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Abstract 

Categorization is a fundamental cognitive function that organizes our experiences into 

meaningful ‘chunks.’ This category knowledge can then be generalized to novel stimuli and 

situations. Multiple clinical populations, including people with Parkinson’s disease, amnesia, 

autism, ADHD, and schizophrenia, have impairments in the acquisition and use of categories. 

Although rodent research is well suited for examining the neural mechanisms underlying 

cognitive functions, many rodent cognitive tasks have limited translational value. To bridge this 

gap, we use touchscreens to permit greater flexibility in stimulus presentation and task design, 

track key dependent measures, and minimize experimenter involvement. Touchscreens offer a 

valuable tool for creating rodent cognitive tasks that are directly comparable to tasks used with 

humans. Touchscreen tasks are also readily used with cutting-edge neuroscientific methods 

that are difficult to do in humans such as optogenetics, chemogenetics, neurophysiology, and 

calcium imaging (using miniscopes). In this review, we demonstrate advantages of touchscreen-

based tasks for studying category learning in rats. We also address multiple factors for 

consideration when designing category learning tasks, including the limitations of the rodent 

visual system, experimental design, and analysis strategies. 

 

 

 

This article is protected by copyright. All rights reserved.



  
 

Keywords 

Rat, visual category learning, touchscreen, translational research, executive function, selective 

attention, category generalization  

This article is protected by copyright. All rights reserved.



  
 

1 INTRODUCTION 

Categorization allows for the organization of stimuli, ideas, and events into meaningful 

‘chunks.’1-4 Organizing information in such a way makes encoding and representing stimuli 

more efficient, as only information relevant to the category is necessary, and allows for 

immediate generalization to novel situations.5-7 Learning a new category involves multiple 

cognitive functions, including attention, working memory, long-term memory, and decision 

making, and therefore requires complex interactions among multiple brain regions.8-15  

Several clinical populations exhibit deficits in category learning, which are presumably 

caused by pathology in the neural systems underlying categorization. For example, patients 

with Parkinson’s disease, who have impaired basal ganglia function, are typically impaired on 

category learning tasks that require combining information from multiple stimulus dimensions, 

such as information integration (II) tasks and weather prediction tasks.16-19 Patients with 

Huntington’s disease, ADHD, autism, and schizophrenia are also impaired on these tasks.20-23 To 

learn category structures that can be solved by a single category dimension (e.g., rule-based 

tasks; RB), humans often develop and test verbalizable category rules. 24 Patients with disorders 

that affect hippocampus functioning, including amnesia and Alzheimer’s disease, are typically 

impaired to learn RB tasks.25-26 Parkinson’s patients are also impaired on RB tasks, which has 

been attributed to a reduced ability to maintain the current rule across trials.27 Although the 

impairments in category learning in these populations can generally be related to neurological 
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deficits, the specific causes of their deficits remain elusive because the neural mechanisms 

underlying category learning are largely unknown. Therefore, there is a critical need for a 

systematic analysis of the neural mechanisms underlying category learning using animal 

models.  

Rodents are well suited for determining the neural mechanisms underlying cognitive 

functions, and although the study of categorization in non-human animals has heavily relied on 

pigeons, 28-34 rats are capable of category learning.35-42 We have developed category learning 

tasks for rats using touchscreens as a foundation for a systematic analysis of the neural 

mechanisms underlying categorization. The advantages of this methodology have been 

described.43 Briefly, touchscreens standardize task procedures, thereby minimizing 

experimenter interaction and variability across rats. Touchscreens are compatible with cutting-

edge neuroscientific approaches, including chemogenetics, optogenetics, neurophysiology, and 

calcium imaging (using miniscopes). Touchscreens also create flexibility in experimental design 

and stimulus presentation. Critically, this flexibility can be used to create behavioral paradigms 

that are similar to human tests of cognition in terms of trial sequence, category stimuli, and 

analysis. Touchscreens have already been used to assess cognitive functions in rodents, 

including extinction, reversal learning, and 5-choice serial reaction time.44 Our studies of 

category learning capitalize on the advantages of touchscreen tasks to maximize translational 

value. 
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Here, we review our application of touchscreen-based operant procedures to 

investigate category learning in rodents as a tool for translational research. We focus the 

review on our tasks and do not attempt to comprehensively review rodent categorization. We 

first describe the visual capacities of rodents, as this will greatly inform the types of stimuli that 

can be used in category learning experiments. Second, we describe the typical task design. This 

includes procedures for shaping, category training, generalization testing, and a control 

(discrimination) task. Third, we review paradigms of category learning that are comparable in 

humans and rodents. Finally, we describe analysis techniques and computational modeling 

approaches for elucidating the cognitive mechanisms underlying category learning in rodents. 

 

2 CAPACITIES AND LIMITATIONS OF THE RODENT VISUAL 
SYSTEM 
 
Although touchscreens allow flexibility in translational research, a potential drawback to 

consider is that they rely on presenting visual stimuli. Indeed, the visual capacity of rodents is 

limited compared to humans; these perceptual differences could prevent accurate comparisons 

of learning between species and/or prevent learning altogether. Therefore, it is critical that 

visual stimuli are created with the capacities of the rodent visual system in mind. In this section, 

we outline the capacities of rodent vision and provide several considerations for creating 

stimuli that are accessible to rodents. 
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2.1 Visual Acuity 

Visual acuity, or sharpness, is measured by presenting grating stimuli that contain high spatial 

frequencies. Maximum acuity is determined when the organism cannot distinguish a grating 

stimulus from a solid gray stimulus. Although humans have visual acuity as high as 30 cycles per 

degree, the visual acuity of pigmented rat strains (i.e., Long Evans, Dark Agouti and wild strains) 

is much lower (1.0 cycle per degree).45-49 Non-pigmented rats (i.e., Sprague-Dawley, Wistar, and 

Fischer-344), as well as mice, have even poorer visual acuity (0.5 cycles per degree), whereas 

the Fischer-Norway rat strain is above average (1.5 cycles per degree).45 Therefore, fine details 

within stimuli may not be visible to rodents. Similar to humans, single cells in rodent primary 

visual cortex (V1) show frequency-tuning curves, where their firing rate decreases as the spatial 

frequency deviates from some optimal value. For rodents, optimal frequencies average about 

0.3 cycles per degree, but cells respond to spatial frequencies as high as 1.2 cycles per 

degree.50-52 Generally, their tuning curves have widths less than two octaves.50 Most cells in V1 

are modulated by spatial frequency; only 11% of cells are not sensitive to changing spatial 

frequencies.50 

 

2.2 Orientation 
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Orientation-selectivity is robust in V1 of all rat and mouse strains; 77% of V1 cells were reliably 

orientation-selective and only 3.5% of cells had no orientation selectivity.50-53 The firing rate of 

orientation-selective cells decreases as the presented orientation deviates from some optimal 

orientation value. Although all orientations are represented in V1, horizontal orientations are 

overrepresented.54 In fact, 35% of orientation-selective cells peak at horizontal orientations.50 

Typically, the width of a cell’s orientation tuning curve is 60 degrees or sharper.50 Interestingly, 

whereas orientation-selective cells in V1 of cats and monkeys have more strict organization, 

orientation-selective cells of rodent V1 are much more uniformly distributed and show a salt 

and pepper organization.55-56 However, recent evidence suggests that V1 contains some 

organization according to orientation.57  

 

2.3 Motion 

The rodent visual system can detect motion reliably. In fact, half of V1 cells respond more 

robustly to stimuli that drift compared to stationary stimuli.50 Motion is typically studied using 

random dot patterns presented on a screen.58-62 The proportion of dots that move in a common 

direction, motion coherence, can be manipulated to adjust task difficulty. The minimum 

coherence required to discriminate moving dots, the coherence threshold, for rats and mice is 

about 25% when dots move between 20 degrees per second to 100 degrees per second. This 

threshold is about four times larger than humans using similar parameters.61-62 Coherence 
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thresholds increase as dot displacement per frame increases and as frame duration increases.61-

