
1

A Survey of Constrained Combinatorial Testing
Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman

Abstract—Combinatorial Testing (CT) is a potentially powerful testing technique, whereas its failure revealing ability might be
dramatically reduced if it fails to handle constraints in an adequate and efficient manner. To ensure the wider applicability of CT in the
presence of constrained problem domains, large and diverse efforts have been invested towards the techniques and applications of
constrained combinatorial testing. In this paper, we provide a comprehensive survey of representations, influences, and techniques
that pertain to constraints in CT, covering 129 papers published between 1987 and 2018. This survey not only categorises the various
constraint handling techniques, but also reviews comparatively less well-studied, yet potentially important, constraint identification and
maintenance techniques. Since real-world programs are usually constrained, this survey can be of interest to researchers and
practitioners who are looking to use and study constrained combinatorial testing techniques.

Index Terms—combinatorial testing, constraint, survey

F

1 INTRODUCTION

E VER since its initial concept was sketched in 1980s [1],
Combinatorial Testing (CT) has become an important

and indispensable testing technique for the quality assur-
ance of modern software systems [2]. Traditionally, CT
assumes that the parameters of software under test are
independent from each other. As such, the mathematical
objects named τ -way covering arrays can be directly used
as test suites to systematically examine the interactions be-
tween any τ or fewer parameters [3]. However, in real-world
programs, there usually have dependency relationships,
i.e., constraints, between parameters [4]. Such constraints
may simply indicate that a particular interaction cannot be
achieved in the test case (for example, the Linux operating
system cannot be combined with the IE browser); they can
also be more pernicious as a constraints-violating test case
might still be executed but yield results that are difficult
to distinguish from a software failure. As a result, any
application of CT that fails to take constraints into account
will lead to many invalid, or ineffective, test cases; CT could
then be less effective than people would otherwise expect.

In order to promote the successful applications of CT
in the widespread constrained problem domains, a lot of
techniques have been developed and applied. Especially,
there is a variety of constraint handling techniques that aid
in generation of constraints-satisfying test cases, ranging
from the manual modifications of test models [5], [6], to
the automated strategies that rely on constraint satisfiabil-
ity solvers [7], [8] and minimal forbidden tuples [9], [10].
Additionally, techniques that try to automatically infer [11],
[12], validate [13], and repair [14], [15] constraints are also

• H. Wu and C. Nie are with Department of Computer Science and
Technology, Nanjing University, Nanjing, China, 210023.
E-mail: {hywu, changhainie}@nju.edu.cn

• J. Petke is with CREST, Computer Science, University College London,
London, UK, WC1E 6BT.
E-mail: j.petke@ucl.ac.uk

• Y. Jia and M. Harman are with Facebook Inc., London, UK, W1T 1FB
and CREST, Computer Science, University College London, London, UK,
WC1E 6BT.
E-mail: {yue.jia, mark.harman}@ucl.ac.uk

proposed in more recent studies.
However, even though the topic of constraints has been

discussed in many studies, the issues of adequately han-
dling constraints remains challenging in CT. In 2014, Khalsa
and Labiche [16] conducted a survey based on 75 test suite
generation algorithms and tools in CT. They found that
more than half of these studies simply do not implement
any constraint handling technique, which makes them inap-
plicable to many real-world programs.

Moreover, Figure 1 further shows the number of research
papers on CT test suite generation, and the papers that
have taken constraints into account by year, up to 2018.1

We can see that only 32% of test suite generation studies
have incorporated constraint handling techniques. Even in
the last four years, where one might suppose that the im-
portance of constraints should have been well-recognised,
this proportion remains low, at only 30%. Therefore, the
importance of constraints, and the need for constrained
combinatorial testing, clearly remains a pressing concern for
wider adoption of CT in practice.

In this paper, we present a detailed and comprehensive
survey of constraints in CT, with the goal to consolidate
and distill the large amount of studies in the growing field
of constrained combinatorial testing. To this end, we first
collected 129 research papers published from 1987 to 2018.
We then overviewed the various representations used to
capture constraints, and also the influence of constraints
on the successful applications of CT. In particular, we clas-
sified the papers into constraint identification, constraint
handling, and constraint maintenance, according to their
research topics. The available techniques in each category
(especially, the constraint handling group) are then exten-
sively reviewed and analysed.

This survey is structured as follows. Section 2 describes
the process used to find relevant publications. Section 3
sets out the background on constrained combinatorial test-
ing, including constraint representations and impacts of

1. These papers are collected from Combinatorial Testing Repository
(http://gist.nju.edu.cn/ct repository). The processes to construct this
repository and to select these papers are explained in Section 2.

ar
X

iv
:1

90
8.

02
48

0v
1

 [
cs

.S
E

]
 7

 A
ug

 2
01

9

http://gist.nju.edu.cn/ct_repository

2

Fig. 1. Number of research papers on CT test suite generation, and the papers on constraint support in CT by year.

constraints in CT. Sections 4, 5 and 6 review and analyse
pertinent techniques of constraint identification, handling
and maintenance, respectively. Finally, Section 7 concludes
this paper.

2 LITERATURE SEARCH AND SELECTION

In this section, we describe the literature search process
to construct our combinatorial testing repository, and the
process used to select papers on constrained combinatorial
testing.

2.1 Combinatorial Testing Repository
We constructed the combinatorial testing repository with
the aim of providing a full coverage of publications in the
literature on combinatorial testing (CT). The primary inclu-
sion criterion is that the paper focuses on research on CT,
which should address at least one testing activity, including
but not limited to modelling, test suite generation, test suite
selection and prioritisation, fault diagnosis, evaluation and
applications of CT [3]. In addition, the paper should be pre-
sented in English, and should not be purely mathematical
studies that solely focus on generating covering arrays by
mathematical techniques2, as such studies are not concerned
with CT per se, but with the general problem of covering
arrays.

The literature search was conducted on six major online
library search engines: IEEE Xplore, ACM Digital Library,
Elsevier ScienceDirect, Springer Link, Wiley Online Library
and DBLP. We searched for related publications using
queries “combinatorial testing”, “combinatorial interaction
testing”, “pairwise testing”, “t-way testing” and “covering
array”. We then collected unique publications, where each
of them is manually filtered based on our inclusion and
exclusion criterion: we first read the title of each publica-
tion and removed those that are clearly irrelevant. For the

2. Readers might refer to recent work [17], [18], [19], [20], [21] for
more information about such mathematical studies. There is also a
survey [22] that covers a variety of mathematical based covering array
generation methods.

TABLE 1
Selected Conference Proceedings and Journals.

Venue Abbr.

International Conference on Software Engineering ICSE
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering

ESEC/FSE

International Conference on Automated Software Engineering ASE
International Symposium on Software Testing and Analysis ISSTA
International Symposium on Software Reliability Engineering ISSRE
International Conference on Software Testing, Verification and
Validation

ICST

International Workshop on Combination Testing IWCT
International Workshop on Combinatorial Testing and its Ap-
plications

CTA

IEEE Transactions on Software Engineering TSE
ACM Transactions on Software Engineering and Methodology TOSEM
IEEE Software IEEE SW
Empirical Software Engineering EMSE
Information and Software Technology IST
Journal of Systems and Software JSS
Software Testing, Verification and Reliability STVR

potentially relevant publications, we further inspected their
abstracts (and the full bodies when necessary) to decide
whether to include them. Finally, for the publications that
are published in the major conference proceedings and
journals of software engineering3 (as shown in Table 1), we
went through their references to identify new publications,
in order to mitigate the risk of omitting relevant studies
(snowballing).

For every included publication, our combinatorial test-
ing repository not only contains its meta-data (such as
author, title, conference proceeding or journal information,
and publication year), but also classifies it into one of the
six research fields (these fields are introduced in a previous
survey that reviews works on CT overall [3]):

3. These proceedings and journals are adapted from a previous
study [23], indicating high quality venues for combinatorial testing
publications. We additionally included two specific workshops (IWCT
and CTA) on combinatorial testing.

3

1) Modelling. Studies on identifying parameters, values,
and the interactions between parameters of the soft-
ware under test.

2) Generation. Studies on generating the smallest CT test
suite.

3) Optimisation. Studies on improving the test suite by
prioritisation, minimisation and selection techniques.

4) Fault Diagnosis. Studies on locating the concrete
failure-causing interactions.

5) Evaluation. Studies on measuring the effectiveness of
CT and comparing CT with other testing methods.

6) Application. Studies on applying, improving, and pop-
ularising CT and its procedures in the real-world.

Note that some publications may focus on multiple fields at
the same time, but we nevertheless assign each publication
into one field based on its main contribution. As a result, the
distribution on the whole can provide a fairly good picture
of the current state of research in CT [3].

The combinatorial testing repository was initially avail-
able online in late 2015, containing 461 publications at that
time. Since then, we repeatedly conducted manual searches
on major conferences and journals (as shown in Table 1), in
order to keep this repository up-to-date. The snowballing
process is also performed for the newly identified publica-
tions.

Moreover, in order to ensure that all relevant publica-
tions are indeed included for this study, we re-conducted
the whole literature search process in 2018 to further un-
derpin the combinatorial testing repository. The repository
currently contains 764 publications (December 2018). It is
publicly available online at http://gist.nju.edu.cn/ct repos
itory. 4

We note that there is another publicly available repos-
itory on combinatorial testing5. However, that repository
only contains 428 publications, and has not been updated
since 2016. In addition, that repository contains publications
that are not written in English. Such non-English language
publications are excluded in our study. Nevertheless, we
have gone through all publications in that repository to
make sure that every publication that meets our inclusion
criteria is also included in our repository.

2.2 Paper Selection for This Survey

The focus of this study is constraint-related research in CT.
Hence we selected relevant publications from the combina-
torial testing repository. We considered journal articles, con-
ference and workshop papers, technical reports and Ph.D.
theses that are published before December 2018. The main
inclusion criterion is that the paper is related to constrained
combinatorial testing, concerning the impacts and specific
techniques when the input space of the software under
test is constrained. We exclude papers that simply focus
on the application of constrained combinatorial testing, in
which existing algorithms or tools are directly applied on
particular (constrained) software systems.

4. Since the contents in the repository might be changed due to
further updates, we additionally created a mirror archive that includes
the 764 papers used in this study. The complete list of these papers is
available online at https://github.com/GIST-NJU/ctrepo-archive.

5. https://cs.unibg.it/gargantini/citrepo/

Fig. 2. Distribution of research topics in constrained combinatorial test-
ing.

