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A bstract

The determination of the physical parameters of various astrophysical plasmzis requires 

accurate calculation of the radiative and coUisional processes involved. The recombination 

spectrum of Carbon II lends itself to investigating regions such as gaseous nebulae and 

low tem perature stellar winds. In this thesis, a detailed treatm ent of the recombination 

processes of CII has been carried out, covering a wide range of tem peratures and densities.

Accurate photoionisation calculations, using the JZ-matrix solution to the close cou­

pling equations have been performed. In the process, bound state energy levels have been 

determined and new weighted oscillator strengths calculated, over a larger range and with a 

greater accuracy, than had been previously achieved. W ith careful attention to resonances, 

which dominate the recombination at low temperatures, recombination coefficients have 

been evaluated for all states up to n =  15, T = 4. As well as radiative processes, all impor­

tan t coUisional processes have been included, creating a full collisional-radiative-cascade 

model, in order to  determine the populations of the states of CII at varying temperatures 

and densities. Detailed comparison with previous theoretical work has been made.

The appUcation of the CII recombination spectrum to the observed spectra of two 

contrasting astrophysical plasmas such as cold nova sheUs and Wolf-Rayet steUar winds 

is considered. The usefulness and applicability of the CII recombination spectrum as a 

diagnostic tool is ably demonstrated.
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C hapter 1

Introduction

The study of the physical processes occurring in ionized plasmas of varying temperature 

and density has been of interest to astrophysicists for a long time. Formerly, the analy­

sis and physical interpretation of the plasmas relied on strong emission lines. W ith the 

advances in equipment however, leading to observations of increased sensitivity and reso­

lution, accurate measurement of the intensities of even weak emission lines in astrophysical 

plasmas can be made. The increase in the number of observed lines formed by recombi­

nation, has allowed more detailed analysis of, for example, gaseous nebulae. Any detailed 

analysis though, must rely on models which accurately and fully describe the processes 

which lead to  the formation of the observed spectrum.

The physical principles governing the formation of recombination spectra are well 

defined and lead to a theory and model for calculating emission line spectra which may 

be easily compared to  observations. By adjusting the model, fits to  observed intensities 

can be made and the physical conditions of the astrophysical plasma under observation 

deduced. Provided all the atomic processes contributing to the levels of an ion have been 

suitably modeled, elemental abundances can be determined from recombination line fluxes. 

Recombination, followed by radiative cascade is im portant in populating bound excited 

states, whose energy levels, may be greater than the therm al kinetic energy of the gas. 

Recombination rates axe also needed to determine the ionisation and therm al balance of the 

plasma. At low temperatures, recombination is believed to very significantly contribute 

to forbidden line emissivity (e.g Petit jean et al., 1990) and may need to be considered 

in nebulae at higher temperatures. Effective recombination coefficients for metastable 

levels, are required in detailed modeling of nebula spectra and there is a general need for 

homogeneous sets of recombination coefficients and radiative transition probabilities as a
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basis for modeling and interpreting the observed data, over a wide range of wavelengths. 

It is the aim of this thesis to provide such a homogeneous set of data  for Carbon II and 

to use the results in the interpretation of spectra.

1.1 Recom bination Processes

The primary processes of recombination in astrophysical plasmas are three-body recom­

bination, radiative recombination and dielectronic recombination;

X n ^  e -\- e — > c Three — body

+ e~ —  ̂ +  hi/a Radiative

Xn+ + e~ —

—  ̂ 4- hub Dielectronic (1.1)

where is an ion of effective charge number n, is an excited bound state of

the recombined ion and is a doubly excited autoionizing state.

Three-body recombination is the inverse process of coUisional ionisation. The three 

body recombination /  coUisional ionisation rate is proportional to the square of the electron 

density and wiU generaUy not be im portant in regions of low density, (opticaUy thin 

plasmas) such as those found in the intersteUar medium and nebulae. In these causes 

recombination proceeds mainly to the ground state ions. However, it wiU be an im portant 

process, even at intermediate densities for states with a high principal quantum number 

or particularly a high to tal angular momentum. Three body recombination /  coUisional 

ionisation quickly becomes the dominant recombination process in dense regions, such ajs 

Wolf-Rayet steUar winds.

Radiative recombination is the inverse process of photoionisation and is dominant in 

low density, low tem perature plasmas. It quickly becomes less im portant as the electron 

tem perature rises. Recombination rates to  the ground state complexes of many ions have 

been calculated from detailed photoionisation calculations, but this may ignore the recom­

bination to  higher excited states for which few detailed calculations have been performed.

The process of dielectronic recombination involves the radiationless capture of a free 

electron into a doubly excited state, quickly foUowed by radiative decay to a true bound 

state. Dielectronic recombination is known to be the dominant recombination process at 

high temperatures, but also is very significant at low temperatures (Storey, 1981), par­

ticularly when there are autoionising states which lie just above the ionisation threshold.
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The most im portant radiative decays from autoionising states are generally those to  the 

ground complex. Examples are 2p^ -  2s2p at A2997 and C"*" 2s2p^ -  2s^2p

at A1335. Such lines have been observed in planetary nebulae and symbiotic stars.

1.2 Previous Work

The calculation of recombination rates, the generation of theoretical recombination spectra 

and their application to observations has been of interest to many authors. Varying 

degrees of completeness have been used in the models and in the approximations to the 

various radiative and coUisional rates, needed to fuUy describe the physical processes 

involved. Some of the relevant work is mentioned here. The foUowing Ust is not a history 

of calculating recombination spectra. The papers mentioned here are the ones having a 

bearing, to a lesser or greater degree, on the work carried out in this thesis. They contain 

information on the methods of solution of the level population equations, the atomic data 

used in the calculations and the application of theoreticaUy determined recombination 

spectra to  observations.

Much of the previous work has concentrated on hydrogen and hydrogenic ions. Brock- 

lehurst (1971) calculated relative intensities of Hi and compared them with observed in­

tensities in the planetary nebula NGC 7662. These calculations were based on the recom­

bination coefficients of Burgess (1965) and made allowance for coUisional redistribution 

of angular momentum and energy using the impact param eter approximation, (Seaton, 

1962). His results gave good agreement with photoelectric observations.

Aldrovandi and Péquignot (1973) made significant improvements in terms of the avail­

able atomic data, by calculating radiative and dielectronic recombination coefficients for 

aU non-hydrogenic ions of He, C, N, O, Ne, Mg, Si and S, and giving them  in the form of 

a fit, suitable for evaluation over a wide tem perature range. They noted tha t in a large 

number of cases, hydrogenic approximations gave cross-sections tha t were in error by a 

factor two for complex ions. They also suggested tha t one of the possible explanations for 

the Une intensities observed in planetary nebulae was dielectronic recombination at low 

temperatures.

Summers (1977) extended the work on the analysis of recombination and population 

structure described in Burgess and Summers (1976), to include angular momentum for 

highly excited states as weU as lower ones and techniques for joining very many resolved 

and unresolved levels in an L S  coupUng approximation. Approximations were used for
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all coUisional processes but dielectronic recombination was excluded as he considered a 

tem perature range for Hydrogen and Helium at which it was ‘switched off’.

Storey (1981), calculated rate coefficients for dielectronic recombination for the recom­

bined ions C"*", and at the temperatures and densities appropriate to

planetary nebulae. In his evaluation of effective recombination coefficients, he assumed 

th a t all states perm itted to autoionize where in thermodynamic equilibrium and used 

transition probabilities, calculated with the multi-configuration atomic structure code, 

SUPERSTRUCTURE (Eissner et a l, 1974; Nussbaumer and Storey, 1978). Using an LS 

coupling scheme he neglected the effects of collisions, assuming tha t they would be neg­

ligible at typical nebular densities (10'* cm~^). This paper confirmed, th a t the GUI 2p^ 

*D —> 2s2p A2996 line found in the spectra of planetary nebulae was indeed formed 

by dielectronic recombination as had been proposed. The calculation of dielectronic re­

combination coefficients was extended by Nussbaumer and Storey (1984), who gave fits to 

effective dielectronic recombination coefficients for a large number of lines, for all ions of 

CNO.

Mendoza (1982) reviewed atomic calculations and experiments of interest in the study 

of planetary nebulae. He gave a selected and critically evaluated compilation of transition 

probabilities, electron excitation rate coefficients and photoionisation cross-sections for a 

large number of ions.

Ferland et al. (1984) presented an analysis of the cold nova DQ Her. In this paper they 

gave data  for CII and calculated effective recombination coefficients for A1335 and A4267. 

Then by comparing observed and theoretical intensity ratios, they were able to deduce the 

tem perature in the nova shell. In their work they used a scaled hydrogenic approximation 

to the radiative recombination coefficients and evaluated the dielectronic component for 

A1335 from Nussbaumer and Storey (1983), to obtain a very low tem perature for nova 

DQ Her. Later work, Petitjean et al. (1990), Smits (1991) and this thesis, confirm the low 

tem perature, but show tha t ratio of the theoretical intensities, 7(A1335)/7(A4267) give a 

tem perature approximately double, that Ferland et al. (1984) derived.

Hummer and Storey (1987), extended the work of Brocklehurst (1971) to calculate 

relative intensities of HI and Hell, fully including coUisional effects and considerably ex­

panding the range of temperature, density and principal quantum number.

Seaton (1987) published the first paper of the collaborative effort referred to as the 

Opacity Project. This work included calculations of atomic energy levels, oscillator
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strengths and photoionisation cross-sections for a large number of ions producing some of 

the most accurate data to date. A set of codes employing the i2-matrix formulation of the 

close coupling method was used to produce the data. These codes were used extensively 

in the course of this thesis. Yu Yan and Seaton (1987) calculated photoionisation cross- 

sections for CII as part of the project. The reasons for not using these cross-sections are 

considered later in this chapter and in chapter 2.

More recently, Péquignot et al. (1991) produced to tal and effective recombination 

coefficients for all H, He, C, N, O and Ne ions in the form of fits valid at low density 

and over a range of temperatures. They used explicitly calculated cross-sections for the 

ground state and n =  2 excited levels where available. For n =  3 states, the systematic 

cross-sections of Hofsaess (1979) were used. Where no data was available they interpolated 

or extrapolated from ions in the same isoelectronic series. They noted tha t for some ions, 

e.g. CII (Yu Yan and Seaton, 1987) there existed detailed cross-sections for excited states, 

but they declined to  use them. Detailed comparison is made with Péquignot et al. (1991) 

in chapter 5.

Storey (1994) calculated rate coefficients for Oil lines at nebular densities and tem­

peratures. Previous work had used separate calculations of the radiative and dielectronic 

components of the to tal recombination coefficient to a state. In this paper. Storey used 

a unified approach, by deriving recombination coefficients directly from photoionisation 

cross-sections calculated by the ab initio methods of the Opacity Project.

1.3 A pplications o f Recom bination T heory

Some of the applications of recombination theory have already been mentioned. They 

cover a wide range of objects and wavelengths but seem particularly suited to  the analyses 

of objects such as planetary nebulae where the low electron tem perature and density of 

the nebulae envelope give rise to a variety of atomic processes which would be difficult 

to  reproduce and measure in more accessible laboratories. Analysis of the observations, 

relies heavily on theoretically calculated quantities. A review of the data  used in such 

calculations was given by Mendoza (1982).

The modeling of the observed fluxes of lines formed by recombination, is often suitable 

for analysis using the recombination spectra of C, N and O ions. More recently, Liu et 

al. (1994), have produced detailed analyses of the planetary nebula NGC 7009. NGC 

7009 has been well known for its unusually strong and rich O il optical perm itted lines
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and they utilized the detailed and more accurate calculations made by Storey (1994) in 

their analysis. Previous analyses of this planetary nebula have used the effective radia­

tive recombination rates of Péquignot et al. (1991), and the works’ of Storey (1981) and 

Nussbaumer and Storey (1984) to give the dielectronic component of the total rate. A 

comparison of the combined rates mentioned here for CII and the new rates calculated in 

this thesis, is given in chapter 5. While the agreement is good for near hydrogenic lines, 

there are marked discrepancies for states with large quantum defects.

In chapter 6, the application of the CII recombination spectra is considered in two other 

distinct and physically different regimes, one of which has previously been mentioned. 

These are ‘cold’ nova shells, characterized by temperatures, perhaps as low as 500 K and 

densities as low as 10^ cm“ ^, and the cool stellar winds of Population II Wolf-Rayet carbon 

stars, where the density may range from 10® -  10^^ cm“  ̂ at temperatures of ^^15000 K. 

These regions are described in more detail below.

1 .3 .1  C o ld  N o v a  S h ells

The importance of recombination in old nova envelopes and some supernovae remnants 

has been noted by several authors, Williams (1982), Ferland et al. (1984), M artin (1988) 

and Smits (1991) for example. In these regions, it is necessary to calculate radiative 

coefficients down to very low temperatures since the intensity of recombination lines are 

not proportional to the intensity of, for instance, H/? for widely varying values of Tg.

Another unusual feature in the spectra of the cool gas is the presence of heavy metal 

recombination lines with fluxes relative to the HI Baimer lines, much larger than normally 

found in nebulae. Although not uniformly distributed in the shells, lines of CII, Nil and 

Oil are identified in the spectra of DQ Her (Williams et oZ., 1978) and Nil, NIII and 

NIV in CP Pup (Williams, 1982). The implication of these large fluxes is th a t the CNO 

abundances are enhanced with respect to the other nebulae by large factors (Smits, 1991).

As has been noted the low electron tem perature and densities of the nebula, mean tha t, 

the atomic data required to interpret the observations is mainly obtained by theoretical 

calculations, where understanding is followed by a large computational effort !

1 .3 .2  W o lf-R a y et S tars

The name Wolf-Rayet (WR) stars is in use for stars similar in optical appearance to  the 

stars mentioned in the original paper of Wolf and Rayet (1867), which are now known to
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be massive, hot, luminous Population I stars. The name is also used for stars of planetary 

nebulae (Population II stars), which are objects of low mass and low luminosity. The 

stars at the centre of planetary nebulae, show the same emission line spectra tha t is 

characteristic of W R stars. Observational differences between the two W R populations 

have been discussed by Smith and Aller (1971) and by Mendez et al. (1991).

W R stars are classified as such, based on the appearance of emission lines in their 

spectra. A classification system based on such emission lines will not be closely coupled 

to the stellar parameters, of effective temperature and luminosity. There is a class of WR 

stars, known as WC stars, which show prominent Carbon emission lines. Though carbon 

lines will be observed in nearly all types of W R stars, they are particularly predominant 

in the WC class. Of particular interest are the late type WC stars, e.g. WCIO, in which 

the level of ionisation is such as to allow the appearance of strong emission in CII lines. In 

order to accurately calculate the recombination spectra, full allowance must be taken of 

coUisional processes, which at densities of 10^  ̂cm“  ̂ will dominate radiative rates down to 

low values of the principal quantum number. Theoretical comparisons wiU be made to an 

observed spectra of a WClO star, which is one of the low mass, low luminosity Population 

II variety, at the heart of a planetary nebulae.

1.4 R e-evaluation o f Carbon II R adiative D ata

In general, but more fundamentally in a low temperature and density regime, the accurate 

evaluation of effective recombination rates is essential if any accuracy is to be attached to 

the analysis of observed spectra. This requires tha t special attention must be given to the 

evaluation of the rates for the processes of radiative and dielectronic recombination.

At high temperatures, dielectronic recombination proceeds via large numbers of doubly 

excited auto-ionising states with a high principle quantum number of the captured electron. 

At temperatures typical of planetary nebulae (lO'^K) only the lowest of these states are 

accessible (Storey, 1981).

At very low temperatures, where the mean free electron energy is less th a t the energy 

E q of the lowest autoionizing state, relative to the first ionization threshold, the calculated 

recombination coefficient falls as exp{—EofkTe) with decreasing tem perature. To obtain 

reliable recombination coefficient at these low temperatures, typically in the range 500- 

5000 ®K, it is necessary to obtain the recombination coefficients by integrating over the 

bound state photoionisation cross-sections. In this approach, autoionising states appear as
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resonances in the photoionisation cross-sections and effects such as the mean free electron 

energy being comparable to the resonance widths and the non-zero back ground cross- 

sections between resonances, are correctly treated. The omission of these effects would 

severely underestimate the recombination coefficient at very low tem perature (Nussbaumer 

and Storey, 1983). At temperatures where kTe is larger than the first ionisation energy, 

high tem perature dielectronic recombination becomes im portant. This process is not fully 

accounted for in this work, so the applicable range of tem perature is limited to less than 

20000 °K.

Previously, recombination coefficients have been evaluated in general using hydrogenic 

approximations, scaled for the effective charge of the ion and where appropriate, have 

included the effects of dielectronic recombination, based on Storey (1981) and Nussbaumer 

and Storey (1984). Where detailed photoionisation calculations have been available these 

have been used, but there was a general lack of detailed photoionisation cross-sections for 

excited states. The Opacity Project has gone some way to remedy this, with calculations 

over a wide range of elements and ions.

The more satisfactory and exact approach is the one tha t makes no distinction between 

radiative and dielectronic recombination. Consider the radiative capture process

Xn+ +  e —  ̂ +  hv  (1.2)

The photoionisation cross-section for this process will in general, have the form of a smooth 

background interrupted by resonances. The resonances correspond to quasi-bound states 

of the recombined system and Rydberg series of states, converging on the terms

of the recombining system. The rate coefficient for radiative capture is obtained by inte­

grating the photoionisation cross-section over the free electron velocity distribution. The 

resonances in the photoionisation cross-section correspond to the dielectronic component 

of the to tal recombination coefficient. The calculation of the to tal radiative recombi­

nation coefficient requires the integration of the photoionisation cross-section including 

resonances for all bound states of the ion. Storey (1994) employed this unified approach 

to determine recombination coefficients for Oil using photoionisation cross-sections gener­

ated in the course of the Opacity Project. However in many cases treated by the Opacity 

Project, the free electron mesh on which the photoionisation cross-sections are calculated, 

was too coarse to accurately map narrow resonance features. This may lead to significant 

contributions to the recombination coefficient being missing, since the resonance contribu­

tion is proportional to  the area underneath the resonance and not just the width. Broader
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resonances may also be truncated. Storey (1994) discusses this problem, but in the case of 

Oil, the dielectronic resonance contributions are weak, otherwise recalculation of the cross- 

sections would have been needed. This was not the case for Carbon II. Poorly mapped 

resonances required tha t photoionisation cross-sections be recalculated for all states up to 

and including n =  15, X = 4 and a different method be used to  ensure accurate mapping of 

resonances in the free state energy mesh. The unified approach suffers from a shortcoming 

in the theory whereby the cross-section in the vicinity of resonance whose autoionisation 

width is only comparable to the radiative width, overestimates the contribution to the 

recombination coefficient. In this work, the implicit assumption of thermodynamic equi­

librium for autoionising states was checked and where found not to  hold, the resonances 

were eliminated from the calculation of the photoionisation cross-section.

Various approximations have been used for radiative transition probabilities as well, 

with authors taking transitions from many sources using many approximations. For tran­

sitions where explicit calculations are not available, use is made of hydrogenic or coulomb 

rates which may sometimes be considerably in error. The original oscillator strengths 

for CII calculated during the Opacity Project have been recalculated here and extended. 

Great care has been taken to deduce accurate transition probabilities from highly excited 

states to lower ones. Hydrogenic or coulomb rates have only been used where it was 

appropriate to do so.

1.5 Sum mary

The aim of this thesis is to provide a full and accurate treatm ent of the recombination 

spectrum of Carbon II, making full allowance for all im portant physical processes and 

calculating where necessary new and more accurate rates. CII emission lines appear in a 

wide range of astrophysical regimes and the CII emission spectrum is very suited to  the 

task of interpreting observational data.

As more and higher quality spectra become available covering a wide variety of ob­

jects and spectral regions, there is a need for the atomic data, a large amount of which 

is purely theoretical, to match the quality of the observations. This thesis sets out to 

provide accurate recombination coefficients for CII, not just for the ground or first ex­

cited state complexes, but also to a large number of excited states, where hydrogenic or 

coulomb approximations are not appropriate. Improved radiative transition probabilities 

are calculated and used, and tables of lines useful for identification purposes are given.
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Chapter 2 describes the application of i2-matrix theory to the solution of the close- 

coupling approximation. The chapter explains the determination of bound state-energy 

levels and the evaluation of photoionisation cross-sections using quantum defect theory. 

A summary of the Opacity Project codes is also given.

Chapter 3 details the application of the i2-matrix theory to the generation of pho­

toionisation cross-sections in the particular case of CII. The Opacity Project CIII target 

is described along with the determination of fundamental parameters of i2-matrix theory. 

Calculated bound state energy levels are produced, as part of the generation of the pho­

toionisation cross-sections and compared with experiment. The problem of autoionising 

states not in thermodynamic equilibrium, is also considered and the energy meshes used 

in the generation of the free state wave functions are explained. Finally some results of 

the photoionisation calculations are presented.

Chapter 4 details the evaluation of recombination coefficients from the photoionisation 

cross-sections. The resonances contributions, of the 2s2p3d ^F° and ^P° states, which 

lie just above threshold are carefully considered. The tabulation of the calculations is 

considered along with the generation of hydrogenic and coulomb cross-sections in the 

appropriate regions.

Chapter 5 explains the solution of the level population equations. It details all radiative 

and coUisional rates not previously considered. The new radiative transition probabilities 

are examined. Hydrogenic and coulomb rates are also evaluated where necessary and 

appropriate, and the use of below threshold cross-section interpolation, to determine tran ­

sition probabilities between high and low states is described. The various approximations 

to the collision rates are described and the formulation of the solutions of the level popu­

lations in terms of departure coefficients is given. The use of hydrogenic solutions to  the 

level population equations as a first approximation is considered. The generation of effec­

tive recombination coefficients and effective fluxes is described and tables of wavelengths, 

and case A and case B effective recombination coefficients are given applicable to nebular 

temperatures and densities. Detailed comparison is made with published work.

Chapter 6 demonstrates the applications of recombination theory to the cold nova 

sheU, DQ Her and the WCIO star, CPD -56° 8032. Finally, a summary of the results, and 

a discussion of the shortcomings of this work and the possibility of future work are given.
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C hapter 2

i2-matrix P hotoion isation  

C ross-sections

2.1 Introduction

The photoionisation process is characterized by the interaction of a photon and an atom, 

causing an electron to be excited from a ground or excited state to  the continuum. Equa­

tion (2.1) describes this process.

x ; *  + W - »  +  e "  ( 2 . 1 )

Let (T(̂ {a —*■ f )  be the cross-section for the process, then

-> / )  =  S (E , / ;  a) (2.2)
9a

where w is the photon energy in Rydbergs and S ( E , / ;  a), is a generalised line strength.

Various approximations exist for the evaluation of photoionisation cross-sections for 

complex ions. If the wave functions for the -f e~ system are evaluated by a

method such as the close-coupling (CC) approximation, in which the interaction between 

open and closed channels is calculated, resonance effects are automatically included. The 

determination of accurate resonance structure is im portant for calculating recombination 

to low lying states particularly at low temperatures. The calculations in this thesis were 

based upon the codes used by the Opacity Project (OP) (Seaton, 1987). These evolved 

from the codes of Berrington et al. (1974, 1978) and used the Æ-matrix method, to solve 

the Schrodinger equation in the CC approximation of electron-atom collision theory.
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2.2 The Close-C oupling A pproxim ation

The basic expansion of the CC approximation can be written,

^  (2.3)
t

where .4 is an antisymmetrisation operator. x% &re functions of the ‘N-electron’ target and 

Oi are orbital functions of the colliding electron. If V’,- are functions which are vector coupled 

products, of functions representing the ‘N-electron’ core and functions representing the 

spin and angle coordinates of the added electron, then total wave function can be written,

/  . J
<t = A Y , i ’i-F i{r) + E  (2.4)

i = l  ^ j = l

For convenience, F l(r), the radial functions of the added electron, axe taken to be orthogo­

nal to radial functions for the core, having the same angular symmetry. are functions 

of a bound-state type, which are included to compensate for the imposition of orthogo­

nality conditions on F ,(r). Additional functions can be included to improve accuracy. For 

complex atoms and ions it is more convenient to introduce additional pseudo-contracted 

orbitals with the same range as the Hartree-Fock orbitals for the target, and to construct 

additional correlation configurations from these.

Since (2.4) is truncated, Ÿ is not a solution of the Schrodinger equation,

(E  - E ) ^  = 0 (2.5)

where H  is the Hamiltonian for the whole system and E  is the to tal energy. The equations 

used in CC theory can be derived from the variational condition,

( ^ $ | .H - E |$ )  =  0 (2.6)

where 6$  is any variation in Ÿ due to a variation in F ,(r) or D j. This gives rise to a set 

of integrodifferential equations to be satisfied by Fi{r) and D j.

The target functions Xi &re constructed using conventional configuration interaction 

(Cl) wavefunctions, using a common set of radial functions, P„/(r). These radial functions 

are of two types. Spectroscopic orbitals, nl of the type which would occur in a central field 

model; and correlation orbitals, nl , described above, included to improve accuracy. The 

radial functions axe calculated using Slater-type orbitals given by,

Pnl{r) = exp (-p kr)  (2.7)
k
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Powers of r are related to the orbital quantum number, /, by > / +  1. Hartree- 

Fock functions together with correlation orbitals are usually employed to provide initial 

estimates. The target Hamiltonian is then diagonalised in a Cl representation and the 

parameters Ck and /ijt varied, subject to orthonormality constraints to minimise a specific 

eigenvalue or group of eigenvalues.

2.3 T he iJ-matrix Solution to  th e C lose-C oupling Approx­

im ation

The central feature of the jR-matrix method, is the division of the configuration space of 

the colliding particles into two physically distinct regions. These are commonly described 

as the inner and outer regions.

The inner region contains the particles when they are close to the collision centre, so 

tha t the most mathematically complex part of the interaction is confined to  a finite region 

of configuration space. The collision wave function can be expressed in terms of a discrete, 

complete, set of basis functions. The inner region is also known as the i2-matrix box. In 

the outer region, the collision wave function has an asymptotic form and can be directly 

obtained from the asymptotic Schrodinger equation. Herrington et al. (1987), summarize 

the ^ -m atrix  method used in these calculations.

2 .3 .1  S o lu tio n s  in  th e  In n er R eg io n

Solutions are first obtained for inner region functions, $  = V’n? which satisfy fixed bound­

ary conditions at r =  a. The value a, of the radial variable r, is chosen such tha t the 

functions Xi &nd are small, and exchange and correlation effects can be neglected, for 

r > a. Solutions exist for a discrete set of energies, E  = €„ and contain radial functions 

Fi{r) =  fin ir). The normal boundary condition assumes tha t the derivatives of the radial 

functions are zero at r  =  a.

For any value of E , the complete wave function $ e  can be expanded as,

(2.8)
n

and it can be shown (Burke et al. 1971) tha t

AnE  =  (e„ -  ^  f iu(a)F!E(a)  (2.9)
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where F[^{a) is taJcen to be such tha t Ÿe  satisfies the required normalization and boundary 

conditions. Hence,

= (2-10)

where

Rii’(E)  =  E /."(“)(«» -  (2.11)
n

is referred to as the i2-matrix.

The functions ipn are calculated in the following manner. First the radial functions 

fin{f') are expanded in terms of functions where uik{r), the zero-order basis func­

tions, are solutions of

 ^~r2—" “  ^nlkPnli^) = 0 (2.12)

and satisfy the 12-matrix boundary conditions,

uik{0) = 0

= 0 (2.13)

uik are often called the continuum orbitals, as opposed to the bound state type orbitals,

F%f(r), included in (2.12). V {r) is a model potential and the X„ik are Lagrange multipliers

introduced to orthogonalise the continuum orbitals to the bound state orbitals of the same 

angular symmetry.

The functions uik are then Schmidt orthogonalised to the correlation orbitals and used 

to construct functions,

i ’ik = ui,k(rn) (2.14)

The functions 'ipn are expanded in terms of

'tpik for i =  1 to J  and k = 1 to K

for j  =  1 to J .

The expansion coefficients are obtained on diagonalising the m atrix of the Hamiltonian in 

the above representation.

Truncation of the expansion to include K  functions, w/fc, A: =1 to üf, gives N  functions, 

n =1 to iV and a truncated 12-matrix

N

« i P  = E  /." (“)(en -  (2.15)
n = l
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A method for correcting the truncation is given by Buttle (1967). These involve correc­

tions, in the first instance, to the diagonal terms of the Æ-matrix. Truncation of (2.8), 

using (2.9) gives,

=  E  V-nCen -  -E )-' E  /m (« )E ^(« ) (216)

putting

where

and from (2.14)

+ A $ b (2.17)

= (2.18)

the complete expansion including Buttle correction can be written:

N  I
= ^  'fpTiAnE +  ^  ArpiFi^ia)  (2.20)

n = l  1 = 1

The J2-matrix method gives functions $ e  for the inner region r < a, which are bounded 

at the origin and which contain radial functions F{r)  at r  =  a. Solutions are required for 

the outer region, r > a, which tend to zero for r —> oo and which are matched to  the inner 

region solutions, at r = a.

2.3.2 Solutions in the Outer Region

For each value of the energy, there are a set of linearly independent outer-region functions, 

^■1 . For r  > o, these functions have expansions

(2.21)
t

where F-f are radial functions of the outer electron such tha t F-i 0  for r  —> oo.

In the outer region the integro-differential equations reduce to  ordinary differential 

equations,

( £  -  + T  + -  E K ,'(^ )fX '-) = 0 (2.22)

where F]^/(r) are long range multipole potentials of the form,

^«'(r) = E p &  (2.23)
A
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In the outer region, it is taken that the functions Xi &re small and this is in general a good 

assumption. It can be shown (Seaton, 1985) that

2Z
<  —  f o r  r > a (2.24)

and hence multipole potentials can be regarded as small perturbations and subsequently 

neglected. W ith this assumption, the solutions of (2.22) reduce to  Coulomb functions.

Let Ei be the energy of the target state i and e,-, the energy of the added electron. 