62 Cells in V1 respond optimally to motion that ranges from 10 degrees per second to 250 

degrees per second. Some cells can even respond to stimuli moving as fast as 700 degrees per 

second, which is faster than the feline V1.56 V1 cells also respond to flickering gratings. Optimal 

flicker speeds range from 0.43 Hz to 6.88 Hz, but cells can respond to speeds up to 27.5 Hz.50  

Finally, it was recently discovered that two subregions of mouse visual cortex (LM and RL, but 

not V1) can detect global movement from a composite of independently moving patterns.63  

 

2.4 Color 

Similar to humans, rodents have two classes of photoreceptors: rods that process black and 

white light and cones that process color. Color processing in rodents is limited compared to 

humans. Rodents have two types of cones; one type contains pigment with peak sensitivity at 

358 nm and is sensitive to blue light and ultraviolet light, and another type contains pigment 

with maximum sensitivity at 510 nm and is sensitive to green light.64 Within the retina, only 

12% of cones are blue-type; the remaining cones are green-type. 65 Interestingly, most of the 

cone photoreceptors are located at the bottom of the retina. Consequently, color 

discrimination depends on the location of the stimulus within a rodent’s visual field. For 

example, when mice were presented colored circles at different locations on a screen they 
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were sensitive to changing color when stimuli were positioned in the upper portion of their 

visual field, but not when the stimuli were below their visual horizon.66  

 

2.5 Shape and object recognition 

Despite having lower visual acuity than humans, the rodent visual system is capable of 

discriminating complex shapes. Recently, it was discovered that rats, like primates, show 

invariant object recognition, meaning that objects are recognized despite changes in their size, 

color, orientation, and position on the screen.67-69 Invariant object recognition suggests that 

objects have complex representations that are not bound by low-level features. This is adaptive 

since objects are consistently experienced at different viewpoints and in varying contexts; 

invariant object recognition allows for spontaneous generalization to these transformations. In 

primates, it is proposed that this mechanism is facilitated by the ventral stream of the visual 

system.70 A hierarchy exists where early visual areas predominantly process low-level features 

(e.g., luminance), whereas later visual areas process object-relevant features that are less 

sensitive to transformations in position, visual angle, etc.70 It was recently discovered that the 

rodent visual system has a similar organization.53,71-72 

A growing number of studies have used an advanced computational approach, a 

bubbling technique, to understand the nature and flexibility of rat’s discrimination 

strategies.41,73-76 Briefly, rats are first trained to discriminate two complex visual objects. Then, 
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probe trials are presented where only a part of the object is visible (defined by the placement 

of small bubbles randomly dispersed across the screen). The object will be recognized only if its 

diagnostic features overlap with these bubbles; therefore, by averaging across many trials, a 

behavioral template can be created that identifies which portions of the object are necessary 

for recognition. Using this technique, it is apparent that rats can create templates with varying 

levels of complexity; this complexity is generally correlated with the difficulty of the task.74 For 

example, rats will generate single-feature templates when possible but can create templates 

using multiple features if necessary (e.g., if an object has increased complexity or if the two 

objects to be discriminated are perceptually similar).74,76 Importantly, templates are relatively 

fixed when transformations of the object are presented, suggesting that the rat can rescale its 

template to match the transformation. Nevertheless, rats can also adapt their template to 

generalize to novel transformations.73  

  

2.6 Recommendations and conclusions 

It is imperative to develop stimuli that are within the perceptual limits of rodents to maximize 

learning. It is best to use stimuli that can be distinguished by low-level features such as spatial 

frequency, orientation, and luminance. Stimuli with more fine details should be large enough 

for the rodents to see; of course, this is limited by the size of the screen. Because the rodents 

will be close to the screen, stimuli that are too large will exceed their field of vision. Generally, 
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we recommend only using black and white stimuli. Although rodents can see green and blue 

colors, these may not be salient cues. Finally, although the rodent visual system is well suited to 

detect motion, we have not been successful using motion as a stimulus dimension. 

Nevertheless, assessing motion categorization in rats may be worthwhile considering its 

prevalence in the human and non-human primate literature.58-60  

 

3 PRE-TRAINING PROCEDURES 

In this section, we describe the necessary methodologies before category training begins. First, 

we provide details regarding the touchscreen apparatus used for all experimental sessions. 

Second, we discuss the procedures involved to prepare each rat for category training with our 

paradigm.  

 

3.1 Touchscreen apparatus  

All experimental sessions are conducted within custom-built chambers (36 × 41 × 36 cm). In 

each chamber, a wall is outfitted with an LCD flat-screen monitor (Model 1550V, NEC, Melville, 

NY) so that visual stimuli can be presented to the rat. Importantly, the rat is shaped to interact 

with the computer monitor via an infrared touchscreen (15-in, Elo Touch Systems, Fremont, CA; 

see Section 2.3) positioned in front of the monitor. Single 45-mg food pellets are delivered into 

an aluminum food tray (6.5 × 13 × 4.5 cm) on the wall opposite the touchscreen by a rotary 
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pellet dispenser (Med Associates Inc., Georgia, VT, model ENV-203IR). A relay controller (Model 

RS-232, National Control Devices, Osceola, MO) permits communication between the computer 

and the pellet relay. The wall adjacent to the monitor contains a transparent window (13.5 × 10 

cm) that allows observation of the rat while inside the chamber. MATLAB (MathWorks, Natick, 

MA) is the primary programming software for all experimental sessions. A house light 

positioned above the food tray is always on during experimental sessions. A camera is mounted 

on the roof of the chamber and faces the screen to observe and record the rats’ activity (model 

ELP-USB100W05MT-RL36). Finally, white noise within the experimental room is utilized to 

minimize distraction. 

 

3.2 Handling and cart training 

Upon reaching the animal colony, each rat is allowed one week to acclimate to the new 

environment. Food and water are given ad libitum. Then, an experimenter handles each rat 

daily to minimize the stress of being picked up. After one week, food restriction begins, and 

each rat undergoes cart training. Weights are recorded daily to ensure rats do not go below 

85% of their free-feeding weight. During cart training sessions, each rat is placed on a 

laboratory cart, and twenty 45-mg food pellets are scattered on the cart’s surface.77 This 

procedure is repeated daily until the rat can successfully consume all pellets within 15 minutes 
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(on average, this procedure takes about 7 days). Reaching this criterion ensures each rat is 

acclimated to the laboratory and is encouraged to forage for experimental pellets.  

 

3.3 Shaping procedures 

After cart training, each rat undergoes a shaping procedure within the operant chambers. This 

procedure involves three separate phases; in all phases, each session includes 60 trials. 

Conceptually, each phase rewards a behavior that is incrementally similar to the trial sequence 

used during category training (see Section 4.1). In Phase 1, each trial begins with the 

presentation of a star stimulus in the center of the screen. This stimulus remains on the screen 

for 15 seconds (or until the rat touches the screen), and then is replaced by a white box 

appearing on either the left or right side of the screen. If the rat touches anywhere on the 

screen while the white box is presented, a food reward is delivered. Otherwise, the trial times 

out after 45 seconds, and the trial is considered a miss. Sessions continue until the rat 

completes at least 55 trials within 25 minutes. In Phase 2, the rat must touch both the star 

stimulus and the white box to receive a food reward; otherwise, the trial is considered a miss. 

