using morphological characters. For many species this has been effective and uncontroversial.
However, some domains of life, such as bacteria, have few distinctive traits while others have
distinctive morphologies that are highly plastic and associated with environmental factors
leading to morphological convergence or divergence that is incompletely associated with
genetic or evolutionary relatedness. For such groups, morphological delimitation of species
can sometimes fail dramatically. Moreover, morphological species delimitation requires a
high level of expertise and is time consuming, often making it impractical for large groups
undergoing extinctions, which urgently need to be classified. A semi-automated process of
delimitation in which the role of experts is to verify and refine results obtained from genomic
data and computer algorithms is therefore very attractive. Such developments do not obviate
the need for taxonomists but may alter their role in the process of documenting biodiversity.
Automated algorithmic methods for delimiting species using genome data are the subject
of this chapter. As noted by Jörger and Schrödl (2013) taxonomy includes both species
discovery (delimitation) and the subsequent process of establishing a formal diagnosis and
naming scheme. Diagnoses based on DNA are not considered here. As noted by Sites Jr and
Marshall (2004), species concepts have received much more study than have “operational
criteria” to be used for defining species in empirical studies. Operational criteria for use with
molecular sequence data are the sole focus of this chapter.

2 A Brief History

2.1 Numerical taxonomy

The concept of using computer algorithms to delimit species based on morphological char-
acters traces back to the 1960s. With the rise of computers and multivariate statistical
methods the new field of Numerical Taxonomy (Sneath, 1957a) appeared poised to offered
an objective solution to many of the problems of assigning and classifying species with
confusing morphological variation. Bacterial taxonomists were early to adopt numerical
taxonomy (Sneath, 1957b), possibly in the hope that large numbers of trait measurements
could compensate for a lack of distinctive traits among bacterial strains (Goodfellow, 1971).
Sneath (1976) considered a model of phenetic variation in bacteria, for example, in which
the phenotype of a species is represented as a spherical multivariate normal distribution
with the quantiles defining the species boundaries. Numerical taxonomy did not eliminate
problems such as convergent evolution, however, which could cause unstable classifications
based on morphology. Moreover, while multivariate analyses of morphology were effective at
clustering individual operational taxonomic units (OTUs) into groups that shared distinctive
features they did not provide a priori means for establishing species boundaries and could
not identify the sources of morphological variation (genetic versus environmental).
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2.2 Molecular taxonomy
During the 1970s, as molecular sequence data became available for proteins, and later for
DNA and RNA, their potential utility for classifying difficult groups such as bacteria was
widely recognized (Fox et al., 1977; Wayne et al., 1987; Wilson, 1995). During the 1980s,
DNA-DNA hybridization (DDH) became the taxonomic gold standard for diagnosing new
species of Bacteria and Archaea with a DDH similarity of less than 70% considered evidence
of distinct species (Wayne et al., 1987; Meier-Kolthoff et al., 2013). However, for most
groups of organisms the role that molecular versus morphological data should play in species
assignment and delimitation – as well as the diagnostic criteria to be applied to each data
type – remained uncertain. Traditional morphological delimitations rely on the identification
of fixed differences between species. However, even for morphological characters finding
convincing evidence of fixed differences requires sample sizes much larger than those found
in most studies (Wiens and Servedio, 2000). Moreover, for molecular data with thousands
(or millions) of bases in a sequence the probability of finding spurious fixed differences in
a small sample of individuals can be very high. Fixed differences of bases at individual
sites, or even of haplotypes, are commonly observed among populations within a species
and are therefore not a sufficient criterion for delimiting species. Quantitative delimitation
approaches that used diploid genotypic molecular data (such as allozymes) and population
genetic statistics were proposed by several groups (reviewed by Sites Jr and Marshall, 2004).
In particular, measures of gene flow based on Wright’s Fst statistics were proposed as a
criterion for delimiting species, with populations grouped into a single species if gene flow is
detected (Porter, 1990). Criteria based on gene flow are unsatisfactory because they depend
on overly simple models of population structure and a subjective threshold of gene flow for
delimiting species. Furthermore, comparative genomic analyses in the past decade have
highlighted the fact that gene flow between species is common in both plants and animals
(Ellegren et al., 2012; Wu et al., 2018), including humans and their close relatives (Nielsen
et al., 2017).

