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Abstract The spatial and temporal characterization of trapped charged particle trajectories
in magnetospheres has been extensively studied in dipole magnetic field structures. Such studies
have allowed the calculation of spatial quantities, such as equatorial loss cone size as a function of
radial distance, the location of the mirror points along particular field lines (L-shells) as a function
of the particle's equatorial pitch angle, and temporal quantities such as the bounce period and
drift period as a function of the radial distance and the particle's pitch angle at the equator. In this
study, we present analogous calculations for the disk-like field structure associated with the
giant rotation-dominated magnetospheres of Jupiter and Saturn as described by the University
College London/Achilleos-Guio-Arridge (UCL/AGA) magnetodisk model. We discuss the effect of the
magnetodisk field on various particle parameters and make a comparison with the analogous motion in a
dipole field. The bounce period in a magnetodisk field is in general smaller the larger the equatorial
distance and pitch angle, by a factor as large as ∼8 for Jupiter and ∼2.5 for Saturn. Similarly, the drift
period is generally smaller, by a factor as large as ∼ 2.2 for equatorial distances ∼20–24 RJ at Jupiter and
∼1.5 for equatorial distances ∼7–11 RS at Saturn.

1. Introduction
The Earth's internal magnetic field is, to a good approximation, dipolar, and charged particles in the mag-
netosphere can remain trapped in this field, according to their kinetic energy, pitch angle, and equatorial
distance. The motion of a trapped particle is characterized by three independent timescales. From fast to
slow, these are the cyclotron (gyration) period, the meridional bouncing period, and the azimuthal drift
period. Since the discovery of charged particles trapped in the Earth's magnetic field (Van Allen et al., 1959),
such dynamics for a dipolar field have been extensively studied (e.g., Hamlin et al., 1961; Lew, 1961; Roed-
erer & Zhang, 2014; Walt, 2005) and widely applied to, for example, the dynamics of high-energy electron
and proton populations in the van Allen radiation belts.

At the gas giant planets, Jupiter and Saturn, the magnetic field deviates substantially from a dipole con-
figuration because of the internal source of plasma provided by the moons Io and Enceladus, respectively,
and the fast planetary rotation period (∼10 hr). The magnetic field is stretched into a disk-like structure
near the equator where centrifugal force is largest. This structure is often referred to as a magnetodisk (e.g.,
Gledhill, 1967; Kivelson, 2015). The characteristics of trapped charged particle dynamics in Saturn's inner
magnetosphere have been studied using an approximate dipolar field (Thomsen & Van Allen, 1980). Later,
Birmingham (1982) used the models of Connerney et al. (1981a, 1981b) of the Jovian and Kronian magneto-
spheric magnetic field based on Voyager magnetometer observations to analyze charged particle motion in
the guiding center approximation. More recently, various studies involving charged particle dynamics such
as ring current modeling (Brandt et al., 1981a; Carbary et al., 2009), energetic neutral atom (ENA) dynam-
ics (Carbary & Mitchell, 2014), energetic particle injection dynamics (Mauk et al., 2005; Paranicas et al.,
2007; 2010), and weathering process by charged particle bombardment (Nordheim et al., 2017, 2018), rely on
these kinds of calculations assuming the dipolar approximation provided by Thomsen and Van Allen (1980).
A notable exception is the study of Roussos et al. (2013) who compared energetic electron microsignature
drifts observed by Cassini at Saturn with their model for bounce-averaged magnetic drift based on three
different nondipolar magnetic field models of Saturn. However, observations show that the magnetic field
increasingly deviates from a dipole field when moving out from the inner to the middle magnetosphere.
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Here we present the calculation of motion parameters of trapped particles for a more realistic model of the
field in the inner and middle magnetospheric regions.

For time variations of the magnetic field that are slow compared to the corresponding timescale of each type
of motion, an adiabatic invariant is defined (Öztürk, 2012). The first invariant, 𝜇B, is associated with the
cyclotron motion of the particle and expresses the conservation of the magnetic flux enclosed by the particle's
gyromotion with cyclotron angular frequency Ωg = qB∕m, where q and m are the charge and mass of the
particle. In the more general relativistic case the mass m is replaced by the relativistic mass 𝛾m0, where 𝛾 is
the Lorentz factor 𝛾 = 1∕

√
1 − 𝛽2 and 𝛽 is the ratio v∕c of the particle speed v to the speed of light in vacuum

c and m0 the particle's rest mass. We will from now on consider the relativistic case for the sake of generality.
The second invariant, J, is associated with the meridional component of motion along the magnetic field
between the two mirror points in each hemisphere and implies that the particle moves so as to preserve
the length of the particle trajectory between the two mirror points, even in the presence of electric fields or
slow time-dependent fields compared to the bouncing period. The third invariant, Φ, is associated with the
particle's azimuthal drift around the magnetized planet, and it represents the conservation of the magnetic
flux encompassed by the guiding drift path (or drift shell) of a particle for magnetospheric changes slow
compared to the drift period. For more details on the adiabatic invariants see, for instance, Northrop and
Birmingham (1982), Öztürk (2012), and Roederer and Zhang (2014).

Conservation of the first adiabatic invariant 𝜇B, defined as the magnetic moment of the current I generated
by the charged particle moving on its circular path, I = qΩg∕(2𝜋), with velocity v⟂, and therefore gyroradius
rg = v⟂∕

|||Ωg
||| = 𝛾m0v⟂∕(|q|B),

𝜇B =
𝛾m0v2

⟂

2B
, (1)

implies that the quantity sin2
𝛼∕B, where 𝛼 is the pitch angle of the particle with respect to the magnetic

field, remains constant. As a consequence the pitch angle becomes larger for more intense magnetic field.

In the guiding center approximation, where the particle's geometric center of the gyration motion moves
along the magnetic field line, the mirror point magnetic latitude,𝜆m, is defined implicitly through the expres-
sion of the magnetic field at the mirror point, Bm = B(rm, 𝜆m), that is, the location where the particle bounces
back (reverses its velocity component parallel to the guiding field line)

sin2
𝛼eq =

Beq

Bm
, (2)

where 𝛼eq is the pitch angle of the particle at its equatorial location, with radial distance Req, and magnetic
field Beq = B(Req, 𝜆 = 0).