We went through all publications in the combinatorial
testing repository against the above inclusion and exclusion
criteria. We also applied these criteria on all references
in previous SLR paper [24] to ensure that every relevant
publication is collected (note that this previous study covers
papers on applications of constrained combinatorial testing,
which are excluded in our study). Finally, we arrived at a
total of 129 publications for this survey (published between
1987 and 2018).

We classified the collected studies into the following
three main categories, based on their research topics:

1) Constraint Identification: Studies on identifying poten-
tial constraints of software under test.

2) Constraint Handling: Studies on effectively generating
constraints-satisfying test suites (i.e., constrained cover-
ing arrays).

3) Constraint Maintenance: Studies on validating, repair-
ing and evolving constraints in the test model.

The distribution of publications in each category is pre-
sented in Figure 2. It is obvious that constraint handling
is the most prominent field (106 papers). This is mainly due
to the popularity of test suite generation research in CT [3].
There are also a few publications on constraint identification
and maintenance; this is the first study in the literature to
review such topics.

3 CONSTRAINED COMBINATORIAL TESTING

We begin our survey with background on constrained com-
binatorial testing, describing constraint representations in
CT and the impact of constraints in CT application.

3.1 Background

Combinatorial testing (also known as combinatorial inter-
action testing) is a systematic technique that selects combi-
nations of program inputs or features for testing [25]. Such
inputs in a Software Under Test (SUT) could represent sys-
tem configurations, internal or external events, user inputs,
etc.

http://gist.nju.edu.cn/ct_repository
http://gist.nju.edu.cn/ct_repository
https://github.com/GIST-NJU/ctrepo-archive
https://cs.unibg.it/gargantini/citrepo/

4

Definition 1 (Test case [3]). Let P be a set of n parameters
P = {p1, p2, . . . , pn} and V = {V1, V2, . . . , Vn}, where
each Vi is a finite set of discrete values, and each param-
eter pi can take values from Vi for all 1 ≤ i ≤ n. We call
an n-tuple (x1, x2, . . ., xn) a test case t, where each xi is
a valid instantiation of pi, i.e., xi ∈ Vi for 1 ≤ i ≤ n.

Definition 2 (τ -way combination [3]). Let t =
(x1, x2, . . . , xn) be a test case over P = {p1, p2, . . . , pn}
parameters. A τ -way combination is a combination of
any τ parameters of t, where 1 ≤ τ ≤ n. We will use the
following notation to represent a τ -way combinations:
(−, xk1 , . . . , xkτ , . . .) where each of the τ parameters
have fixed values and the other parameters are assigned
any valid value from their domain, represented as “−”.

Exhaustive testing covers all n-way combinations by def-
inition. Such test suites, however, are usually prohibitively
large. Instead, CT provides a systematic approach to select-
ing a subset of all possible inputs, with the aim to only cover
every τ -way combination at least once. The concept of CT
comes from the fact that if no more than τ parameters are
involved in any failure, then covering all k-way combina-
tions (k ≤ τ) is effectively equivalent to exhaustive testing.
Hence, a mathematical object named a τ -way covering array
is used to represent CT test suites.

Definition 3 (covering array [3]). A τ -way covering array
is an N × n array that satisfies the following properties:
(1) each column i (1 ≤ i ≤ n) contains only element
from the set Vi; and (2) the rows of each N × τ sub
array cover all |Vk1 | × |Vk2 | × . . . × |Vkτ | combinations
of the τ columns at least once, where 1 ≤ τ ≤ n and
1 ≤ k1 < . . . < kτ ≤ n.

A τ -way covering array is often denoted by
CA(N ; τ, vk11 v

k2
2 . . . vkmm), where vkii stands for ki parame-

ters with the same number of vi values,
∑
ki = n.

The value of τ is referred to as the covering strength.
Determining this value is a key issue in CT. The empirical
observations of Kuhn et al. have demonstrated that most
software failures are caused by the interactions of one or two
parameters, and the value of τ is not likely to exceed six [2].
Hence, τ = 2, or pairwise, is the most widely used choice in
practice, which can achieve a good balance between the size
of test suite and failure finding effectiveness.

Table 2, for example, shows a test model for testing font
effects in a word processor (this example is adapted from a
previous work [26]). This test model has n = 5 parameters
with |V1| = |V3| = 3 and |V2| = |V4| = |V5| = 2. Instead of
exhaustively examining all 32×23 = 72 test cases, 2-way CT
only requires 9 test cases to cover every 2-way combination
at least once. Table 3 shows such a 2-way covering array,
where each row is exactly a test case of the test model.

The discussion so far assumes that every possible τ -
way combination is feasible and has the potential to trigger
the failure. However, this may be unrealistic due to the
constraints between parameter values. Constraints may be
introduced because of inconsistencies between hardware
components, limitations on possible configurations, or sim-
ply design choices [27]. For example, one constraint for the
model in Table 2 is that ‘Superscript and Subscript cannot
both be enabled for the same character’. A test case that

TABLE 2
A test model for ‘font effect’ (adapted from a previous work [26]).

Style Underline
Underline

Superscript Subscript
Colour

Regular On Red On On
Italic Off Blue Off Off
Bold Green

Constraint: Superscript and Subscript cannot both be enabled

TABLE 3
A 2-way covering array CA(9; 2, 31213122).

Style Underline
Underline

Superscript Subscript
Colour

t1 Regular On Red Off Off
t2 Regular On Blue On Off
t3 Regular Off Green Off On
t4 Italic Off Red On On
t5 Italic Off Blue Off Off
t6 Italic On Green On Off
t7 Bold On Red On On
t8 Bold Off Blue On On
t9 Bold Off Green Off Off

violates this constraint is considered invalid. Examples are
test cases t4, t7 and t8 in Table 3.

In order to incorporate constraints into CT, the definition
of a covering array needs to be extended to that of con-
strained covering array, which can be defined as follows:

Definition 4 (constrained covering array [7]). A τ -way
constrained covering array with respect to a set of con-
straints C is an N × n array, where (1) each column i
(1 ≤ i ≤ n) contains only elements from the set Vi;
(2) each row is C-satisfying; and (3) it covers every C-
satisfying τ -way combination at least once.

Constraints can be either hard or soft. A hard constraint
requires that certain parameter combinations cannot appear
in any test case, because their existence will prevent the test
case from execution. The constraint in Table 2 is an example
of a hard constraint. A soft constraint, on the other hand,
is the combination that does not need to be tested, based
on the knowledge and experience of testers. It is possible
to include test cases that violate soft constraints, but these
are undesirable and bring no benefit to test effectiveness.
The concept of a soft constraint was initially proposed
in 2006 [28], and only few studies have focused on such
constraints since then [28], [29].

In addition, sometimes a given software system needs to
be tested by running a set of selected test cases in a set of se-
lected configurations. In this case, a constraint can be either
system-wide or test case-specific [30]. System-wide constraints
determine the valid space from which the configurations are
sampled, while test case-specific constraints determine the
set of configurations in which a test case could run. These
two constraints can be accounted for at the same time by an
object named test case-aware covering array [30].

5

Intuitively, all constraints are explicitly specified in the
test model. Sometimes the interactions of a set of constraints
may give rise to new constraints. Such a newly introduced
constraint is named an implicit constraint, because usually
such implicit constraints are unknown to the tester. For
example, for the test model in Table 2, we already have one
invalid combination (−, −, −, On, On). If we add another
invalid combination (Bold, −, −, Off, −) as a constraint,
then a new invalid 2-way combination (Bold, −, −, −, On)
is introduced, because we cannot find a test case that covers
both this combination and does not cover the two explicitly
given invalid combinations.

3.2 Representations of Constraints
Constraints in CT can be represented by different forms
and their combinations. In this section, we describe four
common representations of constraints: forbidden, implica-
tion, numeric and shielding, and another two recently pro-
posed representations of improving the tester’s capability of
expressing constraints: counter & value property and embedded
function.

We focus on abstract representations here, because dif-
ferent algorithms and tools may use different modelling
languages. A proposal of a common language to represent
CT problems can be found in the CITLAB project [31].

3.2.1 Forbidden
The forbidden, or forbidden tuple approach, is probably the
most straightforward constraint representation. Each forbid-
den constraint is exactly an invalid k-way combination, in-
dicating that some parameter values cannot appear together
in a test case. For example, the constraint ‘Superscript and
Subscript cannot both be enabled’ can be represented as a 2-
way forbidden tuple, (−, −, −, On, On), for the test model
in Table 2.

3.2.2 Implication
Sometimes the allowable values of some parameters are
determined by the value assignments of other parameters.
Such a constraint can be represented by an implication
relationship, denoted as p → q (if p is true, then q must
also be true). For example, the constraint ‘if Style is set to
Bold, then Superscript should be enabled’ can be represented
as Style = Bold → Superscript = On for the test model in
Table 2.

Forbidden tuple and implication constraints are the most
common constraint representations in CT. They can be eas-
ily transformed into each other. To transform a forbidden
tuple constraint containing k parameters into implication
constraints, we can construct k implication constraints, each
of which uses one (k−1)-way combination of this forbidden
tuple as the premise of the implication. For example, (−, −,
−, On, On) in Table 2 can be transformed into two impli-
cation constraints: Superscript = On → Subscript = Off and
Subscript = On → Superscript = Off . To transform an im-
plication constraint into forbidden tuple constraints, we can
directly negate this implication. For example, an implication
constraint, Style = Bold→ Underline Colour = Red in Table 2,
can be transformed into two forbidden tuple constraints:
(Bold, −, Blue, −, −) and (Bold, −, Green, −, −).

3.2.3 Numeric
Sometimes some parameter values should satisfy a given
arithmetical relationship [32]. This can be represented by a
numeric constraint, denoted as (f, Pf), where Pf ⊂ P is a
set of parameters and f is the relationship on Pf that must
be satisfied. For example, given a test model with parameter
set P = {a, b, c}where each parameter can take values from
{0, 1, 2}, a numeric constraint may be (f, P) where f : a +
b+ c ≥ 3.

Numeric constraints can also be transformed into for-
bidden tuple constraints. This can be done by examining
the validity of every combination of all parameters in Pf .
However, this may result in a large number of forbidden
tuples. For example, for the above test model, transforming
the numeric constraint (a+ b+ c ≥ 3, {a, b, c}) will result in
10 forbidden tuples: (0, 0, 0), (0, 0, 1), (0, 0, 2), · · · , (2, 0, 0).

