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Using judgment to select and adjust forecasts from statistical models 

 

Abstract 

Forecasting support systems allow users to choose different statistical forecasting methods. But 

how well do they make this choice? We examine this in two experiments. In the first one (N = 191), 

people selected the model that they judged to perform the best. Their choice outperformed forecasts 

made by averaging the model outputs and improved with a larger difference in quality between models 

and a lower level of noise in the data series. In a second experiment (N = 161), participants were asked 

to make a forecast and were then offered advice in the form of a model forecast. They could then re-

adjust their forecast. Final forecasts were more influenced by models that made better forecasts. As 

forecasters gained experience, they followed input from high-quality models more readily. Thus, both 

experiments show that forecasters have ability to use and learn from visual records of past performance 

to select and adjust model-based forecasts appropriately. 

 

Keywords: forecasting, judgmental selection, judgmental adjustment, forecast support systems 

 

 

1. Introduction 

Forecasting is important in many areas of human activity. Our research is framed in the context 

of demand forecasting in supply chain management, an area that has been the focus of much forecasting 

research in recent years. However, it is reasonable to expect that our findings will be relevant to 

forecasters in other domains in which predictions are made in a similar way. 

In demand forecasting, predictions for future sales are based on records of previous sales and 

on information about future events that may affect sales levels.  In the past, these sales forecasts were 

often made using unaided judgment. However, recent surveys (e.g., Fildes & Goodwin, 2007; Fildes & 

Petropoulos, 2015) have shown that nowadays between a sixth and a quarter of organizations use this 

approach, approximately a quarter use a purely statistical method, and just over a third make judgmental 

adjustments to statistical forecasts. Judgmental adjustments to statistical forecasts are typically made to 

allow for effects of exogenous events (e.g., planned promotions) that have effects not included in the 

statistical model. Research has identified the conditions under which these judgmental adjustments do 

and do not improve forecast accuracy (e.g., Fildes, Goodwin, Lawrence, & Nikolopoulos, 2009). 

Forecasting Support Systems (FSS) allow users to apply many different types of forecasting 

methods (algorithms) to make the required predictions. Typically, an FSS provides a graphical display 

of historical data and allows for a selection of different forecast methods, results of which are then 

overlaid on the data display. These different forecast methods typically produce different forecasts from 
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the same data series. However, no approach is universally superior to all others. Forecasting 

competitions have shown that which approach is best depends on the characteristics of the data series 

(e.g., Makridakis & Hibon, 2000). Thus, whether forecasters use an approach that is purely statistical, 

or one in which judgment is used to adjust statistical forecasts, they must decide which statistical model 

to use. Thus, in practice, judgment pervades the performance of forecasting tasks (Leitner & Wildburger, 

2011; Perera, Hurley, Fahimnia, & Reisi, 2019). 

Hence, we address two sets of questions. The first set is concerned with forecasters’ ability to 

distinguish good statistical forecasting models from poor ones. Do their choices outperform a simple 

average of the available forecasting models? What factors influence these choices? Is it easier to 

discriminate between two models when the difference in quality between them is greater (i.e., when 

signal strength is higher) and when noise in the data series is lower? The second set of questions is 

concerned with judgmental adjustment of initial judgmental forecasts. Is the importance that people 

place on the advice they receive from a statistical model greater when the model is of higher quality? In 

other words, do they take more account of advice from better models? Is the degree to which they take 

account of advice affected by the feedback they gain from experience with different models? 

We report two behavioural experiments. The first focusses on the first set of questions and 

therefore deals with judgmental selection of statistical models. We investigate how well people can 

select models by viewing records of past forecasts and outcomes and examine factors on which their 

ability to perform this task depends. The second experiment is concerned with forecasts made by 

combining judgment and the output of a statistical algorithm. We vary the quality of the statistical 

forecasts and examine whether judges responsible for producing the final forecasts are more influenced 

by forecasts produced by better statistical models. Also, if they are given feedback about their 

performance and are sensitive to it, the greater influence of good advice should increase as they gain 

experience with the task. We examine whether this is so.  

The first experiment uses a choice paradigm, thereby making the judgmental selection of the 

best forecast and, thus, the detection of its value as source of advice, explicit. In the second experiment, 

recognizing the value of the forecast is measured by the degree of adjustment towards the forecast 

advice, thus making the detection of the value of the advice implicit.  

We first discuss the state of the art in the literature on judgmental selection of forecasts. Next, 

we report an experiment to test the first set of questions posited above. This is followed by a brief 

discussion section and introduction to the second experiment. We conclude the paper with a discussion 

of the results of both experiments, limitations to our study and ideas for future research. 

 

2. Literature review 

Forecasting is an essential activity for companies who want to remain competitive in today’s world. In 

Fildes & Petropoulos’s (2015) survey, over half of their respondents indicated that they use some 

combination of statistical and judgmental methods in their forecasting. Given this pervasiveness of 
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judgment in forecasting practice, operational researchers have recognized that behavioural insights are 

needed and this has led to the development of behavioural operational research (Bendoly, Croson, 

Goncalves, & Schultz, 2010). This new area has received input from various disciplines. For example, 

some of the systematic deviations from normative decision making identified by cognitive psychologists 

have important implications for forecasting performance in practice. Some of these effects, such as trend 

damping (Bolger & Harvey, 1993; Lawrence & Makridakis, 1989) may arise from use of the heuristics 

(e.g., anchoring-and-adjustment) identified by Tversky and Kahneman (1974) whereas others, such as 

optimism (Weinstein & Klein, 1996), may arise from motivated reasoning (Kunda, 1990).  

 Researchers have examined three broad approaches to reducing these forecasting errors: a) 

selection of a presentation format for the data series that enhances forecasting ability, b) provision of 

feedback that enables people to improve their forecasting ability by learning from experience, and c) 

provision of advice from experts or forecasting algorithms. We will discuss these approaches in turn. 

In our experiments, participants responded to data series and forecasts from those data series 

that were presented to them in graphical format. This type of presentation has long been use in studies 

of judgment in forecasting tasks (Willemain, 1989, 1991) and practitioners increasingly use data 

visualization not just in forecasting but also in other supply chain management tasks (Bendoly, 2016). 

There is good reason for this. People are better at making judgments about data that are graphically 

displayed than about data provided in numerical form. For example, Harvey and Bolger (1996) found 

that trends were harder to discern when data series were presented in a tabular than in a graphical format 

and that, as a result, forecast error was lower when data could be visualised. Furthermore, the type of 

graphical format (line graphs versus point graphs) influences accuracy of judgmental forecasts 

(Theocharis, Smith, & Harvey, 2019). 

In our second experiment, we examine the effect of providing forecasters with outcome and 

performance feedback on their point forecasts and on point forecasts produced by forecasting 

algorithms. Outcome feedback provides information about the actual value of the variable being forecast 

or the optimal forecast that should have been made. Performance feedback gives information about the 

error in the forecast that has been made. A third type of information that can be given to forecasters is 

often erroneously termed “task properties feedback”: it provides people with advance information about 

their task (e.g., statistical features of the data series to be forecast) and so should actually be called 

feedforward or guidance (Björkman, 1972). Should we expect outcome and performance feedback to 

improve accuracy?  Reviewers are in agreement that the answer to this question is “no”. 