Then the to tal energy E,  is given by

E  = Ei + Ei (2.25)

Ei < 0  corresponds to bound states for all i and the radial functions Fi(r) go to zero 

exponentially in the limit of r  —► oo. The coUisional states are such tha t £,■ > 0  for some 

values of i. A channel i is said to be open if E{ > 0 and closed if e,- < 0. Let the Ei  be

ordered such tha t Ei  < E 2  < ... Ei. For a given E  there are Iq open channels,

Ei > 0  f o r  i = 1 to I q

Ei < 0 f o r  i — {Iq 4- 1 ) to I  (2.26)

F--I are defined to be radial functions satisfying the reactance m atrix boundary conditions,

F--I Si{r)6{i,i') + Ci{r)K{i,i') f o r  i = l  to I q

F..> 0 fo r  i = (7o + 1) to I  (2.27)

with i' — 1 to  To. The functions s ,(r) and c,(r) are the Coulomb functions with asymptotic 

forms, given by Seaton (1983),

s (e ,/ ;r )  ~  {irk)~^sin{^)

c (e ,/;r)  rv (Trk)~2cos{^) (2.28)

where
i Z J1 Z  

^ = kr -  -Iw  +  — ln(2 A;r) +  arg ra + i-y) (2.29)

and where Z  is the charge on the target system. The Coulomb functions <f>̂ {r) are defined

by

(f)^{r) = c ± i s  (2.30)

and have the asymptotic form

0^(r) ~  (7rfc)“ 2e *̂  ̂ (2.31)
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The 5-m atrix is defined by the foiiowing boundary conditions 

F..,

^ 7' ~  f o r  i = l  to lo

F~, -  0 f o r  i = { I q + 1) to I  (2.32)

Comparing (2.27) and (2.32) the two x n/^ matrices, S--i and K--> are related by the 

m atrix equation,

and tha t

F -  =  - F ( l  -  i K ) - ^  (2.34)

where the F (r)  are functions with üT-matrix asymptotic forms. The functions F '^(r), 

representing final state radial functions used in the photoionisation calculations, are the 

complex conjugates of the functions F “ (r).

F + (r) =  F -* (r)  (2.35)

The radial functions, F ^  give functions satisfying

($ ± (£ ) |$ ± ( f ; ') )  =  « ( £ - £ ' )  (2.36)

with E  and E'  in Rydbergs.

2 .3 .3  M a tch in g  S o lu tio n s  at th e  B o u n d a r y

All equations are matched at r =  a. Equation (2 ,1 0 ) can be written

F  = R F  (2.37)

W hen all channels are open this gives,

F  =  S + C K  (2.38)

and substitution in (2.37) leads to

K  = - ( C  -  R C ') - '( S  -  R S ')  (2.39)

When some channels are open and some closed, a square m atrix of outer region func­

tions can be defined.

C =
C qo ® 0C  

C c o  ® c c
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containing i rows and I  columns, and a rectangular m atrix

(2.41)K  =
o o

y Kco J

containing I  rows and Iq columns. In (2.41), Kqo is a square m atrix defined in §2.3.2, 

containing I q, rows and columns. The m atrix K  is such tha t the outer region functions 

are.

F  =  S +  C K  (2.42)

and substitution into (2.37) gives

K  = - ( C  -  R C ) - \ S  -  R S ') (2.43)

Once the m atrix K  has been calculated, the derivatives of the functions F \ a )  can be 

calculated and hence the coefficients A, in (2.9).

2.4 Bound States

The use of the Æ-matrix method in the determination of bound state energy levels is 

detailed by Seaton (1985). A column vector of functions F (r)  can be constructed for 

r < a which satisfy

F  = R (F ' -  /?F) (2.44)

where R  is the m atrix of elements R--i (E)  and /5 is a constant. A square m atrix of functions 

P ( r )  for r > a can be constructed. All functions of r are taken to be matched at r  =  a. 

The condition for matching is

F  =  P X  (2.45)

F ' =  P 'X  (2.46)

where X  is a column vector. Substituting (2.45) and (2.46) into (2.44) gives

P X  = R (P ' -  /3P)X (2.47)

Let the function Q be defined such tha t for r  > a,

Q = P ' -  /?P (2.48)

Then from (2.47) the following is obtained.

(P -  R Q )X  =  0 (2.49)
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This equation can be considered to be a standard form for the matching condition. From 

this a general form is taken to be,

B ( E ) X  =  0  (2.50)

Equations of this form have solutions only at certain discrete values of E,  corresponding 

to the bound-state energy eigenvalues. These energy eigenvalues can be located by a 

systematic search for zeros of the determinant of B (E ).

det [B(E)] = 0  (2.51)

Given an initial estimate, E q  of an eigenvalue, (2.50) can be solved using successive 

linearisations. Putting,

B (E ) =  B(Eo) + { E -  E o)B (E )  (2.52)

the standard eigenvalue problem

B X  =  xD X  (2.53)

with B =  B(Eo), D = —B(Eq) and x — {E — Eq), is obtained. Then E  = E \  = E q -\- x

is taken to  be an improved estimate of the eigenvalue obtained from solving (2.52). The

linearisation procedure is repeated, taking Eq  = Ei  and continuing until x  is sufficiently 

small. The form, (2.49), of the matching condition corresponds to  taking

B (E ) =  P{E)  -  K { E )Q iE )  (2.54)

This form has a disadvantage in that the m atrix B (E ) will have poles at the 12-

m atrix  poles, E  = 6n (see 2.9). A method of solving this problem of energy eigenvalues

corresponding to ^-m atrix  poles and the method for obtaining the smallest eigenvalue x, 

above, is given in the appendices of Seaton (1985).

2.5 P hoto ionisât ion Cross-sections

Equation (2 .2 ) gives the formula for the cross-section, cr  ̂ for the process (2 .1 ). The 

generalised line strength, in atomic units, is

S (B ,/;a )  = ^ p + ( £ ; ,5 i7 r ; a ) |^  (2.55)
L

where SLtt specifies the spin, orbital angular momentum and parity of the final state and 

is the dipole m atrix element. The initial and final states have the same spin and op­

posite parities. Yu Yan and Seaton (1987) detail the calculation of atomic photoionisation 

cross-sections using CII as an example.

28



2 .5 .1  F in a l S ta te  R a d ia l W ave F u n ctio n s

The dipole m atrix element, is calculated using the final-state radial wave functions, 

F^{r) ,  given by (2.34) and (2.35). If I  is the to tal number of channels included in the CC 

expansion, then i is the channel index, z =  1 to 7. The to tal energy F , is given by

E  = Ei + Ei (2.56)

where E{ is the energy of the target state for channel z, and e,- is the energy of the 

added electron. Similarly to (2.26), open channels have e,- > 0  and closed channels have 

Ei < 0 . Let there be I q open channels. Then

z = 1 to I q for open channels 

i = ( l o i - 1) to I  for closed channels

f  = 1 to lo (2.57)

The m atrix F + (r) , with elements F^{r) ,  is partitioned into open-open and closed-open 

submatrices.

F+o(r) and F ^ ( r )  are the complex conjugates of the asymptotic forms given in (2.34). The 

numerical calculations are made with real functions F (K |r )  with TT-matrix normalization 

(2.27). It follows tha t

F+ = zF (K )(l +  zK )-i (2.59)

The expansions for the wave functions involve summations over the channel indices z, and, 

for a given initial state, a, the dipole m atrix elements depend only on the index / .  Let 

D"*" and D (K ) be the column vectors, with elements 7 )^  and Dfa(K) ,  calculated using 

the functions F"*" and F (K ). They are related by

D+ = - z ( l  -  zK )-^D (K ) (2.60)

The resonance structure is obtained using quantum defect theory and is described below.

2 .5 .2  A p p lic a tio n  o f  Q u an tu m  D e fe c t  T h e o r y  to  R e so n a n c e s

The behaviour of the scattering matrix, as a function of energy is given by Seaton (1983).

S =  Xoo -  XocIXcc -  exp(-27TzV)]"^Xco (2.61)
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It is assumed tha t % varies slowly with energy and tha t all rapid variations in S, as a 

function of energy are due to variation of exp(—27T2V) in (2.61).

Resonances are due to poles in S and occur at complex energies ^(pole) which are such 

that

det [xcc -  exp(-27Tw)] = 0  (2.62)

When all channels are closed this expression is equivalent to the search in (2.51) for bound 

states.

The m atrix % contains functions pertaining to both open and closed channels. It has 

dimensions, 7 x 7 ,  compared to  S which has dimensions 7q X 7q, where I q is the number 

of open channels and 7q < 7 if some channels are closed. In the case of all channels open, 

S =  X- S can be thought of as a contraction of %. This contraction is done over several 

stages.

Firstly, % is partitioned into two groups of channels. A lower group (a) which may be 

open or closed and an upper group (b) which are all closed.

X =

( \ 
X aa Xab

\ Xba Xbb

Subsequently a contracted m atrix is defined.

(2.63)

x(contr) =  Xaa -  Xab[X66 ~ exp{-2Triub)] Xba (2.64)

If all channels in a are open then S = x(contr). If some of the channels in a are closed 

then x(contr) is partitioned so as to obtain

S =  X co(con tr) -  X o c(co n tr )[x cc(co n tr ) -  exp(-27T 2V c)]~^X co(contr) (2.65)

where Uc is a m atrix of effective quantum numbers for the closed channels in group a. S 

will have rapid variations due to Uc in (2.65) and slower variations due to Ub in (2.64).

Consider the region below a new threshold. It is assumed tha t higher thresholds have 

been eliminated by using a contracted x m atrix and tha t all closed channels belong to the 

new threshold. Xcc can be diagonalised,

XcoX = Xxcc (2.66)

with Xcc diagonal, and putting xL  = exp(27T2/Xc), where //g is the complex quantum defect 

given by,

Âc = «C +  (2.67)
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with Qc &nd f3c real.

Since xéc is symmetric, X  in (2 .6 6 ) can be normalised to X ^ X  = 1 . This leads to

[Xcc -  exp(-27Tw)] = X[Xcc -  exp(-27T2V)]X^ (2.68)

Defining Xoc =  X o c X  and Xco = X^Xco gives

S = Xoo -  xL k cc  -  exp(-27r2V)]~^Xco (2.69)

or

Ç exp(2 , v j ' ^ p ( - 2 ,rw)

where i and j  are open channels and p is summed over the degenerate closed channels.

In practice, Xcc is diagonalised, giving rise to complex quantum numbers i/p described 

previously. Up =  In xL ' Using Vp — n — Pp then for closed channels belong to a core with 

energy Sc  ̂ then the energy of the pole is 5(pole) — Sc — [f/(pole)]"^. Putting Pp =  ap + i/3p 

and dropping subscripts p,

and hence for (n — a ) >« /5,

f  (pole) ~  4  -  -  5 7  (2.72)

where 7  =  4/3(n — a )  is the autoionisation width. Care must be taken in interpreting 

7  as a width, since in a Rydberg series, the widths cannot be larger than the separations.

2 .5 .3  T h e  G a ilit is  A v era g e

In all practical applications, cross-sections averaged over some distribution f ( v )  of electron 

velocities are required. In the region just below a threshold, the variation in the cross- 

section due to an infinite series of resonances will be more rapid than the variation in 

f{v) .  For u > Umax One can calculate cross-sections averaged over the resonances in series 

converging on the next threshold. For a photon energy wo, corresponding to some effective 

quantum number u = Uq, the averaged cross-section is defined by Gailitis (1963).

'Uo- 2

It follows that the averaged to tal cross-section below threshold, joins smoothly onto 

above.
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2.6 A  Sum mary o f the O pacity P roject Suite o f Codes

The Opacity Project codes based on the i2-matrix theory, as described, were adapted 

from the codes of Herrington et al. (1974,1978). The codes break down into sequential 

modules and were written in such a way th a t once the solutions to  the inner region and 

the Hamiltonian have been calculated, there is no need to  run them  again for solving the 

outer region processes, since all the necessary datasets are archived. A brief summary of 

the codes is given here, and figure (2.6.4) illustrates the order in which the codes are run, 

and the datasets produced.

2 .6 .1  S T G l

STG l reads radial functions for the target, calculates the solutions n/jt(r) of (2.12) and 

evaluates all necessary radial integrals.

2 .6 .2  S T G 2

STG2  calculates all the necessary angular algebra. It read the radial integrals gener­

ated by STG l and evaluates matrices of the Hamiltonian and dipole operators, in the 

representation of the states.

2 .6 .3  S T G H

STGH diagonalises the Hamiltonian m atrix and produces datasets H  and D,-. Dataset 

H  contains the basic i2-matrix data, the energies, e„ and the surface amplitudes, /,„ (a). 

Dataset D,-, contains the dipole matrices D { n ,n ) .  STGH writes an index file DOO and 

then one file for each S L tt combination.

2 .6 .4  S T G B

The methods of STGB are discussed in §2.4. STGB reads the H  dataset and calculates 

bound states energies. It again, produces an individual dataset, B , which holds the energy 

and effective quantum numbers for each SL tt, in the effective quantum number range 

specified. This dataset is required in bound-bound (oscillator strengths) and bound-free 

(photoionisation) radiative calculations.
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CIV3

SUPERSTRUCTURE

STGB

STGBB

STGF

STGBF

STGH

STGl

f  valuesEnergy
Levels

STG2

Photoionisation
Cross-sections

Figure 2.1: The Opacity Project suite of programs, used to generate atomic data for this 

thesis. CIV3 (Hibbert 1975) and SUPERSTRUCTURE (Eissner et al. 1974, Nussbaumer 

& Storey 1978) are not part of the suite, but are two programs tha t can be used to provide 

a target for STG l.
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2 .6 .5  S T G F

STGF reads the H  dataset. From this it produces F  datasets, detailed in sections §2.3.2 

and §2.5, which contain the information on the final states, used in the calculation of the 

photoionisation cross-section in STGBF.

2 .6 .6  S T G B F

STGBF reads the B , D and F  datasets and calculates photoionisation cross-sections. It 

has options to calculate a to tal cross-sections to all final states, or partial cross-sections to 

all available channels. Use was made of both of these options where appropriate. A fuller 

description of STGBF is given by Yu Yan (1986).

2 .6 .7  S T G B B

STGBB reads the B and D datasets and calculates oscillator strengths for bound-bound 

transitions.

2.7 Conclusions

The CC approximation provides a powerful technique for solving the interaction between 

an electron and a (N-electron) target. It can be used to obtain wave functions for bound 

states of the entire (N-f l)-electron system and hence to determine bound state energy 

levels, and to evaluate oscillator strengths and photoionisation cross-sections.

The i2-matrix method provides an accurate way of solving the CC approximation. 

It is also efficient, since the inner region Hamiltonian has only to be diagonalised once. 

Solutions can then be obtained by the running the outer region codes over the required 

energy range.
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C hapter 3

i?-matrix P hotoion isation  

C ross-Sections for Carbon II

3.1 Introduction

The previous chapter, explained the ^-m atrix  method for calculating photoionisation 

cross-sections. This chapter details the application of the theory, to the calculation of 

cross-sections for CII, and gives new energy levels of states calculated in the process.

Photoionisation cross-sections for CII were generated in the course of the OP (Yu 

Yan and Seaton, 1987). It was the original intention to use these cross-sections in the 

calculation of recombination coefficients. On inspection, however, the OP cross-sections 

showed little resolution in some of the resonance structures. The OP cross-sections were 

based on a quantum defect mesh which placed 1 0 0  points between each integer quantum 

number relative to the next threshold. This generated cross-sections of sufficient accuracy 

and resolution for the purposes of the OP, where the main focus was opacity but they 

were not good enough for the accurate calculation of recombination coefficients. These 

can only be generated from photoionisation cross-sections with well resolved resonance 

structures, for which the quantum defect mesh, was not sufficiently accurate. Figure (3.1) 

illustrates the difference in resolution between an OP cross-section and one subsequently 

calculated in this project. In the OP cross-section, the resonance labeled (A), at 1.135 Ryd 

consists only of 3 points. The peak height of the resonance was subsequently calculated 

to  be ~ 2 0 0 0 0  Mb. Figure (3.2), shows the difference in area under the two cross-sections, 

which is a more im portant indicator of their accuracy. In some cases the lack of accurate 

resonance structure would not preclude the use of the OP photoionisation cross-sections
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Figure 3.1: Comparison of the photoionisation cross-section for 2 s2 p^ calculated by 

the OP (top) and this work (bottom). The OP cross-section consists of 199 points, based 

on a quantum defect mesh, whilst the la tter is based on an energy mesh of 3281 points.
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Opacity Project
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Figure 3.2: Comparison of the area under the 2 s2 p^ cross-section. The figure clearly 

illustrates, tha t using the OP cross-sections would significantly underestimate the recom­

bination to the state, particularly at low temperatures, where much of the recombination 

is due to the first resonance.
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in determining recombination coefficients. Storey (1994) used OP Oil cross-sections in his 

calculation of recombination coefficients at nebula temperatures. The use of OP cross- 

sections was acceptable since the dielectronic component would have been very small. 

This is not the case for CII. At low temperatures, resonance (A), would provide the major 

contribution to the to tal recombination to the state, so it is vitally im portant tha t it is 

accurately mapped. It was initially because of the lack or resolution in the cross-sections 

tha t a decision was made to recalculate them. The differences in area under the OP 

cross-sections and ones subsequently calculated only served to confirm the correct nature 

of the decision. Cross-sections for photoionisation from all doublet states of CII having a 

principle quantum number n < 15 and to tal orbital angular momenta T < 4 (a to tal of 

6 8  states) were calculated, using the methods described in the previous chapter.

3.2 T he Carbon III Target

The photoionisation of CII is considered in terms of a (C "̂'" +  e~) problem. The starting 

point for the calculations, is the C III target. In these photoionisation calculations, and also 

the Opacity Project calculations (Yu Yan and Seaton, 1978), the CIII target calculated 

by Berrington et al. (1977) was used. The following target states were included in the 

calculation.

Table 3.1: The Carbon III Target States

Configuration Term 

2 s2 i s

2 s2 p ^P°
I p O

2 p2 3p

S

All of these were represented as Cl expansions in terms of seven, orthogonal basis 

orbitals and pseudo orbitals: Is, 2 s, 2 p, 3s, 3p,3d and 4f. The six target eigenstates are 

represented as a linear sum of all possible configurations formed from these orbitals. This 

representation gives calculated energy level separations from the ground state, tha t agree 

to  within 1.5% of the experimental CIII energy level values tabulated by Moore (1970).
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3.3 Inner Region Codes

STG l is the first program in the suite of codes to be run. This reads the target wavefunc­

tions described in the previous section and evaluates all the radial integrals needed in the 

calculations. STG l calculates the ground state energy of the target, and the separations 

of the various excitation thresholds, from the ground state. It was decided, in order to 

minimise errors, to use the experimental differences for the excited thresholds, instead of 

those calculated in STG l. These formed part of the input to STG2 . The experimental 

values were obtained from Moore (1970).

3.4 Inner R egion Param eters

STG2  is the second program of the inner region suite to be run and it is at this point 

tha t two fundamental parameters need to be defined. These are the size of the Æ-matrix 

box and the number of basis functions. These are represented by RA and NRANG2, 

respectively, in the notation of the codes. Two methods were used to test various values 

of these parameters. For RA, the values were tested by running the inner region codes 

and then running STGB, STGF and STGBF to obtain photoionisation cross-sections. 

The effect of altering RA was examined by looking at variations in resonance positions. 

NRANG2  was tested, by again running the inner region codes and then by running STGB 

and looking at bound state energy levels. In practice, these two tests cannot be performed 

independently since increasing the size of RA demands an increase in NRANG2 in order 

to achieve the same accuracy. The need for testing, arose partly from concern about the 

placement in energy of the resonances in the OP cross-sections, and from the realization 

tha t the OP set out to generate data uniformly across many ions and tha t not necessarily 

the best solution was used for individual ions.

RA determines how much of the bound state wave functions are in the inner region. 

An examination was made of the 2s2p^ —>^F° partial cross-section. A large number

of ba^is functions were used to ensure the accuracy of test. By observing the variation 

in energy of the resonance positions, as a function of RA, the accuracy of the boundary 

assumptions §2.3.1 in terms of the convergence of the resonance positions, could be gauged. 

The energies of various resonances showed no better convergence for RA > 10, so this was 

the value tha t was adopted.

The number of basis functions to be used was inferred from examining the bound state
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energies of the 2s^5s and 2 s^6 s states. These were chosen because the target wave functions 

contain almost no (N + 1 ) electron wave function contribution. The electron wave function 

is solely dependent on NRANG2 . The testing of various values of NRANG2, threw up an 

anomaly whereby very small values of NRANG2 would give lower bound state energies. 

This led to the investigation of the effect of adding the Buttle correction. The calculations, 

without the Buttle correction added, are variational in nature, implying th a t adding more 

basis functions would lower the bound state energies. However the Buttle correction is 

perturbative and adding it to the R-matrix diagonal terms changes the variational nature 

of the calculation.

As Figure (3.4) illustrates, the uncorrected calculation is variational. The Buttle cor­

rected energies are plotted on the same scale for comparison. The effect of adding the 

Buttle correction is shown in detail at the bottom. The figure illustrates tha t at low val­

ues of NRANG2, the Buttle correction is overestimated, giving lower energies than can be 

achieved with larger values of NRANG2 . The results with the Buttle correction added, 

converge much more quickly than a purely variational case and have a much smaller spread 

of energies. It should be noted however that the convergence may not be necessarily to the 

purely variational result. Care must be taken to check that the result obtained is ‘close’ 

to what might be expected in a variational case and tha t not too few basis functions are 

used.

There is also a marked contrast between the energies of bound states for odd and even 

values of NRANG2. This is again illustrated by Figure (3.4). These results dictated that 

an odd number of basis functions was appropriate. An extra consideration when deciding 

the number of basis functions to use is the amount of extra computing time tha t increasing 

the values requires. A value of NRANG2=15, was chosen as being the value beyond which 

the increase of accuracy was not sufficient to justify the extra computational time.
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Figure 3.3: Comparison of the variation of bound state energy of 2 s^6 s with the number 

of basis functions
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3.5 Calculated Bound State Energy Levels

In the process of calculating photoionisation cross-sections the energy levels of all the 

bound states in the problem were determined. Firstly, a fast scan is made for the roots of 

d e t [B] =  0 (2.51), to obtain first approximations to the eigenvalues, E q. The determinant 

is calculated for energies tha t lie between the effective quantum number range supplied 

to the program. The step in effective quantum number, 6 z/, is taken to be such tha t it is 

unlikely tha t more than one bound state will be found in any interval, Vi < v < Ui 8u. 

The codes were run with a 6u of 0 .0 1 . The initial values for bound state energies are 

calculated and written to  a file. They are read back in and used as estimates in the 

eigenvalue equation. An improved value is then obtained by iteration. The iteration 

process was taken to be complete when A E  < 10“ “* Ryd. As well as energy levels, effective 

quantum numbers for the states are produced. These were used to aid the identification 

of the bound-states. They also gave a strong indication of how some of the states were 

perturbed. This information, along with a comparison with experimental energy level 

values, where available, is given in tables (3.2) to (3.8).

The final energy level files produced were saved and used not only in photoionisation 

calculations but also to provide the basis for indexing in the level population code.

Table 3.2: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s2p^ 2.10925 -8.99095E-01 -9.12867E-01
2s^3s 2.34768 -7.25740E-01 -7.30205E-01
2s^4s 3.34038 -3.58483E-01 -3.59335E-01
2s^5s 4.34233 -2.12136E-01 -2.12489E-01
2s^6s 5.34232 -1.40152E-01 -1.40346E-01
2s^7s 6.34097 -9.94829E-02 -9.96223E-02
2s^8s 7.33832 -7.42790E-02
2s^9s 8.33388 -5.75924E-02

2s^lOs 9.32621 -4.59885E-02
28^1Is 10.31122 -3.76218E-02
2s^l2s 11.27287 -3.14768E-02
2s2p3p 12.11123 -2.72699E-02
2s^l3s 12.66909 -2.49212E-02
2s^l4s 13.46059 -2.20766E-02
2s^l5s 14.41381 -1.92532E-02
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Table 3.3: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s2p^

2s2p3p
1.79284
2.56407

-7.67228E-01
-1.31191E-01

-7.83844E-01
-1.33305E-01

Table 3.4: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s2p^ 1.90635 -1.10066E+00 -1.10937E+00
2s^3d 2.93632 -4.63932E-01 -4.65812E-01
2s^4d 3.92769 -2.59290E-01 -2.60092E-01
2s^5d 4.92064 -1.65203E-01 -1.65578E-01
2s^6d 5.91128 -1.14471E-01 -1.14731E-01
2s^7d 6.88228 -8.44490E-02

2s2p3p 7.54857 -7.01989E-02 -7.34804E-02
2s^8d 8.01167 -6.23181E-02
2s^9d 8.95572 -4.98723E-02

2s^lOd 9.94481 -4.04452E-02
2s^ lld 10.94027 -3.34198E-02
2s^l2d 11.93779 -2.80680E-02
2s^l3d 12.93623 -2.39026E-02
2s^l4d 13.93517 -2.05985E-02
2s^l5d 14.93440 -1.79343E-02

Table 3.5: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s^5g 4.99736 -1.60169E-01 -1.60314E-01
2s^6g 5.99622 -1.11251E-01 -1.11320E-01
2s^7g 6.99564 -8.17344E-02 -8.17746E-02
2s^8g 7.99530 -6.25735E-02 -6.26116E-02
2s^9g 8.99509 -4.94367E-02

2s^lOg 9.99494 -4.00405E-02
2 s^ llg 10.99483 -3.30889E-02
2s" 12g 11.99475 -2.78021E-02
2s"13g 12.99469 -2.36880E-02
2s" 14g 13.99465 -2.04238E-02
2s"15g 14.99461 -1.77906E-02
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Table 3.6: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s2p^ 1.49580 -1.78778E+00 -1.79184E+00
2s^3p 2.60390 -5.89943E-01 -5.91739E-01
2s^4p 3.59155 -3.10095E-01 -3.11142E-01
2p3 4.03582 -2.45582E-01 -2.54462E-01

2s^5p 4.57841 -1.90823E-01 -1.94769E-01
2s2p3s 4.90866 -1.66010E-01 -1.72032E-01
2s^6p 5.67575 -1.24169E-01 -1.24589E-01
2s^7p 6.65919 -9.02022E-02 -9.03910E-02
2s^8p 7.65385 -6.82810E-02
2s^9p 8.65117 -5.34454E-02

2s^l0p 9.64954 -4.29582E-02
2s^ llp 10.64845 -3.52766E-02
2s^l2p 11.64767 -2.94837E-02
2s^l3p 12.64708 -2.50080E-02
2s^l4p 13.64663 -2.14788E-02
2s^l5p 14.64627 -1.86469E-02

Table 3,7: Bound State Energy

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2p^ 2.11887 -4.13724E-01 -4.21035E-01
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Table 3.8: Bound State Energies

Configuration
Effective 

Quantum No.
Calculated Energy 

Relative To Threshold (Ryd)
Experimental Energy 

Relative To Threshold (Ryd)
2s24f 3.98401 -2.52011E-01 -2.52308E-01
2s^5f 4.98101 -1.61223E-01 -1.61382E-01
2s^6f 5.97929 -1.11882E-01 -1.12070E-01
2s^7f 6.97817 -8.21442E-02 -8.22284E-02
2s^8f 7.97740 -6.28547E-02
2s^9f 8.97684 -4.96378E-02

2s^lOf 9.97643 -4.01892E-02
2 s^ llf 10.97611 -3.32019E-02
2s^l2f 11.97587 -2.78898E-02
2s^l3f 12.97567 -2.37575E-02
2s^l4f 13.97552 -2.04797E-02
2s^l5f 14.97539 -1.78363E-02

3.6 Outer Region Codes

The free state code, STGF was used to determine solutions in the outer region and used 

quantum defect theory to determine resonance positions and widths, throughout the en­

ergy range of interest.

STGF, contains various options for generating an energy mesh on which the final 

photoionisation cross-sections will be based. The form of the mesh depends in turn  on 

the kind of mesh tha t is used to search for resonances in the scattering matrix. It has 

been shown earlier in this chapter, tha t a straightforward quantum defect mesh is not 

always accurate enough for the detailed determination of resonance parameters. For highly 

accurate results an impossibly small step in effective quantum number would have to be 

used.

Three types of mesh were used, dependent on where in the energy range, the point 

under consideration lay. The most effort was concentrated in the region above the 2s^(^S) 

limit and up to (l/M ^ar) below the 2 s2 p(^P) threshold, since this region contained the 

m ajor contribution to  the recombination to the various states, a t the temperatures of 

interest.

The initial mesh had a fixed energy step, that was small enough to provide sufficient 

resolution to locate all the resonance positions in (2.53). A value of ~ 1 0 ~^ Z-scaled 

Rydbergs was used. The resonance positions and widths were w ritten to a file and saved.

The code calculates bound-continuum amplitudes and so the resonance widths corre-

45



spond to autoionisation probabilities. Since there is no explicit information on the radiative 

decay rates, it is assumed tha t they are very much smaller than the autoionisation rates 

and tha t in effect the population of a state can be obtained from its local thermodynamic 

equilibrium (LTE) value. The possibility of departures from thermodynamic equilibrium 

needed to be investigated since including states where the autoionisation width is not 

significantly larger than the radiative width would overestimate the contribution of the 

resonance to the recombination coefficient.

3 .6 .1  T h e  A u to io n isa t io n  A p p ro x im a tio n

Consider a state Z7, which can autoionise to the continuum. In local thermodynamic 

equilibrium (LTE) the population of the state U is defined by

N t K  =  (3.1)

where JV* is the Saha population and Oc is the dielectronic capture rate coefficient.

//////////////////////

////////////// u

///////////////////////

Figure 3.4: The populating and depopulation processes of state U. is the to tal radiative 

transition probability, summed to all final states, and F“ is the autoionisation transition 

probability.

