
Optimistic Value Iteration

Arnd Hartmanns1(B) and Benjamin Lucien Kaminski2

1 University of Twente,
Enschede, The Netherlands
arnd.hartmanns@utwente.nl

2 University College London, London, UK
b.kaminski@ucl.ac.uk

Abstract. Markov decision processes are widely used for planning and
verification in settings that combine controllable or adversarial choices
with probabilistic behaviour. The standard analysis algorithm, value iter-
ation, only provides lower bounds on infinite-horizon probabilities and
rewards. Two “sound” variations, which also deliver an upper bound,
have recently appeared. In this paper, we present a new sound app-
roach that leverages value iteration’s ability to usually deliver good lower
bounds: we obtain a lower bound via standard value iteration, use the
result to “guess” an upper bound, and prove the latter’s correctness. We
present this optimistic value iteration approach for computing reacha-
bility probabilities as well as expected rewards. It is easy to implement
and performs well, as we show via an extensive experimental evaluation
using our implementation within the mcsta model checker of the Modest
Toolset.

1 Introduction

Markov decision processes (MDP, [30]) are a widely-used formalism to represent
discrete-state and -time systems in which probabilistic effects meet controllable
nondeterministic decisions. The former may arise from an environment or agent
whose behaviour is only known statistically (e.g. message loss in wireless com-
munication or statistical user profiles), or it may be intentional as part of a
randomised algorithm (such as exponential backoff in Ethernet). The latter may
be under the control of the system—then we are in a planning setting and typi-
cally look for a scheduler (or strategy, policy) that minimises the probability of
unsafe behaviour or maximises a reward—or it may be considered adversarial,
which is the standard assumption in verification: we want to establish that the
maximum probability of unsafe behaviour is below, or that the minimum reward
is above, a specified threshold. Extensions of MDP cover continuous time [11,26],

The authors are listed alphabetically. This work was partly performed while author
B. L. Kaminski was at RWTH Aachen University, Aachen, Germany. This work was
supported by ERC Advanced Grant 787914 (FRAPPANT), DFG Research Training
Group 2236 (UnRAVeL), and NWO VENI grant no. 639.021.754.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 488–511, 2020.
https://doi.org/10.1007/978-3-030-53291-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_26&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0001-5185-2324
https://doi.org/10.1007/978-3-030-53291-8_26

Optimistic Value Iteration 489

and the analysis of complex formalisms such as stochastic hybrid automata [13]
can be reduced to the analysis of MDP abstractions.

The standard algorithm to compute optimal (maximum or minimum) prob-
abilities or reward values on MDP is value iteration (VI). It implicitly computes
the corresponding optimal scheduler, too. It keeps track of a value for every state
of the MDP, locally improves the values iteratively until a “convergence” crite-
rion is met, and then reports the final value for the initial state as the overall
result. The initial values are chosen to be an underapproximation of the true
values (e.g. 0 for all states in case of probabilities or non-negative rewards). The
final values are then an improved underapproximation of the true values. For
unbounded (infinite-horizon) properties, there is unfortunately no (known and
practical) convergence criterion that could guarantee a predefined error on the
final result. Still, probabilistic model checkers such as Prism [24] report the final
result obtained via simple relative or absolute global error criteria as the defini-
tive probability. This is because, on most case studies considered so far, value
iteration in fact converges fast enough that the (relative or absolute) difference
between the reported and the true value approximately meets the error ε spec-
ified for the convergence criterion. Only relatively recently has this problem of
soundness come to the attention of the probabilistic verification and planning
communities [7,14,28]. First highlighted on hand-crafted counterexamples, it has
by now been found to affect benchmarks and real-life case studies, too [3].

The first proposal to compute sound reachability probabilities was to use
interval iteration (II [15], first presented in [14]). The idea is to perform two
iterations concurrently, one starting from 0 as before, and one starting from 1.
The latter improves an overapproximation of the true values, and the process can
be stopped once the (relative or absolute) difference between the two values for
the initial state is below the specified ε, or at any earlier time with a correspond-
ingly larger but known error. Baier et al. extended interval iteration to expected
accumulated reward values [3]; here, the complication is to find initial values
that are guaranteed to be an overapproximation. The proposed graph-based
(i.e. not numerical) algorithm in practice tends to compute conservative initial
values from which many iterations are needed until convergence. More recently,
sound value iteration (SVI) [31] improved upon interval iteration by computing
upper bounds on-the-fly and performing larger value improvements per itera-
tion, for both probabilities and expected rewards. However, we found SVI tricky
to implement correctly; some edge cases not considered by the algorithm as pre-
sented in [31] initially caused our implementation to deliver incorrect results or
diverge on very few benchmarks. Both II and SVI fundamentally depend on the
MDP being contracting ; this must be ensured by appropriate structural trans-
formations, e.g. by collapsing end components, a priori. These transformations
additionally complicate implementations, and increase memory requirements.

Our Contribution. We present (in Sect. 4) a new algorithm to compute sound
reachability probabilities and expected rewards that is both simple and practi-
cally efficient. We first (1) perform standard value iteration until “convergence”,
resulting in a lower bound on the value for every state. To this we (2) apply
specific heuristics to “guess”, for every state, a candidate upper bound value.

490 A. Hartmanns and B. L. Kaminski

Further value iterations (3) then confirm (if all values decrease) or disprove
(if all values increase, or lower and upper bounds cross) the soundness of the
upper bounds. In the latter case, we perform more lower bound iterations with
reduced ε before retrying from step 2. We combine classic results from domain
theory with specific properties of value iteration to show that our algorithm ter-
minates. In problematic cases, many retries may be needed before termination,
and performance may be worse than interval or sound value iteration. However,
on many existing case studies, value iteration already worked well, and our app-
roach attaches a soundness proof to its result with moderate overhead. We thus
refer to it as optimistic value iteration (OVI). In contrast to II and SVI, it also
works well for non-contracting MDP, albeit without a general termination guar-
antee. Our experimental evaluation in Sect. 5 uses all applicable models from
the Quantitative Verification Benchmark Set [21] to confirm that OVI indeed
performs as expected. It uses our publicly available implementations of II, SVI,
and now OVI in the mcsta model checker of the Modest Toolset [20].

Related Work. In parallel to [15], the core idea behind II was also presented in [7]
(later improved in [2]), embedded in a learning-based framework that manages to
alleviate the state space explosion problem in models with a particular structure.
In this approach, end components are statistically detected and collapsed on-the-
fly. II has recently been extended to stochastic games in [23], offering deflating
as a new alternative to collapsing end components in MDP. Deflating does not
require a structural transformation, but rather extra computation steps in each
iteration applied to the states of all (a priori identified) end components.