As in Phase 1, the star stimulus times out after 15 seconds, and the white box times out after 45 

seconds. Sessions continue until the rat completes at least 55 trials within 30 minutes. In Phase 

3, a black box is presented in the center of the screen after the presentation of the star and 

before the presentation of the white box. Here, the black box serves as a placeholder for 
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category exemplars (see Section 4.1). Adding the black box attempts to mimic the sequence of 

training trials in category learning without presenting category stimuli. In this phase, the rat 

must touch the star once, the black box three times, and the white box once to receive a food 

reward. Three touches of the black box mimics three observing touches of the category 

exemplar during training sessions (see Section 4.1). A pilot experiment concluded that three 

touches was optimal to facilitate category learning. Unlike Phases 1 and 2, the trials do not 

timeout. Sessions continue until all 60 trials are completed within 25 minutes. Rats typically 

complete all shaping procedures in about 14 days.  

There is a fourth shaping phase if an alternative trial sequence is used during training 

(see Section 4.2). In this training trial sequence, each trial has a fixed duration, and all required 

touches must be completed within the time-limit to proceed. In the fourth shaping phase, the 

black box and the white box are presented on the screen each for two seconds. The rat must 

touch the black box three times and the white box once within these time windows. If 

successful, the rat receives a food reward. If unsuccessful, the trial aborts and repeats after a 5-

10 second timeout. Sessions continue until the rat successfully completes all sixty trials within 

25 minutes. 

  

4 EXPERIMENTAL DESIGN 
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In this section, we outline the experimental design used to examine categorization. We first 

describe the typical trial sequence. Briefly, rodents initiate each trial by touching the start 

stimulus used in shaping, at which point a category exemplar is presented on the screen. After 

three observing touches of this cue, the rat must choose a left or right response key depending 

on the cue’s category membership. A correct response delivers a food reward, and an incorrect 

response initiates a correction trial. Next, we describe how this trial sequence can be altered 

according to the demands of the task. Then, we outline general procedures for category 

training, generalization, and a simple discrimination task. The simple discrimination task serves 

as a control task to ensure that any changes in behavior across groups are specific to 

categorization.  

 

4.1 Typical trial sequence 

The typical trial sequence contains four phases, a Star phase, Cue phase, Choice phase, and 

Reward phase (Figure 1a).37-38 Importantly, this trial sequence separates categorization (Cue 

phase) from decision execution (Choice phase) and feedback processing (Reward phase), a 

feature that is favorable for neuroscientific approaches like optogenetics and 

neurophysiological recording. The trial sequence is self-paced, which ensures the rat is 

attending to the screen and has adequate time to 1) observe the category stimulus and 2) make 
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a category decision. This trial sequence has been tested only with rats; however, all procedures 

are applicable to mice.  

On each trial, a star stimulus is presented at the center of the touchscreen (Star Phase; 

Figure 1a). The trial begins with one touch of the star stimulus. Next, a category exemplar 

replaces the star stimulus (Cue phase). This exemplar remains on the screen until the rat 

touches the exemplar three times. After the third touch of the exemplar, the cue disappears, 

and copies of this exemplar appear on the left and right side of the screen serving as response 

keys (Choice phase). The rat must touch either response key, according to the category 

membership of the stimulus. Categories are represented spatially, such that members of 

category ‘A’ should elicit a touch to the left response key, and members of category ‘B’ should 

elicit a touch to the right response key. If the rat chooses the correct side, a white box replaces 

the chosen response key (Reward phase). One touch of the white box delivers a food pellet. 

This white box acts as a secondary reinforcer and bridges the gap between the rat’s decision 

and obtaining reward. If the rat chooses the incorrect side, a correction trial is initiated. Here, 

the trial is aborted and repeats from the Cue phase after a 5-10 second timeout. Correction 

trials repeat until the rat chooses the correct side or to a predetermined limit (e.g., two 

corrections) to avoid group differences in the overall number of trials. Correction trials are 

excluded from data analysis (see Section 6). Inter-trial intervals range from 5 to 10 seconds. 
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For a direct comparison, Figure 1b outlines the trial sequence for a task examining 

category learning in humans. Briefly, the participant initiates each trial by pressing the spacebar 

(synonymous to the Star phase). Then, a category exemplar appears on the screen (Cue phase), 

and the participant decides its category membership by pressing either ‘q’ or ‘p’ on the 

computer’s keyboard (Choice phase). Visual feedback is given after each category decision 

(Reward phase). Inter-trial intervals range from 0.8 to 1.2 seconds.  

  

4.2 Alternative trial sequences 

The trial sequence can be adapted in multiple ways according to the demands of the 

experiment. First, the touch requirement during the Cue phase can vary. Three touches of the 

cue was chosen to ensure the rat actively attends to the category stimulus. One strategy to 

enhance learning is to increase this touch requirement incrementally across sessions. However, 

this requirement should not exceed ten touches because this may demotivate the rat. A 

disadvantage of this procedure is that it increases session duration and limits the number of 

training trials per session. Second, the categories can be mapped to arbitrary objects instead of 

spatial location. For instance, the rat could touch a black box for members of category ‘A’ and a 

white circle for members of category ‘B’. An advantage of this alteration is that the location of 

the response keys can be randomized across trials which would remove any confounds 

associated with a side bias. On the other hand, it is well established that rodents can easily 
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form associations according to spatial location. Third, the response keys can be changed to 

arbitrary objects (i.e., two black boxes) with responses mapped only to spatial locations. 

Interestingly, category learning is facilitated when the category exemplar itself serves as a 

response key. This procedure minimizes working memory load and maximizes stimulus-

response associations. Fourth, instead of correction trials, categories can be trained by 

selectively delaying reward for incorrect responses. Here, reinforcement is given after every 

trial, but reward delivery is delayed 1 second for trials with incorrect responses; this delay 

increases by 2 seconds every training session until 60 seconds is reached.35 Fifth, ITIs can be 

increased to facilitate learning.78 Of course, increasing ITIs also lengthens the duration of each 

training session. 

The current trial sequence is self-paced; for some applications, this procedure may be 

disadvantageous. For these cases, an alternative trial sequence can be used where trial phases 

have fixed durations. Specifically, the Cue phase and the Choice phase are available for two 

seconds each, and the rat must make all touch requirements within these time windows. If 

successful, the trial proceeds. If unsuccessful, the trial aborts and restarts after a timeout. Two 

seconds was chosen based on reaction time data from prior experiments. Two seconds 

provides enough time for the rat to respond but does not disrupt the flow of the trial sequence. 

These time limits can be adjusted as necessary. 
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4.3 Category training  

Typically, each training session contains approximately 80 training trials; one training session is 

administered daily. This maximizes the number of trials per session while ensuring the rat can 

complete all trials without losing motivation. However, the rat can potentially complete 

hundreds of trials per session and/or multiple sessions per day. Training sessions are given until 

a learning criterion or a set number of training sessions has been reached. Training to a 

criterion ensures all rats are at the same level of accuracy at the end of training. Our learning 

criterion is usually 75% accuracy in both categories for two consecutive sessions. It is important 

that both categories meet this accuracy threshold, otherwise high accuracies can be attributed 

to a side bias (e.g., if the rat only responds to the left response key, accuracy would be 100% for 

category ‘A’ and 0% for category ‘B’). Conversely, training to a set number of sessions ensures 

that all rats receive an equal number of training trials. This is better suited for statistical analysis 

and computational modelling (see Section 6). 

 

4.4 Category generalization 

A hallmark of categorization is that the knowledge obtained during training can be generalized 

to novel exemplars.79-80 Generalization ensures that the learner has not simply memorized 

single exemplars but instead has learned something about the class of objects. A common test 

of category generalization involves presenting novel exemplars that have varying degrees of 

This article is protected by copyright. All rights reserved.



  
 

similarity to the training set. This can be done by morphing exemplars or creating stimuli that 

have a mixture of features from both categories.67-69,71,73-76,81-83 Importantly, generalization 

curves can be created to observe how accuracy changes as stimuli deviate from the trained 

exemplars. Tests of category generalization can also examine which stimulus features control 

behavior. In these procedures, single stimulus features are removed, blurred, relocated, or 

covered.37,41,73-76,84-86 Generalization to these stimuli can inform how the categories were 

learned. For all tests of generalization, testing stimuli are intermixed among training trials. 