Goodwin and Wright (1993, p. 157) say that “Research suggests that outcome feedback has little 

value while task properties feedback can be effective”. Consistent with this, Sanders (1997, pp. 136-

137) argues that “Research studies have found that simple outcome feedback does not provide a 

significant contribution in helping subjects learn about judgmental tasks. … On the other hand, 

providing task properties feedback to subjects appears to improve the performance of judgmental tasks”. 

Finally, Lawrence, Goodwin, O’Connor, and Önkal (2006, p. 507) do say that “Feedback has been 
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shown to improve the accuracy of point forecasts” but they are not specific about the type of feedback 

to which their statement refers. However, as the four papers that they cite as evidence in support of it all 

show effects of task properties feedback rather than outcome feedback, we assume that they are not 

claiming that outcome feedback has been shown to be effective. Thus the consensus is that outcome 

feedback (or the performance feedback implicit in its provision) does not improve accuracy in 

judgmental time series forecasting. However, explicit demonstrations of the ineffectiveness of outcome 

feedback have been published only for closely analogous judgment tasks (Harvey, 2011; Klayman, 

1988). 

In our second experiment, we investigate people’s ability to use advice provided by a forecasting 

algorithm. There is a large literature on how well people are able to use advice (Bonaccio & Dalal, 

2006). In general, people put too much weight on their own judgment and too little on information 

received from other sources (Harvey & Fischer, 1997; Yaniv, 2004) when they combine the two. That 

this is especially so when the other source is an algorithm (Gardner & Berry, 1995; Lim & O'Connor, 

1995) implies that people are even more reluctant to take advice from an algorithm than from a human 

expert; in other words, they show algorithmic aversion. However, most research demonstrating this 

phenomenon has focussed on people’s preference for selecting a human over an algorithm as a means 

of achieving some decision goal rather than on how those sources of information are weighted when 

combined to reach that goal. For example, Meehl (1954) showed that algorithmic methods outperform 

clinical judgment in diagnosis, prognosis and treatment decisions but that doctors prefer to use their 

judgment. Recent meta-analyses by Grove et al. (2000) and White (2006) included many studies carried 

out since Meehl’s (1954) original one and found that his conclusions remain valid. Despite this, 

clinicians still prefer to use judgment (Grove, 2005; Keeffe et al., 2005). This phenomenon is now 

known as algorithm aversion. 

Dietvorst, Simmons, and Massey (2015) were interested what causes it. They carried out a series 

of experiments in which people placed bets either (1) on their own performance or on that of a model 

or, (2) on the performance of someone else or on that of a model. Their profits at the end of the 

experiment were entirely dependent on the accuracy of the forecast source they chose throughout the 

session. In all their experiments, the model significantly outperformed judgments of the participants 

themselves and judgments of the other person. Despite this, people placed their bets much more often 

on their own judgment (or on the other person’s judgment) than on the recommendations of the superior 

algorithm. They did this even when the superior performance of the algorithm was directly contrasted 

with the inferior performance of themselves or the other human. This effect was consistent across 

different tasks and incentive structures.  

Dietvorst et al. (2015) also measured people’s trust in the decisions based on algorithms and on 

those based on judgment. They found that confidence in algorithms dropped much more after seeing an 

error than their confidence in judgment did. It appears that people expect algorithms to be perfect: in 

Madhavan and Wiegmann’s (2007) terms, they are subject to a ‘perfection schema’. In contrast, they 
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expect humans to be imperfect. Hence, when an algorithm makes an error, people experience this as an 

unexpected event and, as a result, it has a greater negative effect on the reputation of the algorithm than 

it would have on the reputation of a human advisor making the same error. Prahl and Van Swol (2017) 

work supports this: they found that people’s use of advice dropped significantly more after they received 

bad advice from an algorithm than bad advice from a human judge. Findings consistent with these 

conclusions have also been reported in studies of the effects of automation in other domains.  For 

example, humans exaggerate the errors made by automated machines, even when such errors occur only 

very rarely (Dzindolet, Pierce, Beck, & Dawe, 2002; Hoff & Bashir, 2015).  

Within the forecasting literature, preference for a human judge over an algorithm as a source of 

advice has been demonstrated by Önkal, Goodwin, Thomson, Gönul, and Pollock (2009). Their 

participants made an initial forecast from a graph of past sales data. They were then given advice before 

having the opportunity to revise their forecast. One group of participants were told that this advice came 

from an expert forecaster and a second group were informed that it had been produced by computer 

using a statistical forecasting algorithm. The advice itself was exactly the same: only its apparent source 

differed. Participants were much less accepting of the advice if they thought that it came from an 

algorithm. Those in both groups adjusted their forecasts towards the advice but did much more so when 

they had been told that the advice was produced by a human source.  

According to the Hovland-Yale model of persuasion and attitude change (Hovland, Janis, & 

Kelly, 1953), factors that lead people to change their opinions can be classified into those related to the 

source of the new information, the nature of the message carrying the new information, the 

characteristics of the receivers of that information, and the context or channel through which it is 

transmitted. Advice Response Theory (Feng & MacGeorge, 2010) is based on this approach. It stresses 

the importance of message-related (e.g., politeness), advisor-related (e.g., expertise) and receiver-related 

(e.g., current mood) characteristics of the advice. Though it was developed to account for differences in 

effectiveness of advice given by people to other people, it can also be applied to cases in which humans 

receive advice from algorithms. For example, in Önkal et al.’s (2011) study, messages for both groups 

were the same but characteristics of the advisor were not. Perceived competence of advisors is likely to 

have differed. Sniezek and Van Swol (2001) have shown that these factors affect trust in and credibility 

of advice, which, in turn, predict the degree to which advice is utilized by those receiving it.  

Forecasters assess the competence of human and algorithmic advisors differently. As we have 

seen, they expect algorithmic advisors to produce consistently good advice and, when they do not, the 

reputational consequences are more severe than they are for human advisors. Why is this? Forecasters 

receiving advice from an algorithm are likely to rely only on its performance whereas those receiving 

advice from a person can also take account of other factors, such as intentions, integrity, emotions, and 

nonverbal cues that are irrelevant when it comes to algorithmic advice. Hence, when an algorithm makes 

an error, it is perception of its competence that drops. In contrast to the situation in which a human 

advisor makes an error, there are no other characteristics that can be used to explain the failure as an 
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exceptional event rather than reflective of underlying competence (Gefen, Karahanna, & Straub, 2003; 

Paravastu, Gefen, & Creason, 2014).   

As our aim here was to identify causal relationships, an experimental approach was required. 

This was because it provided us with control over the independent variables that we hypothesised would 

influence the dependent ones that we measured (Shadish, Cook, & Campbell, 2002). Hence, we carried 

out two behavioural experiments. In the first one, we examined forecasters’ ability to distinguish good 

algorithmic-based forecasting advice from poor algorithmic-based forecasting advice (in the form of 

good versus poor statistical models). This experiment used a choice paradigm, making the detection of 

the quality of the forecast explicit. Later, in our second experiment, we studied whether forecasters’ 

adjustment behaviour is influenced by the perceived accuracy of the statistical model, making the 

detection of the quality of the forecast implicit. 