For a dipole field in the guiding center approximation, 𝜆m depends solely on 𝛼eq and is the solution of the
equation (Hamlin et al., 1961)

cos6𝜆m − sin2𝛼eq

√
1 + 3 sin2𝜆m = 0. (3)

The bounce period 𝜏b, and the bounce-averaged azimuthal drift period 𝜏d, related to the second and third
adiabatic invariants, respectively, are then expressed as integrals of the motion of the guiding center particle
along the field line (Baumjohann & Treumann, 1996)

𝜏b = 4∫
𝜆m

0

ds
d𝜆

d𝜆
v|| , (4)

𝜏d = 2𝜋
Δ𝜙

𝜏b, (5)

where ds is an arc element along the guiding field line, v|| is the particle's velocity component along the
magnetic field line, and the change of longitude Δ𝜙 during one bounce period 𝜏b is given by the following:

Δ𝜙 = 4∫
𝜆m

0

vD

r cos 𝜆
ds
d𝜆

d𝜆
v|| , (6)
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where r is the radial distance to the particle and the magnetic drift velocity vD is the sum of curvature drift
(vc) and gradient drift (vg) velocities; that is,

vD = vc + vg. (7)

For a particle moving in an inhomogeneous magnetic field, keeping only the first-order term𝛁B in the Taylor
expansion of B about the guiding center of the particle's motion, inserting in Newton's law, and averaging
over a gyroperiod leads to the following expression for the magnetic gradient drift velocity (Baumjohann &
Treumann, 1996)

vg =
𝛾m0v2

⟂

2q
B × 𝛁B

B3 , (8)

where vg is perpendicular to both B and 𝛁B. Note that retaining only the first-order term 𝛁B in the Taylor
expansion of B about the guiding center requires the particle's motion to be helical in the smallest scale and
that the magnetic field does not change significantly within a gyroradius, that is, that rg ≪ B∕∇B.

Similarly in a curved magnetic field, the guiding center of a particle will effectively experience a centrifugal
force, associated with field-aligned component of motion, leading to a general force drift with velocity

vc =
𝛾m0v2||

q
Rc × B
Rc

2B2
, (9)

where Rc is the radius of curvature vector of the guiding center trajectory; that is, Rc points from the center of
curvature to the field line. Similarly to the calculation of the magnetic gradient drift velocity, this expression
requires the radius of curvature to be much larger that the gyroradius, that is, that rg∕Rc ≪ 1.

Thus, the longitudinal changeΔ𝜙 during one bounce period 𝜏b can be split into two contributions, curvature
(Δ𝜙c) and magnetic gradient (Δ𝜙g) components

Δ𝜙 = Δ𝜙c + Δ𝜙g. (10)

Note that in the case of a curl-free field, that is, in absence of any currents, such as a pure dipole field, the
radius of curvature Rc is antiparallel to 𝛁⟂B (i.e., Rc∕Rc

2 = −𝛁⟂B∕B), and vc reduces to

vc =
𝛾m0v2||

q
B × 𝛁B

B3 , (11)

but in the general case equation (9) has to be considered to compute vc.

2. Generalized Formulation of Particle Motion
For a parametrization of the magnetic field line in polar coordinates, r(𝜆) (where r is the radial distance from
the planet center and 𝜆 the magnetic latitude), the element of arc length ds along any magnetic field line is
given by ds2 = dr2 + r2d𝜆2 and by definition:

dr
rd𝜆

=
Br

B𝜆

. (12)

Thus,

ds
d𝜆

= r(𝜆)

(
1 +

B2
r

B2
𝜆

) 1
2

. (13)

For a pure magnetic motion, where only magnetic field B exerts a force perpendicular to v, the total kinetic
energy is conserved. Assuming the adiabatic invariant 𝜇B is also conserved, we can write the velocity com-
ponents of the particle, parallel (v||) and perpendicular (v⟂) to the field, as a function of the constant total
velocity v and the values of the magnetic field at the position of the particle, B, and at the mirror point, Bm:

v|| = v
(

1 − B
Bm

) 1
2
, (14)
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v⟂ = v
(

B
Bm

) 1
2
. (15)

The bouncing period 𝜏b can be rewritten as

𝜏b =
4R̂eqRP

v
Φ
(

Req, 𝛼eq
)
, (16)

with the dimensionless function Φ defined as

Φ
(

Req, 𝛼eq
)
= 1

R̂eq
∫

𝜆m

0

(1 + B2
r∕B2

𝝀

1 − B∕Bm

) 1
2

r̂(𝜆)d𝜆, (17)

where r̂ = r∕RP and R̂eq = Req∕RP are lengths normalized to the planetary radius RP. For a purely dipolar
field, R̂eq corresponds to the value of the classical McIlwain L parameter or L-shell; that is, Req is the equato-
rial (maximum) radial distance to which field lines on the L-shell extend. It is worth noting that Φ depends
solely on the values of the magnetic field along the field line.

Also along any field line parameterized in polar coordinates r(𝜆), the radius of curvature vector Rc is
given by

Rc =
(r2 + (dr∕d𝜆)2)

3
2|r2 + 2(dr∕d𝜆)2 − rd2r∕d𝜆2|n, (18)

where n is the unit normal vector, lying orthogonal to B in the plane of the field line, and the second-order
derivative d2r∕d𝜆2 can be expressed as a function of Br, B

𝝀
and their first-order derivatives with respect to 𝜆

using equation (12). Finally, the curvature 𝜅 is defined as the inverse of the norm of Rc, 𝜅 = 1∕Rc.

In a similar way to the bouncing period, the bounce-averaged longitudinal drift period 𝜏d can be
rewritten as

𝜏d =
2𝜋qBPR2

P

3R̂eq𝛾m0v2

Φ
(

Req, 𝛼eq
)

Γ
(

Req, 𝛼eq
) , (19)

with the dimensionless function Γ defined as the sum

Γ = Γc + Γg, (20)

where Γc and Γg correspond, respectively, to the contributions from the curvature, and gradient drift
motions:

Γc
(

Req, 𝛼eq
)
= 1

R̂2
eq

∫
𝜆m

0

(
1 +

B2
r

B2
𝝀

) 1
2
𝜅

B̂

(
1 − B

Bm

) 1
2 d𝜆

3 cos 𝜆
, (21)

Γg
(

Req, 𝛼eq
)
= 1

R̂2
eq

∫
𝜆m

0

Br∇𝜆B − B𝝀∇rB

B2B̂m

(1 + B2
r∕B2

𝝀

1 − B∕Bm

) 1
2

d𝜆
6 cos 𝜆

, (22)

where B̂ = B∕BP and B̂m = Bm∕BP are normalized field strength relative to the field at the planetary surface
equator BP, and∇r and∇𝜆 are gradient components in polar coordinates. It is worth noting thatΓ∕Φ depends
on the values of the magnetic field components along the field line and also on their steepness across the
field line (through the field gradient terms) and the shape of the field line (through the field curvature).