3.2.4 Shielding
Generally CT assumes that all parameters are always active,
namely each parameter must take one and exactly one
value. In some circumstances, however, the existence of
a combination may invalidate other parameter choices, so
that these parameters cannot take unconstrained values [33].
Such a constraint is named a shielding constraint, denoted
as a/Pa, where a is a k-way combination and Pa is a set
of parameters that will be invalid when a is assigned. The
combination a is called a shielding combination, while the
parameters in Pa are called dependent parameters of a. For
example, for the test model in Table 2, there is one shielding
constraint ‘if Underline takes value Off, then the parameter
Underline Colour will be disabled’, namely (−, Off , −, −,
−)/{Underline Colour}.

Shielding constraints need special consideration as they
cannot be directly transformed into other constraints. This
is because the dependent parameters will not take values
when they are disabled, which contradicts the requirement
that each parameter must take one value in a test case.
An alternative solution is to add a void value ‘#’ to the
value set of all dependent parameters, and add constraints
to ensure that if a appears then all parameters in Pa should
take #, and if any parameter in Pa takes # then a should be
assigned. For example, to transform the shielding constraint
(−, Off , −, −, −)/{Underline Colour}, we can add a value
for parameter Underline Colour and add two implication
constraints: Underline = Off → Underline Colour = # and
Underline Colour = #→ Underline = Off.

3.2.5 Counter & Value Property
In addition to the above four common representations of
constraints, Segall et al. [34] proposed the counter and value
property in 2012, with the aim to reduce the complexity
of representing some particular kinds of constraints in test
models.

A counter is a special parameter, which can be used
when constraints refer to the number of occurrences of
parameter values. For example, assuming a SUT with ten
parameters, each of which represents an operating system
that can take values from {Windows, Linux}. A constraint
may require that at least five operating systems should
be Windows. This will result in C(10, 6) = 210 forbidden

6

tuples. In this case, a counter c can be defined to count the
number of occurrences of Windows in a test case, so that only
one constraint, i.e., c ≥ 5, is required [34].

In addition, a value property can be associated with
each parameter value to cater for constraints that are related
to particular aspects of software parameters. For example,
assume the operating system can take multiple Windows
and Linux versions, such as {Windows 8, Windows 10, Cen-
tOS 7, Ubuntu 18}. A constraint may require that when
a combination a appears, the parameter p must take a
version of Windows. In this case, a platform property can
be added to each parameter value, so that the constraint can
be represented as ‘a→ Platform(p) = Windows’ [34].

3.2.6 Embedded Function
In order to make constraint handling more flexible and
accessible to software engineers, starting from 2015, Sher-
wood [35], [36] proposed to represent constraints as em-
bedded functions. The idea of this approach is to define
constraints by a function embedded in the test model. This
function is written in the programming language of the
system, and will be used by a test generator to construct
test cases.

For example, assuming that a SUT has three parameters
Year, Month and Day, and Day will take values from the set
{1, 10, last day}. Here, the value of last day is determined
by the combination of Year and Month. In this case, a tester
can write a function f(year,month), which returns specific
last day, as the third value of parameter Day [35].

3.3 Impact of Constraints on CT
The impact of constraints may vary with different problems,
but in general, constraints increase the complexity and dif-
ficulty of effectively applying combinatorial testing:

1) Due to the lack of automated tools, it is usually a time
consuming task to correctly identify the appropriate
constraints for a given SUT. The manually extracted
constraints may contradict each other, and some parts
of constraints may be redundant. In addition, an under-
constrained model will produce unexpectedly invalid
test cases, while an over-constrained model will fail to
examine a number of combinations that may trigger
failures.

2) It is hard to calculate the set of τ -way combinations that
need to be covered, which is a necessary component
in many covering array generation algorithms. The
number of parameters that are involved in a constraint
may be greater than, equal to or less than τ , and even
a small number of constraints may produce a large
number of invalid combinations. Moreover, implicit
constraints may be introduced due to the interactions
of other explicit constraints. Such implicit constraints
are not obvious, so additional operations are usually
required.

3) The size of a τ -way covering array with constraints
may become greater or less than its conflict free version.
The presence of a constraint always reduces the number
of all feasible test cases, but it does not guarantee the
size reduction of the test suite needed to achieve τ -way
combination coverage. For example, if an orthogonal

array (in which each τ -way combination is covered
exactly once) can be found for a SUT, then adding a
forbidden tuple will increase the size of the required
τ -way covering array [27]. As a result, the lower and
upper bounds of covering arrays may become unpre-
dictable. This uncertainty limits the effective applica-
tion of some generation algorithms that rely on such
bounds to determine achievable size.

4) In order to support constraints, some constraint han-
dling techniques should be integrated into covering ar-
ray generation algorithms and tools. An inappropriate
choice of constraint handler may dramatically decrease
the performance of a generation algorithm. For exam-
ple, Petke et al. [37] found that the execution time of a
greedy algorithm can be reduced from hours to seconds
when using suitable techniques to handle constraints.
However, the choices of either the best representation
form of constraint, or the the best constraint handling
technique, are still open problems.

5) Constraint violation may suffer from the masking ef-
fect [30]: if a test case fails to run due to an unsatisfied
constraint, none of the valid combinations appearing
in that test case will be tested. In particular, if a valid
τ -way combination is only covered by that failed test
case, this will result in false confidence in the testing
process as this combination is expected to be tested but,
in fact, is not. For example, in Table 3, as the 2-way
combination (Italic,−,Red,−,−) is only covered in an
invalid test case t4, this combination will not be tested
by only executing those nine test cases.

Although the presence of constraints brings a number
of side effects, testers can build more accurate and flexible
test models for the SUT with the help of constraints: they
do not need to worry about introducing conflicts when
determining parameters and values. Moreover, a large num-
ber of constraints can greatly reduce the size of the search
space, which makes the generation of high strength covering
arrays feasible at a reasonable computational cost, especially
for meta-heuristic search algorithms [37], [38]. This is an
important blessing that may be achieved from the presence
of constraints, because there is evidence that testing higher
strength interactions can lead to improved failure revela-
tion [2].

4 CONSTRAINT IDENTIFICATION

Modelling of the SUT is a fundamental activity in CT. One
issue that needs to be resolved in modelling is to identify the
constraints between parameters and their values. This has
been recognised as an important component in modelling
frameworks. For example, Grindal and Offutt [131] pre-
sented an eight step process for input parameter modelling,
in which one step is to document invalid combinations.

Despite awareness that constraint identification is an
indispensable part in modelling, considerable manual effort
is often required, and there are few techniques that can
be used to find and formalise constraints, especially by
automated means.

One attempt to automatically identify constraints is to
derive combinatorial test models from other analysis arte-
facts. Satish et al. proposed rule based techniques to semi-

7

TABLE 4
References mapping research on constrained handling in combinatorial testing

Category Technique References

Remodel Sub-model [5], [6], [33], [39], [40], [41]
Abstract Parameter [6], [40], [42]

Avoid Verify [6], [9], [10], [39], [40], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55],
[56], [57], [58], [59], [60]

Solver [7], [8], [27], [61], [62], [63], [64], [65], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76], [77], [78], [79]

Weight [28], [29]
Tolerate [80], [81]

Post Replace [6], [40], [82], [83], [84], [85], [86]
Expand [87], [88]

Transfer Constraint Satisfaction Problem [30], [32], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103],
[104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116], [117]

Graph Model [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130]

automatically extract the combinatorial test model from
UML diagrams, including activity diagrams [132], sequence
diagrams [133] and use case diagrams [134]. Their results for
case analysis suggest that these techniques can partly reduce
manual effort. However, support for constraint identifica-
tion is either simply discussed without empirical evaluation,
or left for future work.

Nyguyen and Tonella [135] tried to apply machine learn-
ing technique to infer classifications and dependencies for
CT. They assumed that inputs that execute similar code tend
to belong to the same class, so that a clustering algorithm
could be used to classify a set of randomly generated inputs
into groups. An additional invariant inference was applied
for each group, and the disjunction of invariants obtained
from all groups thereby defines the dependencies that must
hold. However, manual visual analysis was still needed in
this approach and the usefulness of dependency inference
was not evaluated.

Nakagawa and Tsuchiya proposed another two initial
ideas to infer constraints. One technique [11] is based on the
distance between words in requirement documents, which
assumes that if two parameter values are always located
near each other, they are more likely to cause constraints.
A metric called “coupling strength” is proposed to measure
the distance between two parameter values; high coupling
strength pairs are used to define constraints. Another tech-
nique [12] is based on a web search engine, which assumes
that excessively high numbers of search hits indicate that the
corresponding parameter values are highly related, whereas
low numbers indicate these values are uncommon. A rate is
calculated based on the search hits for any two parameter
values, then constraints are defined from extremely low rate
pairs, which should be excluded, as well as extremely high
pairs, which should appear together. However, these two
techniques only focus on constraints between exactly two
parameters, and only preliminary experiments are reported.

5 CONSTRAINT HANDLING

Given a test model with constraints, generating a con-
strained covering array of the minimum size to cover all
valid τ -way combinations remains a challenging task in

Fig. 3. The distribution of constraint handling techniques used in the
surveyed studies.

CT. Constraint handling focuses on this process, in order
to ensure that the final covering array only contains valid
test cases. This is the most prominent field in constrained
combinatorial testing (see Figure 2).

In this study, we classified the available constraint han-
dling techniques into four main categories:

1) Remodel. Techniques to eliminate constraints through
modifying a test model before test suite generation.

2) Avoid. Techniques to construct conflict-free solutions
through integrating particular strategies as extensions
of existing algorithms during test suite generation.

3) Post-process. Techniques to repair constraint violations
through post-processing after test suite generation.

4) Transfer. Techniques to transfer the generation of con-
strained covering arrays into other problems, or use
other structures to model the combinatorial input space,
so that final solutions can be directly obtained by apply-
ing existing algorithms or tools.

Moreover, we further classified sub-categories into specific
techniques for each of the above categories. We will describe

8

Sub-model
1994

1996

2000 20051995 2010 2015 2017

Remodel

Constraint
Handling

Avoid

Post

Transfer

Abstract Parameter

Verify

Solver

Weight

Tolerate
2017

1997

2006

2007

Replace
2004

Constraint Satisfaction Problem

Extend
2007

Graph Model
2005

2008

Fig. 4. The chronological development of constraint handling techniques.

each of them in more detail in the following sections. We
note that a few papers do not provide sufficient information
to support a fully confident classification. They are never-
theless classified into the most likely category based on our
understanding.

Table 4 provides references that map to each of the spe-
cific constraint handling techniques to each category. Note
that multiple techniques can be used in one publication.
Figure 3 shows the distribution of specific techniques used
in the surveyed studies. We can see that Avoid and Transfer
together account for 83% of all studies, and the top three
widely used specific techniques are Constraint Satisfaction
Problem, Verify and Solver.