In non-LTE,

jv,jv+ae =  jv „ (r ; +  r [ )  (3 .2 )

which gives us

ti * **“ ti

where is a dimensionless parameter, and is a measure of the departure of the population 

of Î7, from its thermodynamic equilibrium.
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If r °  Fy, 6u —> 1

If r « < r c ,  6 u - ^ o  (3.4)

The rate  of recombination from state U, is proportional to ôoFy. It is assumed that 

F2 >■ Fy and the population of the state can be given by the Saha equation.

In order to  test this assumption, values for both F„ and F„ needed to  be calculated.

For the assumption to be valid, the departure coefficient was required to be larger than

~0.9 for all states.

The values of F“ were taken from the autoionisation widths calculated by STGF. The 

value of Fy was calculated using the Zurich version of the programme SUPERSTRUC­

TURE (SS) (Eissner et a/., 1974, Nussbaumer & Storey, 1978). SS is a general purpose 

atomic structure program, which enables the calculation of large amounts or radiative 

data  with reasonable accuracy. It requires only the minimum input to specify the atomic 

system and the level of approximation. SS takes into account configuration mixing which 

is im portant in the determination of energy levels and transition probabilities. SS al­

lows configurations to be treated as spectroscopic, or as correlation configurations, used 

to  give better descriptions of the terms of interest. The energies of terms arising from 

correlation configurations will not be meaningful in a physical sense, but may affect those 

terms which axe spectroscopic. SS calculates the radial functions in a Thomas-Fermi 

potential. Nussbaumer and Storey abandoned the restriction th a t all of the same /, 

axe calculated in the same potential and are thus orthogonal to each other. Each P„/ is 

calculated in a separate potential and then orthogonalised to each other such tha t the 

function P„^/ is orthogonalised to the function P„2/ when ng < The adjusting param­

eter in the Thomas-Fermi potential is chosen to minimalise the energy sum of selected 

spectroscopic terms. The list of configurations included in the calculation, is given in 

Table (3.9).

The states with 2 s^(^S) parents are true bound states, as are the states of 2s2p^ and 

2p3. It is only for states of the form 2 s2 pnZ, excluding states of 2s2p3s and 2s2p3p, which 

are again true bound states, that the approximation needs to be checked. The results 

obtained, are given in tables (3.10) and (3.11). The tabulated values of for states 

show clearly tha t to use them as final states would be an error since the approximation 

of LTE does not hold. For transitions from ^G, only ^F° final states were included in the 

problem.
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Table 3.9: A List of the 87 Configtirations in the SUPERSTRUCTURE Calculation

Configuration n-Range Terms
2s^ ns 3 - 1 0 ■■̂s
2s^np 2 - 1 0 2p O

2s^nd 3 - 1 0 2d
2 s ^ n f 4 - 1 0 2pO

2s^ ng 5 - 1 0 2G
2s^ nh 6 - 1 0 2 r O

2s2pns 3 - 1 0 2p O

2s2pnp 3 - 1 0 2 d  2 p  2 g

2s2pnd 3 - 1 0 2 p O  2 j ) 0  2p O

2 s2 p n f 4 - 1 0 2 g  2 p  2 j )

2s2png 5 - 1 0 2 g O  2 q 0 2pO

2s2pnh 6 - 1 0 2 j  2 g O  2 q

2s2p2 2 d  2 p  2 g

2p: 2 ^ 0  2p O

The tables reveal some other values of 6 „/, belonging to other states of smaller L  

th a t caused some concern. Most of these have of between 0 .8  and 0.9 and it was 

decided tha t it was not too unreasonable to include these states in the problem. For 

states with 6„/ lower than 0 .8 , particularly the 2 s2 p8 g state, the respective resonance in 

the photoionisation cross-section was examined. In each case the resonance was found to 

be smaU and contribute little to the total recombination. In such a case it is also not 

unreasonable to  include the resonances in the calculation and so the states remained in 

the problem. It should be noted that only states up to and including principal quantum 

number n =  10 are considered here. The results were extrapolated when the range of 

states to  be explicitly included was raised to n < 15, thus excluding final states from 

this principal quantum number range too.

3 .6 .2  Free S ta te  M esh: B e lo w  th e  2 s2p  (^P°) T h resh o ld

Once the initial fixed energy search for resonances had been completed and those res­

onances for which was too small had been eliminated, the fUe containing resonance 

positions and widths was fed into a program called RESMESH (Storey, 1992). The func­

tion of RESMESH is to generate an energy mesh that maps the resonances in the most 

accurate way possible.

RESMESH requires the initial SLw,  the maximum step size, h, the energy range and
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Table 3.10: Radiative and Autoionisation Transition Probabilities and Departure Coeffi­
cients for 2s2pnl States

Term Configuration
Radiative Transition 

Probability (S“ )̂
Autoionisation Transition 

Probability (S“ )̂ bfi/
2s2p4p 1.60661E+08 8.9719E-H2 0.99998
2s2p5p 1.35033E4-08 2.2596E4-11 0.99940
2s2p6p 1.39700E-F08 1.7370E-M4 1.00000
2s2p7p 3.29452E-f08 3.5064E+13 0.99999
2s2p8p 2.56305E-I-08 1.3214E-I-13 0.99998
2s2p9p 7.99103E-f07 6.9715EH-12 0.99999

2s2pl0p 1.80546E4-09 5.0612E4-12 0.99964

2pO 2s2p4s 1.19943E-f09 4.6995E+13 0.99997
2s2p5s 6.21671E4-08 2.5523E-M3 0.99998
2s2p6s 4.33538E4-08 1.5106E-H13 0.99997
2s2p7s 3.8370 lE-f-08 9.6372E-I-12 0.99996
2s2p8s 1.82359E+09 6.5060E-I-12 0.99972
2s2p9s 3.70620E+08 4.5877E-I-12 0.99992

2s2pl0s 1.57739E4-09 3.3911E-I-12 0.99954
2s2p3d 4.22363E-1-08 1.4896E-I-11 0.99717
2s2p4d 5.67654E4-08 1.9883E4-11 0.99715
2s2p5d 9.89873E-f08 4.3421E+10 0.97771
2s2p6d 2.55820E-I-08 1.9186E-I-10 0.98684
2s2p7d 2.50069E+08 1.0138E4-10 0.97593
2s2p8d 6.12275E+08 5.8813E4-09 0.90571
2s2p9d 3.18546E4-08 3.6103E-f09 0.91892

2s2pl0d 1.08437E4-08 2.6363E4-09 0.96049

2d 2s2p4p 2.81369E-1-08 2.3418E4-13 0.99999
2s2p5p 2.82839E-f08 7.3307E+12 0.99996
2s2p6p 2.08698E4-08 8.8931E-H2 0.99997
2s2p7p 6.01504E-1-08 4.1800E-I-12 0.99986
2s2p8p 2.59731E+08 2.5185E-I-12 0.99990
2s2p9p 4.86109E-I-07 1.6626E+12 0.99997

2s2pl0p 2.33484E4-09 1.2005E-I-12 0.99806
2s2p4f 2.05849E+08 1.8089E4-11 0.99886
2s2p5f 1.06727E4-09 3.1491E-I-11 0.99966
2s2p6f 6.60450E4-07 4.7345E-M0 0.99861
2s2p7f 6.03025E4-07 4.8280E-I-10 0.99875
2s2p8f 3.10475E-t-07 3.7605E+10 0.99918
2s2p9f 2.19352E+07 2.8640E-I-10 0.99923

2s2pl0f 5.49937E+07 2.0884E+10 0.99737
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Table 3.11: Radiative and Autoionisation Transition Probabilities and Departure Coeffi­
cients for 2s2pn/ States

Term Configuration
Radiative Transition 

Probability (S“ )̂
Autoionisation Transition 

Probability (S“ )̂ bnl

2 pO 2s2p3d 2.07818E-f09 1.4416EH-12 0.99856
2s2p4d 1.19651E-f09 3.9116E4-11 0.99695
2s2p5d 7.98051E4-09 1.7916E-I-11 0.95736
2s2p6d 6.30290E4-08 5.9377E-I-10 0.98950
2s2p7d 5.95580E-I-08 3.2460E-j-ll 0.99817
2s2p8d 1.73345E4-08 7.7495E-H1 0.99778
2s2p9d 1.94283E4-09 1.4696E-H2 0.99987

2s2pl0d 6.28430E4-08 1.0707E4-12 0.99941
2s2p5g 6.65871E4-07 7.1372E4-08 0.91467
2s2p6g 3.87836E4-07 2.1598E+08 0.84777t
2s2p7g 2.47088E-f07 1.0726E-f08 0.81277t
2s2p8g 1.68396E4-07 1.5018E4-07 0.4714lt
2s2p9g 1.23489E4-07 2.9542E-1-08 0.95988

2s2pl0g 1.11561E-f07 2.1540E-I-08 0.95076

2G 2s2p4f 2.07641E-f08 1.6740E4-09 0.88965t
2s2p5f 1.07052E-f-08 1.3037E-I-09 0.92412
2s2p6f 6.44187E-t-07 4.9289E4-08 0.8844lt
2s2p7f 4.48871E4-07 2.8973E+08 0.86586t
2s2p8f 2.72446E4-07 1.8235E-I-08 0.8700lt
2s2p9f 1.82820E4-07 I.IO2OE4-O8 0.8577lt

2s2pl0f 2.34093E4-07 8.0332E4-07 0.77435t
2s2p6h 2.61057E4-07 3.3416E-I-08 0.92754
2s2p7h 1.65187E4-07 2.3203E4-08 0.93354
2s2p8h 1.11333E-I-07 1.5810E4-08 0.93421
2s2p9h 7.88735E4-06 1.2105E-I-08 0.93883

2s2pl0h 5.89764E-f06 8.8260E-f07 0.93736

2 3 0 2s2p5g 6.73100E4-07 2.5343E-h06 0.03628
2s2p6g 3.91800E-i-07 3.2474E-f06 0.07654
2s2p7g 2.49226E+07 2.5091E4-06 0.09147
2s2p8g 1.69094E+07 1.9228E-I-06 0 .1 0 2 1 0
2s2p9g 1.20812E4-07 1.4844E4-06 0.10942

2s2pl0g 9.18853E-I-06 1.0822E-f06 0.10537

t represents states for which the LTE assumption needed investigation.
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the error index, P , such tha t the maximum error on the integration is smaller than 1 0 "^ . 

The step size is im portant because at low temperatures, the peak of the Maxwellian 

velocity distribution, lies close to the 2 s  ̂ (^S) threshold. It was found tha t initial estimates 

of the maximum step length put the peak between the first two points of the cross-section 

leading to large errors. This was corrected so tha t a minimum of 1 0  points occurred before 

the peak. The base step size chosen was 2.0 x 10"^ Ryd.

RESMESH reads all the positions and widths and selects those appropriate for the 

initial S L t: and those tha t lie within the specified energy range. The program then searches 

through the list of resonance positions and widths and finds the nearest resonance, in units 

of the width, 7 . The program assumes a Lorentzian profile for the resonance, given by

The program generates points based on the current step length, h, in such a manner, that 

the mesh is integrable using a 3-point Simpson’s rule. This function has a known error 

which is given by

A ~  = 1 0 - f  (3.6)

where is the 4th derivative of the function at the maximum value of the cross-

section of the 3 points under consideration, h is given in terms of the derivative and the 

maximum allowed error by,

This leads to an iterative procedure in which the error is calculated on the integration, the 

step length is adjusted and the error recalculated from the derivatives at the new positions. 

This process continues until the error is smaller than the maximum allowed. This gives a 

step length for the next two points, based on a particular resonance. The program steps 

through all the resonances, and calculates a step length based on their positions. It then 

takes the minimum of the values and uses this as the step length for the next two points. 

Once the entire energy range has been mapped in this fashion, STGF is run again and 

final state radial wavefunctions obtained at the energies calculated by RESMESH. The 

assumption of the Lorentzian profile is good for isolated resonances with little background. 

There exist regions in the cross-sections where the assumption might not be so good. To 

check this, all the cross-sections were closely examined for signs of resonances tha t were 

not well mapped, but none were found.
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One problem tha t arose was that of interlopers from the higher series. In the region 

below a particular threshold, the program cannot calculate resonances th a t come from 

the higher threshold, these having been eliminated by the use of contracted matrices (see 

§2.4.1). Below the 2s2p (^P°) threshold there were two resonances from the 2s2p (^P°) 3p, 

and states. As they did not appear in the resonance list produced by STGF, they had 

to  be mapped by hand from the photoionisation cross-section and their position and width 

deduced. These were inserted into the resonance list and the cross-section recalculated. 

Better values of the position and width were obtained and the process repeated until the 

values had stabilised.

From below each threshold, to the threshold, Gailitis averaging is used.

(§2.5.3)

3 .6 .3  Free S ta te  M esh : A b o v e  th e  2s2p  (^P°) T h resh o ld

In the region above the 2 s2 p (^P°) threshold, a quantum defect mesh was used. A very 

high degree of accuracy is not required since the major contribution to the recombination, 

even at higher temperatures, comes from below the threshold. However, accuracy was still 

a concern and so a step in effective quantum number was chosen tha t put 1 0 0 0  points 

between each integer quantum number, relative to the next threshold.

3,7 Photoionisation  Cross-sections: Som e R esu lts

Figure (3.5) illustrates the mapping of resonances in two of the cross-sections. The respec­

tive OP cross-sections are included for comparison. The figure clearly shows the differences 

in resolution, width and energy the calculated photoionisation cross-sections have com­

pared to the OP ones. Figure (3.6) shows a cross-section calculated using a quantum defect 

mesh. Again the OP cross-section is included for comparison. When the cross-sections 

were calculated based on the quantum defect mesh, there was some deliberate overlap 

with the previously calculated ones. The top half of figure (3.7) illustrates the region just 

below the ^P° threshold where Gailitis averaging is used, giving rise to the averaged OP 

cross-section, show by the dotted line. The region in which Gailitis averaging is used in 

this work is smaller since there is data for resonances up to n=15.

To a first approximation, the strength of the background and resonance contributions 

to  the photoionisation cross-section is a function of the parentage of the state. In CII, for 

example, states belonging to the 2 s^(^S)n/ series, have a strong background contribution,
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Figure 3.5: Examples of the photoionisatioii cross-section of 2 s^2 p (top) and 2 s2 p^ 

(bottom). The corresponding OP cross-sections are represented by the dotted lines. The 

difference in resolution, energy and area is very apparent. Each point on the cross-section 

is labeled as an indication of the resolution of the resonances.
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Figure 3.6: An example of the photoionisation cross-section of 2 s2 p^ in the region 

where a quantum defect mesh was used. The cross-section is the total one, summed to all 

final states. The corresponding OP cross-section is represented by the dotted line. Even 

using a fine quantum defect mesh, the resolution is not comparable to using a dedicated 

energy mesh.
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corresponding to  photoionisation to the 2 s^(^S) +  e“ continuum and weak resonance 

contributions from the 2 s2 p(^P°)n/ series of resonances. For bound states of 2s2p(^P°) 

parentage, there is a weak background with prominent resonances.

Figures (3.7), (3.8) and (3.9) show the complete set of cross-sections. These illus­

tra te  the points just mentioned, the general trends as n increases and for the 2 s^l2 s and 

2s^l3s states, the perturbation from the 2s2p3p state due to configuration mixing. The 

perturbation is clearly visible in the reduced background contributions to these two states 

and the increase in prominence of the resonance contributions, particularly the case of the 

2 s^ l2 s state. Conversely the 2s2p3p cross-sections shows an enhanced background contri­

bution. This interaction was one of the principal reasons for extending the calculation up 

to n =  15.

Above the 2 s2 p(^P°) threshold, differences in position and values of the background 

are particularly noticeable. This is illustrated in the bottom  diagram of figure (3.7). In 

this region, more channels are open and this led to the necessity of calculating partial 

cross-sections to the respective channels. A careful search was made of the resultant 

photoionisation cross-sections for pseudo resonances, that might arise from the inclusion 

of correlation orbitals in the target. None were found.

3.8 Conclusions

This chapter presents cross-sections for photoionisation from all doublet states of C II 

having a principle quantum number n < 15 and to tal orbital angular momenta L < 

4; 6 8  states in total. These were calculated, using the Opacity Project suite of codes 

which employ the R-matrix method to solve the Schrodinger equation in the close-coupling 

approximation.

As the previous figures have shown, the general improvement in the photoionisation 

cross-sections calculated is very marked, when compared to those of the OP. All the 

resonances are well mapped, the cross-sections showing excellent resolution, and the areas 

under all cross-sections are larger. The use of the program RESMESH, was fundamental 

in the determination of the accurate final state energy mesh. The calculated cross-sections 

represent not only a substantial improvement in accuracy, but also a larger range in both 

n and L than previous work.

A large amount of effort was directed to ensuring the cross-sections below the ®P® 

threshold were as accurate as they could possibly be. Above this threshold, the resolution
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based on a 6u of 0 .0 0 1  is still good and certainly no major resonances were missed. The 

photoionisation cross-sections generated using the 3-point Simpson’s rule can easily be 

turned into accurate recombination coefficients.
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C hapter 4

Carbon II R ecom bination  

Coefficients

4.1 Introduction

Radiative recombination and dielectric recombination, are the dominant processes in low 

density plasmas at relatively low temperatures. These processes are characterized by 

equation (1 .1 ). Recombination into the ground state is usually determined from detailed 

photoionisation calculations. However an accurate treatm ent of radiative-cascade problem 

requires detailed calculations of recombination into excited states. Few such detailed 

photoionisation calculations had been performed for n > 2  states, before the work of 

the Opacity Project. However, it has been demonstrated tha t the Opacity Project cross- 

sections are not always suitable, for the detailed evaluation of recombination rates for 

states, where dielectronic recombination is the m ajor part of the recombination to a state. 

Other authors have primarily used scaled hydrogenic rates for higher states, though in some 

cases an attem pt has been made to make allowance for their non-hydrogenic nature. It 

win be shown in chapter 5, tha t scaled hydrogenic rates may not be a good approximation 

for states which have a large quantum defect.

Three approximations were used for determining CII recombination coefficients in the 

calculations in this thesis. In the region n < 15, T < 4 the recombination coefficient is 

obtained directly by integrating the appropriate R-matrix photoionisation cross-section. 

For all other states, a hydrogenic recombination coefficient is calculated. In the region n > 

15, T < 2 a coulomb to hydrogenic ratio is applied to the hydrogenic results, extrapolated 

from coulomb to hydrogenic ratios calculated for X = 0 , 1 , 2  a t the limit of the tabulation
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of the coulomb approximation to the recombination coefficients, by Peach (1967).

4.2 R ecom bination Coefficients: General

Detailed balance arguments, mean that the cross-section for recombination from level i 

of the N-electron ion, to  level /  of the (N-l-l)-electron ion can be w ritten in terms of the 

cross-section for photoionisation from level /  to level i as, (Griffin, 1989),

where gf  is the statistical weight of level / ,  gi is the statistical weight of level i, e = hu 

is the photon energy, p is the momentum of the free electron and c is the speed of light. 

The rate coefficient for recombination is given by,

too
«i/(^e) = vaf j{v)f{v)dv  (4.2)

where f ( v )  is the Maxwell-Boltzmann distribution function.

f{v)dv —
2m 3

7r(A;Te)

Rewriting equation (4.2), the recombination coefficient to the state / ,  is given by

= 5  j&  iT (-& )
where <rfy(i') is the photoionisation cross-section at frequency u, N{ is the N-electron ion 

density. Ne is the electron density and is given by the Saha equation.

Hence the recombination coefficient is given by,

O U T . )  =  f  I f  ( - j § )  du (4.6)

This is the basic form of the equation used to obtain recombination coefficients for the 

various approximations to (rj (̂%/).

4.3 R ecom bination Coefficients: R-m atrix C ross-sections

Chapter 3, detailed the calculation of accurate photoionisation cross-sections for the 

ground and excited states of CII, n < 15, T < 4. The photoionisation cross-sections
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produced by STGBF are tabulated as a function of photon energy, Eph^ Writing the 

initial state i, in terms of n and I and putting x /  =  where is the ionisation

energy of the initial state relative to to the threshold,

Eph =  Ini +  E f  (4.7)

where E f  is the free electron energy. The integral in (4.6) becomes,

EIh< , ( E , )  exp d E j  (4.8)

Putting,

G( E, )  = exp ( - g )  (4.9)

Equation (4.6) can then be written,

a|;,(T .) =  2.061850776 X IQ-^^Pni ( ^ )  '  G ( E f ) dE f  (4.10)

and this is the form used in the integration. The function, Gi^Ef) is tabulated at each 

energy point and the integration is evaluated from the Is^(^S) threshold up to 1 /Wmax 

below the 2 s2 p(^P°) threshold using Simpson’s 3-point rule.

4 .3 .1  M o v in g  th e  2 s2 p (^ P ° )3 d , a n d  R e s o n a n c e s

The terms in the ground complex, such as 2s2p^ ^D, have mixed parentage and can 

have large resonance contributions from more than one series. It has also been noted 

(Storey, 1982) tha t in CII, the dominant contribution to the recombination coefficient of 

the 2 s2 p^ states comes from the 2s2p(^P°)3d resonance. It is not only an im portant 

source of recombination for this state, but for all states in which it occurs, particularly at 

low temperatures when the peak of the Maxwellian velocity distribution will lie close to

threshold. The 2s2p(^P°)3d ^P° resonance, though higher in energy is also a considerable

source of recombination to allowed initial states at higher temperatures.

In general the theoretically calculated energies of states will be higher than exper­

imentally derived values. In the work of the Opacity Project the exact positioning of 

resonances was not critical to the calculations. For low tem perature recombination work 

though, their placement is critical. A small change in the position of the resonances leads 

to a big change in the the value of the to tal recombination coefficient as shown in figure

(4.2).

The experimentally determined positions of the ^F^ and ^P° resonances (Moore, 1970) 

are respectively, 3301 cm“  ̂ and 5523 cm“  ̂ above the 2 s^(^S) threshold. This compares

62



F(x)

a

q 0  l/q X

Figure 4.1: A general Fano profile for resonance fitting.

with the theoretically calculated values of 3778 cm~^ and 6172 cm~^. It was decided 

to evaluate the resonance contributions to the total recombination coefficient at their 

experimental rather than the theoretically calculated energies. The resonances were in 

effect moved.

This was done by fitting the area around the resonances using a Fano profile (Fano, 

1961). The Fano profile for a fit to a single channel resonance is given by,

(a: +  ( i fF{x)  =  a- (4.11)
( 1  +  z^)

As X —> to o , F (z )  —> a. Hence a  can be thought of as the background contribution. 

Differentiating,

f '( z )  =  +  « ) ( ! - (4. 12)

This gives

F \ x )  = 0

(1  +  x'^y

X = —q minimum

X = -  maximumQ
(4.13)

This gives a ratio of peak cross-section to background of ( 1  -|- g^). A negative value of 

q would change the order of minimum and maximum. If there is another channel whose 

cross-section is added, then the profile should be,

{x + q f
Fi{x) = j3 + a

(1 +  0:2)
(4.14)
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Table 4.1: Recombination Coefficients for the 2s2p^(^D) State.

Temp. Recombination Coefficient Resonance Contributions

(K) di a ;
3p0

«.•
3pO 3p0 3p0

1000 1.2819D-18 2.0962D-18 1.0700D-18 1.8842D-18 1.3771D-22 1.6327D-22

2000 5.0003D-18 6.6949D-18 4.8450D-18 6.5395D-18 2.7791D-22 3.8040D-22

3000 6.4904D-18 7.8874D-18 6.3572D-18 7.7540D-18 4.8564D-22 6.2053D-22

4000 6.5469D-18 7.5668D-18 6.4212D-18 7.4410D-18 6.0433D-22 7.3021D-22

5000 6.1192D-18 6.8598D-18 5.9899D-18 6.7304D-18 6.4636D-22 7.5229D-22

6000 5.5803D-18 6.1280D-18 5.4381D-18 5.9858D-18 6.4476D-22 7.3110D-22

7000 5.0585D-18 5.4729D-18 4.8964D-18 5.3108D-18 6.2147D-22 6.9138D-22

8000 4.5921D-18 4.9124D-18 4.4058D-18 4.7260D-18 5.8862D-22 6.4542D-22

9000 4.1870D-18 4.4395D-18 3.9744D-18 4.2268D-18 5.5257D-22 5.9905D-22

10000 3.8385D-18 4.0408D-18 3.5992D-18 3.8015D-18 5.1656D-22 5.5490D-22

11000 3.5386D-18 3.7033D-18 3.2736D-18 3.4382D-18 4.8212D-22 5.1402D-22

12000 3.2797D-18 3.4153D-18 2.9906D-18 3.1263D-18 4.4996D-22 4.7672D-22

13000 3.0547D-18 3.1678D-18 2.7438D-18 2.8569D-18 4.2029D-22 4.4292D-22

14000 2.8580D-18 2.9532D-18 2.5275D-18 2.6227D-18 3.9311D-22 4.1237D-22

15000 2.6847D-18 2.7656D-18 2.3371D-18 2.4180D-18 3.6828D-22 3.8479D-22

16000 2.5311D-18 2.6003D-18 2.1687D-18 2.2379D-18 3.4563D-22 3.5987D-22

17000 2.3939D-18 2.4537D-18 2.0190D-18 2.0787D-18 3.2498D-22 3.3731D-22

18000 2.2708D-18 2.3227D-18 1.8853D-18 1.9372D-18 3.0612D-22 3.1687D-22

19000 2.1596D-18 2.2049D-18 1.7654D-18 1.8107D-18 2.8888D-22 2.9829D-22

20000 2.0586D-18 2.0983D-18 1.6575D-18 1.6973D-18 2.7309D-22 2.8136D-22

O',- and a j  are the total recombination coefficients at the initial and moved resonance positions. 

The coefficients superscripted and represent the initial and moved individual resonance 

contributions to the total recombination coefficient.
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Figure 4.2: The effect of moving the and ^F° resonances on the 2s2p^ recombination 

coefficient. The top figure illustrates the effect on the to tal recombination coefficient of 

moving the two resonances. The central figure illustrates both the effect of moving the 

^F° resonance and the size of its contribution to the final recombination coefficient. The 

lower figure illustrates the effect of moving the resonance.
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Figure 4.3: The lowest two excitation thresholds of CII

The value of (3 can be estimated from the minimum point, x = —q, since then Fi{x) = (3.

This form does not allow for any energy dependence in the background, so can only be 

used to fit a narrow energy range. The initial position and width of the resonance is taken 

from the output of STGF and the quantities g, (3 and a can be easily deduced. A single 

profile is then produced for the resonance at its calculated position and a recombination 

coefficient over the entire energy range evaluated. A new profile is then generated, differing 

only in the energy of the peak of the profile, and integrated to give a new value of the 

contribution to the total recombination coefficient for the resonance. The integration 

mesh is generated by RESMESH (§3.6.3) so the accuracy and the ease of integration can 

be maintained. Using the new profile, gives a modified recombination coefficient for the 

state with the resonance contributions evaluated at their experimental positions. This 

method was applied to all cross-sections in which the two resonances appeared, for all 

states n < 1 0 . The effect on the value of the recombination coefficient over a range 

of temperatures is illustrated on the previous page. Table (4.3.1) gives the quantitative 

effect of the individual resonance contributions, and their combined effect on the total 

recombination coefficient for the 2 s2 p  ̂ state.

4 .3 .2  A b o v e  th e  2 s 2 p(^P °) T h re s h o ld

From ~ l/n ^  below the 2s2p(^P°) threshold up to the highest energy considered, a 

quantum defect cross-section was calculated. In this region a trapezoidal rule is used 

to integrate the cross-section. Above the threshold, another channel is open and the 

recombination coefficient is calculated in a modified form to (4.6),

Stt /  Ni

where hu is the photon energy, cr,j(i/) is the cross-section from initial state i to final state
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Figure 4.4: The two contributions to the 2 s2 p^ recombination coefficient from the 

and parent states above the 2s2p(^P®) threshold.

j .  STGBF provides both length and velocity partial cross-sections to each open channel 

and following convention, the length formulation only was used. The Saha bracket is given

by,

\  gi (  V  f x i , j \
N . N t g f  \2TrmkT

) ’ e x p (
k T  J

(4.16)
J '  Saha ^3

Here, gr,-, g f  are the statistical weights of the recombined state and the initial ion state 

respectively, and Xi,j is the ionization energy of the state i relative to  the excited ion state 

j .  See figure (4.3).

4 .3 .3  E v a lu a tin g  th e  2s^(^S) and  2s2p(^ P °) p o p u la tio n s

The contribution to the to tal recombination coefficient of a state, is dependent on 

the relative populations of the 2 s^(^S) and 2 s2 p(^P°) states. (For the tem perature and 

density range under consideration, the effective population of CIII can be thought to  reside 

in these two states.)

N C S )  -f- N C P ^ )  = N{C^+)  (4.17)
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=  l  (4.18)
i V ( C 2 + )  iV ( C 2 + )

The contribution to the recombination to the level i, is given by,

^  iV +  

j

where is the to tal number density of ions. The 2 s2 p(^P^) state will be populated by 

collisional excitation and depopulated by collisional de-excitation, and radiative decay.

^iQij^e = Nj[Aji -f qjiNe] (4.20)

This gives

^  __  u  2 1 )
Ni N.qji + Aji  ̂ ^

The collisional de-excitation rate coefficient, qji, can be obtained from the relation (Men­

doza, 1982),

ç.,(T ,) =  ( c m V ')  (4.22)
vûjTi

where Wj is the statistical weight of the upper level. The excitation rate coefficient is given

%  = U > i )  (4.23)

7 j,(Te) is the effective collision strength (Dufton et al. 1978) and is the value for the whole 

multiplet. A(^Pi 5 ) =  1 2 0  s~^ (Kwong et of., 1993), however this is a single multiplet 

value. An average, over all possible J  values is used, A^i =  40.3. and hence the ratio 

(4.21) is evaluated. Let this ratio be X , the fractional population.

i V ( i S )  1 

iV ( C 2 + )  ~  l ^ X

and

(4.24)

N(C^+)  1 +  X   ̂ ’

These two ratios give coefficients by which the previously calculated recombination coeffi­

cients, from each final state, were multiplied. Figure (4.5) illustrates the relative popula­

tion of the 2 s2 p(^P) state as a function of density at 2 0 0 0 0  K. The contribution from the 

2s2p(^P) state only starts to be significant at densities, > 10® cm~^. At typical Wolf 

Rayet stellar wind temperature/densities, this contribution will not be more than ~ 8 %. 