In the case of a dipole field, both bounce and bounce-averaged drift periods have been approximated by
various analytic expressions. Among the most commonly used are (Baumjohann & Treumann, 1996; Hamlin
et al., 1961)

𝜏d
b ≃

4LRP

v
(
1.30 − 0.56 sin 𝛼eq

)
, (23)

𝜏d
d ≃

2𝜋qBPR2
P

3L𝛾m0v2
1

0.35 + 0.15 sin 𝛼eq
, (24)
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where the dimensionless functions, Φ in equation (16) and Γ∕Φ in equation (19), are approximated by
first-order polynomials in sin 𝛼eq, and R̂eq has been replaced by the dipole L-shell value.

We developed a numerical framework to compute the functionsΦ
(

Req, 𝛼eq
)

andΓ
(

Req, 𝛼eq
)

for any arbitrary
magnetic field structure and compute their best fit to bivariate polynomials in Req and sin 𝛼eq, in order to
provide approximate expressions similar to equations (23) and (24) for any arbitrary magnetic field.

3. Trapped Motion Properties in Jovian Magnetodisk
Our University College London/Achilleos-Guio-Arridge (UCL/AGA) magnetodisk model (Achilleos, Guio,
& Arridge, 2010) uses the formalism developed in Caudal (1986) to compute axisymmetric models of the
rotating Jovian and Kronian plasmadisks in which magnetic, centrifugal, and plasma pressure forces are
in equilibrium. The magnetodisk model computes by an iterative method the magnetic Euler potential 𝛼,
which contains all the information about the poloidal magnetic field of the axisymmetric magnetodisk and
is constant along the field lines. A correction is added to 𝛼 at each iteration, starting from the Euler potential
of the initial (plasma free) dipole field. The correction decreases as the algorithm converges toward a solu-
tion and stops when the solution does not change more than a prescribed tolerance. Our model does not
account for current sheet distortion known as the warping (or hinging) of the magnetodisk structure when
the dipole magnetic equator is tilted with respect to the solar wind direction (Arridge et al., 2008). How-
ever, it is important to note in this context that transformation-based methods have been developed in the
literature, which allow axisymmetric “flat-magnetodisk” field models to be modified for purposes of model-
ing the fields of asymmetrically tilted/hinged current sheets (e.g., Arridge et al., 2008; Achilleos et al., 2014;
Sorba et al., 2018; Tsyganenko, 1998).

Here we use the output of our magnetic field model for a standard dayside Jovian disk configuration where
the subsolar magnetopause is located at Rmp = 90RJ, where Jupiter equatorial radius is RJ = 71,492 km, and
with a hot ion population characterized by the index Kh = 3× 107 Pa m T−1 (see Achilleos, Guio, & Arridge,
2010, for details). This index indicates the global level of hot plasma pressure in the outer magnetosphere
(product of hot plasma pressure and unit magnetic flux tube volume).

In Figure 1, we compare and quantify the difference in the geometry of the dipole and magnetodisk fields
in the inner and middle magnetosphere. In the upper panel, the Euler magnetic potential 𝛼, associated with
the poloidal field model, is color coded in cylindrical coordinates, and field lines (contours of constant 𝛼)
are labeled with an “equivalent dipole” L∗ parameter.

For the dipole field, the parameter L∗ is equal to the equatorial distance Req of the field line in RJ units,
(i.e., the L-shell value). For the magnetodisk field, it is equal to the equatorial distance to which a pure
dipole field line, emanating from the same ionospheric foot point (at approximately the planet's surface, i.e.,
R = RJ), as the labeled magnetodisk field line, would extend. Hence pure dipole and magnetodisk field lines
of equal equivalent dipole L∗ enclose equal magnetic flux. This definition is in complete agreement with the
definition of the L∗ invariant coordinate, a dimensionless quantity introduced first by Roederer (1970)

L∗ =
2𝜋BPR2

P

Φ
,

where Φ is the magnetic flux encompassed by the guiding drift shell considered. Thus, since the UCL/AGA
magnetodisk and pure dipole field models are both centered and axisymmetric, the magnetic flux Φi inte-
grated over the polar cap region bounded by a given ionospheric colatitude 𝜃i can be used to specify a flux
shell of field lines, which extend from that colatitude to some characteristic equatorial distance Req. If the
field were purely a centered dipole, we would have L∗ = Req. For a dipole-plus-disk field, we have L∗ < Req,
where L∗ now corresponds to the equatorial distance of a pure dipole field line emanating from the same
colatitude 𝜃i (and associated with the same bounded magnetic flux Φi, since, at the ionosphere, the cur-
rent sheet field is negligible compared to that of the planetary dipole see also Lejosne (2014), for instance,
Figure 1.

The lower left panel shows the equatorial distance Req (in units of RJ) of the magnetic shell of field lines as
a function of the equivalent dipole L∗, for the total range of the magnetodisk model output, for the dipole
(blue solid line) and the magnetodisk (green solid line). For the dipole field this simply corresponds to the
line with slope unity since L∗ = R̂eq = L. For the magnetodisk we can see that the field lines remain to a
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Figure 1. Upper panels from left to right: the magnetic Euler potential 𝛼, in logarithmic scale, for the initial dipole
field, and the magnetodisk field in the inner and middle magnetosphere of the standard Jovian disk calculated with the
UCL/AGA magnetodisk model as described in the text. Lower panel: magnetic shell mapping of the dipole and
magnetodisk field as described in the text, for the full equatorial range of the model output (left); and for the equatorial
subrange considered here to compute the bounce and drift integrals, and normalized to the dipole equivalent L∗-shell
(right). Vertical dashed lines indicate inflection point for the magnetodisk (green curve).

good approximation dipolar for equatorial distances corresponding to L∗ ≲ 4, that is, where the green line
does not significantly deviate from the blue line.