2.3 Patterns in gene trees
The widespread use of multilocus sequence data in the 1990s, and the development of the
coalescent theory in population genetics, led several groups to develop species delimitation
criteria based on observed patterns in gene trees. Avise and Ball Jr (1990) proposed a
“genealogical species concept” that led to the development of several operational definitions
based on patterns of shared ancestry in inferred gene trees. The most widely used criterion
was “exclusivity” , also referred to as “reciprocal monophyly” (Ball et al., 1990; Baum and
Donoghue, 1995; Palumbi et al., 2007), which means that all sequences from one species form
a monophyletic group in the gene tree relative to the sequences from any other species. Such
methods treat gene trees as observations and do no properly account for errors in inferred
gene trees, which tend to reduce the frequency of reciprocal monophyly. This criterion may
be too strict in some situations and not strict enough in others, depending on the population
isolation time relative to the population sizes. If the populations are very large the isolation
time required to reach exclusivity at all loci (or at 50% of loci, to use a weaker criterion of
exclusivity) can be very long (Hudson and Coyne, 2002; Hudson and Turelli, 2003; Knowles
and Carstens, 2007), and the exclusivity criterion may fail to recognise good species. In
contrast, if the populations are very small (as in the case of a few founders establishing a
population), the gene tree may be reciprocally monophyletic, but the population isolation
time may be too short to consider them as distinct species. Templeton (2001) proposed a
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genealogical “test of cohesion” for identifying species using his method of nested clade analysis
(NCA). However, NCA is known to have poor statistical properties as it does not account
adequately for demographic stochasticity and has extreme type I error rates (Beaumont and
Panchal, 2008; Petit, 2008; Knowles, 2008).

2.4 DNA barcoding
Debate concerning procedures for species assignment and delimitation using molecular data
was reinvigorated during the 2000s with the publication of an influential proposal for a
“DNA barcoding” initiative using a single locus (the COII mitochondrial gene for animals)
as a diagnostic for assigning species (Hebert et al., 2003). Advocates of DNA barcoding
also proposed the use of sequence divergence thresholds (or barcode gaps) as a means for
delimiting new species (Tautz et al., 2003; Blaxter, 2003). Criticisms of species delimitation
using DNA barcoding included the fact that interspecific and intraspecific sequence distances
may be similar in large populations, so that no fixed threshold exists, and that thresholds are
subjective and often difficult to establish a priori (Moritz and Cicero, 2004; Will and Rubinoff,
2004; DeSalle et al., 2005). Methods based on a single locus are also expected to have low
power for many recently diverged species. An advantage of using a single diagnostic locus
was that it enabled high throughput analyses not possible with the multilocus sequencing
approaches of the 2000s. The advance of sequencing technologies has shifted recent interests
to multilocus species delimitation and assignment methods, which are more powerful than
single locus methods.

2.5 Multispecies coalescent
The barcoding debate prompted several researchers to point out that the multispecies
coalescent (MSC) (Rannala and Yang 2003 and Chapter 3.3 [Rannala et al. 2020]) could
provide a probability distribution for the likely gene trees given a particular species tree
(in the absence of gene flow between species) and that this could provide a statistical
model for assigning individuals to species based on either single-locus (Pons et al., 2006)
or multilocus (Nielsen and Matz, 2006) sequence data. These approaches also offered an
alternative to barcoding-inspired delimitation methods based on percent sequence divergence
between species (Hebert et al., 2003) which is sensitive to the levels of polymorphism
within populations. Methods based on the multispecies coalescent do not require reciprocal
monophyly to delimit species (Knowles and Carstens, 2007) and can take proper account of
statistical uncertainty in gene trees (Yang and Rannala, 2010). However, early methods were
not able to analyze multilocus datasets and used approximations to the MSC (Pons et al.,
2006). More recently, several approximate and exact multilocus methods have been developed
for species delimitation under the MSC (O'Meara, 2009; Yang and Rannala, 2010) that can
potentially scale to genomic datasets and provide greater power for species delimitation and
species assignment. Inferences from such methods may be sensitive to model violations,
however, such as gene flow between species (Leaché et al., 2018). MSC-based methods are
an example of a parametric inference method.

2.6 Machine learning
The high performance of machine learning algorithms in solving many classification problems,
and the straightforward generic nature of their application, has led to many recent applications
in population genetics, phylogenetics, and other areas of evolutionary biology. Machine
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learning algorithms can be broadly classified as either supervised (SML) or unsupervised
(UML) machine learning, according to how training datasets are utilized. Both SML and UML
approaches have been recently applied to species delimitation (Pei et al., 2018; Derkarabetian
et al., 2019). Pei et al. (2018) developed an SML algorithm for species delimitation using
support vector machines. Datasets generated by population genetic simulations (with or
without gene flow) were used to train the algorithm. Summaries of the data were used
rather than using sequence data directly to make the model and computation tractable.
Five summary statistics were used: the proportion of private positions, the folded site
frequency spectrum, the pairwise difference ratio, F-statistics, and the longest shared tract.
For simulated data, the algorithms appeared to perform as well as the model-based species
delimitation method bpp (Yang and Rannala, 2010) when species are genetically isolated and
were more likely than bpp to delimit species that experienced gene flow. A similar approach
was developed by Smith and Carstens (2019) but using the folded site frequency spectrum
and a Random Forest (RF) classifier.

