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Abstract

The many different clinical imaging modalities used in diagnosis and therapy deliver two 

different types of information: morphological and functional. Clinical interpretation can be 

assisted and enhanced by combining such information (e.g. superimposition or fusion). The 

handling of such data needs to be performed in 3-D.

Various methods for registration developed by other authors are reviewed and compared. 

Many of these are based on registering external reference markers, and are cumbersome and 

present significant problems to both patients and operators. Internal markers have also been used, 

but these may be very difficult to identify. Alternatively, methods based on the external surface 

of an object have been developed which eliminate some of the problems associated with the 

other methods. Thus the methods which have been extended, developed, and described here, are 

based primarily on the fitting of surfaces, as determined from images obtained from the different 

modalities to be registered.

Annex problems to that of the surface fitting are those of surface detection and display. 

Some segmentation and surface reconstruction algorithms have been developed to identify the 

surface to be registered. Surface and volume rendering algorithms have also been implemented 

to facilitate the display of clinical results.

An iterative surface fitting algorithm has been developed based on the minimization of 

a least squares distance (LSD) function, using the Powell method and alternative minimization 

algorithms. These algorithms and the qualities of fit so obtained were intercompared. Some 

modifications were developed to enhance the speed of convergence, to improve the accuracy, and 

to enhance the display of results during the process of fitting. A common problem with all such 

methods was found to be the choice of the starting point (the initial transformation parameters) 

and the avoidance of local minima which often require manual operator intervention.

The algorithm was modified to apply a global minimization by using a cumulative 

distance error in a sequentially terminated process in order to speed up the time of evaluating



of each search location. An extension of the algorithm into multi-resolution (scale) space was 

also implemented. An initial global search is performed at coarse resolution for the 3-D surfaces 

of both modalities where an appropriate threshold is defined to reject likely mismatch 

transformations by testing of only a limited subset of surface points. This process is used to 

define the set of points in the transformation space to be used for the next level of resolution, 

again with appropriately chosen threshold levels, and continued down to the finest resolution 

level. All these processes were evaluated using sets of well defined image models. The 

assessment of this algorithm for 3-D surface registration of data from (3-D) MRI with MRI  ̂MRI 

with PET, MRI with SPECT, and MRI with CT data is presented, and clinical examples are 

illustrât» xi and assessed.

In the current work, the data from multi-modality imaging of two different types phantom 

(e.g. Hoffman brain phantom, Jaszczak phantom), thirty routinely imaged patients and volunteer 

subjects, and ten patients with setting external markers on their head were used to assess and 

verify 3-D registration. The accuracy of the sequential multi-resolution method obtained by the 

distance values of 4-10 selected reference points on each data set gave an accuracy of 1.44+0.42 

mm for MR-MR, 1.82±0.65 for MR-CT, 2.3810.88 for MR-PET, and 3.1711.12 for MR-SPECT 

registration. The cost of this process was determined to be of the order of 200 seconds (on a 

Micro-VAX II), although this is highly dependent on some adjustable parameters of the process 

(e.g. threshold and the size of the geometrical transformation space) by which the accuracy is 

aimed.
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CHAPTER 1 
INTRODUCTION

1.1- General conception

The clinical imaging modalities in diagnostic, therapeutic and surgical fields deliver two 

major types of information: morphological information which represents the shape, borders and 

relational position of an object, and functional information which shows the uptake of a specified 

organ (object’s activity). It is sometimes desirable to display the two kinds of information 

simultaneously in one picture. For example, mapping abnormal (e.g. tumour), or normal 

structures of an object obtained from different modalities such as MRI (Magnetic Resonance 

Imaging), CT (Computerized Tomography), PET (Positron Emission Tomography) and SPECT 

(Single Photon Emission Tomography) provides complementary information about an organ. 

Displaying morphological or functional information obtained at different time instant can also 

be of interest to be interpreted simultaneously.

Since these images are taken under different patient positioning and imaging parameters, 

interpretation of them, as reconstructed originally, does not provide an easy and accurate 

understanding of similarities and differences between them. The problem becomes more crucial 

where a clinician would like to map accurately volumes of interest from one study to the other, 

by which some surgical or therapeutical planning may be based.

For each original slice of any study, the corresponding slice can be reconstructed on 

another, if the relative geometrical transformation parameters between them are found. A process 

called registration is used to correct for the appropriate translation, rotation, and magnification 

differences between the images. By applying this process the geometrical image differences 

induced by the scene (patient and detector position) can be discarded and thus a better 

understanding of the object structural (anatomical or functional) differences can be obtained. The 

research described in this thesis is an investigation into the problems of registering the images 

in order to obtain some correlated (matched) images of an object, and displaying them.
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The definition of the research problem and general aims of the project are presented in 

this chapter. Some clinical uses and applications of the process are given in the next section. The 

objectives of the research are presented in section 1.3. In section 1.4 an overview of the research 

and the organization of the thesis is outlined. The computer facilities used throughout this project 

are introduced in section 1.5.

1.2- Clinical application

Both surgical planning and radiation therapy, may require metabolic and physiological 

activity level as obtained by PET or SPECT to be correlated with bony or soft tissue anatomy 

from CT or MRI. A knowledge of lesion activity as well as the determination of accurate 

boundaries is an essential factor in volume measurement, internal dose calculation and 

radiotherapy planning. Functional information associated with particular brain structures (e.g. 

regions of interest) also enhance the interpretability of medical images. For example correlated 

diagnostic information can be obtained from quantitative analysis of the nuclear medicine images 

{PET or SPECT) and morphological investigation of MRI or CT images. Moreover, tumour 

regions which are well visualized in MRI images may need to be placed in the context of bone 

structure derived from CT scans.

In many clinical circumstances, the original 2-D slices are not ideal. The 3-D structures 

of medical objects are not easily interpretable from 2-D slices which usually lack some clinical 

problems such as size and shape of lesions. Looking at shaded object surfaces in relation to each 

other in a scene enhances the interpretability of the images within the surrounding 3-D anatomy.

1.3- Research objectives

The concept of image registration and data matching have been considered by a number 

of researchers (see chapter 2). Interest in registering medical images is extensive and also 

continuing in clinical applications. If image registration (or data matching) is to be usable in 

clinical assessments then it should be simple, relatively inexpensive, and do not include any extra 

constraint for patient during the imaging. If it is also to prove valuable judgments in clinical 

decisions, it must be accurate, free from subjective interaction error, and reliable in both
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quantitative and qualitative measurements.

In recent years effort has been concentrated on improving the techniques which use the 

routine images taken without any special patient positioning or tedious setting of e.g. external 

markers on a patient. These techniques which are based on external surfaces of an object are also 

independent of noise and grey-level changes inside the object. However, the actual problems 

associated with an accurate and automatic registration of medical images remain unrevealed. 

There is also no reliable method to handle low resolution and noisy images (e.g. SPECT images).

The main objective of the research presented herein is to develop a suitable technique for 

correlation and display of tomographic brain images. The criteria which define the suitability of 

a registration algorithm should be determined, first.

A review of all available registration techniques and their limitations was done initially. 

It is important to assess all sources of errors incorporating these techniques and to overcome 

problems associated with them. The choice of the most suitable registration algorithm is one 

important issue to start with. Selecting or developing any registration algorithm, a number of 

related processes might be required to be explored (e.g. surface reconstruction and minimization). 

All these processes need to be improved by implementation and development of new approaches.

Developing an accurate and automated technique which is less dependent on manual 

interaction of an operator is of great interest and importance. It is essential to verify all the 

processes involved and measure their accuracy and timing response using some well-defined 

clinical images (models). The clinical utility of the registration and superimposition processes, 

and clinical values obtained by them should be considered. Finally, evaluating the computational 

aspects o f the algorithm and overcoming programming obstacles which effect the applicability 

of the process in routine medical imaging and clinical applications are important research 

objectives.

1.4- Overview of the research

This thesis is organized into ten chapters discussing different related approaches of the
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project. An overview of the research, the aims, and clinical applications of the registration and 

superimposition processes are presented in this chapter.

Chapter 2 addresses several methods which have been introduced in literature for image 

registration. Most of them are based on setting some internal or external landmarks on a patient. 

Since this is a significant problem for both patient and technician during imaging, a technique 

has been considered in the current work which is based on fitting together two models of 

external surfaces as obtained by the various modalities (surface fitting).

The general surface fitting algorithm as defined by previous workers is outlined in chapter 

3. In this chapter, a least square distance function (LSD) is constructed to evaluate the fit 

between surfaces (as extracted by methods described in chapter 4). Each variable (transformation 

parameter) of this function is updated using a minimization process in order to minimize the 

distance between the two surfaces and to find the relative transformation between them. The new 

approaches to improve the surface fitting technique and overcome the obstacles associated with 

that are also presented.

Surface reconstruction, as presented in chapter 4, is the first requirement of the siuface 

fitting process. Thus, consideration is initially given to the task of detecting surfaces subjected 

to noise and other characteristic differences (e.g. grey level difference). Filtering of noisy data 

is applied as a preprocessing stage and a 3-D binary surface image is created for each data set. 

New approaches are proposed for extracting surfaces of noisy images (e.g. SPECT brain images).

Different approaches to the minimization process together with the choice of a suitable 

algorithm are assessed in chapter 5. Using a new global minimization technique is suggested in 

chapter 6 which constructs a global search (i.e. grid search) through all possible transformation 

parameters instead of minimization in a downhill trend as implied by most minimization methods 

(e.g. direction set methods). The proposed technique is a type of sequential process employing 

a cumulative distance error and a variable threshold to speed the performance of the grid search.

To improve the computational cost, a new algorithm is proposed in chapter 7 which is 

based on a multi-resolution scale based algorithm. The computational implementation of the 

process is presented, and the accuracy and cost measurements are assessed.
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The experimental results obtained by using sequential and multi-resolution processes are 

outlined in chapter 8. In this chapter, the imaging parameters and data types used for the 

verification of the techniques are introduced. Based on these data, the techniques are verified and 

different factors influencing the performance are presented. A probability analysis is also 

performed to investigate the effects of different threshold level and various number of sample 

points at each resolution levels.

The problem of superimposition is addressed in chapter 9. Some of the commonly used 

shading and display techniques are first outlined and their strengths and weaknesses in displaying 

clinical images are discussed. Different approaches of overlaying the correlated images and 

displaying them are then presented.

A summary of the research objectives and the results obtained by this project are given 

in chapter 10. Suggestion for further works and extension of the research are also presented in 

this chapter.

1.5- Instrumentation and computer facilities

The workstation on which most of the project was done, consists of two main 

components. A Kontron image processing machine with 16-Mb dynamic frame memory, and a 

5-Mb Micro-VAX 11 which is interfaced with the Kontron machine in order to increase the 

capability of system in terms of programming. The Kontron system is not programable and its 

own routines lack some essential programs such as 3-D data handling and geometric 

transformations required for registration and display. There is also a link between the Kontron 

and a VAX computer which runs the Siemens MRI imaging system.

The Micro-VAX system has been installed with Fortran and Pascal compilers. It is 

possible to call most of the Kontron routines via C-defined-library subroutines and Fortran 

wrappers. However, the actual registration programs and display routines need to be written in 

Fortran on the VM5-based Micro-VAX system (version 4.5). All the images are displayed on 

Kontron display system.
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CHAPTER 2 

REGISTRATION METHODS

2.1- Introduction

In order to interpret and diagnose a clinical problem, different images might be required. 

These images are usually taken in different geometric environments (i.e. with the patient in a 

different position, or at a different time, or alternatively using different imaging modalities). 

These imply geometrical differences such as translation, rotation, and scaling between them. In 

most clinical cases, it is useful to know exactly some corresponding clinical information between 

the different types of images taken from one object.

Registration is defined as finding corresponding points or regions in two or more images 

of a single object or scene. The ability to access these corresponding points (pixels in 2-D or 

voxels in 3-D) is the most essential factor for data alignment and, in turn, for the generation of 

a superimposed image. In this respect, any geometric difference should be revealed between two 

sets of images recorded under different patient positioning or imaging conditions. Moreover, 

intensity differences, geometric distortions and noise which typically occur in each data set, 

independently, need to be taken into account. Accurate registration enables potential use of 

different imaging parameters, time-varying information and alignment of anatomical and 

functional information in a superimposed image. These add clinical values in most diagnostic 

and therapeutic applications.

The aim of this chapter is to review the most common registration methods and to outline 

the grounds based on which the methods used in this project were selected. Different registration 

methods are addressed in section 2.2 and 2.3. grey level based methods are briefly addressed in 

section 2.2. Various feature based registration methods are outlined in section 2.3. Section 2.3.1.2 

describes the use of external landmarks in the registration of medical images. The use of edge- 

based (e.g. surface fitting) methods as a potential and widely used method of registering complex 

medical images are explained in section 2.3.3. Section 2.4 addresses a least-square correlation 

algorithm for the evaluation of match between the two images based on their corresponding
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points. The application of the transformation parameters are also represented as a matrix notation 

in this section. A least-square algorithm is developed as a multi-parameter minimization problem 

which can be solved by the use of a non-iterative algorithm. Two non-iterative algorithms are 

defined in section 2.4.1 and 2.4.2. The definition of iterative algorithms (using a local or global 

minimization process) as required for some types of registration methods are left for chapter 5. 

Various factors influencing the selection of a reliable registration algorithm are summarized in 

section 2.5. A summary of the methods and their properties are given in section 2.6.

2.1.1- Current registration methods

Any registration technique attempts, firstly, to find a number of corresponding pairs of 

points (control points or pixels) in different images of a single object. Secondly, the geometric 

differences between the pairs are computed either by minimizing a dissimilarity function e.g. a 

distance measure, or by maximizing similarities between them. The different types of registration

Image registration

Internal landmarks

External markers

Centroid and principle axes

Moment based methods

Fourier transform based methods 
Hough transform based methods

Edge based methods

Automatic control points

Feature based m ethods

Manually selected Control points

G ray-level based m ethods

Surface fitting
Figure 2.1- Diagram showing various widely used registration techniques
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are based on the type and level of object description (e.g. representation) at which the matching 

is attempted and thus based on the type of corresponding pairs. The schematic diagram in figure 

2.1 shows some of the widely used registration methods. Two general approaches of registration 

known as grey-level-based and feature-based matchings are reviewed in the next sections.

2.2- Grey level based matching

Pairs of corresponding points (or regions) between the two images can be found by 

matching the image values (pixel intensities) using some forms of correlation. This is also known 

as a signal-based registration method. A similarity criterion such as a correlation coefficient, 

correlation function (Bamea & Silverman 1972, Lillestrand 1972, Pratt 1974, Wong and Hall 

1979, Appledorn et al 1980, Ros et al 1984), or the sum of absolute values of the differences 

(SAVD) (Svedlow et al 1978) can be performed on 2-D grey scale images. The grey level based 

methods are sensitive to the variation in pixel properties, which may lead to misregistration of 

complex images due to their intensity variation. Thus, their use is limited in matching of medical 

images whose intensity fluctuate greatly under different imaging conditions. The problem became 

severe due to the variable detectability of an object (e.g. tumour, or contrast medium used in 

radiography) imaged under different imaging modalities.

Recently, a technique which uses intensity value of the voxels, and minimizes the 

variance of the ratio of intensity (VIR) in two images, was introduced by Wood et al 1992. The 

technique was originally applied on images from the same modality (PET). It is very sensitive 

to partial volume effects, resolution (axial resolution) and uneven change in intensity of the two 

modalities (e.g. tumours which are visible in only one of modalities). Some tissue classification 

by intensity ranges has been applied (Hill et al 1993) to overcome some of the problem 

associated with this technique. However the occurrence of local minima (see section 5.1) are not 

avoidable in this matching process.