The lower right panel shows the equatorial distance Req of the magnetic shell normalized to the dipole
L-shell as function of the equivalent dipole L∗ for a range covering the inner and well into the Jovian middle
magnetosphere. We can see that the magnetodisk model field lines are stretched out from dipole configura-
tion by a factor as large as ∼3.25 (right panel) and indicated by the green line deviating from and increasing
faster than the blue line (left panel). The last closed field line in the magnetodisk model output, at Req = 90RJ,
corresponds (i.e., has same ionospheric anchor point) to the dipole field line with L∗ ∼ 45.1. For Req ≳ 30RJ,
the field line stretching does not increase as rapidly, as seen by the inflection point at L∗ ∼ 13.6 indicated as
a vertical dashed line in the panels. This behavior is an effect of the outer boundary imposed in the model
at the magnetopause within which the magnetic field is confined. For that reason we will only consider
equatorial distances Req ≲ 30RJ, well into the middle magnetosphere, and including the orbit of Ganymede
at ∼15 RJ, to calculate the dimensionless functions Φ and Γ∕Φ that characterize the particle's bounce and
bounce-averaged drift periods. This range of distances represents a regime of purer magnetodisk structure.
We aim to study the near magnetopause field topology in a future investigation.

The calculations of the functions in equations (17)–(20) were carried over the intervals 2–30 RJ for Req, and
16–72◦ for 𝛼eq. The minimum pitch angle value 16◦ corresponds to a particle mirroring at the planet's surface
(loss cone angle) while the maximum value corresponds to particles mirroring at latitudes ≲5◦.

Figure 2 presents the latitude of the mirror points 𝜆m defined in equation (2) and computed for the equatorial
range and for a wide range of pitch angle, for both the dipole and the magnetodisk fields, from the nominal
Jovian model described above (as seen in Figure 1). For equatorial distances≲5 RJ, the mirror point latitudes
for both dipole and magnetodisk fields are very similar, as could have been anticipated from the similarity
of the magnetic fields in Figure 1.
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Figure 2. From left to right, the latitude for mirror point 𝜆m defined in equation (2) for the dipole field and the
magnetodisk as function of equatorial distance and pitch angle. Black lines correspond to isocontours of mirror point
latitudes 𝜆m = 10◦, 20◦, 30◦, and 40◦.

For the dipole field, the left panel in Figure 2, the latitude of mirror point 𝜆d
m does not depend on Req, as

expected from equation (3). This is essentially a consequence of the self-similarity of dipole field lines of
different L. For the magnetodisk field (right panel), 𝜆m

m is decreasing substantially as Req increases, reflecting
the stretching and confinement toward the equator of the field lines, due to the corresponding equatorial
confinement of the plasma (which carries current) due to centrifugal force. The small jump seen in 𝜆m

m at
∼7.6 RJ is a minor artifact due to a discontinuity in the UCL/AGA magnetodisk model and corresponds to
the inner edge of the hot plasma distribution, clearly visible in the modeled azimuthal current density (see
for instance, Achilleos, Guio, & Arridge, 2010; Achilleos, Guio, Arridge, Sergis, et al., 2010; Achilleos, 2018).

Figures 3 and 4 present the dimensionless integralsΦ andΓ∕Φ computed using equations (17) and (20)–(22),
mirror latitudes shown in Figure 2, and calculated for both the dipole and the magnetodisk magnetic fields.

For the dipole field (left panel in Figures 3 and 4), there is no dependency on Req for either quantity, as
expected from equations (23) and (24). Note how small the range of variations of these quantities for the
dipole are compared to the magnetodisk case; only the largest isocontour Φ = 1 is seen in Φd, while only
the smallest isocontour Γ∕Φ = 0.45 is seen in Γd∕Φd. For the magnetodisk case, on the other hand, note
how Φm (right panel in Figure 3), and thus the bounce period, drops for large values of both Req and 𝛼eq.

Figure 3. From left to right, the dimensionless function Φ characterizing the bounce period defined in equation (17), as
function of equatorial distance and pitch angle, for the dipole field and the magnetodisk. The same color range limit is
used to facilitate the comparison. Black lines correspond to isocontours of the same value of Φ, separated by 0.25 units.
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Figure 4. Same figure as Figure 3 but for the dimensionless quantity Γ∕Φ characterizing the bounce-averaged drift
period defined in equation (17) and equations (20)–(22). Black lines correspond to isocontours of the same value of
Γ∕Φ, separated by 0.15 units.

Quantitatively, Φm is smaller than Φd by a factor as large as ∼8, and the average value for Φd∕Φm is ∼2.5 for
the data presented in Figure 3. This behavior is due to the strong decrease of𝜆m with increasing Req, reflecting
the equatorial confinement of the plasma. In the case of the magnetodisk integral Γm∕Φm (right panel in
Figure 4), inversely proportional to the bounce-averaged drift period as seen equation (19), a sharp increase
can be noted for Req in the range 19–25 RJ and for 𝛼eq ≳ 50◦. Quantitatively, the ratio Γm∕Φm∕(Γd∕Φd) is as
large as ∼2.2; therefore, the drift period for the magnetodisk is smaller than for the dipole by up to the same
factor. The average value of the factor Γm∕Φm∕(Γd∕Φd) for the data presented in Figure 4 is ∼1.6. Note that
the dipole and magnetodisk drift shells of the same equivalent L∗ will enclose similar magnetic flux (as seen
previously in the discussion about magnetic shell mapping in relation to Figure 1). The differences in drift
period are the result of the different azimuthal drift velocities experienced by the particle due to different
guiding line geometry as can been seen from equations (7)–(9). The difference in the curvature and magnetic
gradient contributions is further discussed in section 6.

Similar to the jump in 𝜆m
m in Figure 2, the jumps seen at ∼7.6 RJ on both Φm and Γm∕Φm (right panels in

Figures 3 and 4) are artifacts due to the discontinuity introduced by the inner edge of the modeled hot plasma
distribution. Note also the artifact visible mostly in Φm but also faintly in Γm∕Φm as a jump at large 𝛼eq,
just above ∼7.6 RJ and moving toward larger Req as 𝛼eq decreases. This artifact corresponds to the field line,
which is conjugate to the edge of the hot plasma distribution at the equator. One can also note a very faint
jump at ∼5.5–6 RJ corresponding to the position of the Io torus. These features in the plasma model conspire
to create a total, superposed structure that retains a couple of distinctive sharp ledges in the profile of the
relevant integrals. These features can be further understood by examining the signature of this discontinuity,
seen as an arc about the equator at Req ∼ 7.6 RJ, in the magnetic field gradient ∇B∕B and field curvature 𝜅

maps in cylindrical coordinates, in, respectively, the middle left and right panels of Figure 11 in section 6.