SML methods have the advantage that they can be computationally efficient and can be
trained on models that are too complex to derive formal Bayesian or maximum likelihood
estimators. A well-known weakness of supervised learning methods, encapsulated by the
so-called “supervised learning no free lunch theorem” (Wolpert, 2002), is that they can
become too specialized – they work very well for the training dataset but poorly for many
other datasets. In this case, since the algorithm is trained using specific values of population
genetic parameters such as θ and M it could perform poorly outside the training range.
Formal statistical methods do not have this problem since they have optimality properties
that hold over the entire parameter space. For complicated models it may be impossible to
train an SML algorithm over the entire state space for the parameters. Another weakness of
both SML and UML methods is that they often use summary statistics rather than the full
dataset. Unless the summary statistics are known to be sufficient statistics this will entail loss
of information. Finally, little is known about the asymptotic statistical performance of most
SML or UML methods and developers must therefore resort to simulations to evaluate them
when inferring evolutionary parameters for which the true parameter values are unknown.
Simulation studies can never be comprehensive.

3 A Survey of Species Delimitation Methods

Here we provide a concise survey of the most widely used species delimitation methods,
sketching important features of the statistical and computational theory and the assumptions
underlying them. We focus exclusively on methods designed for use with DNA sequence data
and divide the methods into two categories: (1) heuristic methods, which use a summary
statistic or algorithm for delimitation that is not derived from a formal statistical model
of the population genetic structure. Heuristic methods are often computationally efficient
but the results can be difficult to interpret and they may have poor statistical properties;
(2) parametric methods, which are based on an explicit probabilistic model of population
divergences and evolution of the genetic sequences and which select the delimitation model
that maximizes the likelihood or Bayesian posterior probability. Full-likelihood methods under
a parametric model are known to be asymptotically most powerful when the model is correct
but are often computationally demanding. If the model is incorrect the statistical properties
may become unpredictable. Most widely used parametric methods are derived based on
the MSC model, which will therefore be described in some detail below. Both approximate
and exact parametric methods will be described. A distinction is made between methods
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designed for use with a single locus versus multilocus sequence data. We focus on methods
that are applicable across the tree of life, and do not consider methods developed specifically
for a certain species group, such as Genome Blast Distance Phylogeny (Meier-Kolthoff et al.,
2013) for species delimitation of bacteria.

3.1 Heuristic methods
Most heuristic methods for species delimitation originate from the DNA barcoding initiative
and are therefore designed for single locus data. Multilocus heuristic methods proposed
more recently often simply concatenate genes (Zhang et al., 2013). Heuristic methods are
computationally efficient and can be applied to large datasets. Their statistical performance
may be good in some regions of the parameter space but poor in others. To evaluate the
performance, simulation is often used because standard statistical theory (e.g., asymptotic
efficiency in large datasets, etc) typically does not apply to heuristic methods.

3.1.1 ABGD: Automated Barcode Gap Discovery
Early studies of pairwise sequence divergence between and within species aimed to identify a
“barcode gap” which can distinguish within-population differences from differences caused by
species divergences. For example, a relative difference of one order of magnitude (the 10×
rule) between intra- and interspecific divergences was proposed by Hebert et al. (2004) and
a maximum of 3% for intraspecific divergence (the 3% rule) was proposed by Smith et al.
(2005). Such a priori thresholds are arbitrary and subsequent analyses suggested that the
barcode gap varies among species groups based on factors such as effective population sizes
and species divergence times (Hickerson et al., 2006; Rannala, 2015).

The aim of the automated barcode gap discovery (ABGD) program (Puillandre et al.,
2012) is to identify barcode gap thresholds in an automated process. For a sample of n

haploid sequences all n(n − 1)/2 pairwise distances are calculated. The distance metric may
use a correction for multiple-hit substitutions. The distances are then ranked in increasing
order so that di ≤ di+1 for i = 1, . . . , n(n − 1)/2. For the distance of rank r the local slope
is calculated as

sr,w =
dr+w − dw

w
. (1)

The slope is expected to be largest at the barcode gap that delimits species. Thus the method
infers the barcode gap as the distance that maximizes the local slope.

Simulation under the coalescent process was used to compute a threshold value under
which sequences are more likely to be intraspecific, assuming a constant population size with
n and θ specified and estimating the threshold exceeding 95% of pairwise distances. It was
concluded that for n > 10 the threshold was a linear function of θ with a slope of 2.581.
The rationale was that, if θ is known, the barcode gap can be predicted from the simulation
results. The parameter θ is unknown for empirical data but for a single population the
average pairwise distance provides an estimate of θ. With more than one species in the
sample the estimate of θ will be too large. A user-specified “prior” threshold is therefore used
to separate intraspecific distances from interspecific distances. Only putative intraspecific
distances (those below the prior threshold) are used in estimating θ. Once θ is estimated a
threshold distance is determined, and groups are then formed so that “the distance between
sequences from different groups is always larger than the gap distance, and for each sequence
of each group, there is at least one other sequence in the group at a distance smaller than
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the gap distance.” This procedure is applied recursively to identify additional groups that
may have different barcode gaps.