2.3- Feature based registration

An alternative method which is more resistant to imaging condition changes, is based on 

the use of some image features (e.g. contour segments, high curvature points, angles) which 

characterize the shape, position and arrangement o f an object. The features participating in
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registration should correspond to the regions in the image which are constant under different 

imaging conditions. In more complex images taken under very different imaging and geometric 

conditions, application of a signal based matching process on a close initial alignment obtained 

by a feature based registration may be required for an acceptable registration system.

These features are more likely to be invariant to imaging changes (e.g. intensity 

differences), when a higher level of description is derived, precisely. In this respect, registration 

and matching at the level of object boundaries has its own advantage over signal based methods. 

However, deriving these object descriptions from some segmentation methods is not trivial and 

can lead to incorporating error and deficiency.

In the next subsections, various feature-based methods which are widely used for the 

registration of 2-D or 3-D images are outlined. The features employed in these methods are 

either obtained manually under the interaction of a human operator, or automatically by a 

machine operation.

2.3.1- Methods based on Control points

One of the widely used approaches to registering 3-D volume data is based on the use 

of a (small) set of points defined by internal or external anatomical landmarks on the image. In 

this respect, the points which have a constant relationship to the patient anatomy in both studies 

are used.

2.3.1.1- Internal landmarks

Particular internal points such as points having specific location can be obtained manually 

(Merickel, Carthy 1985, Kessler and Chen 1987). William et al 1978, Singh et al 1979 and Frei 

et al 1980 have also implemented techniques by which registration is obtained by a relative 

geometric transformation of some manually selected internal landmarks between the two images. 

In this respect, the approach taken by Singh et al 1979 was to compare the relative position of 

landmarks by, visually, estimating their relative location, and correcting the estimates by 

maximizing a cross-correlation coefficient function. This correlation function is applied between 

a window surrounding the landmark in one image and several locations adjacent to the landmark 

in the other image. They used these techniques efficiently for registration of 2-D Nuclear
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medicine images {myocardial perfusion studies) taken at different times and under a varied 

physiological conditions.

These techniques are user dependent and their accuracy is due to the operator interaction 

in selecting the control points. An alternative control based method which is less dependent on 

the operator decision for the selection of control points uses external landmarks. However, these 

methods still involves some manual interactions due to placing of the external landmarks on the 

patient.

2.3.1.2- External landmarks

Fiducial markers as part of a stereotactic frame (Kail et al 1985), or some point sources 

attached to the patient (Price et al 1975, Fleming 1984) are used as external landmarks for the 

registration. The stereotactic system was used originally (Goerss et al 1982 and Kelly 1984) for 

localization and transposition of points and lesion volumes in CT. The technique was augmented, 

by Kali 1985, for transposition of both CT and MR data into a common 3-D stereotactic space, 

thereby registering them. Fox et al 1985, also, applied stereotactic method for anatomic 

localization of PET images. Since the relation between the original tomographic and the 

stereotactic reference coordinate system is established by this method, the correlation and 

alignment of the images from different modalities can be easily obtained.

External point sources visible in both studies can be attached to the patient during 

imaging by both modalities. In this approach, three or more corresponding points between the 

two studies are identified. Once the set of point-to-point correspondences is established, the 

transformation differences can be derived between the two sets of points and consequently 

between the two data sets (Chen and Kessler 1985). Radio-opaque materials (e.g. lead beads) in 

CT, CuS04-doped-water capsules in MR and radioactive-filled capsules in SPECT are ideal 

widely-used fiducial markers. In general, positioning and fixing the landmarks on a patient is not 

technically easy and it is inconvenient for both technician and patient.

2.3.2- Automatic control points and features

Some techniques have been developed using control points computed from specific 

common features of both sets of images without any user participation. Using centroid, major
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and minor axes (Chow and Aggarwal 1977, Mitiche and Aggarwal 1983), or invariant moments 

(Hu 1962, Sadjadi and Hall 1978, Maitra 1979, Abu-Mostafa and Psaltis 1984) are some 

examples of these methods.

The control points are defined to be; 1) shape-specific picture points with respect to the 

relevant transformation of the problem, 2) sufficiently apart to tolerate addition of noise in the 

location of them, 3) easy to compute, and 4) have as much information about the shape as 

possible. Various methods have been introduced in the literature satisfying these requirements 

differently. Centroid registration, moment based methods, Hough transform and Fourier 

transform methods are examples of the machine based methods as described in the following 

subsections.

Computer generation of control points is often not suitable for the complex 3-D medical 

images. These features are highly affected by image artifacts and noise which are very common 

in medical images. Moreover, the 3-D structures contained in the images obtained by different 

modalities are not exactly the same, whereas this is an essential requirement of this registration 

method.

2.3.2.1- Centroid and principal axes

Registration of two planar images (figures) was done as a new approach by Mitiche & 

Aggarwal 1983, using points that are specific to the shape with respect to transformation of 

interest (e.g. centroid). The centroid is defined as

x.f(x,y,z) /  (ZZZ f(x,y,z)) which is Zx/n in binary images,

Cy=ZZZ y.f(x,y,z) /  (ZZZ f(x,y,z)) which is Zy/n in binary images,

Cz=ZZZ z.f(x,y,z) /  (ZEE f(x,y,z)) which is Zz/n in binary images,

Equ. 2.1

where f(x,y,z) is the voxel value of a 3-D image and x, y and z are positional information of the 

voxels, n is the number of voxels covered by the object in each orthogonal direction.

The unweighed mean point (centroid) and radius weighted mean point used by Mitiche 

& Aggravai are shape-specific points in spatial domain and describe shapes independently of the 

coordinate system. These points were used to register two images of a particular object. After
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registering images in their method, applying a matching process (e.g. template matching) was 

also suggested, in order to check how closely the boundaries matched and to search for any 

further (minor) transformation.

The principal axes are defined as the best straight line fitted to a shape (like a 

Chromosome as defined by Paton 1970)(see section 4.5.1). These axes have also a property of 

being independent of the coordinate system. The modified major and minor axes (two lengths 

along and across the principal axes), the area, and the angle between the major axes and the 

vertical or horizontal axes are other descriptors used for registration (Chow and Aggarwal 1977). 

Points on an object that are furthest or closest from the centroid, the point whose distance from 

the centroid is equal to the medium of distances of all points on the shape from centroid have 

also been suggested for the registration problem.

The main problem with matching using the above shape-based registration techniques is 

that the registration can not be applied when only partial information about shapes are available.

2.3.2.2- Moments based methods

It was suggested by Hu 1962 to represent an image by an infinite set of moments. 

Denoting the image plane distribution by f(x,y), the moments (of order j, k) can be obtained by

Mj^= S S  f(x,y).x^.y". Equ. 2.2

It is believed that only a few of these moments are necessary to represent most shape 

characterizations of an object (Teague 1980). These finite set of moments were shown to contain 

closely the same shape information as the original image (using inverse moment problem). 

Although lower moments characterize the centroid of the data, the principal axes and the size 

and orientation of the image, the discrimination properties of a complex patterns would be 

increased if higher moments are also used.

A set of moments which are invariant to geometric transformation (size change, 

translation, rotation) are desirable for general pattern recognition and registration. Invariant 

moments can be obtained by normalizing the moments in respect to size, centroid, principle axes 

or other shape specific functions (Maitra 1979, Abu-Mostafa and Psaltis 1984, 1985). As shown
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by Hu 1962, the set of moments normalized in size can still characterize a particular pattern 

(object), where they are themselves independent of the pattern position in visual field and of the 

pattern size. The representation of a pattern can be converted to the representation of points in 

a n-dimensional moment space where n is the number of invariant moments with respect to for 

example the centroid or principle axes.

The main problem of matching images using the moment methods is that, like other 

shape-specific methods mentioned earlier, registration based on partial information is not 

possible. Therefore, the process is inefficient for registering 3-D medical images which create 

image c ata set not mutually complete.

2.3.2.3- Fourier Transform based methods

The problem of estimating the 3-D motion parameters was presented by Lin et al 1986 

in an approach which does not require the establishment of the initial points correspondence 

between the two images. They attempted to find the motion parameters based on the Fourier 

transforms of the two images. Each image data set is firstly shifted to its own centroid. Then 

the rotation matrix R (see section 2.4.1) is found by correlating the values of the two Fourier 

transforms which are related by the same rotation matrix as the original images. In principle, a 

search strategy through all possible rotation matrices should be established to determine the 

rotation parameters. Since the centroids of the two data sets are also governed by the same 

rotation matrix and translation vector, the estimated rotation matrix R can be used to determine 

the translation vector by a centroid correlation function.

Registration of translated and rotated images using Fourier transforms were also 

suggested in a different approach by Castro and Morandi 1984 and 1987. The algorithm was 

based on the phase coirelation technique developed from a purely translational displacement 

problem introduced by Kuglin and Hines 1975. The Fourier transforms of an image f(x,y) and 

its translated and rotated replica f;(x,y) in a 2-D case can be related by

F(^cos0+Tisin0 , -Çsin0+r|cos0),

Equ. 2.3

where xO and yO are the translations in x and y directions, and 0 is the angle of rotation. The 

phase (exponential form) in the above correlation is obtained when the actual angle of rotation
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found. The angle 0 is first determined using a directed search strategy and, then, the translation 

X and y is determined from the phase correlation (Kuglin and Hines 1975).

Other types of operators such as Hough based transformation was used by Yam & Davis 

1981, and extended by Davis 1982, to register images automatically. A set of unique control 

points are chosen (e.g. local maximum of the curvature measures of a binary edge image) in one 

image. The Generalized Hough Transform (GHT) operator then attempts to find the matching 

feature in another image.

The major disadvantage of the Fourier-based methods which restricts their use for the 

registration is the requirement of two identical image volumes. Therefore, it is very difficult and 

even in some cases not possible to register medical images whose parts (regions) are not usually 

identical in different imaging modalities.

2.3.3- Edge based methods

Other frequently used registration methods are based on edge information obtained in a 

preprocessing stage. Only the edge information needs to be registered in this approach. Thus, the 

edge extraction step is the most critical part of this process.

These methods have been used by a number of workers (Andrus and Campbell, 1975, 

Svedlow and Gillem, 1978, Medioni and Nevada, 1984, Bhanu and Faugeras, 1984). Similarity 

measurement was used by them to evaluate the fit between the images. Venot et al 1984 

introduced a different class of similarity measure for registering simple 2-D images. This 

technique was based on the calculation of the number of stochastic sign changes {SSC) in the 

digitized subtraction angiographic images. A precise edge detection technique is required in order 

to have a reasonable maximum for the similarity measure at match location.

Applying a distance function as a measure of misregistration overcomes the problem 

associated with the requirement of a precise edge detection technique. The use of distance 

function enables the definition of the edges as a symbolic representation (e.g. edge segments) 

as proposed by Bhanu & Faugeras 1984, Price & Reddy 1979, and Medioni & Nevada 1984. 

This type of edge definition technique can be applied to noisy edges in order to reduce the error
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associated with the edge detection technique.

Surface fitting algorithms have been derived directly from edge-based methods in 3-D 

space. It was implemented by Pelizzari and Chen 1987 who used models of external surfaces 

obtained from various scans (also see Chen et al, 1988, Pelizzari and Chen, 1989). In this 

approach, a least squares distance (LSD) function, is constructed to evaluate the fit between the 

surfaces computed from the two sets of images. The mean value of the LSD is then minimized 

by a local minimization algorithm (e.g. Powell’s gradient convergent method), in order to 

determine the best transformation between these two data sets.

The edge-based methods overcome some of the difficulties associated with the other 

registration techniques. Firstly, there is no need for special precautions for subject positioning 

during imaging. Secondly, the technique works well for registering brain images (using skin or 

brain surfaces), even when there are some differences in the internal structures of the original 

images. The technique has a reasonable potential for accuracy, reproducibility, and ease of use 

which are important factors of data fitting. However, the technique suffers from the presence of 

multiple local minima. To overcome this, the initial transformation parameters need to be chosen 

by a human operator, and modified during the minimization process, in order to align the two 

surfaces, initially, as closely as possible.

An alternative edge-distance based registration method which has been proposed by 

Barrow et al 1977, and improved by Borgefors 1984 and 1988, is based on distance transform 

(e.g. Chamfer transform) matching. This technique was used and modified recently by Hill et 

al 1993 for surface fitting purpose. As for other surface based methods, it needs a good start 

hypothesis of the transformation to bring the surfaces into correspondence, otherwise it suffers 

from trapping into local minima.

2.4- Least-square fitting of two images

Least-square fitting is defined as a multi-parameter minimization function which shows 

the mismatch between the two images. The general 12 norm least square function can be 

expressed as

r  = I  (P 1 \-P 2J \ P l ’i = Pli[R][S]+T, for i=l,...,n Equ. 2.4
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where P and P’ represent the corresponding points in the two registering images. P I’ represents 

the points which are geometrically transformed and n is number of registering points. R, T and 

S are rotation, translation (shift) and scaling parameters, respectively.

There are two approaches of least square fitting being iterative and non-iterative methods. 

In next two sections, non-iterative method are described as applied to a number of control points 

(e.g. external landmarks) obtained before the registration. The correspondence between the points 

used in a non-iterative method should be known in advance. An Iterative least square function 

can be solved by using a local or global minimization process. This type of least square fittings 

as applied to the general surface fitting algorithm is addressed in chapter 5.

2.4.1- Analytical methods

If the coordinates of a number of corresponding points (four are the minimum required 

in 3-D cases; see equation 2.5) are known between the two images, the coordinate transformation 

can be defined analytically. Analytical techniques for finding the geometric differences between 

two sets of data are based on simultaneous equations which define the mapping of coordinates 

of one study on the other. This coordinate mapping can be expressed by the following equations.

x2 = flyxl-i-ajyl+ajzl+a^ 

y2 = 6/X1 -K̂ gy 14-6jzl 4-6̂  

z2 = Cyxl+C2yl+CjZl+Q

Equ. 2.5

Where (x l,y l,z l)  are the coordinate of the original image and (x2,y2,z2) are the 

coordinate of the second image. The a ’s, h’s and c ’s are parameters which are to be determined 

for the corresponding image points (e.g. corresponding markers) to be transformed. These 

parameters contain all translational and scaling information as well as the values of Sine and 

Cosine corresponding to the rotational differences between the two images. The parameters can 

be expressed in matrix notation as

[x2,y2,z2] = [xl,yl,zl][R ][S][T] Equ. 2.6

where R, S and T are Rotation, scaling and translation matrices, which can be represented as
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[ x 2 , y 2 , z 2 ]  = [ x l , y l , z l ]
R i i R i 2 R i 3

R 21 R 22 R-23

R 31 1^32 R 33

0 0 0

Sx 0 0 0

0 Sy 0 0

0 0 S ,  0

0 0 0 1

1 0  0 0 

0 1 0  0 

0 0 1 0

Tx Ty T,

Equ. 2.7

In the above representation, the rotation matrix is the concatenation of three matrices 

which represent rotation in three orthogonal direction x, y and z. The whole transformation can 

then be achieved with a single transform matrix, as follows, representing the parameters a ’s, ft’s, 

and c ’5 defined in the above equations.

SxRii SyRi2 SzRi3 o' ’ai hi Cl 0 '
x 2 , y 2 , z 2 ] = [ x l , y l , z l ] SxR21 SyR22 SzR23 0 = [ x l , y l , z l ] C2 0

SxR31 SyR32 SzR33 0 C3 0

Tx Ty Tz 1 h^ C4 0
Equ. 2.8

In the case of four points (markers), twelve equations in the form of the above equations 

would be generated which can be solved for the parameters.