Testing stimuli are given non-differential feedback, where food reward is delivered regardless 

of the rats’ choice and its accuracy. This prevents further learning.  

 

4.5 Control task: Simple Discrimination 

In experiments examining neural function, any change in performance across groups can be 

attributed to multiple constructs not specific to categorization, including movement, 

motivation, perception, working memory, etc.89-90 Therefore, it is essential to train rats on a 

control task to rule out these possibilities. For this purpose, we have used a simple 

discrimination task.37 Here, the trial sequence is identical to category training (see Section 4.1). 

However, during the Cue phase, only two stimuli are presented (instead of categories of 

stimuli). One stimulus should elicit a touch to the left response key, and the other stimulus 

should elicit a touch to the right response key. Designing these stimuli deserves careful 
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consideration. They should have equal complexity as the category stimuli; however, they should 

not resemble the category exemplars because this may cause interference or generalization. 

Controlling for changes in motor behavior can also be obtained by cameras that track head and 

eye movements. 87-88 

 

5 CATEGORY LEARNING PARADIGMS 

Here, we review multiple categorization paradigms that utilize touchscreens. These paradigms 

span both perceptual and abstract category learning. Importantly, all tasks are compatible to 

neuroscientific approaches and are very similar to human category learning paradigms. 

 

5.1 Rule-based and information integration categorization 

Humans can develop and utilize category rules to solve category tasks.24,89 Typically, these rules 

are verbalizable and are created using a small subset of stimulus features. Rule-based (RB) 

learning involves testing hypotheses about potential rules and is associated with stepwise 

learning curves, where the steep inflection point indicates when the correct rule was selected. 

To examine RB category learning, a large literature has trained participants to categorize Gabor 

patches, which contain black and white gratings that change in spatial frequency and 

orientation.90-92 A two-dimensional stimulus space can be created using these continuous 

dimensions; categories are established by placing bivariate normal distributions on this two-
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dimensional stimulus space (Figure 2a). Here, each point represents an exemplar with a 

corresponding spatial frequency and orientation, and each distribution constitutes a category. 

In RB tasks, distributions are perpendicular to a stimulus axis; therefore, one stimulus 

dimension is category-relevant and can be used to generate a unidimensional category rule 

(Figure 2a). Information integration (II) tasks have distributions that are 45-degree rotations of 

the RB distributions (Figure 2b). Here, the categories are not separable according to a single 

stimulus dimension, and category decisions require information from both stimulus 

dimensions. Therefore, for II tasks, applying a category rule leads to low levels of accuracy.   

Humans and non-human primates learn RB tasks faster than II tasks.93 We replicated 

this effect in humans (Figures 2d and e). RB tasks are learned faster than II tasks because 

participants approach category learning by initially searching for unidimensional category rules, 

a strategy that benefits RB, but not II tasks. In fact, biasing unidimensional strategies hinders 

learning II tasks because participants commonly apply a suboptimal strategy. Conversely, rats 

robustly learn RB and II tasks at the same rate (Figure 2c).38,40 We argue that rats do not bias 

unidimensional category rules; therefore, RB tasks are not privileged, and II tasks are not 

disadvantaged (see Section 6.3.2).38 Instead, rats allocate attention according to the demands 

of the task (see Section 6.3.3).38 Specifically, RB tasks are learned by incrementally shifting 

attention towards the relevant dimension, whereas II tasks are learned by dividing attention 

between both dimensions.  
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5.1.1 Generalization 

Generalization can be assessed in multiple ways; all procedures involve sampling from novel 

parts of the stimulus space. First, we can sample novel exemplars that deviate from the training 

distributions along the relevant dimension (or for II tasks, the diagonal axis that separates the 

categories; Figure 3a).38 With this manipulation, generalization curves can be created to 

observe accuracy as a function of distance from the category boundary. Relative to the training 

distributions, generalization improves for exemplars farther from the category boundary, and 

generalization declines for exemplars closer to the category boundary (Figure 3b).38 This is also 

true for humans (Figure 3b). Second, we can sample novel exemplars that deviate from the 

training distributions along the irrelevant dimension (or diagonal axis for II tasks). Interestingly, 

humans generalize to these novel exemplars for RB tasks, but not II tasks.94 The interpretation 

is that for RB tasks, category generalization is not affected by novel irrelevant values because 

attention had been shifted away from that stimulus dimension. This type of generalization has 

gained traction in the comparative cognition literature; unfortunately, the animal results are 

unclear. For instance, macaques also generalize robustly to novel irrelevant values in the RB 

task, supporting the claim that macaques can apply category rules like humans.95 However, this 

effect was not replicated.96  
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There is a second motivation for examining generalization along the irrelevant 

dimension in RB tasks. In humans, it is well known that spatial frequency and orientation are 

perceptually separable stimulus dimensions, meaning that both dimensions can be processed 

independently from the other.97-98 Conversely, for perceptually integral dimensions, the value 

of one dimension influences the perception of another dimension.97 This issue becomes 

relevant for learning RB tasks, where rule use depends on differentiating a category-relevant 

dimension and a category-irrelevant dimension. Indeed, rule use is more difficult if the 

dimensions are perceptually integral.99 Although formal tests exist to assess perceptual 

separability,97 an alternative approach is to examine generalization along the irrelevant 

dimension for values that fall outside of the range of trained stimuli. For separable dimensions, 

generalization should be independent of the value of the irrelevant feature. For integral 

stimulus dimensions, generalization along the irrelevant dimension in the RB task would decline 

rapidly. On the other hand, other factors may complicate how the results are interpreted (e.g., 

novel stimulus values along irrelevant dimensions may attract attention simply because they 

are unfamiliar). 

 

5.1.2 Task switching 

In addition to generalization tests, rule switches can be implemented after category learning. 

For example, training distributions can be rotated 90 degrees (Figure 4a). With this 
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manipulation, the irrelevant dimension becomes relevant and vice versa for RB tasks. This is 

synonymous to an extradimensional shift, where attention is shifted to a new perceptual 

dimension.101 For II tasks, the relevant axis becomes irrelevant and vice versa. This is 

synonymous to an intradimensional shift, where the same dimensions are relevant, but values 

along each perceptual dimension are remapped to different behavioral responses.101 Notably, 

with this 90-degree rotation, category membership changes for only 50% of the category 

stimuli (Figure 4a; right). This may provide an additional advantage; it is possible to observe 

within-session how rodents approach stimuli with a new category response vs. stimuli with the 

same response (Figure 4b). 

 

5.2 Statistical Density 

From the human literature, it is known that the ratio between category-relevant and category-

irrelevant features affects category learning.101 Generally, spatial attention should be directed 

towards the category-relevant features and away from the irrelevant features. Therefore, 

attention becomes more selective and constrained when categories contain fewer category-

relevant features. In this paradigm, the ratio of category-relevant and category-irrelevant 

features can be manipulated easily.102 For humans, categories with many category-relevant 

features (i.e., Dense) can be learned at a young age and with minimal feedback, whereas 

categories with few category-relevant features (i.e., Sparse) require consistent feedback to find 
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the few relevant features.102 In the rodent version of the task, stimuli are structured in a 

pentagon configuration, and single features are placed at each corner of the shape (Figure 

5a).37 For Dense categories, features in three locations provide deterministic category 

membership (i.e., category-relevant features), and the features in the remaining two locations 

provide no information regarding category membership (i.e., category-irrelevant features). For 

Sparse categories, only the features in one location determine category membership, and the 

rest are irrelevant. The location of category-relevant and category-irrelevant features are fixed 

for both Dense and Sparse categories. Luminance is controlled across all features so that 

brightness cues cannot be used to solve the task. Rats consistently learn Dense categories 

faster than Sparse categories and require consistent feedback to learn both task types (Figure 

5b).37,42 

This stimulus set offers multiple tests of category generalization.37 First, novel category 

exemplars are stimuli that retain the category-relevant features but have new category-

irrelevant features (Figure 5c). Rats generalize to novel exemplars, suggesting that attention 

had been shifted towards the category-relevant features and away from the category-irrelevant 

features (Figure 5d).37 Second, in relocated exemplars, category-relevant features are shuffled 

to locations that normally contained category-irrelevant features. Generalization to these 

stimuli is reduced for rats, especially for Sparse categories, suggesting that rats learn about 

both the identity and location of category-relevant features. Third, singleton exemplars consist 
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of a single category-relevant feature. Generalization is reduced for these stimuli as well, 

suggesting that rats encode the entire stimulus structure and do not simply search for category-

relevant features within the stimuli. 