The maximum possible contribution, given by the Boltzmann distribution, is <^17% which 

is approached at densities. Ne > 1 0 ^̂  cm~^.
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Figure 4.5: The relative population in the 2 s2 p(^P°) state of C III as a function of density 

at 20000 K.

4.3.4 Tabulating the Integrated R ecom bination Coefficients

For speed of calculation, the recombination coefficients for all states in the range 400- 

20000 K were calculated at intervals of 1 0 0  K and stored in a data file. Coefficients at the 

tabulation points were then obtained directly and for temperatures in between, 4-point 

Lagrange interpolation was used. In cases where the recombination coefficient is changing 

rapidly ie. a t low temperatures, the values were converted to logarithmic quantities, which 

are then interpolated. Interpolation rather than direct calculation provided negligible loss 

of accuracy. The worst case discrepancy was shown to be less than < 0.3%.

4.4 R ecom bination Coefficients; H ydrogenic Cross-sections

For all states for which a i2-matrix photoionisation cross-section had not been calculated 

explicitly, a hydrogenic approximation to the photoionisation cross-section was evaluated, 

using the routines of Storey and Hummer (1991) which were designed for the fast compu­

tation of radiative data in hydrogenic systems. The photoionisation cross-section of state 

n/, is given by,

'47ra\ {l + n^k"^) ^
0|/(7î/ —> El

I /4 7 ra \
/i2 Z 2 n2 (21 + 1)

roo
U  Pnl(p)pGj^i>(p)dp (4.26)

where p  is the reduced mass and the constant =  8.5596557 xlO
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4.4.1 Evaluation of the Radial Integrals

The m atrix elements of equation (4.26) are evaluated, by Storey and Hummer (1991) using 

the method of Infeld and Hull (1951). is defined such tha t,

(4.27)

where the primed quantities now refer to the lower state. P^'i'ip) a^nd Pni{p) are orbitals of 

bound state type. For fixed values of n , n. Infeld and Hull (1951) obtained the following 

recurrence relations,

2lC{n \ l )R{ l  -  1, /) =  (21 + l)C (n , I +  l )R(l ,  / +  1) +  C(n , l  +  l )R ( l  +  1 ,1) (4.28)

and

2lC(n, l)R(l,  / -  1) = C(n, / +  l )R(l ,  / +  1 ) +  (2 / +  l)C (n  , / +  l)i2(/ +  1 ,1) (4.29)

where

C ( n J )  = [(n -  l)(n + l ) ] i / ( n l )  (4.30)

All the necessary integrals for a given set (n , n) can be generated given two starting values,

R ( n \ n  -  1) = 0 (4.31)

and from Gordon (1929),

R(n  -  1 , n ) =  i(4nn^)” (n +  n ) l (n — n )
(4.32)

(n — n — l)!(2 n' — 1 )!

The recursive evaluation of R  proceeds in descending order of l ' . The recurrence relations 

are also valid for,

R ( h ‘ ) = l  P„r(p)pGkt{p)dp (4.33)

where Gki(p) represents an orbital of free state type. Substituting n — %/A: in (4.30) gives.

_ (1  +  /^ P )2

The starting values are.

and again from Gordon (1929),

C(&,f) =

R(n  , n -  1 ) = 0

R(n  1 , n )fc=o — ^ ,2 (2 n -  1 )!
(4 n )"  ■^^exp(—2n )

(4.34)

(4.35)

(4.36)
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and

R{n  1 ) ^  —
1 -  exp(-27r//:)

exp[2 n- -  (2 / t )  a rc ta„(n 'fc j^^^ , _
(1  +  n '2A ;2)n+2

Using the stable recursive procedures described the dipole radial integrals from states 

of different orbital angular momentum were evaluated and hydrogenic cross-sections and 

hydrogenic recombination coefficients calculated.

4.5 R ecom bination Coefficients: Coulomb C ross-sections

A coulomb approximation to the photoionisation cross-section can be calculated using the 

methods of Peach (1967). The cross-section at frequency û is given by,

<jÿ{e , v) -  +  A ' )  ^  Cf\  j  Pul{'r)rG^.'^'(r)drŸ (4.38)
^ l'=i±i *

where the nl electron has been ejected and /„/ =  z^/v^  (Rydbergs) is the associated 

threshold ionisation energy, z  is the residual charge on the final ion and v is the effective 

quantum number of the initial state, 2 = z^e denotes the energy in Rydbergs of the 

ejected electron. Expressions for the coupling coefficients Ĉ i are given by Burgess and 

Seaton (1960). The initial bound radial function Pi>i is defined by,

= z h K { u J ) W , j ^ ^  ( ^ )  (4.39)

where W  is the W hittaker function. The normalising factor is

K(v , I )  =  [C (k,():/'r(^  + 1  + i ) r ( y  -  /)]5 ; C(y, 0  =  1 +  ^  (4 .4 0 )

fj, = n — u being the quantum defect for the series of initial states of the same parent. For 

aU but the lowest series members, ((%/, f) is generally taken to be unity. The asymptotic 

form of the W hittaker function is,

( ^ )  =  p =  zr (4.41)

where 6q =  1 and

bt — — [Z(Z + ! )  — ((/ — —  ̂+  l)]6f - i ,  t > 1 (4.42)

An approximate bound-state radial wave function is thus defined for all r by

P,,{r)  =  z i K ( u , l )  { y ^ y  e-' ‘l ' ' ' ^ b t ( u , l ) p - ‘ (4.43)
^ ^  /  t=Q
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For 1/ =  n =  (/ +  1 ), (/ +  2 ) , equation (4.42) terminates aX t = =  n — / — 1 and is then

equal to the exact hydrogenic eigenfunction. The choice of #o is discussed by Bates and

Damgaard (1949).

The continuum function Gj^q'(r), is given by Burgess and Seaton (1960),

= Z “ ^{F^/^/(r) cosTT/i' +  ifj^/^/(r) sin7r/i^} (4.44)

where

= [1 -  exp(-r^ /r)]2  ̂ (4.45)

and are the regular and irregular solutions of the coulomb equation,

=  0 (4.46)

This gives the virtually exact asymptotic form

^k' l '  ^  ̂ sin k'r -  i / V  +  ^  ln(2 t ' r )  +  argT ( / ’ +  1 -  ^ )  + (4.47)

The cutoff param eter r^/, in (4.45) is necessary to remove the divergence of the irregular 

function at the origin (Burgess and Seaton, 1960) and their definition r̂ / =  10/(/'(Z' -f 1)), 

is used.

4 .5 .1  E v a lu a tio n  o f  th e  R ad ia l In teg ra ls

For p > 2 0 , and .F^/^/(r) are obtained using the W.K.B. functions derived by

Burgess (1963) which are known to be accurate for large p. The integrals,

to o  T O O

/  Pui(r)rFj^>i>dr, /  F^i{r)rH^.i^<dr, (4.48)
J  20 J  p

can be evaluated using Gaussian quadrature. For p < 2 0  j^ ;y (r)  and are calcu­

lated by direct numerical integration of the coulomb equation, integrating outwards for 

the regular function and inwards for the irregular function, using the W.K.B. functions to 

give starting values for the Numerov integration procedure.

Peach (1967) tabulates the integral functions only as far as i/ < 1 1 , T < 2 . In order 

to taJce advantage of using a coulomb approximation over a hydrogenic one, a ratio of 

the hydrogenic values, previously calculated at n =  1 1  for L  =  0 , 1 , 2 , to  the coulomb 

values for the same values of T, were calculated. The ratios were then applied to all the 

hydrogenic values calculated for states n > 15, T < 2.
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4.6 Conclusions

This chapter detailed the calculation of recombination coefficients for subsequent use in 

the level population calculations. A sensible balance between accuracy and effort was 

struck. In the case of recombination coefficients for lower states, great caxe was taken 

to ensure the accuracy inherent in the 12-matrix photoionisation cross-sections was main­

tained. Moving the 2s2p(^P°)3d (2 pO 2pO  ̂ resonances in the appropriate cross-sections 

markedly increased their contribution to the recombination coefficients. As an example, 

the placement of the two resonances at their experimental positions brought about a 63% 

increase in the recombination coefficient of the 2 s2 p^(^D) state a t 1 0 0 0  K. The necessity 

of a detailed treatm ent of recombination into excited states was illustrated by comparing 

the integrated values with hydrogenic and coulomb values. The hydrogenic approxima­

tion to  the recombination coefficient for the 2 s^ lls  state at 1 0 0 0 0  K overestimates the 

value integrated from the appropriate 12-matrix photoionisation cross-section by 250%. 

In the case of the 2 s^l2 s state hydrogenic /  coulomb approximations again give values 

which are severely in error as the state is affected by configuration mixing, which lowers 

its recombination coefficient.

However, states with L > 5 are very nearly hydrogenic and it made sense to make use of 

a hydrogenic approximation in this region. It was expected tha t all approximations should 

converge on the hydrogenic values for high values of angular momenta and there w2ls very 

little to  be gained from performing a more detailed calculation. A degree of refinement 

to the hydrogenic values was gained by using extrapolated coulomb values above u = 15 

incorporating the available quantum defect data, for states, L < 2 .
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C hapter 5

Level Populations

5.1 Introduction

The population of a state is given, in equilibrium, by equating the populating and depop­

ulating processes of any given level.

The primary excitation process in a low density astrophysical plasma is photoioni­

sation. The inverse process, is radiative recombination and in the case of CII, involves 

photo-electrons recombining with a doubly charged ion. The importance of dielectronic 

recombination has also been noted. The capture of an electron by either of these pro­

cesses gives rise to an ion in an excited state, Population, wiU be quickly followed by 

depopulation, by means of radiative decay to  any allowed state of lower energy, ,

X+  X+  -f hu (5.1)

Cascade will continue until the atom reaches the ground state or a met a-stable level. In 

regions of low density ( cm~^), such as planetary nebulae, the effects of coUisional

processes may be neglected, except in so far as they maintain a Maxwellian velocity dis­

tribution among the free electrons.

In regions of higher density, coUisional processes become increasingly more im portant 

and above densities of cm“^, particularly for high L states, become the dominant 

populating and depopulating mechanisms. These processes include, coUisional ionisation 

and its  inverse process, three body recombination given by equation (1.1). They also 

include coUisional redistribution of energy and angular momentum, typified by

X + + P ^  X +  +  P  (5.2)

where X ^  is a state for which, either, just the total angular momentum changes, or
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the principal quantum number and the angular momentum change. P  is any charged 

perturber and rates were evaluated for collisions with electrons, protons and helium nuclei 

with respective fractional ratios of 1.0, 0.833 and 0.0833.

The evaluation of the recombination rates has been given in detail in chapter 4. The 

approximations used in the evaluation of rates for the other radiative and coUisional pro­

cesses, and the evaluation of the equilibrium population of a state, for a given temperature 

and density, are detailed here.

5.2 Carbon II Transition Probabilities

Spontaneous radiative transition probabilities were required between all states, n < N L I M ,  

where N L I M  was the variable limit of n for which population solutions were obtained 

explicitly for all L. The total radiative decay rate for each state, n < N L I M  y was calcu­

lated and used directly in the solution of the level population equations and indirectly, as 

a cut-off in the calculation of coUisional rates.

Spontaneous radiative transition probabilities were evaluated using, four approxima­

tions, dependent on the region of calculation. These approximations were;

• rates derived from CII oscillator strengths calculated using the Opacity Project suite 

of codes

• coulomb and hydrogenic rates and

• rates derived from interpolation in photoionisation cross-sections extended below the 

^S threshold.

Figure (5.1) illustrates the regions where the various approximations were used.

5 .2 .1  T ra n sitio n  P r o b a b ilit ie s  C a lcu la ted  U sin g  O p a c ity  P r o je c t  C o d es

Initial calculations made use of the CII oscillator strengths calculated in the course of the 

Opacity Project (Yu Van et a l  y 1987). These were recalculated following the changes, 

to the number of basis functions and the size of the 12-m atrix box and to extend the 

calculations to cover the same range of principal quantum number and to tal angular 

momenta as the 12-matrix photoionisation cross-section calculations.

The close-coupling methods detailed in Berrington et a l  (1987), were used to calculate 

weighted oscillator strengths, p/, for all transitions between states of CII having principal
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Figure 5.1: The division of the approximations used to calculate spontaneous radiative 

transition probabilities, as a function of n and L.

quantum numbers, n < 15 and total orbital angular momenta, T < 4, a total of 127 states. 

The weighted oscillator strengths were calculated using STGBB, part of the OP suite of 

codes, from the D and B datasets produces by running the codes STGl, STG2, STGH 

and STGB (§2 .6 ).

For the transition a b, the dimensionless oscillator strength / ( 6 ,a ) is given by, 

(Seaton, 1987),

(5.3)

where
^9a

S(6 ; a ) = | ( 6 ||D ||a)|^ (5.4)

The dipole operator D is

D = e ^ r „  (5,5)
n

where r„ is the coordinate of the ionic electron and the sum is over all electrons in the 

ion. The Opacity Project codes generate g/ values given by Yu Van et al. (1987),

gf{a,b) = / ( 6 ,a ) x Ça (5.6)

This is positive for absorption, Eb > Ea, and the g/values are tabulated with b taken to be

of even parity and a to be of odd parity. For Eb < Ea, the quantity tabulated is negative
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Figure 5.2: Comparison of p/values for gfi, and gfy components, from dipole-length and 

dipole-velocity calculations.

and the g/values for the emission process b a is given by

gf{a,b) = -g f{b ,a )

The probability for spontaneous emission, 6 —> a is.

A{b a) =
2(76

X gf{a,b)  X To- 1

(5.7)

(5.8)

where a = e^/{hc), ù is the photon energy in rydbergs and jme^.

The fi, and f y  values are respectively, the oscillator strengths calculated using the 

length and velocity operators. All transition probabilities were calculated using gfi values, 

calculated using the length operator. The variation between length and velocity values 

show the same trends noted by Yu Yan et al. (1987). Figure (5.2) gives a plot of log(|^/f,|) 

against log(|p/y|). The agreement is generally good but there are discrepancies for small 

g/values.

Yu Yan et al. (1987) define the average percentage difference between g f i  and gfy  as,

100 X -  g f v f )  '  {Y ,(9 fL  X gfy ) ) (5.9)
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Table 5.1: Lifetimes of CII levels from the experimental work of Reistad et al. (1986) and 
calculated works of Yu Yan et al. (1987) and this thesis.

Level

Lifetime (tis)
Experimental Calculated

Reistad Yu Yan This Work
2s2p^ 'JS 0.44±  0.02 0.42 0.44
2s^Zs sg 2 .4±  0.3 2.8 2.6
28*4* 2g 1.9±  0.1 2.2 2.0
2s*5s ^g 3 .7±  0.2 3.8 3.7
2s2p2 2p 0.25± 0.01 0.23 0.24
2s^3p 2pO 8.9±  0.4 9.2 8.6
2s^4p 2pO 3.8±  0.2 4.4 4.1
2p3 2pO 0.48± 0.02 0.50 0.49
2s^5p 2po 5 .2±  0.3 5.0 5.1
2s^3d 2d 0.34±  0.01 0.35 0.34
2s24d 2d 0.75±  0.03 0.73 0.72

which they find equal to 3.7%. The same formula gives 0.9% for the current calculations. 

However direct comparison is not possible. The difference may in part, be explained by 

the changes in the values of the R-matrix parameters, but it is more readily explained 

by noting tha t the weighted oscillator strengths calculated here contain no quartet states. 

Where the energy, AEoba of & transition is known from experiment, the Opacity Project 

value g f o p  is corrected according to

gfcorr = (5.10)

where AEcai is the calculated transition energy. This correction removes any error in the 

value of g f  due to errors in the calculated transition energy. Transition probabilities are 

then calculated from (5.8) using experimental energies where available.

Also of interest, is the comparison of the to tal lifetimes of various states, where direct 

comparison is possible. The probability for spontaneous emission 6  —> a is given by (5.8). 

The to tal radiative probability is

A{b) = J 2 A { b - ^ a )  (5.11)
a

with a summed over all lower states, and the lifetime of level b is

n  = 1/A{b) (5.12)

The comparison between Yu Yan et al. (1987) and Reistad et al. (1986) is reproduced here

for the length components. The results in nearly all cases, fall within the experimental

error.
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5.2.2 Coulomb Approxim ation

A coulomb approximation to the radial transition integrals, beised on van Regemorter et 

al. (1979) and Bates and Damgaaxd (1949), was used to generate transition probabilities, 

%/, u > 16; L < Z  and for transitions from states, %/' > 16 —+ i/ > 6 ; 2) < 3. Solutions to the 

radial integrals
I I  roo

K l '  =  (5.13)

are required between all states of parentage for any value of the effective quantum 

number, for which there is available quantum defect data.

In the coulomb approximation the radial wave functions are solutions of

+ = 0 (5-14)

As noted by Bates and Damgaard (1949) and Burgess and Seaton (1960) the variation of 

the radial integrals , for fixed values of A u = u — u j , l \  with u (or u )  is very slow. 

This allows one of the quantum numbers to be an integer and the results to be obtained 

accurately by interpolating different calculations for the same value of Au.

Therefore, one of the functions is expanded using the asymptotic expansions of the 

W hittaker function, given by Bates and Damgaard (1949)

fw  = K^l ( - ) * "  e - ' / " ^  b,{vl)r-‘ (5.15)
^ ^  '  t=o

the other being taken to be the hydrogenic form. The radial integral has the form

K ,'  =  ( - 1)
n'+l+i 1 4 I ______ r(ra +  / +  1 )

vn' {21‘ +  1)! ^r(y + I +  l)F ( r  -  i)r(n' -  V)
I + 1  /  g \ */ *0

with

X (4) (5.16)

/ ,  =  /o” « x p [ - r ( ^  +  y ] r ‘'+ ' '« - ‘i f i ( - n '  +  /' +  l , 2 (' +  2 , ^ ) d r

/ / \ +3—t
= T{u +  / -f 3 — t) ^  ^

n + u j

X 2 ^ 1  (~i^  4- / -{■l,u-\-l +  3 — t; 2; +2; —7—-— 1 (5.17)
\  n + uJ

using the Laplace transform of the confluent hypergeometric function.
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Application of (5.17) reduces to the repeated calculation of the hypergeometric poly­

nomial

where a  is a negative integer. For (—a) < 15, the direct calculation of F(a,/3;'y;x)  using 

(5.18) is difficult due to  the addition of terms of opposite sign tha t are large in comparison 

to the function itself. However F (a ,/? ;7 ; x)  may be calculated easily using the following 

recurrence relation.

(a -  7 )F(a -  l , P ; - f ; x )  +  l'y -  a  -  j3 +  {P -  a)(l -  x)]

F{a,P; 'y;x)  + a { l  -  x)F{a  + l , P ; j ; x )  = 0 (5.19)

Knowledge of two initial values of the function, F ( 0 ,/? ;7 ;x )  =  1 and F '(—l,y3 ; 7 ; x) =  

1 — (/?/7 )x, means tha t F(a,  /?; 7 ; x) can be calculated for arbitrary negative integer values 

of a  by repeated application of (5.19).

W ith regard to  the summation over t in (5.15), an analogous procedure is used to 

determine F { —n +  Z' +  1 , z/ 4 - 3 — t; 2 / -b 2 ; 2ul{n +  i/)). For t = 0 and t = 1 the 

function is calculated using relation (5.18); for 2 < t < to» the function is evaluated using

( 7  -  P)F(a,  /3 -  1 ; 7 ; x) -f (2 ^  -  7  -  /3x -b ax)

F{ayP;^;x)- \-P{x -  l )F {a ,P  + l; 'y;x)  = 0 (5.20)

Summarising,

F ( 0 , / 3 ; 7 ; x )  =  1

F ( - 1 ,/? ;7 ;x ) =  l - ( P I ' y ) x  (5.21)

have to be calculated for t = 0  and t =  1 , All other values of F (a , /?; 7 ; x) may be deduced 

from (5.21) using (5.19) and (5.20).

The procedure for interpolation is detailed by Bates and Damgaard (1949). Let c =

V —u > 0 with n < u < n +1 {n being an integer) and Vc = n — c. In order to calculate

the radial integral , i2"J and ™^ ŝt first be calculated using (5.16). Since the

variation of

K t l j  = (5.22)

with Uc (or n )  is very slow for a fixed value of c, linear interpolation is sufficient to 

determine and

(5.23)
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where /> =  max(/,/*).

From Bates and Damgaard (1949), the spontaneous transition probability, A, can be 

expressed in terms of the line strength S.

Evaluation of A  depends of upon the evaluation of S. It can be shown tha t

S =  J { M ) J { C ) R i / ' ^  (5.25)

where *7(A4) is a a factor depending on the particular multiplet of the transition array,
t J

J { C )  is a factor depending on the particular line of the multiplet and R'li is the derived 

solution to the radial integral.

When the program to obtain the population of a state was run in a  normal mode, 

only the routine based on van Regemorter et al. (1979) was used. However when testing 

the code, calculations were performed, for which the code uses the methods of Bates and 

Damgaard (1949) directly. The swap over between the two methods was originally set 

at n =  17, but investigation showed tha t the transition probabilities produced involving 

states with n =  17 were very unstable. The asymptotic expansions of the wave functions, 

contain large oscillating terms which when summed caused a loss of precision due to 

cancellation, despite using double precision arithmetic. The stability was improved by 

sorting the terms of the sum using a routine coded by Lynas-Gray (1991). This proved 

beneficial for n < 15 but the Bates and Damgaard (1949) routine still proved too unstable 

at n =  16 and the swap over to using the van Regemorter et al. (1979) code was lowered 

to this value of n.

5 .2 .3  H y d ro g e n ic  A p p ro x im a tio n

Brocklehurst (1971), details the evaluation of spontaneous transition probabilities, 

for electric dipole radiation in a hydrogenic approximation.

[ j ^  R { n i ) r R ( n l ) d r
2

(5.26)

where

ao =  — Ô (5.27)me^

and where

,  = (±  - A )  (5.28)
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is the frequency of the transition n l '  nl and R(nl)  is the normalised radial wave 

function. Substituting for ü in (5.26) and rearranging gives

= 2-6774 X (5.29)

where
/ I  1

. I -i rr: I — ■■ — —  I
(2/ +  1)'

and

“ " ' . n ' i ' -  ( „ ' 2  n i )  +

p {n l ' ^ n l )=  f  R{n l')rR{nl)dr.  (5.31)
Jo

The following expression (Gordon 1929) can be used to  compute the integrals,

\ p { n l - l , n l ) \  =
2 I ( - 1 )"  ̂ /(n  +  l)!(n  +  Z -  1 )! (4nn')^+^

4 (2 / -  1 )! V { n - l  -  l)!(n  -  /)! (n +  n ')"+"'

—4nn
X (n -  n )"+" 2-̂ 1 I —7̂ 4-/4-1, —n  +  /, 2/, {n — n ' y  j  

2

(5.32)

where 2 -fi is the hypergeometric function given by (5.18). The evaluation of the hyper­

geometric functions swaps from a cancellation to a recursive solution for n or n greater 

than 200, since above 200 cancellation starts to lose precision. Hydrogenic transition 

probabilities were calculated for all states with l , l '  > 4.

5 .2 .4  B e lo w -th r e sh o ld  P h o to io n isa t io n  C ro ss-sec tio n  In te r p o la t io n

For all states n < 5, the photoionisation cross-sections detailed in chapter 3, were extended 

below threshold, giving effectively bound-bound cross-sections. For transitions from all 

states, n >  16 to < 5, the transition probabilities were obtained by interpolating in 

these cross-sections at the final state energy. This was done using Lagrange interpolation. 

The transition probabilities will include the aflfects of configuration interaction and give 

much more accurate results than using either hydrogenic or coulomb approximations.

The relationship between the bound-bound oscillator strength and the bound-free os­

cillator strength at threshold is given, using effective quantum numbers, by Burgess and 

Seaton (1960),

2(ul\r\i/ I )  = —
1,2 9  l i /2
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For large values of i/, it is usual to put =  1 . Writing g{yl\€ ^l') in terms of bound 

state and final state radial functions,

g{ul; € , / )  =  — Pt,i{r)rGi^>i^{r)dr (5.34)

where e =  {k^ f z ^ .  The generalized line strength S for a single transition is given by,

(5.35)

where w is the statistical weight of the initial state of the atom and Ĉ i are algebraic 

factors obtained from the integrations over spin and angular coordinates. Squaring (5.33) 

and substituting for (5.34) in (5.35) gives,

(5.36)

The photoionisation cross-section at threshold, ap where ü is the frequency, may be w ritten 

in terms of the generalised line strength as follows.

The bound-bound oscillator strength can be written, in terms of the threshold cross- 

section,

(5.38)

By analogy to equation (5.35), a bound-bound line strength can also be written.

(5.39)
S foo
-  = Ci>\ P^i{r)rP^>i>{r)di 
w |Vo

Equating (5.37) and (5.38), putting /  =  (W|r|%/'f )  ̂ and using (5.3), the bound-bound 

oscillator strength written in terms of the photoionisation cross-section is given by.

z^ me

This relationship is assumed to hold generally. The spontaneous radiative transition prob­

ability is then given by (5.8).

5.3 CoUisional Transition R ates

CoUisional transition rates are required between all states, n < N L I M .  Rates are evalu­

ated for energy and angular momentum changing coUisions and for coUisional ionisation 

and three body recombination. Account must also be taken of coUisions to  and from states 

for which n >  N L I M .  Energy changing collision rates are divided into two regions which 

are evaluated separately. These are firstly, coUisions for which \n — n\ = 1 and secondly 

coUisions for which |n  ̂ — n| > 1 .
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5 .3 .1  A n g u la r  M o m en tu m  C h a n g in g  C o llis io n s

A collision ra te  for the redistribution of angular momentum, y is defined such tha t

C(l, l ')  = J  Q(l , l ' ) v f(v )dv  (5.41)

where f ( v )  is the Maxwellian velocity distribution and Q{1, l') is the collision cross-section. 

From detailed balancing considerations,

giC{l,l ') = gi ,C{l\ l )  (5.42)

where g is the statistical weight of the state.

The collision cross-section is evaluated in two approximations. For transitions up to 

and including / =  4, the semi-classical impact parameter method of Seaton (1962), which 

is suited to calculating reaction rates between states of small energy separation, is used.

The cross-section for excitation by a particle of charge Z  and velocity v in the Born 

approximation is given by

Q i ( / , / )  =  P^.j{Ri)2wRidRi ( 5 . 4 3 )

where Ri is the impact parameter of the state I and is the classical distance of closest 

approach and P^^/(i2/) is the probability tha t the I l' transition occurs.

The assumptions made in the Born approximation, will be valid at all energies for 

Pf Ta where is comparable with atomic energies but will overestimate the low 

energy contributions from small impact parameters Ri

The impact param eter approximation considers only optically allowed transitions for 

which the cross-sections will come from quite large impact parameters. In this region the

Born approximation is valid and so a cut-off is introduced into (5.43) to  obtain

roo
Q i ( ^ 0  =  j ^  Pi>i{Ri)2'KRidRi (5.44)

Expressions for P^/^(i2/) can be simplified in the limit of Ri large, corresponding to the 

Bethe approximation (Seaton, 1955). Simpler expressions are obtained using the semi- 

classical impact param eter method and the two methods give good agreement at high

energies. At lower energies, the semi-classical theory wiU be in error since it gives large de­

partures from the reciprocity condition, P /̂^(jR/) =  (J%y). A symmetrized semi-classical

expression is used which gives good agreement with the Bethe approximation. Thus two 

param eters are used in the calculation of Q(/, / ) in the impact param eter approximation.
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In the first equation (5.43), is evaluated using the symmetrized semi-classical theory 

and R q is taken to  be independent of energy and agrees with the Bethe approximation in 

the limit of high energies. R q is comparable with atomic dimensions. For R >  R q

c

where

S =  e2 |(/|r |/')p  (5.46)

is the line strength of the optically allowed transition and

P = ^  (5.47)

A E  is the energy difference between the initial and final states. ^(/3) is tabulated in Seaton 

(1962). For R i > R q, the values of P^/^(P/) should be fairly accurate assuming the coupling 

is weak. A necessary condition is tha t < 1 . In the regime of stronger coupling, the 

P^/p calculated assuming weak coupling, are taken to  be adequate, so long as they give 

Pj>l < ^ (Seaton, 1961). When the coupling is strong, a value of Ri=Ri  is used so that 

the weak coupling theory gives

^  (5.48)

For Ri < R i ,  P^q is considered to be an oscillatory function with a mean value of |  and 

the cross-section is taken to be,

/ 1 r°°
Q{l , l )  = - ttRI  -f- Pj.j{Ri)2irRidRi (5.49)

Both cross-sections, given by (5.43) and (5.49) are calculated and the smaller of the two 

adopted, in the calculation of the collision rate.

For degenerate states, A E  = 0  and the integral in (5.44) varies as R~^ and is therefore 

divergent, which would give an infinite value for the cross-section in this case. The method 

of Pengelly and Seaton (1964) is used, which introduces an upper cut-off in the impact 

param eter to obtain finite cross-sections. In the degenerate case and in cases where A E  is 

very small, it is plausible to neglect the contribution from R  ^ r v  where r  is the radiative 

lifetime. This gives

At large impact parameters.

Qi  ^  ^ ln (r i ;/P i)  (5.50)

Qi = In(PJiZi) (5.51)
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where it is assumed tha t Rc R\  and the following procedures are used to  determine the 

cut-off, Rc.