2.4.2- Non-iterative least-square fitting using SVD

A non-iterative algorithm for least square fitting of 3-D images, based on the Singular 

Value Decomposition^ (SVD), was implemented by Arun et al 1987. Two sets of 3-D 

corresponding points Plj and P2) (where i=l,2,...,n; and n is the number of points) are used to 

determine the rotation and translation differences between the two images. The method assume 

the correspondence between the two sets to be known before registration. By translating the 

centroid of each data set to the origin of its own coordinate system, all the points are assumed 

to be corrected in terms of translational shift. The least square function of equation 2.4 is then 

expressed by

 ̂ SVD; Any M*N matrix A whose rows are greater than or equal its columns, 
can be decomposed as an M*N column-orthogonal matrix tJ, an N*N diagonal matrix 
W (with positive or zero element) and the transpose of an N*N orthogonal matrix 
V.
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r  = I" |qliR-q2i| = I  (qliq2, + q2\q2, - 2q2\RqlJ,

Equ. 2.9

where qli=Plj-C7, q2;=P2;-C2 are the points corrected for centroid difference, C7=l/n(Z PIJ 

and C 2=l/n(S P2̂ ) are the centroids of two data sets.

By SVD of a 3*3 matrix H=Z (q2iql\) (where t denotes matrix transposition), the rotation 

matrix R can be derived as R=VU* (see Arun 1987), where V and U are 3*3 orthogonal matrices 

(see footnote 1). Having found the rotation matrix R, the actual translation T can be derived by 

T=P2-P1[R] (see equ. 2.4).

2.5- Selecting a registration algorithm

The selection of a registration algorithm is based on the type of the images to be 

registered, the information content in them and various factors influencing the reliability of the 

process. These factors can be characterized for the registration of brain data sets as follow.

1) The algorithm should be useable with the routine medical images obtained by current imaging 

modalities. The need to arrange for special imaging conditions may restrict its use in clinical 

applications.

2) The technical performance of the algorithm should be easy and not involve a practical 

difficulty and tedious manual intervention. In this respect, the techniques which do not require 

a special precaution such as patient positioning during the imaging are preferable.

3) The implementation aspect of the algorithm on a computer is very important in terms of 

feasibility and the amount of processing time required for the solution. Different algorithms 

involve various complexity of the registration process. The algorithm must be performed at an 

acceptable speed.

4) The accuracy of the process depends on the quality of the information used for the 

registration. The information and data obtained by a computer are usually more robust than those 

handled by a human being. As the involvement of an operator to interact reduced, the efficiency
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and the accuracy of the process can also increase. However, the manual interaction is sometimes 

useful for example when the correctness of a match needs to be controlled and tested by an 

operator during a visual inspection (see section 3.2.6).

5) The type and amount of data existing in both the original images are two important factors 

in the choice of an algorithm.

6) The reproducibility of the technique is also very important for the repetition of the process, 

without any patient inconvenience.

7) There are often grey-level changes and geometric distortions which are not due to 

misregistration of the two images. The ability to compensate for these differences is important 

in matching process. In this respect, the methods which avoid the use of internal grey-scale 

structures are preferred.

After reviewing all registration algorithms and by considering all the above criteria, an 

edge-based method (surface fitting in 3-D) was selected. In this approach, a distance function 

was used to evaluate the fit between the two surfaces. The minimization algorithms used so far 

for surface fitting approach suffer from the presence of multiple local minima. The minimization 

process could easily fail as a result of these minima.

Attempts were made to overcome the deficiencies of the surface fitting algorithm as 

defined by previous workers. The need for implementing a new minimization strategy was an 

objective in the surface fitting approach. A number of modifications were introduced to make 

the process useable in most of the imaging modalities. Some new approaches were also 

developed to further increase the feasibility o f the surface fitting in terms of accuracy and time 

(see chapter 3).

2.6- Summary

Having introduced the various common registration algorithms, the applicability of them 

for use with medical images was described in this chapter. The advantages and disadvantages
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of each algorithm were also described in the relevant sections. Among all these methods, an 

edge-based algorithm based on a least-square-distance matching was chosen as a technique 

which meets most of the requirements for the registration of medical images. This algorithm 

minimises the sum of square-distances between the two surfaces obtained from the original grey 

scale images. The minimization is applied over sets of geometrical transformation parameters 

which indicate how one surface is allowed to be transformed in order to obtain a match with the 

other surface.

The general surface fitting algorithm is outlined in chapter 3, and the problem of surface 

detection is presented in chapter 4. In chapter 5, different minimization algorithms and their use 

in the least-square fitting are reviewed.
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CHAPTER 3 

SURFACE FITTING

3.1- Introduction

A brief review of various registration algorithms was given in chapter 2. Among the 

different registration techniques introduced in this chapter, surface fitting was used to register 

two sets of brain data obtained under different imaging modalities. The fundamental grounds 

used to select this registration method were: its ease, applicability in the routine imaging, and 

power of the algorithm to achieve the result regardless of the internal structure of the object. The 

surface fitting algorithm was first implemented by Pelizzari and Chen 1987 on brain medical 

images. The basic concepts of the method remain the same in this project. However, an attempt 

was initially made to overcome all the obstacles believed to exist in this method. Some new 

approaches were also suggested mainly with respect to minimization algorithm to facilitate the 

technique for use in the routine clinical applications.

The surface of an anatomical structure visible in different scans of interest is used to 

describe the patient-specific geometrical information inside the coordinate system of each 

imaging modality. These models of surface can be transformed geometrically in a spatial 

Euclidean (Cartesian) coordinate system in order to be brought into a ’fit’ position. Since 

anatomical surfaces (e.g. brain or head) are not symmetric (e.g. sphere or cylinder), a unique 

transformation is expected based on matching of the two surfaces. It is assumed that two surfaces 

and the images from which they are derived can be scaled to the same size based on the prior 

knowledge of data acquisition and imaging parameters, and thus scaling is not part of the fitting 

procedure. Correction of both data sets for pixel size prevents any geometric inconsistency which 

might lead to misregistration.

The aim of this chapter is to describe the most commonly used method of registration 

known as surface fitting. The algorithm and some results obtained by applying various aspects 

of the process are presented in this chapter. Section 3.2 deals with the algorithm, in general, as 

implemented by other workers (e.g. Pelizzari and Chen 1987, Chen et al 1988). Various sub­
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NJvtîl surffic0

sections of this section outline the requirements 

and programming steps of the algorithm. The 

general mismatch function as will be used 

throughout this project is defined in this 

section. This is a distance error measure 

between the two registering surfaces as 

expressed in sub-section 3.2.5. The remaining 

problem is to minimize this function in order to 

find the best global match between the two data 

set. A number of modifications was employed,

addressed in section 3.3, giving some new ,  ̂  ̂ ^Figure 3.1- Schematic diagram showing
approaches to nrake the algorithm suitable for
a routine clinical application. Section 3.4 surface (e.g. p e t) (fitting

outlines the types of data used for registration

and the characteristics of imaging systems from which the data were acquired. The data types 

which have been used as known models for assessment and evaluation of the algorithm are 

presented in section 3.5. The expected accuracy of using different data types are also presented 

in this section. Section 3.6 presents two types of results: first, the behaviour of the distance 

function to different parameters (e.g. transformation parameters), and second, the accuracy and 

cost measurements obtained by applying different minimization algorithms. At last, a summary 

is given in section 3.7.

3.2- A lgorithm

The original 2-D or 3-D grey level image data sets are processed and then geometrically 

scaled in a preprocessing stage. The external surfaces of both registering objects are generated 

by application of a surface detection algorithm on the serial slices of the pre-processed data set 

(see chapter 4). Then, the binary surfaces (being the set of voxels lying on the surface as defined 

by the surface detection algorithm in 3-D space) are used as primitives to be registered.
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Figure 3.2- Diagram of the surface fitting algorithm showing different steps of the process. LSD denotes the least 
square distance between the two registering images.
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The surface to be fitted is referred to as the objective surface in the current work. The 

surface which is transformed at each stage of the fitting process is called the transforming 

surface Pf For the objective surface, a 3-D binary surface (solid model) is used for the surface 

fitting (see figure 3.1). However, in order to save computation effort, only a series of 3-D points 

selected from the 3-D surface are used for the transforming surface.

The distance between the two surfaces are measured as the mismatch value between them. 

A Least Square Distance (LSD) function (see section 3.2.5) is defined to evaluate this distance 

and to minimize the misregistration between the two surfaces.

Figure 3.2 shows a block diagram of the surface fitting algorithm as used in the current 

work. As shown in this figure, the algorithm consists of several steps: surface detection, centroid 

and manual registration, point sampling, point correspondence (using an intersection process), 

distance measurement, visual inspection, minimization and finally evaluation of the mismatch 

between the two surfaces. The various stage of the fitting process are discussed in the following 

sections.

3.2.1- Centroid registration

The centroid of each binary surface image is calculated using the information obtained 

in the surface detection process. The centroids of both data sets are transformed to the origin of 

the coordinate system of the objective surface (centroid registration). This new coordinate system 

of the objective surface is considered as a world reference coordinate system. Alignment of the 

two centroids brings the two surfaces into a close position which makes possible the application 

of the surface fitting algorithm as described below. This process is shown schematically in figure 

3.3.

3.2.2- Manual registration

Manual registration is based on two types of information. These are the knowledge of 

geometrical information and parameters obtained by the imaging system, and the visual 

judgement obtained by a viewing screen. In this respect, the knowledge of the coordinate system 

in which the images are generated, and the approximate position of the starting and ending slices 

are examples of the first type of these information. Knowing these information are essentially 

required for a proper registration, especially when the whole 3-D data set are not acquired during
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Transforming data

Objfclivf coordinate system  
as th e  world coordinate

Figure 3.3- Schematic diagram showing the process of centroid registration (i.e. the initial transformation) based on the
system known directional (geometric) information.

the imaging. The visual information obtained from a display of overlapping surfaces can also 

facilitate the manual registration. This visual inspection is discussed in section 3.2.6.

3.2.3- Point Sampling

As stated in section 3.2, only a number of points selected (sampled) from the 

transforming surface participate in the surface fitting process. The choice of sampling points (the 

position and number of selected points included in the registration process) should satisfy the 

assumption that the points selected (i.e. a fraction of all surface points) are representative of all 

the points on their corresponding surface image. In other word, they should reflect all potential 

misregistration information about the whole data set. This was attempted, here, by dividing the 

area of the surface into m regions, each having different distinct locations and where possible, 

different slopes (surface normals). Those points having the local maximum curvature in each 

region axe then selected as sample points (see figure 3.4). As discussed in section 4.3.4, the 

curvature can be obtained during the circularity check in the surface detection process. The 

coordinates x,y,z of each selected point are then compared with those of previously selected 

points in order to reject any point having two or more coordinates similar or close to the
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coordinates of the other (neighbouring) 

points.

Some special considerations must 

be taken into account in this sampling 

process. (1) Sampling should be 

performed on those regions of the 

transforming surface image for which 

there are corresponding data on the 

objective surface. For example the region 

of eyes are not used for sampling since

the S P t C T  data usually does not pjgure 3.4- Sampling points suggested in the current work (i.e. 

adequately represent the com plexity  Ae points having high local curvamres^shown in image D).

involved in this region. There are also

situations where some non-overlapping regions exist between the two studies. Any attempt to 

register these regions or to include them in the registration is a misleading in the process. 

Sampling the points after the initial centroid or manual registration helps to reduce the 

inconsistency between the registering pairs. (2) The number of points and their locations (where 

they are selected from) are two important factors influencing the sensitivity of the Least Square 

Distance (LSD) function to an applied geometric transformation. In this respect, selecting the 

points from high-curvature regions of the head surface yields more specific geometric

information (see section 4.3.4) and thus can be expected to yield a process which is more

sensitive to change of the transformation parameters. (3) As suggested by Nagel and Rosenfeld 

1972, the points should be ordered in such a way that any sub-set of them reflect similar 

misregistration informatioin as the whole set. The characteristics of the sampling points are also 

revealed in section 6.2.6. The experimental results and discussions about this process are

presented in section 8.3.2.1 and 8.3.2.2.

3.2.4- Intersection routine

The distance between the two surfaces is calculated by evaluating the distances between 

some corresponding points of these surfaces (see figure 3.5a-b). In this respect, for each sample 

point of the transforming surface, a corresponding point should be determined on the objective
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surface. The corresponding point is assumed to be at the intersection point of a ray originated 

at the centroid, passing through the sample point of the transforming surface, and intersecting 

with the objective surface. This 3-D intersection can be found using different approaches of a 

ray tracing algorithm. Since the intersection routine should be applied to all the sampling points, 

reducing the search required for finding these intersections is one of the main objectives 

regarding the timing response of the registration process. Two intersection methods used in the 

current work are based on a line-voxel (ray-voxel) intersection and a line-polygon intersection 

algorithms.

The first method is applied when the surface is represented by a 3-D binary array (voxels 

in a 3-D discrete space). The problem of intersection in this approach is similar to the problem 

of a straight line drawing in raster display system, but in 3-D space. The simplest and quickest 

approach which is known as an incremental method is based on the equation of straight line in 

3-D space. In this method, the larger digital differential (Vx=X2-Xi, Vy=y2-yj or Vz=i^-z^, where 

points (Xi,yi,Zi) and (x2,y2,Z2) are the end points of the line) is selected as a discrete length whose 

units are considered as incremental units used in the selection of the next point on the straight 

line. The increment in any other direction is based on the slope (e.g. (x2-xj/length) of line in 

respect to the first long-length direction.

The Modified Bresenham’s Algorithm MBA (Bresenham 1965) was also used which 

seeks the optimum 3-D discrete location to represent a straight line. Like the incremental method, 

the MBA algorithm always increments by one unit in the direction of higher length (based on 

the slope of the line). However, in this algorithm the increment in the other variables (directions) 

are determined by examining the distance (error) between the actual line location (unlike the 

latest line location in the incremental method) and the nearest grid location. The MBA algorithm 

defines a straight line more precisely (i.e. using partial voxels), but it is slower than the simple 

incremental method. It should be pointed out that due to the initial alignment of surfaces, only 

a short ray of voxels (e.g. about 30 voxels) in a straight line are required to be searched for the 

actual intersection with the objective surface. This ray is shown schematically by a solid line in 

figure 3.5b.

The second type of intersection algorithm is based on a ray tracing algorithm (denoted 

as RTA) (Roger 1985) which is applied on polygon-defined surfaces (see section 4.4.3). A ray
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X ,7 , z

X ,7 ,  z

Figure 3.5a- Schematic diagram showing two fitting 
surfaces. It shows the method by which the 
correspondence between the transforming and objective 
points is set.

is traced in an appropriate direction from a 

sample point to the objective surface and 

terminated when it intersects a patch of the 

objective surface. The direction of the ray is 

defined as the direction of a line passing through 

two known points, the centroid and the sample 

point. Accurate implementation of the 

intersection routine involves a high number of 

search to detect the target patch between a 

number surface patches. The distance between 

the sample point and the intersected patch is 

then used as the residual to be minimized.

T ronsform in g:|:^  
surface

Although, the number of surface elements 

on a tiled surface is much smaller than that on a 

voxel-based surface, the intersection process is 

not substantially faster due to the fact that these 

tiles (surface elements) must be examined by an 

expensive process in respect of each ray before 

the actual intersection is found. To eliminate 

unnecessary intersections, the intersection of a 

ray with some bounding volumes (such as 

bounding sphere or bounding box which contains 

a large surface patch) of an object is examined, 

initially. Then, those patches whose bounding 

volumes fail to be intersected by the ray, are not 

considered for further examination (e.g. distance

measurement) (see figure 3.6). On the other hand, an intersecting ray is further tested against the 

bounding volumes of the sub-patches obtained by a subdivision of the original patch (Catmull 

1974) if it initially intersects the patch bounding volume. Examining a ray for an intersection 

with a sub-patch (surface element) itself would be only applied if its bounding volume is

Objective
surface

Figure 3.5b- Shows the intersection between the 
sample points (of transforming surface) and the 
objective surface in a 2-D cross section (contours) 
image.
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intersected by the ray.