4. Analytical Approximations of 𝚽 and 𝚪∕𝚽
In order to provide realistic and practical formulations for magnetodisk studies, we also computed best fits
of our numerical results using bivariate polynomials in R̂eq and sin 𝛼eq to account for the magnetodisk field
structure and thus obtain analytic approximation formulae similar to equations (23) and (24) for the bounce
and bounce-averaged drift periods of the Jovian magnetodisk studied here. We may express 𝜏b and 𝜏d as

𝜏b ≃
4R̂eqRP

v
Φ

(
R̂eq, 𝛼eq

)
, (25)

𝜏d ≃
2𝜋qBPR2

P

3R̂eq𝛾m0v2

1
Γ∕Φ

(
R̂eq, 𝛼eq

) , (26)

where the estimates Φ and Γ∕Φ of the integrals Φ and Γ∕Φ are bivariate polynomials of the form

X
(

R̂eq, 𝛼eq
)
=
∑
i,𝑗

pX
i𝑗
(

R̂eq
)i(sin 𝛼eq

)𝑗
. (27)
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Table 1
Best Fit Coefficients and Uncertainties for BothΦd and Γd∕Φd Derived for the Dipole Field
Simulation Seen in the Left Panels of Figures 3 and 4

X pX
00 pX

01 R2 × 100 RMSE

Req ∈ 2–30RJ

Φd 1.27 (6 · 10−5) −0.54 (9 · 10−5) 99.9 0.0035
Γd∕Φd 0.35 (8 · 10−6) 0.15 (1 · 10−5) 100.0 0.00045

Note. Also shown are the value of R2, the coefficient of multiple determination, and
RMSE, the root-mean-square residual (see text). The indicated equatorial range Req is
the one used for the fitting.

The fitting was first validated for the dipole field seen in the left panel of Figure 1. The fitted coefficients p00
and p01 of equation (27) for the estimatesΦd andΓd∕Φd of the functions are summarized in Table 1, together
with their uncertainties in parentheses and a measure of the goodness of fit. The polynomial coefficients for
both the approximations are in very good agreement with the ones given by equations (23) and (24). The
coefficient of multiple determination R2, defined by equation 1 in Kvålseth (1985), is a measure of goodness
of fit for regression models. It can be interpreted as the proportion of the total variance in the model (i.e.,
the polynomial fits) that is able to explain the variance in the functions. For the dipole we can see that more
than 99.9% of the fitted model reproduces the functional values.

The fitting was then carried out for the magnetodisk field in the upper right panel of Figure 1. We started by
limiting our investigation to bivariate polynomials of degree two (linear combination of the six monomials
forming its basis) and considering the yet unused four monomials, that is, the linear term R̂eq, the bilinear
term R̂eq sin 𝛼eq, and the second-order terms sin2𝛼eq and R̂2

eq. We found that the third most significant term
in the expansion is the bilinear term R̂eq sin 𝛼eq with coefficient p11. The contributions of the other terms are
much smaller and do not improve significantly the goodness of fit parameters (see the discussion regarding
R2 and root-mean-square error [RMSE] as in Tables 1 and 2 below).

The fitted coefficients p00, p01, and p11 for the estimates Φm and Γm∕Φm of the functions are summarized
in Table 2 for two different ranges in Req and are now discussed further.

We can see that the estimate for Φm performs very well for both ranges of Req as indicated by the high 95%
and 98% values of R2, and the small 6% and 3% values of the residual RMSE. The values for the coefficients
pij's are consistent between the two ranges. The estimate for Γm∕Φm, on the other hand, does not perform
as well for the large range 2–30 RJ. This can be understood by the structure of Γm∕Φm, which exhibits a
peak around 20 RJ toward large pitch angles. This structure cannot be accounted for with a polynomial of
degree 2, and this result is further confirmed by the good fit achieved for the subrange 2–22 RJ where the
peak structure is cut away.

We continued our investigation to improve the fit for Γm∕Φm over the wider equatorial range Req = 2–30
RJ and considered all the terms in a bivariate polynomial of degree 3, that is, 10 terms, and investigated the
polynomials with an extra fourth term. We found that the fourth most significant term in the expansion

Table 2
Same Table as Table 1 but for the Magnetodisk Field Simulation Seen in the Right Panels of Figures
3 and 4

X pX
00 pX

01 pX
11 R2 × 100 RMSE

Req ∈ 2–30RJ

Φm 1.15 (1 · 10−3) −0.29 (2 · 10−3) −0.04 (6 · 10−5) 95.0 0.065
Γm∕Φm 0.55 (3 · 10−3) −0.07 (4 · 10−3) 0.02 (1 · 10−4) 43.5 0.14

Req ∈ 2–22RJ

Φm 1.22 (7 · 10−4) −0.28 (1 · 10−3) −0.05 (5 · 10−5) 98.4 0.033
Γm∕Φm 0.45 (1 · 10−3) −0.19 (2 · 10−3) 0.05 (8 · 10−5) 93.1 0.053
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Table 3
Same Table as Table 2 but for a Polynomial Fit of Degree 3 With the Four Best Coefficients for Γm∕Φm

X pX
00 pX

01 pX
11 pX

21 R2 × 100 RMSE

Req ∈ 2–30RJ

Γm∕Φm 0.55 (2 · 10−3) −0.55 (4 · 10−3) 0.10 (4 · 10−4) −2.54 · 10−3 (1 · 10−5) 73.4 0.099

improving the coefficient of multiple determination is the term Req
2 sin 𝛼eq with coefficient p21. The resulting

coefficients for the fit of Γm∕Φm are given in Table 3. The fourth coefficient p21 increases substantially the
value of the coefficient of multiple determination R2 from a value of 43.5% to 73.4% and decreases by the
same factor the RMSE residuals.

The coefficients in Tables 2 and 3, together with equations (25) and (26), provide new approximate formulae,
valid well into the typical Jovian middle magnetosphere and including the orbit of Ganymede, for the bounce
and bounce-averaged drift periods.