If the initial and final states have an energy difference tha t is wide compared to  the 

line widths, A /r,

(5.52)

For AF7 <C A /r, there is a possibility tha t the coUisional process wiU be interrupted by 

the target electron radiating. In this case the cut-off is taken to be,

Rc =  0.72ur (5.53)

In an ionised gas, the particle positions are not entirely uncorrelated. The electrons 

tend to  cluster around positive ions and the effective range of the Coulomb field of the 

ions is then determined by the Debye radius,

kTc
R d = (5.54)

4‘ïïe'^Nej

In practice, aU cut-offs were evaluated and the smaUest expression for Rc was adopted. At 

very low densities, the cut off wiU be determined by the radiative lifetime of the excited 

states. At higher densities, it wiU be determined by the Debye radius.

For smaU impact parameters, R\ < R  < R ^

4Z^e^S

The conservation condition is P(i2) <C 1. P i  is defined by

This is valid if P% is large compared to atomic dimensions. For R  < R i ,  P{R)  wiU be an 

osciUatory function with a mean value close to Taking P{R)  =  ^ for P  < P i ,

Q = w R l { ^  + l n ( R J R i ) }  (5.57)

where

= w

The Ufetime of each state is calculated in the evaluation of the radiative transition 

probabiUties to lower states and passed to  the routines calculating coUisional rate coef­

ficients. The impact param eter method is used for colUsions involving states for which 

quantum defect data  exists and the method of PengeUy and Seaton (1964) otherwise.

86



5.3.2 Energy Changing Collisions: An =  1

For transitions of the type n —> n ±  1 , the energy differences will be small and a large 

contribution to the the cross-sections will come from impact parameters R  > R\ .  This 

lends itself to calculation using the impact param eter approximation. The cross-sections 

generated are very accurate in this case and the approximation was used for all /.

It should be noted tha t the codes used to generate rates using the impact param eter 

approximation, did so only for transitions I I + 1. In the case of angular momentum 

changing collisions, the principle of detailed balance was used to obtain the reverse rates. 

For energy changing collisions, the rates were calculated for / —> /- f l  and n —> n-f-1 and the 

reverse rates again obtained from detailed balance. The code as it stands cannot calculate 

the cross rates. Other work has approximated these rates by means of a fixed ratio  to  

the / —> / - | - l , n —v n - f l  rates, but the assignment of the ratio seems to be arbitrary. 

One possible means of obtaining these rates is to compare the oscillator strengths for 

the various transitions, since the coUisional cross-sections are proportional to the line 

strengths. However this was not done, since it was found tha t at high I the rates are small 

in comparison to the / —> / -1- 1 rates and that at densities where An = 1 transitions are 

im portant, fuU coUisional redistribution of a particular level wiU have occurred via the 

angular momentum changing coUisions. In such a case is not im portant which I value the 

population is deposited in since the states will be populated according to their statistical 

equiUbrium. The error in neglecting the cross rates is not significant.

5.3.3 Energy Changing Collisions: An > 1

For coUisions |n ' — n| > 1 , electron impact rates were evaluated from semi-empirical 

cross-sections using the methods described by Percival and Richards (1978) who give the 

cross-section in the form,

Z^È<r{n n ) ^  ^  f c g  (5 .5 9 )
n̂ TTUo

where È  is the incident electron energy per Rydberg, and Z  is the effective charge. A D L  

is the high energy term, Ë  > 2 Z /n  and contains quantal effects, in particular the loga­

rithm ic dependence of the cross-section on energy. The factor A  is proportional to the 

optical osciUator strength which scales as but A  itself is unchanged. The factor D  is 

simply a cut-off, which removes the quantal energy terms, which will be negUgible in the 

region where the cross-section is an increasing function of energy and where the dominant 

contribution to the rate arises.
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The function L  has the form

L{E) = In
1 +

(5.60)
1 +  ( E / E i )

and El ,  E 2  are chosen to ensure the cross-section has the correct form in the high energy 

region, A ,  which is ^  > 1 and in the intermediate region B, where 2 Z /n  < È  < 1.

The second term , F G H  has no logarithmic dependence on energy and is purely a 

classical term. The factor F  is related to the charge, through the cut-oflf factor D,  and 

remains unchanged in form. The factors G and H  come from Percival (1973) and from 

the density of states correspondence principle. Hence the various factors given in equation 

(5.59) are.

A  = —
8_ f n _  
3s I sn

(0.184 -  0.04/53 ) ( 1  -
\  nn J

1+2»

= n — n > 0

D

L{È)

F

G

H

C2{x,y)

x±

y

= In

ex p [-Z ^ /(n n  E^)]
1 +  0 .5 3 .Ê W /Z

1 -h OAE 

[1 -  0.3sT>/(nn )]^+2"

1

2 \ Z n  )
C2{x- ,y )  -  C2{x+,y) 
a;^ln(l + 2x/3)

2 y + Zx/2

2Zj[n?È{yj2 -  ±  1 )]

Dln{18sy- '^
1 -

4s
(5.61)

The de-excitation rates axe given by detailed balance arguments. Percival and Richards 

(1978) give the condition tha t the range of quantum numbers are limited such tha t.

s = n — n > 0, n , n >  5 (5.62)

In this thesis this limit of n, n is extended down to include n > 3 levels. The errors tha t 

might arise from including transitions to n , n  — Z are less than the error in not including 

any approximation for these levels, particularly at high density. However, Percival and 

Richards (1978) noted tha t at low temperatures their may be as much as a 2 0 % error 

in the rate. For this reason at temperatures of less tha t 1 0 0 0  K, the original limits were 

applied.
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5.3.4 CoUisional Ionisation /  3-body R ecom bination

The binary encounter method (Burgess and Percival, 1968) is used to evaluate coUisional 

ionisation and three body recombination coefficients. Storey (1972) gives the foUowing 

result for the differential cross-section,

Ê9. =  r / 1  4 £ ; \  /  1 4 %  \
de E  I W ' * '  3 )  + \(^E + U - e y ' * '  3 { E  + U - e y )

{ E + U )  ( l '* '  J S + C T - e ) ]

where E 2  is the initial kinetic energy of the target electron, Î7 =  /„  is the binding energy 

of the target electron and a focusing factor to aUow for the effect of the ion field has been 

incorporated. The cross-sections for energy transfers in the range ei < e < £ 2  is then 

given by,
dQ

'Cl

The ionisation cross-section is obtained from equations (5.63) and (5.64), by putting £i =  

U and £ 2  =  This gives

, 4  r / 1  1 \  o r r  /  1 1 \  l n { E / U ) '

« ( £ )  = (5.64)

Qi{E)  = ^ \ u  e J ^  3 V C / 2  ^ 2 j + E  + U

The ionisation coefficient is then given by,

.2^4

(5.65)

, s STT̂ ê  /  m \ 2  \ e x p ( - U / k T )  /5  2 U \
T("-c) = [ u / k T  [ 3 - 3 k f )

+ ( i r )  (§ - 0 i ( )̂) (5.66)

This expression was used to generate coUisional ionisation and three body recombination 

coefficients for all states based on their principal quantum number. Quantum defect data 

was used where available.

5.4 The R elative Im portance o f CoUisional P rocesses

The relative importance of coUisional processes on the population of a state is primarily 

dependent on the density. It will also be dependent, to varying degrees, on the principle 

quantum number and more especially the angular momentum of the state. For states 

with high T, coUisional processes become im portant at relatively low densities since the 

radiative decay rates from the state will be small. This is iUustrated by figure (5.3), 

where the relative importance of radiative processes and the primary coUisional processes,
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Figure 5.3: The relative importance of radiative and coUisional processes in the depopula­

tion of the 2 s^8 d and 2s^l4i states as a function of density. The soUd line represents 

the to tal radiative decay rate from the state, the dotted Une the angular momentum 

depopulation rate and the dashed line the energy changing collision rate for A n =  1.
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angular momentum changing and energy changing (An =  1) collisions, are given as a 

percentage of the to tal outgoing rate from a state versus density.

Figure (5.3) shows tha t the 2 s^8 d depopulation is dominated by radiative decay up 

to  a density of ^  10® cm“^. However for the 2s^l4i state, the point a t which radiative 

decay no longer dominates the depopulation is at a density of ~  10® cm” ^. In the two 

cases there is also a marked difference in the importance of A n =  1 changing collisions 

though this is not surprising since the oscillator strengths for the transitions at low L  will 

be much larger.

The coUisional ionisation and three body recombination rates are smaU in comparison 

to the angular momentum and energy changing (A n =  1 ) rates, but im portantly Unk a 

state to the continuum. At high density coUisional ionisation wiU be the dominant ionising 

rate.

5.5 Equilibrium  Level Population Equations

Consider an excited state nl. In a radiative equilibrium, the state wiU be populated by 

radiative recombination and by radiative cascade from higher levels, and depopulated by 

radiative decay to lower levels. The rate of population is given by
oo

N .N + a „ ,+  Y .  E  (5-67)
n '= n 4 -l /^ = /± l

where and are the electron and ion densities respectively, a„/, is the to tal radia­

tive recombination coefficient to the state, is the spontaneous radiative transition

probabiUty from the higher state and N^i^i is its population. The depopulation rate, due 

to radiative cascade, is given by

E  E  VnY (5-68)
n =Tlmin

Equating (5.67) and (5.68), a radiative equilibrium equation is obtained, given by

n  = n —1 oo

-^nUnl' ~  -^e-^+O^ni +  ^  ^  ^ n  l'-^n l'\nl (5.69)
»  ==»Tn*m n ^ = n + l/^ = /± l

In a region of increased density, the population of a state will be affected by coUisional 

process. The coUisional population rate is given by,
oo

N ^ N , a h +  Y  + Y  E  (570)
f n =T iil Tl ^Tlrnin

l'=l±l
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=  < (5.71)
1 \n — n \>  2 

0  \n — n\ < 2

where is a /-changing collision rate (A n = 0), is an energy changing collision

rate  (A n =  1) and is the three-body recombination coefficient. is an energy

changing collision rate (A n > 2) which is independent of /. For equilibrium purposes these 

collisions are assumed to be to / 4- 1 for n> and to / — 1 for n<. Similarly, the rate of 

coUisional depopulation is given by,

!  \

Nnl
. I —/ i l  n M —f r̂nin

V z'=z±i

(5.72)

where Cj î is the coUisional ionisation rate. Equating (5.70) and (5.72) the density depen­

dent equiUbrium equation is written,

/  \
oo

^nZ  5 Z  ^1 1 ' +  I Z  ^nZ;n'Z' +  I Z  ^ T x l ; n ' +  ^ n l
I —/ i l  n =n±l n —

\  l ' = l ± l  J
oo

+ z  + E + E
Z —Zil n =Tiil 71 —71yn*f%

Z'=Z±1

Combining equations (5.69) and (5.73) the population of a state accounting for both 

radiative and colUsional processes is given by the equiUbrium equation,

/

^n l IZ IZ n̂Z;n'Z' + IZ Qz' + 5Z n̂Zjn'Z' +
71^=71m»n Z^=Z±1 Z^=Z±1 n' = n± l

l ' = l ± l

O O  \  OO

E  ^ n Z ; n ' < ^ n n '  + ^ n Z  1 =  - ^ e - ^ + t t n Z  +  ^ Z  E  Z ' ^ n ' Z ' ; n Z  +
/  n '= n + lZ '= Z ± l

oo

E  E  + E  ^nM +l^n'-a^n,.'(5.74)
Z'=Z±1 n' = n ± l n '= n m in

l ' = l ± l

It is useful to  rewrite the true population in terms of the Local Thermodynamic EquiUb­

rium (LTE) population, N"j.

N„i = N ’,b„, (5.75)

Here, 6 „/ is a dimensionless param eter which measures the departure of the state, from its 

LTE population, obtained from the Saha equation.

^nZ 9 n l  f  \

N e N ^  2g+ \2 'K m kT  j
(5.76)
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where Çni =  (25 +  1 )(2 / +  1 ) and Xn is the ionisation energy of the state. Writing 5 (T ) = 

2.0706470 X 1 0 “ ^®T~2 , the Saha equation can be written,

N “,
=  ÿ„, S{T)  e*"

NeN+

Using equations (5.75) and (5.77) and writing

E  V n Y
y* —̂mtn  ̂ —/ i l

the equilibrium equation (5.74) can be rewritten,

(5.77)

(5.78)

/
9nlS{T)e^^hni

\

=  0 !n/ +  a„/

r»*=n+l Z*=/±l Z^=/±l
oo

+ E  9 „ ; ' S { T ) e ^ ’‘' b „ ; ' C „ ; , . , „ , +  (5.79)
n' = n±l n =rimin
Z'=/±l

Dividing by gniS{T)e^'^ and writing

OCnl

s„ (5 (r)ex » ’ s„,S(T)eX "’
(5.80)

then

^ n / +  Q' + Y 1  ^nZ;n'Z' + XI ^n/;n'^nn' +  ^nZ
Z =Z±1  n'=n±l n =rimin

Z'=Z±1\
= «nZ + «nZ

o o  2 êxp rpexp

■i" X  X  m^xp^nl'-^nl'\nl *i" X  /pexp ̂ nl'
n'=n+lZ'=Z±l Z'=Z±1

rpexp  o o  2 êxp

“!■ X  T̂ëxp̂n'Z'̂ n'Z'jnZ "i" X  m ^ x p ^ n 'l'^ n  -,nl^r»
nl •

(5.81)
n =n±l
Z'=Z±1

^ —*̂ mir nZ

and the value of the departure coefficient for the state can be obtained. Re-inserting 6„/ 

into (5.75), gives the true population which will include the effects of radiative cascade. 

The functions are only temperature dependent, so for each value of the temperature, 

the functions are calculated for all states and stored.
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5.6 Evaluation o f the A sym ptotic Sums

Equation (5.81) contains asymptotic sums over incoming transition probabilities and both 

incoming and outgoing collisional rates for which A n > 1 . Consider the asymptotic sum 

^ ? = n + i  This can be written,

1 roo

E  /("  ) = = /("  + 1) + /  /(»  X" (5.82)

Defining the function f { n )  such that,

/ ( n  ) =  h{nl' ;  nl) (5.83)

where h{nl ' \  nl) is an arbitrary transition probability, is a statistical weight and % is 

the ionisation energy. Using g^ni — 2 (2 /' +  1 )

OO roo
y '  f ( n )  = {2l' + l)e^’‘*'h{n + l , l \ n l ) +  I (5.84)

Putting  I  equal to the integral part,

I  =  2 (2 / +  1 ) /  h{n I ; nl)dn (5.85)
Vn+l

Transforming / ,  to be an integral over the energy variable e where

then

£ =  de = —~ ^ d n  and dn =  (5.86)
n  ̂ n ^  2

/  =  —(2 / '+  1 ) /  n^e^n'h{n f  ;nl)de (5.87)
dcn+l'£n+

Converting to the range - 1  to + 1 , i.e. putting

u =  —̂ ------1, then du =  —— de and de =  du (5.88)
Sn+l £n+l 2

Hence,
(2 /' +  1 ) ^ -17 =  — £n+i J  n^e^ri 'h{nl ' \nl)du  (5.89)

2

and is in a form suitable for evaluation using Gauss-Laguerre quadrature. The asymptotic 

sum is given by

f { n )  =  (2 / '+  l)e^"+^/i(n +  1 , / ' ; n/)
n n+ 1

+ /  n^e^n h{n f ' ,nl)du  (5.90)
2  7-1
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This form is used in the evaluation of radiative decays from states above NLIM onto a 

lower state. Since the main contribution will come from the first few states, the first ten 

are summed directly and the asymptotic sum evaluated for the rest.

Similarly Gauss-Laguerre quadrature is used for evaluating both outward and inward 

asymptotic collision integrals. In these cases the first fifty terms are evaluated directly 

and the remainder obtained by integration.

5.7 Solving th e Equilibrium Level Population Equations

The notation of (5.81) assumes tha t each state can be uniquely described by its principal 

quantum number and its to tal angular momentum. For states of 2 s^(^S) parents, this is 

true. However for states of other parents, ie. 2s2p(^P®,^P°) and 2 p^(^P, ^D,^S), such a 

representation would not be unique, since the to tal angular momentum of the state is not 

equal to the angular momentum of the added electron.

In order to solve the problem of the unique identification of states, the region of solution 

was divided into two sections. These were the upper or high state region, which used an 

indexing scheme based on the principal quantum number and to tal angular momentum of 

a state, and the low state region where a list of states in energy order was created, and a 

unique state index, based on this list, determined.

5 .7 .1  T h e  H ig h  S ta te  R eg io n

The advantage of an indexing scheme based on the principle quantum number and the 

to tal angular momentum is its ability to directly relate calculated quantities to  individual 

states. In this region only states with parents were considered. The approximations 

used were mainly hydrogenic or coulomb, and in the case of coulomb approximations, used 

values of quantum  defects extrapolated from values at the boundary of the two regions.

5 .7 .2  T h e  L ow  S ta te  R eg io n

In the low state region an energy ordered list was created for all states, up to the bound­

ary between the two regions, irrespective of their parent state. The input to the codes, 

generated to  solve the level population equations, specified the parent states and their 

experimental energies, the energies of the lowest states in the series and all available quan­

tum  defect data. Quantum defect data was extrapolated, where it was missing, in the 

region I < 4. For states L > 5, hydrogenic (degenerate) energies were used. Related to the
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energy ordered index, was a cross reference to the OP indexes for CII. This enabled OP 

data, or data  calculated using the OP suite of codes, such as weighted oscillator strengths 

to  be easily incorporated into the program, with only the minimum need for reformatting. 

Use was made of both the existing OP data and subsequently, data recalculated using the 

OP suite of programs.

5 .7 .3  T h e  B o u n d a r y  V alue: N M A X

NMAX was the chosen value of the principal quantum number, which divided the high 

and low state regions. Initially the value of NMAX was set at n =  10. All states higher in 

energy were taken to be representable by an nl indexing scheme, or neglected. However 

on testing, an anomaly was noted in the value of the departure coefficients for the 1 2 s 

and 13s states. This was traced to very large transition probabilities for these states to 

lower lying ones (n < 5). The approximation used for calculating transition probabili­

ties in this case, involved interpolation in below threshold photoionisation cross-sections 

(§5.2.4). The energy at which the interpolations in the appropriate cross-sections were 

being carried out, lay very close to the centre of a large resonance. This was subsequently 

identified as arising from the 2s2p3p state. This state had a far greater interaction 

through configuration mixing than was initially thought. A physically meaningful calcu­

lation would need to explicitly include this state. This was done by raising the boundary 

of the high/low state division to n = 15, This necessitated extending the photoionisation 

cross-section calculations for states in the region l l < n < 1 5 , T < 4  and hence generating 

new recombination coefficients. New bound energy levels and oscillator strengths were 

also calculated. In order to facilitate testing, the program was designed so tha t the value 

of NMAX could be changed, so tha t high state methods of solution could be used all the 

way to the ground state, or as low a value of NMAX as required and similarly the low state 

methods could be used up to as high a value of NMAX as required. This was useful, not 

only in testing the accuracy of the code against known results, but also as an independent 

check on the consistency of the values calculated in the two regions. Tests were carried 

out on He"  ̂ in order to fulfill these aims.

5 .7 .4  F ir s t  G u ess  H y d ro g e n ic  S o lu tio n s

The determination of the population of states for which n < N L I M ,  will depend in part 

upon the evaluation of radiative decays on to the states from states above N L I M ,  and
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also coUisional population and depopulation from and to states above N L I M .

In order to do this, some knowledge is required of the populations of the states above 

N L I M .  First guess solutions to states, N  < N L I M  and final solutions to states above 

N L I M  were made using hydrogenic 6„/ values. These were obtained by solving the level 

population problem for the hydrogenic case using separate codes, (Storey, 1 9 9 3 ) .  The 

codes are based on Hummer and Storey (1987), who gave definitive results for hydrogenic 

ions. All radiative and coUisional processes were included, giving hydrogenic 6„/ (departure 

coefficient) values at the appropriate temperature and density. For states up to a given 

principal quantum number, 6„/ values were obtained for each value of /, at th a t value of 

n. Above this and up to n =  500 the population was assumed to be fuUy coUisionaUy 

redistributed and 6„/ =  6 „. Above n = 500, was taken to be one. Hydrogenic 6„/ values 

wiU only exist for states of ^S parents. For other states, an initial value of 0  was assumed.

5 .7 .5  S o lu tio n s  in  th e  H igh  S ta te  R eg io n

The equilibrium level population equation (5.81) is solved in the high state region, for aU 

states from NLIM down to NMAX+1 . We define an n x n array, P  such tha t the diagonal 

elements are given by the sum of the total outgoing radiative and coUisional rates, i.e.
oo

P{l, l )  = ^  +  ^nZ ( 5 . 9 1 )

l ' = l ± l  n ' = n ± l l ' = l ± \  n=nTTiin

and the adjacent off-diagonal elements, P ( / , /  — 1 ) and P { l , l  +  1) are given by,

P{1, » -  1) =  - 1 , 0  and P((, ; +  1 ) =  +  1,1) (5.92)

Also, defining a one dimensional array Y of n elements, to be the sum of aU incoming 

radiative and coUisional rates to a state, the equiUbrium equation can be written,

& n / - P ( l j  0  — b n l - . i P ( l ,  I — 1) — b n l ^ l P { l , l  +  l )  =  ( 5 . 9 3 )

or in m atrix form

P b  =  Y  ( 5 . 9 4 )

This gives a band diagonal m atrix from which solutions for 6„/ in the high state region 

were obtained. The calculated values replaced the hydrogenic 6 „/ values in the first 

instance and then updated the values tha t were calculated in subsequent passes. These 

values were immediately used in the calculation of the next value of n. After solving for 

aU high states, the radiative rates to lower states were evaluated and stored for passing to 

the low state region routine.
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5.7.6 Solutions in the Low State Region

In the low state region, solutions for 6 /T, where I T  is the low state index, were obtained 

for all states simultaneously. The equilibrium equation is arranged in m atrix form, where 

P { I T , I T )  contains the sum of all outgoing rates and y ’(7T) the sum of all incoming rates, 

as in the high state case. Because of the nature of the indexing scheme, in the low state 

region however, it is not only the adjacent off diagonal terms which may be non-zero. The 

off diagonal terms are defined such that

P ( I T , J T )  =

r p G X p  r p C X p
J T  f~fAn=l -‘■JT  ^ A n > l  / c

The first term  will be zero if the energy of the state J T  is less than tha t of 7T, or A j t j t  

is not an allowed transition. The other three terms will be zero if |//j- — Ij t \ ^  1 or the 

conditions on An are not fulfilled.

The m atrix formed was inverted and a set of simultaneous equations formed which were 

then solved for B(IT). These were then substituted for the previous values and the process 

of solving the level population equation repeated, starting at the high state solutions for 

n = N L I M ,  and continuing until the required degree of convergence was reached.

5.8 Effective Recom bination Coefficients and th e Flux in 

a Line

Having determined the population of the state, the 6„/ values can be used to calculate 

effective recombination coefficients, useful for theoretical comparisons and for evaluating 

the effective flux in a given wavelength, which can be directly applied to  astrophysical 

plasmas as this is the quantity tha t is obtained from observations.

The effective recombination coefficient, o:®^(A), may be calculated for a given line of 

wavelength A, by the relation.

a 'J (A ) =  '  A . cm '^  s '*  (5.96)

where A \  is the transition probability and is the statistical weight of the ion. The 

effective flux in a line is then given by

F(A) = iVeiV+0 !®f(A)y erg cm“  ̂ s“  ̂ (5.97)
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5.9 R esults

Results and comparison with previous calculations are presented in this section. Tables 

of wavelengths axe given for all transitions for which probabilities have been calculated 

in the course of this work. Where the values of the principal quantum number are such 

th a t hydrogenic transition probabilities were used for high /, this value is also given for 

comparison. Tables of case A and case B effective recombination coefficients are also 

given, applicable to the planetary nebular density and tem perature range, for transitions 

between all states for which high accuracy is prescribed, (n < 8 ).

5 .9 .1  W a v e len g th s  (A) for T ra n sitio n s in  th e  Low  S ta te  R e g io n

Wavelengths for all low state allowed transitions are presented, up to and including tran ­

sitions to and from 1 = 3 states. Tables (5,2) to (5,5) give wavelengths arising from 

transitions between parent states. Tables (5,6) to (5.9) give wavelengths from tran ­

sitions involving states of 2s2p and 2p^ parentage. These are give in two forms 

for convenience. The first is sorted by the lower state and the second by wavelength. 

For states up to and including n = 7 the values are expected to be very accurate as the 

experimental energies from Moore (1970) were used. These wavelengths are given to two 

decimal places. Above n =  7, theoretically calculated energies from STGB are used which 

win be less accurate and so the values are only given to the nearest integer. It is assumed 

th a t the n =  8  series will be of high accuracy since the quantum defect will have changed 

little from the n = 7 transitions. Some care though, must be taken because their is con­

figuration interaction between the 2s2p3p state and the 2 s^8 d state. These values 

are also given to two decimal places. For p —> /  transitions where the quantum defects are 

small a high degree of accuracy may be assumed even though one or more states involved 

may use theoretically calculated energies. These tables are of use in the line identification 

in all regions of the spectrum. Wavelengths below 2000Â are given in vacuo. Wavelengths 

above 2 0 0 0 Â are air wavelengths.
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Table 5.2: Wavelengths (Â), for transitions up to and including L =  2 of  states with
parents, in the range n =  15 — 12.

n n
1 -» 1'

0-1 1-0 1 -2 2 -1
15 14 409355 265639 466827 257035
15 13 158313 145205 173347 128795
15 12 89053 71011 96704 78884
15 11 56858 48014 61671 52534
15 10 38433 33321 41795 36408
15 9 26645 23393 29177 25656
15 8 18583 16377 20862 18096
15 7 12807 11251 13845 12574
15 6 8649 7486 9482 8542
15 5 5191 4700 6201 5152
15 4 3121 2674 3773 3107
15 3 1592 1281 2037 1588
15 2 514 — — 514
14 13 310794 264658 375881 206613
14 12 122998 91124 138266 102537
14 11 69020 56437 76297 62069
14 10 43630 37171 48035 40746
14 9 29044 25228 32087 27737
14 8 19718 17255 22308 19107
14 7 13336 11659 14468 13054
14 6 8887 7665 9770 8761
14 5 5276 4770 6322 5231
14 4 3152 2697 3818 3136
14 3 1600 1286 2050 1596
14 2 515 --- — 515
13 12 199684 140839 297732 163240
13 11 87979 72227 108307 80100
13 10 50511 43424 59017 47811
13 9 31940 27960 36641 30839
13 8 2 1 0 1 2 18491 24419 20529
13 7 13916 1 2 2 1 0 15327 13703
13 6 9141 7899 10154 9048
13 5 5364 4859 6481 5332
13 4 3183 2725 3875 3172
13 3 1608 1292 2067 1605
13 2 516 — — 516
12 11 239765 111950 231463 126385
12 10 79351 55200 83115 61185
12 9 41471 32412 44685 35900
12 8 24754 20338 27747 22656
12 7 15464 12989 16575 14618
12 6 9784 8218 10687 9439
12 5 5579 4978 6694 5465
12 4 3258 2762 3951 3218
12 3 1627 1301 2088 1617
12 2 518 — — 517
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Table 5.3: Wavelengths (Â), for transitions up to and including X =  2 of states with
parents, in the range n =  11 — 3.