The RTA procedure uses translation and rotation about the coordinate axes to make the 

ray coincident with a selected axis for example the z axis, thereby to reduce the 3-D intersection 

problem to an intersection of a ray with a 2-D object. The intersection process is, therefore, 

defined as a simple intersection of a line with a 2-D plane (Apple 1968, Goldstein and Nagel 

1971)

Objective surface

Bounding Jc

Y

C

Figure 3.6- Schematic diagram showing the ray tracing (and intersection process) used for distance measurement, based 
on the surface triangular patches.

3.2.5- Mismatch measurement

The fit is evaluated by a L2 norm least squares distance function (LSD) minimized in 

respect of the best transformation parameters. The residual is defined as the mismatch value 

which is the sum of the distances (or square distances) between the points on the transforming 

surface (set of sampling points of hat) and the intersection points on the objective surface (head). 

The distance between the sampling points and the corresponding points on the surface to be 

fitted (objective surface) are determined by tracing a ray through the 3-D surface data after an 

initial registration (e.g. centroid and/or manual registration). This distance is computed using the 

L2 norm distance function for each transformation. The distance function XMj which is to be
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minimized can be expressed as:

I V  I  (Pti[T] - Poi)  ̂ (i=l,..,n),

I V  I  {(X’„Y ’„Z ’,) - Equ. 3.1

where and P„ are vectors representing the corresponding points on each surface: the surface 

to be transformed and the target (objective) surface, respectively, n is the number of sample 

points. X \, Y ’l and Z \ are the transformed coordinates of point P̂ . I^d; is the mismatch value 

(LSD value) which is the sum of the squares of the distances between each individual pair of 

points. The average value of individual square distance errors is referred to mean square distance 

(MSD) error and is usually used as the mismatch measure in surface fitting process. The square 

root of this value is denoted as mean distance error (MDE) as widely used through this thesis. 

Individual distance errors can be accumulated as sample points are examined and this type of 

error is known as cumulative distance error (CDE).
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(a)

(b)

( c )

Figure 3.7- A type of visual inspection displayed during the surface fitting 
process. Top image shows a MR sagittal slice. The lines in the top image show the 
position of planes through the head, before and after transformation (tilt) by 
the system parameters (see section 8.2; 'data type C . Middle images show the 
contours in three orthogonal planes display before registration, bottom images 
show these contours after registration.
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3.2.6- Visual inspection

In the present algorithm, a set of boundary contours were generated which show the 

positional (geometric) information of both registering surfaces in respect to each other. Figure 

3.7 shows a typical example of this display. The coordinate system in which the registration 

process is applied and the directional information of each surface data set are displayed in these 

images. The 2-D cross sectional contours of head displayed in three main orthogonal planes 

provide visual information to judge about the correctness of a fit. The manual registration is also 

based on these contour displays, which can put the two surfaces in a very close match location. 

More explanation and images defining this display strategy is outlined in chapter 9.

3.2.7- Minimizing distance function values

The transformation parameters can be determined by a minimization process using either 

a local search (for example by using the direction set method of Powell, 1964) or a global search 

strategy (see chapter 4 for both these techniques). Since the correspondence between the points 

of the two registering images are not exactly known in advance, an iterative manner was used. 

Initially, the correspondence between the points can only be predicted. Nonetheless, this 

prediction is improved after each stage of the (minimization) process when the two surfaces 

come to a close match state. In this respect, the (transforming) surface position is updated after 

each certain promising transformation and the ray intersection process is applied on the latest 

aligned surfaces. Routinely, in an iteration of the process, only those points selected on 

transforming surface are shifted. The objective surface is kept constant during the process.

The six rigid geometric transformations (three shifts in x, y, and z direction, and three 

rotations around x, y, and z axes) are modified until the residual as defined in the previous 

section is minimized. Linear scaling is only applied in a limited way to account for minor 

uncertainties in pixel size or in accuracy of the detected surfaces of a low contrast image (due 

to possible sub-optimal choice of threshold level; see section 4.3.2). These uncertainties can be 

detected either by viewing the superimposed (overlaid) contours in three main planes during the 

visual inspection, or by calculating the variance of individual distance values. In the later 

approach, scaling is only applied if the variance of the distance errors is low in spite of having 

a high residual value (i.e. all the distance errors are comparably high).
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The choice o f minimization method is very important in computer cost (timing and space) 

and the accuracy of a detected minimum. Most direction set methods (e.g. Powell 1964) suffer 

from being trapped in multiple local minima. Different methods of minimization used through 

the current project are discussed in chapter 5. A sequential and multi-resolution method is also 

introduced in a novel approach in chapters 6 and 7. These transformation parameters are termed 

the search location in the next chapter where different search algorithms are presented to find 

the best transformation parameters giving the minimum of the distance function.

3.2.8- Data transformation and alignment

Having been registered the two images, the appropriate transformation may be used to 

transform any structure in either image set (transforming or objective data) into the coordinate 

of the other. The images can then be fitted to generate a useful superimposed image for clinical 

interpretation. Contours and volumes of interest (VOIs) can be outlined on 3-D data set (or 

multiple slices) of one scan and transformed to coordinate system of the other scan and finally 

superimposed on the corresponding slices. Various methods of display and superimposition of 

the registered data sets are shown and discussed in chapter 9.

3.3- Modifications to the previous methods and new approaches

Various methods of surface fitting outlined in the literature can be characterized by 

differences in the type and level of description at which the matching was attempted. 

Accordingly, some new approaches are used in the current work to facilitate the surface fitting 

algorithm and reduce its previous deficiencies.

a) The matching performed by most of the previous workers was based on the surface patches 

delineated between a number of selected points on the contours of 2-D slices. In this work, the 

fitted surfaces are characterized by voxels in 3-D geometrical space. Since the surfaces are 

represented at the voxel level, a good accuracy can be expected in presentation of fine structures 

and surface details.

b) In this work the circularity check (see section 4.3.4) on the detected boundaries is performed.
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With respect to that, any hole which is likely to be due to presence of tumour or cold regions 

in the surface of ECT (Emission Computerized Tomography) data, can be interpolated. As 

discussed in section 4.5, extrapolating over such holes can reform the defective parts of surfaces, 

and thus facilitate the application of the surface fitting method for registration of SPECT data.

c) A new approach, based the shape interpolation (see section 4.4.4), for reconstruction of the 

surface between the adjacent slices is used. It is believed (Herman 1991) that a better 

approximation (than the one of trilinear interpolation) is obtained between the contours of thick 

slices or in the gaps between them. In this method, the geometrical form of the surface is 

represented by the locations of the (binary) voxels, and grey scale values are not used.

d) Unlike some of previous methods, only rotations and translations are applied as 3-D rigid 

transformation. In this work, no attempt is made to scale the data during the routine registration 

process. The scaling is applied only at the preprocessing stage based on the knowledge of 

imaging parameters. However, if the statistic of the individual distance errors confirms an 

uncertainty in image size, an attempt is made to scale the registering data set. This uncertainty 

is due to segmentation errors for example a possible sub-optimal choice of threshold in surface 

detection process. In this respect, the variance of distance errors are evaluated as well as the 

distance errors (e.g. MSD value). Special attention is paid, then, to a high MSD value which has 

a low variance. These are counted as behaviour of two images being registered at different 

wrong geometrical scaling.

e) In the current method, after each stage in which a promising transformation is detected, the 

coordinates of the transforming surface are updated. The sample points are then reselected from 

the transformed surface. This updating and re-sampling strategy minimizes the error introduced 

due to sub-optimal choice of the point-correspondence (as described in section 3.2.4).

f) Due to the inherent type of surface representation, the method of ray tracing and 3-D 

intersection used in the current work is based on a line drawing algorithm in 3-D geometrical 

space. Although this intersection method ought to be slower than those based on intersection of 

a ray with surface patches (tiles), some efficient modifications, such as tracing of a small line 

segment around the surface points (instead of a line through 3-D volume data), make the 

algorithm fast enough to be applicable in the surface fitting process. The efficiency becomes
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consistently higher with reducing the size of intersection line across the surfaces.

g) Viewing and visual inspection play a major and important role in registration process. Three 

orthogonal contours (on the 3 orthogonal planes) of cross sectional images are displayed before 

starting an automatic registration and also between some stages of the registration. This 

visualization makes the manual interaction and operator modifications applied during the 

registration easier. The superimposed 3-D registering points (from hat) and the surface data 

(head) are also illustrated in one comer of the same contour-viewing screen.

h) The surface fitting technique was augmented in order to preclude undesirable local minima 

obtained by previous methods, thereby allowing it to be used on SPECT imaging. A multi­

dimensional symmetric space of geometric transformations is globally searched, in a novel 

approach, for the global transformation parameters (at the true match location). Using a 

cumulative distance error instead of a mean distance error provides a sequential process which 

can be terminated at certain mismatch locations. An alternative type of algorithm which uses a 

multi-grid (known as multi-resolution) coarse-to-fine search space to speed up the registration 

process is suggested. Using these two strategies greatly reduces the search effort and makes the 

global search applicable for registration of the medical images, at a reasonable computing time. 

These are the main originalities of the project, being set forth in chapters 6 and 7.

i) Finally, display methods of the registered images and superimposition routine were developed 

which are new in their own approach. The implementation was mostly based on the requirements 

of clinicians in the hospital where the work was performed. In chapter 9, different display 

methods as well as some examples of superimposed images are outlined.

3.4- Material and method

Routine clinical imaging studies were used without any special patient positioning during 

imaging. All the machine parameters and scaling information (e.g. pixel size, field of view, zoom 

factor) were obtained from each imaging system itself. These parameters were examined, 

initially, using a well-defined phantom with known size information. Each imaging system has 

a specific and known coordinate system which defines the image coordinates based on the patient
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directional position inside the imaging system. A typical imaging coordinate system is shown 

in figure 3.8.

Different images can be made available from any imaging modality by applying different 

imaging parameters (e.g. different slice thicknesses, or different pulse sequences in M/?7). The 

following are two main criteria based on which an imaging modality and in turn its images are 

chosen in the fitting process.

viewing screen  
(20 slices) Viewing

direction

>

Transformation

Potient coordinote system

Figure 3.8- A typical imaging coordinate system showing the transformation from patient to image coordinate
system. This image coordinate system is used throughout thesis.

1) The 3-D surface model (objective data) is usually taken from the scan having higher 

resolution, smaller slice thickness, and the one which covers a larger volume of the patient. On 

the other hand, the transforming points are sampled, only at slice level, from the contours of the 

image which have coarser resolution and worse slice thickness.

2) Both the external surface of scalp and brain surface might be visible and thus formed by 

different segmentation techniques. The external surface of the scalp (skin surface) is the most 

commonly used object for surface fitting process, and is readily outlined on most images such 

as CT and MR. Using this external scalp surface is also well suited for automating edge detection 

methods and thus requires little user interface (see section 4.3.3). In general, an effort is also 

made to employ skin surfaces instead of brain surfaces where there is a substantial brain surface
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deformity (such as a hole) in one of the images.

The technique was used to register the MR with MR, PET with MR, SPECT (HMPAO) 

with MR, and CT with MR brain images of a number of patients. Skin surfaces were used for 

registration of MR with MR, MR with PET and MR with CT images. Brain surfaces were usually 

used for the registration of MR with HMPAO brain images. The characteristics of the imaging 

systems and the routine imaging parameters used in the current project are as follow.

MR scans were performed with a 1.5 Tesla Siemens system operated by a VAX host 

computer. Both 3-D FLASH (Fast Low Angle Shot) images and 2-D slices were used and dealt 

with separately. Different imaging sequences and parameters were used, creating T2-weighted, 

T1-weighted or/and STIR (Short Tau Inversion Recovery) images of a pixel size typically in the 

order of 0.70-1 mm (300 mm field of view, 256*256 matrix size and zoom factor of 1.2-1.6). 

Acquisition was typically done with TR=4.0 sec and TE=90 msec for T2, and TR=600 msec and 

TE=15 msec for T1-weighted images, slice thickness of 5-6 mm and a gap of 2-2.5 mm (when 

STIR sequence is used). Transversal slices were usually obtained starting few millimetres (about 

10 mm) from the top of the head, down to the base of skull. MR images obtained by a short 

echo time were used for the detection of skin surfaces. A STIR sequence was used to create 2-D 

fat-suppressed MR image which makes the detection of the brain surfaces easier.

PET images were generated from a PET scanner having eight rings of BGO (bismuth 

germanate) detectors (512/ring) of width 5.6 mm (transaxial). This is a CTI system operating at 

MRC cyclotron unit (in Hammersmith hospital, London). Scans were performed after inhalation 

of C for the measurement of cerebral blood flow. Three other different studies were 

routinely done using O, or CO for emissional tomography, and ^Ge (Germanium) for 

transmissional information which is used for attenuation correction. 2-D transversal slices of 6.75 

mm thickness and 4.69 mm pixel size were reconstructed, on a 128*128 matrix, from the vertex 

to the base of skull. The physical resolution of the machine corresponds to a full width half 

maximum (FWHM) of 6 mm (Spinks et al 1988). The surface of PET data was obtained from 

the transmission data set which are usually acquired during scanning for attenuation correction 

purpose. The external surface can also be defined from emission data as the outer envelope of 

the emission distribution detected under a threshold-based segmentation technique.
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SPECT images were created by an Elscint SP4 SPECT system using (Technetium) 

labelled radiopharmaceuticals. The actual resolution of the system is about 7-10 mm at FWHM 

(at 10 cm in depth). The data were acquired after injection of HMPAO (hexamethylpropylene 

amine oxime) and the transverse scans were reconstructed with a slice thickness of the same 

pixel size. A matrix size of 64*64 gives a pixel size of about 6 mm at a zoom factor of 1, which 

was used to obtain 2-D slices. External surfaces from the SPECT can be defined as the outer 

envelope of the emission distribution detected by setting of a threshold value. However, decisions 

on threshold value and the type of threshold selection technique are very important factors in the 

accuracy of the detected objects (brain surface). Our experiments to achieve the best result are 

outlinec. in section 4.3.5.

Contiguous CT transverse scans were performed with a T60 Toshiba CT machine using 

system setting of 240 mm field of view and 5 or 10 mm slice thickness. Using a matrix size 

320*320 and zoom factor of 1 gives 2-D slices having a pixel size of 0.75 mm. For viewing 

purpose, the original high-grey-level data (represented by a 16-bits value) were scaled to a grey 

level of only 256 (correspond to 8 bits) due to the limitation of our system. CT images are 

characterized by a distinct skin tissue image adjacent to a low noisy background. Therefore, 

surface detection is usually easy and relatively trivial on the CT data.

3.5- Verification

Registration of some well-defined clinical head images was performed to verify the 

accuracy of the present surface fitting method. Since phantom studies were done and analyzed 

in detail by Pelizzari and Chen 1989, and our objective was to use more realistic clinical 

situation, the verification was obtained by various clinical and simulated data. Three different 

types of well-defined data were used for this assessment.

(1) A set of high definition MR data was employed initially, and a known transformation (3- 

D tilt and shift) was applied. The data were then degraded and incorporated with noise to 

simulate some PET or SPECT images. An effort was made to register these simulated data to 

the original ones and the algorithm response and misfit values were measured.
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(2) Different images (scans) of one volunteer patient were also obtained by setting of some 

arbitrary geometric changes (such as setting combination of slice-selection gradients in different 

orthogonal directions to rotate the image in different directions) on the system while the object 

itself did not move or tilt between the different studies. The top image shown in figure 3.7 

demonstrates the registering regions of head on an example of this data type.

(3) Finally some external landmark studies were used and the results of the current 

registration were compared to those of the landmark studies.