Like the PTP method discussed below, ABGD may be expected to work best when
the gene tree is essentially monophyletic (i.e., there is no incomplete lineage sorting). Like
other barcoding methods it only uses information from a single locus. It is computationally
inexpensive and can be applied to large samples of sequences. Its weaknesses include its
reliance on simple pairwise distance calculations and clustering operations, and failure to use
all the information in the sequence data. The distribution of intraspecific distances may be
multimodal due to factors such as population growth or selection (Rogers and Harpending,
1992; Harpending et al., 1993) potentially leading to spurious barcode gaps.

3.1.2 GMYC: General Mixed Yule Coalescent
The General Mixed Yule Coalescent (GMYC) (Pons et al., 2006) assumes that the waiting
times between coalescence events or branch lengths in a gene tree fall into two classes: those
within species with the rate determined by the coalescent process, or those between species
with the rate determined by a generalization of the Yule process model of species divergences.
It is assumed that a time point T exists at which the generative process for gene-tree nodes
switches from a coalescent process to a Yule process. Maximum likelihood is used to estimate
T and the choice of T determines the species delimitation. A likelihood ratio test is also
proposed to test for the existence of multiple species (T > 0) versus a single species (T = 0).
This method treats the inferred gene tree as known and is therefore computationally simple
and fast, but has the drawback of ignoring errors in the gene tree. Another limitation is that
the method can be applied to only a single locus, although an attempt was made to extend
it to multiple loci (Fujisawa and Barraclough, 2013). More importantly, by using a single
threshold T , the model implicitly assumes that all lineages in each population coalesce before
any speciation event occurs, implying the absence of incomplete lineage sorting. The method
ignores the coalescent process within ancestral species populations, in effect assuming that
the gene tree is reciprocally monophyletic. The GMYC method should thus perform best for
datasets with long intervals between speciation events and small population sizes, in which
case incomplete lineage sorting is unlikely to occur.

3.1.3 PTP: Poisson Tree Process
The “Poisson Tree Process” (PTP) identifies species status based on the distribution of
branch lengths in the gene tree (Zhang et al., 2013). The tree and branch lengths are inferred
from a sequence alignment using maximum likelihood and then treated as known without
errors. When multiple loci are available they are concatenated to infer one gene tree with
branch lengths. The PTP method models the branch lengths, xi, in a rooted non-ultrametric
tree as a mixture of two exponential distributions with rates λS (between-species) and λC

(within-species), respectively. A species delimitation model (Λ) assigns every branch on the
gene tree to one of those two classes. The log-likelihood for the delimitation, given the data
(G) of a rooted gene tree with n branches, is then

L(Λ;G) =
k∑

i=1
log(λSe−λSxi) +

n∑
i=k+1

log(λCe−λC xi), (2)

where the delimitation model Λ partitions k branches as “between-species” and n−k branches
as “within-species” . The Poisson rates (λs) are estimated by using the inverse of the average
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branch length in each class, so that no iteration is needed for parameter estimation. A
heuristic search is used to find the delimitation that maximizes the likelihood. An extension
of the method (Kapli et al., 2017) allows λs to vary among populations.

A strength of the PTP approach is that it can handle large datasets with thousands of
species. Unlike the GMYC method discussed above, PTP uses a rooted non-ultrametric tree
so that it does not rely on the molecular clock, which may be seriously violated for distantly
related species. The approach implicitly assumes reciprocal monophyly in the gene tree and
a perfect match of the gene tree with the species tree. It is thus expected to work best for
identifying species that are separated by long intervals between speciation events and that
have small population sizes.

Some weaknesses of the method may be easily identified. The method is essentially a
single-locus method, as concatenating sequences across gene loci or genomic segments does
not account for the stochastic fluctuations in the coalescent process among the loci. Because
the Poisson tree process describes a distribution of delimitation models, in theory there
should be a prior term f(Λ) in equation 2, and the posterior probability for the delimitation
model should be maximized f(Λ|G) instead of the log-likelihood:

f(Λ|G) ∼ f(Λ)
n∏

i=b

λIb
exp{−λIb

xi} (3)

where the indicator Ib = ‘S’ or ‘C’ depending on whether delimitation model Λ partitions
branch i as a between-species branch or a within-species coalescent branch. Furthermore, if
more than two sequences are in one species according to the delimitation model, the waiting
time until the next coalescent when there are k lineages is proportional to 2/(k(k − 1)). This
can in theory be accommodated by redefining λC as the coalescent rate for two lineages, and
applying the correction factor 2/(k(k − 1)) if the within-species branch represents the waiting
time until the next coalescent when there are k lineages in the sample in the population.
Parameters λS and λC may be estimated using the method of moments, by using the average
observed values so that the amount of computation remains the same. While it is unnecessary
to sample multiple individuals or sequences to infer the species phylogeny, sampling multiple
sequences from the same species adds much information in species delimitation (Zhang et al.,
2011). Such modifications may make it possible to utilize the information in multiple samples.