 

5.3 Naturalistic Categories 

Although artificial stimuli have great flexibility in controlling category-relevant and category-

irrelevant features, it is important to assess whether rats can also learn naturalistic categories. 

For instance, we have successfully trained rats to categorize images of chairs, flowers, people 

and cars (Figure 6a).35 Rats have also been trained to categorize human faces, man-made 

artifacts, animals, and movies containing rats.39,41,75 Generalization can be tested by presenting 

novel exemplars, relocating images, rotating images, or covering portions of the training stimuli 

to determine which features and dimensions influence the subject’s behavior.35,39,41 Generally, 

creating these stimulus sets is challenging because it is necessary to control for low-level 

features such as brightness, spatial frequency, and size in naturalistic stimuli. Furthermore, 

images should be chosen that contain few fine details because of the limited visual acuity of 

rodents. 

 

5.4 Abstract Categories 
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For abstract categories, learning is based on dimensions that are not inherent to the stimuli 

themselves. For example, rats can learn to discriminate ‘same’ vs. ‘different’ stimulus arrays.36 

In this design, an array of objects is presented on each trial. For members of the category 

‘same,’ all the objects within the array are identical; for members of the category ‘different,’ 

the objects are all unique (Figure 6b). A unique set of objects is used for each trial. Multiple 

species, including humans, baboons, and pigeons, discriminate these categories by comparing 

each array’s entropy, which is a measure of variability or diversity.103 Whereas exemplars of the 

category ‘same’ contain 0 entropy, exemplars of the category ‘different’ contain positive 

entropy. Understanding the neural underpinnings of abstract categorization in rodents may be 

extremely informative, as abstract categorization is prevalent in human category learning and is 

foundational for understanding abstract ideas like justice and peace.104 

 

6 DEPENDENT MEASURES AND ANALYSIS 

In this section, we review common analyses used with our multi-phase paradigm. We first 

outline the quantitative dependent measures that are used to assess learning and 

generalization. Then, we demonstrate how advanced techniques like machine learning and 

computational model fitting can be used to elucidate the cognitive mechanisms of category 

learning. Critically, because the task design is compatible for both rodents and humans, 

analyses can be directly compared across species.  
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6.1 Dependent measures 

Four main dependent measures are applicable to the current paradigm: accuracy, response 

time, touch separation, and response bias. Accuracy is defined as the proportion of correct 

responses during the Choice phase, excluding correction trials. Response time can be measured 

for each trial phase and can calculate the duration to categorize the stimulus (Cue phase) and 

execute a category decision (Choice phase). Touch separation uses the pixel location of touches 

during the Cue phase as a measure of choice anticipation.37 As the rat learns the categorization 

task, the three touches during the Cue phase deviate horizontally towards the correct side (left 

for members of category A and right for members of category B). Touch separation is calculated 

by subtracting the x-coordinate of the touch from the average x-coordinates of all touches 

during the Cue phase and averaging across all correct trials. A positive touch separation 

corresponds to x-deviation towards the correct side, and negative touch separation 

corresponds to x-deviation towards the incorrect side. Consistently, touch separation increases 

across learning and is highly correlated with session accuracy (Figure 7). Also, touch separation 

can be calculated for each of the three touches during the Cue phase. Generally, touch 

separation is larger for the third touch compared to the first touch (Figure 7). Touch separation 

can also be calculated using the y-coordinate of each touch; however, separation along the 

vertical dimension is not robust. Combining touch separation with reaction time can model the 
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decision-making process across learning (i.e., Drift-diffusion models).105-106 Response bias 

measures the relative number of responses to the left response key and the right response key 

to gauge side bias. Response bias is calculated using the following equation: 

Response bias = |𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡|
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡

, 

where Left is the number of trials the rat chose the left response key, and Right is the number 

of trials the rat chose the right response key. This measure ranges from 0 to 1, where 0 means 

no side bias and 1 means complete side bias. These dependent measures can thoroughly 

describe category learning and generalization across and within sessions. 

 

6.2 Machine learning 

Machine learning is an application of artificial intelligence that learns through experience 

without being explicitly programmed.107-108 Typically, a machine learning classifier is trained 

with a dataset and the performance of the classifier is assessed according to how well it can 

generalize to novel exemplars. Machine learning can be applied to the current design by 

comparing the classifier’s performance across training or experimental conditions. The classifier 

can be trained with any dependent measure; here we discuss touch separation. As described, 

touch separation relates to choice anticipation. As the rat learns the category task, the pixel 

location of the three touches during the Cue phase deviates towards the correct side. To verify 

that these touch patterns convey information regarding category membership, a support vector 
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machine classifier was trained with 1) the x-coordinates of the three touches during the Cue 

phase and 2) the trial’s category membership.37,109 Leave-one-out cross validation was used to 

test the classifier, such that the classifier was trained with all but one trial and tested with the 

remaining trial.110 This process was repeated for all trials. Importantly, the classifier had higher 

performance for sessions later in category training compared to earlier sessions (Figure 8a). 

This supports the results that touch separation is correlated with accuracy and indicates that 

this measure of choice anticipation develops as the rat learns the task. In a second analysis, the 

classifier performed better when it was trained with information from the third touch vs. the 

first touch (Figure 8b), supporting the idea that touch separation is related to the decision-

making process. 

  

6.3 Model fitting 

Fitting computational models to behavioral data can inform the learning process by providing 

estimates of measures that are not obtainable by accuracy alone, including how attention is 

distributed across stimulus features and how categories are represented by the learner. These 

measures can be compared across training and/or experimental conditions to elucidate 

mechanisms of category learning.  

 

6.3.1 Generalized Context Model 
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The GCM (Generalized Context Model) is a computational model that can assess how attention 

is distributed across stimulus dimensions.1 GCM is inspired by exemplar theory, which is a long-

standing theory of categorization that assumes categories are represented by multiple 

instances of the category previously experienced by the learner. In GCM, each instance is 

stored in memory as a point in an n-dimensional space, where n is the number of perceptual 

dimensions within the category stimuli (e.g., spatial frequency and orientation of Gabor 

patches). Making a category decision involves calculating the perceptual similarity between the 

current exemplar and all exemplars stored in memory. Specifically, the probability of assigning 

some exemplar i to some category a is the ratio between the similarity of the exemplar to all 

members of category A and the similarity of the exemplar to all members of all possible 

categories (see Supplemental Materials for more information).  