The results obtained from these known misregistered simulated data are presented in 

section 3.6 and also in chapter 8. The limiting factors in accuracy of a match are the large pixel 

size, the limited resolution, and the large slice thickness. Accordingly, accuracy (as the minimum 

mismatch value) is expected to be not worse than the larger voxel size of the two registering 

images. However, interpolation and scaling of the coarser data set to the same size of the high 

resolution data, decreases voxel size and thus increases the accuracy.

3.6- Results and discussion

The results presented in this section are based on the well known data sets introduced in 

section 3.5. The geometric and directional information of such data types is known in advance, 

and thus provides a well-defined data set for the evaluation of the algorithm. The aim of this 

section is to show that the surface fitting algorithm and the type of mismatch function which is 

minimized during the process, are efficient for obtaining a proper registration.

3.6.1- Sensitivity of distance function to geometric transformation

In order to assess the behaviour of the least square distance function to the individual 

transformation parameter, a set o f experiments was designed. In these experiments, sets of well- 

defined registered surface data were used. These surfaces were then misregistered by a set of 

transformations (-15 to +15 voxels shift or/and -15 to +15 degrees rotation), and the mismatch 

values (MDE) were calculated.
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Technique MSD Value
RxT" Rx"̂ Ry^ Ry^ Rz^ Rz"-"

Random samples 
from region V2

1.6 2.8 0.65 0.89 1.0 1.81 0.48 0.71 1.3 2.95 0.31 0.39

Random samples 
from region V I

1.8 3.5 0.82 1.49 1.1 2.15 0.55 1.13 1.4 3.45 0.42 0.76

High Curvature 
points

2.0 2.4 1.45 2.15 1.1 1.85 0.55 0.75 1.6 2.7 0.51 0.65

Low Curvature 
points

1.2 2.1 0.45 0.65 0.9 1.35 0.40 0.66 0.8 1.95 0.26 0.33

Region VI is the whole head surface obtained from the subject scan.
Region V2 is the head surface excluding face (eyes and below-eyes region).
The shifts or rotations in different directions are expressed by X,Y, Z, Rx, Ry and Rz.
MDE denotes the mean distance error (value).
Superscriptions :
—» denotes one unit of transformation-parameter change applied at a near match location.

denotes one unit of transformation-parameter change applied at a certain mismatch location.

Table 3.1- Showing the effect of different sampling strategies on sensitivity of the distance ftmction to one unit of 
transformation (in x, y or z) for MR-MR registration.

The results of these experiments are presented in figure 3.9, 3.10 and 3.11. For type of 

object which we are interested in i.e. the head which is almost symmetrically spherical with a 

radius of about 150 mm, figure 3.9 shows that the distance function is less sensitive to rotation 

than it is to translation (shift). However, it has a sharp single minimum when two surfaces are 

truly matched. Figure 3.10 shows the relative response of the rotation and shift at each direction, 

X, y and z. In general, it is desirable that the change in MDE value becomes high even in case 

of a minor transformation. As revealed by some of our experiments, the sensitivity of the 

distance function is influenced by the position, characteristic, and the number of sample points. 

The results obtained by varying the first two factors are presented in table 3.1. The number of 

points required is assessed in section 3.6.2 and also in chapter 8. As shown in this table, the 

change induced by one degree shift or rotation in each direction confirms that the sensitivity is 

highly dependent on the position and type of sample points. The sampling restricted to the 

regions of the head apart from eyes and face shows a better performance than the whole head 

in term of the sensitivity. The high-curvature features (points) are also shown to have a much 

better sensitivity compared to the low-curvature features.

The graph in figure 3.11 is based on the changing all six transformation parameters by 

the same value (i.e. a shift or rotation within the limit of -15 to +15 degrees rotation, or voxels
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shift). Although a sharp global minimum is visible, like the one obtained by changing the 

individual parameters, the situation is more complex in the real minimization circumstances, 

when any combination of these parameters may be applied. This complexity is due to the 

existence of a large number of transformations between -15 to +15 (i.e. of the order of 31® for 

various combination of 6 parameters) which, in turn, may lead to a large number of local 

minima. These local minima are shown in figures 3.12a-d for different sizes of transformations 

in X, y and z direction. Note that, in figures 3.12a-d, the parameters are changed by the stated 

steps (see the caption on the figures), but by changing one parameter at a time. When all the 

steps of one parameter are applied, the process is continued by changing the next parameter. As 

shown in these figures, there is a number of local minima, for example, even when the two 

surfaces are misregistered by 180 degrees rotation. These results indicate the crucial need for the 

initial manual registration, based on the knowledge of the system parameters and visual 

inspection.
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Figure 3.9- Graphs showing the response (sensitivity) of the distance function to each individual transformation 
parameter. MDE denotes mean distance error.
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MDE values at -15 to +15 voxels shift or -15 to +15 degrees rotation in x, y, 
and z directions for MR-MR registration
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Figure 3.10- The relative response (behaviour) of the distance function (as MDE) to different geometric 
transformations.

MDE values for -15 to +15 voxels shift and -15 to +15 degrees rotation In x,
y and z directions
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Figure 3.11- The response of MDE to the combination of transformations in all directions (i.e. the same value of shift 
and rotation applied between -15 to +15).

55



-180 to 180 degrees rotation at 
step=45

-45 to +45 degrees rotation at 
step=15
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Figure 3.12- The distance values (MDE) at different combinations of the geometric 
transformation around the true match location. The parameters are changed between 
the two extremes by the stated steps. In these intervals, one parameter is 
changed at a time. The next parameter is changed only when all the steps of the 
previous parameter is completed. The arrows indicate the global minimum (true 
match location).
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3.6.2- Accuracy and cost assessment

The accuracy and cost of applying the surface fitting algorithm are presented in table 3.2. 

The accuracy can defined as the minimum mismatch value obtained by the registration process 

(see section 8.3.4). The results presented in this section are based on the first type of data sets 

introduced in section 3.5. The original MRI data and the simulated PET and SPECT images were 

arbitrary misregistered in order to generate a number of well-defined misregistered data sets. The 

results shown in table 3.2 are obtained from two types of local minimization algorithms: the 

direction set method of Powell^ and conjugate gradient method of Fletcher-Reeves (e.g. 

FRPRMN){sqc. section 5.3.1 and 5.3.2). As shown in this table, the process may not converge 

to a global minimum, due to an early detection of a local minimum. This response depends 

highly on the relative location (i.e. in relation to the actual required transformation for the true 

match) from which the minimization starts. As shown in table 3.2, starting the local search at 

different locations (i.e. different initial transformation) can change the efficiency of finding of 

the global minimum. The results presented in each group-transformation in this table, include 

different starting transformations (denoted by subscription lA, IB, or IC) among which some lead 

to a match, some to a mismatch. As suggested by previous workers, a number of re­

initializations can be employed to guess a new initial set of parameters when detecting a local 

minimum, thus re-starting the process from the new location. This is one of the main 

disadvantages of the local minimization process since it relies on the manual interaction of the 

operator. Accordingly, the process is user-dependent, and the convergence is undesirably 

prolonged.

As shown in table 3.2, the accuracy obtained by MR-to-MR registration is of the order 

of 1 voxel (corresponding to a transformation error of 1 voxel shift or 1 degree rotation). This 

accuracy increases to about 1.5 voxels for MR-io-PET registration and 2.5 voxels for MR-to- 

SPECT registration. These correspond to an error of about 1-2 voxels in shift or 1-2 degrees in 

rotation for MR-to-PET registration, and 2-3 voxels in shift (or 2-3 degrees in rotation) for MR- 

to-SPECT registration. The timing response of the process was shown to be better for the Powell 

method (which is about 300 seconds) than it is for the FRPRMN^s (about 360 seconds as 

averaged). The number of points was also shown to influence the accuracy and cost of the 

minimization. As the number of points increases, the accuracy improves but the cost expectedly 

increased.
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Table 3.2- Showing the expected accuracy (as the minimum obtained distance error), and cost of the surface fitting using 
the Powell and FRPRMN minimization methods.

Application Original 
TP Differences 

x,y,z Rx,Ry,Rz

Errors in TP 
after Registration 

x,y,z Rx,Ry,Rz MDE
Time

Data Method Scheme

R3 _ 5,8,10 - 0 ,1 ,0 0 .8 8 75
S3 5,8,10 - 0 ,0 ,1 - 0 .2 115

T.A 5,8,10 5,8,10 2 ,2 ,1  -2,-3,-5 3.35 980
T.C 5,8,10 5,8,10 0 ,0 ,2 - 1 ,1 ,0 1 .2 2 140

T.A 5,5,5 0 ,0 ,0 0 ,0 ,0 0 ,0 ,0 0 .0 0 70
Tu 5,8,10 0 ,0 ,0 - 1 ,-1 ,0 0 ,0 ,0 0.25 370

MRI Tb 5,8,10 0 ,0 ,0 l,-3,-3 2 ,2 ,1 1.80 500
With Powell
MRI Tu 0 ,0 ,0 5,5,5 l,2,-4 - 1 , 1 ,1 2.19 150

Tu 0 ,0 ,0 5,8,10 l,0,-4 -3,-3,l 2.67 750
Tb 0 ,0 ,0 5,5,5 0 ,0 ,0 0 ,0 ,1 0.80 114
TB 0 ,0 ,0 5,8,10 0 ,0 ,1 0 , 1 ,1 1.32 180

T . 0 ,0 ,0 5,5,5 0 ,0 ,1 0 , 1 ,0 1 .2 2 250
T . 5,5,5 5,5,5 0 ,0 ,- 1 1 ,-1 ,0 0.90 230
T . 5,8,10 5,8,10 - 1 ,0 , 0 - 1 ,1 ,0 0.97 370

T50 5,8,10 5,8,10 - 1 ,-1 ,0 0 ,0 , 2 1.47 180
T|00 5,8,10 5,8,10 0 ,0 ,1 0 , 1 ,1 1 .0 0 250
T200 5,8,10 5,8,10 - 1 ,0 ,0 - 1 , 1 ,0 0.97 370

Tu 5,8,10 _ 0 ,0 ,0 - 0.03 2 2 0

FRPRMN Tu - 5,8,10 - 2 ,0 , 0 0.50 2 0 0

T . 5,5,5 5,5,5 0 , - l ,0 0 , - l , l 0.79 480
T.C 5,8,10 5,8,10 0 , - l ,0 0 ,0 ,- 1 0 .6 6 290

MRI Powell T . 5,5,5 5,5,5 0 ,1 ,-1 - 1 ,-1 ,1 1.42 323
With T„ 5,8,10 5,8,10 0 ,2 ,0 0 ,0 , - 2 1.60 280
PET

FRPRMN T . 5,5,5 5,5,5 0 ,0 ,2 1 ,2  0 1.75 322

MRI Powell T„ 5,5,5 5,5,5 0 , 1 ,2 0,0,3 2.45 235
With .T . 5,8,10 5,8,10 1 ,0 ,2 1 ,-1 ,1 1.95 320

SPECT
FRPRMN T . 5,5,5 5,5,5 0 ,0 ,2 - 1 ,2 ,0 2.30 280

R]= Only 3 rotations arotmd x, y and z axes were used. S3= Only 3 shifts were used. 
Tja= Initial transformation of 0 was used for shifts x, y, z and rotations Rx,Ry,Rz. 
Tg= Initial transformation of -10,-10,-10,0,0,0 was used for x,y,z,Rx,Ry,Rz.
Tic= Initial transformation of 15,15,15,15,15,15 was used for x,y,z,Rx,Ry,Rz.
T;q= 50 sample points were used for the registration.
Tjoo= 100, and 200 sample points were used for the registration.
MDE denotes the mean distance error between the two registering surfaces.
T„= Manual alteration of the transformation was applied at a false local minimum. 
(Note that simulated PET and SPECT data (see section 3.5) were used).
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3.7- Summary

Firstly, the general technique of the surface fitting as defined by other workers was 

described in this chapter. A number of improvements to the general surface fitting algorithm was 

suggested in section 3.3. One of the key improvements is due to the use of a global minimization 

algorithm which increase the accuracy of the registration. After defining the surface fitting 

algorithm, a strategy to achieve the registration in a reasonable duration of time remains 

essential, and is still unexplored. These aims have led to two novel approaches, sequential and 

multi-grid registrations, which are discussed in chapters 6 and 7.

The imaging parameters and data types used through this project were also introduced 

in this chapter. The characteristics of the imaging systems introduced here are conventional in 

most medical departments. Thus, they can provide some image models for verifying the 

applicability of the different aspects of the registration process.

The methods used for the verification of the algorithm and the different well defined data 

sets used for this purpose are also outlined in this chapter. Based on these data, the technique 

was verified and its results are presented in section 3.6. It has been shown that the type of 

mismatch function (e.g. LSD) and, in turn, the surface fitting algorithm, are capable to register 

two clinical data sets by producing a reasonably small mismatch between them. However, a 

number of local minima may still exist, for which care needs to be taken. The sampling strategy 

(e.g. position and number of sample points) was also shown to influence the behaviour and 

sensitivity of the distance function. It was shown that the accuracy depends on the resolution of 

data sets and thus varies with the types of imaging studies. This accuracy was shown to be of 

the order of the average pixel size of the two original grey-scale images.
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CHAPTER 4 

SURFACE RECONSTRUCTION

4.1- Introduction

The main task and major application of the surface reconstruction technique, in this 

project, is found in recovering the 3-D external envelope of objects used in the registration 

process (surface fitting). Some reconstruction techniques involve 3-D boundary following 

whereas in some others only slice-level boundary detection is required. The later needs to be 

complemented by a surface formation process between the contours of successive slices. The 

major difference between a number of surface reconstruction methods lies in the method of 

interpolation applied between the contours of successive slices.

A stacking up process is the simplest surface formation method achieved either by 

replication of contours or for example by a more complicated method such as dynamic elastic 

surface interpolation. In the later approach, as suggested by Lin and Liang 1988, a shape 

specifying function is used to define the intermediate contours. A 3-D boundary (surface) 

following algorithm has also been introduced in different approaches; by tracking the voxel faces 

(Herman 1979, Artzy et al 1981) on a binary thresholded 3-D image, or by a 3-D edge detection 

schemes (Liu 1977). A triangulation-based technique was suggested by Kepple 1975, for 

approximating a closed surface between two contours. These techniques have been extensively 

improved by other workers (Fuchs 1977, Wang & Aggrawal 1985). Alternatively, sectional 

curves can be represented by parametric equations (e.g. B-spline), and then the surface is 

interpolated by cardinal splines (Gordon 1969, Wu & Greenber 1977).

Surface reconstruction consists of several stages as discussed in this chapter. In general, 

these can be defined as surface representation, segmentation, and surface formation. Section 4.2 

discusses different representation methods. The criteria for selecting an optimal representation 

method is outlined in section 4.2.1. Sections 4.2.2 and 4.2.3 give an overview of the various 

object (surface) representation methods and data structures. Section 4.2.4 outlines the 

representation methods used in the current project.
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Two dimensional segmentation and edge detection methods are addressed in section 4.3. 

Grey level thresholding and gradient based methods are described as the basis of edge detection 

methods in section 4.3.2.1 and 4.3.2.2, respectively. The edge detection algorithm used in most 

of applications of the current work is outlined in section 4.3.3. In this respect, curvature 

measurement and a ’desirability’ test known as the circularity check is described in section 4.3.4.

Surface formation needs to be applied where a series of 2-D contours are initially 

detected from the original cross sectional images. Different surface formation methods are based 

on the choice of the appropriate representation method to define an object, and image 

characteristics. Three different interpolation methods are described in section 4.4. These are 

known as linear interpolation^ triangulation, and shape based interpolation as addressed in 

section 4.4.2, 4.4.3, and 4.4.4, respectively.