3.2 Parametric methods
Parametric species delimitation methods are based on a probabilistic data-generating model,
that is, a model of the biological processes generating gene genealogical trees and DNA
sequences among individuals. This entails modeling the process of speciation, the genealogical
process of coalescence within populations, and the process of DNA sequence evolution driven
by genetic drift and natural selection. The canonical model relevant to species delimitation
is the multispecies coalescent (MSC) with neutral evolution (Rannala and Yang, 2003).
All parametric species delimitation methods considered here are based on an MSC model,
although some methods (such as GMYC, Pons et al., 2006) are based on simplifications
or approximations of it. The MSC model, describing the basic biological processes of
reproduction and drift, is important to heuristic methods of species delimitation as well: for
example, evaluation of the performance of those methods typically involves simulating genetic
sequence data under the MSC model. If species delimitation can be formulated as a problem
of statistical inference under the MSC model, standard theories of statistical inference can
be made use of; for example, maximum likelihood and Bayesian methods are known to have
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desirable asymptotic (large-sample) properties such as consistency and efficiency. However,
the assumptions of the parametric approach may be violated in real data analysis, and an
important question is how well the method performs when the model is misspecified.

3.2.1 Multispecies coalescent and the distribution of gene trees
The genomes of individual organisms carry rich historical information at many levels and
at different time scales. At a low level, genomes provide information about inbreeding
(homozygosity), pedigree relatedness and genome sharing (identity by descent) among
individuals. At a higher level, genomes are informative about population or species affiliations
and the evolutionary relationships among species. Different statistical models and inference
methods are often used to extract information at these different levels, yet the models used
are interrelated and have many shared parameters. For example, individual inbreeding
coefficients are determined by mating patterns and population structure, and gene trees of
relationships among sequences are influenced by population level processes such as selection
and genetic drift. Phylogenetic trees among species are, in turn, inferred from patterns
observed in gene trees.

The phylogenetic relationships of species or genetically isolated populations constrain the
possible relationships of genomic sequences (see Chapter 3.3 [Rannala et al. 2020]). When
we trace the genealogical history of a sample of sequences backwards in time, sequences from
different isolated populations cannot coalesce until we reach the common ancestor of those
populations. If the sequences are in the same population the rate at which they coalesce
is determined by the population size. Thus, the phylogenetic tree of populations generates
a probability distribution on the possible gene trees. Conversely, the probabilities of gene
trees, which underlie the genomic sequence data, can inform us about population history,
such as population divergence times, population sizes, and between-population migration or
introgression.

Parametric statistical approaches to species delimitation use the multispecies coalescent
(MSC) model to infer the existence of genetically isolated populations that are potential
species. Multilocus sequence data sampled from modern species or populations are used
to calculate the posterior probabilities (Yang and Rannala, 2010) or marginal likelihoods
(Grummer et al., 2013; Rannala and Yang, 2017) of different species delimitation models,
where a delimitation model corresponds to a certain way of merging populations into the
same species (Figure 1). In a randomly mating population the two sequences sampled from a
diploid individual are equivalent to any two sequences randomly sampled from the population
so only the population identity of each sequence is relevant. If strong evidence exists that
two or more populations are genetically isolated, they will be assigned to distinct species. In
contrast, if they constitute a single panmictic population they will be collapsed into a single
species. In this approach, the level of gene flow may have a major impact, as will the amount
of time since population divergence. The procedure does not derive from any particular
species definition but it includes the Biological Species Concept as a particular case, so that
the species status is recognized given a sufficient period of reproductive isolation.

The MSC model is parametrized by the species tree topology, as well as the species
divergence times (τs) and population sizes for both modern and ancestral species (θs)
(Figure 1). A (rooted) species tree for s species has s − 1 internal nodes or speciation events
and 2s − 1 nodes or populations; thus an MSC model for s species has s − 1 node ages or
species divergence times (τs) and 2s − 1 population size parameters (θs). In analysis of
genomic sequence data, both τs and θs are measured by genetic distance or the expected
number of mutations per site.
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Figure 1 For three populations (A, B, C), there are five species delimitation models (one of 1
species, three of 2 species, and one of 3 species) and seven MSC models, with the delimitation of three
species (bottom row) resolved into three MSC models (three species phylogenies). Each MSC model
of s species has (s − 1) divergence times (τs) and (2s − 1) population size parameters (θs). Species
delimitation through Bayesian model selection uses Markov chain Monte Carlo (MCMC) proposals
to traverse the space of MSC models to estimate the posterior probabilities for the MSC models.
The posterior for a delimitation model is the sum of the posterior probabilities for the compatible
MSC models: for the example here, the probability for the existence of three species (A, B, C) is
the sum of the three MSC models on the bottom row. In bpp, subtree-prunning-and-regrafting
(SPR) or nearest-neighbor-interchange (NNI) algorithms are used to move between different species
phylogenies, and rjMCMC is used to move between different species delimitations (Yang and Rannala,
2010, 2014).