For a charged particle of mass m and velocity v, or equivalently with kinetic energy E and rest energy E0 =
m0c2, we write the bouncing period 𝜏

Jup
b at Jupiter, in a manner similar to Thomsen and Van Allen (1980),

and in units of seconds, as

𝜏
Jup
b ≃ 0.954

E + E0√
E(E + 2E0)

R̂eq
(
1.15 − 0.29 sin 𝛼eq − 0.04R̂eq sin 𝛼eq

)
, (28)

where we substituted v by 𝛽c in equation (25) and used the identity 𝛽 =
√

E
(

E + 2E0
)
∕
(

E + E0
)
. Note

that the leading constant in equation (28) is in seconds, the kinetic and rest energies, E and E0 have to be
in the same units, and the other terms in parentheses are dimensionless. A note of caution is issued here
when using this approximation, as the value of the polynomial in parentheses might become negative for
sufficiently large equatorial distance Req and large pitch angle 𝛼eq, a clear limitation of the approximation.
It is therefore important to apply the formula within its described region of validity in

(
Req, 𝛼eq

)
space.

Similarly, the bounce-averaged drift period 𝜏
Jup
d in hour units is

𝜏
Jup
d ≃ 1272.67

E + E0

E(E + 2E0)
|Z|
R̂eq

×

(0.55 − 055 sin 𝛼eq + 0.10R̂eq sin 𝛼eq − 2.54 · 10−3R̂2
eq sin 𝛼eq)−1,

(29)

where we substituted 𝛾m0v2 in equation (26), using the identity 𝛾m0v2 = E
(

E + 2E0
)
∕
(

E + E0
)
, and where

Z = q∕e is the charge number, for example, Z = −1 for electrons (drifting westward in the frame of the
rotating planet), and Z = 1 for protons (drifting eastward in the frame of the rotating planet). Note that the
leading constant in equation (29) is in hour MeV, and the kinetic and rest energies, E and E0 have to be
expressed in MeV in this case. The strength of Jupiter's equatorial magnetic field used is BJ = 428,000 nT.

As pointed out in section 1, studies that involve charged particle dynamics calculation such as ring current
modeling (Brandt et al., 2008; Carbary et al., 2009), ENA dynamics (Carbary & Mitchell, 2014), energetic
particle injection dynamics (Mauk et al., 2005; Paranicas et al., 2007, 2010), and weathering processes by
charged particle bombardment (Nordheim et al., 2017, 2018) would definitely benefit from the expressions
for the bounce and drift period presented here, since they reflect the significant influence of more realistic
nondipolar field structure.

It is also important to note that R̂eq denotes the true equatorial distance in the magnetodisk normalized to
RJ and can be mapped to the equivalent dipole L∗-shell as shown in the lower panels of Figure 1.

5. Trapped Motion Properties in Kronian Magnetodisk
Here we use the output of our magnetic field model for a standard Kronian disk configuration where the
magnetopause is located at Rmp = 25RS, where Saturn equatorial radius is RS = 60,268 km, and with a
hot ion population characterized by the index Kh = 2 × 106 Pa m T−1 (Achilleos, Guio, & Arridge, 2010).
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Figure 5. Same figure panels as in Figure 1 for the standard Kronian disk calculated with the UCL/AGA magnetodisk
model.

Figure 5 shows the differences in the geometry of the dipole and the magnetodisk fields for Saturn in a
similar way to Jupiter presented in Figure 1. Note how the stretching of the magnetodisk is less pronounced
for Saturn than Jupiter, a factor as large as ∼1.8 for Saturn versus ∼3 for Jupiter. The last closed field line in
the magnetodisk model at Req = 25RS corresponds to the dipole field line with L∗ ∼ 14.7.

For Req ≳ 15 RS, the field line stretching does not increase as rapidly, as seen by the inflection point at
L∗ ∼ 8.9 indicated as a vertical dashed line in the panels, and is an effect of the outer boundary imposed
in the model at the magnetopause within which the magnetic field is confined. For that reason we will
only consider equatorial distances Req ≲ 16 RS, well into the middle magnetosphere, including the orbit of
Rhea at ∼8.74 RS, to calculate the dimensionless functions Φ and Γ∕Φ. This range represents a regime of
purer magnetodisk structure as previously considered for the case for Jupiter. We also aim to study the near
magnetopause field topology of Saturn in a future investigation.

Figure 6. Same figure as Figure 2 with latitude for mirror point but for the Kronian system.
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Figure 7. Same figure as Figure 3 with the dimensionless bounce integral Φ but for the Kronian system.

The calculations of the functions in equations (17)–(20) were carried over the intervals 2–16 RS for Req and
16–72◦ for 𝛼eq. Similarly to Jupiter, the minimum pitch angle value 16◦ corresponds to a particle mirroring
at the planet's surface (loss cone angle) while the maximum value corresponds to particles mirroring at
latitudes ≲5◦.

Figure 6 presents the latitude of the mirror points 𝜆m for Saturn similarly to the case of Jupiter in Figure 2.
Note how, like Jupiter, even for small distances ∼4 RS, the latitude of mirror point of the magnetodisk 𝜆m

m
deviates significantly from the dipole case, reflecting the stretching and confinement toward the equator of
the field lines.

The small jump seen in 𝜆m
m at ∼8 RS is a minor artifact due to a similar discontinuity in the UCL/AGA mag-

netodisk model as for Jupiter and corresponds to the inner edge of the hot plasma distribution, clearly visible
in the modeled azimuthal current density (see, for instance, Achilleos, Guio, & Arridge 2010; Achilleos,
Guio, Arridge, Sergis, et al. 2010; Achilleos, 2018).

As in Jupiter's case, Figures 7 and 8 present the dimensionless integrals Φ and Γ∕Φ for the dipole and the
magnetodisk fields calculated with equation (17) and equations (20)–(22) and the mirror latitudes shown
in Figure 6 for both the dipole and the magnetodisk. Note how Φm in Figure 7 presents very similar char-
acteristics to the case of Jupiter in Figure 3. In particular, the value of Φm drops for large values of Req and
𝛼eq. This is due again to the significant decrease of 𝜆m with increasing Req, reflecting the equatorial confine-
ment of the plasma. In the case of Saturn, though, Φm drops by a factor as large as ∼2.5 compared to Φd, a
moderate factor compared to the factor of ∼8 for Jupiter. The average value of the ratio Φd∕Φm for the data
presented in Figure 7 is ∼1.5, compared to ∼2.5 for Jupiter.

Figure 8. Same figure as Figure 4 with the dimensionless bounce-averaged drift integral Γ∕Φ but for the Kronian
system.