Section 4.5 describes the surface reconstruction of the SPECT images which are deformed 

by some tumours and abnormal structures. The problem of the correspondence between the 

registering points of the two surfaces in the deformed region, and some techniques to resolve 

these problems are discussed in this section. A summary of the surface reconstruction methods 

and their advantages and disadvantages are given in section 4.6.

4.2- SURFACE REPRESENTATION

4.2.1- Introduction

The measurement of the geometrical properties of an object (e.g. size, shape, 

connectedness) depends on how the object is represented. The problem of finding an effective 

and practical representation is primary to any 3-D object reconstruction scheme. The following 

are a number of criteria that must be satisfied in order to give an accurate and reliable 

representation for use in the matching process.

a) The representation must be computable in a practical situation where a large amount 

of data exists. These data require a large storage requirement and thus a large number of 

calculation are involved in handing such data.
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b) The representation should easily manipulate the complexity of an object (i.e. medical 

object) and level of details required for the matching process.

c) The representation should be sensitive to any undesirable geometrical change made to 

the object. This means that it should reflect any undesirable mismatch between two images of 

one object taken under different imaging parameters such as position, viewing angle, and 

zooming factor. It is very important for determining a unique solution of the positioning problem 

for the registration process that the representation of the object be invariant under certain 

transformation parameters (rotation and translation).

d) Uniqueness in specifying a single object inside the image data coming from both 

imaging modalities is essential during the matching process. It prevents matching an object 

against other undesirable (different) objects.

A 3-D object in a scene can be thought as a function f(x,y,z) of three real variables (x, 

y, and z position in 3-D space), having a value even for a very small portion of it. However, due 

to the lack of ideal imaging facilities and computer hardware, only a discrete scene comprising 

a number of voxels (volume elements) is normally represented. Accordingly, the density assigned 

to a voxel [x,y,z] in a 3-D array is an estimate of the average value of f(x,y,z). The object of 

interest, in scene, occupies some of those voxels totally, some of them partially and miss the rest 

of them (in background). In the current project, these density values, themselves, were not 

considered to be important because the geometry and position of objects inside the scene were 

used as primitives for the registration process. This information can be extracted from a binary 

segmented object or from its edge data, and thus the representation problem is reduced to that 

of representing a simple binary scene or border information.

4.2.2- Overview of the representation methods

Among the different methods o f object representation, the following are frequently used 

in computer graphic  ̂and pattern recognition.

a) Parametric representation, in which a shape type and a set o f parameter values 

(mathematical equations) are used to specify an object. Parametric bicubic patches are

62



commonly used for representation of 3-D surfaces. Three mathematical equations (one for each 

X, y, and z ) are used to define the coordinate of points on a curved surface. Each equation has 

two variables (parameters) defining the position of each point on the bicubic patches. Hermite 

bicubic patcheSy Bezier bicubic patches and B-spline bicubic patches are three different 

approaches to the parametric representation.

b) An object can also be represented by a list of cubical or non-cubical spatial cells 

{spatial numeration) in three dimensional space. These cells represent a discrete 3-D scene 

containing the object of interest. The scene region, in this representation, is considered to be a 

rectangular region subdivided by three orthogonal planes into smaller rectangular volume 

elements (voxels). The object in the scene is defined as a collection of connected voxels and can 

be represented either by the voxel itself (volume-based method), or by a set of voxel faces laying 

on object surface (surface-based methods).

Volume-based methods have been proposed by Meagher 1982 who described the object 

as a set of voxels in 3-D scene. The object can be represented and recorded as a 3-D array of 

voxels (Oswald 1983, Barillot 1985), an octree (Jackins 1980), or a sequence (list) o f voxels 

laying on the object surface. Here, a priority order among the voxels is defined as an important 

approach for data access during registration or visualization.

Surface-based methods were first proposed by Herman and Liu 1977 and evaluated by 

Artzy and Frieder 1981. They represented an object by its surface, which is the set of all the 

voxel faces separating voxels inside the object from voxels outside the object in background. 

They defined connectivity and adjacency criteria for describing objects and their surfaces. The 

set of all the closed faces obtained in this way are represented and recorded as a sequence of 

voxel faces.

c) Finally, boundary representation treats the object as an enclosing surface (planes, 

quadric surface, patches, etc). Polygon meshes (or patches) are sets of connected planar surfaces 

(polygons) which approximately represent a curved surface (Keppel 1975). The disadvantage of 

this technique in some applications, however, is that it does not satisfy the criterion (b) required 

to represent the complexity and details of some medical objects.
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In practical situations an object (or object surface) can not be represented exactly by all 

its details. This is due to the fact that only a limited number of points (e.g. integer variables) are 

defined by any representation. Even mathematical surfaces, in spite of their efficiency, may 

exactly represent the surface only at a set of points picked out on the object. Therefore, all 

surface representations are considered to be only an approximation of the surface of interest

The representation capabilities of most of the above techniques are poor in satisfying all 

of the criteria outlined earlier especially that of the effectiveness in handling the details of 

complex medical objects. The volume-based approach was adopted, by which the level of 

information (details) is comparable to that of the original 2-D slices. However, a fine level of 

details can not be recaptured at the interslice spacing when the thickness or interslice gap is 

large.

4.2.3- Overview of data structures

The object of interest (e.g. surface) can be described by one of the following common 

data structures.

a) 3-D binary arrays: are 3-D arrays of O’s in background and I ’s inside an object or on 

the object surface. Good reliability and data access is achieved by describing the object by 3-D 

binary arrays, although this has to be paid for by use of a huge unnecessary data volume.

b) Run length representation: is slice-by-slice, row-by-row representation which treats 

the object as a collection of binary segments (Merrill 1973). Only the left and right end-points 

of all segments which represent a continuous run of object voxels (1-voxels) are recorded as a 

sequence of integers for further processing. The data accessability of this method is poor and it 

is not efficient for data registration.

c) Borders: is also a slice-by-slice representation in which the borders of object are 

represented by a sequence of voxels. In 3-D, the positional information of each voxel of the 

border (x, y and z coordinate information) are stored in a sequential list of elements. In a similar 

approach directed contours can be used which assign the directional information to the contour.
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A variant of this representation deals with the border (e.g. in 2-D) as a sequence of moves 

originating from an arbitrary starting point and moving to one of the neighbours in some 

specified direction (Freeman 1974). The moves are recorded as a sequence of numbers (codes), 

where each number (0-7) correspond to one of the eight neighbours of the current point in 2-D. 

Restricting the moves to up, down, left and right is referred to a chain code. Diagonal moves can 

be added to the chain code in a type of structure called crack code.

d) Octrees: The 3-D scene is recursively subdivided into eight sub-scenes until each sub­

scene is either full (inside object) or empty (out side object). The result is represented as a tree 

structure containing a number of nodes. The main disadvantage of this representation is that it 

is highly variant with respect to any transformation in that any small transformation (e.g. shift) 

may give a very different octree. Thus, it is very complicated to extract positional information 

with respect to the registration process.

Two important factors which effect the choice of an efficient data structure are the size 

of physical memory and the accessability required during the manipulation of an object (e.g. 

surface). The storage (physical memory) available in computers in the medical environment is 

sometimes smaller than the memory required for manipulation of two 3-D binary images of size 

256*256*256. Using a list of surface data (x, y, and z coordinates of surface voxels), on the 

other hand, in a consecutive fashion does not provide a directly addressable memory where it 

is necessary to search for a specific voxel in 3-D scene. Some other pointer and block structure 

are needed in order to generate a number of smaller addressable blocks or lists of data (Frieder 

1985).

4.2.4- Representation method

The 3-D binary array has been used as the main data structure. An auxiliary data 

structures, a 2-D plane map was constructed to speed up the data checking (search) procedure 

and to reduce the size of memory allocation. The plane map has two indexes (x and y) identical 

to two coordinates of the 3-D scene. The value of each point in the plane map indicates whether 

or not the surface is passed through any depth (z coordinate) of the particular x and y location 

(coordinate). The value of 0 is assigned, if a surface does not pass through it, otherwise, a non­

zero value is assigned to P(x,y), indicating the number and position of the surface points in z
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Voxels along z direction

Surface
Fbints

3-D Image

B ina ry  r e p r e s e n t a t i o n  ( b i t s )  of  
t h e  v a l u e  c o r r e s p o n d i n g  to  t h e  
V o x e l s  t h r o u g h  t h e  o b j e c t .

Figure 4.1- Schematic diagram showing a binary representation of the voxels in 
a 3-D image. The binary number corresponds to the voxels along z-direction
(shaded voxels and I's represent the surface points).

direction a long the line from  each (x ,y) coordinates. In this respect, one bit is  a llocated  in respect 

o f  each binary v o x e l in 3-D  array (see  figure 4 .1 ). The v o x e ls  (e .g . 256  v o x e ls)  along z direction  

o f  a 3-D  array can then be expressed  by one or m ore integer va lu es corresponding to e .g . 256  

bits. In order to a ccess (or search) the surface v o x e ls , the integer values can be d ecod ed  into a 

binary num ber (or processed  by a bit m anipulation operation) sh ow in g the bits w hich have been  

set corresponding to the position  o f  surface points.
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4.3- 2-D SEGMENTATION

4.3.1- Introduction

Segmentation aims at isolating regions which consist of a contiguous collection of voxels 

(volume elements of an image) with different characteristic to their surrounding area. Let us take 

as the characteristic ’grey value’. Therefore, an edge, as a local feature, occurs where this grey 

value changes as the border between two adjacent extensive regions is crossed. It should be 

stressed that the grey level change depends, not only on object characteristics such as attenuation 

coefficient in CT, or radioactivity uptake in Nuclear Medicine, but may also be affected by 

partial volume effect due to surface slope, and noise in the image.

Different edge detection algorithms have been developed using different specifications 

and properties of an image. The edge detection technique suggested by Prewitt 1966 specifies 

grey level as this property and uses threshold to discriminate histogram peaks and valleys. Grey 

level uniformity was specified as a property by Brie and Fennema 1970. The use of derivative 

operators for edge detection dates back to 1955 and was proposed by Kovasznay and Joseph. In 

a similar approach, Ausherman 1972 suggested the maximum derivative of grey levels along one 

direction as a property. Step-fitting edge detection was used by Hueckel 1971. However, this was 

believed to be not an easy or suitable technique for boundary detection of complex images. An 

optimization approach to edge (curve) tracking was introduced by Montanari 1971 and Ballard 

1973 who defined a decision function based on prior knowledge of the boundary. This function 

is minimized or maximized in a iterative method giving the minimum cost paths for the best 

boundary point selection. In general this method is computationally expensive due to its iterative 

nature.

In some complex images, using a single local property does not provide enough 

information to classify the pixels of the image. A more powerful technique needs to be defined 

for example using several local properties of a pixel itself and/or of its neighbouring pixels. For 

example, a threshold criterion can be used to determine whether the gradient value is large 

enough to accept or reject the presence of an edge point.
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The boundaries can be defined as an ordered and connected subset of all pixel elements 

in an object, having some specified properties. These boundaries can be obtained by several 

stages of more advance segmentation processes. In this approach, the boundary of an object can 

be extracted by attempting additional segmentation processes based on connectivity (Herman and 

Liu 1977), size, and shape criteria (e.g. "circularity' as defined in section 4.3.4) on a pre­

segmented edge image (using threshold or gradient operators).

Some of the above techniques can be applied either in a sequential or in a parallel 

approach, whereas some, such as boundary tracking methods, are inherently sequential. When 

using a sequential approach, the criteria for accepting a boundary point depends on the 

information obtained from earlier processing of other points. In a parallel approach, the decision 

made at each point is usually independent of the decisions at other (neighbouring) points. The 

successive iterations required for adjusting the decision to select an edge point make the parallel 

segmentation slow and computationally expensive. In contrast to the parallel segmentation, the 

sequential methods in which the decision at each point is made only once, are much faster. 

However, the sequential processes may require a further decision-making (i.e. backtracking 

process) at any detected edge point if an error is detected during the tracking stage. 

Consequently, it is desirable that a boundary detection technique, as defined by Liu 1977, be a 

single stage, sequential-type method and use some (voxel) properties to guide the boundary 

search in a small space.

4.3.2- Edge detection methods

As shown in figure 4.2 an ideal edge has a steplike cross section, which almost never 

occurs in a normal noisy and coarse resolution image. The lack of perfect resolution in an image 

affects the size of the blurred region substantially. Partial volume effects, also, produce an 

uncertainty in the location of object edge. Thus, the important question is where exactly the 

actual object edge occurs in this blurred region. The decision to use a threshold-based method 

or a gradient-based operator to extract some features, such as object edges, is the most important 

stage of boundary detection. Density thresholding is frequently used in most applications. 

However, it is believed (Rosenfeld and Kak 1982) that gradient methods lead to a more precise 

edge detection. In both cases, further edge processing may be needed, in order to validate the 

detected contours by studying the relation of some neighbouring points and angle between them.
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This is the objective of the circularity 

assessment as described in section 4.3.4.

4.3.2.1-Grey level thresholding

Thresholding is a widely used 

technique in image segmentation. It is used 

where an image has a low contrast. A variety 

of techniques based on grey level histograms 

have been proposed for automatic threshold 

selection (Prewitt 1966). Local thresholding 

(Katz 1965, Wolfe 1969, Morrin 1974) is

Object

applied where uneven illumination (grey level Figure 4.2- Intensity change across an edge; à) perfect
step edge, b) Noisy and blurred edge.

value) exists in different parts of an object.

This method depends on some local properties (e.g. edge value [Katz 1965, Morrin 1974], or 

neighbourhood grey level [Wolfe 1969]) of the point itself, or a window around the point. The 

grey level information is also used with edge strength information to improve the grey level 

histogram forming two distinct peaks (regions) for threshold selection (Katz 1965, Weszka 1974).

4.3.2.2- Gradient based methods

Wherever an intensity change occurs 

(e.g. edge), there should be a corresponding 

peak in the first directional derivative (Figure 

4.3), or equivalently a zero-crossing in the 

second directional derivative of intensity. 

Therefore, the task of detecting edges can be 

reduced to that of finding the peak of first 

derivative, or the zero-crossing of the second 

derivative.

The gradient is a direction dependent 

operator. The gradient in any direction 0 

(measured from the X-axis) is given by

Figure 4.3- a) First, and b) second derivative across the
edge shown in figure 4.1.
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df/dx' = (3f/3x)cos 0 + (3f/0y)sin 0

where 3f/3x and 3f/3y are the rate of change of the function (f) in two perpendicular directions 

(x and y), and x' expresses that the direction 0 is measured from x-axis. The direction of 

maximum gradient magnitude (edge) is then given by arctangent operation, Tan'^[(9f/9x)/(9f/9y)], 

and the magnitude itself is defined as V[(9f/9x)^+(9f/9y)^]. This magnitude is used where no 

directional derivative, as a measure of edge inclination, is necessary. The maximum of the 

absolute value between two directional gradients (e.g. perpendicular gradient) may also be used 

to represent the maximum gradient. For a 2-D digital image the following difference operations 

(e.g. Rooerts A+ and A. (Gonzalez & Wintz 1977)) are used to define the gradient (Af) of image.

A+f(x,y) = f(x-Hl,y4-l)-f(x,y) Af(x,y) = f(x,y+l)-f(x+l,y)

A^f(x,y) = f(x,y)-f(x-l,y) Ayf(x,y) = f(x,y)-f(x,y-l)

A^ f̂(x,y) = f(x-Hl,y)-f(x-l,y) A2yf(x,y) = f(x,y+l)-f(x,y-l)

The Laplacian filter (V^f) which is an direction-invariant operator of the second 

derivative, can also be used as an edge detector. This can be expressed as

V^f=[f(x+l,y) 4- f(x-l,y) + f(x,y+l) 4- f(x,y-l)] - 4 x f(x,y),

which responds on each side of an edge, where there is a change in the rate of change of grey 

level (Top and bottom shoulders of a ramp as shown in figure 4.3b. It is useful where no 

directional information is desirable in the image. However, this type of the simple Laplacian is 

very noise sensitive and thus it is not normally used for boundary detection.