In addition, Figure 4 gives an overview of the chronolog-
ical development of these constraint handling techniques.
We can see that Remodel is the earliest technique to be used.
We can also see that most of these techniques appeared
around 2006. It was the time of the first review of constraint
handling techniques [6]. This was also the time of the
first proposal of automated constraint handling techniques
that do not need to either modify the model or explicitly
list all forbidden combinations [27]. Recently, even though
many techniques were already available, a new technique,
Tolerance, was proposed in 2017 [80], [81], suggesting that
the field remains open for innovation.

5.1 Remodel

The ‘remodel’ technique focuses on constraint handling be-
fore test suite generation. Its aim is to eliminate constraints
from test models, so that conventional covering arrays can
be used directly. We describe two specific techniques for this
category: Sub-model and Abstract Parameter.

Fig. 5. An example of sub-model technique.

5.1.1 Sub-model

The ‘sub-model’ technique removes constraints by con-
structing a set of conflict-free sub-models. Test suites are
generated separately for each sub-model and then com-
bined later. This idea was initially sketched in 1994, where
Sherwood presented an approach of listing allowed value
combinations into different groups for the Constrained Ar-
ray Test System (CATS) [5]. Later this approach was also
used in the AETG system [39]. Additionally, Chen et al. [33],
and Othman and Zamil [41] used similar ideas to handle
shielding constraints.

To remove constraints, the sub-model approach firstly
selects a split parameter, namely a parameter that is in-
volved in a constraint with the least number of values.
Secondly, the model splits into multiple intermediate sub-
models, each of which contains one value of the split pa-
rameter and all values of other parameters. Then, for each

9

Fig. 6. An example of abstract parameter technique.

intermediate sub-model, the values of other parameters that
violate constraints are further removed. This process is re-
peated until no constraint remains, and finally the resulting
constraint-free sub-models are merged to reduce the number
of models. Figure 5 shows an example of splitting a model
into two conflict-free sub-models, where A is selected as the
split parameter.

5.1.2 Abstract Parameter
The ‘abstract parameter’ technique removes constraints by
combining conflicting parameters into abstract parameters.
Then a test suite is generated for the new model and
transformed back to the values of original parameters. This
idea was firstly applied in 1996, when Williams and Probert
discussed how it can be used with orthogonal array con-
struction [42].

To remove constraints, the abstract parameter technique
firstly identifies conflicting parameters that are involved in
constraints. Then these parameters are replaced by one or
more abstract parameters whose values represent all valid
sub-combinations. Figure 6 shows an example of replacing
two conflicting parameters A and C by an abstract parame-
ter AC .

The sub-model and abstract parameter techniques are
the two earliest techniques to handle constraints in CT. They
can work well with a few simple constraints, but they are
less competitive in the size of generated test suite [6], [40].
Moreover, these techniques usually need manual effort to
modify the test model, which makes them difficult to scale
to large test models with complex constraints [27].

5.2 Avoid

To generate a constrained τ -way covering array, three main
frameworks can be used: (1) constructing a single test case
that maximises coverage at each time (one-test-at-a-time);
(2) firstly constructing a test set for the first τ parame-
ters and then extending it horizontally and vertically (in-
parameter-order); and (3) directly constructing a covering
array for a given size (evolve-test-suite). These three frame-
works can be combined with both greedy and search based
strategies. In either case, the generation strategy will apply
a step-by-step process by assigning or changing parameter
values, in order to cover as many combinations as possible.
Finally, a covering array is achieved when all valid τ -way
combinations are covered.

The ‘avoid’ technique focuses on constraint handling
during the above generation process. Note that this tech-
nique is usually used as an extension of a covering array
generation algorithm. This differs from some techniques

that directly produce valid final solutions. We describe four
specific techniques for this category: Verify, Solver, Weight,
and Tolerance.

5.2.1 Verify
The ‘verify’ technique is probably the most basic technique
to handle constraints in the more general case. The idea is
to maintain a list of forbidden tuples, and each partial or
complete solution during the generation process will be ver-
ified against them to prevent the appearance of constraint
violation. The AETG system [39] first used this technique to
determine disallowed test cases.

One important aspect of this technique is that all forbid-
den tuples must be explicitly listed in advance and retained
in memory. Some algorithms need to pre-construct such a
list [47], [48], [56], but it may be error-prone and impractical
due to implicit constraints (as discussed in Section 3.1).
In order to automatically deduce implicit constraints, Li
et al. [50] proposed a method based on the observation
that implicit constraints are introduced when every value
of a parameter is involved in some forbidden tuples. Later,
similar idea was also used in Yu et al.’s studies [9], [10].

Another issue of this technique is the need to check
a large number of forbidden tuples. To quickly verify the
validity, Yu et al. [9] proposed a notion named Minimum
Forbidden Tuple (MFT). An MFT is a forbidden tuple of
minimum size that covers no other forbidden tuples. Once
all MFTs are found, validity verification can be performed
by only checking whether a solution contains any MFT. To
generate all MFTs, they proposed an algorithm to iteratively
derive new (implicit) forbidden tuples and to simplify the
current set of forbidden tuples until no new tuples can be
derived. Moreover, not all MFTs are needed when verifying
a partial test case that only relates to a subset of parameters.
Based on this observation, Yu et al. [10] further proposed
an on-demand MFT generation strategy to only derive
necessary MFTs. This strategy utilises the fixed values of
partial test cases to remove values from forbidden tuples.
For example, given a partial test case (1, 1, −, −), the
forbidden tuple (−, 1, 0, −) can be simplified to (−, −, 0,
−).

5.2.2 Solver
Instead of verifying against a list of forbidden tuples, the
‘solver’ technique aims to encode constraints and solutions
into a formula and apply an existing constraint satisfaction
solver to check the formula’s validity. Cohen et al. [27]
first suggested this idea as a general solution to resolve
constraints in 2007. They integrated a SAT solver into both
greedy and simulated annealing based covering array gen-
eration algorithms to ensure that each value assignment
or change is constraint satisfying. This first attempt later
gave rise to two popular algorithms: the SAT-based AETG
approach [7] and the hill climber CASA [8], [62].

One of the most widely used constraint solvers in this
technique is the SAT solver. To do this, the constraints
should be encoded into a boolean formula. A common
approach is to introduce a boolean variable xij for each
pi ∈ P and vj ∈ Vi, where xij is true represents that
parameter pi takes value vj (i.e., pi = vj). A constraint a
can thus be encoded as a boolean formula φa over these

10

boolean variables. For example, a k-way forbidden tuple a
can be encoded as φa = ¬

∧
xij∈Q xij , where Q is the set

of fixed parameter value assignments in the forbidden tuple
(|Q| = k). Then the set of all constraints F in the test model
can be encoded as:

CF =
∧
a∈F

φa

Additionally, each parameter should have one and exactly
one value in a test case. This can be encoded by an at-least
constraint [7]:

CL =
∧
pi∈P

(
∨
vj∈Vi

pi = vj)

and an at-most constraint [7]:

CM =
∧
pi∈P

(
∧

vj ,v′j∈Vi,vj 6=v′j

pi 6= vj ∨ pi 6= v′j)

Together, C = CF ∧ CL ∧ CM represents the base con-
straint [7]. Now given the encoding of any partial or com-
plete test case S, a SAT solver can be used to decide whether
it is possible to find a truth assignment for the variables in
the boolean formula C ∧ S (namely, whether S is constraint
satisfying). Here implicit constraints are accounted in the
constraint solving process, so that they do not need to be
explicitly included in CF .

When encountering an invalid intermediate solution
during the generation, one approach is to simply abandon
this solution and try the next best candidate [7], [8], [66],
[72]. Another approach is to repair the solution, such as
randomly changing parameter values, until it becomes con-
straint satisfying [71], [74].

Verifying validity after each change usually leads to a
large number of solver calls. One simple optimisation is to
use the solver only when the parameters of the changed
values are mentioned in constraints [27], [66], [68]. In addi-
tion, some characteristics of the solver can also be used to
improve efficiency. Cohen et al. [7], [61] mined the solving
history to prune the search space for AETG, so that only
a fraction of value assignments need be examined. Yu et
al. [66] and Bazargani et al. [77] recorded previous solving
results to avoid multiple validity verifications for the same
test. Recently, the unsatisfiable core, which can be used to
find forbidden tuples in an unsatisfiable test, was used by
Yamada et al. [74]. It enabled a lazy detection of invalid com-
binations so that they do not need to be removed in the pre-
processing step. They also proposed an ‘amend’ method to
repair invalid test cases by removing value assignments in
the unsatisfiable core. Lastly they extended a SAT solver to
support approximate answers to further reduce the number
of solver calls while maintaining a low chance of producing
invalid solutions.

5.2.3 Weight
Assigning weights to parameter values is a common method
in test suite prioritisation [136], [137]. Bryce and Col-
bourne [28], [29] used this idea to cater for soft constraints.
In their method, combinations were weighted as either
important with positive values or undesirable with negative
values. The Deterministic Density Algorithm (DDA) [138]
was then extended to generate a prioritised test suite to

avoid those undesirable combinations where possible, so
that when they are included they will only appear in the
last tests of the test suite. This technique did not guarantee
the exclusion of constraints; the undesirable combinations
occurred around 3% of the time [28].

5.2.4 Tolerate
When using search-based algorithms to generate con-
strained covering arrays, one approach is to exclude all
invalid solutions from the search space, so that all interme-
diate and final solutions are constraint satisfying. However,
sometimes some elements of invalid intermediate solutions
may help to find the optimal solution, so it may be desirable
to ‘tolerate’ such solutions during the generation.

Incorporating a penalty term into the fitness function is
one of the most common approaches of solving constrained
optimisation problems by search-based algorithms [139]. It
includes invalid solutions in the search space, but penalises
them in favour of valid solutions. More recently, Galinier
et al. [80] used this technique with a Tabu search algorithm
to generate constrained covering arrays. They encoded the
whole test suite as a candidate solution, and used the
following fitness function to evaluate the goodness of each
candidate s:

f(s) = U(s) + ω · V (s)

where U(s) is the number of yet to be uncovered combina-
tions, V (s) is the number of constraint violations in s, and
ω is the penalty weight. Here, the value of V (s) is easy to
calculate if there are only a few constraints. When the set of
constraints is large and complex, a more efficient approach,
such as the Minimal Forbidden Tuple (MFT) approach or a
constraint satisfaction solver, should be used to determine
whether a constraint is violated in the solution s.