GUIO ET AL. 12 of 18



Journal of Geophysical Research: Space Physics 10.1029/2020JA027827

Table 4
Same Table as Table 1 but for the Dipole Field Simulation of the Kronian System in Figure 5

X pX
00 pX

01 R2 × 100 RMSE

Req ∈ 2–16RS

Φd 1.27 (7 · 10−5) −0.54 (10 · 10−5) 99.9 0.0035
Γd∕Φd 0.35 (8 · 10−6) 0.15 (1 · 10−5) 100.0 0.00045

Similarly to the Jupiter case, we note that the integral Γm∕Φm for the magnetodisk (right panel in Figure 8)
is larger than its dipole counterpart Γd∕Φd (left in same figure), meaning smaller drift period for the mag-
netodisk than the dipole field. In the case of Saturn, the drift period is smaller by a factor as large as ∼1.5,
moderate compared to the factor of ∼2.2 for Jupiter, and an average factor ∼1.2 is found for the data in
Figure 8, compared to ∼1.6 for Jupiter. It is worth noting that the broad maximum in the integral Γm∕Φm

for of Jupiter around ∼20–24 RJ (right panel in Figure 4), is not so clear in the case of Saturn (right panel in
Figure 8), due to the discontinuity artifact in the magnetodisk model around 8RS. Nevertheless, a weak local
maximum can be seen for large pitch angle and around equatorial distance ∼13 RS. This distance is close to
the distance at which the north-south field ΔBz, produced by the magnetodisk current, changes sign (e.g,
Achilleos, Guio, & Arridge, 2010).

Finally, we followed the same methodology introduced in section 4 for Jupiter and computed analytic
approximations of Φ and Γ∕Φ for the Saturn case for the equatorial range of distances indicated.

We first validated the dipole case at Saturn (Table 4) and note the complete agreement of the coefficients p00
and p01, the coefficients of multiple determination and the RMSE residuals with the Jupiter case in Table 1.

The fitted coefficients p00 and p01 of equation (27) for the estimates Φm and Γm∕Φm for the magnetodisk
case are then summarized in Tables 5 and 6.

As seen at Jupiter, the fit of Γm∕Φm is poor for the wide equatorial range considered, 2–16 RS and improves
by reducing the upper boundary to 12 RS as seen in Table 5.

The same method used in section 4 to improve the fit of the bounce-averaged drift integral was carried out
for Saturn, and the resulting coefficients are summarized in Table 6. Note the improvement reflected by a
coefficient of multiple determination of 84.9% compared to 16.5% for the total range of equatorial distance
and even 58% for the reduced range.

Table 5
Same Table as Table 2 but for the Magnetodisk Field Simulation of the Kronian System in Figure 5

X pX
00 pX

01 pX
11 R2 × 100 RMSE

Req ∈ 2–16RS

Φm 1.25 (8 · 10−4) −0.49 (1 · 10−3) −0.04 (8 · 10−5) 96.3 0.041
Γm∕Φm 0.44 (2 · 10−3) 0.21 (3 · 10−3) −8.67 · 10−3 (2 · 10−4) 16.5 0.082

Req ∈ 2–12RS

Φm 1.26 (4 · 10−4) −0.41 (8 · 10−4) −0.06 (6 · 10−5) 99.0 0.019
Γm∕Φm 0.41 (1 · 10−3) 0.08 (2 · 10−3) 0.02 (1 · 10−4) 58.6 0.047

Table 6
Same Table as Table 3 but for the Magnetodisk Field Simulation of the Kronian System in Figure 5

X pX
00 pX

01 pX
11 pX

21 R2 × 100 RMSE

Req ∈ 2–16RS

Γm∕Φm 0.44 (7 · 10−4) −0.25 (2 · 10−3) 0.12 (3 · 10−4) −7.18 · 10−3 (2 · 10−5) 84.9 0.035
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Figure 9. (left panel) The ratio of curvature to total azimuthal drift angular velocity for a dipole field defined in
equations (20)–(22). (right panel) Same quantity for the Jovian magnetodisk field presented in Figure 1. Black lines
correspond to isocontours of the same percentage value in Γc∕Γ.

Similarly to Jupiter, the coefficients in Tables 5 and 6 together with equations (25) and (26) provide new
approximate formulae, valid well into the typical Kronian middle magnetosphere and including the orbit of
Enceladus, for the bounce and drift periods of a charged particle.

For a charged particle of mass m and velocity v, or equivalently with kinetic and rest energies, E and E0, we
can write similarly to Thomsen and Van Allen (1980), the bouncing period 𝜏Sat

b expressed in second units:

𝜏Sat
b ≃ 0.804

E + E0√
E(E + 2E0)

R̂eq(1.25 − 0.49 sin 𝛼eq − 0.04R̂eq sin 𝛼eq), (30)

and the bounce-averaged drift period 𝜏Sat
d in hour units:

𝜏Sat
d ≃ 44.71

E + E0

E(E + 2E0)
|Z|
R̂eq

×

(0.44 − 0.25 sin 𝛼eq + 0.12R̂eq sin 𝛼eq − 7.18 · 10−3R̂2
eq sin 𝛼eq)−1.

(31)

As for the case of Jupiter in equation (29), kinetic and rest energies in equation (31) have to be in MeV units.
The strength of Saturn's equatorial magnetic field used is BS = 21,160 nT.

Note the similarity of order for the bounce and drift periods at Jupiter (equations (28) and (29)) and Saturn
(equations (30) and (31)), especially the cross term Req sin 𝛼eq. These magnetodisk formulae, however, com-
pared to the reference values of the dipole case, indicate a stronger deviation from dipole field for Jupiter than
Saturn. This comparison indicates the differences in the magnetodisk field geometry at these planets and
therefore differences in their respective ring current densities. Such differences can be traced to the differ-
ences in plasma source rate (mass loading), an order of magnitude less for Enceladus in the Kronian system
compared to Io for Jupiter (Vasyliñas, 2008). But, although the plasma source rate from Enceladus at Sat-
urn is an order of magnitude smaller (in absolute terms) than that from Io at Jupiter, suggesting the current
density and thus the magnetodisk field geometry should be very different, the values of the dimensionless
mass input rate (scaled to relevant planetary parameters) are more comparable (Vasyliñas, 2008).