GCM has an attentional mechanism that can stretch or shrink each stimulus dimension 

according to importance. This type of attention affects how perceptual similarity is calculated 

and allows stimulus information from category-relevant dimensions to contribute more to the 

category decision. Mathematically, this is accomplished by adding free parameters, w, that 

weight each stimulus dimension. A large attention weight stretches a stimulus dimension and 

exaggerates distances along that dimension. A small attention weight shrinks a stimulus 

dimension and therefore distances along that dimension are ignored. These weights transform 

the stimulus space to reflect selective attention. 
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We recently applied GCM to estimate how rats distributed attention in RB and II 

categorization tasks (Figure 9a).38 Here, we presented the model with exemplars used during 

generalization sessions. We then optimized GCM’s performance to these exemplars such that 

the model’s predictions matched each rats’ behavior. This was accomplished by optimizing 

GCM’s free parameters (including the attention weight parameter; see Supplemental Materials 

for more information). For rats that learned an RB task, the estimated attention weight for the 

category-relevant dimension was high, and the estimated attention weight for the category-

irrelevant dimension was low (Figure 9b). Therefore, GCM predicted that rats learned the RB 

tasks by devoting more attention to the category-relevant dimension and ignoring the 

irrelevant dimension. For rats that learned an II task, estimated attention weights were 

equivalent for both stimulus dimensions (~0.5). Therefore, GCM predicts that rats learned the II 

tasks by dividing attention between the two dimensions. Together, these results suggest that 

rats distributed attention according to the demands of the task; selective attention was used to 

learn the RB tasks, and divided attention was used to learn the II tasks. This information 

provides insight into the capabilities of rodent category learning and informs neurobiological 

experiments that examine the neural basis of selective attention. 

 

6.3.2 Decision Boundary Analysis 
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GRT (General Recognition Theory) is a second computation model of categorization that can 

inform the type of strategy used by the learner to make a category decision.111 Specifically, GRT 

assumes that the learner places a decision boundary onto the stimulus space (see Supplemental 

Materials for more information). This boundary segregates the space into distinct regions; each 

region is assigned a unique category label. For instance, category ‘A’ is assigned for stimuli that 

fall on one side of the boundary, and category ‘B’ is assigned for stimuli that fall on the other 

side of the boundary. Linear boundaries are common; however, decision boundaries can take 

many forms (e.g., quadratic). Linear boundaries can be created using either a single stimulus 

dimension (synonomous to an RB strategy) or multiple stimulus dimensions (synonomous to an 

II strategy). A RB linear decision boundary is a line that is perpendicular to the category-relevant 

dimension. An II linear decision boundary, on the other hand, is a line that can have any slope. 

Generally, multiple models are fit to each rats’ data, where each model creates a decision 

boundary using a different strategy (e.g., RB or II strategies). The best fitting model is assumed 

to be the strategy used by the learner.  

We recently applied GRT to estimate the strategy used by rats that learned RB and II 

categorization tasks.38 For this analysis, three models were fit to each rats’ generalization data 

separately. Two models used RB strategies and created linear decision boundaries using a single 

stimulus dimension (i.e., spatial frequency or orientation). A third model used an II strategy and 

created linear decision boundaries using both stimulus dimensions (i.e., spatial frequency and 
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orientation). The model that best fit the rat’s behavior was assumed to be the strategy utilized 

by the rat (i.e., either an RB strategy or an II strategy; see Supplemental Materials for more 

information).112 We found that all rats that learned an II task were best fit with the model using 

an II strategy. Thus, rats learning the II tasks successfully applied the correct strategy. Figure 9d 

shows the best fitting decision boundaries for rats that learned an II task. Each point designates 

a testing stimulus presented during generalization sessions, and each line is the best-fitting 

decision boundary for a single rat. Notice that all lines are sloped. For rats that learned an RB 

task, only half of the rats were best fit with a model that used an RB strategy (10/24).38 Figure 

9c shows the best fitting decision boundaries for these rats; notice that about half the 

boundaries are perpendicular to an axis (i.e., an RB strategy) and the other half have a slight 

slope (i.e., an II strategy). These results indicated that some rats learning the RB tasks were 

using both stimulus dimensions to make their category decisions and therefore were still 

somewhat controlled by the category-irrelevant dimension. These results combined with the 

GCM fits suggest that rats learning RB task can shift attention towards the relevant dimension, 

but do not reliably divert all attention to this dimension as humans do. Incomplete selective 

attention may result from an inability to inhibit irrelevant information or may reflect a strategy 

that attempts to avoid costs associated with selective attention.113 

 

6.3.3 SUSTAIN 
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SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a neural 

network model of category.114 SUSTAIN is considered a clustering model, which means that it 

stores related exemplars together in memory. Similar to GCM, SUSTAIN contains an attention 

mechanism that estimates how each stimulus is weighted. Unlike GCM, SUSTAIN can track 

changes in attention across training trials. Here, we trained SUSTAIN to learn RB and II 

categorization tasks and then fit SUSTAIN’s performance to both rat and human learning data 

(see Supplemental Materials; Figures 10a-b). As described below, this allowed us to estimate 

abstract measures like selective attention and category representation. 

Similar to GCM, SUSTAIN contains a mechanism that prioritizes distances along 

category-relevant stimulus dimensions (i.e., selective attention). At the beginning of training, 

each dimension is assigned an equal attention weight (i.e., diffused attention). After every trial, 

these attention weights can shift towards category-relevant dimensions. The rate of change of 

the attention weights is determined by a free parameter (i.e., attention learning rate). We 

found that to learn RB tasks, SUSTAIN shifted attention towards the category-relevant 

dimension and away from the category-irrelevant dimension (Figure c). This was true when 

SUSTAIN was fit to both rat and human learning data. Notice SUSTAIN predicts that attention to 

the relevant dimension increases over training trials, whereas attention to the irrelevant 

dimension decreases over training trials. This pattern is similar between rats and humans, but 

the time scale is much faster for humans. To learn II category tasks, SUSTAIN predicts that 
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attention is split between both dimensions across training. This was true for both rats and 

humans. Together, these results agree with GCM and support that rats learn RB tasks by 

shifting attention to the relevant dimension. SUSTAIN expands on these results by detailing 

how attention shifts across training. 

Under SUSTAIN, categories are represented by one or multiple clusters. Each cluster 

reflects prior training experience(s) and is positioned in an n-dimensional space, where n is the 

number of perceptual dimensions contained within the training stimuli (i.e., spatial frequency 

and orientation). On each trial, clusters are activated according to the distance between the 

cluster and the current exemplar, where cluster activation decreases with increasing distance. 

Then, the cluster with the highest activation is the winner and initiates a probabilistic category 

decision. At the beginning of training, SUSTAIN contains a single cluster centered at the position 

of the first training exemplar. If the model makes a correct response, that trial’s exemplar is 

integrated into existing category representations, such that the position of the winning cluster 

is shifted in the direction of that exemplar. If an incorrect response is made, the complexity of 

the category representation increases, such that a new cluster is recruited and is positioned on 

the misclassified exemplar. Importantly, the number of clusters at the end of training can 

inform how categories were learned and represented. We found that to learn RB category 

tasks, SUSTAIN recruited two clusters (one for each category). This was true when we fit 

SUSTAIN to both rat and human learning data and suggests that RB categories were 
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represented by single prototypes (Figure 10d). Conversely, SUSTAIN recruited multiple clusters 

(4-5 per category) to learn II tasks. This was true for both rat and human data and suggests that 

II categories were represented through multiple exemplars (Figure 10d). The similarity in how 

rats and humans represent these category tasks hints at common neural mechanisms 

underlying category learning between species. It also suggests that the category structure itself 

has a large impact on how categories are learned. 