With the above fitness function, the search will stop
when f(s) = 0 is met, i.e., a constrained covering array
is found, or a maximum number of iterations is reached. As
the fitness function is an indispensable part of any search-
based algorithm, this technique can be directly used in other
search-based test suite generation algorithms.

In addition, Ahmed et al. [81] also used similar idea to
design a new particle swarm optimisation algorithm to gen-
erate constrained covering arrays. Their approach generates
each test case one at a time, with two objectives in mind:
the first objective is to contain as few constraint violations
as possible, and the second objective is to cover as many
of the yet uncovered combinations as possible. These two
objectives are applied in order to evaluate each candidate
test case. The best test case is the one with maximum
combination coverage and no constraint violation.

5.3 Post-process
The ‘post-process’ technique focuses on constraint handling
after test suite generation. Given a covering array generated
without considering constraints, this technique first finds
all invalid test cases, which can be efficiently achieved by
using the Minimal Forbidden Tuple (MFT) approach or a
constraint satisfaction solver, as introduced before. Then
the conflicts in these invalid test cases can be removed by
different means. We describe two specific techniques for this
category: Replace and Extend.

11

5.3.1 Replace
The ‘replace’ technique resolves conflicts by replacing in-
valid test cases by a set of valid ones to remove constraint
violations while retaining combination coverage. Hartman
and Raskin [82] first used this technique to design Com-
binatorial Test Services (CTS) package, in which they did
not implement an algorithm to construct constrained cov-
ering arrays, but provided a service to ‘delete and perturb’
columns that contain forbidden tuples.

Given an invalid test case, a straightforward approach
of replacing it is to clone this test case. In each clone,
the parameters involved in constraints are changed to new
values that do not violate constraints, and the number of
clones is chosen to preserve coverage [6], [40], [84], [85], [86].
Another attempt is to first remove invalid test cases and then
use a genetic algorithm to add some feasible ones [83].

5.3.2 Extend
The ‘extend’ technique aims to directly extend invalid test
cases to remove conflicts. Yuan et al. [87], [88] used this
technique to handle constraints in event sequences. In their
approach, abstract test sequences were first generated. As
some events can only be executed with some prior set-up
events, new events were added into test sequences to create
the final executable test cases. For example, in GUI testing,
the Undo will be disabled unless some specific events occur.
A Copy event can thus be inserted before Undo to produce
an executable sequence [88].

5.4 Transfer
The ‘transfer’ technique focuses on reformulating the prob-
lem of covering array generation into other problems, or
using other structures to model the constrained input space.
We describe two techniques for this category: Constraint
Satisfaction Problem and Graph Model.

5.4.1 Constraint Satisfaction Problem (CSP)
When handling constraints by the ‘avoid’ technique, a con-
straint solver is only used to determine whether a partial or
complete solution is constraint satisfying. The same process
can also be used to produce satisfiable test suites or test
cases: the covering array generation problem is reduced to
the CSP problem and then existing solvers can be directly
applied. This idea of problem reduction can be traced back
to 2005, when Hnich et al. [89], [90] encoded the whole
covering array into a boolean formula and used a SAT solver
to find feasible solutions. They mentioned that constraints
can be easily handled, but this was not implemented nor
evaluated. Later similar ideas were used by Calvagna et
al. [92] and Grieskamp et al. [94] to generate constrained
covering arrays.

The constrained covering array generation problem can
be encoded to different constraint satisfaction problems. For
example, in order to use a SAT solver to generate a test suite,
one approach is to use the matrix encoding [89], [112]. As-
suming that the test suite is represented by an m×n matrix.
Let a boolean variable xijv(1 ≤ i ≤ m, 1 ≤ j ≤ n, v ∈ Vj)
denote the fact that the value of the j-th parameter is v in
the i-th row. Here, each parameter must have a unique value
in each row, which can be encoded by at-least and at-most

constraints (as in Section 5.2.2), or encoded by a uniqueness
constraint [112]:

U =
∧

1≤i≤m

∧
1≤j≤n

(1 =
∑
v∈Vj

xijv)

To ensure the requirement of τ -way coverage, let O be the
set of all valid τ -way combinations to be covered, and a
boolean variable cik denote that combination k (k ∈ O) is
covered in the i-th row. The coverage constraint can thus be
encoded as follows [112]:

C1 =
∧
k∈O

∨
1≤i≤m

cik

Additionally, to ensure the consistency between xijv and
cik, the following constraints should be satisfied [112]:

C2 =
∧

1≤i≤m

∧
k∈O

∧
j,v∈k

(cik ⇒ xijv)

Every test case should also satisfy the set of constraints F
in the test model. For each row i, a constraint a ∈ F can
be encoded into a boolean formula φia over variables xijv .
This results in the following constraint [112]:

C3 =
∧

1≤i≤m

∧
a∈F

φia

Lastly, a SAT solver is invoked to ask for the solution to the
contained form U ∧ C1 ∧ C2 ∧ C3. If there is a satisfiable
assignment, we find a τ -way constrained covering array of
size m.

Apart from encoding a test suite as SAT constraints,
other encodings and solvers have also been used. Calvagna
and Gargantini [91], [92], [95] used test predicates to for-
malise the constrained covering array generation problem,
and applied model checker to construct each test case at
a time. Their approach can deal with temporal constraints,
where parameter values may change over time [91]. A Sat-
isfiability Modulo Theory (SMT) solver was also used [93],
[94]. It uses a smaller number of variables than the boolean
encoding, but Henard et al. [110] found that the process-
ing time required by an SMT solver was higher than that
required by the SAT solver.

In addition, some methods try to find solutions that
not only satisfy constraints but also optimise some objec-
tives, namely to solve an optimisation problem instead of
a pure satisfiability problem. Constraint programming [98],
[113] and linear programming [32], [104] were both used
to generate the smallest test suites, and pseudo-Boolean
optimisation [109] was used to generate each test case that
maximises current combination coverage.

CSP-based techniques can generate the covering array
of minimum size and prove its optimality, but it usually
suffers from the scalability problem. One problem is that the
number of variables and clauses increases dramatically with
the increase of test model and covering strength. Perrouin
et al. [96] proposed two ‘divide-and-conquer’ strategies to
divide constrained covering array generation into small and
solvable problems and then combine sub-solutions. Another
problem is that many solver runs are usually required to
determine the minimum size of a covering array. In this
line, Nanba et al. [100], [101] used binary search; Yamada

12

et al. [112] used incremental SAT solving, where the learned
clauses for solving the problem of size m can be reused
when solving the problem of size m − 1. Nevertheless,
it is usually reported that the CSP-based techniques have
high computational cost, and they are only practicable for
pairwise testing [100], [101], [109], [112].

5.4.2 Graph Model
Apart from modelling input spaces using a list of param-
eters and their values, another technique is to use a graph
structure. This allows graph-related operations and theories
to be used directly to construct test cases or test suites.

The application of such graph-related techniques first
appeared in 2008 [118], [119], where graph structures were
used to build conflict-free models. Wang et al. [119] used
a navigation graph to model web applications. In their
approach, each node represents a web page, and each
edge represents a possible link from one node to another.
Constraints are implicitly captured with this structure: each
path through the graph is a valid test sequence, and a set of
paths is generated to cover all ordered node pairs. Similar
techniques were also proposed by Vilkomir et al. [118],
[122], where a Markov chain model was used. Later, Yu
et al. [127] investigated efficient algorithms for generating
test sequences. They used a labeled transition system graph
as the model, which consists of states, event labels and
transitions between states.

Another application is to use a Binary Decision Diagram
(BDD). A BDD is a structure that represents and manipu-
lates boolean formulas: each non-terminal node represents
a variable, outgoing edges from a non-terminal node rep-
resent values of corresponding variables, and a path from
the root to a terminal node represents an assignment, which
evaluates to true if it ends in 1-terminal node or false oth-
erwise [124]. Salecker et al. [124] modelled the space of all
valid test cases as a single boolean formula represented by a
BDD. Test cases were then generated to be compatible with
this BDD and to maximise combination coverage. Gargntini
and Vavassori [128] proposed a similar approach, but they
used a Multivalued Decision Digram (MDD) instead of
BDD. Segall et al. [125] also used a BDD to capture the
uncovered combinations for each k parameters. Then test
cases were generated relying on conjunction and counting
satisfying assignment operations of BDDs.

After modelling using graph structures, test suites
can also be generated by applying graph-related theories.
Danziger et al. [120] used a covering array with forbid-
den edge (CAFE) to generate test suites, which is closely
related to the edge clique covering problem [140]. Maltais
et al. [121], [123] further investigated the computational
complexity of determination and approximation of CAFEs.
Recently, algorithms for graph colouring were also used for
generating the smallest covering array [129], or optimising
the vertical growth of IPO algorithm [130].

6 CONSTRAINT MAINTENANCE

Modelling of combinatorial testing is usually a tedious and
error-prone task. In practice we cannot assume either the
creation of a perfect test model at one time, or the usage
of a model that never changes with the evolution of SUT.

Particular techniques are needed to comprehend and to
manage test models, which include validating, repairing
and evolving constraints in the test model.

Model review is a basic technique to manually validate
test models. Farchi et al. [141] proposed to repeatedly review
projections of the test space on a subset of parameters in
order to find and debug modelling mistakes. For a reviewed
projection, each value combination is determined as valid,
invalid or partially valid based on BDD and SAT solving,
so that testers can verify that these statuses are as they ex-
pected. Implicit constraints are also identified and displayed
to attract special attention. In addition, Tzoref-Brill et al. [13]
presented three visualisation forms, including matrix, graph
and treemap, to visualise both test model and test suite.
One of their goals is to display the relationships between
parameters, constraints and parameter combinations in the
model in an informative way, such that testers can easily
confirm understanding of requirements and further tune the
model.

One weak aspect of model review is that it is usually
done by hand, even if it can be assisted by tools. In order
to reduce manual effort for validation, Arcaini et al. [142]
proposed to automatically check some properties that any
test model and test suite should hold: for a test model,
the set of constraints should be consistent and does not
contain redundant parts; there are no parameters or values
that are never taken due to constraints. Their approach
was implemented using an SMT solver, and they further
provided strategies to deal with situations that violate the
above properties.

In addition to validating the properties of the test model,
another aspect is to validate the conformance between
specification (i.e., test model) and implementation (i.e., the
actual program). Gargantini et al. [14] devised four policies
to generate test cases to check whether the constraints in
the test model correctly capture the relationships among
parameters. They assumed that there exists an oracle func-
tion to determine the validity of a test case against the
implementation. Then if the validity of a test case as defined
in the model is different from actual validity, a conformance
fault (either in the model or in the program) is found.
Recently, Gargantini et al. [15] further proposed techniques
to automatically repair conformance faults. A test case is
marked as “failed” if it produces different validity results,
or marked as passed otherwise. Then a combinatorial fault
diagnosis tool was used to identify a set of suspicious com-
binations that cause the failing result, according to which
constraints can be modified to fix the original test model.