3.2.2 Posterior probabilities of species delimitation models

Given a set of K populations, different species delimitations correspond to different ways of
merging populations into the same species, with the number of delimited species ranging from
1 to K. We assume that individuals are correctly assigned to populations, and a population
will not be split into different species although multiple populations may be merged into
the same species. As an extreme approach, each sampled individual can be assigned its
own population, and the Bayesian algorithm can be used to achieve both assignment and
delimitation (Olave et al., 2014). When more than two species exist in the delimitation
model, there are different species phylogenies as well. The species delimitation and species
phylogeny together constitutes a fully specified MSC model, which allows the definition of the
parameters and the specification of the probability distribution of the gene trees (Rannala
and Yang, 2003). For example, with 3 populations, there will be five delimitation models:
one model of 1 species, three models of 2 species, and one model of 3 species (Figure 1),
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and in the case of 3 species, there are also three species phylogenies. Thus in total there are
seven MSC models.

Let θk be the parameters in the MSC model specified by a delimitation model Λk.
Note that the delimitation alone (e.g., knowledge of the existence of three species without
knowledge of the species phylogeny) may be insufficient to define the parameters or to specify
the data-generating mechanism. Thus from now on we assume that the delimitation model
Λk also specifies the species phylogeny so that the parameters can be defined. In the case
of figure 1 for three populations, there are seven such models. The posterior probability of
delimitation model Λk given the sequence data at L loci, X = {Xi}, is then

P{Λk|X} ∝ πkMk, (4)

where πk is the prior probability for model Λk, and Mk is the marginal likelihood for model
Λk. The proportionality constant is to ensure that the posterior probabilities for all models
sum to 1. The marginal likelihood Mk for delimitation model Λk is an integral (an average)
over all possible gene trees at each locus and over the MSC parameters,

Mk =
∫∫

f(θk|Λk)
L∏
i

[f(Gi|,Λk, θk)f(Xi|Gi)] dG dθk, (5)

where f(θk|Λk) is the prior on the parameters under the model, f(Gi|,Λk, θk) is the MSC
density for gene tree Gi at locus i (Rannala and Yang, 2003), and f(Xi|Gi) is the probability
of the sequence alignment at locus i, known as the phylogenetic likelihood (Felsenstein, 1981).

The integrals of equation 5 are typically calculated numerically in the Markov chain
Monte Carlo (MCMC) algorithm, as implemented in the bpp program (Yang and Rannala
2010; Rannala and Yang 2017 and Chapter 5.6 [Flouri et al. 2020]). In other words, MCMC
is used to traverse the model space, and the frequency at which the MCMC visits each model
is the estimate of the posterior probability for that model. If a delimitation is compatible
with multiple MSC models (for example, the delimitation of three species is resolved into
three MSC models or three species phylogenies in Figure 1), its posterior probability is
calculated as the sum of the posterior probabilities for the compatible MSC models. This
is the A11 analysis by Yang (2015). In bpp, tree perturbation algorithms such as nearest-
neighbor-interchange (NNI), subtree-pruning-and-regrafting (SPR), and NodeSlider are used
to propose moves from one species tree to another with the species delimitation fixed (Yang
and Rannala, 2010, 2014; Rannala and Yang, 2017). Moves between species delimitation
models involve changes of dimension (the number of parameters), so they are implemented
using a pair of reversible-jump MCMC moves ( “split” and “join” , Yang and Rannala, 2010).
For example, the “split” move can be used to move from the 2-species model (AB, C), which
has 4 parameters, to the three-species model ((AB)C), which has 7 parameters, with three
new parameters (τAB , θA, θB) created. The reverse “join” move changes the 3-species model
to the 2-species model, dropping the redundant parameters. The pair of moves constitutes one
reversible-jump proposal. RjMCMC algorithms often mix poorly, but thanks to development
of improved algorithms, which make coordinated changes to the species tree and the gene
trees when the MSC model changes (Rannala and Yang, 2013, 2017), bpp can be used to
analyze datasets with hundreds or even thousands of loci. Simulation has confirmed the
overall efficiency of the method (Zhang et al., 2011, 2014).