The only known convergence criterion for pure VI was presented in [9, Sect.
3.5]: if we run VI until the absolute error between two iterations is less than a
certain value α, then the computed values at that point are within α of the true
values, and can in fact be rounded to the exact true values (as implemented in
the rational search approach [5]). However, α cannot be freely chosen; it is a
fixed number that depends on the size of the MDP and the largest denominator
of the (rational) transition probabilities. The number of iterations needed is
exponential in the size and the denominators. While not very useful in practice,
this establishes an exponential upper bound on the number of iterations needed
in unbounded-horizon VI. Additionally, Balaji et al. [4] recently showed the
computations in finite-horizon value iteration to be EXPTIME-complete.

As an alternative to the iterative numeric road, guaranteed correct results
(modulo implementation errors) can be obtained by using precise rational arith-
metic. It does not combine too well with iterative methods like II or SVI due
to the increasingly small differences between the values and the actual solution.
The probabilistic model checker Storm [10] thus combines topological decom-
position, policy iteration, and exact solvers for linear equation systems based on
Gaussian elimination when asked to use rational arithmetic [22, Section 7.4.8].
The disadvantage is the significant runtime cost for performing the unlimited-
precision calculations, limiting such methods to relatively smaller MDP.

The only experimental evaluations using large sets of benchmarks that we
are aware of compared VI with II to study the overhead needed to obtain sound

Optimistic Value Iteration 491

Fig. 1. Example MDP

Table 1. VI and OVI example on Me

i v(s0) u(s0) v(s1) u(s1) v(s2) u(s2) error α

0 0 0 0 0.05

1 0.1 0 0.4 0.4 0.05

2 0.18 0.4 0.4 0.4 0.05

3 0.4 0.4 0.4 0.22 0.05

4 0.42 0.47 0.4 0.45 0.4 0.45 0.02 0.05

5 0.436 0.47 0.4 0.45 0.4 0.45 0.016

6 0.4488 0.4 0.4 0.0128 0.008

7 0.45904 0.4 0.4 0.01024 0.008

8 0.467232 0.4 0.4 0.008192 0.008

9 0.4737856 0.5237856 0.4 0.45 0.4 0.45 0.0065536 0.008

10 0.47902848 0.51902848 0.4 0.45 0.4 0.45 0.00524288

results via II [3], and II with SVI to show the performance improvements of
SVI [31]. The learning-based method with deflation of [2] does not compete
against II and SVI; its aim is rather in dealing with state space explosion (i.e.
memory usage). Its performance was evaluated on 16 selected small (<400 k
states) benchmark instances in [2], showing absolute errors on the order of 10−4

on many benchmarks with a 30-min timeout. SVI thus appears the most compet-
itive technique in runtime and precision so far. Consequently, in our evaluation
in Sect. 5, we compare OVI with SVI, and II for reference, using the default
relative error of 10−6, including large and excluding clearly acyclic benchmarks
(since they are trivial even for VI), with a 10-min timeout which is rarely hit.

2 Preliminaries

R
+
0 is the set of all non-negative real numbers. We write {x1 �→ y1, . . . } to

denote the function that maps all xi to yi, and if necessary in the respective
context, implicitly maps to 0 all x for which no explicit mapping is specified.
Given a set S, its powerset is 2S . A (discrete) probability distribution over S is
a function μ ∈ S → [0, 1] with countable support spt(μ) def= { s ∈ S | μ(s) > 0 }
and

∑
s∈spt(μ) μ(s) = 1. Dist(S) is the set of all probability distributions over S.

Markov Decision Processes (MDP) combine nondeterministic choices as in
labelled transition systems with discrete probabilistic decisions as in discrete-time
Markov chains (DTMC). We define them formally and describe their semantics.

Definition 1. A Markov decision process (MDP) is a triple M = 〈S, sI , T 〉
where S is a finite set of states with initial state sI ∈ S and T : S → 2Dist(R+

0 ×S)

is the transition function. T (s) must be finite and non-empty for all s ∈ S.

For s ∈ S, an element of T (s) is a transition, and a pair 〈r, s′〉 ∈ spt(T (s)) is
a branch to successor state s′ with reward r and probability T (s)(〈r, s′〉). Let
M (s′

I) be M but with initial state s′
I , and M0 be M with all rewards set to zero.

492 A. Hartmanns and B. L. Kaminski

Example 1. Figure 1 shows our example MDP Me. We draw transitions as lines
to an intermediate node from which branches labelled with probability and
reward (if not zero) lead to successor states. We omit the intermediate node
and probability 1 for transitions with a single branch, and label some transitions
to refer to them in the text. Me has 5 states, 7 transitions, and 10 branches.

In practice, higher-level modelling languages like Modest [17] are used to specify
MDP. The semantics of an MDP is captured by its paths. A path represents a
concrete resolution of all nondeterministic and probabilistic choices. Formally:

Definition 2. A finite path is a sequence πfin = s0 μ0 r0 s1 μ1 r1 . . . μn−1rn−1sn

where si ∈ S for all i ∈ { 0, . . . , n } and ∃μi ∈ T (si) : 〈ri, si+1〉 ∈ spt(μi) for all
i ∈ { 0, . . . , n − 1 }. Let |πfin| def= n, last(πfin)

def= sn, and rew(πfin)
def=

∑n−1
i=0 ri.

Πfin is the set of all finite paths starting in sI . A path is an analogous infinite
sequence π, and Π is the set of all paths starting in sI . We write s ∈ π if
∃ i : s = si, and π→G for the shortest prefix of π that contains a state in G ⊆ S,
or ⊥ if π contains no such state. Let rew(⊥) def= ∞.

A scheduler (or adversary, policy or strategy) only resolves the nondeterministic
choices of M . For this paper, memoryless deterministic schedulers suffice [6].

Definition 3. A function s : S → Dist(R+
0 × S) is a scheduler if, for all s ∈ S,

we have s(s) ∈ T (s). The set of all schedulers of M is S(M).

Given an MDP M as above, let M |s = 〈S, sI , T |s〉 with T |s(s) = { s(s) } be the
DTMC induced by s. Via the standard cylinder set construction [12, Sect. 2.2] on
M |s, a scheduler induces a probability measure P

M
s on measurable sets of paths

starting in sI . For goal state g ∈ S, the maximum and minimum probability
of reaching g is defined as PM

max(� g) = sups∈S P
M
s ({π ∈ Π | g ∈ π }) and

PM
min(� g) = infs∈S P

M
s ({π ∈ Π | g ∈ π }), respectively. The definition extends

to sets G of goal states. Let RM
G : Π → R

+
0 be the random variable defined by

RM
G (π) = rew(π→G) and let E

M
s (G) be the expected value of RM

G under P
M
s .