 

3. Experiment 1: Judgmental selection of statistical forecasts 

Research on judgmental selection of statistical forecasts is limited in quantity. Lawrence, 

Goodwin, and Fildes (2002), focussing on the design of forecast support systems, divided participants 

into two groups: those who had total control over the FSS, including how it was displayed and selection 

of the model, and those who could not modify anything but were presented with an optimal model 

selection by the FSS. All participants could subsequently accept forecasts as specified by the FSS or 

else make adjustments to modify them. Participants in the first group made these adjustments 

significantly less often and were thus more accepting of the final model. However, this acceptance of 

the selected model forecast came at a price: participants were not very adept at selecting a good 

forecasting method and, consequently, their forecast accuracy was significantly worse than that of 

participants in the second (no-modification) condition.  

Recently, Petropoulos, Kourentzes, Nikolopoulos, and Siemsen (2018; see also Petropoulos, 

2019) compared three ways of selecting forecasting models; a) algorithmic selection, b) judgmental 

selection, c) selection based on judges’ detection of the absence or presence of trends and seasonality in 

the data (termed ‘model-build’). Selection was made from four exponential smoothing models that could 

capture different patterns in the data (level, trend, seasonality, trend plus seasonality). Furthermore, the 

data series were selected so that each of the four models was best for some of the series. Thus, there was 

a strong correspondence between the characteristics of the models that could be selected and the features 

of the data series for which the selection was made.  

Petropoulos et al. (2018) found that judgmental selection was worse at selecting the best model 

than either the algorithmic selection or the model-build approach (which were no different from one 

another). However, judgmental selection was better than algorithmic selection at avoiding the ‘worst’ 

models. As a result, overall accuracy of judgmental selection was better than that of algorithmic 

selection. Although the tasks used are not directly comparable, this finding throws a much more positive 

light on judgmental selection than that of Lawrence et al. (2002). Was there some aspect of Petropoulos 
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et al.’s (2018) task that could account for this? Harvey (2019) highlighted the strong correspondence 

between the features of the models from which selection was made and those of the data series for which 

the selection was made. He argued that: “If the models had been more heterogeneous (e.g., exponential 

smoothing, ARIMA, frequency domain approaches, etc.) and the data series more varied (e.g., 

containing trends, autoregressive and moving average components, fractal patterns with different Hurst 

exponents, etc.), selecting the best model may have been much more difficult, and the accuracy may 

have been reduced below that of algorithmic selection”.  

 Although these two studies do not provide unequivocal guidance about the method of model 

selection that should be adopted, it is likely that, in practice, judgmental selection is much more common 

than algorithmic selection. Judgment and forecasting are, in essence, inseparable (Perera et al., 2019) 

and, as we have seen, there is a great deal of evidence from research in many domains, including 

forecasting, that people prefer to use their judgment, even in situations in which objective measures 

show that it performs less well than algorithmic approaches. Further research into the quality of 

judgmental selection of forecasts is therefore important.  

In this experiment, forecasters were required to identify the better of two models by comparing 

the two series of forecasts that those models had made in the past with the series of outcomes that those 

models had been forecasting. They were asked to select the model forecast that performed best, i.e., was 

closest to the real data. This task should be easier when signal strength (i.e., the difference in quality 

between the two models) is greater (Stanislaw & Todorov, 1999) and when the data series are subject 

to a lower level of noise (Han, Wang, Petropoulos, & Wang, 2018; O’Connor, Remus, & Griggs, 1993). 

In contrast to Petropoulos et al. (2018), different models were not more effective for different types of 

series: the task was not to match the model type to the series type that it was most effective in forecasting. 

Instead, performance of the three models was ranked in the same way for all series. We expected that 

people would find it more difficult to distinguish the first-ranked (i.e., good) model from the second-

ranked (i.e., intermediate) model than to distinguish the first-ranked model from the third-ranked (i.e., 

poor) model and that their performance in both these discriminations would be worse when there was 

more noise in the data series. The objective benchmark with which participants’ judgment accuracy was 

compared was that produced by the average of the two models from which they had made their selection. 

More formally: 

 

Hypothesis 1 (H1): The percentage of correctly identified (PCI) statistical forecasting models 

will be greater when data series contain low noise series than when they contain high noise. 

Hypothesis 2 (H2): The PCI will be greater when the best performing model is compared with 

the poor model than when it is compared with the model of intermediate quality. 

Hypothesis 3 (H3): Forecasting using the statistical model selected by participants leads to a 

lower mean absolute error (MAE) than the simple average of the forecasts produced by the two models 

from which participants made their selection.  
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3.1. Method 

Each participant saw graphs of time series on their own individual computer screen and made 

their responses by clicking a mouse. Dependent variables were PCI and MAE. Independent variables 

were noise level in the data series (high versus low) and choice of statistical advice (between good and 

poor quality versus between good and intermediate quality). Both were varied between-participants in 

a factorial fashion. To ensure some generality to our findings, series autocorrelation was also varied.   

 

3.1.1. Participants 

One hundred and ninety-one participants took part in the study, of which 139 were female. Their 

mean age was 20.10 (SD = 4.10). Participation was mandatory as part of a course at University College 

London. Participants had received introductory courses on statistics and not participated in similar 

experiments by the researchers. The top performers (the three students who identified the best 

performing model most often) in every condition were awarded a £5.00 cash prize. Incentives such as 

these are often used by researchers to mimic real-life rewards tied to performance (Perera et al., 2019). 

 

3.1.2. Stimulus materials 

Sixty 50-point sales series were simulated with a mean value of 300. Half of the series had a 

standard deviation (SD) of 21 (low noise series, 7% of the mean) and the other half had an SD of 36 

(high noise series, 12% of the mean). For each noise type, 10 series were independent (AR = 0.0), 10 

series had positive autocorrelation (AR = 0.8) and 10 series had negative autocorrelation (AR = -0.8).  

Three forecasting models were calculated for every series. These were the naïve forecast (𝐹𝑡 =

 𝑋𝑡−1, where the last actual value in the series 𝑋𝑡−1 served as the forecast 𝐹𝑡); an exponential smoothing 

forecast (𝐹𝑡 =  𝛼𝑋𝑡−1 + (1 −  𝛼)𝐹𝑡−1, where the smoothing constant, α, was determined by minimizing 

the sum of the squared forecast error); and an autoregressive forecast (𝐹𝑡 =  𝑎𝑋𝑡−1, where the first-order 

autocorrelation, a, that was employed to generate the data series, was used to make forecasts). Note that, 

over the long-term, the autoregressive forecast could not be outperformed and so, for convenience, we 

refer to it here as the ‘ideal’ forecast. (While business practitioners may have access to more than three 

models, we limited our choices to three levels of performance based on the simulated historical data. 

While a naïve forecast may be of value in certain circumstances, it was a poor choice when compared 

to the historic data that was provided to participants. Similarly, while an autoregressive forecast may 

not be ideal in practice, it was deemed so for this experiment as it was the underlying signal of our 

historic sales series.)  

The data series were presented by a blue line graph labelled as ‘sales’. Two out of three 

forecasting methods were selected, depending on the condition, and presented using a yellow line and a 

green line overlaid on the sales series indicating the statistical forecast history from week 2 to 50 and 

the forecast for week 51. These forecasts were labelled ‘model 1’ and ‘model 2’ (see Figure 1).  
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Models and series appeared in different colors to render them easily discriminable. The 

experiment was coded in PHP and run online. 