A number of empirical studies have found that the approach to model selection imple-
mented in bpp tends to “oversplit” , favouring delimitation models with a large number of
species (Sukumaran and Knowles, 2017). In some studies, the delimited number of species
is the number of populations in the dataset. The problem appears to be worse when more
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data (more loci) are analyzed. Leaché et al. (2018) studied the dynamics of Bayesian model
selection when the true model involves two species/populations with migration but the two
compared models assume either one species or two species without gene flow. The two
models considered by BPP are in this case both wrong. However, analysis suggest that the
two-species model is closer (judged by Kullback-Leibler divergence) to the true model of two
populations with migration and is thus less wrong than the one-species model (Leaché et al.,
2019). In such a case, the two-species model will dominate, with its posterior probability
approaching 100% when the amount of data (the number of loci) approaches infinity. This
provides an explanation for the observation that bpp tends to favour the model of distinct
species even if there is substantial gene flow between the populations. If Bayesian model
selection is conducted under the MSC model with migration or introgression, the two-species
model will be the correct one and will naturally dominate, and the problem of over-splitting
will become even more serious. With gene flow, the distinction between populations and
species in such models is arbitrary. We suggest that the approach of Bayesian model selection
be used mostly in the context of delimiting sympatric species whose distinctness is maintained
by a lack of gene flow rather than partial genetic isolation.

3.2.3 Bayes factor delimitations
Several groups (Grummer et al., 2013; Leaché et al., 2014) have suggested the use of Bayes
factors to choose among a small set of species delimitation models. The Bayes factor for two
delimitation models Λ1 and Λ2 is defined as the ratio of the marginal likelihoods under the
two models. From equation 4,

BF12 =
M1
M2

=
P{Λ1|X}/P{Λ2|X}

π1/π2
. (6)

In other words, the Bayes factor is the ratio of the posterior odds to the prior odds. If we
assign uniform prior probabilities π1 = π2 to the two models, the Bayes factor will simply
be the posterior odds. Note that here the delimitation models Λ1 and Λ2 should be fully
specified MSC models: if there are 3 or more delimited species, the species phylogeny should
be considered part of the model specification as well. Otherwise the marginal likelihood is
not well defined. Second, the marginal likelihood is an average over the prior distribution of
parameters in the MSC model (the τs and θs). As a result, the prior on parameters may
be influential on the marginal likelihood, besides the model of species divergences. The
marginal likelihood is sometimes referred to as the “evidence” by Bayesians, but it should be
borne in mind that it incorporates information from the prior which may represent subjective
“opinions”. Bayes factors and posterior probabilities for delimitation models are equivalent if
Bayes factors are applied to the complete set of all possible delimitation models. Otherwise
Bayes factors provide a local comparison among the delimitations examined. Interpretation
or calibration of the Bayes factor is through reference to posterior model probabilities: a
Bayes factor of 99 (= 0.99/0.01 in terms of posterior odds) might be considered “strong”
evidence in favour of model Λ1, for example, while 9 (= 0.9/0.1) might only be considered
“positive” evidence.

Grummer et al. (2013) proposed a Bayes factor test of species delimitation and used
the StarBeast program (Heled and Drummond, 2009) to calculate marginal likelihoods
under different delimitation models. Leaché et al. (2014) developed an efficient Bayes factor
delimitation method using the snapp (Bryant et al., 2012) algorithm to calculate marginal
likelihoods. snapp is developed for single nucleotide polymorphism (SNP) data from unlinked
loci. As every site (every SNP) is assumed to have its own independent history, the gene trees
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including coalescent times can be integrated analytically under the MSC, eliminating the
need for computationally expensive integration via MCMC. snapp is thus computationally
efficient.

A major weakness of snapp, or of using unlinked SNP data, is information loss and a
resulting lack of power. This occurs for two reasons. First, correction for ascertainment bias
leads to loss of information. SNPs are collected because the sites are polymorphic. This fact
has to be accommodated in the inference method, and correction for such “ascertainment
bias” in data collection may lead to serious loss of information. As an analogy, there are
two data outcomes in a binomial experiment: “success” and “failure”. If we filter out all
the “failures”, it will be important to correct for such ascertainment bias and furthermore
very little information remains after such data filtering. In the case of the SNP data, the
information loss may not be so severe, but the correction may be expected to have a major
impact on inference, in particular on branch lengths in the species phylogeny. It seems that
the number of constant sites removed or the number of sites separating the SNP loci may be
useful for recovering some of the information lost. Second, use of essentially independent
SNP sites means that not all parameters in the MSC model are identifiable and the power
for comparing different delimitation models may be affected as well. Multi-locus sequence
alignments allow one to tease apart the among-site variation within the same locus given the
gene tree (due to the Poisson mutation process) from the among-loci variation in the gene
trees (due to the stochastic fluctuation of the multispecies coalescent process, influenced
by parameters such as ancestral population sizes). As a result, all parameters in the MSC
model are identifiable given the multi-locus sequence data. In contrast, a single SNP can only
identify a single bipartition in a gene tree and contains very little phylogenetic information.
The two sources of variation are then confounded. As a result, not all parameters in the
MSC model are identifiable given SNP data.