 

7 CONCLUSIONS 

We have capitalized on the advantages of touchscreen-based operant tasks to study the 

cognitive and neural mechanisms of category learning in rats. The flexibility of visual stimulus 

presentation has made it possible to examine several different types of categories and to 

quantitatively assess key factors in categorization such as statistical density, stimulus 

dimensions, and generalization functions. We have also demonstrated that the quantitative 

dependent measures from these categorization tasks are ideal for computational modeling of 

category learning.  These category learning tasks are also well suited for various neuroscience 

methods such as neurophysiology, in vivo imaging, and optogenetics. Lastly, the touchscreen 

tasks are very similar to tasks used in humans, indicating extraordinary potential for 

translational research on categorization. 
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We have used touchscreen-based tasks to examine learning of artificial, naturalistic, and 

abstract categories in rats. These tasks have also enabled us to examine various aspects of 

category structure and top-down goal-directed attention in rats. Artificial stimuli allow for 

complete control in the statistical density of category-relevant vs. category-irrelevant 

dimensions, a common manipulation in human category learning that examines how attention 

is distributed according to the demands of the task. These stimuli are also well suited for 

additional designs, including probabilistic category structures, where each stimulus feature 

probabilistically predicts category membership, and polymorphous category tasks, where a 

stimulus is a member of a category if it contains at least m out of n category-relevant 

features.17,115 Naturalistic categories allow for greater external validity and can investigate how 

these experimental procedures generalize to real-world categories. Finally, abstract categories 

examine the ability to extract features that go beyond perceptual similarity. We discussed 

‘same-different’ categories, but abstract category tasks can also assess concepts like symmetry, 

number cardinality, and number ordinality.116-117  

A clear advantage of touchscreen-based category learning tasks lies in the flexibility of 

potential analyses that go beyond accuracy and reaction time. As described, these include 

touch separation, machine learning, and computational model fitting, which together provide 

estimates of more abstract measures like choice anticipation, selective attention, and category 

representation. These analyses are crucial for translational studies because they provide 
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boundaries for the interpretation of experimental findings. For example, the fact that rats can 

learn RB tasks does not indicate that they use rules to solve the tasks like humans.38 Likewise, 

the fact that they do not show faster learning of RB tasks cannot be attributed to the absence 

of executive function.38 Therefore, by employing advanced analyses available to this 

methodology, we have a deeper understanding of the nature of rodent category learning.  

A second advantage of the current paradigm is that comparing categorization between 

rodents and humans becomes much more direct. For both rodents and humans, the trial 

sequence is self-paced and requires the participant to identify the category membership of the 

current stimulus by making one of two alternative responses. Therefore, both rodent and 

human participants can be trained with similar trial procedures and stimulus sets, and 

measures of reaction time and accuracy become relevant to compare category learning and 

generalization between species. These similarities also lend themselves well to computational 

modelling. For example, by fitting models like SUSTAIN to data from both species, we can 

compare selective attention and category representations. Specifically, we conclude that both 

rats and humans use selective attention to learn the RB tasks, but not the II tasks. Additionally, 

RB categories are typically represented by a single cluster (i.e., prototype), whereas II 

categories are represented by multiple clusters (i.e., exemplar).  

These similarities between rodent and human tasks add translational value and validity 

for using rodents to examine neural mechanisms underlying categorization. Testing clinical 
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populations directly can be difficult, and results are often affected by undesired confounds. 

Cutting-edge neuroscientific approaches provide high selectivity, specificity, and reliability to 

understand mechanisms from key brain regions that are implicated in neuroimaging studies 

and are affected in clinical populations, including the prefrontal cortex, hippocampus, and basal 

ganglia.118-120 Manipulating neural activity using techniques like optogenetics, chemogenetics, 

and local pharmacology can establish the necessity and sufficiency of activity in each brain 

region in categorization. Recording single unit neuronal activity in multiple regions 

simultaneously can elucidate how regions interact within trials and across learning. Finally, 

genetic manipulations create models of cognitive disorders that can test hypotheses of the 

underlying mechanisms. Together, research with rodent models will lead to a better 

understanding of how the brain mediates category learning. This information may inform novel 

treatments and medications for multiple cognitive disorders.  

Combining these neuroscientific techniques with computational approaches becomes a 

powerful tool for leveraging strong claims about neural function. For example, a recent theory 

of category learning, EpCon (Episodes-to-Concepts), posits that category learning is 

accomplished through a close interaction between prefrontal cortex and hippocampus.13 EpCon 

is a neural interpretation of SUSTAIN, where prefrontal cortex shifts attention towards 

category-relevant dimensions and hippocampus stores category representations. Using the 

current design, the EpCon framework can be tested directly. For example, parameter estimates 
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in SUSTAIN can be compared between control groups and rodents with selective inactivation of 

either the prefrontal cortex or hippocampus. This combination of neuroscientific and 

computational approaches (and others) will yield a much deeper understanding of the 

mechanisms underlying category learning and how they can be impaired in ADHD, Parkinson’s, 

schizophrenia, and amnesia. 

One limitation of touchscreens is that it is difficult to control factors like viewing angle 

and position. A solution is to use a design where the rodent’s head is semi-fixed.69,121 In this 

design, rats view a computer monitor by placing their head through a small hole in the wall of 

an operant chamber. This hole limits head movement; therefore, distance from the screen and 

viewing angle are kept constant. The rat completes trials by interacting with touch sensors and 

feeding needles that deliver liquid reward. With this design, it is possible for the rodent to 

complete hundreds of trials per session, which increases the feasibility of conducting 

computationally intensive analyses.69 Second, head-fixed designs are common, especially for 

research using mice.122-123 By restricting head movements, it is much easier to control the 

presentation of visual stimuli and conduct invasive neuroscientific approaches like calcium 

imaging and in vivo neurophysiological recordings. With this design, it is common to project 

virtual environments onto computer screens. Then, the rodent can navigate these 

environments by moving a cylindrical treatmill.122-123  
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To conclude, our current use of touchscreen-based operant procedures offers a 

framework for examining the neural mechanisms of category learning. These touchscreen 

paradigms have flexibility in experimental design, category stimuli, and analysis strategies. 

Moreover, these paradigms are directly applicable to human tasks of categorization, facilitating 

comparisons of category learning between species. These touchscreen-based procedures are 

also readily used with cutting-edge neuroscientific methods such as optogenetics, 

chemogenetics, in vivo neurophysiology, and calcium imaging (using miniscopes). The combined 

use of these neuroscientific methods and computational modeling is a very powerful approach 

for elucidating the mechanisms underlying cognition and pathological conditions that impair it.  
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Figure 1. a) The trial sequence used for category training and testing sessions for rodents. The trial begins 
with the presentation of a start stimulus (Star phase). The rat initiates the trial by pressing the star stimulus 
once, at which point a category exemplar appears on the screen (Cue phase; a Gabor patch is shown as an 
example). The rat must touch the exemplar three times, at which point copies of the exemplar appear on 
the left and right sides of the screen, acting as report keys (Choice phase). The rat makes one touch to 

either side, depending on the category membership of the stimulus (i.e., touch the left exemplar for 
members of category ‘A’, and touch the right exemplar for members of category ‘B’). If the rat chooses the 
correct side, a white box appears (Reward phase). One touch of the white box delivers a food reward. If the 
rat chooses the incorrect side, a correction trial is initiated such that the trial repeats from the Cue phase 
after a 5-10 s timeout. b) The typical trial sequence used for category training and testing sessions for 

human participants. After a press of the spacebar, a category exemplar appears on the screen (Cue phase). 
Then, the participant must press either ‘q’ or ‘p’ on the keyboard depending on the category membership of 

the stimulus (i.e., ‘q’ for members of category ‘A’ and ‘p’ for members of category ‘B’). Then, visual 
feedback is given. 
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Figure 2. a) Rule-based (RB) category distributions used for rodents. Here, normal distributions are placed 
on a two-dimensional space (e.g., the spatial frequency and orientation of gratings). Each distribution 

constitutes a category and each point represents a category exemplar. RB distributions are perpendicular to 
an axis and are learned by attending to this dimension. b) Information integration (II) category 

distributions. II distributions are simply 45-degree rotations of RB distributions. Importantly, categorizing 
these stimuli require information from both stimulus dimensions. c) For rats, a similar number of sessions is 
required to reach a learning criterion (75% accuracy in both categories, 2 consecutive sessions) for both RB 
and II task types. d) RB (left) and II (right) category distributions used for humans, with a Gaussian filter 
added to the stimuli. e) Humans reach higher accuracy levels for the RB tasks compared to the II tasks. 