1 -^ r "  ■
n u 0-1 1-0 1-2 2 -1
11 10 170726 85051 176268 95515
11 9 57576 40826 62420 45494
11 8 29716 23359 33691 26134
11 7 17265 14159 18528 15992
11 6 10476 8671 11466 9993
11 5 5797 5141 6992 5647
11 4 3331 2811 4052 3280
11 3 1645 1311 2116 1632
11 2 520 — — 518
10 9 122177 62256 131768 70080
10 8 40868 29088 47059 32730
10 7 20518 16078 21958 18241
10 6 11591 9355 12694 10827
10 5 6123 5374 7430 5904
10 4 3436 2880 4196 3366
10 3 1670 1326 2154 1653
10 2 522 — — 520
9 8 85237 43730 102681 49491
9 7 27778 19730 29386 22485
9 6 13599 10484 14866 12193
9 5 6642 5728 8125 6288
9 4 3593 2978 4409 3487
9 3 1706 1347 2209 1682
9 2 526 — — 523
8 7 56546.20 29069.20 56349.60 32453.62
8 6 18108.81 12642.27 19613.81 14630.51
8 5 7561.31 6317.70 9363.70 6878.48
8 4 3846.32 3130.17 4749.75 3661.43
8 3 1761.12 1376.75 2291.73 1721.33
8 2 530.72 — — 527.05
7 6 36490.25 18237.69 37430.37 22696.89
7 5 9575.34 7461.73 12117.23 8258.37
7 4 4307.18 3387.51 5368.59 4018.88
7 3 1851.81 1424.33 2426.70 1796.43
7 2 538.67 — — 533.88
6 5 16740.40 10364.86 22227.17 11382.91
6 4 5334.17 3881.02 6723.54 4638.51
6 3 2018.23 1504.76 2669.94 1910.47
6 2 551.96 — — 543.52
5 4 9234.94 5536.12 13946.90 6258.82
5 3 2402.19 1701.98 3361.28 2137.74
5 2 577.18 — — 560.52
4 3 3920.11 2173.94 5890.37 2747.02
4 2 636.36 — --- 595.12
3 2 858.76 — --- 687.48
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Table 5.4: Wavelengths (Â), for transitions in the angular momentum range T =  2 — 4, of
states with parents, in the range ra =  15 — 12. Also included is the wavelength of the
hydrogenic / =  5 4 transition

n n 2-3 3-2 3-4 4-3 Hyd.
15 14 357924 329831 352101 338798 346360
15 13 156454 150184 155692 152686 154657
15 12 91513 89043 91419 90211 91106
15 11 59673 58463 59731 59116 59624
15 10 40938 40297 41031 40675 40998
15 9 28737 28439 28831 28607 28827
15 8 20282 20482 20347 20217 20372
15 7 14170 13677 14249 14139 14268
15 6 9687 9403 9746 9672 9761
15 5 6351 6167 6394 6345 6392
15 4 3887 3761 — 3885 —

15 3 — 2034 — — —

15 2
14 13 288402 266166 283970 273288 279426
14 12 124952 120061 124421 122028 123624
14 11 72287 70406 72254 71299 72023
14 10 46505 45632 46576 46094 46503
14 9 31373 30996 31463 31186 31444
14 8 21560 21776 21624 21472 21645
14 7 14783 14242 14864 14741 14881
14 6 9969 9666 10029 9950 10045
14 5 6471 6279 6515 6463 6512
14 4 3932 3802 — 3929 —

14 3 — 2046 — — —

14 2
13 12 228496 211358 225254 216826 221716
13 11 97971 94290 97634 95761 97033
13 10 55939 54595 55952 55212 55786
13 9 35401 34887 35479 35109 35430
13 8 23389 23627 23448 23261 23462
13 7 15620 15011 15703 15563 15718
13 6 10343 10015 10405 10318 10419
13 5 6627 6424 6672 6617 6667
13 4 3989 3855 — 3985 —

13 3 — 2061 — — —

13 2
12 11 177460 164749 175234 168721 172547
12 10 75163 72563 74980 73549 74541
12 9 42238 41445 42283 41723 42169
12 8 26190 26463 26239 25991 26239
12 7 16822 16108 16908 16739 16917
12 6 10856 10491 10920 10822 10933
12 5 6834 6617 6880 6820 6874
12 4 4063 3924 — 4058 —

12 3 — 2080 — — —

12 2
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Table 5.5: Wavelengths (Â), for transitions in the angular momentum range T = 2 — 4,
of states with parents, in the range n =  11 — 3. Also included is the wavelength of the
hydrogenic / =  5 4 transition

n n
1 - ^ 1'

2-3 3-2 3-4 4-3 Hyd.
11
11
11
11
11
11
11
11
11

10
9
8
7
6
5
4
3
2

134585
56176
30952
18666
11596
7120
4162

125780
54651
31290
17778
11175
6882
4015
2106

133223
56118
30978
18757
11663
7167

128313
55053
30608
18540
11547
7101
4156

131236
55808
30944
18756
11672
7159

10
10
10
10
10
10
10
10

9
8
7
6
5
4
3
2

99108
40655
21805
12735
7533
4300

94088
41171
20584
1 2 2 2 2
7266
4143
2140

98520
40632
21908
12808
7584

94929
39934
21595
12663
7508
4292

97100
40492
21883
12812
7572

9 8 70177 71848 70224 67898 69455
9 7 28157 26171 28350 27783 28250
9 6 14667 13996 14770 14565 14759
9 5 8170 7858 8232 8138 8213
9 4 4500 4329 — 4491 —
9
9

3
2

2189

8 7 45758.44 42189.85 48154.62 46442.59 47618.09
8 6 18342.53 17562.19 18798.08 18451.48 18741.81
8 5 9196.71 8869.06 9348.09 9224.02 9314.19
8 4 4795.27 4619.08 — 4802.68 —
8 3 — 2260.86 — — —
8 2 — — — — —
7 6 33083.30 28030.37 31316.54 30154.38 30905.97
7 5 11842.29 10930.58 11667.42 11444.39 11579.09
7 4 5427.49 5122.21 — 5342.36 —
7
7

3
2

2375.06

6 5 19529.37 17000.39 18852.11 18198.86 18516.37
6 4 6622.14 6151.45 — 6461.94 —
6 3 — 2574.84 — — —
6 2 — — — — —
5 4 10504.49 9229.63 — 9903.43 —
5
5

3
2

2992.63

4 3 — 4267.18 — — —
4 2 — — — — —
3 2 — — — — —
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Table 5.6: Wavelengths (Â) for transitions including states with 2s2p and 2p  ̂ parents, in
the region n <  15, X < 4, sorted by lower state.

Transition
Wavelength

Â Transition
Wavelength

A
2s-̂ 8s — 2s2p3s :P" 9274.64 2s:l4p  :pu — 2s2p3p :D 17360

2s^8d — 2s2p3s :P ° 8267.91 2s:l4f:]po — 2s2p3p :D 17036
28:98 — 2s2p3s :po 7928 2g:l5p :pO — 2s2p3p :D 16471

2s:9d 2 0 — 2s2p3s :po 7429 2 s:l5 f  :P ° — 2s2p3p :D 16233
2s:lOs — 2s2p3s :po 7201 2s: 8p 2po — 2s2p3p :D 160439.7

2s:lOd :D — 2s2p3s :P ° 6899 2s:3p :P ° — 2s2p: :g 2840.90
2s : l l s — 2s2p3s :P ° 6754 2s:4p :p ° — 2s2p: :S 1515.60

2s : l i d  :D — 2s2p3s :po 6550 2p3 2pO — 2s2p: :S 1384.12
2s: 12s 2g — 2s2p3s :P ° 6460 2s:5p :pO — 2s2p: :g 1269.84

2s : l 2d :D — 2s2p3s :P ° 6307 2s: 6p 2po — 2s2p: :g 1156.72
2s:l3 s  :g — 2s2p3s :P ° 6173 2s:7p :p ° — 2s2p: :g 1108.60

2s: 13d :D — 2s2p3s :P ° 6131 2s :8p :p ° — 2s2p: :g 1080
2s:14s 2g — 2s2p3s :P ° 6056 2s:9p :pO — 2s2p: :g 1061

2s:l4d  :D — 2s2p3s :P ° 5997 2s:lOp :po — 2s2p: :g 1048
2s:15s 2 g — 2s2p3s :po 5945 2s : l i p  2po — 2s2p: :g 1039

2s:l5d  :D — 2s2p3s :P ° 5894 2s : l 2p :p ° — 2s2p: :g 1032
2s :6s 2g — 2s2p3s :P ° 28324.89 2s:l3 p  :p ° — 2s2p: :g 1027

2s:6d :D — 2s2p3s :p ° 15767.93 2s:l4 p  :p ° — 2s2p: :g 1022
2s:5d :D — 2s2p3s :pO 131421.8 2s:l5p  :po — 2s2p: :g 1020
2s:7s :g — 2s2p3s :P ° 12499.42 2s: 3p 2po — 2s2p: :p 4753.40

2s:?d :D — 2s2p3s :P ° 10345.75 2p3 :D ° — 2s2p: :p 2511.06
2s:l3p  :pO — 2s2p3p :S 402785 2s: 4p 2p 0 — 2s2p: :p 1929.67
2s:l4p  :pO — 2s2p3p :S 157321 2p3 2pO — 2s2p: :p 1721.46
2s:l5p  :pO — 2s2p3p :S 105655 2s: 5p 2po — 2s2p: :p 1548.18

2s :6p :p() — 2s2p3p :p 99125.34 2s :6p 2p 0 — 2s2p: :p 1383.26
2s : l 2p :pO — 2s2p3p :p 8735 2s :8p :P ° — 2s2p: :p 1274.34
2s:l3p  :P ° — 2s2p3p :p 8376 2s: 9p :p ° — 2s2p: :p 1248
2s:l4p  :pO — 2s2p3p :p 8112.61 2s:lOp :p ° — 2s2p: :p 1231
2s:l5p  :pO — 2s2p3p :P 7913 2s : l i p  2po — 2s2p: :p 1218

2s:?p :P ° — 2s2p3p :p 20997.24 2s : l 2p :p ° — 2s2p: :P 1209
2s :8p :pO — 2s2p3p :P 13909.46 2s:l3p  :P ° — 2s2p: :p 1202
2s :9p 2p 0 — 2s2p3p :p 11341 2s:l4p  :pO — 2s2p: :P 1196

2s:lOp :po — 2s2p3p :p 10031 2s:l5p  :P ° — 2s2p: :p 1192
2s :8f  :p® — 2s2p3p :D 82041.88 2s:5p :pO — 2s2p: :D 996.88

2s:9p :pO — 2s2p3p :D 44411 2s:5f :p ° — 2s2p: :D 961.76
2s:g f :pO — 2s2p3p :D 37459 2s :8p 2p 0 — 2s2p: :D 875.71

2s:lOp :po — 2s2p3p :D 29388 2s :6p :pO — 2s2p: :D 925.81
2s:lOf:]po — 2s2p3p :D 26978 2s :6f  :p ° — 2s2p: :D 914.11

2s : l ip  :po — 2s2p3p :D 23552 2s:7p :pO — 2s2p: :D 894.72
2s : i i f  :po — 2s2p3p :D 22353 2s :8f:]po — 2s2p: :D 871.17

2s : l 2p :po — 2s2p3p :D 20484 2s:7f :p ° — 2s2p: :D 887.61
2s : l 2f:]F 0 — 2s2p3p :D 19776 2s: 9p 2po — 2s2p: :D 863

2s:l3p  :po — 2s2p3p :D 18611 2s: 9f  2pO — 2s2p: :D 860
2s:l3f:]po — 2s2p3p :D 18148 2s:lOp :pO — 2s2p: :D 855
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Table 5.7: Wavelengths (Â) for transitions including states with 2s2p and 2p  ̂ parents, in
the region n < 15, X < 4, sorted by lower state.

Transition
Wavelength

A Transition
Wavelength

A
2s‘̂ 10f^F'' — 2s2p  ̂ m 853 2s2p3p 2p — 2s22p 2pu 549.77

2s2l l p  2pO — 2s2p2 2d 849 2s2p2 2d — 2s22p 2po 1335.31
2s^ llf — 2s2p2 2d 847 2s2p2 2g — 2s22p 2pO 1036.79

2s^ l2p 2po — 2s2p2 2d 844 2s2p3p 2g — 2s2l 2p 2p 0 411537
2s^ l2f  ^F° — 2s2p2 2d 843 2s2p3p 2g — 2s2l l p  2pO 113787

2s^l3p 2po — 2s2p2 2d 841 2s2p3p 2g — 2s2l 0p 2pO 58073
2s^l3f ^F° — 2s2p2 2d 840 2s26s 2g — 2p3 2pO 8014.54

2s^l4p 2po — 2s2p2 2d 838 2s2p3p 2p — 2p3 2pO 7576.94
2s2l4f 2pO — 2s2p2 2d 837 2s26d 2d — 2p3 2pO 6540.71
2s2l5f — 2s2p2 2d 835 2s27s 2g — 2p3 2pO 5900.66

2s2l5p 2pO — 2s2p2 2d 836 2s27d 2D — 2p3 2pO 5372.67
2s^3p 2po — 2s2p2 2d 1762.04 2s28s 2 g — 2p3 2pO 5068.67

2p3 — 2s2p2 2d 1323.93 2s2p3p 2d — 2p3 2pO 5059.68
2s^4p 2po — 2s2p2 2d 1142.30 2s28d 2d — 2p3 2pO 4752.42

2p3 2pO — 2s2p2 2d 1065.97 2s29s 2g — 2p3 2pO 4638
2s^4f ^F° — 2s2p2 2d 1063.84 2s29d 2d — 2p3 2pO 4463

2s2p3p — 2s29p 2pO 34806 2s210s 2g — 2p3 2pO 4379
2s2p3p — 2s28p 2pO 22214.96 2s2lOd 2d — 2p3 2pO 4266
2s2p3p — 2s^7p 2pO 55446.75 2s2i 1s 2g — 2p3 2pO 4210
2s2p3p — 2s27p 2p 0 14433.57 2s2l l d  2d — 2p3 2pO 4130
2s2p3p — 2s27f 2pO 110180.6 2s212s 2g — 2p3 2pO 4094
2s2p3p — 2s26p 2pO 17994.54 2s2l 2d 2d — 2p3 2pO 4032
2s2p3p — 2s26p 2p 0 9361.53 2s2p3p 2g — 2p3 2pO 4017.84
2s2p3p — 2s26f  2p° 23957.71 2s213s 2g — 2p3 2pO 3977
2s2p3s 2po — 2s25s 2g 22789.07 2s2 l3d 2D — 2p3 2pO 3959
2s2p3p — 2s25p 2pO 7541.32 2s214s 2g — 2p3 2pO 3927
2s2p3p — 2s25p 2pO 5439.19 2s2l4d 2d — 2p3 2pO 3903
2s2p3p ^P — 2s25p 2pO 14938.32 2s215s 2g — 2p3 2pO 3881
2s2p3p — 2s25f 2p° 10421.37 2s2l5d 2d — 2p3 2pO 3859

2p3 2pO — 2s24s 2g 8650.96 2s25s 2g — 2p3 2pO 21935.78
2s2p3s 2po — 2s24s 2g 4876.54 2s25d 2d — 2p3 2pO 10301.05
2s2p3p — 2s24p 2pO 3209.36 2s24d 2d — 2p3 2 DO 5676.29
2s2p3p — 2s24p 2po 5136.72 2s25d 2d — 2pO 2d® 3572.52
2s2p3p — 2s24p 2p 0 3841.14 2s2p3p 2p — 2p  ̂ 21)0 3176.44
2s2p3p — 2s24f 2pO 5108.28 2s26d 2d — 2p3 2D° 2978.60

2p3 2pO — 2s24d 2d 150076.8 2s27d 2d — 2p® 2j)0 2710.26
2s2p3s 2p0 — 2s24d 2d 10402.40 2s2p3p 2d — 2p3 21)0 2628.24

2p3 2pO — 2s23s 2g 1913.76 2s28d 2d — 2p3 2d ° 2542.83
2s2p3s 2po — 2s23s 2 s 1634.06 2s29d 2d — 2p3 2d ° 2457
2s2p3p — 2s23p 2p 0 1614.45 2s2l 0d 2d — 2pO 2d ° 2397
2s2p3p — 2s23p 2pO 1989.94 2s2l l d  2d — 2p3 2dO 2353
2s2p3p — 2s23p 2p 0 1760.03 2s2l 2d 2d — 2p3 2d ° 2321

2 p 3  2p 0 — 2s23d 2d 4301.70 2s2l3d 2d — 2p3 21)0 2297
2p3 — 2s23d 2d 20148.85 2s2l4d 2d — 2p3 2])0 2278

2s2p3s 2po — 2s23d 2d 3106.19 2s2 l5d 2D — 2p3 2 DO 2263
2s2p2 2p — 2s22p 2pO 904.08
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Table 5.8: Wavelengths (Â) for transitions including states with 2s2p and 2p  ̂ parents, in
the region n < 15, T < 4, sorted by wavelength.

Transition
Wavelength

Â Transition
Wavelength

Â
2s2p3p — 2s‘̂ 2p 2p" 549.77 2s25p '̂ P" — 2s2p2 2g 1269.84
2s^l5f — 2s2p2 2d 835 2s28p 2p 0 — 2s2p2 2p 1274.34

2s^l5p 2pO — 2s2p2 2d 836 2s27p 2pO — 2s2p2 2p 1315.00
2s^l4f — 2s2p2 2d 837 2p3 2D0 — 2s2p2 2d 1323.93

2s^l4p 2po — 2s2p2 2d 838 2s2p2 2d — 2s22p 2pO 1335.31
2s^l3f ^F° — 2s2p2 2d 840 2s26p 2pO — 2s2p2 2p 1383.26

2s^l3p 2po — 2s2p2 2d 841 2p3 2pO — 2s2p2 2g 1384.12
2s^ l2f  ^F° — 2s2p2 2d 843 2s24p 2pO — 2s2p2 2g 1515.60

2s^ l2p 2pO — 2s2p2 2d 844 2s25p 2pO — 2s2p2 2p 1548.18
28^1 If  2f ° — 2s2p2 2d 847 2s2p3p — 2s23p 2p 0 1614.45

2s^ llp  2pO — 2s2p2 2d 849 2s2p38 2pO — 2s238 2g 1634.06
2s^lOf ^F° — 2s2p2 2d 853 2p3 2p0 — 2s2p2 2p 1721.46

2s^lOp 2pO — 2s2p2 2d 855 2s2p3p — 2s23p 2pO 1760.03
28^9f 2f ° — 2s2p2 2d 860 2s^3p 2pO — 2s2p2 2d 1762.04

2s^9p 2pO — 2s2p2 2d 863 2p3 2pO — 2s238 2g 1913.76
2s^8f  2F° — 2s2p2 2d 871.17 2s24p 2pO — 2s2p2 2p 1929.67

2s^8p 2pO — 2s2p2 2d 875.71 2s2p3p ^P — 2s23p 2p 0 1989.94
2s^7f 2F° — 2s2p2 2d 887.61 2s2l5d 2d — 2p3 2 DO 2263

2s^7p 2po — 2s2p2 2d 894.72 2s2l4d 2d — 2p3 2 DO 2278
2s2p2 2p — 2s22p 2p 0 904.08 2s2l3d 2d — 2p^ 2p)0 2297
2s^6f  ^F° — 2s2p2 2d 914.11 2s2l 2d 2D — 2p3 2j)0 2321

2s^6p 2po — 2s2p2 2d 925.81 2s2l l d  2d — 2p3 2j)0 2353
2s^5f ^F° — 2s2p2 2d 961.76 2s2l 0d 2d — 2p3 21)0 2397

2s^5p 2po — 2s2p2 2d 996.88 2s29d 2d — 2p3 2d ° 2457
2s^l5p 2pO — 2s2p2 2g 1020 2p3 2 DO — 2s2p2 2p 2511.06
2s^l4p 2pO — 2s2p2 2g 1023 2s28d 2d — 2p3 21)0 2542.83
28^13p 2po — 2s2p2 2g 1027 2s2p3p 2d — 2p  ̂ 21)0 2628.24
2s^ l2p 2pO — 2s2p2 2g 1032 2s27d 2d — 2p3 2d« 2710.26

2s2p2 2s — 2s22p 2pO 1036.79 2s23p 2pO — 2s2p2 2g 2840.90
28^l i p  2pO — 2s2p2 2g 1039 2s26d 2d — 2p3 2j)0 2978.60
2s^lOp 2pO — 2s2p2 2g 1048 2s2p3s 2pO — 2s23d 2d 3106.19

2s29p 2pO — 2s2p2 2g 1061 2s2p3p 2p — 2p3 21)0 3176.44
2s^4f 2p° — 2s2p2 2d 1063.84 2s2p3p 2g — 2s24p 2p 0 3209.36

2p3 2pO — 2s2p2 2d 1065.97 2s25d 2d — 2p3 2 DO 3572.52
2s28p 2pO — 2s2p2 2g 1080 2s2p3p 2d — 2s24p 2pO 3841.14
2s^7p 2pO — 2s2p2 2g 1108.60 2s2l5d 2d — 2p3 2pO 3859
2s^4p 2pO — 2s2p2 2d 1142.30 2s2158 2g — 2p3 2pO 3881
28  ̂6p 2pO — 2s2p2 2g 1156.72 2s2l4d 2d — 2p3 2pO 3903

2s2l5p 2p 0 — 2s2p2 2p 1192 2s214s 2g — 2p3 2pO 3927
2s^l4p 2pO — 2s2p2 2p 1196 2s2l3d 2d — 2p3 2pO 3959
2s^l3p 2po — 2s2p2 2p 1202 2s2138 2g — 2p3 2pO 3977
2s^ l2p 2po — 2s2p2 2p 1209 2s2p3p 2g — 2p3 2pO 4017.84
2s2l l p  2pO — 2s2p2 2p 1218 2s2l 2d 2d — 2p3 2pO 4032
2s^lOp 2pO — 2s2p2 2p 1231 2s212s 2g — 2p3 2pO 4094

2s^9p 2pO — 2s2p2 2p 1248 2s2l l d  2d — 2p3 2pO 4130
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Table 5.9: Wavelengths (Â) for transitions including states with 2s2p and 2p  ̂ parents, in
the region n <  15, T < 4, sorted by wavelength

Transition
Wavelength

A Transition
Wavelength

A
2s^lls — 2p3 jpu 4210 2s'27d 2D — 2s2p3s 2po 10345.75

2s^lOd 2d — 2p3 2pO 4266 2s2p3s 2pO — 2s24d 2d 10402.40
2p3 2pO — 2s23d 2d 4301.70 2s2p3p 2d — 2s25f 2pO 10421.37

2s210s 2g — 2p3 2pO 4379 2s2gp 2pO — 2s2p3p 2p 11341
2s2gd 2d —

2p3 2pO 4463 2s27s 2 g — 2s2p3s 2pO 12499.42
2s29s 2g — 2p3 2pO 4638 2s28p 2pO — 2s2p3p 2p 13909.46

2s28d 2d — 2p3 2pO 4752.42 2s2p3p 2g — 2s27p 2pO 14433.57
2s23p 2po — 2s2p2 2p 4753.40 2s2p3p 2p — 2s25p 2pO 14938.32

2s2p3s 2pO — 2s24s 2g 4876.54 2s26d 2d — 2s2p3s 2pO 15767.93
2s2p3p 2d — 2p3 2pO 5059.68 2s2l5f 2p° — 2s2p3p 2d 16233

2s28s 2g — 2p3 2pO 5068.67 2s2l5p 2po — 2s2p3p 2d 16471
2s2p3p 2d — 2s24f 2p° 5108.28 2s2l4f 2pO — 2s2p3p 2d 17036
2s2p3p 2p — 2s24p 2p0 5136.72 2s2l4p 2po — 2s2p3p 2d 17360

2s2?d 2d — 2p3 2pO 5372.67 2s2p3p 2d — 2s26p 2po 17994.54
2s2p3p 2g — 2s25p 2p0 5439.19 2s2l3f 2pO — 2s2p3p 2d 18148
2s24d 2d — 2p3 2d ° 5676.29 2s2l3p 2pO — 2s2p3p 2d 18611

2s2l5d 2d — 2s2p3s 2po 5894 2s2l2f 2pO — 2s2p3p 2d 19776
2s2Ts 2g — 2p3 2pO 5900.66 2p3 2 DO — 2s23d 2d 20148.85

2s215s 2g — 2s2p3s 2pO 5945 2s2l2p 2pO — 2s2p3p 2d 20484
2s2l4d 2d — 2s2p3s 2pO 5997 2s27p 2pO — 2s2p3p 2p 20997.24
2s214s 2g — 2s2p3s 2p0 6056 2s25s 2g — 2p3 2pO 21935.78

2s2l3d 2d — 2s2p3s 2po 6131 2s2p3p 2g — 2s2 8p 2pO 22214.96
2s213s 2g — 2s2p3s 2pO 6173 2 s2 llf 2pO — 2s2p3p 2d 22353

2s2l2d 2d — 2s2p3s 2p0 6307 2s2p3s 2pO — 2s25s 2g 22789.07
2s212s 2g — 2s2p3s 2po 6460 2s2llp  2pO — 2s2p3p 2d 23552
2s26d 2d — 2p3 2pO 6540.71 2s2p3p 2d — 2s26f 2pO 23957.71

2s2lld  2d — 2s2p3s 2p0 6550 2s2lOf 2p° — 2s2p3p 2d 26978
2s211s 2g — 2s2p3s 2po 6754 2s26s 2g — 2s2p3s 2pO 28324.89

2s2l0d 2d — 2s2p3s 2po 6899 2s2l0p 2pO — 2s2p3p 2d 29388
2s210s 2g — 2s2p3s 2po 7201 2s2p3p 2g — 2s29p 2pO 34806
2s2gd 2d — 2s2p3s 2po 7429 2s2gf 2p° — 2s2p3p 2d 37459

2s2p3p 2d — 2s25p 2po 7541.32 2s2gp 2pO — 2s2p3p 2d 44411
2s2p3p 2p — 2p3 2p0 7576.94 2s2p3p 2d — 2s27p 2po 55446.75

2s2l5p 2po — 2s2p3p 2p 7913 2s2p3p 2g — 2s2l0p 2po 58073
2s29s 2g — 2s2p3s 2pO 7928 2s28f 2f ® — 2s2p3p 2d 82041.88
2s26s 2g — 2p3 2pO 8014.54 2s26p 2pO — 2s2p3p 2p 99125.34

2g2l4p 2pO — 2s2p3p 2p 8112.61 2s2l5p 2pO — 2s2p3p 2g 105655
2s28d 2d — 2s2p3s 2po 8267.91 2s2p3p 2d — 2s27f 2p° 110180.6

2s2l3p 2p0 — 2s2p3p 2p 8376 2s2p3p 2g — 2s2llp  2pO 113787
2p3 2pO — 2s24s 2g 8650.96 2s25d 2d — 2s2p3s 2pO 131421.8

2s2l2p 2po — 2s2p3p 2p 8735 2p3 2pO — 2s24d 2d 150076.8
2s2llp  2pO — 2s2p3p 2p 9249 2s2l4p 2pO — 2s2p3p 2g 157321

2s28s 2g — 2s2p3s 2po 9274.64 2s28p 2pO — 2s2p3p 2d 160439.7
2s2p3p 2g — 2s26p 2p0 9361.53 2s2l3p 2pO — 2s2p3p 2 g 402785

2s2l0p 2po — 2s2p3p 2p 10031 2s2p3p 2g — 2s2l2p 2pO 411537
2s25d 2d — 2p3 2pO 10301.05
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5 .9 .2  E ffec tiv e  R e co m b in a tio n  C oeffic ien ts  a t N e b u la r  T em p era tu re s  and  

D e n s ity

Effective recombination coefficients a®^(A) are presented for states, 7 1 , 7 1  < S and /, l' < 5. 

Calculations were performed at the standard nebular density of lO'* cm“  ̂ and at temper­

atures ranging from 5000 to 15000 K. The values are tabulated as multiples of 10^^, and 

only transitions where the coefficients are larger than 10” ®̂ at some value of the tem­

perature are included. The unified treatm ent of dielectronic and radiative recombination 

coefficients leads to highly accurate effective recombination coefficients, when combined 

with transition probabilities that are of the same high order. The application of the CII 

recombination spectrum can be used to investigate planetary nebulae and other astro- 

physical pleismas in a similar fashion to the application of the work on the recombination 

spectrum of Oil (Storey, 1994) to NGC 7009 (Liu et a i, in press). Both case A and case 

B calculations are given. In case B, transitions to the ground state are assumed to  be 

optically thick and are not evaluated. The decay to the ground state is however included 

in the lifetime of the state, passed to routines using the impact param eter method to 

calculate angular momentum and energy changing collisions where, it is used as one of the 

cut-offs.