Then the maximum and minimum expected reward to reach G is defined as
EM
max(G) = sups E

M
s (G) and EM

min(G) = infs EM
s (G), respectively. We omit the

superscripts for M when they are clear from the context. From now on, whenever
we have an MDP with a set of goal states G, we assume that they have been made
absorbing, i.e. for all g ∈ G we only have a self-loop: T (g) = { { 〈0, g〉 �→ 1 } }.

Definition 4. An end component of M as above is a (sub-)MDP 〈S′, T ′, s′
I〉

where S′ ⊆ S, T ′(s) ⊆ T (s) for all s ∈ S′, if μ ∈ T ′(s) for some s ∈ S′ and
〈r, s′〉 ∈ spt(μ) then r = 0, and the directed graph with vertex set S′ and edge
set { 〈s, s′〉 | ∃μ ∈ T ′(s) : 〈0, s′〉 ∈ spt(μ) } is strongly connected.

3 Value Iteration

The standard algorithm to compute reachability probabilities and expected
rewards is value iteration (VI) [30]. In this section, we recall its theoretical
foundations and its limitations regarding convergence.

Optimistic Value Iteration 493

1 function GSVI(M = 〈S, sI , T 〉, S?, v, α, diff)
2 repeat
3 error := 0
4 foreach s ∈ S? do
5 vnew := Φ(v)(s) // iterate lower bound
6 if vnew > 0 then error := max(error , diff (v(s), vnew))
7 v(s) := vnew

8 until error ≤ α

Algorithm 1. Gauss-Seidel value iteration

3.1 Theoretical Foundations

Let V = { v | v : S → R
+
0 ∪ {∞}} be a space of vectors of values. It can easily

be shown that 〈V,
〉 with

v
 w if and only if ∀ s ∈ S : v(s) ≤ w(s)

forms a complete lattice, i.e. every subset V ⊆ V has a supremum (and an
infimum) in V with respect to
. We write v ≺ w for v
 w ∧ v �= w and v �∼ w
for ¬(v
 w ∨ w
 v).

Minimum and maximum reachability probabilities and expected rewards can
be expressed as the least fixed point of the Bellman operator Φ : V → V given by

Φ(v) def= λ s.

{
optμ∈T (s)

∑
〈r,s′〉∈spt(μ) μ(s′) · (r + v(s′)) if s ∈ S?

d if s �∈ S?

where opt ∈ {max, min } and the choice of both S? ⊆ S and d depends on
whether we wish to compute reachability probabilities or expected rewards. In
any case, the Bellman operator Φ can be shown to be Scott-continuous [1], i.e.
in our case: for any subset V ⊆ V, we have Φ(sup V) = supΦ(V).

The Kleene fixed point theorem for Scott-continuous self-maps on complete
lattices [1,27] guarantees that lfpΦ, the least fixed point of Φ, indeed exists. Note
that Φ can still have more than one fixed point. In addition to mere existence
of lfp Φ, the Kleene fixed point theorem states that lfp Φ can be expressed by

lfp Φ = lim
n→∞ Φn(0̄) (1)

where 0̄ ∈ V is the zero vector and Φn(v) denotes n-fold application of Φ to v.
Equation 1 is the basis of VI: the algorithm iteratively constructs a sequence of
vectors

v0 = 0̄ and vi+1 = Φ(vi),

which converges to the sought-after least fixed point. This convergence is mono-
tonic: for every n ∈ N, we have Φn(0̄)
 Φn+1(0̄) and hence Φn(0̄)
 lfp Φ. In
particular, Φn(0̄)(sI) is an underapproximation of the sought-after quantity for
every n. Note that iterating Φ on any underapproximation v
 lfp Φ (instead
of 0̄) will still converge to lfp Φ and Φn(v)
 lfp Φ will hold for any n.

494 A. Hartmanns and B. L. Kaminski

Gauss-Seidel Value Iteration. Algorithm 1 shows the pseudocode of a VI imple-
mentation that uses the so-called Gauss-Seidel optimisation: Whereas standard
VI needs to store two vectors vi and vi+1, Gauss-Seidel VI stores only a single
vector v and performs updates in place. This does not affect the correctness of
VI, but may speed up convergence depending on the order in which the loop
in line 4 considers the states in S?. The error metric diff is used to check for
convergence.

VI for Probabilities. For determining reachability probabilities, we operate
on M0 and set S? = S \G and d = 1. Then the corresponding Bellman operator
satisfies

(lfp Φ)(s) = PM(s)

opt (� G),

and VI will iteratively approximate this quantity from below. The corresponding
call to Algorithm 1 is GSVI(M0, S \ G, { s �→ 0 | s ∈ S \ G } ∪ { s �→ 1 | s ∈
G }, α, diff).

VI for Expected Rewards. For determining the expected reward EM(s)

opt (G), we
operate on M and first have to determine the set S∞ of states from which the
minimum (if opt = max) or maximum (if opt = min) probability to reach G is
less than 1.1 If sI ∈ S∞, then the result is ∞ due to the definition of rew(⊥).
Otherwise, we choose S? = S \ S∞ and d = ∞. Then, for opt = max, the least
fixed point of the corresponding Bellman operator satisfies

(lfp Φ)(s) = EM(s)

opt (G).

Again, VI underapproximates this quantity. The same holds for opt = min if
M does not have end components containing states other than those in G and
S∞. The corresponding call to Algorithm1 is GSVI(M , S \ S∞, { s �→ 0 | s ∈
S \ S∞ } ∪ { s �→ ∞ | s ∈ S∞ }, α, diff).

3.2 Uniqueness of Fixed Points

lfp Φ may not be unique for two reasons: states that cannot reach G under the
optimal scheduler may take any value (causing fixed points greater than lfpΦ for
Pmin and Pmax), and states in end components may take values higher than lfpΦ.
The latter affects Pmax (higher fixed points) and Emin (lower fixed points).

Example 2. In Me of Fig. 1, s1 and s2 and the two transitions in-between form
an end component. For PMe

max(� { s+ }), v = { s �→ 1 } is a non-least fixed point
for the corresponding Bellman operator; with appropriate values for s1 and s2,
we can obtain fixed points with any v(s0) > 0.5 of our choice. Similarly, we have
EM
min({ s+, s− }) = 0.6 (by scheduling b in s0), but due to the end component

(with only zero-reward transitions by definition), the fixed point is s.t. v(s0) = 0.
1 This can be done via Algs. 2 (for S1

min) and 4 (for S1
max) of [12], respectively. These

algorithms do not consider the probabilities, but only whether there is a transition
and branch (with positive probability) from one state to another or not. We thus
call them graph-based algorithms, as opposed to numeric algorithms like VI itself.