Moreover, the test model will barely stay unchanged in
practice, especially when the SUT evolves due to iterative
development and bug fixing. In this case, additional efforts
are often required to address the changes on the test model
in order to maintain validity. Tzoref-Brill and Maoz [143]
found that the widely used boolean semantic is inadequate
for model evolution. For example, assuming two parameters
p1 with V1 = {0, 1, 2} and p2 with V2 = {0, 1}. A constraint
is represented as either p1 = 0 → p2 = 0 or p1 = 0 → p2 6=
1, either of which produces the same input space. However,
when a new value 2 is added into V2, the combination (0, 2)
will become invalid according to the former representation,
but valid according to the latter representation [143].

13

To resolve this problem, Tzoref-Brill and Maoz [143]
proposed to use lattice-based semantics that provide con-
sistent interpretations and expose additional changes after
atomic operations. Spichkova et al. [144] proposed a human-
centric method that asks the tester to make additional de-
cisions based on a visual representation. Recently, Tzoref-
Brill and Maoz [145] presented a canonical representation
of test model, and developed algorithms to calculate and
present both syntactic differences (i.e. addition and removal
of parameters, values and constraints) and semantic differ-
ences (i.e. the set of valid test cases) between test models.
Their aim is to assist testers in their need of verifying the
completeness and correctness of model updates.

7 CONCLUSION

In this survey, we provide an overall picture of research
work on constraints in Combinatorial Testing (CT). Based
on the 129 papers published between 1987 and 2018, we
summarised the different representations used to capture
constraints, and discussed the influence of constraints on the
successful applications of CT. We classified the studies into
three overall research categories: constraint identification,
constraint handling and constraint maintenance. The cur-
rently available techniques for each of the categories were
then reviewed and analysed.

Although a rich collection of constraints pertinent tech-
niques have been developed and applied in CT, as this
study reveals, the issue of handling constraints remains
challenging with many open problems. Specifically, there
is a need to develop more powerful and automated al-
gorithms for resolving constraints, and also to compare
their performance against each other. The scarce researches
on constraints identification and maintenance also call for
further studies in these potentially important fields.

ACKNOWLEDGMENTS

This work was partially supported by the National Key
Research and Development Plan (No. 2018YFB1003800).
This work was also partially supported by the DAASE
EPSRC Grant (No. EP/J017515/1) and EPSRC Fellowship
(No. EP/P023991/1).

REFERENCES

[1] R. Mandl, “Orthogonal latin squares: An application of experi-
mental design to compiler testing,” Communications of the ACM,
vol. 28, no. 10, pp. 1054–1058, 1985.

[2] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[3] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[4] J. Petke, “Constraints: The future of combinatorial interaction
testing,” in International Workshop on Search-Based Software Testing,
2015, pp. 17–18.

[5] G. Sherwood, “Effective testing of factor combinations,” in In-
ternational Conference on Software Testing, Analysis & Review, 1994,
pp. 1–16.

[6] M. Grindal, J. Offutt, and J. Mellin, “Handling constraints in
the input space when using combination strategies for software
testing,” School of Humanities and Informatics, Tech. Rep. HS-
IKI-TR-06-01, 2006.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of
constraints: A greedy approach,” IEEE Transactions on Software
Engineering, vol. 34, no. 5, pp. 633–650, 2008.

[8] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating im-
provements to a meta-heuristic search for constrained interaction
testing,” Empirical Software Engineering, vol. 16, no. 1, pp. 61–102,
2010.

[9] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Combina-
torial test generation for software product lines using minimum
invalid tuples,” in International Symposium on High Assurance
System Engineering, 2014, pp. 65–72.

[10] ——, “Constraint handling in combinatorial test generation using
forbidden tuples,” in 4th International Workshop on Combinatorial
Testing, 2015, pp. 1–9.

[11] H. Nakagawa and T. Tsuchiya, “Towards automatic constraints
elicitation in pair-wise testing based on a linguistic approach:
elicitation support using coupling strength,” in International
Workshop on Requirements Engineering and Testing, 2015, pp. 34–
36.

[12] ——, “Towards automatic constraint elicitation in test design:
Preliminary evaluation based on collective intelligence,” in In-
ternational Workshop on Automated Software Engineering, 2015, pp.
58–61.

[13] R. Tzoref-Brill, P. Wojciak, and S. Maoz, “Visualization of com-
binatorial models and test plans,” in International Conference on
Automated Software Engineering, 2016, pp. 144–154.

[14] A. Gargantini, J. Petke, M. Radavelli, and P. Vavassori, “Val-
idation of constraints among configuration parameters using
search-based combinatorial interaction testing,” in International
Symposium on Search Based Software Engineering, 2016, pp. 49–63.

[15] A. Gargantini, J. Petke, and M. Radavelli, “Combinatorial inter-
action testing for automated constraint repair,” in International
Workshop on Combinatorial Testing, 2017, pp. 239–248.

[16] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in International
Symposium on Software Reliability Engineering, 2014, pp. 323–334.

[17] L. Moura, G. L. Mullen, and D. Panario, “Finite field construc-
tions of combinatorial arrays,” Designs, Codes and Cryptography,
vol. 78, no. 1, pp. 197–219, 2016.

[18] K. Sarkar and C. J. Colbourn, “Upper bounds on the size of
covering arrays,” SIAM Journal on Discrete Mathematics, vol. 31,
no. 2, pp. 1277–1293, 2017.

[19] K. Sarkar, C. J. Colbourn, A. De Bonis, and U. Vaccaro, “Partial
covering arrays: algorithms and asymptotics,” Theory of Comput-
ing Systems, vol. 62, no. 6, pp. 1470–1489, 2018.

[20] L. Kampel, D. E. Simos, B. Garn, I. S. Kotsireas, and
E. Zhereshchin, “Algebraic models for arbitrary strength cover-
ing arrays over v-ary alphabets,” in International Conference on
Algebraic Informatics, 2019, pp. 177–189.

[21] C. J. Colbourn, D. R. Stinson, and S. Veitch, “Constructions of
optimal orthogonal arrays with repeated rows,” Discrete Mathe-
matics, vol. 342, no. 9, pp. 2455–2466, 2019.

[22] J. Torres-Jimenez and I. Izquierdo-Marquez, “Survey of covering
arrays,” in International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, 2013, pp. 20–27.

[23] D. Karanatsiou, Y. Li, E.-M. Arvanitou, N. Misirlis, and W. E.
Wong, “A bibliometric assessment of software engineering schol-
ars and institutions (2010–2017),” Journal of Systems and Software,
vol. 147, pp. 246–261, 2019.

[24] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access,
vol. 5, pp. 25 706–25 730, 2017.

[25] M. B. Cohen and S. Ur, “Combinatorial test design in practice,” in
International Conference on Software Engineering, 2010, pp. 495–496.

[26] H. Wu, J. Petke, Y. Jia, M. Harman et al., “An empirical com-
parison of combinatorial testing, random testing and adaptive
random testing,” IEEE Transactions on Software Engineering, 2018.

[27] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
International Symposium on Software Testing and Analysis, 2007, pp.
129–139.

[28] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing
for pair-wise coverage with seeding and constraints,” Information
and Software Technology, vol. 48, no. 10, pp. 960–970, 2006.

14

[29] ——, “The density algorithm for pairwise interaction testing,”
Software Testing, Verification and Reliability, vol. 17, no. 3, pp. 159–
182, 2007.

[30] C. Yilmaz, “Test case-aware combinatorial interaction testing,”
IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 684–
706, 2012.

[31] A. Gargantini and P. Vavassori, “CITLAB: A laboratory for com-
binatorial interaction testing,” in 1st International Workshop on
Combinatorial Testing, 2012, pp. 559–568.

[32] P. M. Kruse, J. Bauer, and J. Wegener, “Numerical constraints for
combinatorial interaction testing,” in International Conference on
Software Testing, Verification and Validation, 2012, pp. 758–763.

[33] B. Chen, J. Yan, and J. Zhang, “Combinatorial testing with shield-
ing parameters,” in Asia-Pacific Software Engineering Conference,
2010, pp. 280–289.

[34] I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Simplified modeling
of combinatorial test spaces,” in 1st International Workshop on
Combinatorial Testing, 2012, pp. 573–579.

[35] G. Sherwood, “Embedded functions in combinatorial test de-
signs,” in 4th International Workshop on Combinatorial Testing, 2015,
pp. 1–10.

[36] ——, “Embedded functions for constraints and variable strength
in combinatorial testing,” in 5th International Workshop on Combi-
natorial Testing, 2016, pp. 65–74.

[37] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combi-
natorial interaction testing: Empirical findings on efficiency and
early fault detection,” IEEE Transactions on Software Engineering,
vol. 41, no. 9, pp. 901–924, 2015.

[38] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency
and early fault detection with lower and higher strength com-
binatorial interaction testing,” in InternationalSymposium on the
Foundations of Software Engineering, 2013, pp. 26–36.

[39] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial
design,” IEEE Transactions on Software Engineering, vol. 23, no. 7,
pp. 437–444, 1997.

[40] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when us-
ing combination strategies to test software,” in Australian Software
Engineering Conference, 2007, pp. 255–264.

[41] R. R. Othman and K. Z. Zamli, “Input-input relationship con-
straints in t-way testing,” in Interational Symposium on Industrial
Electronics and Applications, 2011, pp. 527–531.

[42] A. W. Williams and R. L. Probert, “A practical strategy for
testing pair-wise coverage of network interfaces,” in International
Conference on Software Reliability Engineering, 1996, pp. 246–254.

[43] Y.-W. Tung and W. S. Aldiwan, “Automating test case genera-
tion for the new generation mission software system,” in IEEE
Arospace Conference, 2000, pp. 431–437.

[44] J. Czerwonka, “Pairwise testing in real world: Practical exten-
sions to test case generator,” in Pacific Northwest Software Quality
Conference, 2006, pp. 419–430.

[45] B. P. Lamancha and M. Polo, “Testing product generation in
software product lines using pairwise for features coverage,” in
Testing Software and Systems, 2010, pp. 111–125.

[46] L. Wang and R. Wan, “A new method of reducing pair-wise
combinatorial test suite,” Computer and Information Science, vol. 3,
no. 1, pp. 35–41, 2010.