 

3.1.3. Design  

There were four conditions: noise level in the data series (high versus low) was crossed with 

type of choice of statistical advice (good/poor quality versus good/intermediate quality). Each 

participant was randomly assigned to one of these four experimental conditions, resulting in the sample 

sizes in each condition displayed in Table 1. The 30 data series within the two high-noise and two low-

noise groups were presented in a different random order for each participant.  

 

Table 1. Representation of the four experimental conditions with their sample sizes. 

 Good (AR) vs. Poor (Naïve) 

model 

Good (AR) vs intermediate (ES) 

model 

Low Noise (7% of the mean)                    N = 42                N = 49 

High Noise (12% of the mean)                    N = 53                N = 47 

 

We report participants’ MAE scores relative to the time series signal produced by the generating 

algorithm (i.e., excluding the contribution from noise term). This is equivalent to the ideal forecast: it 

produces the minimum error in the long-term. Hence, the MAE score for the autoregressive forecast was 

0 (SD = 0). For comparison, the MAE score for the exponential smoothing forecast was 7.67 (SD = 

6.69) and for the naïve forecast, it was 19.46 (SD = 19.55). These three errors are all significantly 

different from one another at p < .001. 

 

3.1.4. Procedure 

Participants were instructed to study the graphs they were given and to choose the most accurate 

forecasting model, i.e., the model with the lowest error. They initially saw the graph with only the sales 

series in form a line. When they were ready, they clicked on a button labelled ‘Show forecasting models’. 

Both models then appeared overlaid on the sales series. A choice box appeared on the right side of the 

graph. Participants used this to indicate the type of forecast that they deemed to be most accurate. Once 

they had done this, the sales series was updated with the value for week 51. This enabled them to evaluate 

their choice post-hoc (but they could no longer change their choice). They then clicked a box to move 

on to the next graph. After they had responded to all 30 graphs, they provided demographic details (age 

and gender). 
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Figure 1. Display of an experimental trial. 

 

3.2. Results 

Below we report results of analyses of PCI and MAE. We also compare the MAE produced by 

participants’ selection of one of the statistical forecasting models with the MAE obtained by taking the 

average of the forecasts produced by the selected and non-selected statistical models.  

 

3.2.1. Percentage correctly identified    

Overall, mean PCI was 60.31 (SD = 14.95), significantly higher than the 50% expected by 

chance (t (190) = 9.53, p < .001). This was true for each of the four conditions. 

A two-way factorial between-participants analysis of variance (ANOVA) using noise level (high 

versus low) and choice of forecast (good/poor versus good/intermediate) as factors revealed only a main 

effect of choice of forecast (F (1, 187) = 4.35; p = 0.038), such that the PCI for a good model contrasted 

with a poor model (PCI = 62.53, SD = 17.26) was higher than the PCI for a good model contrasted with 

an intermediate model (PCI = 58.11, SD = 11.93). There was no main effect of noise (F (1, 187) = .83; 

p = 0.364), nor an interaction effect between the two variables (F (1, 187) = .32; p = 0.570). 
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Figure 2. Mean PCI scores in each of the four conditions of the experiment formed by 

crossing noise condition (low/high) with type of comparison (good versus poor forecasting algorithm 

versus good versus intermediate quality forecasting algorithm).  

 

3.2.2 Mean absolute error 

A two-way factorial between-participants ANOVA using the same factors as before showed a 

main effect of noise level (F (1, 187) = 25.55; p < .001), such that high noise series had a higher MAE 

(M = 6.08, SD = 4.53) than low noise series (M = 3.49, SD = 2.46). There was also a main effect of 

choice of forecast (F (1, 187) = 56.09, p < .001), such that the good model contrasted with the poor 

model led to a higher MAE (M = 6.71, SD = 4.67) than the good model contrasted with an intermediate-

quality model (M = 3.00, SD = 3.90). Additionally, there was a marginally significant interaction effect 

between the two variables (F (1, 187) = 4.07, p = .045). Simple effect analysis showed that the statistical 

difference between low and high noise series was more marked in series where the good model was 

contrasted with the poor model (F (1, 187) = 24.72, p < .001) than where the good model was contrasted 

with the intermediate model (F (1, 187) = 4.67, p = .032). 
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Figure 3. Mean MAE scores in each of the four conditions of the experiment formed by 

crossing noise condition (low/high) with type of comparison (good versus poor forecasting algorithm 

versus good versus intermediate quality forecasting algorithm). 

 

3.2.3. Comparison of MAE with that obtained by simple statistical averaging of both models 

To test hypothesis H3, we examined whether the MAE that participants produced by selecting a 

forecasting approach was different from the MAE obtained by taking the simple average of the results 

of the two approaches. Results of this analysis are displayed in Table 2. In all conditions, irrespective of 

noise level and the quality of the forecasts that were compared, people’s choices outperformed the 

simple average. This is consistent with H3. 

. 

Noise level Contrasted forecast 

qualities 

Participant MAE MAE of averaged 

models 

Df t p 

Noise: low Good vs. poor 4.87 (SD = 2.89) 7.83 (SD = 7.69) 41 -6.66 <.001 

 Good vs. intermediate 2.32 (SD = 1.06) 3.50 (SD = 3.12) 48 -7.89 <.001 

Noise: high Good vs. poor 8.17 (SD = 5.29) 12.47 (SD = 11.88) 52 -5.93 <.001 

 Good vs. intermediate 3.73 (SD = 1.36) 4.60 (SD = 3.98) 46 -4.40 <.001 

Table 2. One sample t-tests for the comparison of model averaging and participant’s choice 
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3.3 Discussion 

Forecasters were required to identify the better of two models by comparing the two series of 

forecasts that those models had made in the past with the series of outcomes that those models had been 

forecasting. Forecasters were adept at distinguishing the better statistical model, both when people were 

selecting between good and poor statistical models and when they were selecting between good and 

intermediate-quality models. This effect was not dependent on the noise level, a finding inconsistent 

with H1. However, noise played a significant role in the level of accuracy resulting from the choice of a 

forecast.  

Results were consistent with hypothesis H2: forecasters were better at identifying the better 

statistical model when comparing forecasts produced by the good model with those produced by the 

poor one than when comparing forecasts produced by the good model with those produced by a model 

of intermediate quality. Their ability to distinguish models was higher when signals were more 

discriminable.  

The analysis also showed that MAE was higher when people were choosing between the good 

and poor models than when they were choosing between the good and intermediate-quality forecasting 

models. This implies that forecasting errors produced by incorrect choices in the former case led to a 

much higher level of MAE than those produced by incorrect choices in the latter case. This means that, 

although there were fewer errors when people selected between good and poor forecasts, those that did 

occur were large enough to ensure that the overall MAE score was larger than when they chose between 

good and intermediate quality forecasts. People were better able to distinguish a good model from a poor 

model, but a wrong choice was ‘punished’ more severely in this situation. This finding is remarkably 

consistent with one reported by Petropoulos et al. (2018). They showed that, though judgmental 

selection was worse at selecting the best model than algorithmic selection, it was better than algorithmic 

selection at avoiding the worst models and that, as a result, overall accuracy of judgmental selection was 

better than that of algorithmic selection. 