Optimistic Value Iteration 495

VI works for Pmin, Pmax, and Emax with multiple fixed points: we anyway seek
lfpΦ and start from a (trivial) underapproximation. For Emin, (zero-reward) end
components need to be collapsed: we determine the maximal end components
using algorithms similar to [15, Alg. 1], then replace each of them by a sin-
gle state, keeping all transitions leading out of the end component. We refer to
this as the ECC transformation. However, such end components rarely occur in
case studies for Emin since they indicate Zeno behaviour w.r.t. to the reward.
As rewards are often associated to time progress, such behaviour would be
unrealistic.

To make the fixed points unique, for Emax and Emin we fix the values of all
states in G to 0. For Pmin, we precompute the set S0

min of states that reach G with
minimum probability 0 using Alg. 1 of [12], then fix their values to 0. For Pmax,
we analogously use S0

max via Alg. 3 of [12]. For Pmax and Emin, we additionally
need to remove end components via ECC. In contrast to the precomputations,
ECC changes the structure of the MDP and is thus more memory-intensive.

3.3 Convergence

VI and GSVI will not reach a fixed point in general, except for special cases
such as acyclic MDP. It is thus standard to use a convergence criterion based on
the difference between two consecutive iterations (lines 6 and 8) to make GSVI
terminate: we either check the absolute error, i.e.

diff = diffabs
def= λ 〈vold , vnew 〉. vnew − vold ,

or the relative error, i.e.

diff = diffrel
def= λ 〈vold , vnew 〉. (vnew − vold)/vnew .

By default, probabilistic model checkers like Prism and Storm use diffrel and
α = 10−6. Upon termination of GSVI, v is then closer to the least fixed point,
but remains an underapproximation. In particular, α has, in general, no relation
to the final difference between v(sI) and Popt(� G) or Eopt(G), respectively.

Example 3. Consider MDP Me of Fig. 1 again with G = { s+ }. The first four
rows in the body of Table 1 show the values for v after the i-th iteration of the
outer loop of a call to GSVI(M0

e , { s0, s1, s2 },max, { s+ �→ 1 } ∪ { s �→ 0 | s �=
s+ }, 0.05, diffabs). After the fourth iteration, GSVI terminates since the error is
less than α = 0.05; at this point, we have Pmax(� s+) − v(s0) = 0.08 > α.

To obtain a value within a prescribed error ε of the true value, we can com-
pute an upper bound in addition to the lower bound provided by VI. Interval
iteration (II) [3,15] does so by performing, in parallel, a second value itera-
tion on a second vector u that starts from a known overapproximation. For
probabilities, the vector 1̄ = { s �→ 1 } is a trivial overapproximation; for
rewards, more involved graph-based algorithms need to be used to precom-
pute (a very conservative) one [3]. II terminates when diff (v(sI), u(sI)) ≤ 2ε

496 A. Hartmanns and B. L. Kaminski

Table 2. Preprocessing requirements of value iteration variants

Type VI II and SVI OVI

Pmin – S0
min –

Pmax – S0
max + ECC ECCa

Emin S1
max + ECC S1

max + ECC S1
max + ECC

Emax S1
min S1

min S1
min

aECC preprocessing for OVI is needed to guar-
antee termination in theory, however we have not
yet found a case study where OVI diverges with-
out ECC.

and returns vII = 1
2 (u(sI) + v(sI)). With vtrue = Popt(� G), II thus guaran-

tees that vII ∈ [vtrue − ε · vtrue , vtrue + ε · vtrue] and analogously for expected
rewards. However, to ensure termination, II requires a unique fixed point: u con-
verges from above to the greatest fixed point gfp Φ, thus for every MDP where
diff ((lfp Φ)(sI), (gfp Φ)(sI)) > 2ε, II diverges. For Pmax, we have gfp Φ(sec) = 1
for all sec in end components, thus II tends to diverge when there is an end
component. Sound value iteration (SVI) [31] is similar, but uses a different app-
roach to derive upper bounds that makes it perform better overall, and that
eliminates the need to precompute an initial overapproximation for expected
rewards. However, SVI still requires unique fixed points.

We summarise the preprocessing requirements of VI, II, and SVI in Table 2.
With unique fixed points, we can transform Pmin into Pmax by making S0

min states
absorbing and setting G to S0

min, and Pmax into Emax by a similar transformation
adding reward 1 to entering G. Most of the literature on VI variants works in
such a setting and describes the Pmax or Emax case only. Since OVI also works
with multiple fixed points, we have to consider all four cases individually.

4 Optimistic Value Iteration

We now present a new, practical solution to the convergence problem for
unbounded reachability and expected rewards. It exploits the empirical obser-
vation that on many case studies VI delivers results which are roughly α-close
to the true value—it only lacks the ability to prove it. Our approach, optimistic
value iteration (OVI), extends standard VI with the ability to deliver such a
proof.

The key idea is to exploit a property of the Bellman operator Φ and its Gauss-
Seidel variant as in Algorithm1 to determine whether a candidate vector is a
lower bound, an upper bound, or neither. The foundation is basic domain theory:
by Scott-continuity of Φ it follows that Φ is monotonic, meaning v
 w implies
Φ(v)
 Φ(w). A principle called Park induction [29] for monotonic self-maps on
complete lattices yields the following induction rules: For any u ∈ V,

Optimistic Value Iteration 497

1 function OVI(M = 〈S, sI , T 〉, S?, v, ε, α, diff)
2 GSVI(M, S?, v, α, diff) // perform standard value iteration
3 u := { s �→ diff +(s) | s ∈ S? }, viters := 0 // guess candidate upper bound
4 while viters < 1

α
do // start verification phase

5 up∀ := true, down∀ := true, viters := viters + 1, error := 0
6 foreach s ∈ S? do
7 vnew := Φ(v)(s), unew := Φ(u)(s) // iterate both bounds
8 if vnew > 0 then error := max { error , diff (v(s), vnew) }
9 if unew < u(s) then // upper value decreased:

10 u(s) := unew , up∀ := false // update u with new lower unew

11 else if unew > u(s) then // upper value increased:
12 down∀ := false // discard new higher unew

13 v(s) := vnew // update v with new value vnew
14 if v(s) > u(s) then goto line 17 // lower bound crossed u

15 if down∀ then return 1
2
(u(sI) + v(sI)) // u is inductive upper bound

16 else if up∀ then goto line 17 // u is inductive lower bound

17 return OVI(M, S?, v, ε, error
2

, diff) // retry with reduced α

Algorithm 2. Optimistic value iteration

Φ(u)
 u implies lfp Φ
 u. (2)
and u
 Φ(u) implies u
 gfp Φ. (3)

Thus, if we can construct a candidate vector u s.t. Φ(u)
 u, then u is in fact an
upper bound on the sought-after lfpΦ. We call such a u an inductive upper bound.
Optimistic value iteration uses this insight and can be summarised as follows:

1. Perform value iteration on v until “convergence” w.r.t. α.
2. Heuristically determine a candidate upper bound u.
3. If Φ(u)
 u, then v
 lfp Φ
 u.