It is possible to reduce the effects of noise on the response of an operator by smoothing

the picture before applying the operator. Using the average at adjacent pixels before taking

differences leads to weakening the edge, since the neighbourhoods for the pixels overlap and

therefore the differencing will cancel out the common values (Rosenfeld and Kak 1982). Some

operators for the difference o f averages have been introduced which take into account some

adjacent but non-overlapping neighbourhoods. The following convolution filter is one of these

operators. -1-1  1 1
1 - 1 1 1
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The blur produced by the above operator, can be sharpened by suppressing non-maxima, 

over a distance less than the size of averaging neighbourhood, in the direction across the edge. 

Weighted averaging can also be used which gives greater weight to points lying closer to the 

central pixel (x,y). It gives a reasonable smoothing power reducing the effect of noise on edge 

detection (e.g. Sobel gradient averaging operator).

- 1 0 l" ' 1 2 1
1 / 4 - 2 0 2 1 / 4 0 0 0

- 1 0 1 - 1 - 2 - 1

4.3.3- Algorithm

Both, grey level thresholding and gradient based methods are used to detect edges of an 

object. The process is designed to switch between these two methods based on the characteristics 

of the image. In general, the same algorithm is used to track a boundary of an object using either 

types of edge detection.

The threshold methods are used where the edges of an object (e.g. brain) are too blurred 

and the image contrast is low. In complex medical images with a wide range of object grey 

levels, it is not possible to have a bimodal histogram from which the threshold be defined. In 

order to select a global threshold, two blocks having low variability were manually chosen, one 

from inside the object and from background. The average grey level of each block is used as the 

grey value of the histogram peak of the corresponding region. The threshold is then defined at 

the valley between the two peaks by calculating the mean value of them.

The gradient methods are used to detect the edges in a high contrast image such as MRI. 

In order to track a boundary, an edge direction map is used as well as the gradient magnitude 

(Robinson 1977). A set of compass gradient masks (see figure 4.4) which generalize the Sobel 

operator is formed by rotating the two masks expressed in the previous section, in eight 

directions. Note that, only the first four masks are sufficient to obtain both the gradient and the 

edge direction information. In general, these operators provide the difference of the weighted 

average which is desirable, as discussed in the previous discussion.

The edge direction map is also used to examine the local connectivity of the edge points.
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As shown in figure 4.4, eight 

principal directions (k=0,...,7) 

exist in edge direction map tested 

by the compass masks. As a 

definition (given by Robinson 

1977), if the direction at the 

centre of the 3*3 grid shown in 

figure 4.5 is k, then the edges are 

connected provided the directions 

of the proceeding and succeeding 

edge vectors are k-1, k or k+1. 

This means that the direction of a 

boundary point is not more than 

90 degrees from the direction of 

the previous or next boundary 

point. The connected neighbours 

of pixel P(i,j) are defined as

r s
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Figure 4.4- Compass gradient masks (of Sobel operator) used in edge 
detection process. The 8 directions shown in the centre are obtained by the 
compass masks and used for edge direction map.

Np(ij)={P(fi»m)I 0<Max( | i-fi | , | j-m | )<1, 

where 6 and m correspond to (x,y) coordinates of any neighbouring pixel.

The boundary detection algorithm used in the current application was a sequential type 

process based on three criteria; edge direction map, gradient magnitude, and connectivity. 

Curvature information was also used as a shape based criterion to examined the detected 

boundaries based on a priori knowledge of the object boundary. The algorithm is outlined in the 

following sub-sections.

1) An initial boundary point is picked from a manually selected box in a high contrast 

region around the edge. The point which has the maximum compass gradient value is firstly 

selected from inside the box, and is placed on a boundary list.

2) The edge direction is defined at the current boundary point based on the compass
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gradient masks. For the next point, only 

the neighbouring points which might 

satisfy the connectivity criterion are 

examined (i.e. tracking algorithm). This 

reduces the number of candidate 

connected neighbours to three points for 

each element.

3) The point which has the 

maximum compass gradient value is first 

selected and compared with a pre-defined 

threshold. Then, it is considered as a 

candidate for the boundary if it has a 

gradient value above the threshold, and 

has not been previously marked as a bad

> 0

Figure 4.5- Shows the connectivity criterion of edges in respect
to the central pixel. The direction map shows eight principal 
directions of the edge at the central pixel.

point. All other neighbouring points on the track are stored in a separate list known as the 

backtracking list if their gradients are also above the threshold.

The threshold is measured using the mean gradient value of a high contrast region (box) 

on the object boundary where the tracking starts. This threshold can be updated locally as the 

boundary of the object tracked sequentially. T is defined as T=aT ,̂ where T  ̂ is the average 

gradient value inside the box (for a fixed threshold), or along the boundary found so far (for a 

local threshold), ’a’ is a tolerance factor, a<l. Empirically, a=0.4 was found to be appropriate 

for all the applications used in this project.

4) The direction of edge at the current point is then determined by the direction of the 

maximum compass gradient mask, by which the connectivity check is performed. The current 

point is counted as a boundary element if it satisfies the connectivity criterion. If this criterion 

fails for the current point, the process is continued, examining the next promising neighbouring 

point, and going on to step 3. An array comprised of bad paths (which stores both the bad 

boundary elements and bad directions; i.e. the direction of the boundary ended to the current bad 

element) is generated and updated accordingly.
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5) If the algorithm fails to find the next acceptable boundary point, a backtracking routine 

is called by which the elements in the backtracking list are examined. The first element from the 

top of this list is selected and the process continues if the path is not flagged as returning to the 

previous wrong path or the algorithm does not fail again in the new direction. Otherwise, the 

previous point in the backtracking list is taken into account and the process repeated.

6) If the initial point or one of its neighbours is detected during the process, the algorithm 

might find a close boundary. The process is then stopped (termination process) in the current 

slice. Steps one to six are repeated in the next adjacent slice. If the slice thickness or interslice 

spacing is not big (i.e. more than 2 millimetre), the selection of initial points can be automated 

using the connectivity criterion.

4.3.4- Curvature and circularity check

Slope and curvature are important contour segmentation criteria used by Freeman 1967 

and Rosenfeld 1973, 1975, and reviewed extensively by Pavlidis 1977-1978. These two are the 

most useful geometrical properties describing the shape of a curve and the relational information 

among subsets of a single digital curve or segments of two adjacent curves. The slope at a point 

can be derived from its tangent vector, whereas curvature is defined as the rate of change of this 

slope. Both, slope and curvature at a point P can be defined as the slope and curvature of a line 

segment on each side of P along the curve. Using a line segment enables smoothing of the 

slope/curvature and thus the noise suppression on a contour is also achieved. The length of the 

line segment determines the amount of smoothing and should not be bigger than a straight line 

desired to match the curve segment starting at p.

Significant features on a curve are defined as the points where the absolute curvature is 

high (the slope changes abruptly), or where the sign of the curvature changes. These are defined 

as corners (angles) and inflections, respectively. The inflections give useful information about 

convexity and concavity of a curve, and are also important features of a contour image.

Two methods were implemented for calculation of the curvature. For a one-dimensional 

ciu^e y=f(x), curvature k  is expressed as a function of arc length and in terms of the derivatives 

at a point x.
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Figure 4.6- Schematic of a cylinder image showing partially occupied pixels at different parts of the boundary, where the slopes 
arc different (see arrows) in respect to the basis coordinate axes.

K(X) = f  ( x ) / ( l + ( f  ( x ) ) y ^  = ( d ^ / d x ^ ) / ( l + ( d y / d x ) y ^ .

where f (x) and f (x) are the first and second derivative of the function f(x). The curvature can 

be defined on a digital curve (Pi=(X|,yJ, i=l,...,n) by replacing the above derivatives by 

differences. In this respect, a smoothed slope is considered to be (yi+k-yi)/(X|+k-̂ i) for some integer 

k>l.

The curvature can also be defined as the cosine of the angle between two k-vectors

and bjk, where

Sik = (Xi-Xi+k>yryi+k) 

bi  ̂ = (xrXi.k,yryi.k),

and the choice of k acts as a smoothing factor. The cosine of the angle between each two curve 

segments can then be expressed as
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Cue = (Ax^)(Ax')+(Ay'")(Ay’) / i{As^f+(Ay^f)/((Axf+iAy'Ÿ)), 

where Ax̂ =Xi-Xĵ ,̂ Ax'=Xi-\.k, Ay+=yryi+k, and Ay'=yi-yi.k.

Having found the curvature at every point (i=l,...,n) of a detected boundary image, 

their values are compared with a pre-set threshold value to check the desirability of the angles 

and curvatures of the boundary points (see fig 4.13). Since this curvature threshold value 

corresponds to a well-defined regular, and approximately a circular, shape of the head contour, 

this process is referred to the circularity check.

4.3.5- Experimental results

In order to see the effect of the choice of threshold value on the size of an object 

determined by an edge detection process, a cylindrical phantom having a known physical size 

was used in this experiment. This phantom was also used to calibrate and verify the parameters

le 4.1- Phantom study using threshold and gradient methods to detect edges of a 2-D phantom image (cross section of a cylinder with 
wn physical size) at different resolution.

Applied
Process

Res.
FWH
M
(mm)

Dm
by

Thrs
Dm
by

Grd

Area A by
Thrs
(Pixels)

Area B by
Thrs
(Pixels)

Area B 
by Grd 
(Pixels)

Area C 
by Thrs 
(Pixels)

Area C 
by Grd 
(Pixels)

None 1.0 175 174 24208 3547 3539 3119 3112

2.5 176 174 24352 3559 3542 3135 3115
5.0 178 176 25196 3580 3541 3159 3120

Gaussian 6.5 179 176 25620 3597 3546 3172 3117
Filter 9.0 180 176 25852 3600 3547 3187 3120

11.0 182 176 26324 3615 3544 3197 3118
13.5 184 177 26810 3621 3534 3213 3116
2.5 178 174 24620 3574 3540 3148 3110

Gaussian 4.0 178 176 25136 3589 3548 3169 3111
Filter 5.0 180 174 25688 3597 3542 3182 3129

-t- 6.5 184 180 26160 3600 3549 3199 3142
Guassian 9.0 184 176 26436 3615 3545 3215 3099
Noise 11.0 186 180 27050 3621 3560 3236 3195

13.5 189 181 28520 3632 3561 3247 3165

Phantom study. Physical diameter— 173mm; Physical areâ.» 23506; Threshold was set at half of image intensity. Thrs denotes
threshold method, Grd denotes gradient method, and Dm denotes diameter of the cylinder. Area A= Total area of cylinder;
Area B= Area of region around horizontal diameter. Area C= area of a region where the contour slope is high, as shown in 
figure 4.6.

76



(i.e. physical information) of the imaging modalities. The results of edge detection on a 2-D 

cylindrical phantom image are shown in table 4.1 and 4.2. As shown in the tables, the edge 

detection process which is based on a threshold criterion is very sensitive to a threshold value. 

The problem of selecting a proper threshold value is thus critical in determining the size of an 

object in the image. The maximum gradient across an edge occurs where the edge has its 

maximum slope, and thus can occur in the middle of a blurred edge, between the two shoulders, 

regardless of setting a user dependent factor such as threshold value. Therefore, the gradient 

method provides a more reliable edge detection algorithm.

T h r e sh o ld ] D ia m e te r A rea  o f  A A rea o f  B A rea  o f  C

40 185 26535 . . 3722 . . . 3334
50 183 26285 3686 3287
60 182 25900 3649 3251
70 181 25550 3611 3213
80 180 25280 3590 3178
90 178 24160 3556 3144

100 177 23780 3526 3115
1 1 0 1 7 5 2 3 4 2 5 3 4 8 6 3 0 7 7
120 174 23080 3456 3048
130 172 22760 3422 3013
140 170 22 385 3381 2976
150 169 22070 3346 2935
160 167 21800 3308 2891
170 164 21370 3248 2838
180 159 20780 3208 2770

Table 4.2. The effect of threshold level on the size of a cylinder image (max. pixel value=200) at resolution of 5mm 
FWHM. Areas A, B, and C are defined in figure 4.6.

The results obtained by area B and C in figure 4.6 confirms that different parts of the 

object border (e.g. surface) have different uncertainty in edge location (i.e. different partial 

volumes) with respect to the discrete voxels. The surface regions, which have a higher slope with 

respect to the orthogonal directions of the image (along which the square discrete pixels are 

aligned), undergo more partial volume effects. That also implies more uncertainty in the actual 

position of the surfaces (see figure 4.6). Figure 4.7 shows intensity-profile across the images of 

the cylindrical phantom, at different resolution and noise levels. As shown in the graphs 

represented in figure 4.7, edges of the cylinder image are more blurred (i.e. having a higher 

slope) as the image is degraded (i.e. resolution is reduced). Consequently, the measured size of 

the cylinder in the degraded image is more sensitive to the threshold value.
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Figure 4.7- Pixel values (intensity-profile) across a 2-D image of a cylinder 
phantom at different resolution and noise levels. Solid lines show the profile 
through the cylinder diameter along the x direction (i.e. at area B as shown in 
figure 4.6). Dash lines show the results corresponding to region C.
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4.4- SURFACE FORMATION

4.4.1- Introduction

The object of interest (the external surface of the head or brain) should have a smooth 

surface with connected boundaries, a regular shape, and an approximately circular outline. 

Exceptions are likely in some abnormal clinical situations where a lesion deforms the external 

surface. In the routine practice of 3-D medical imaging, 2-D cross sectional slices which 

comprise the original data, are often reconstructed by imaging systems. It is desirable to form 

a 3-D solid surface from 2-D or 3-D contours of a region of interest for both display and 

registration purpose.

The surface of a 3-D object can be captured (approximated) by stacking up the contours 

of the 2-D slices, if the slice thickness and interslice distances between successive slices are 

small. However, in many routine medical application only a series of 2-D thick slices are 

reconstructed, the contours of these slices are not sufficient when employing a simple stacking 

up process to reconstruct a surface, even if the interpolation of the interslice region is performed 

in advance. In this situation, the empty space between each two adjacent contours should 

approximately be captured by an appropriate interpolation process (e.g. triangulation).

4.4.2- Linear interpolation

In the current work, a series of intermediate slices were interpolated between each pair 

of adjacent cross sections using a 3-D grey level interpolation process, when the interslice gap 

and slice thickness were small (i.e. 2-3 millimetres). In this approach, the 2-D contours were 

generated using the techniques discussed in section 4.3.3. The 3-D surface was then generated 

by stacking up these contours.

The smoothness and continuity (connecmess) of boundaries between two adjacent 

contours is hard to maintain by this method and hence it does not provide a true 3-D solid model 

of the object. However, this method was found to be sufficient for the reconstruction of external 

head surfaces to be used in the fitting operation, where the original interslice gap is not
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significantly large (e.g. more than few millimetres).

4.4.3- Triangulation

If the slices are not closely spaced, the empty space between two adjacent contours are 

approximated using triangulation process. In this respect, an initial attempt is made to find the 

corresponding points or curve segments between adjacent contours participating in interpolation. 

Since the number of points P comprising (laying on) each contour may not be equal, and it is 

desirable to keep the size of Ps small for the computational speed, the contours are segmented 

as explained below. Then only the breakpoints enclosing these segments participate in surface 

interpolation. Splitting and merging some of these segments might be necessary in order to 

initiate one-to-one correspondence between the segments of adjacent contours. In this approach, 

the problem of surface formation is attempted in three parts; contour segmentation 

(decomposition), segment matching, and surface interpolation between the curve/line segments, 

or on the other hand, between the breakpoints which separate the segments.