Finally, results were consistent with hypothesis H3: the forecasts produced by the model selected 

by participants outperformed the simple average of the forecasts from which participants made their 

selection. This result appears to conflict with findings reported by Petropoulos et al. (2018). They 

compared a) judgmental selection with b) the average of four models and c) the average of the best two 

of those four models. Mean absolute percentage error (MAPE) scores for forecasts made using these 

three approaches were 23%, 22%, and 23%, respectively. Thus, in their study, judgmental selection did 

not outperform the simple average of forecasts from which participants made their selection. There are 

various possible reasons for the difference between their results and ours. One is that we measured error 

using MAE whereas they used MAPE. (If we look at the size of the mean percentage error (MPE) scores 

that they report, the pattern obtained for the above three approaches was more similar to the one that we 

found: 1.5%, 2.9% and 4.7%.) Another is that the variance in the quality of the forecasts produced by 
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their models was probably less than that produced by ours and so there would have been less to gain by 

averaging them. 

In summary, the experiment showed that people can make reasonably good explicit 

discriminations to determine which of two models produces the better forecasts and that their ability to 

do so depends on the factors that detection theory implies are important in this type of task (Stanislaw 

& Todorov, 1999). In our second experiment, we do not focus on explicit discrimination. Instead, we 

ask whether better forecast models have a greater influence on final forecasts when people combine 

model-based forecasts with their judgment. In other words, does their behavior indicate that they make 

good implicit assessments of the quality of model-based forecasts?   

 

4. Experiment 2: The influence off statistical models on judgment 

In this experiment, we asked whether people who make forecasts by combining statistical 

models with their judgment make more use of advice from statistical models that produce better 

forecasts. Participants first made a purely judgmental forecast from the data series. They were then 

provided with statistical advice from an ideal, intermediate or poor algorithm and made another forecast 

from the same data series in the presence of this advice. While they did not explicitly state how good 

they judged the model to be (in contrast to Experiment 1), the size of the shift in the forecast in response 

to the advice from the statistical model (Harvey and Fischer, 1997) provides a measure of the weight 

given to the advice and the reduction in forecast error produces an estimate of its beneficial effect. The 

degree to which people weight information that they receive from different sources is not something to 

which they have conscious access: the weights that people judge that they use often fail to match the 

weights that statistical analyses show they actually use (e.g., Harries, Evans, & Dennis, 2000). Whereas 

Experiment 1 showed that people can explicitly select the better forecasting model, here we ask whether 

they implicitly put greater weight on better models. Kahneman (2011) and others have argued that 

implicit and explicit tasks are performed by different cognitive processing systems: if he is correct, there 

is no reason to suppose that a task (e.g., discriminating between the quality of different forecasting 

models) performed well by one of these systems will be performed well by the other.  

The research on algorithm aversion discussed above implies that people will be reluctant to take 

the algorithmic advice and, as a result, will not draw as much benefit from it as they could do. They will 

study the performance of the model in the previous time periods and observe the errors that it makes. 

This will lead to an undervaluation of the statistical model as predicted by algorithm aversion research 

(Dietvorst et al., 2015).  However, if they can distinguish good from poor statistical advice, it is still the 

case that they should be more influenced by better advice and that such advice should have a greater 

beneficial effect. Hence:  

Hypothesis 4 (H4): accuracy of final forecasts will be higher when better quality forecast advice 

is provided. 
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Hypothesis 5 (H5): the shift of in participants’ initial judgments towards advice will be greater 

when the advice is of higher quality. 

After their final forecast for each series, participants were informed of a) the forecast error in 

their final judgment, b) the forecast error in the algorithmic advice they received, and c) whether they 

could have improved their accuracy by completely following the algorithmic advice. By providing this 

feedback, we aimed to determine whether forecasters learn across the session to shift their forecasts 

closer to the good advice that would improve them.  

Madhavan & Wiegmann’s (2007) argument that people apply ‘perfection schema’ to algorithms 

implies that they will continue to trust an algorithm when it does not make errors that could be avoided. 

In other words, if the forecast errors appear to be produced by random error in the data series rather than 

by a failure to pick up pattern components in the series, forecasters will increasingly come to assume 

that the ‘perfection schema’ is appropriate for the forecast model and, hence, increase their trust in it. 

This suggests that, given the appropriate feedback, they will use forecasts produced by such a model 

more when they combine them with their judgmental forecasts. In contrast, if feedback indicates that a 

forecasting model produces clear errors (e.g., by failing to pick up obvious patterns in the data series), 

then, as Dietvorst et al (2015) suggest, forecasters will rapidly lose trust in the forecasting model and 

show evidence of algorithm aversion. They will use the model’s forecasts less even though they may 

still be superior to those produced by judgment alone. 

Hypothesis 6 (H6): only participants in the ideal forecast condition will learn over trials to move 

towards the advice from the algorithm.  

 

4.1 Method 

Each participant saw graphs of time series on their own individual computer screen and made 

their responses using a mouse click. Dependent variables were the advice-induced shift in the forecast 

and MAE. Independent variables were noise level in the data series (high versus low) and quality of 

statistical advice (advice was either of ideal, intermediate or poor quality). Noise level was varied within 

participants and advice quality was varied between participants. To ensure some generality to our 

findings, series autocorrelation was again varied.   

 

4.1.1. Participants 

One hundred and sixty-one participants took part in the study, of which 79 were female. Their 

mean age was 25.75 (SD = 7.47). Participants were solicited via Prolific Academic and paid a fixed fee 

of £1.50 for their participation. In addition, the best performers in each condition were awarded a £ 5.00 

Amazon voucher. Participants had not participated previously in similar experiments by the researchers. 

 

4.1.2. Stimulus materials 
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The series used in this experiment were sampled from the series simulated for Experiment 1. 

Ten series were selected from each series type (AR 0, AR .8, AR -.8), with half of these being low noise 

series and the other half being high noise series. For these 30 series, the three forecasting models (naïve 

forecast, exponential smoothing and AR forecast) described above were used to produce advice. 

The graphical presentation of the data series and the statistical forecast series were akin to those 

used in the first experiment. A graph depicting sales data from week 1 to week 50 was shown at the start 

of each trial. Once the participant had made an initial judgmental forecast, a series showing forecasts 

from the statistical model were overlaid on the graph from week 2 to week 51. The data series was 

labelled ‘Sales’ and the forecast model was labelled ‘Model’ (see Figure 4).  

 

4.1.3. Design  

Each participant was randomly assigned to one of the three experimental conditions, resulting 

in the following sample sizes in each condition: good advice, n = 55; intermediate-quality advice, n = 

57; poor advice, n = 49. The 30 data series were presented in a different random order for each 

participant.  