– If diff (v(sI), u(sI)) ≤ 2ε, terminate and return 1
2

(
u(sI) + v(sI)

)
.

4. If u
 Φ(u) or u �∼ v, then reduce α and go to step 1.
5. Set v to Φ(v), u to Φ(u), and go to step 3.

The resulting procedure in more detail is shown as Algorithm2. Starting from the
same initial vectors v as for VI, we first perform standard Gauss-Seidel value iter-
ation (in line 2). We refer to this as the iteration phase of OVI. After that, vector
v is an improved underapproximation of the actual probabilities or reward values.
We then “guess” a vector u of upper values from the lower values in v (line 3). The
guessing heuristics depends on diff : if diff = diffabs , then we use

diff +(s) =

{
0 if v(s) = 0
v(s) + ε otherwise;

498 A. Hartmanns and B. L. Kaminski

if diff = diffrel , then
diff +(s) = v(s) · (1 + ε).

We cap the result at 1 for Pmin and Pmax. These heuristics have three important
properties: (H1) v(s) = 0 implies diff +(s) = 0, (H2) diff (v(s), diff +(s)) ≤ 2ε,
and (H3) diff (v(s), diff +(s)) > 0 unless v(s) = 0 or v(s) = 1 for Pmin and Pmax.

Then the verification phase starts in line 4: we perform value iteration on the
lower values v and upper values u at the same time, keeping track of the direction
in which the upper values move. For u, line 7 and the conditions around line 10
mean that we actually use operator Φmin(u) = λs. min(Φ(u)(s), u(s)). This may
shorten the verification phases, and is crucial for our termination argument. A
state s is blocked if Φ(u)(s) > Φmin(u)(s) and unblocked if Φ(u)(s) < u(s) here.

If, in some iteration, no state was blocked (line 15), then we had Φ(u)
 u
before the start of the iteration. We thus know by Eq. 2 that the current u is
an inductive upper bound for the values of all states, and the true value must
be in the interval [v(sI), u(sI)]. By property H2, our use of Φmin for u, and the
monotonicity of Φ as used on v, we also know that diff (v(sI), u(sI)) ≤ 2ε, so we
immediately terminate and return the interval’s centre vI = 1

2 (u(sI) + v(sI)).
The true value vtrue = (lfp Φ)(sI) must then be in [vI − ε · vtrue , vI + ε · vtrue].

If, in some iteration, no state was unblocked (line 16), then again by Park
induction we know that u
 gfpΦ. If we are in a situation of unique fixed points,
this also means u
 lfp Φ, thus the current u is no upper bound: we cancel
verification and go back to the iteration phase to further improve v before trying
again. We do the same if v crosses u: then u(s) < v(s) ≤ (lfp Φ)(s) for some s,
so this u was just another bad guess, too.

Otherwise, we do not yet know the relationship between u and lfp Φ, so we
remain in the verification phase until we encounter one of the cases above, or
until we exceed the verification budget of 1

α iterations (as checked by the loop
condition in line 4). This budget is a technical measure to ensure termination.

Optimisation. In case the fixed point of Φ is unique, by Park induction (via
Eq. 3) we know that u
 Φ(u) implies that u is a lower bound on lfp Φ. In
such situations of single fixed points, we can—as an optimisation—additionally
replace v by u before the goto in line 16.

Heuristics. OVI relies on heuristics to gain an advantage over alternative meth-
ods such as II or SVI; it cannot be better on all MDP. Concretely, we can choose

1. a stopping criterion for the iteration phase,
2. how to guess candidate upper values from the result of the iteration phase, and
3. how much to reduce α when going back from verification to iteration.

Algorithm 2 shows the choices made by our implementation. We employ the
standard stopping criteria used by probabilistic model checkers for VI, and the
“weakest” guessing heuristics that satisfies properties H1, H2, and H3 (i.e. guess-
ing any higher values would violate one of these properties). The only arbitrary

Optimistic Value Iteration 499

choice is how to reduce α, which we at least halve on every retry. We experi-
mentally found this to be a good compromise on benchmarks that we consider
in Sect. 5, where

(a) reducing α further causes more and potentially unnecessary iterations in
GSVI (continuing to iterate when switching to the verification phase would
already result in upper values sufficient for termination), and

(b) reducing α less results in more verification phases (whose iterations are
computationally more expensive than those of GSVI) being started before
the values in v are high enough such that we manage to guess a u with
lfp Φ
 u.

Example 4. We now use the version of Φ to compute Pmax and call

OVI(M0
e , { s0, s1, s2 }, { s+ �→ 1 } ∪ { s �→ 0 | s �= s+ }, 0.05, 0.05, diffabs).

Table 1 shows the values in v and u during this run, assuming that we use non-
Gauss-Seidel iterations. The first iteration phase lasts from i = 0 to 4. At this
point, u is initialised with the values shown in italics. The first verification phase
needs only one iteration to realise that u is actually a lower bound (to a fixed
point which is not the least fixed point, due to the uncollapsed end component).
Blocked states are marked with a bar; unblocked states have a lower u-value
than in the previous iteration. We resume GSVI from i = 6. The error in GSVI
is again below α, which had been reduced to 0.008, during iteration i = 9. We
thus start another verification phase, which immediately (in one iteration) finds
the newly guessed vector u to be an upper bound, with diff (v(s0), u(s0)) < 2ε.

4.1 Termination of OVI

We showed above that OVI returns an ε-correct result when it terminates. We
now show that it terminates in all cases except for Pmax with multiple fixed
points. Note that this is a stronger result than what II and SVI can achieve.

Let us first consider the situations where lfpΦ is the unique fixed point of Φ.
First, GSVI terminates by Eq. 1. Let us now write vi and ui for the vectors u
and v as they are at the beginning of verification phase iteration i. We know
that v0
 u0. We distinguish three cases relating the initial guess u0 to lfp Φ.

1. u0 �∼ lfpΦ or u0 ≺ lfpΦ, i.e. there is a state s with u0(s) < (lfpΦ)(s). Since we
use Φmin on the upper values, it follows ui(s) ≤ u0(s) < (lfpΦ)(s) for all i. By
Eq. 1, there must thus be a j such that vj(s) > uj(s), triggering a retry with
reduced α in line 14. Such a retry could also be triggered earlier in line 16.
Due to the reduction of α and Eq. 1, every call to GSVI will further increase
some values in v or reach v = lfpΦ (in special cases), and for some subsequent
guess u we must have u0(s) < u(s). Consequently, after some repetitions of
this case 1, we must eventually guess a u with lfp Φ
 u.