3.2.4 Delimitation based on empirical criteria
Suppose we are given a detailed description of the history of two allopatric populations,
including their divergence time, population sizes, and the timing, directions and intensity
of migration or introgression events. Can we then decide whether the two populations
belong to the same species or are two distinct species? If the two populations are sympatric,
reduction or absence of gene flow revealed by genomic data will be evidence for genetic
isolation and for the existence of barriers to gene flow so that distinct species status can be
established. However, if the species are allopatric, genetic differentiation may be due to an
absence of opportunities for interbreeding rather than the existence of isolation mechanisms
or adaptation to different ecological and environmental conditions. Delineation of species
boundaries in such cases will be arbitrary. The neutral genome has the power to let us
infer a detailed population divergence history, but may not be informative about ecological
adaptation or reproductive isolation. Delimitation in such cases may make use of empirically
established criteria, based on evolutionary parameters. The MSC model, either without
or with introgression, can be used to infer the MSC parameters and these then used in
combination with any empirical criteria for species delimitation.

One such criterion is the genealogical divergence index (gdi) (Jackson et al., 2017).
Suppose one samples two sequences (a1 and a2) from population A and one sequence (b) from
population B. If sequences a1 and a2 coalesce first, the gene tree will be Ga = ((a1, a2), b).
Under the MSC model without gene flow, the gene tree probability is

Pa = P(Ga|θ) = 1 − 2
3
e−2τ/θA , (7)
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where 2τ/θA is the population divergence time in coalescent units (with one coalescent time
unit to be 2NA generations) and e−2τ/θA is the probability that sequences a1 and a2 do
not coalesce before reaching the time of species divergence (τ) when we trace the genealogy
backwards in time. Pa ranges from 1

3 to 1. Jackson et al. (2017) rescaled Pa to form the gdi
index

gdi = (3 × Pa − 1)/2, (8)

so that it ranges from 0 to 1.
Based on the meta-analysis of Pinho and Hey (2010), Jackson et al. (2017) suggested

the rule of thumb that gdi values < 0.2 suggest a single species and gdi values > 0.7 suggest
distinct species, while gdi values within the range indicate ambiguous delimitation. Those
limits correspond to 0.47 and 0.8 for Pa, and, in the case of no migration, to 0.22 and 1.20
for the population divergence time in coalescent units.

The use of the gdi index as a metric for delimiting species has several drawbacks. First,
when populations A and B have very different sizes, it is unclear which population size should
be used. For example, one can use two sequences from B (b1, b2) and one sequence from A

to define the probability for the gene tree Gb = ((b1, b2), a), and its probability Pb = P(Gb|θ).
However, when θA and θB are very different, Pa and Pb may be very different, leading
to the awkward situation where PA suggests one species while Pb suggests two (Leaché
et al., 2019). Second, small population sizes may cause the index to over-split. It may
therefore be useful to include a minimum absolute divergence time measured in generations.
Third the criterion often leads to indecision, but this may reflect the difficulty of species
delimitation for allopatric populations. In light of those drawbacks, we suggest the following
modifications for an operational concept for delimiting species under the MSC model. We
consider two populations to be distinct species if Pa > 0.5, Pb > 0.5, M = Nm < 0.1,
and the divergence time is more than 104 generations. Otherwise we declare one species
if Pa < 0.4, Pb < 0.4, M = Nm ≥ 1, and divergence is within 103 generations. Situations
between those two extremes are undecided.

Different heuristic criteria may be designed to correspond to different species definitions.
Given any empirical criterion, a hierarchical procedure can be devised to delimit species
using multi-locus genetic sequence data (Leaché et al., 2019). First we estimate a population
phylogeny under the MSC. This is used as a guide tree so that its topology is not changed
further, while the nodes on the tree may represent either populations or species. We then
attempt to merge the populations into the same species using the criterion, starting from
the tips of the tree, moving towards the root, each time re-estimating the MSC parameters.
An ancestral node on the guide tree is merged into one species only if its descendant nodes
are already merged. The procedure ends when no populations can be unambiguously merged
into one species. The procedure is applied to several simulated and real datasets in Leaché
et al. (2019).

4 Conclusions

Genomic data provide a rich source of information concerning the evolutionary history of
species and populations such as divergence times, population sizes, and migration/hybrid-
isation intensity. For sympatric species, convincing evidence of genetic isolation may be
enough for establishing species status. For populations from different geographic locations,
the genetic isolation can be due to isolation by distance, and may have to be combined with
other sources of evidence to justify species status. In complex cases such as a species ring, the
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situation may be so complicated that delimiting species becomes an arbitrary exercise. The
MSC provides the framework for estimating evolutionary parameters including migration
rates or introgression intensity, which can be used to apply empirical criteria for delimiting
species or to generate hypotheses of species status, to be integrated with other evidence such
as morphology and ecology (Yang and Rannala, 2010). An explicit extension of BPP to allow
a model including a morphological character (iBPP) has been implemented by Solís-Lemus
et al. (2015).

This chapter should have made clear the fact that there exists no “magic bullet” method
for species delimitation using genomic data. However, methods are gradually converging on
this target and already provide many useful tools for preliminary delimitations, as well as
providing a solid theoretical foundation for future developments.
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