 

4.1.4. Procedure 

Participants first saw screens that introduced the experiment, requested their participation in it, 

and provided them with instructions. On each trial, they initially saw a graph that displayed only the 

data series. They then made their initial forecast for week 51 by clicking on the graph at the desired sales 

height. After that, the forecasting model was overlaid on the data graph. They were then given the option 

of adjusting their initial forecast using the advice provided by the forecasting model. Once they were 

content with their final forecast, they clicked on ‘View Feedback’. This uploaded a display of the 

expected value of the series for week 51 (i.e., the value produced by the generating equation without the 

contribution from the error term). They also saw a panel on the right-hand side of the graph with 

information about their performance, the model’s performance, and a comparison between them (Figure 

4). They then clicked on a button requesting the next graph. After the thirty graphs were completed, they 

provided demographic details (age and gender) and were thanked for their participation. 
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Figure 4. Experimental display after feedback had been requested  

 

 

 

4.2. Results 

First, we report on the error of the final judgment made by the participants after they received 

the ‘advice’ of the model forecasts. Second, we report analyses of how much people changed their initial 

forecast after they were shown the forecasting model’s advice. We use the Shift measure of Harvey and 

Fischer (1997):  

 

𝑆𝐻𝐼𝐹𝑇 = 100 ∗  
(𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡)

(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡)
 

 

Here the initial forecast is the participant’s judgmental forecast before receiving advice, the 

adjusted forecast is the participant’s final forecast after receiving advice, and the external forecast is the 

forecast provided to participants as advice by the forecasting model. A shift value of 0 indicates that the 

participant retained their initial judgmental forecast. A shift value of 100 shows that the participant 

adjusted their initial forecast until it had the same value as the advice given by the model. A shift value 

of 50 means that the adjusted forecast was halfway between the initial judgmental forecast and the model 

forecast. Values over 100 indicate ‘over-shifting’: participants move beyond the model advice – i.e., 
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their estimate was no longer in the interval between their initial judgmental forecast and the model 

forecast1. 

Finally, we report analyses of changes in the level of the MAE across the session in the three 

different experimental groups. 

 

4.2.1. Mean Absolute Error 

As before, MAE scores were calculated relative to the time series signal produced by the 

generating algorithm (i.e., excluding the contribution from noise term). Against this benchmark, the 

model forecasts that were used to give advice in the three conditions had a MAE of 20.12 (SD = 18.44) 

for the naïve forecast, a MAE of 8.92 (SD = 7.69) for the exponential smoothing forecast, and a MAE 

of 0 (SD = 0) for the autoregressive forecast. These errors are all significantly different from each other 

at p < .001. 

Figure 5 shows MAE scores for high and low noise data series when participants were provided 

with good, intermediate-quality, and poor advice from statistical models. A two-way factorial mixed 

ANOVA with noise level as a within-participants factor and advice quality as a between-participants 

factor showed a main effect of advice quality (F(2, 158) = 52.88, p < .001): mean absolute error in the 

good advice condition (M = 7.44, SD = 6.46) was significantly lower than the values in both the 

intermediate-quality advice condition (M = 15.63, SD = 4.32; F(1, 94) 2 = -7.86, p < .001) and the poor 

advice condition (M = 16.01, SD = 3.21; F(1, 81) 3 = -8.71, p < .001). The latter two were not 

significantly different from one another (F (1, 104) = .52, p = .606). This provides a partial confirmation 

of H4. A main effect of noise level was also obtained (F (1, 158) = 119.72, p < .001): low noise in data 

series (M = 10.96, SD = 5.80) led to significantly lower error than high noise (M = 14.94, SD = 7.50). 

This replicates a finding obtained in the first experiment: series with low noise lead to significantly 

lower error than series with higher noise. There was no interaction effect between condition and the 

noise level (F (2, 158) = 2.60, p = .078). 

 

                                                           
1   Fifteen participants had a mean shift of 0 across all trials, evenly divided across the three conditions. 

This could be due to a lack of motivation or a distrust of the advice given. Removal of these participants 

did not affect the results. Six participants had a mean shift > 100. The reason behind this is unclear. 

Removal of these participants did not affect the results either.  

2 Levene’s test for Equality of Variances was found to be statistically significant, resulting in an 

adjustment of the degrees of freedom 
3 Levene’s test for Equality of Variances was found to be statistically significant, resulting in an 

adjustment of the degrees of freedom 
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Figure 5. MAE scores for final judgments after seeing statistical forecast advice of different 

qualities for series with each noise level. 

 

To determine whether the error of the model predicts the error of the final judgment of the 

participant, the error in the model forecast was calculated on each of the 30 trials. We then used 

multilevel linear modelling (Gellman & Hill, 2007) to analyse the relationship between trial number, 

model error and error of the participant’s final judgment. As fixed effects, we entered trial number and 

model MAE into the model. As random effects, we had intercepts for participants. Maximum Likelihood 

tests were used to obtain p values. Table 3 shows the results of this analysis for the three conditions. 

The effect of the model error on the participant’s error could not be calculated for the good 

forecast condition because the model error was always zero and so could not serve as a predictor. 

However, in both the intermediate forecast condition and in the poor forecast condition, the model error 

was a significant predictor of the final judgment error (p < .001). In both cases, this relationship is 

positive: higher model error led to higher error in the final judgment. Thus, within the broader categories 

of ‘intermediate’ and ‘poor’ quality, participants were sensitive to the error size and varying quality of 

the model.  

 

Table 3. Multilevel linear models of the relationship between trial number, model error and error of 

the participant’s final judgment. 

 

  Estimate SE df t Sig. 

Good forecast Intercept 10.64 .60 1635 17.73 < .001 

Trial  -.20 .03 1635 -6.01 < .001 

Model MAE NA NA NA NA NA 

Intercept 12.67 .81 1665 15.67 < .001 
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Intermediate 

forecast 

Trial .09 .04 1665 2.42 .016 

Model MAE .19 .04 1665 4.21 < .001 

Poor forecast Intercept 11.54 .89 1391 12.98 < .001 

Trial  -.01 .04 1391 -.32 .749 

Model MAE .24 .02 1391 11.63 < .001 

 

 

4.2.2 Shift scores 

Figure 6 and Table 4 show that Shift scores for high and low noise data series when participants 

were provided with good, intermediate-quality, and poor advice from statistical models. A two-way 

ANOVA with noise level as a within-participants factor and advice quality as a between-participants 

factor revealed a main effect of advice quality (F (2,158) = 16.21, p < .001). Tukey’s post hoc analysis 

showed that the shift produced by good advice (M = 52.93, SD = 31.08) was significantly greater than 

both that produced by the intermediate-quality advice (M = 27.92, SD = 32.11) and that produced by 

poor advice (M = 20.67, SD = 26.40). Shift scores for these latter two conditions were not significantly 

different from one another. These results provide partial support for H5. There was no main effect of 

noise (F (1, 158) = .41, p = .522), nor an interaction effect (F (2, 158) = 1.32, p = .271). 

When the noise level was taken into account, for low noise series, people’s shift behaviour was 

not significantly different (t (104) = -.65, p = .258) for the intermediate model (Shift = 27.98, SD = 

38.50) compared to the poor model (Shift = 23.26, SD = 35.35); in high noise series, however, the shift 

behaviour diverges: a one tailed t-test (t (102.50) = -1.95, p = .027) shows that the intermediate model 

led to a greater shift (Shift = 27.86, SD = 29.32) than the poor forecasting model (Shift = 18.09, SD = 

22.25) under high noise conditions. 

 

Figure 6. Mean shift scores for each level of noise, and forecast quality. 
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Table 4. Model MAE, Participant MAE and Shift per condition. 