6. Curvature and Gradient Drift Contribution
Finally, we examine the respective contributions of the field curvature and the magnetic field strength gra-
dient to the total longitude change over a bounce period Δ𝜙 (proportional to Γ). These longitudinal changes
are respectively denoted Δ𝜙c (proportional to the integral Γc) and Δ𝜙g (proportional to the integral Γg) and
were introduced in equations (6), (10), and (20) in section 1.

In Figure 9 we compare the percentage of the total drift velocity due to curvature, as a function of Req and
𝛼eq, for the dipole case (left) and the magnetodisk (right) at Jupiter. For the dipole field (left panel), the drift
contribution is not a function of Req, as expected, and for 𝛼eq ≪ 45◦ the curvature drift dominates as 𝜆m
becomes larger, while for 𝛼eq ≫ 45◦ the gradient drift dominates as the motion becomes more confined to
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Figure 10. Same figure as Figure 9 but for the Kronian magnetodisk field presented in Figure 5.

the equator. The magnetodisk field exhibits the same behavior as the dipole for Req ≤ 7RJ, as expected (see
Figure 1), but for Req ≥ 7.6RJ the curvature drift largely dominates, even at large pitch angle. This behavior
arises from the larger equatorial curvature of the magnetodisk. Note that, once again, the artifact seen at∼7.6
RJ, similar to the functions Φm and Γm∕Φm, is due to a discontinuity in the UCL/AGA Jovian magnetodisk
model that corresponds to the inner edge of the hot plasma distribution as discussed in the previous section.

It is quite remarkable that for Req ≥ 20RJ, and independently of the pitch angle 𝛼eq, the drift velocity vD
is entirely due to the curvature of the field line, implying that the drift motion is entirely driven by the
curvature of the magnetic field in this region of the Jovian magnetodisk.

Figure 10 presents the same quantities as Figure 9 but for the case of Saturn. As pointed out for Jupiter,
the artifact seen in this case at ∼8 RS is also due to a discontinuity in the UCL/AGA magnetodisk model
that corresponds to the inner edge of the hot plasma distribution at Saturn. As in the case of Jupiter, the
azimuthal drift at Saturn becomes dominated by curvature drift as Req ≥ 8RS and for larger pitch angle.
But unlike Jupiter, at Saturn the regime where the drift is entirely controlled by the curvature of the field is
never reached.

The generally larger slopes of the Γm
c ∕Γ

m isocontours in the Jovian model reflect the more intense ring
current and larger field curvature in Jupiter's magnetosphere, compared to the Saturn system. This is further
illustrated in Figure 11, which shows the much greater curvature 𝜅m for the field lines of the outer equatorial
Jovian model (right middle panel) compared to Saturn (right lower panel).

In order to further highlight the differences in the curvature and magnetic gradient contributions to the
total drift in the Jovian and Kronian magnetospheres, Figure 11 presents the magnetic gradient inverse
length scale ∇B∕B (left panels), and the curvature 𝜅 = 1∕Rc (right panels), entering in equations (8) and (9),
respectively. Note that all panels have the same color scales to facilitate the comparison. Superimposed on
each panel are a selection of field lines (white solid lines), and the field line associated to the discontinuity
corresponding to the inner edge of the hot plasma distribution (yellow dotted line).

The two upper panels present the dipole case at Jupiter. As explained in section 1, when deriving equation
(11) from equation (9) in a curl-free field, the contributions to the azimuthal drift from the magnetic gradient
∇B∕B and the curvature 𝜅 = 1∕Rc terms are identical by definition. This is confirmed in the two upper pan-
els. The middle and lower panels present the Jovian and Kronian magnetodisks, respectively. Note how the
structure of the magnetic gradient inverse length scale is similar at Jupiter and Saturn overall. The curvature
for the field lines is also of the same order for Jupiter and Saturn for distances up to ∼16 RP. As described by
Achilleos, Guio, and Arridge (2010) and Vasyliñas (2008), even though the absolute value of the ring current
is much larger at Jupiter, the normalized ring current in both systems is comparable, even slightly larger at
Saturn. The normalization factor for the current density is BP∕(RP𝜇0). In the outer equatorial Jovian model,
that is, for Req ≥ 25RJ, on the other hand, the curvature is much more pronounced than for Saturn.

Note that Figure 11 can also be used to check the validity of the guiding center approximation for a particle
with given energy, by checking that its gyroradius is, at all times, smaller than both the radius of curvature
1∕𝜅 and the gradient length scale B∕∇B. This will be the object of a separate study.
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Figure 11. Comparison of the magnetic gradient inverse length scale (left panels) and curvature (right panels), in
normalized unit RP

−1, in cylindrical coordinates. The upper panels are for a dipole field at Jupiter, the middle panels
for the Jovian magnetodisk field, and the lower panels are for the Kronian magnetodisk field. The white contours
represent field lines equidistant at the equator, while the yellow dotted line represents the field line at the discontinuity
seen in Figures 9 and 10.

7. Conclusion
We have presented a formalism to calculate the bounce and the bounce-averaged azimuthal drift periods
in the guiding center approximation for an arbitrary magnetic field, and we have applied the formalism to
nominal models of Jupiter and Saturn's magnetodisks generated by the UCL/AGA magnetodisk model.

We have derived, for the first time, analytic expressions for the bounce and the bounce-averaged azimuthal
drift periods for the average Jovian and Kronian magnetodisk structure, analogous to expressions for a
dipole field, but where additional terms in the polynomial expansion in R̂eq and sin 𝛼eq have been intro-
duced to account for the disc structure. These expressions, valid well into the Jovian and Kronian middle
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magnetosphere, represent an improvement over the global use of a pure dipole field, which has been
extensively employed in previous literature.

Further studies would be needed to check the sensitivity of the coefficients of the polynomial expan-
sion to different configurations of the Jovian and Kronian magnetospheres (compressed and expanded
states) and thus how the solar wind and suprathermal population state influence the bounce and the
bounce-averaged azimuthal drift periods. Even so, the formulae presented here are still applicable for a
typical field configuration.

Other useful studies would include comparison of the results of the guiding center approximation calcu-
lation in this paper against results from particle tracing simulations. In particular, the investigation of the
limits to which the adiabatic invariants are conserved and thus characterization of the range of validity
(in terms of particle energy, for instance) of the approximate formulae presented in this paper. In a future
extension of this work, we also aim to include the effects of centrifugal force on particle motion, which are
expected to be more pronounced at particle kinetic energies comparable to or smaller than the change in
centrifugal potential along their trajectories.
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