[47] A. Alsewari and K. Z. Zamli, “Design and implementation of
a harmony-search-based variable-strength t-way testing strategy
with constraints support,” Information and Software Technology,
vol. 54, no. 6, pp. 553–568, 2012.

[48] ——, “Constraints dependent t-way test suite generation using
harmony search strategy,” in Pacific Rim Knowledge Acquisition
Workshop, 2012, pp. 1–11.

[49] A. Calvagna and A. Gargantini, “T-wise combinatorial inter-
action test suites construction based on coverage inheritance,”
Software Testing, Verification and Reliability, vol. 22, no. 7, pp. 507–
526, 2012.

[50] L. Li, Y. Cui, and Y. Yang, “Combinatorial test cases with
constraints in software systems,” in International Conference on
Computer Supported Cooperative Work in Design, 2012, pp. 195–199.

[51] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: a combinato-
rial test generation tool,” in 6th International Conference on Software
Testing, Verification and Validation, 2013, pp. 370–375.

[52] R. R. Othman, N. Khamis, and K. Z. Zamli, “Variable strength
t-way test suite generator with constraints support,” Malaysian
Journal of Computer Science, vol. 27, no. 3, pp. 204–217, 2014.

[53] B. S. Ahmed, M. A. Sahib, and M. Y. Potrus, “Generating com-
binatorial test cases using simplified swarm optimization (SSO)
algorithm for automated GUI functional testing,” Engineering
Science and Technology, an International Journal, vol. 17, no. 4, pp.
218–226, 2014.

[54] E. Farchi, I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Combi-
natorial testing with order requirements,” in 3rd International
Workshop on Combinatorial Testing, 2014, pp. 118–127.

[55] Y. A. Alsariera, M. A. Majid, and K. Z. Zamli, “SPLBA: An
interaction strategy for testing software product lines using the
bat-inspired algorithm,” in International Conference on Software
Engineering and Computer Systems, 2015, pp. 148–153.

[56] B. P. Lamancha, M. Polo, and M. Piattini, “PROW: A pairwise
algorithm with constraints, order and weight,” Journal of Systems
and Software, vol. 99, pp. 1–19, 2015.

[57] M. Palaciosa, J. Garcia-Fanjula, J. Tuyaa, and G. Spanoudakisb,
“Automatic test case generation for WS-agreements using com-
binatorial testing,” Computer Standards & Interfaces, vol. 38, pp.
84–100, 2015.

[58] R. Gao, L. Hu, W. E. Wong, H.-L. Lu, and S.-K. Huang, “Ef-
fective test generation for combinatorial decision coverage,” in
International Conference on Software Quality, Reliability and Security
Companion, 2016, pp. 47–54.

[59] S. K. Khalsa and Y. Labiche, “An extension of category partition
testing for highly constrained systems,” in International Sympo-
sium on High Assurance Systems Engineering, 2016, pp. 47–54.

[60] ——, “Extending category partition’s base choice criterion to bet-
ter support constraints,” Journal of Software: Evolution and Process,
vol. 30, no. 3, pp. 1–23, 2018.

[61] M. B. Cohen, M. B. Dwyer, and J. Shi, “Exploiting constraint solv-
ing history to construct interaction test suites,” in Proceedings of
the Testing: Academic and Industrial Conference Practice and Research
Techniques, 2007, pp. 121–132.

[62] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved meta-
heuristic search for constrained interaction testing,” in Interna-
tional Symposium on Search Based Software Engineering, 2009, pp.
13–22.

[63] J. Yuan, C. Jiang, and Z. Jiang, “Improved extremal optimization
for constrained pairwise testing,” in International Conference on
Research Challenges in Computer Science, 2009, pp. 108–111.

[64] S. Oster, F. Markert, and P. Ritter, “Automated incremental pair-
wise testing of software product lines,” in Software Product Lines:
Going Beyond, 2010, pp. 196–210.

[65] M. F. Johansen, O. Haugen, and F. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,” in
International Software Product Line Conference, 2012, pp. 46–55.

[66] L. Yu, Y. Lei, M. N. Borazjany, R. N. Kacker, and D. R. Kuhn,
“An efficient algorithm for constraint handling in combinatorial
test generation,” in International Conference on Software Testing,
Verification and Validation, 2013, pp. 242–251.

[67] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “Using
feature model knowledge to speed up the generation of cover-
ing arrays,” in International Workshop on Variability Modelling of
Software-intensive Systems, 2013, pp. 16:1–16:6.

[68] S. Gao, B. Du, Y. Jiang, J. Lv, and S. Ma, “An efficient algorithm
for pairwise test case generation in presence of constraints,” in
International Conference on Systems and Informatics, 2014, pp. 406–
410.

[69] Y. Hirasaki, H. Kojima, and T. Tsuchiya, “Applying random test-
ing to constrained interaction testing,” in International Conference
on Software Engineering and Knowledge Engineering, 2014, pp. 193–
198.

[70] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, E. N. Haslinger,
A. Egyed, and E. Alba, “A parallel evolutionary algorithm for
prioritized pairwise testing of software product lines,” in Annual
Conference on Genetic and Evolutionary Computation, 2014, pp.
1255–1262.

[71] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combina-
torial interaction test generation strategies using hyperheuristic
search,” in International Conference on Software Engineering, 2015,
pp. 540–550.

[72] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “TCA: An
efficient two-mode meta-heuristic algorithm for combinatorial
test generation,” in International Conference on Automated Software
Engineering, 2015, pp. 1–12.

[73] M. Al-Hajjaji, S. Krieter, T. Thum, M. Lochau, and G. Saake, “In-
cLing: efficient product-line testing using incremental pairwise

15

sampling,” in International Conference on Generative Programming:
Concepts and Experiences, 2016, pp. 144–155.

[74] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi,
“Greedy combinatorial test case generation using unsatisfiable
cores,” in International Conference on Automated Software Engineer-
ing, 2016, pp. 614–624.

[75] Y. Sheng, C. Wei, and S. Jiang, “Constraint test cases generation
based on particle swarm optimization,” International Journal of
Reliability, Quality and Safety Engineering, vol. 24, no. 5, pp. 1–21,
2017.

[76] M. Shwetha, “Recast IPOG-D algorithm with constraint handling
for combinatorial testing,” in International Conference on Recent
Advances in Electronics and Communication Technology, 2017, pp.
179–185.

[77] M. Bazargani, J. H. Drake, and E. K. Burke, “Late acceptance
hill climbing for constrained covering arrays,” in International
Conference on Applications of Evolutionary Computation, 2018, pp.
778–793.

[78] H. Mercan, K. Kaya, and C. Yilmaz, “Enumerator: An efficient
approach for enumerating all valid t-tuples,” in International
Workshops on Combinatorial Testing, 2018, pp. 302–305.

[79] K. Fogen and H. Lichter, “Combinatorial testing with constraints
for negative test cases,” in International Workshops on Combinatorial
Testing, 2018, pp. 328–331.

[80] P. Galinier, S. Kpodjedo, and G. Antoniol, “A penalty-based tabu
search for constrained covering arrays,” in Genetic and Evolution-
ary Computation Conference, 2017, pp. 1288–1294.

[81] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,
“Handling constraints in combinatorial interaction testing in the
presence of multi objective particle swarm and multithreading,”
Information and Software Technology, vol. 86, pp. 20–36, 2017.

[82] A. Hartman and L. Raskin, “Problems and algorithms for cover-
ing arrays,” Discrete Mathematics, vol. 284, no. 1-3, pp. 149–156,
2004.

[83] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test
suites using a genetic algorithm,” in International Conference on
Software Testing, Verification and Validation, 2010, pp. 245–254.

[84] S. Nakornburi and T. Suwannasart, “Constrained pairwise test
case generation approach based on statistical user profile,” in
International Multi Conference of Engineers and Computer Scientists,
2016, pp. 1–4.

[85] ——, “A tool for constrained pairwise test case generation using
statistical user profile based prioritization,” in International Joint
Conference on Computer Science and Software Engineering, 2016, pp.
1–6.

[86] Y. Li, Z. an Sun, and J.-Y. Fang, “Generating an automated test
suite by variable strength combinatorial testing for web services,”
Journal of computing and information technology, vol. 24, no. 3, pp.
271–282, 2016.

[87] X. Yuan, M. B. Cohen, and A. M. Memon, “Covering array
sampling of input event sequences for automated GUI testing,”
in International Conference on Automated Software Engineering, 2007,
pp. 405–408.

[88] ——, “GUI interaction testing: Incorporating event context,”
IEEE Transactions on Software Engineering, vol. 37, no. 4, pp. 559–
574, 2010.

[89] B. Hnich, S. D. Prestwich, and E. Selensky, “Constraint-based
approaches to the covering test problem,” in Joint Annual Work-
shop of ERCIM/CoLogNet on Constraint Solving and Constraint Logic
Programming, 2005, pp. 199–219.

[90] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, “Con-
straint models for the covering test problem,” Constraints, vol. 11,
no. 23, pp. 199–219, 2006.

[91] A. Calvagna and A. Gargantini, “Using SRI SAL model checker
for combinatorial tests generation in the presence of temporal
constraints,” in AFM Automated Formal Methods - workshop of CAV,
2008, pp. 1–10.

[92] ——, “A logic-based approach to combinatorial testing with
constraints,” in International conference on Tests and proofs, 2008,
pp. 66–83.

[93] ——, “Combining satisfiability solving and heuristics to con-
strained combinatorial interaction testing,” in International Con-
ference on Tests and Proofs, 2009, pp. 27–42.

[94] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen,
“Interaction coverage meets path coverage by smt constraint
solving,” in International Conference on Testing of Software and
Communication Systems, 2009, pp. 97–112.

[95] A. Calvagna and A. Gargantini, “A formal logic approach to con-
strained combinatorial testing,” Journal of Automated Reasoning,
vol. 45, no. 4, pp. 331–358, 2010.

[96] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon, “Au-
tomated and scalable t-wise test case generation strategies for
software product lines,” in International Conference on Software
Testing, Verification and Validation, 2010, pp. 459–468.

[97] E. Erdem, K. Inoue, J. Oetsch, J. Puhrer, H. Tompits, and C. Yil-
maz, “Answer-set programming as a new approach to event-
sequence testing,” in 3rd International Conference on Advances in
System Testing and Validation Lifecycle, 2011, pp. 25–34.

[98] A. Hervieu, B. Baudry, and A. Gotlieb, “PACOGEN: Automatic
generation of pairwise test configurations from feature models,”
in International Symposium on Software Reliability Engineering, 2011,
pp. 120–129.