 
 

Good model (AR) Intermediate model 

(Exponential Smoothing) 

Poor model  

(Naive forecast) 

 

MAE of the model 0 (SD = 0) 8.92 (SD = 7.69) 20.12 (SD = 18.44) 

MAE of final judgment 7.44 (SD = 6.46) 15.63 (SD = 4.32) 16.01 (SD = 3.21) 

Shift 52.39 (SD = 31.08) 27.92 (SD = 32.11) 20.68 (SD = 26.4) 

 

 

4.2.3 Changes in MAE over the session 

The multilevel linear modelling (Table 3) also showed an effect of trial number on final forecast 

error, showing a change in final judgment error as trials progressed. However, the nature of this effect 

depended on the quality of the advice they were given. In the good forecast condition, the relationship 

between trial and final judgment MAE was significant and negative: as the experiment progressed, the 

participants’ MAE scores decreased, a finding consistent with H6. However, error in the last 10 trials 

(MAEtrials21-30 = 6.21, SD = 11.00), though significantly smaller than that in the first 10 trials 

(MAEtrials1-10 = 9.97, SD = 13.55; t (1045.33) = 5.04, p < .001), was still not equal to that of the 

forecast advice (MAE = 0, SD = 0) (see Figure 7). This indicates that participants did not follow the 

algorithm completely even by the end of the experiment.  

In the intermediate forecast condition, the relationship between trial and final judgment MAE 

was significant but positive: accuracy became somewhat worse over the session. In the poor forecast 

condition, there was no significant relationship between MAE and trial number.  

 

 

Figure 7. Average MAE per group of ten trials. 
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4.3 Discussion 

We hypothesized that participants would shift more with improved forecast quality. Looking at 

the mean shifts per condition, we see that the good forecasting model did indeed lead to the highest shift. 

Thus the experiment provided some evidence that people can discriminate between the quality of 

different forecasting models implicitly as well as explicitly (Experiment 1). However, the difference in 

shift between the intermediate model and poor model was not significant. The latter finding is surprising, 

as the model error of the naïve forecast was significantly higher (more than twice as large) than the 

model error of the intermediate model. 

Participants learned to take more account of forecasts produced by a good model: one 

interpretation of this is that this model was endowed with the ‘perfection schema’ posited by Madhaven 

and Wiegman (2007). In contrast, final forecasts made by participants exposed to forecasts from the 

intermediate-quality statistical model became somewhat worse over the session. Because the model 

produced forecasts that clearly failed to pick up some of the pattern elements in the data series (e.g., see 

Figure 4), forecasters lost confidence in the model and displayed algorithm aversion (Dietvorst et al, 

2015). Interestingly, final forecasts of participants advised by the poor model showed no evidence of 

any change in the way the model’s forecasts were used. We suspect that this model was treated more 

charitably than the intermediate one because it was clear to participants that it was able to pick up the 

pattern elements in the data series, albeit at a delay of one period.  

Although participants learned to improve their forecasts over the session in the good advice 

group, their performance levelled off: they did not learn to follow the algorithm completely (Figure 7). 

This may have been because the ideal algorithm still made errors because it could not predict the 

contribution of the random error term in the generating equation. However, research on advice does 

indicate that people are conservative in changing their initial assessments: they fail to take enough 

account of perfect advice (Gardner & Berry, 1995) or good advice (Harvey & Fischer, 1997).  

 

5. General discussion 

In forecast support systems, forecasters often have the option of allowing the system to select a 

forecasting model appropriate to the type of data and context or choosing a suitable model themselves 

from a drop-down menu (Lawrence et al., 2002). Here we were interested in whether forecasters who 

decide on the latter approach can distinguish between forecasting models that vary in quality given 

graphical records of their past performance.  

In our first experiment, forecasters were shown records produced by two different models and 

explicitly asked to select the better one. We found that people were better able to select between good 

and poor models than between good and intermediate quality models. Despite this, forecast error was 

higher on average when people selected between good and poor models. This was because incorrect 

selections had a much more detrimental effect on forecast accuracy than they did when people selected 
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between good and intermediate quality models. This finding is similar to one reported by Petropoulos 

et al. (2018).  

There is a controversy about whether it is it better to combine or select between sources of 

advice (Fifić & Gigerenzer, 2014; Soll & Larrick, 2009). We found that mean forecast error associated 

with selecting between forecast models was lower than that produced by taking the simple average of 

the forecasts produced by the two models. In contrast, we know that it is difficult to use judgment to 

combine forecasts in a way that outperforms the simple average of the forecasts (Fischer & Harvey, 

1999). It appears, therefore, that, at least when there only two sources of advice, selecting between them 

is better than combining them.  

In our second experiment, we provided further evidence that forecasters can use graphical 

records of the past performance to distinguish between forecasting models varying in accuracy. In this 

case, however, they were not asked to make an explicit selection between alternative models 

simultaneously presented. Instead, each forecaster made an initial judgmental forecast, saw past records 

of the performance of a single type of model, and then made a final forecast that took account of the 

advice provided by the model.  

We found that people shifted their forecasts more in response to advice from good models than 

in response to advice from intermediate quality or poor models. Evidence that they shifted their forecasts 

more in response to advice from an intermediate quality model than in response to advice from a poor 

model was less strong: the difference attained significance (on a one-tailed test) only when the data 

series contained high levels of noise. Given these findings, it is not surprising that forecasts based on 

advice from the good model were more accurate than forecasts based on advice from intermediate 

quality and poor models but that there was no difference in accuracy of forecasts based on advice from 

intermediate quality and poor models.  

The average shift in the good forecast condition was only 52.39. This means that participants 

adjusted their initial forecast, on average, only halfway towards the advised forecast. This is despite the 

that fact that the good forecast was ideal in the sense that it was based on a principle that produced 

forecasts that, in the long run, could not be improved upon. Furthermore, this was so even though 

participants received feedback after every graph showing that, overall, the model outperformed their 

own judgment. These findings are consistent with those reported in the literature on advice-taking: 

people are reluctant to seek advice and, even when they obtain it, they are reluctant to act on it (e.g., 

Gardner & Berry, 1995). Furthermore, people are conservative (Phillips & Edwards, 1966): in advice-

taking, they are reluctant to change their minds as much as they should do according to objective criteria 

(Harvey & Fischer, 1997; Yaniv, 2004). Conversely, people shifted their forecasts quite a lot (20%) 

even in response to very poor advice (Figure 6). This too is an established finding in the advice-taking 

literature (e.g., Harvey & Fischer, 1997): it is as if people are reluctant to reject help that is offered to 

them even when it is of little use. Additionally, an anchoring bias may be in operation here. This would 
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have led people to place too much value on their initial judgment and to adjust too little towards the 

advice provided to them (Tversky & Kahneman, 1974). 

In the second experiment, we investigated not only whether the performance differed between 

the three groups receiving advice that differed in quality but also whether errors in the model forecasts 

within two of those groups predicted errors in the participants’ final forecasts. Multilevel linear 

modelling showed that they did. Given that we know that forecasters shifted their forecasts in response 

to the model forecasts in these two groups but only a small amount (< 30%), this means that taking 

account of advice even to a relatively small extent has significant effects on outcomes. 

Throughout the second experiment, forecasters were given feedback about their performance, 

the performance of the model, and whether their own performance would have benefitted from taking 

more account of the advice from the model. We anticipated that feedback would help forecasters take 

account of the advice from the model and, hence, improve the accuracy of their final forecasts. However, 

feedback does not always have the expected beneficial effects (Harvey, 2011). In fact, we found that 

people learned across trials but only when the model produced ideal forecasts.  