500 A. Hartmanns and B. L. Kaminski

Fig. 2. DTMC Md

Table 3. Nontermination of OVI on M ′
e without

ECC

i v(s0) u(s0) v(s1) u(s1) v(s2) u(s2) error α

0 0 0 0 0.05

1 0.1 0 0.25 0.25 0.05

2 0.18 0.25 0.375 0.25 0.05

3 0.25 0.375 0.4375 0.125 0.05

4 0.375 0.4375 0.46875 0.125 0.05

5 0.4375 0.5375 0.46875 0.56875 0.484375 0.584375 0.0625 0.05

6 0.46875 0.5375 0.484375 0.56875 0.4921875 0.56875 0.03125

7 0.484375 0.5375 0.4921875 0.56875 0.49609375 0.56875 0.015625

2. lfp Φ ≺ u0. Observe that operators Φ and Φmin are local [9], i.e. a state’s
value can only change if a direct successor’s value changes. In particular, a
state’s value can only decrease (increase) if a direct successor’s value decreases
(increases). If ui(s) < ui−1(s), then s cannot be blocked again in any later
iteration j > i: for it to become blocked, a successor’s upper value would
have to increase, but Φmin ensures non-increasing upper values for all states.
Analogously to Eq. 1, we know that [3, Lemma 3.3 (c)]

lfp Φ
 u implies lim
n→∞ Φn

min(u) = lfp Φ

(for the unique fixpoint case, since [3] assumes contracting MDP as usual).
Thus, for all states s, there must be an i such that ui(s) < ui−1(s); in conse-
quence, there is also an iteration j where no state is blocked any more. Then
the condition in line 15 will be true and OVI terminates.

3. lfp Φ
 u0 but not lfp Φ ≺ u0, i.e. there is a state s with u0(s) = (lfp Φ)(s).
If there is an i where no state, including s, is blocked, then OVI terminates
as above. For Pmin and Pmax, if u0(s) = 1, s cannot be blocked, so we can
w.l.o.g. exclude such s. For other s not to be blocked in iteration i, we must
have ui(s′) = (lfp Φ)(s′) for all states s′ reachable from s under the optimal
scheduler, i.e. all of those states must reach the fixed point. This cannot be
guaranteed on general MDP. Since this case is a very particular situation
unlikely to be encountered in practice with our heuristics, OVI adopts a
pragmatic solution: it bounds the number of iterations in every verification
phase (cf. line 4). Due to property H3 of our heuristics, u0(s) = (lfp Φ)(s)
requires v0(s) < (lfp Φ)(s), thus some subsequent guess u will have u(s) >
u0(s), and eventually we must get a u with lfp Φ ≺ u, which is case 2. Since
we strictly increase the iteration bound on every retry, we will eventually
encounter case 2 with a sufficiently high bound for termination.

Three of the four situations with multiple fixed points reduce to the correspond-
ing unique fixed point situation due to property H1 of our guessing heuristics:

1. For Pmin, recall from Sect. 3.2 that the fixed point is unique if we fix the
values of all S0

min states to 0. In OVI without preprocessing, such states are

Optimistic Value Iteration 501

in S?, thus they initially have value 0. Φ will not increase their values, neither
will guessing due to H1, and neither will Φmin. Thus OVI here operates on a
sublattice of 〈V,
〉 where the fixed point of Φ is unique.

2. For Emin, after the preprocessing steps of Table 2, we only need to fix the
values of all goal states to 0. Then the argument is the same as for Pmin.

3. For Emax, we reduce to a unique fixed point sublattice in the same way, too.

The only case where OVI may not terminate is for Pmax without ECC. Here, end
components may cause states to be permanently blocked. However, we did not
encounter this on any benchmark used in Sect. 5, so in contrast to e.g. II, OVI
is still practically useful in this case despite the lack of a termination guarantee.

Example 5. We turn Me of Fig. 1 into M ′
e by replacing the c-labelled transition

from s2 by transition { 〈0, s2〉 �→ 1
2 , 〈0, s+〉 �→ 1

4 , 〈1, s−〉 �→ 1
4 }, i.e. we can now go

from s2 back to s2 with probability 1
2 and to each of s+, s− with probability 1

4 .
The probability-1 transition from s2 to s1 remains. Then Table 3 shows a run of
OVI for Pmax with diffabs and α = 0.1. s0 is forever blocked from iteration 6 on.

4.2 Variants of OVI

While the core idea of OVI rests on classic results from domain theory, Algo-
rithm2 includes several particular choices that work together to achieve good
performance and ensure termination. We sketch two variants to motivate these
choices.

First, let us use Φ instead of Φmin for the upper values, i.e. move the assign-
ment u(s) := unew down into line 13. Then we cannot prove termination because
the arguments of case 2 for lfp Φ ≺ u0 no longer hold. Consider DTMC Md of
Fig. 2 and Pmax(� s+) = Pmin(� s+). Let

u = { s0 �→ 0.2, s1 �→ 1, s+ �→ 1, s− �→ 0 } � { s0 �→ 1
9 , s1 �→ 1

9 , . . . } = lfp Φ.

Iterating Φ, we then get the following sequence of pairs 〈u(s0), u(s1)〉:

〈0.2, 1〉, 〈1, 0.12〉, 〈0.12, 0.2〉, 〈0.2, 0.112〉, 〈0.112, 0.12〉, 〈0.12, 0.1112〉, . . .

Observe how the value of s0 increases iff s1 decreases and vice-versa. Thus we
never encounter an inductive upper or lower bound. In Algorithm2, we use
Gauss-Seidel VI, which would not show the same effect on this model; however,
if we insert another state between s0 and s1 that is updated last, Algorithm2
would behave in the same alternating way. This particular u is contrived, but
we could have guessed one with a similar relationship of the values leading to
similar behaviour.

An alternative that allows us to use Φ instead of Φmin is to change the
conditions that lead to retrying and termination: We separately store the initial
guess of a verification phase as u0, and then compare each newly calculated u
with u0. If u
 u0, then we know that there is an i such that u = Φi(u)
 u0.

502 A. Hartmanns and B. L. Kaminski

Φi retains all properties of Φ needed for Park induction, so this would also be
a proof of lfp Φ
 u. The other conditions and the termination proofs can be
adapted analogously. However, this variant needs ≈50 % more memory (to store
an additional vector of values), and we found it to be significantly slower than
Algorthm 2 and the first variant on almost all benchmark instances of Sect. 5.

5 Experimental Evaluation

We have implemented interval iteration (II) (using the “variant 2” approach of [3]
to compute initial overapproximations for expected rewards), sound value iter-
ation (SVI), and now optimistic value iteration (OVI) precisely as described in
the previous section, in the mcsta model checker of the Modest Toolset [20],
which is publicly available at modestchecker.net. It is cross-platform, imple-
mented in C#, and built around the Modest [17] high-level modelling language.
Via support for the Jani format [8], mcsta can exchange models with other tools
like Epmc [18] and Storm [10]. Its performance is competitive with Storm and
Prism [16]. We tried to spend equal effort performance-tuning our VI, II, SVI,
and OVI implementations to avoid unfairly comparing highly-optimised OVI
code with näıve implementations of the competing algorithms.