5 .9 .3  T h e  D ie le c tr o n ic  C o m p o n en t o f  th e  T ota l R e c o m b in a tio n  C oeffi­

c ien t to  a  S ta te

Storey (1981) calculated dielectronic recombination coefficients for recombination to a 

variety of ions including CII at nebular temperatures. It has been previously noted tha t for 

low lying resonance states the effective dielectronic recombination coefficients obtained are 

substantially larger than the corresponding radiative recombination coefficients, calculated 

neglecting resonances. Comparison is made here with the results of Storey (1981) for which 

the dielectronic recombination rate is expected to be much larger than the radiative one.
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Table 5.10: Case A: Effective recombination coefficients (x  10
transitions, n, n < 8 ,  at density of lO'̂  cm“^

12 cm^s )̂ for low state

Wavelength Temperature (K)
Transition Â 5000 7500 10000 12500 15000

2s2p3p — 2s22p 2po 516.58 0.00098 0.00106 0.00106 0.00106 0.00108
2s^8d 2d — 2s22p 2pO 527.05 0.00465 0.00367 0.00310 0.00273 0.00251

2s2p3p 2d — 2s22p 2pO 530.62 0.05718 0.04775 0.04173 0.03800 0.03554
2s27d 2d — 2s22p 2p0 533.88 0.04168 0.03283 0.02745 0.02388 0.02158
2s26d 2d — 2g22p 2pO 543.52 0.06331 0.04902 0.04051 0.03486 0.03118

2s2p3p 2p — 2g22p 2pO 549.77 0.00502 0.00871 0.01103 0.01220 0.01267
2s26s 2s — 2s22p 2p0 551.96 0.00135 0.00120 0.00110 0.00104 0.00101

2s25d 2d — 2g22p 2p0 560.52 0.11745 0.08986 0.07364 0.06298 0.05608
2s25s 2g — 2g22p 2p0 577.18 0.00244 0.00216 0.00198 0.00189 0.00192

2s24d 2d — 2s22p 2p0 595.12 0.26958 0.20056 0.16103 0.13588 0.12041
2s24s 2g — 2s22p 2pO 636.36 0.00913 0.00789 0.00721 0.00716 0.00782

2s23d 2d — 2s22p 2pO 687.48 1.00383 0.69551 0.53483 0.44417 0.39625
2s23s 2g — 2s22p 2pO 858.76 0.23532 0.23648 0.24950 0.26197 0.26987

2s2Sf 2p° — 2s2p2 2d 871.17 0.00540 0.00395 0.00312 0.00259 0.00225
2s2?f 2p° — 2s2p2 2d 887.61 0.00801 0.00580 0.00455 0.00376 0.00326
2s2p2 2p — 2s22p 2pO 904.08 0.03491 0.04513 0.05823 0.06991 0.07946
2s26f 2pO — 2s2p2 2d 914.11 0.01224 0.00874 0.00679 0.00556 0.00480
2s25f 2p° — 2s2p2 2d 961.76 0.02037 0.01417 0.01081 0.00873 0.00744

2s2p3s 2pO — 2s2p2 2d 973.19 0.00214 0.00178 0.00163 0.00155 0.00152
2s25p 2pO — 2s2p2 2d 996.88 0.00576 0.00492 0.00451 0.00429 0.00419

2s2p2 2g — 2s22p 2pO 1036.79 0.86321 0.81909 0.73955 0.67173 0.61785
2s24f 2p° — 2s2p2 2d 1063.84 0.03659 0.02405 0.01765 0.01387 0.01155

2p3 2p0 — 2s2p2 2d 1065.97 0.03400 0.02748 0.02387 0.02176 0.02056
2s24p 2p0 — 2s2p2 2d 1142.30 0.04079 0.03402 0.03014 0.02763 0.02597
2s26p 2pO — 2s2p2 2g 1156.72 0.00402 0.00338 0.00301 0.00277 0.00260

2s2p3s 2pO — 2s2p2 2g 1231.64 0.02127 0.01773 0.01619 0.01546 0.01509
2s25p 2p0 — 2s2p2 2g 1269.84 0.00456 0.00390 0.00357 0.00340 0.00331

2p3 2D° — 2s2p2 2d 1323.93 0.00315 0.00328 0.00386 0.00458 0.00532
2s2p2 2d — 2s22p 2p0 1335.31 7.14816 5.40682 4.23927 3.47729 2.95944

2s28p 2pO — 2s23s 2g 1376.75 0.00228 0.00192 0.00171 0.00157 0.00147
2s27p 2pO — 2s23s 2g 1424.33 0.00333 0.00281 0.00251 0.00231 0.00218

2s2p3s 2pO — 2s2p2 2p 1491.77 0.00307 0.00256 0.00233 0.00223 0.00218
2s26p 2pO — 2s23s 2g 1504.76 0.00509 0.00428 0.00382 0.00351 0.00330
2s25p 2pO — 2s2p2 2p 1548.18 0.00429 0.00366 0.00336 0.00319 0.00312

2p3 2pO — 2s2p2 2p 1721.46 0.00697 0.00563 0.00489 0.00446 0.00422
2s2p3p 2d — 2s23p 2p0 1760.03 0.00439 0.00367 0.00320 0.00292 0.00273
2s23p 2p0 — 2s2p2 2d 1762.04 0.09225 0.07750 0.07312 0.07408 0.07731
2s27d 2d — 2s23p 2p0 1796.43 0.00316 0.00249 0.00208 0.00181 0.00164
2s26d 2d — 2s23p 2p0 1910.47 0.00450 0.00348 0.00288 0.00248 0.00221

2s24p 2pO — 2s2p2 2p 1929.67 0.00302 0.00252 0.00223 0.00205 0.00193
2s25d 2d — 2s23p 2p0 2137.74 0.00724 0.00554 0.00454 0.00388 0.00346

2s24p 2p® — 2s23s 2g 2173.94 0.00569 0.00474 0.00420 0.00385 0.00362
2g28f 2pO — 2s23d 2d 2260.86 0.01409 0.01031 0.00814 0.00675 0.00587

2s28p 2p0 — 2s23d 2d 2291.73 0.00114 0.00096 0.00086 0.00079 0.00074
2s27f 2p0 — 2s23d 2d 2375.06 0.02503 0.01812 0.01422 0.01174 0.01020

2s25s 2g — 2s23p 2p0 2402.19 0.00133 0.00117 0.00108 0.00103 0.00104
2g27p 2p0 — 2s23d 2d 2426.70 0.00181 0.00153 0.00137 0.00126 0.00118
2g28d 2d — 2p3 21)0 2542.83 0.00198 0.00156 0.00132 0.00116 0.00107
2s26f 2pO — 2s23d 2d 2574.84 0.05007 0.03575 0.02778 0.02276 0.01963

2s26p 2p0 — 2s23d 2d 2669.94 0.00314 0.00264 0.00236 0.00217 0.00204
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Table 5.11: Case A: Effective recombination coefficients (x  10̂  ̂ cm^s ^
transitions, n, n < 8 ,  at density of 10  ̂ cm“^

) for low state

Wavelength Temperature (K)
Transition Â 5000 7500 10000 12500 15000

2s^4d m — 2s23p 2po 2747.02 0.01068 0.00794 0.00638 0.00538 0.00477
2s^3p — 2s2p2 2s 2840.90 0.07853 0.06597 0.06224 0.06306 0.06581
2s^5f — 2s23d 2d 2992.63 0.12968 0.09016 0.06878 0.05556 0.04736

2s^5p 2pO — 2s23d 2d 3361.28 0.00103 0.00088 0.00080 0.00076 0.00074
2s2p3p — 2g24p 2po 3841.14 0.00236 0.00197 0.00172 0.00157 0.00147

2s^4s — 2s23p 2pO 3920.11 0.00572 0.00494 0.00452 0.00449 0.00490
2s2p3p —

2p3 2pO 4017.84 0.00115 0.00124 0.00124 0.00124 0.00126
2s^4f — 2s23d 2d 4267.18 0.56548 0.37157 0.27274 0.21427 0.17854
2s^8f — 2s24d 2d 4619.08 0.00920 0.00672 0.00531 0.00440 0.00383

28^8p 2pO — 2g24d 2d 4749.75 0.00101 0.00085 0.00075 0.00069 0.00065
2s^8d — 2p3 2pO 4752.42 0.01778 0.01404 0.01184 0.01044 0.00959
2s28g 2Q — 2s24f 2pO 4802.68 0.01898 0.01298 0.00975 0.00776 0.00650

2s2p3p —
2p3 2pO 5059.68 0.00338 0.00282 0.00247 0.00225 0.00210

2s^7f 2F° — 2s24d 2d 5122.21 0.01582 0.01145 0.00899 0.00742 0.00645
2s27g 2g — 2s24f 2p° 5342.36 0.03656 0.02466 0.01836 0.01449 0.01196

2s^7p 2po — 2g24d 2d 5368.59 0.00168 0.00142 0.00127 0.00116 0.00110
2s^4p 2po — 2s23d 2d 5890.37 0.00853 0.00711 0.00630 0.00578 0.00543
2s^6f ^F° — 2s24d 2d 6151.45 0.02994 0.02137 0.01661 0.01361 0.01174
2s^6g 2q — 2s24f 2p° 6461.94 0.08884 0.05854 0.04290 0.03348 0.02744

2s^3p 2pO — 2s23s 2g 6579.50 0.07824 0.06573 0.06201 0.06282 0.06557
2s^6p 2po — 2g24d 2d 6723.54 0.00325 0.00273 0.00244 0.00224 0.00210
2s^3d — 2s23p 2pO 7234.73 0.01484 0.01029 0.00791 0.00657 0.00586
2s^8d 2d — 2s2p3s 2pO 8267.91 0.00635 0.00502 0.00423 0.00373 0.00343
2g28f 2pO — 2s25d 2d 8869.06 0.00512 0.00375 0.00296 0.00245 0.00213
2s28g 2g — 2s25f 2p° 9224.02 0.01621 0.01108 0.00833 0.00663 0.00555
2s25f 2F° — 2s24d 2d 9229.63 0.06759 0.04700 0.03585 0.02896 0.02469

2s28h 2h ° — 2s25g 2g 9314.19 0.02215 0.01428 0.01029 0.00790 0.00634
2s25g 2G — 2s24f 2pO 9903.43 0.34394 0.21698 0.15453 0.11824 0.09558
2s27f 2pO

— 2s25d 2d 10930.58 0.00850 0.00616 0.00483 0.00399 0.00346
2s27g 2G — 2s25f 2p° 11444.39 0.03047 0.02055 0.01530 0.01208 0.00997

2s27h 2H° — 2s25g 2g 11579.09 0.05329 0.03367 0.02395 0.01823 0.01452
2s27p 2po — 2g25d 2d 12117.23 0.00146 0.00123 0.00110 0.00101 0.00095
2s26f 2F° — 2s25d 2d 17000.39 0.01446 0.01032 0.00802 0.00657 0.00567
2s28f 2f ° — 2s26d 2d 17562.19 0.00290 0.00212 0.00168 0.00139 0.00121
2s24d 2d — 2s24p 2po 17846.51 0.00230 0.00171 0.00137 0.00116 0.00103
2s26g 2G — 2s25f 2p° 18198.86 0.06875 0.04530 0.03320 0.02591 0.02124
2s28g 2G — 2s26f 2p° 18451.48 0.01140 0.00779 0.00586 0.00466 0.00390

2s26h 2H° — 2s25g 2g 18516.37 0.20014 0.12241 0.08529 0.06402 0.05044
2s28h 2H° — 2s26g 2g 18661.50 0.02442 0.01574 0.01134 0.00871 0.00699
2g24p 2pO — 2s24s 2g 18904.57 0.00165 0.00138 0.00122 0.00112 0.00105
2s26p 2pO — 2s25d 2d 22227.17 0.00326 0.00274 0.00244 0.00225 0.00211
2g27f  2pO — 2s26d 2d 28030.37 0.00432 0.00313 0.00246 0.00203 0.00176
2s27g 2g — 2s26f 2p° 30154.38 0.02008 0.01354 0.01008 0.00796 0.00657

2s27h 2h ° — 2s26g 2g 30688.20 0.05576 0.03523 0.02506 0.01908 0.01519
2s27p 2po — 2s26d 2d 37430.37 0.00145 0.00122 0.00109 0.00101 0.00095
2s28f 2F° — 2s27d 2d 42189.85 0.00133 0.00098 0.00077 0.00064 0.00056
2g28g 2g —

2g27f  2pO 46442.59 0.00745 0.00510 0.00383 0.00305 0.00255
2s28h 2h ° — 2s27g 2g 47268.44 0.01982 0.01277 0.00920 0.00707 0.00567
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Table 5.12: Case B: Effective recombination coefficients (x  10̂  ̂ cm^s for low state
transitions, n, n < 8 ,  at density of lO'̂  cm“^

Wavelength Temperature (K)
Transition Â 5000 7500 10000 12500 15000

2s^8f — 2s2p^ ^D 871.17 0.00554 0.00406 0.00321 0.00266 0.00232
2s2?f 2f O — 2s2p2 2d 887.61 0.00815 0.00591 0.00464 0.00383 0.00333
2s^6f ^F° — 2s2p2 2d 914.11 0.01245 0.00890 0.00693 0.00568 0.00491
2s^5f ^F° — 2s2p2 2d 961.76 0.02067 0.01440 0.01100 0.00890 0.00759

2s2p3s 2pO — 2s2p2 2d 973.19 0.00348 0.00283 0.00251 0.00232 0.00222
2s^5p 2pO — 2s2p2 2d 996.88 0.01081 0.00889 0.00788 0.00736 0.00718
2s^4f 2p° — 2s2p2 2d 1063.84 0.03691 0.02429 0.01785 0.01404 0.01171

2p3 2pO
— 2s2p2 2d 1065.97 0.06866 0.05605 0.04873 0.04421 0.04154

2s^4p 2pO — 2s2p2 2d 1142.30 0.10330 0.08239 0.07025 0.06246 0.05757
28^6p 2pO — 2s2p2 2g 1156.72 0.00510 0.00423 0.00372 0.00341 0.00322

2s2p3s 2p0 — 2s2p2 2g 1231.64 0.03458 0.02819 0.02495 0.02312 0.02210
2s^5p 2pO — 2s2p2 2g 1269.84 0.00856 0.00704 0.00624 0.00583 0.00569

2p3 — 2s2p2 2d 1323.93 0.00897 0.00979 0.01079 0.01168 0.01242
2s^8p 2po — 2s23s 2g 1376.75 0.00254 0.00212 0.00187 0.00172 0.00162
2s^7p 2po — 2s23s 2g 1424.33 0.00391 0.00327 0.00290 0.00266 0.00251

2s2p3s 2pO — 2s2p2 2p 1491.77 0.00499 0.00407 0.00360 0.00333 0.00319
2s^6p 2pO — 2s23s 2g 1504.76 0.00646 0.00535 0.00472 0.00432 0.00408
2s^5p 2pO — 2s2p2 2p 1548.18 0.00805 0.00662 0.00587 0.00548 0.00535
2s^5p 2po — 2s23s 2g 1701.98 0.00172 0.00142 0.00126 0.00117 0.00114

2p3 2pO — 2s2p2 2p 1721.46 0.01407 0.01149 0.00999 0.00906 0.00852
2s2p3p — 2g23p 2p0 1760.03 0.02570 0.02146 0.01875 0.01707 0.01597
2s^3p 2pO — 2s2p2 2d 1762.04 1.03535 0.78817 0.66346 0.59517 0.55956
2s^7d 2d — 2s23p 2p0 1796.43 0.03255 0.02563 0.02143 0.01864 0.01685
2s26d 2d — 2s23p 2pO 1910.47 0.05181 0.04012 0.03315 0.02854 0.02554

2s24p 2pO — 2s2p2 2p 1929.67 0.00766 0.00611 0.00521 0.00463 0.00427
2s2p3p 2p — 2s23p 2p0 1989.94 0.00193 0.00335 0.00425 0.00470 0.00488

2s26s 2g — 2s23p 2p0 2018.23 0.00148 0.00131 0.00119 0.00112 0.00109
2s25d 2d — 2s23p 2po 2137.74 0.09960 0.07622 0.06248 0.05346 0.04766

2s24p 2pO — 2s24s 2g 2173.94 0.01441 0.01149 0.00980 0.00871 0.00803
2s28f 2p° — 2s23d 2d 2260.86 0.01446 0.01058 0.00837 0.00695 0.00604

2s28p 2pO — 2s23d 2d 2291.72 0.00127 0.00106 0.00094 0.00086 0.00081
2g27f  2pO — 2s23d 2d 2375.06 0.02547 0.01846 0.01450 0.01198 0.01042

2s25s 2g — 2s23p 2p0 2402.19 0.00299 0.00263 0.00240 0.00228 0.00231
2s27p 2p0 — 2s23d 2d 2426.70 0.00213 0.00178 0.00158 0.00145 0.00137

2p3 2d O — 2s2p2 2p 2511.06 0.00101 0.00110 0.00122 0.00132 0.00140
2s28d 2d — 2p® 21)0 2542.83 0.00231 0.00182 0.00154 0.00136 0.00124
2g26f 2pO — 2s23d 2d 2574.84 0.05094 0.03643 0.02834 0.02325 0.02008

2s2p3p 2d — 2p3 21)0 2628.24 0.00372 0.00311 0.00272 0.00247 0.00231
2s26p 2p0 — 2s23d 2d 2669.93 0.00399 0.00330 0.00291 0.00266 0.00252
2s24d 2d — 2s23p 2po 2747.02 0.23657 0.17614 0.14152 0.11952 0.10602

2s23p 2pO — 2s2p2 2g 2840.90 0.88133 0.67092 0.56476 0.50663 0.47632
2s25f 2p° — 2g23d 2d 2992.63 0.13159 0.09165 0.07001 0.05663 0.04832

2s2p3p 2p — 2p3 21)0 3176.44 0.00240 0.00416 0.00526 0.00582 0.00604
2s25p 2pO — 2s23d 2d 3361.28 0.00192 0.00158 0.00140 0.00131 0.00128

2s2p3p 2d — 2g24p 2p° 3841.14 0.01381 0.01153 0.01008 0.00918 0.00858
2s24s 2g — 2s23p 2pO 3920.11 0.01809 0.01535 0.01382 0.01348 0.01440

2s2p3p 2g —
2p3 2pO 4017.84 0.00189 0.00202 0.00203 0.00203 0.00206

2s27d 2d — 2s24p 2p0 4018.88 0.00838 0.00660 0.00552 0.00480 0.00434

111



Table 5.13: Case B: Effective recombination coefficients (x  10̂ ^
transitions, n, n < 8 ,  at density of lO'̂  cm“^

cm^s )̂ for low state

Wavelength Temperature (K)
Transition A 5000 7500 10000 12500 15000

2s‘̂ 4f — 2s23d 2d 4267.18 0.57042 0.37538 0.27588 0.21696 0.18096
2s2sf 2pO — 2s24d 2d 4619.08 0.00943 0.00691 0.00546 0.00453 0.00394
2s^6d 2d — 2s24p 2po 4638.51 0.00861 0.00666 0.00551 0.00474 0.00424

2s28p 2p0 — 2s24d 2d 4749.75 0.00112 0.00093 0.00083 0.00076 0.00071
2s2Sd 2d — 2p3 2p0 4752.42 0.02075 0.01639 0.01381 0.01219 0.01119

2s23p 2pO — 2s2p2 2p 4753.40 0.00175 0.00133 0.00112 0.00100 0.00094
2s28g 2g — 2s24f 2pO 4802.68 0.01899 0.01298 0.00976 0.00777 0.00650

2s2p3p 2d — 2p3 2pO 5059.68 0.01979 0.01653 0.01444 0.01315 0.01230
2g27f  2pO — 2s24d 2d 5122.21 0.01610 0.01167 0.00917 0.00757 0.00659
2s27g 2q — 2s24f 2p° 5342.36 0.03656 0.02466 0.01836 0.01449 0.01196

2s2?p 2pO — 2s24d 2d 5368.59 0.00197 0.00165 0.00146 0.00134 0.00126
2s24p 2p0 — 2s23d 2d 5890.37 0.02160 0.01723 0.01469 0.01306 0.01204
2s26f 2pO — 2s24d 2d 6151.44 0.03046 0.02178 0.01695 0.01390 0.01200
2s25d 2d — 2s24p 2po 6258.82 0.00795 0.00608 0.00498 0.00427 0.00380
2s26g 2g — 2s24f 2p° 6461.94 0.08885 0.05854 0.04290 0.03349 0.02744
2s26d 2d — 2p3 2pO 6540.71 0.00113 0.00087 0.00072 0.00062 0.00055

2s23p 2po — 2s24s 2s 6579.50 0.87805 0.66842 0.56266 0.50475 0.47454
2s26d 2d — 2s24f 2pO 6622.14 0.00106 0.00082 0.00068 0.00059 0.00052

2s26p 2pO — 2s24d 2d 6723.54 0.00412 0.00341 0.00301 0.00275 0.00260
2s23d 2d — 2s23p 2po 7234.73 1.04360 0.72509 0.55874 0.46464 0.41478

2s2p3p 2d — 2s25p 2pO 7541.31 0.00280 0.00234 0.00205 0.00186 0.00174
2s2?d 2d — 2s25p 2p0 8258.37 0.00139 0.00109 0.00091 0.00080 0.00072
2s28d 2d — 2s2p3s 2p0 8267.91 0.00741 0.00585 0.00494 0.00435 0.00400
2s28f 2p° — 2s25d 2d 8869.06 0.00526 0.00385 0.00304 0.00253 0.00220
2s28g 2g — 2g25f 2p° 9224.02 0.01621 0.01109 0.00833 0.00663 0.00555
2s25f 2p° — 2s24d 2d 9229.63 0.06859 0.04777 0.03649 0.02952 0.02519
2s25s 2s — 2s24p 2p0 9234.94 0.00182 0.00160 0.00146 0.00139 0.00141

2s2p3p 2d — 2s2p3s 2po 9244.57 0.00234 0.00195 0.00171 0.00155 0.00145
2s28h 2h ° — 2s25g 2G 9314.19 0.02215 0.01428 0.01029 0.00790 0.00634

2s25g 2g — 2s24f 2pO 9903.43 0.34396 0.21699 0.15454 0.11825 0.09559
2s25d 2d — 2p3 2pO 10301.05 0.00800 0.00612 0.00502 0.00429 0.00383
2s25d 2d — 2s24f 2pO 10504.49 0.00338 0.00258 0.00212 0.00181 0.00162
2s27f 2p0 — 2s25d 2d 10930.58 0.00865 0.00627 0.00493 0.00407 0.00354
2s27g 2g — 2s25f 2po 11444.39 0.03048 0.02056 0.01530 0.01208 0.00997

2s27h 2h ° — 2s25g 2g 11579.09 0.05329 0.03367 0.02395 0.01823 0.01452
2s27p 2pO — 2s25d 2d 12117.23 0.00172 0.00143 0.00127 0.00117 0.00110
2s25p 2p0 — 2s24d 2d 13946.90 0.00165 0.00136 0.00120 0.00112 0.00110
2s26d 2d — 2s2p3s 2po 15767.93 0.00434 0.00336 0.00277 0.00239 0.00214
2s26f 2p° — 2s25d 2d 17000.39 0.01471 0.01052 0.00818 0.00671 0.00580
2s28f 2pO — 2s26d 2d 17562.19 0.00297 0.00218 0.00172 0.00143 0.00124
2s24d 2d — 2g24p 2pO 17846.51 0.05093 0.03792 0.03047 0.02573 0.02283
2s26g 2g — 2s25f 2p° 18198.85 0.06876 0.04531 0.03320 0.02592 0.02124
2s28g 2g — 2s26f 2pO 18451.48 0.01140 0.00780 0.00586 0.00466 0.00390

2s26h 2h ° — 2s25g 2g 18516.37 0.20015 0.12241 0.08530 0.06402 0.05044
2s28h 2h ° — 2s26g 2 G 18661.50 0.02442 0.01574 0.01134 0.00872 0.00699
2s26d 2d — 2s25f 2p° 19529.37 0.00177 0.00137 0.00113 0.00098 0.00087

2s26p 2pO — 2s25d 2d 22227.17 0.00414 0.00343 0.00302 0.00276 0.00261
2g27f  2pO — 2s26d 2d 28030.37 0.00440 0.00319 0.00250 0.00207 0.00180
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Table 5.14: Case B: Effective recombination coefficients (x  10̂  ̂ cm^s ^
transitions, n, n < 8 ,  at density of 10  ̂ cm“^

) for low state

Wavelength Temperature (K)
Transition A 5000 7500 10000 12500 15000

2s‘̂ 7g —  2s^6f 30154.38 0.02008 0.01355 0.01008 0.00796 0.00657
2s^7h —  2s^6g 2q 30688.20 0.05576 0.03523 0.02506 0.01908 0.01519
2s^5d —  2s^5p 2po 31210.82 0.01011 0.00773 0.00634 0.00542 0.00484

2s^7p 2pO —  2s^6d 2d 37430.37 0.00170 0.00142 0.00126 0.00116 0.00109
2s^8f —  2g27d 2d 42189.85 0.00137 0.00100 0.00079 0.00066 0.00057
2s^8g 2Q —  2s27f 2F° 46442.59 0.00745 0.00510 0.00383 0.00305 0.00255

2s^8h —  2s27g 2Q 47268.44 0.01982 0.01277 0.00920 0.00707 0.00567
2s^6p 2po —  2s26s 2s 57822.12 0.00111 0.00092 0.00081 0.00074 0.00070

Table 5.15: Comparison of effective dielectronic recombination coefficients for A1335, 
A1037 and A904, from this work, with effective dielectronic recombination coefficients 
from Storey (1981) as a function of electron temperature. Values given are a^ (A ) x 10^^
cm^s

Temperature
(K)

A1335 A1037 A904
Storey This Work Storey This Work Storey This Work

7000 6.06 5.70 0.84 0.83 0.44 0.04(2)
8000 5.45 5.13 0.81 0.80 0.42 0.04(8)
9000 4.93 4.64 0.78 0.77 0.41 0.05(3)
10000 4.50 4.24 0.76 0.74 0.39 0.05(8)
11000 4.14 3.90 0.73 0.71 0.38 0.06(3)
12000 3.83 3.61 0.71 0.68 0.36 0.06(8)
13000 3.56 3.14 0.69 0.66 0.35 0.07(2)
14000 3.33 2.96 0.67 0.64 0.34 0.07(6)
15000 3.13 2.96 0.65 0.62 0.33 0.07(9)

The effective dielectronic coefficients arise from transitions from the first excited complex 

to  the ground state 2s2p^(^D, ^8, ^P) —> 2s^2p at A1335, A1037 and A904 respectively.

These are given in table (5.9.3). For transitions from and the results axe in good 

agreement. The differences are explainable in view of the different approximations used 

in the evaluation of the radiative decay rates. The result for A904 is more problematic. 

A comparison with Badnell (1988) who determined low tem perature dielectronic recom­

bination coefficients in intermediate coupling would seem to indicate tha t the results of 

Storey (1981) are of the right order of magnitude. The recombination coefficients for this 

sta te  were reevaluated and the photoionisation cross-section checked, but no error could 

be found. The cross-section contains no large resonances (in terms of area) and the raw 

recombination coefficients are small. This discrepancy needs further investigation.
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5 .9 .4  T o ta l R ec o m b in a tio n  C o effic ien ts  o f  C II

Péqtiignot et al. (1991) calculated to tal recombination coefficients for several ions, includ­

ing CIL They mostly used detailed photoionisation cross-sections, where available, for the 

ground and n =  2 excited states and cubic spline fits to the systematic cross-sections of 

Hofsaess (1979) for n = 3 levels. Scaled hydrogenic values were evaluated for all levels 

n > 3.

They gave a fit to the to tal recombination coefficient for each ion and expected an error 

of less th a t 10% in their values. Using the parameters to their fit, to tal recombination 

coefficients were calculated in the tem perature range, 500 -  20000 K.

The comparison with Péquignot et al. (1991) is not directly meaningful since there 

is only a limited dielectronic component in their recombination coefficients. Total dielec­

tronic recombination rates to CII were calculated by Storey (1981). These were combined 

with the Péquignot et al. (1991) results and the comparison is give in figure (5.4) The 

combined result of Storey (1981) and Péquignot et al. (1991) is larger th a t this work by 

~15% at 7000 K, the lowest value at which Storey (1981) tabulates his to tal recombina­

tion coefficients. This difference is not unexpected in view of the differences in radiative 

transition probabilities between the works. Péquignot et al. (1991) make some, but not 

full, allowance for resonances formed by dielectronic recombination. Combining the two 

results may be an over estimate of the to tal recombination coefficient.

5 .9 .5  E ffec tiv e  R e co m b in a tio n  C o effic ien ts  for S e le c te d  L in es

Effective recombination coefficients were calculated for a range of temperatures for the 

following lines:

Transition
Wavelength

Â
4f -T" 5 g 'G 9903
3d 2d 4f 2po 4267

3p 2pO 3d 2d 7231
3s 2$ 3p 2po 6581

2s2p2 2g 3p 2po 2837
2s2p2 2d 3p 2pO 1761

2p 2po 2s2p2 2d 1335

Comparison is made with Péquignot et al. (1991), who calculated effective recombina­

tion coefficients based mainly on scaled hydrogenic coefficients, with certain corrections
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Figure 5.4: Total recombination coefficients for CII as a function of temperature. Com­

parison with Péquignot et al. (1991) (dashed line) and this work (solid line). ★ axe the 

dielectronic values of Storey (1981) and the o represents the combined value of Péquignot 

et al. (1991) and Storey (1981).

applied. Figures (5.5) and (5.6) illustrate the differences between their work and the 

results calculated here.

For A4267 and A9903, both of which are near hydrogenic transitions the agreement is 

excellent. For non-hydrogenic transitions where the principle quantum number changes, 

Péquignot et al. (1991) are much larger, particularly for A1761.

For allowed transitions within a given principle quantum number the results of Péquignot 

et al. (1991) are too small. This is particularly the case for A6581 which is a ^P° ^S 

transition for n =  3, where the quantum defects are large and there are perturbations 

from non-hydrogenic states.

For A1335, the dielectronic component of Nussbaumer and Storey (1984) is combined 

with the radiative result of Péquignot et al. (1991) in order to  gauge the accuracy of the 

values calculated here. As was expected, the combined rate  is larger than  this work. For 

transitions, other than those tha t are near hydrogenic, Péquignot et al. (1991) estimate 

their accuracy only to be in the 20 to 40 % range. This is reflected in the comparisons. 

One noticeable feature of the effective recombination coefficients is the appearance of the 

process of high tem perature dielectronic recombination. In some cases it would appear to
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Figure 5.5: Effective recombination coefficients for A1335, A1761, A2837 and A4267 as a 

function of temperature. Comparison between Péquignot et al. (1991) (dashed line) and 

this work. The dotted line, for A1335, represents the sum of the Péquignot et al. (1991) 

and Nussbaumer and Storey (1984) values.
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Figure 5.6: Effective recombination coefficients for 16581,17321 and 19903 as a function 

of temperature. Comparison between Péquignot et al. (1991) (dashed line) and this work.
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be im portant at lower temperatures than was first estimated.

No attem pt is made to more fully account for this process in these calculations and 

this places an upper limit on the validity of the calculations of ~  17000 K.

5.10 Conclusions

This chapter presented solutions for the level population problems and an explanation of 

various approximations to  the radiative and coUisional rates used to describe the physical 

processes. In doing so new recombination coefficients and transition probabilities have 

been used. This chapter presented results in the form of wavelength tables for aU low state 

transitions and generated effective recombination coefficients for those Hnes, for which a 

high degree of accuracy can be assumed. Comparison was made with previous work and 

the agreement found to be good in cases where it is expected to be so. In other cases it was 

shown tha t the approach of evaluating the radiative and dielectronic components of the 

recombination coefficient in a unified manner, led to accurate recombination coefficients 

which wiU differ from previously published values. For accurate results, the need for 

explicitly evaluating the photoionisation cross-sections for non hydrogenic states above 

the ground and first few excited states, was clearly demonstrated.
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C hapter 6

A pplication  to  O bservations

6.1 Introduction

In the previous chapter, a detailed listing of calculated wavelengths and case B eifective 

recombination coefficients, applicable to nebular temperatures and density was given. The 

accuracy of the calculations was demonstrated by comparison to previous results. In this 

chapter, the application of the theoretical CII recombination spectra to the observations of 

two widely differing astrophysical plasmas is considered. Several regimes in which the use 

of a theoretically determined CII spectra could be applied were given in the introduction to 

this thesis. Two of the regimes mentioned in detail, are explored here. Firstly the results 

were applied to  determining the temperature in the cold nova, DQ Herculis. Secondly, the 

density in the winds of the WCIO star CPD —56^8032 was determined, by modeling the 

observed fluxes of several lines obtained by Barlow and Storey (1994).

6.2 1934 Nova DQ Herculis

The nebula ejected in 1934 by the classical nova DQ Her is remarkable for its low temper­

ature and relatively high ionisation state (Williams et aL, 1978). The tem perature was 

determined from the width of the broad spectral feature attributed to  hydrogen Baimer 

continuum emission by Williams et al. (1978). They argued, tha t the presence of Baimer 

lines requires continuum emission, however an emission line spectrum of this type gen­

erally originates in a gas of 10‘*K, so the Baimer continuum is normally spread out over 

a much larger wavelength interval. The emission coefficient for Baimer emission above 

the threshold (A3648) has a frequency dependence given by j^, oc exp{—hufkTe), where 

Te is the electron temperature. At low temperatures, the Baimer continuum radiation is
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confined to the relatively small wavelength interval and the width of the observed feature 

constrained the tem perature to be ~500 K.