This is consistent with research on algorithm aversion: when models clearly make errors, those 

using them tend to lose confidence in them (Dietvorst et al, 2015). Here, the intermediate quality model 

produced forecasts that were clearly incorrect: for example, this exponential smoothing model often 

fails to pick up patterns that are clearly apparent in the data series (e.g., Figure 4). As a result, there 

would be no incentive for forecasters to increase the influence of these models on their forecasting 

beyond the minimum that we observed (i.e., a shift of < 30%). In contrast, the good model always picks 

up the pattern in the data and errors in its forecasts arise from unpredictable factors. If we assume that 

forecasters can appreciate these aspects of the model’s forecasts, then they will not see deviations 

between forecasts and data points as errors in forecasting. They will retain confidence in the model and 

endeavour to rely on it more and more: as a result, they process feedback and doing so improves their 

performance. 

 

5.1 Limitations 

Though we endeavoured to ensure some generality to our findings by varying noise levels and 

the patterns in the data series, other pattern elements (e.g., trends of various types) could have been 

introduced as well. It is unlikely that this would radically affect our conclusions. More salient pattern 

components and a greater number of pattern components are likely to render the task of discriminating 

between good forecasting models and poor ones easier rather than harder. 

We examined only three forecasting models. We chose them because they produced different 

levels of forecasting accuracy for the data series that we employed. In other words, we selected them 

because of their performance rather than because they represented specific approaches to forecasting. 

Nevertheless, exponential smoothing and naïve forecasting are some of the commonest approaches to 
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forecasting used by practitioners (Weller & Crone, 2012). Hence, though we used few approaches to 

forecasting, those that we did use are reasonably representative of practice. 

Our participants were not practitioner forecasters. However, with pure time-series forecasting, 

there is little evidence of any difference in accuracy between experienced and non-experienced 

forecasters (e.g., Lawrence, Edmundson, & O’Connor, 1985; Petropoulos et al., 2018). More generally, 

the literature contains evidence of inverse expertise effects (e.g., Önkal & Muradoǧlu, 1994; Yates, 

McDaniel, & Brown, 1991). Also, as one might expect, more experienced forecasters tend to take less 

notice of advice (Harvey & Fischer, 1997). Thus, overall, there is little reason to suppose that 

practitioners would have performed better when performing the type of tasks studied here. 

 

5.2 Implications and future research 

 Our findings imply that forecasters can distinguish between forecasting models that vary 

in quality: they can identify good models and they are more influenced by these models. However, their 

criteria for discriminating models in terms of quality may not be the same as those of statisticians. We 

saw that they paid less attention to advice from the exponential smoothing model over the session but 

did not change how much they used the forecasts from the less accurate naïve forecasting model (Figure 

7). We suspect that this was because the exponential smoothing model showed little evidence of picking 

up pattern elements in the data series whereas the naïve forecasting model did. When evidence of 

accuracy and evidence of ability to identify pattern components conflict, people may find it difficult to 

decide which model to prefer. If forecasters using an FSS reject algorithmic selection of the forecasting 

model to use on the data and insist on choosing the model themselves, their choice may be improved by 

giving them information about the ranking of available models in terms of the forecast accuracy they 

produce for the type of data series under consideration. Provision of this type of information is guidance, 

sometimes called feedforward (Björkman, 1972) and often incorrectly termed ‘task properties 

feedback’. It has proved to be an effective approach to improving accuracy in judgment tasks (Balzer, 

Doherty, & O’Connor, 1989). Thus, our primary recommendation for the design of effective FSS would 

be to provide additional information on the proposed models with regards to their accuracy. The amount 

of information that should be provided is an interesting avenue for future research. 

Alternatively, increasing the acceptability of algorithmic selection of the forecasting model 

would increase forecast accuracy. We know this because Petropoulos et al. (2018) showed that, though 

people were able to avoid the worst models, they were outperformed by an automatic selection of the 

best algorithm. If we could find a way of lessening algorithm aversion, forecasters would be more likely 

to be satisfied with automatic selection of a forecast model. Recently, Dietvorst, Simmons, and Massey 

(2016) discovered that people are more likely to accept algorithmic forecasts if they were given the 

opportunity of adjusting those forecasts. Although the adjustment tended to impair the forecast, results 

were still better than those produced by judgment alone and forecasters were more satisified with them 

than they were with those produced by an unmodifiable algorithm. This work suggests that one approach 
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would be to use an algorithm to produce a small set of two or three forecasting models. Then forecasters 

would be allowed to make the final choice between them. It would be interesting to see if this approach 

resulted in more accurate forecasts than those produced when forecasters use their judgment alone to 

select the forecast model. Thus, our second recommendation for the design of FSS is to allow for the 

creation of multiple forecasts, leading to an ultimate choice by the forecasters themselves. Future 

research could be designed to investigate the ideal number of produced forecasts, in order to optimize 

efficiency and accuracy. 

Regarding the feedback in Experiment 2, we chose to use outcome feedback, as this is the closest 

approximation to reality. It was effective in increasing the influence of the formal model only when that 

model was optimal and, even then, the effect was only partial. In fact, it is unusual for outcome or 

performance feedback to have any effect in judgment tasks (Harvey, 2011). Lawrence et al. (2006, p 

507) point out that one reason for its general lack of effectiveness “is probably because the most recent 

outcome contains noise and hence it is difficult for the forecaster to distinguish the error arising from a 

systematic deficiency in their judgement from error caused by random factors”. Hence, it is possible 

that feedback provision would be more effective if it were given in summary form over a number of 

forecasts rather than after every forecast because this would reduce the degree to which feedback is 

influenced by error. The effectiveness of summary feedback has been adequately researched only within 

the context of skilled behaviour. For example, Schmidt, Young, Swinnen, and Shapiro (1989) varied the 

frequency of provision of summary feedback. They found that, during acquisition (i.e., during learning 

when feedback was provided), giving summary feedback more frequently (e.g., after every five rather 

than after every 15 attempts at the task) was more effective. However, during retention trials (i.e., after 

feedback had been withdrawn), they obtained the opposite effect and found that this increased over time.  

To explain such findings, we should recognise that feedback has an effect both as an incentive 

and as a facilitator of learning (Annett, 1969). People are incentivized to put more effort into a task when 

they know that they will find out how well they have performed: hence, the more often they find this 

out, the more they work at the task. This explains the effect that Schmidt et al. (1989) obtained during 

acquisition. However, learning is greater when people receive information that provides a longer term 

summary, possibly because of the reduction in the influence of random error (Lawrence et al, 2006). 

This effect can be observed only when people have to make use of their learning after feedback (and its 

incentivising effects) have been withdrawn. This explains the effect that Schmidt et al. (1989) obtained 

during retention. Hence, our third recommendation for the design of FSS is to provide summary 

feedback and to tailor the frequency of such feedback to how the system will be used. If users are given 

a separate training period before they operate it, less frequent summary feedback during that training 

would be appropriate. If they are not, more frequent summary feedback could produce better results. 

Further research is needed to determine whether the findings from the skilled behaviour literature carry 

over to use of FSS in forecasting and, if they do, to assess the most appropriate frequency of summary 

feedback. 
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