In the following, we report on our experimental evaluation of OVI using
mcsta on all applicable models of the Quantitative Verification Benchmark Set
(QVBS) [21]. All models in the QVBS are available in Jani and can thus be
used by mcsta. Most are parameterised, and come with multiple properties of
different types. Aside from MDP models, the QVBS also includes DTMCs (which
are a special case of MDP), continuous-time Markov chains (CTMC, for which
the analysis of unbounded properties reduces to checking the embedded DTMC),
Markov automata (MA [11], on which the embedded MDP suffices for unbounded
properties), and probabilistic timed automata (PTA [26], some of which can
be converted into MDP via the digital clocks semantics [25]). We use all of
these model types. The QVBS thus gives rise to a large number of benchmark
instances: combinations of a model, a parameter valuation, and a property to
check. For every model, we chose one instance per probabilistic reachability and
expected-reward property such that state space exploration did not run out of
memory and VI took at least 10 s where possible. We only excluded

– 2 models with multiple initial states (which mcsta does not yet support),
– 4 PTA with open clock constraints (they cannot be converted to MDP),
– 29 probabilistic reachability properties for which the result is 0 or 1 (they are

easily solved by the graph-based precomputations and do not challenge VI),
– 16 instances for which VI very quickly reaches the fixed point, which indicates

that (the relevant part of) the MDP is acyclic and thus trivial to solve,
– 3 models for which no parameter valuation allowed state space exploration

to complete without running out of memory or taking more than 600 s,
– 7 instances where, on the largest state space we could explore, no iterative

algorithm took more than 1 s (which does not allow reliable comparisons), and
– the oscillators model due to its very large model files,

http://www.modestchecker.net/

Optimistic Value Iteration 503

Fig. 3. OVI runtime and iteration count compared to VI (probabilistic reachability)

As a result, we considered 38 instances with probabilistic reachability and 41
instances with expected-reward properties, many comprising several million
states.

We ran all experiments on an Intel Core i7-4790 workstation (3.6–4.0 GHz)
with 8 GB of memory and 64-bit Ubuntu Linux 18.04. By default, we request a
relative half-width of ε = 10−6 for the result probability or reward value, and
configure OVI to use the relative-error criterion with α = 10−6 in the iteration
phase. We use a 600 s timeout (“TO”). Due to the number of instances, we show
most results as scatter plots like in Fig. 3. Each such plot compares two methods
in terms of runtime or number of iterations. Every point 〈x, y〉 corresponds to
an instance and indicates that the method noted on the x-axis took x seconds
or iterations to solve this instance while the method noted on the y-axis took
y seconds or iterations. Thus points above the solid diagonal line correspond
to instances where the x-axis method was faster (or needed fewer iterations);
points above (below) the upper (lower) dotted diagonal line are where the x-axis
method took less than half (more than twice) as long or as many iterations.

5.1 Comparison with VI

All methods except VI delivered correct results up to ε. VI offers low runtime at
the cost of occasional incorrect results, and in general the absence of any guaran-
tee about the result. We thus compare with VI separately to judge the overhead
caused by performing additional verification, and possibly iteration, phases. This
is similar to the comparison done for II in [3]. Figures 3 and 4 show the results.
The unfilled shapes indicate instances where VI produced an incorrect result. In
terms of runtime, we see that OVI does not often take more than twice as long
as VI, and frequently requires less than 50% extra time. On several instances
where OVI incurs most overhead, VI produces an incorrect result, indicating

504 A. Hartmanns and B. L. Kaminski

Fig. 4. OVI runtime and iteration count compared to VI (expected rewards)

that they are “hard” instances for value iteration. The unfilled CTMCs where
OVI takes much longer to compute probabilities are all instances of the embedded
model; the DTMC on the x-axis is haddad-monmege, an adversarial model built
to highlight the convergence problem of VI in [14]. The problematic cases for
expected rewards include most MA instances, the two expected-reward instances
of the embedded CTMC, and again haddad-monmege. In terms of iterations, the
overhead of OVI is even less than in runtime.

5.2 Comparison with II and SVI

We compare the runtime of OVI with the runtime of II and that of SVI separately
for reachability probabilities (shown in Fig. 5) and expected rewards (shown in
Fig. 6). As shown in Table 2, OVI has almost the same requirements on precom-
putations as VI, while II and SVI require extra precomputations and ECC for
reachability probabilities. The precomputations and ECC need extra runtime
(which turned out to be negligible in some cases but significant enough to cause
a timeout in others) prior to the numeric iterations. However, doing the pre-
computations can reduce the size of the set S?, and ECC can reduce the size
of the MDP itself. Both can thus reduce the runtime needed for the numeric
iterations. For the overall runtime, we found that none of these effects domi-
nates the other over all models. Thus sometimes it may be better to perform
only the required precomputations and transformations, while on other models
performing all applicable ones may lead to lower total runtime. For reachabil-
ity probabilities, we thus compare OVI, II, and SVI in two scenarios: once in
the default (“std”) setting of mcsta that uses only required preprocessing steps

Optimistic Value Iteration 505

Fig. 5. OVI runtime compared to II and SVI (probabilities)

(without ECC for OVI; we report the total runtime for preprocessing and iter-
ations), and once with all of them enabled (“pre”, where we report only the
runtime for numeric iterations, plus the computation of initial upper bounds in
case of II).

For probabilistic reachability, we see in Fig. 5 that there is no clear winner
among the three methods in the “std” setting (top plots). In some cases, the
extra precomputations take long enough to give an advantage to OVI, while in
others they speed up II and SVI significantly, compensating for their overhead.
The “pre” setting (bottom), in which all three algorithms operate on exactly the
same input w.r.t. to MDP M and set S?, however, shows a clearer picture: now
OVI is faster, sometimes significantly so, than II and SVI on most instances.

506 A. Hartmanns and B. L. Kaminski

Fig. 6. OVI runtime compared to II and SVI (expected rewards)

Expected-reward properties were more challenging for all three methods (as
well as for VI, which produced more errors here than for probabilities). The
plots in Fig. 6 paint a very clear picture of OVI being significantly faster for
expected rewards than II (which suffers from the need to precompute initial
upper bounds that then turn out to be rather conservative), and faster (though
by a lesser margin and with few exceptions) than SVI.