Ferland et al. (1984) combined previous and new lUE emission-line spectra and emission- 

line spectra taken using the Steward Observatory 2.3m telescope, to deduce several phys­

ical parameters, characterizing the cold nova DQ Her. They obtained the density and 

mass of the ionized gas and used the carbon recombination spectrum to deduce a low 

tem perature and fairly high level of ionisation for the envelope.

Ferland et at. (1984) calculated effective recombination coefficients for the lines 2s^3d 

(^D) -  2s^4f (^F°) A4267 and 2s^2p (^P°) -  2s2p^ (^D) A1335. They noted tha t the 4267Â 

line is formed mainly by radiative recombination over the entire tem perature range, while 

the 1335Â line is formed largely by dielectronic recombination for T  ^400 K. Over certain 

tem perature ranges, the intensity ratio, 7(1335)/J(4267) can be used to estimate Tg. The 

intensity ratio will fall dramatically when T  < lO^K, because the allowed autoionizing 3d 

^F® and 3d states, which decay to produce the A1335 line, lie 3301 cm“  ̂ and 5523 

cm“  ̂ above the ionization limit and would become inaccessible to the free electrons. The 

observed ratio is ~ 9 (±  0.5 dex). Ferland et al. (1984) calculated the ratio, /(1335)/J(4267) 

over a range of temperatures and by applying it to the observed intensity ratio, deduced 

a tem perature of Tg ~  700 K. This value they argued, was sufficiently close to Williams 

et al., 1978), whose temperature of ~500 K they adopted. Their effective recombination 

coefficients are reproduced in figure (6.1) for comparison.

Smits (1991), also considers the recombination spectra of CII in DQ Her using improved 

atomic data  and more fully accounting for dielectronic recombination. His results differ 

significantly from Ferland et al. (1984). He found tha t the ratio of measured fiuxes, 

F(1335)/F(4267) supported a cool-gas interpretation but at a tem perature of ~1300 K 

rather tha t 500 K.

6 .2 .1  R e su lts

Effective recombination coefiicients were generated in the course of comparisons with other 

results and applied to this problem. The effective recombination coefiRcients of the two 

lines and the ratio of the flux in the two lines are given graphically in figure (6.2) and in 

the table show over the page. The broad shape of the effective recombination lines is the 

same as given by Ferland et al. (1984). The ratio of intensities though differs considerably

120



Table 6.1: Effective recombination coefficients for the Carbon II fines, A4267 and A1335, 
and the theoretical flux ratio F(1335)/F(4267) calculated in this work.

Temperature a®^(cm3 s - i) E(1335)
K A4267 A1335 E(4267)

400 5.50210E-12 1.98946E-12 1.16
450 4.99608E-12 1.85913E-12 1.19
500 4.58149E-12 1.77113E-12 1.24
550 4.23476E-12 1.72098E-12 1.30
600 3.93993E-12 1.70744E-12 1.39
650 3.68576E-12 1.73660E-12 1.51
700 3.46411E-12 1.80255E-12 1.66
750 3.26890E-12 1.90761E-12 1.87
800 3.09551E-12 2.04727E-12 2.11
900 2.80064E-12 2.41499E-12 2.76
1000 2.55883E-12 2.87043E-12 3.59
1100 2.35653E-12 3.37816E-12 4.58
1200 2.18463E-12 3.90758E-12 5.72
1300 2.03657E-12 4.43481E-12 6.96
1400 1.90760E-12 4.94259E-12 8.28
1450 1.84912E-12 5.18538E-12 8.96
1500 1.79416E-12 5.41938E-12 9.65
1600 1.69355E-12 5.85820E-12 11.06
1800 1.52285E-12 6.61004E-12 13.87
2000 1.38333E-12 7.19455E-12 16.62
2500 1.12474E-12 8.03973E-12 22.85
3000 9.46317E-13 8.27645E-12 27.95
3500 8.15536E-13 8.17209E-12 32.03
4000 7.15467E-13 7.89227E-12 35.26
5000 5.72327E-13 7.14315E-12 39.89
6000 4.74861E-13 6.38166E-12 42.95
7500 3.75812E-13 5.40435E-12 45.96
9000 3.09061E-13 4.64419E-12 48.03
10000 2.75621E-13 4.23779E-12 49.14
11000 2.48400E-13 3.89538E-12 50.12
12000 2.26024E-13 3.60505E-12 50.98
12500 2.16353E-13 3.47630E-12 51.36
13000 2.07575E-13 3.35709E-12 51.69
14000 1.92422E-13 3.14371E-12 52.22
15000 1.80123E-13 2.95875E-12 52.50
17500 1.59861E-13 2.59089E-12 51.80
20000 1.51864E-13 2.31920E-12 48.81
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Figure 6.1: Carbon II recombination spectrum (Ferland et a i,  1984). Recombination co­

efficients for the Carbon II lines, A4267 and A1335 are shown as a function of temperature. 

The intensity ratio J(1335)//(4267) is also shown.
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Figure 6.2: Effective recombination coefficients for the Carbon II lines, A4267 and A1335, 

and the flux ratio J(1335)//(4267) calculated in this work.
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and seems to  lean towards the higher tem perature interpretation of Smits (1991). Using 

the observed ratio, the tem perature derived is ~1450 K.

6 .2 .2  D isc u ss io n

The difference between the value of the tem perature calculated here and th a t of Ferland 

et al. (1984) is large. This can be attributed almost wholly to  the difference in the 

computed values of the effective recombination coefficients for A1335, as the values for 

A4267 were in good agreement. The value for A1335, calculated by Ferland et al. (1984) 

at peak was ~15% larger the value calculated here. Some of the discrepancy will be due 

to  the improved radiative data calculated in this thesis, but this alone is not enough to 

explain the difference. More likely, is tha t Ferland et al. (1984) have over estimated the 

contribution from the 2s2p3d state which lies very close to threshold. In LS-coupling, 

this state is forbidden to autoionise. However, in intermediate coupling, there will be weak 

interaction with the 2s2p3d ^F° and states. It is assumed th a t the autoionisation 

width is very much larger than the radiative width, so tha t although the interaction is 

weak, there may be a significajit contribution arising from the state. Comparison was 

made with Badnell (1988) who calculated effective dielectronic recombination coefficients 

in intermediate coupling. His results are very close to those of this thesis for A1335. This is 

shown in figure (6.6). They confirm tha t the rates of Ferland et al. (1984) are a substantial 

overestimate.

Smits (1991) also performed the comparison with Ferland et al. (1984) in LS-coupling, 

using more accurate radiative data. His result proved much closer to  the value calculated 

here. The differences are explainable in terms of the improved approximations to  recom­

bination coefficients and transition probabilities, and the more complete description of the 

system, for instance, the inclusion of transitions from n > 4 into core excited states, which 

Smits (1991) omitted.

There maybe though a case for not trying to over-analyze the difference. The accuracy 

of using the width of the Baimer continuum to estimate the tem perature may be difficult 

to  gauge, particularly in this case as the observational uncertainties are large. Previous 

UV observations of DQ Her by Hartmann and Raymond (1981) derived a flux of half the 

Ferland et al. (1984) value for A1335 and Ferland et al. (1984) state th a t their optical lines 

are only accurate to 10%-15%. Furthermore, the optical/UV ratios are based on spectra 

taken 2 years apart. Though the observed flux ratio points to a tem perature of around
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1450 K, this may be slightly misleading because of the observational uncertainties. It is 

apparent tha t more precise observations would be necessary before the discrepancies could 

be clearly addressed.

6.3 C PD  -5 6 “8032

CPD —56^8032 was first recognised as a cool carbon Wolf-Ray et star by Bidelman et al. 

(1968). Webster and Glass (1974) noted tha t it and three other similar late WC stars all 

had spectra in which CII dominated CIII, implying spectral types later than the latest 

type (WC9) of WC Wolf-Ray et stars, tha t had been defined up to tha t point.

The majority of CII lines in the optical spectrum are formed by recombination of 

Many of the recombinations lines arise from the radiative decay and subsequent 

cascade, of strongly autoionising resonance states near the ionisation limit of C^. These 

lines will be dominated by the low tem perature dielectronic recombination component of 

the recombination coefficient as has been previously described. The populations of such 

resonance states are determined by the balance between autoionisation and radiative decay. 

Autoionisation usually dominates and the populations are then given by the Saha equation. 

The emissivity per electron and per recombining ion of a line originating from a resonance 

state will depend on its energy relative to the C'*' (^S) ionisation limit, the probability 

for the transition in question and the electron temperature. The measured fluxes of such 

lines can be used to infer the electron tem perature based on the assumptions tha t they 

are emitted from a region of uniform tem perature and that the wind is optically thin to 

them.

CPD —56^8032 was observed with the 3.9m AAT on July 22 1981 using the RGO 

Spectrograph 25cm camera with an IPCS as detector. In their analysis, Barlow and Storey 

(1994) assumed the region of formation of the CII recombination lines to  be of a consistent 

electron tem perature and density and based on the relative intensities of four multiplets, 

derived a tem perature of Tg =  12800 ±  1000 K. This value was used to  derive ratios of 

theoretical intensities, normalised to  a line, which were then used to  fit the measured fluxes 

to determine the density in the wind of CPD —56^8032.

6 .3 .1  R e su lts

Ten lines from the spectrum of CPD —56°8032 were investigated in order to determine the 

density of the wind and these are illustrated overleaf. Using the tem perature determined
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Table 6.2: Case B ratios of theoretical fluxes, normalised to A4267, for CPD —56°8032. 
The observed fluxes and their errors are also given.

Density
(cm"®)

FIuxa Ratios (normalised to A4267)
A2750 A2992 A4267 A4802 A5122 A5342 A6151 A6258 A6460 A7235

Obs.
Err.

0.71
±0.10

0.27
±0.05

1.00 0.07
±0.01

0.07
±0.02

0.10
±0.01

0.16
±0.03

0.07
±0.01

0.15
±0.03

1.89
±0.26

1.0x10® 0.57 0.27 1.00 0.04 0.04 0.07 0.07 0.02 0.16 2.19
1.0x10’' 0.58 0.27 1.00 0.04 0.04 0.07 0.07 0.02 0.16 2.20
1.0x10® 0.60 0.28 1.00 0.04 0.04 0.07 0.07 0.02 0.16 2.25
1.0x10® 0.62 0.28 1.00 0.04 0.04 0.07 0.07 0.02 0.16 2.28
l.OxlOio 0.63 0.28 1.00 0.04 0.04 0.07 0.09 0.02 0.16 2.36
5.0x101° 0.65 0.29 1.00 0.04 0.05 0.07 0.08 0.02 0.16 2.33
l.OxlOii 0.66 0.30 1.00 0.04 0.06 0.07 0.09 0.02 0.16 2.41
2.0x10“ 0.66 0.32 1.00 0.05 0.07 0.08 0.10 0.02 0.17 2.39
5.0x10“ 0.66 0.37 1.00 0.05 0.08 0.08 0.12 0.02 0.18 2.42
8.0x10“ 0.64 0.41 1.00 0.05 0.08 0.08 0.14 0.02 0.19 2.42
1.0x10“ 0.63 0.43 1.00 0.05 0.08 0.08 0.14 0.02 0.20 2.41
5.0x10“ 0.53 0.52 1.00 0.03 0.06 0.06 0.12 0.02 0.16 2.16
1.0x10“ 0.46 0.45 1.00 0.02 0.04 0.04 0.09 0.02 0.12 1.94
5.0x10“ 0.29 0.24 1.00 0.01 0.02 0.02 0.04 0.01 0.05 1.53

by Barlow and Storey (1984), calculations were done at a range of densities from 10® -  

5 X 10̂ ® cm"®. Both case A and B solutions were considered, and case B results are given 

in table (6.2), since these are generally more applicable to the observations.

In general for a state, though not for all states, there will be a region in which the 

population is sensitive to changes in density and the flux in the line will vary rapidly. The 

effects of density changes on the lines are considered individually.

A2750 2s^4d 2s^3p The observation of A2750 probably falls at the high end

of the range of sensitivity to density changes. The peak of the theoretical value falls within 

the error on the observation and can be used to infer a density of between 1.0 x 10^  ̂ and

5.0 X lO^i cm"®.

A2992 2s^5f —> 2s^3d ^D: The theoretical flux ratio exceeds the observational one

for A2992. However, by using the maximum error on the observation an upper limit of

2.0 X lO^i cm"® is suggested. It can be assumed tha t in this case the theoretical value is 

in quite good agreement with the observed.

A4267 2s^4f 2s^3d ^D: This is the line to which the others were normalised.

A4802 2s^8g —> 2s^4f ^F°: The theoretical ratio of fluxes is again smaller in all cases

than the observed. The line does not seem to be overly sensitive to  density. The maximum 

value of the theoretical ratio puts it within two intervals of the error of the observed value.

125



12150 X2992

,-12

5.5-1 O'"'2

8.0-1 O’"'2

5.0-10"

7.0-1 O’"'2

^  4.5-10"
» ,2 ?  6.0-10''^

u_ U- 4.0-10

5.0-1 O'"'̂

4.0-10'12

3.0-10"

2700 2720 2740 2760 2780 2800 2960 2980 3000 3020 3040
Wavelength (Angstroms) 

14267
Wavelength (Angstroms) 

14802
2.4-10"''2

2 . 0- 10"
2.2-10""* 2

,-122 .0-10
1.5-10

I
O) O)

Li-

.-121.4-10"
5.0-10'12

1.2 - 10"''2

4220 4240 4260 4280 4300 4760 4780 4800 4820 4840
Wavelength (Angstroms) Wavelength (Angstroms)
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This would give a boundary to the density of between 2.0 X 10^  ̂ and 1.0 X 10^^ cm~^. 

A5122 2s^7f > 2s^4d ^D: The agreement between theoretical and observed flux

ratios was very good. The observation falls at the high end, of the range at which changes 

in density have the most effect. A value of between 2.0 -  3.0 x 10^  ̂ cm“  ̂ gives a ratio 

which matches the observation exactly.

A5342 2s^7g —> 2s^4f ^F°: This line is not particularly sensitive to changes in the

density. The theoretical flux ratio is slightly smaller than the observed. The closest values 

to  the observed imply a density of between 2.0 x 10^  ̂ and 1.0 x 10^^ cm~^.

A6151 2s^6f ^F° —> 2s^4d ^D: The theoretical flux ratios for this line are generally 

smaller than the observed value. However the observed flux for this line is actually larger 

than for A6460. It is believed tha t this measurement is in error or th a t the true value 

lies at the extreme of the error on the measurement. The departure coefficient calculated 

for the 6f state is smaller than for 6g, so it will be less populated, and the transition 

probability will be smaller so the measured flux should be smaller. The flux ratios for 

A6151 and A6460, would be expected to be close since the difference in effective quantum
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number between 6f and 6g is not that great and this is what is seen in the theoretical 

calculations. Using the maximum error on the measurement a density range of between

6.0 X IQii and 1.0 x 10^  ̂cm“  ̂is inferred. The reason for the discrepancy is unclear, as the 

line does not appear to be significantly blended. The differences between the predicted 

and observed flux ratios make it unlikely th a t the error could be due to  using a wrong 

value of the continuum in this region.

A6258 2s^5d —> 2s^4p The theoretical ratio is much smaller than the observed

seems stable to density changes. Examination of the observed line, figure (6.4), shows 

blending which has been accounted for. However it is possible tha t there are blends with 

other lines which have not been considered. This would seems the most likely explanation. 

There is also a possibility that the decay to the ground state is not entirely optically thick. 

This would however make the result worse not better. No information on the density could 

be obtained from this line.

A6460 2s^6g —> 2s^4f The range of sensitivity to changes in density for this

line are between 10^  ̂ and 10^^ cm“  ̂ as indicated by the theoretical calculations. The 

theoretical ratio is slightly larger than the observed value. Using the maximum error on 

the observed flux, the density is constrained to be not larger than 8.0 X 10^  ̂ cm“^. 

A7235 2s^3d —» 2s^3p The theoretical ratio for this line exceeds tha t observed

by approximately 25% in the case B calculations. However in the case A calculations, the 

theoretical ratio was too low by a factor of two. It can be inferred from this tha t the 

decay to the ground state is not completely optically thick. The values determined here 

represent an upper limit for the flux in the line. It is therefore not possible to  use this line 

for density determination.

A summary of the values of density determined from fitting the ratios of theoretical 

and observed fluxes is given in table (6.3).

The general trend of the results would seem to indicate a value of the density of 

~2.0xl0^^ cm“^. In order to refine this result and obtain a measure of its accuracy 

fits were obtained using the observed values and their errors. This was done using seven 

lines. A6258 and A7235 were excluded because no meaningful value of the density could 

be estimated from them. A4267 was also excluded as this was the value against which the 

fluxes were normalised. The value of the density was changed to minimise % .̂ In this way 

a value of the density was obtained consistent with the observed fluxes and their errors. 

An estimate of the error wa^ derived by determining the densities at which is changed
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Table 6.3: Summary of density fits to lines CPD —56^8032.

Wavelength Density
(A) (cm-3) Comments

A2750 (1 .0 - 5.0) xlO^^ Nearest range of values within observational error.
A2992 < 2.0 xlO“ Upper limit derived using maximum error on observation.
A4267 Line used for normalization.
A4802 2.0 xlO“  -  1.0 xl0^2 Line insensitive to density changes. Density 

inferred from maximum error on observation.
A5122 (2.0-3 .0) xlO^i Exact match !
A5342 2.0 xlO“  -  1.0 xl0^2 Inferred from nearest value to observed.
A6151 6.0 xlO^^ -  1.0 xl0^2 Values derived using maximum error on observation. 

Observational measurement in error ?
A6258 -- No meaningful estimate of density could be obtained.
A6460 < 8.0 xlO“ Limit derived using maximum error on observation.
A7235 Decay to ground state, not completely optically thick. 

Not usable for density determination.

by unity. A value of,

Ne = (2.69 ±  0.71) X IQii cm - 3 (6 .1)

was derived. This value is consistent with the range of densities expected from WCIO 

Population II stars. Values of the tem perature outside the error range given by Barlow 

and Storey (1984) were tested. None gave a smaller than 12800 K and it can be assumed 

th a t their analysis of the temperature is also accurate.

It has been shown that certain lines are sensitive density diagnostics and the ap­

plicability of the theoretical fluxes calculated here, to density determination has been 

demonstrated.

Previous work (e.g. Kane et aZ., 1980) noted anomalous Carbon abundances in early 

type stars, deduced using the CII A4267 line. It was thought tha t this may be due to 

anomalies in the A4267 fluxes. No such anomalies were detected in these calculations.

6.4 A Sum m ary o f Work Presented  in th is T hesis

The starting point for this thesis, was the accurate calculation of photoionisation cross- 

sections for Carbon II. This was done by making use of the Opacity Project suite of codes 

and the accurate target constructed by Herrington et al. (1987). Special care was taken 

to ensure tha t resonances in the cross-sections were accurately mapped. In the course of 

these calculations energy levels for all states of CII up to n =  15 and X =  4 were calcu-
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lated. A comparison with the experimental energies of Moore (1970) was made where the 

data  was available. New transition probabilities were calculated, using weighted oscilla­

tor strengths obtained by running STGBB, from the Opacity Project codes. Comparison 

was made, for the doublet states, with the previous work of Yu Yan et al. (1987) and an 

indication of the improvement in the calculated values was gained, by comparing the theo­

retically determined lifetimes, with the experimental values of Reistad at at. (1986). Below 

threshold interpolation in low state (n < 5) photoionisation cross-sections was also done 

to ensure accurate transition probabilities from higher states. Highly accurate recombi­

nation coefficients were calculated, taking advantage of the unified treatm ent of radiative 

and dielectronic recombination. Further accuracy was achieved by moving prominent near 

threshold resonances so that their contribution could be assessed at experimental ener­

gies. A complete coUisional-radiative-cascade treatm ent of the level populations of Carbon 

II was solved and wavelengths and effective recombination coefficients produced The ac­

curacy of the results was tested and comparisons with other authors given. In the last 

chapter, the application of the work was ably demonstrated with firstly a comparison with 

the work by Ferland at al. (1984) on tem perature determination in the old, cold nova DQ 

Herculis. The tem perature derived is significantly larger than tha t proposed by Ferland 

at al. (1984), a result tha t can largely be explained in terms of the improved atomic data. 

Finally, theoretically determined fluxes were used to determine the density in the wind 

of the cool WCIO star CPD —56^8032, by matching the observed fluxes determined by 

Barlow and Storey (1994).

6.5 Conclusions, L im itations and Future Work

This thesis has demonstrated that by applying a uniform approach to the calculation of 

radiative data and the use of suitable approximations for coUisional rates, an accurate, 

theoretical spectra for CII may be generated, suitable for using as an accurate diagnostic 

tool in the analysis of the fundamental parameters of astrophysical plasmas. The necessity 

of treating excited levels in a more sophisticated manner has been shown to  be an integral 

part of this. Scaled hydrogenic rates may only differ by a few percent from rates calculated 

here for states with a low quantum defect, but are not good estimates for low angular 

momentum states.

One of the main limitations of the work carried out in this thesis is tha t it has been done 

completely in LS-coupling and therefore only includes classically allowed transitions. For
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Figure 6.6: Effective recombination coefficients for A1335. The o represents the dielectronic 

recombination coefficients of Badnell (1988) calculated in intermediate coupling. The solid 

line represents this work which will include a radiative component.

low atomic mass and low effective charge ions, the departures from LS-coupling should be 

negligible. Storey (1994) noted, however tha t LS-coupling was not a good approximation 

for f and g states of O^.

Badnell (1988) calculated to tal and effective, dielectronic recombination rate coeffi­

cients for several ions including C"*". The effective dielectronic recombination rate coef­

ficient for A1335, is compared here to the total effective recombination rate for A1335, 

calculated previously in this work. A1335 is suitable for comparison as it is dominated by 

the dielectronic component down to very low temperatures. The comparison is given in 

figure (6.6). For A1335 any difference in the two results is generally small throughout the 

tem perature range but there are discrepancies at high and low tem peratures. At higher 

tem peratures, the difference is due to high temperature dielectronic recombination. This 

can be used to give an upper bound on the range of application of the work in this thesis 

of ~17000 K, which is lower than first thought. At low temperatures the values of Badnell 

(1988) are smaller than this work. This is due to contributions from the background and 

resonance widths, which Badnell (1988) will lack. Generally, the effective recombination
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coefficients of Badnell (1988) are a few percent larger than this work. This is almost cer­

tainly due to the 2s2p3p resonance which lies close to threshold. Though forbidden 

to  autoionise in LS-coupling it will be included in Badnell (1988) as his calculations were 

performed in intermediate coupling.

For the 2s2p^ state, departures from LS-coupling are not identifiable. A rough com­

parison of the to tal dielectronic recombination coefficient calculated for CII, by Badnell 

(1988), coupled with the to tal radiative coefficient, with the to tal recombination coefficient 

calculated in this work was done. This showed tha t the differences were generally small be­

tween the rates except above 15000 K where the rate of Badnell (1988) increases rapidly 

because his calculations include the effects of high temperature dielectronic recombina­

tion. It can be concluded that LS-coupling is a good approximation for CII particularly 

at low temperatures. However as the ion charge increases core-fine structure interactions 

become stronger leading to stronger quartet-quartet lines. The quartet-quartet lines are 

much weaker than the doublet-doublet in CII, but should be accounted for, and would 

give a more complete approximation. Moving to an intermediate coupling scheme would 

also allow the inclusions of forbidden lines.

Much has been made of the generation of a homogeneous set of radiative data. Ideally 

this should be extended to the coUisional rates.

It is hoped tha t the use of the carbon recombination spectrum as a diagnostic tool can 

be used in other regimes and in similar objects to those mentioned.

133



Aldrovandi S. M. V. & Péquignot D., 1973 Astron, Astrophys. 25, 137 

Badnell N. R., 1988 J. Phys. B  21, 749

Barlow M. J. and Storey P. J., 1994 Personal Communication 

Bates D. R. & Damgaard A., 1949 Phil. Trans. A  242, 101

Berrington K. A., Burke P. G., Chang J. J., Chivers A. T., Robb W. D. & Taylor K. T., 

1974 Comp. Phys. Comm. 8, 149

Berrington K. A., Burke P. G., Dufton P. L. & Kingston A. E., 1977 J. Phys. B  10, 1465

Berrington K. A., Burke P. G., Le Dorneuf M., Robb W. D., Taylor K. T. & Vo Ky Lan,

1978 Comp. Phys. Comm. 14, 367

Berrington K. A., Burke P. G., Butler K., Seaton M. J., Storey P. J., Taylor K. T. & Yu 

Yan, 1987 J. Phys. B  20, 6379

Bidelman W. P., MacConnell D. J. & Bond H. E., 1968 lA U  Circular No 2089

Brocklehurst M., 1971 Mon. Not. R. Astr. Soc. 153, 471

Burgess A. and Seaton M. J., 1960 Mon. Not. R. Astr. Soc. 120, 121

Burgess A., 1963 Proc. Phys. Soc. 81, 442

Burgess A., 1965 Mem. R. Astr. Soc. 69, 1

Burgess A. and Percival I.C., 1968 Adv. At. Mol. Phys. 4, 109

Burgess A. and Summers H. P., 1976 Mon. Not. R. Astr. Soc. 174, 345

Burke P. G., Hibbert A & Robb W. D., 1971 J. Phys. B  4, 153

Buttle P. J. A., 1967 Phys. Rev 160, 719

Dufton P. L., Berrington K. A., Burke P. G. & Kingston A. E., 1978 Astron. Astrophys. 

62, 111

Eissner W ., Jones M. & Nussbaumer H., 1974 Comp. Phys. Comm. 15, 23 

Fano U., 1961 Phys. Rev. 124, 1866

Ferland G. J., Williams R. E., Lambert D. L., Shields G. A., Slovak M., Gondhaiekar P.

M. & Truran J. W ., 1984 Astrophys. J. 281, 194

Gailitis M., 1963 Sov. Phys.-JETP  17, 1328

Gordon W., 1929 Ann. Phys. 2, 1031

Griffin D. C., 1989 Physica Scripta T28, 17

H artm ann L. & Raymond J., 1981 The Universe at UV Wavelengths, ed. Chapman R O

(NASA Conf. Pub. 2171), 495

Hibbert A., 1975 Comp. Phys. Comm. 9, 141

Hofsaess D., 1979 At. Data & Nuc. Data Tables 24, 285

134



Hummer D. G. & Storey P. J,, 1987 Mon. Not. R. Astr. Soc. 224, 801

Infeld L. & Hull T. E., 1951 Rev. Mod. Phys. 23, 21

Kaue L., McKeith C. D. Sz Dufton P.L, 1980 Astron. Astrophys. 84, 115

Kwong V. H. S., Fang Z. Gibbons T .T ., Parkinson W. H. & Smith P. L., 1993 Astrophys.

J. 411, 431

Liu X.-W., Storey P. J. & Barlow M. J., 1994 Mon. Not. R. Astr. Soc. (in press) 

Lynas-Gray A. E., 1991 Personal Communication 

M artin P. G., 1988 Astrophys. J. Supp. 66, 125

Méndez R. H,, Herrero A., Manchado A. &: Kudritzki R. P., 1991 Astron. Astrophys. 252, 

265

Mendoza C., 1982 Planetary Nebulae, lA U  Symposium  N o 103 

Moore C. E., 1970 Atomic Energy Levels (National Bureau of Standards, USA) 

Nussbaumer H. & Storey P. J., 1978 Astron. Astrophys. 64, 139

Nussbaumer H. &: Storey P. J., 1983 Astron. Astrophys. 126, 75

Nussbaumer H. & Storey P. J., 1984 Astron. Astrophys. Suppl. Ser. 56, 293

Peach G., 1967 Mem. R. Astr. Soc. 71, 13

Pengelly R. M. & Seaton M. J., 1964 Mon. Not. R. Astr. Soc. 127, 165 

Péquignot D., Petitjean P. Sz Boisson C., 1991 Astron. Astrophys. 251, 680 

Percival L C., 1973 J. Phys. B  6, 2236

Percival I. C. & Richards D., 1978 Mon. Not. R. Astr. Soc. 183, 329 

Petitjean P., Boisson C. & Péquignot D., 1990 Astron. & Astrophys 240, 433 

van Regemorter H., Hoang Binh D. Y. & Prud’homme M., 1979 J. Phys. B  12, 1053 

Reistad N., Hutton R., Nilsson A. E., Martinson I. & Mannervik S., 1986 Physica Scripta 

34 ,151

Seaton M. J., 1955 Mon. Not. R. Astr. Soc. 68, 457 

Seaton M. J., 1961 Proc. Phys. Soc. 77, 174 

Seaton M. J., 1962 Proc. Phys. Soc. 79, 1105 

Seaton M. J., 1983 Rep. Prog. Phys. 46, 167 

Seaton M. J., 1985 J. Phys. B  18, 2111 

Seaton M. J., 1987 J. Phys. B  20, 6363 

Smits D. P., 1991 Mon. Not. R. Astr. Soc. 248, 193 

Storey P. J., 1972 PhD Thesis University Of London 

Storey P. J., 1981 Mon. Not. R. Astr. Soc. 195, 27

135



Storey P. J., 1982 Planetary Nebulae lA U  Symposium  N o 103, 199

Storey P. J., 1992 Personal Communication

Storey P. J., 1993 Personal Communication

Storey P. J., 1994 Astron. Astrophys. 282, 999

Storey P. J. & Hummer D. G., 1991 Comp. Phys. Comm. 66, 129

Summers H. P., 1977 Mon. Not. R. Astr. Soc. 178, 101

Webster B. L. & Glass I. S., 1974 Mon. Not. R. Astr. Soc. 166, 491

Williams R. E., Woolf N. J., Hege E. K., Moore R. L. & Kopriva D. A., 1978 Astrophys.

J. 224, 171

Williams R. E., 1982 Astrophys. J. 261, 170

Wolf C. & Rayet G., 1867 Comptes Rendues 65, 292

Yu Yan & Seaton M. J., 1987 J. Phys. B  20, 6409

Yu Yan, Taylor K. T. & Seaton M. J., 1987 J. Phys. B  20, 6399

Yu Yan, 1986 PhD Thesis University Of London

136