[99] M. F. Johansen, O. Haugen, and F. Fleurey, “Properties of realis-
tic feature models make combinatorial testing of product lines
feasible,” in International conference on Model driven engineering
languages and systems, 2011, pp. 638–652.

[100] T. Nanba, T. Tsuchiya, and T. Kikuno, “Constructing test sets for
pairwise testing: A sat-based approach,” in International Confer-
ence on Networking and Computing, 2011, pp. 271–274.

[101] ——, “Using satisfiability solving for pairwise testing in the
presence of constraints,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 95, no. 9,
pp. 1501–1505, 2012.

[102] A. Gotlieb, A. Hervieu, and B. Baudry, “Minimum pairwise cov-
erage using constraint programming techniques,” in International
Conference on Software Testing, Verification and Validation, 2012, pp.
773–774.

[103] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“PLEDGE: A product line editor and test generation tool,” in 17th
International Software Product Line Conference Workshops, 2013, pp.
126–129.

[104] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba,
“Multi-objective optimal test suite computation for software
product line pairwise testing,” in International Conference on Soft-
ware Maintenance, 2013, pp. 404–407.

[105] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise
testing for software product lines,” in 17th International Software
Product Line Conference, 2013, pp. 227–235.

[106] Y. Zhao, Z. Zhang, J. Yan, and J. Zhang, “Cascade: A test genera-
tion tool for combinatorial testing,” in 2nd International Workshop
on Combinatorial Testing, 2013, pp. 267–270.

[107] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
“Multi-objective test generation for software product lines,” in
International Software Product Line Conference, 2013, pp. 62–71.

[108] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. L. Traon, “Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test configurations for
software product lines,” IEEE Transactions on Software Engineering,
vol. 40, no. 7, pp. 650–670, 2014.

[109] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Generating combi-
natorial test suite using combinatorial optimization,” Journal of
Systems and Software, vol. 98, no. 0, pp. 191–207, 2014.

[110] C. Henard, M. Papadakis, and Y. L. Traon, “Flattening or not of
the combinatorial interaction testing models?” in 4th International
Workshop on Combinatorial Testing, 2015, pp. 1–4.

[111] S. Sen, S. D. Alesio, D. Marijan, and A. Sarkar, “Evaluating recon-
figuration impact in self-adaptive systems - an approach based
on combinatorial interaction testing,” in Euromicro Conference on
Software Engineering and Advanced Applications, 2015, pp. 250–254.

[112] A. Yamada, T. Kitamura, C. Artho, E.-H. Choi, Y. Oiwa, and
A. Biere, “Optimization of combinatorial testing by incremental
sat solving,” in International Conference on Software Testing, Verifi-
cation and Validation, 2015, pp. 1–10.

[113] A. Hervieu, D. Marijan, A. Gotlieb, and B. Baudry, “Practi-
cal minimization of pairwise-covering test configurations using
constraint programming,” Information and Software Technology,
vol. 71, pp. 129–146, 2016.

[114] H. Mercan and C. Yilmaz, “A constraint solving problem towards
unified combinatorial interaction testing,” in Workshop on Con-
straint Solvers in Testing, Verification, and Analysis, 2016, pp. 1–7.

[115] H. Liu, F. Ma, and J. Zhang, “Generating covering arrays with
pseudo-boolean constraint solving and balancing heuristic,” in
Pacific Rim International Conference on Artificial Intelligence, 2016,
pp. 262–270.

16

[116] M. Banbara, K. Inoue, H. Kaneyuki, T. Okimoto, T. Schaub,
T. Soh, and N. Tamura, “catnap: Generating test suites of con-
strained combinatorial testing with answer set programming,”
in International Conference on Logic Programming and Nonmonotonic
Reasoning, 2017, pp. 265–278.

[117] H. Jin, T. Kitamura, E.-H. Choi, and T. Tsuchiya, “A satisfiability-
based approach to generation of constrained locating arrays,” in
International Workshops on Combinatorial Testing, 2018, pp. 285–294.

[118] S. Vilkomir, W. T. Swain, and J. H. Poore, “Combinatorial test
case selection with markovian usage models,” in International
Conference on Information Technology: New Generations, 2008, pp.
3–8.

[119] W. Wang, S. Sampath, Y. Lei, and R. N. Kacker, “An interaction-
based test sequence generation approach for testing web ap-
plication,” in International Conference on High Assurance Systems
Engineerng, 2008, pp. 209–218.

[120] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, “Covering
arrays avoiding forbidden edges,” Theoretical Computer Science,
vol. 410, no. 52, pp. 5403–5414, 2009.

[121] E. Maltais, “Covering arrays avoiding forbidden edges and edge
clique covers,” Ph.D. dissertation, University of Ottawa, 2009.

[122] S. Vilkomir, W. T. Swain, and J. H. Poore, “Software input space
modeling with constraints among parameters,” in International
Computers, Software & Applications Conference, 2009, pp. 136–141.

[123] E. Maltais and L. Moura, “Hardness results for covering arrays
avoiding forbidden edges and error-locating arrays,” Theoretical
Computer Science, vol. 412, no. 46, pp. 6517–6530, 2011.

[124] E. Salecker, R. Reicherdt, and S. Glesner, “Calculating prioritized
interaction test sets with constraints using binary decision dia-
grams,” in International Conference on Software Testing, Verification
and Validation Workshops, 2011, pp. 278–285.

[125] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binary decision di-
agrams for combinatorial test design,” in International Symposium
on Software Testing and Analysis, 2011, pp. 254–264.

[126] P. M. Kruse and J. Wegener, “Test sequence generation from
classification trees,” in International Conference on Software Testing,
Verification and Validation, 2012, pp. 539–548.

[127] L. Yu, Y. Lei, R. N. Kacker, D. R. Kuhn, and J. Lawrence, “Efficient
algorithms for t-way test sequence generation,” in International
Conference on Engineering of Complex Computer Systems, 2012, pp.
220–229.

[128] A. Gargantini and P. Vavassori, “Efficient combinatorial test gen-
eration based on multivalued decision diagrams,” in International
Haifa Verification Conference, 2014, pp. 220–235.

[129] S. Halle, E. L. Chance, and S. Gaboury, “Graph methods for
generating test cases with universal and existential constraints,”
in IFIP International Conference on Testing Software and Systems,
2015, pp. 55–70.

[130] F. Duan, Y. Lei, L. Yu, R. N. Kacker, and D. R. Kuhn, “Optimizing
IPOG’s vertical growth with constraints based on hypergraph
coloring,” in International Workshop on Combinatorial Testing, 2017,
pp. 181–188.

[131] M. Grindal and J. Offutt, “Input parameter modeling for combi-
nation strategies,” in IASTED International Conference on Software
Engineering, 2007, pp. 255–260.

[132] P. Satish, K. Sheeba, and K. Rangarajan, “Deriving combinatorial
test design model from uml activity diagram,” in 2nd International
Workshop on Combinatorial Testing, 2013, pp. 331–337.

[133] P. Satish, A. Paul, and K. Rangarajan, “Extracting the combina-
torial test parameters and values from uml sequence diagrams,”
in 3rd International Workshop on Combinatorial Testing, 2014, pp.
88–97.

[134] P. Satish, M. B., M. S. Narayan, and K. Rangarajan, “Building
combinatorial test input model from use case artefacts,” in Inter-
national Workshop on Combinatorial Testing, 2017, pp. 220–228.

[135] C. D. Nguyen and P. Tonella, “Automated inference of classi-
fications and dependencies for combinatorial testing,” in Inter-
national Conference on Automated Software Engineering, 2013, pp.
622–627.

[136] E.-H. Choi, T. Kitamura, C. Artho, A. Yamada, and Y. Oiwa,
“Priority integration for weighted combinatorial testing,” in In-
ternational Computers, Software & Applications Conference, 2015, pp.
242–247.

[137] H. Wu, C. Nie, and F.-C. Kuo, “The optimal testing order in the
presence of switching cost,” Information and Software Technology,
vol. 80, pp. 57–72, 2016.

[138] C. J. Colbourn, M. B. Cohen, and R. C. Turnban, “A deterministic
density algorithm for pairwise interaction coverage,” in IASTED
International Conference on Software Engineering, 2004, pp. 345–352.

[139] C. A. C. Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the
state of the art,” Computer methods in applied mechanics and engi-
neering, vol. 191, no. 11, pp. 1245–1287, 2002.

[140] P. Erdos, A. W. Goodman, and L. Pósa, “The representation of a
graph by set intersections,” Canad. J. Math, vol. 18, no. 106-112,
p. 86, 1966.

[141] E. Farchi, I. Segall, and R. Tzoref-Brill, “Using projections to
debug large combinatorial models,” in 2nd International Workshop
on Combinatorial Testing, 2013, pp. 311–320.

[142] P. Arcaini, A. Gargantini, and P. Vavassori, “Validation of models
and tests for constrained combinatorial interaction testing,” in 3rd
International Workshop on Combinatorial Testing, 2014, pp. 98–107.

[143] R. Tzoref-Brill and S. Maoz, “Lattice-based semantics for com-
binatorial model evolution,” in International Symposium on Auto-
mated Technology for Verification and Analysis, 2015, pp. 276–292.

[144] M. Spichkova, A. Zamansky, and E. Farchi, “A visual logical
language for system modelling in combinatorial test design,” in
International Workshops on Advanced Information Systems Engineer-
ing, 2016, pp. 116–121.

[145] R. Tzoref-Brill and S. Maoz, “Syntactic and semantic differencing
for combinatorial models of test designs,” in International Confer-
ence on Software Engineering, 2017, pp. 621–631.

	1 Introduction
	2 Literature Search and Selection
	2.1 Combinatorial Testing Repository
	2.2 Paper Selection for This Survey

	3 Constrained Combinatorial Testing
	3.1 Background
	3.2 Representations of Constraints
	3.2.1 Forbidden
	3.2.2 Implication
	3.2.3 Numeric
	3.2.4 Shielding
	3.2.5 Counter & Value Property
	3.2.6 Embedded Function

	3.3 Impact of Constraints on CT

	4 Constraint Identification
	5 Constraint Handling
	5.1 Remodel
	5.1.1 Sub-model
	5.1.2 Abstract Parameter

	5.2 Avoid
	5.2.1 Verify
	5.2.2 Solver
	5.2.3 Weight
	5.2.4 Tolerate

	5.3 Post-process
	5.3.1 Replace
	5.3.2 Extend

	5.4 Transfer
	5.4.1 Constraint Satisfaction Problem (CSP)
	5.4.2 Graph Model

	6 Constraint Maintenance
	7 Conclusion
	References