Data in c redrawn with permission from reference 38. 
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Figure 3. a) For rats (left) and humans (right), generalization was examined by creating category 
distributions with the same category means but larger standard deviation along the relevant dimension (or 
axis in II tasks). b) Accuracy was calculated according to distance from the category boundary. For both 
task types, the boundary is defined as a line that segregates the two categories. For RB tasks, this line is 

perpendicular to a stimulus axis and therefore distance from the boundary is in units of the category-
relevant dimension (e.g., either spatial frequency or orientation, depending on the task). For II tasks, the 
line is sloped and therefore distance from the boundary is in units that combine both stimulus dimensions. 

Specifically, distance from the boundary refers to the Euclidean distance between the stimuli and the sloped 
line that segregates categories ‘A’ and ‘B’. For rats (left) and humans (right), accuracy improves as a 

function of the distance from the category boundary, which is observed for both RB and II tasks. Data in a 
and b redrawn with permission from reference 38. 
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Figure 4. a) Multiple rule-reversals are possible with the current design. After category training (left), 
category distributions are rotated 90 degrees (middle). As a result, the relevant dimension becomes 

irrelevant in RB tasks, and the relevant axis becomes irrelevant in II tasks. Importantly, only half of the 
stimulus space changes category membership (right; portions in purple). b) Pilot experiment where rats 

were given 15 training sessions to learn an RB task (not plotted). Then, rats were given 15 training sessions 
to learn distributions that were rotated 90 degrees from their initial training. Accuracy is plotted for stimuli 
that changed category membership after the reversal (Change) and stimuli that did not change category 
membership after the reversal (No Change). Notice that accuracy for No Change stimuli are well above 

chance, suggesting that rats maintained this category knowledge from the previous training. Accuracy for 
Change stimuli is first below chance and then increases as training progresses. 
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Figure 5. a) Artificial stimuli are arranged in a pentagon configuration and relevant or irrelevant features are 
placed at each node. In Sparse categories, the feature at the top location determines category membership 
and the other locations vary randomly. In Dense categories, the features at the top, upper left and lower 

right all determine category membership. b) Rats typically learn Dense categories faster than Sparse 
categories, as each stimulus contains a higher proportion of category-relevant information. c) Example 

testing stimuli from Sparse categories. Novel stimuli contain new irrelevant features. In Relocated stimuli, 
the relevant feature(s) are moved to locations typically containing irrelevant features. Singleton stimuli are 
simply the presentation of relevant features. d) Typical accuracy for the testing stimuli. Rats generalize to 
Novel stimuli but show generalization decrements to Relocated and Singleton conditions.   Data redrawn 

with permission from reference 37. 
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Figure 6. a) Example stimuli from naturalistic categories learned by rats. Rats discriminated images of 
people vs. cars and flowers vs. chairs. Images were controlled for lower level features like brightness. Then, 

novel images were presented to examine category generalization. b) Example stimuli from abstract 
categories learned by rats. Here, stimuli contained sixteen icons randomly distributed on the screen. The 
icons of members of the category ‘same’ (left) were all identical, whereas the icons of members of the 

category ‘different’ (right) were all different. 
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Figure 7. Touch separation is calculated using the x-coordinate of touches during the Cue phase. As 
accuracy improves, these touches deviate towards the correct side in anticipation of the rats’ decision. Here, 

we present correlations between touch separation and accuracy for rats learning RB (left column) and II 
(right column) category learning tasks. For this experiment, rats were presented training sessions until they 

reached a learning criterion.38 As a result, each rat was presented with a different number of training 
sessions. To ensure that each rat contributed an equal number of samples to the analysis, training sessions 
from each rat were vincintized into five training blocks (blocks 1-5). So, if the rat took 10 training sessions 
to reach the learning criterion, each training block represents the average of two training sessions. Touch 
separation was calculated according to the first touch (a), second touch (b), and third touch (c) during the 
Cue phase. Importantly, correlations between touch separation and accuracy are larger for the third touch 

compared to the first touch. 
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Figure 8. a) SVM was trained with touch information (i.e., the x and y coordinate) of touches during the Cue 
phase of correct trials.37 These results come from individual rats learning either Sparse (bottom) and Dense 
(top) categories. SVM’s accuracy in predicting category membership (indicated by the number above each 

box) improved when it was trained with touch information from later training sessions, suggesting that 
touches convey category information as the rat learns the category task. b) In a separate analysis, SVM was 
trained with touch information (i.e., the x and y coordinate) of touches during the Cue phase of correct trials 

from all training sessions. The classifier’s accuracy in predicting category membership was higher when it 
was trained with information from the third touch compared to when it was trained with information from 
the first touch. Therefore, category information increases with the touch number. This pattern is true for 

rats learning both Dense and Sparse categories. Data redrawn with permission from reference 37. 
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Figure 9. a) GCM was successfully fit to the generalization data of rats that had learned either an RB (left) or 
II (right) task.38 To visualize the model’s performance, stimuli within the generalization distributions were 

averaged into 18 distinct stimulus bins. Then, the proportion of choosing category ‘A’ was averaged for 
stimuli within each bin. Notice that the proportion of choosing category ‘A’ is high for stimulus bins within 

category ‘A’ and low for stimulus bins within category ‘B’. For both RB and II tasks, GCM’s predictions 
matched the rats’ behavior. b) These are the best fitting estimates for the attention weight parameters. The 
parameter estimates differed depending on the task type. Specifically, rats that had learned an RB task had 

high attention weights to the category-relevant dimension and low attention weights to the category-
irrelevant dimension, suggesting that rats learned RB tasks by shifting attention to the category-relevant 

dimension. Conversely, attention weight estimates for rats that learned an II task were equivalent for both 
stimulus dimensions. Therefore, rats learning an II divided attention evenly. c-d) GRT was fit to the 

generalization data of rats that had learned an RB (c) or II (d) category task.38 The gray points represent 
the stimuli presented during testing sessions, and each black line is the best fitting decision boundary for a 
single rat’s data. Only a half of rats that learned an RB task were best fit by an uni-dimensional decision 
boundary (indicated by a line perpendicular to an axis). The other rats were best fit by bi-dimensional 

decision boundaries (indicated by a line with a slight slope). These results suggest that although rats shifted 
attention towards the relevant dimension, some attention was also allotted to the irrelevant dimension. d) 
All rats that learned an II task were best fit with bi-dimensional decision boundaries (indicated by sloped 

lines), suggesting that these rats divided attention between both dimensions. Data redrawn with permission 
from reference 38. 
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Figure 10. SUSTAIN, a neural network model of category learning, was trained to learn either RB or II 
categorization tasks. Then, SUSTAIN’s predictions were optimized to the training data of rats (a) and 
humans (b). c) SUSTAIN can predict how attention is distributed between stimulus dimensions across 

training. Here, we plot SUSTAIN’s estimated attention weights for rats (left) and humans (right) learning an 
RB task. Under SUSTAIN, attention is initially split between both dimensions, and then can make small 
adjustments after each trial. For both rats and humans, the attention weight for the category-relevant 

dimension increases across training (red line), and the attention weight to the category-irrelevant 
dimensions decreases across training (blue line). This suggests that both rats and human learn RB tasks by 
shifting attention towards the relevant dimension. d) SUSTAIN represents categories with one or multiple 
clusters, which represent previously experienced training exemplars. Making a category decision involves 

comparing the similarity between the current stimulus and existing clusters. SUSTAIN has a mechanism that 
recruits new clusters. This mechanism is flexible; therefore, the number of clusters that represent each 
category can vary. Here, SUSTAIN learned RB tasks by recruiting two clusters (one per category) and 
learned II tasks by recruiting multiple clusters (4-5 per category). This pattern was consistent when 

SUSTAIN was fit to both rat and human data and suggests that both species represent these category tasks 
similarly. 
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