In Fig. 7, we give a summary view combining the data from Figs. 3 to 6. For
each algorithm, we plot the instances sorted by runtime, i.e. a point 〈x, y〉 on the
line for algorithm z means that some instance took y seconds to solve via z, and
there are x instances that z solves in less time. Note in particular that the times
are not cumulative. The right-hand plot zooms into the left-hand one. We clearly
see the speedup offered by OVI over SVI and especially II. Where the scatter
plots merely show that OVI often does not obtain more than a 2× speedup
compared to SVI, these plots provide an explanation: the VI line is a rough

Fig. 7. Summary comparison to VI, II, and SVI, instances ordered by runtime

Optimistic Value Iteration 507

Fig. 8. Influence of ε/α on runtime (expected rewards, relative error)

Fig. 9. Runtime comparison with absolute error (expected rewards)

bound on the performance that any extension of VI can deliver. Comparing the
SVI and VI lines, over much of the plot’s range, OVI thus cannot take less than
half the runtime of SVI without outperforming VI itself.

5.3 On the Effect of ε and α

We also compared the four algorithms for different values of ε and, where appli-
cable, α. We show a selection of the results in Fig. 8. The axis labels are of the
form “algorithm, ε/α”. On the left, we see that the runtime of OVI changes if we
set α to values different from ε, however there is no clear trend: some instances
are checked faster, some slower. We obtained similar plots for other combinations
of α values, with only a slight tendency towards longer runtimes as α > ε. mcsta
thus uses α = ε as a default that can be changed by the user.

In the middle, we study the impact of reducing the desired precision by
setting ε to 10−3. This allows OVI to speed up by factors mostly between 1 and
2; the same comparison for SVI and II resulted in similar plots, however VI was
able to more consistently achieve higher speedups. When we compare the right
plot with the right-hand plot of Fig. 6, we consequently see that the overall result
of our comparison between OVI and SVI does not change significantly with the
lower precision, although OVI does gain slightly more than SVI.

508 A. Hartmanns and B. L. Kaminski

5.4 Comparing Relative and Absolute Error

In Fig. 9, we show comparison plots for the runtime when using diffabs instead
of diffrel . Requiring absolute-error-correct results may make instances with low
result values much easier and instances with high results much harder. We chose
ε = 10−2 as a compromise, and the leftmost plot confirms that we indeed chose
an ε that keeps the expected-reward benchmarks on average roughly as hard
as with 10−6 relative error. In the middle and right plots, we again see OVI
compared with II and SVI. Compared to Fig. 6, both II and SVI gain a little,
but there are no significant differences overall. Our experiments thus confirm that
the relative performance of OVI is stable under varying precision requirements.

5.5 Verification Phases

On the right, we show histograms
of the number of verification phases
started (top, from 1 phase on the
left to 20 on the right) and the per-
centage of iterations that are done
in verification phases (bottom) over
all benchmark instances (probabilities
and rewards). We see that, in the vast
majority of cases, we need few verifi-
cation attempts, with many succeed-
ing in the first attempt, and most iter-
ations are performed in the iteration
phases.

6 Conclusion

We have presented optimistic value iteration (OVI), a new approach to making
non-exact probabilistic model checking via iterative numeric algorithms sound
in the sense of delivering results within a prescribed interval around the true
value (modulo floating-point and implementation errors). Compared to inter-
val (II) and sound value iteration (SVI), OVI has slightly stronger termination
guarantees in presence of multiple fixed points, and works in practice for max.
probabilities without collapsing end components despite the lack of a guarantee.
Like II, it can be combined with alternative methods for dealing with end com-
ponents such as the new deflating technique of [23]. OVI is a simple algorithm
that is easy to add to any tool that already implements value iteration, and it
is fast, further closing the performance gap between VI and sound methods.

Acknowledgments. The authors thank Tim Quatmann (RWTH Aachen) for fruitful
discussions when the idea of OVI initially came up in late 2018, and for his help in
implementing and optimising the SVI implementation in mcsta.

Optimistic Value Iteration 509

Data Availability. A dataset to replicate our experimental evaluation is archived and
available at DOI 10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc [19].

References

1. Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Sci-
ence, vol. 3, pp. 1–168. Oxford University Press (1994). http://www.cs.bham.ac.
uk/∼axj/pub/papers/handy1.pdf (corrected and expanded version)

2. Ashok, P., Křet́ınský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4 29

3. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

4. Balaji, N., Kiefer, S., Novotný, P., Pérez, G.A., Shirmohammadi, M.: On the
complexity of value iteration. In: 46th International Colloquium on Automata,
Languages, and Programming (ICALP). LIPIcs, vol. 132, pp. 102:1–102:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.102

5. Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quan-
titative probabilistic model checking through rational search. In: FMCAD, pp.
92–99. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102246

6. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0 70

7. Brázdil, T., et al.: Verification of Markov decision processes using learning algo-
rithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–
114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 8

8. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. TACAS. LNCS 10206, 151–168
(2017). https://doi.org/10.1007/978-3-662-54580-5 9

9. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69850-0 7

10. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

11. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.
1109/LICS.2010.41

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

13. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011). https://doi.org/10.1145/1967701.1967710

https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
http://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.4230/LIPIcs.ICALP.2019.102
https://doi.org/10.23919/FMCAD.2017.8102246
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1145/1967701.1967710

510 A. Hartmanns and B. L. Kaminski

14. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11439-2 10

15. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/j.tcs.2016.12.
003

16. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3 5

17. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

18. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

19. Hartmanns, A.: Optimistic value iteration (artifact). 4TU.Centre for Research Data
(2019). https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc

20. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 51

21. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

22. Hensel, C.: The probabilistic model checker Storm: symbolic methods for proba-
bilistic model checking. Ph.D. thesis, RWTH Aachen University, Germany (2018)

23. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods Syst. Des.
29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

26. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

27. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

28. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-time dynamic pro-
gramming: RTDP with monotone upper bounds and performance guarantees. In:
ICML, ACM International Conference Proceeding Series, vol. 119, pp. 569–576.
ACM (2005). https://doi.org/10.1145/1102351.1102423

https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.4121/uuid:3df859e6-edc6-4e2d-92f3-93e478bbe8dc
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1145/1102351.1102423

Optimistic Value Iteration 511

29. Park, D.: Fixpoint induction and proofs of program properties. Mach. Intell. 5
(1969)

30. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics. Wiley, New York (1994)

31. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_37
http://creativecommons.org/licenses/by/4.0/

	Optimistic Value Iteration
	1 Introduction
	2 Preliminaries
	3 Value Iteration
	3.1 Theoretical Foundations
	3.2 Uniqueness of Fixed Points
	3.3 Convergence

	4 Optimistic Value Iteration
	4.1 Termination of OVI
	4.2 Variants of OVI

	5 Experimental Evaluation
	5.1 Comparison with VI
	5.2 Comparison with II and SVI
	5.3 On the Effect of and
	5.4 Comparing Relative and Absolute Error
	5.5 Verification Phases

	6 Conclusion
	References