The triangulation starts from an initial pair of breakpoints on the two adjacent contours 

and proceeds through all the corresponding breakpoints. A dissimilarity measure can be defined 

between the two contours. In each step, if the dissimilarity measure between the two contour 

segments is higher than a predefined threshold, then the segment is split or merged with its 

neighbouring segment and the

diss imi lari ty measure is 

recalculated. The breakpoints on 

adjacent contours are then 

grouped into triplets so that two 

of them from one sequence 

(contour) and one from the other 

reconstruct a planar surface patch 

(triangulation) between the two
Figure 4.8- Schematic diagrams showing the triangulation process. Top
left diagram shows breakpoints, top right: splitting the curve segments, and 

defined by a sequence of m bottom: the triangular tiles.

distinct points Pi,P2 ,...,Pn, and the

other contour by Qi,Q2 ..,Qm A surface can then be represented by tile (Pi,Qi,Pi+J, or tile
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{Qj,Pj,Pi+i} (see figure 4.8). The problem of correspondence between the pairs of vertices 

(breakpoints) and selecting the optimal tiles, can be defined in a directed graph strategy, as 

suggested by Kepple 1975 and Fuchs 1977. They showed that there are a number of acceptable 

surfaces (tiles) between the vertices. Therefore, a cost path measure (Johnson 1977) was defined 

to choose an optimal surface from among them. In this respect, the minimum cost (C”“) path 

between a number of paths, was defined to be the minimum area of the associated triangular 

surface tiles. This minimum cost can be expressed as

C““ij=area(P ,Qj,P ,+iQj).

(for i=l,...,n and j=l,...,n; n is number of breakpoints)

4.4.3.1- Breakpoint selection

Having found the curvature of every point P̂  (i=l,...,n) as discussed in section 4.3.4, only 

a number of these point which have a high curvature (bigger than a threshold) are selected. 

These high curvature points are referred to as breakpoints (b as used in the triangulation) and 

approximately represent the shape of the original curve, with an accuracy depending on their 

number, in order to select the breakpoints from all over the contour, the curve is divided into 

m equal size curve segments, and one point having maximum curvature is selected from each 

segment. These local curvature maxima provide a better overall shape representation than the 

global maxima (values greater than some global threshold) whose distribution about the whole 

curve could be highly biased.

4.4.4- Shape based interpolation

A shape-based interpolation can be used to estimate the location of the intermediate 

voxels between the slices. As proposed by Raya and Udupa 1990, the binary segmented slice 

images are used and converted into grey level images, in which the grey values represent the 

distance from the boundaries (edges) of the object. In this definition, positive values represent 

the pixels inside the object and negatives represent those which are outside. The intermediate 

slices are then obtained by interpolating the distance-representing grey level slices. Finally, 

thresholding of the intermediate slices (e.g. at level of zero) creates the segmented object in a 

previously non-existent intermediate region.
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The importance of the shape-based interpolation is due to the distance function used in

converting the original binary segmented images. Various distance functions (called chamfer

distances) were proposed by Borgefors 

1984 and 1986, and revised by Herman 

1991. The method proposed by Herman 

involves several successive stages which 

approximates the Euclidean distance 

more closely than the previous methods.

The initialization proposed by him 

involved the replacement of the values of 

all the pixels outside the object by a very 

large negative value and inside by a large 

positive value. Those pixels inside the 

object sharing an edge with the outside, 

are assigned +15 and those standing

outside sharing an edge with the inside *> 3*3 •») 5*5 templates used for shape-based
interpolation (Herman 1991). Left and right templates are used for

are replaced by -15. In next stage, two the first and second pass, respectively, 

templates (called near-optimal 3*3 or

5*5), as shown in figure 4.9, are used as masks placed on the image and moved in two 

processes, one row-by-row from top to bottom with a left-to-right ordering and one from the

bottom to top with a right-to-left ordering within the rows. The pixel which is covered by the

centre of the template is updated depending on the sign of its content, if  it does not have the 

value +15 or -15. For each image pixel covered by a nonempty template pixel, the contents of 

the two values (image-pixel value and con-esponding template-pixel value) are added if the image 

pixel value is positive and are subtracted if it is negative. In this approach, the current pixel to 

be updated is replaced by the smallest value of the computed sums where the original pixel value 

is positive, and is replaced by the largest of the differences if it is negative.

4.5- Surface reconstruction of special cases: Elimination of defects from surfaces

Figure 4.10 shows a typical SPECT image of a brain from a HMPAO radiotracer study. 

The irregularity of the brain edges is not unexpected in a normal brain structure. Presence of a
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low intensity region (e.g. cold region or hole) is also possible in the SPECT brain image due to 

an abnormal brain tissue (e.g. tumour). However, normal, or even abnormal, structure of a brain 

might not alter the smoothness of the outer envelope of the brain image or its surface. In general, 

in order to create two nearly identical surfaces for the registration process, a smooth surface (i.e. 

with regular edges) must be reconstructed from the SPECT data.

As mentioned in section 4.3.4, a circularity check is performed on the contours obtained 

from the head. The main objective of the process is to detect any deformities, such as holes (cold 

regions) on the surface which could occur due to, for example, the presence of a tumour in the 

brain. The angular measurements from adjacent line segments provide an approximation of the 

change of the slope along the boundary. Comparing the rate of change of the slope with a 

constant threshold value (i.e. expected curvature used as a predefined threshold) indicates any 

possible undesirable deformity as well as the start and end points of this lessibn. The images 

shown in figure 4.11a illustrate some SPECT images with a severe abnormality of the brain 

surface. The original contours detected by the contour tracking algorithm, and the points having 

undesirable curvatures, are shown in figures 4.13a and 4.13b (e.g. points having k)-0.90 as 

shown in image D of these figures). During the circularity check, all points with undesirably high 

curvature are displayed to the operator. The operator can then manually alter and eliminate the 

unwanted points. The desirability of a curvature 

value in a deformed region is then automatically 

decided by setting a curvature threshold value.

Visual inspection of displayed contours also plays 

an essential role in confirming or rejecting the 

automatic decision.

The technique used to reconstruct (reform) 

the deformed region depends on the size of the 

lesion. The application of the median filtering on 

the original 2-D grey-scale slices can ’reform’ most 

of the holes and deformities, due to its different 

behaviour on long, low curvature, edges and comers 

(edges with sharp and high curvature). The 

maximum usable size of the filter is restricted

Figure 4.10- A typical SPECT image showing the noisy 
and blurred brain edges.
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( a ) (b)

I ;

(c) (d)

Figure 4.11- a) Four SPECT image slices having severe deformity on right frontal 
lobe, b) Shows the effects of a lowpass filtering (bottom left) and median 
filtering (bottom right) of size 21*21 on the top left 2-D SPECT image. The 
contour superimposed on top right image was obtained from the lowpass filtered 
image, c) Shows how median filtering (size 51*51) reforms the shape of brain and 
fills the deformity on a brain surface (B is the filtered image, C is the binary 
thresholded image of B, and D shows the superimposition of the contour of B on 
the original image A) . d) Shows the effect of a lowpass filtering at the same 
size of the median filter (i.e. 51*51). The characteristics of the images shown 
in the four corners of figure d correspond to the image shown in figure c.
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b̂y the size (i.e. area) of the normal regions, which occupy half of the filter size, when this 

filter is placed on the hole region. The effects of median filter of different size on both normal 

edges and abnormal gap (hole) regions are shown in figures 4.11b, 4.11c, and 4.12b. As shown 

in figures 4.11c and 4.12b, even a filter size of 51*51 can be used without any significant 

alteration of the normal edges. However, the use of the filter is limited only to a deformed region 

whose size is relatively small compared to the size of the normal region occupied inside the 

filter. In this respect, the size (area) of the normal region surrounding the abnormal lesion (hole), 

occupied inside the filter, should not be smaller than half of the filter size (area).

The results shown in figure 4.lid,  demonstrate the effect of applying a lowpass filter of 

the same size as that of the median filter (figure 4.11c). For the segmentation of the image 

shown in figure 4.lid, half of the object intensity value was used. Figure 4.12a shows the effect

Figure 4.12- Shows the effects of lowpass filtering and median filtering on MRI 
and binary thresholded data, a) Top left image A shows the original M RI image, 
top right: binary thresholded image of A, bottom left: lowpass filtered (size 
31*31) image of B, bottom right : The contours obtained at two different threshold
levels (i.e. at half of the object intensity value, and at a smaller value), and
superimposed on the original image, b) Top left image A shows the original MRI 
image. Top right corner (B) shows a median filtered image (size 51*51) of A.
Bottom left is the binary image of B. Bottom right corner shows the
superimposition of the contour obtained from B on the original image.
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of threshold level in the detection of an object with its actual (correct) size. The critical problem 

is to set an appropriate threshold value in order to obtain the actual size of the object. Moreover, 

due to the similarity of the gap blurred region with the normal edge intensity (which is also 

blurred), it is not possible to precisely discriminate between these two regions by setting a global 

threshold on the image.

The superiority of median filtering over lowpass filtering to reform a hole or deformed 

brain region is also shown in figure 4.12. As shown in figure 4.12a, setting a sub-optimal 

threshold value on a lowpass filtered MRI image can enlarge the size of a detected object (e.g. 

brain). However, a median filtering, as shown in figure 4.12b, does not alter the object size 

substantially and can preserve the edges of a normal brain image.

An alternative technique for the surface reformation is used by reflection of the normal 

part of contour from one side on the abnormal part of the other side, thereby ignoring the 

original detected deformed region. This technique uses the symmetry of the right side of the head 

to the left side of the head. The defective parts of the contour are identified by checking the 

contour circularity as discussed in section 4.3.4. The defects in the contours can also be 

identified or modified by visual inspection and possible manual interaction. Two principal axes 

(see section 4.5.1) are used as a base-line (reference) on the contour image; one dividing the 2-D 

head image (contour or binary segmented image) into equal left and right sections, and one 

splitting it into anterior and posterior regions. All the reflections are performed with respect to 

the principal axes. The result of applying this technique is illustrated in figures 4.13c-d. As 

shown in the figures, the principal axes are determined based on the normal structures of the 

image.

4.5.1- Principal axes

A closed curve such as the external contour of the head can be approximated by the 

connections between points on a number of straight lines passing through the centroid. In a given 

x-y plane, a straight line L can be represented as L(x,y)=ax+by+c=0, with a slope of tana=-a/b, 

where a  is the angle between the line and the axis x. Let Pi(x;,y;) represents the points on a 

contour, the distance from each individual point Pj to a given line L can be defined as
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(a) (b)

i i

\ c ) ( d )

F i g u r e  4 . 1 3 -  Top figures ( a  and b )  show the points on the brain contours having 
different high curvature values ( k is the threshold curvature as defined in 
section 4.3.4). The points shown in frame D of figures a  and b  are the 
undesirable high curvature points (k)-0.90). Bottom figures c  and d  show the 
reflection process used to reconstruct the defective brain region. Two principal 
axes are shown in the top right corners (B) of these figures. The bottom right 
images D are the corrected (reformed) contours using the reflection process.
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di=( |axi+byi+c |) / /  (â +b̂ )

Then the total distance of the contour from such a line is given by

D=Z dj, (for i=l,...,n; n=number of points on the contour).

For a binary image, the principal axes can be defined as two orthogonal straight lines 

through the centroid, for which the value of D is minimized (see figure 4.13c-d). Since during 

imaging process the head is routinely directed along the two orthogonal axes of the coordinate 

system, the longitudinal and transversal directions (on a transaxial head image) can be thought 

of as the intersection of sagittal and coronal planes with the transaxial slice, respectively. 

Consequently, the (transaxial) cross section of head image has a symmetric shape (i.e. left side 

and right side). In this respect, the principal axes are usually aligned along the orthogonal image 

coordinate axes. This cause the symmetricity of the head cross section with respect to coordinate 

axes as well. Some geometric transformations such as shifting, scaling, and even rotating the 

head around the longitudinal direction of the body do not change the symmetricity of the head 

image. The orientation of principal axes (i.e. axes of symmetry) can also be obtained, in moment 

based approach, using the maximum and minimum of the moment o f Inertia.

The symmetry of the transaxial head cross section is an important factor for estimating 

the principal axes of an abnormal head image slice. The principal axes {major and minor axes) 

can be obtained by examining the direction of the principal axes in an normal image slice above 

or/and below the deformative slice. The centroid is then computed as the central point, on the 

principal axes, between the borders of the head contour. This process is performed automatically, 

but may be interactively controlled under the visual assessment.

4.6- Summary

A number of surface reconstruction methods, which are widely used by other workers, 

were studied in this chapter. All these surface representations are regarded as methods which 

only approximate the object (surface) of interest. In this respect, it is assumed that a number of 

points chosen from the whole structure, represent the object with all its required details.

88



However, even these discrete points themselves do not represent the exact characteristics and 

position of the actual surface details, due to resolution and partial volume effects, as well as the 

size of pixels in original grey-scale images.

The surface information can be extracted from a binary segmented object or from its edge 

data, and thus the representation problem is reduced to one of representing a simple binary scene 

or border information.

The representation capabilities of most of the representation techniques are poor with 

respect ;o satisfying all of the criteria outlined in section 4.2.1. However, the volume-based 

approach using a i-D  binary array can maintain the level of information (details) comparable 

to that of the original 2-D slices, and provides easily accessible surface data.

Due to the nature of original grey-scale data in most medical applications, a slice-level 

boundary detection is required for surface reconstruction. A gradient based 2-D edge(3'^]'^] ’̂ '3n 

process was described and suggested for the use in most high contrast images. Alternatively, a 

threshold based method is recommended for the segmentation of objects and thus for edge 

detection. These techniques need a surface formation process to be employed between the 

contours of successive slices. Various interpolation methods have also been outlined, among 

them, shape based methods were found to be superior, and used extensively throughout this 

project.

Although, most of the abnormal structures of the brain do not alter the shape of the outer 

envelope of the brain image (surface), some abnormalities can deform the surface extensively. 

However, this may be a major problem in the registration, since two nearly identical surfaces 

are required for surface fitting process. A verification known as the circularity check for the 

shape of the detected head contours was defined based on the curvature measurement. Any 

unacceptable deformity (or hole) existing in the brain surface can be detected by the circularity 

check and ’reformed’ by a type of interpolation process. Two techniques were suggested to 

’reform’ the abnormal regions and holes on the surfaces: one based on median filtering and 

another on contour reflection.
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CHAPTER 5 

MINIMIZATION METHODS

5.1- Introduction

The least square function as defined in section 3.2.5 depends on six independent variables 

(i.e. transformation parameters). The task of minimization is to find the value of those variables 

giving the minimum of a given function. Starting any minimization task, the location of the 

global minimum is an unknown inside a relatively large search space. Various methods 

introduced in the literature require different number of tinles for thé function value or its 

derivatives to be calculated. In terms of computational cost, it is desirable to calculate a given 

function as few times as possible during the minimization process.

A minimum of a function can be either the lowest point in a finite neighbourhood (local), 

or the global lowest point. In general the global minimization methods are too slow to be 

practically useable, especially when the number of variables are high. Both types of algorithm 

can be either constrained where some priori limitations are applied on the value of the 

independent variables, or unconstrained.

Down hill local minimization methods may be divided into two approaches, the ones 

which search in transformation space in a multidimensional manner, and alternatively those 

which reduce the problem of multidimension to a series of one-dimensional line minimizations. 

A multidimensional minimization such as the downhill simplex method (Nelder and Mead 1965) 

is not very efficient in terms of the number of function evaluations that it requires, as well as 

the fact that it shares with other down hill minimization methods, the problem of trapping into 

local minima, for which a multi-start strategy is required. The line minimization based methods 

converge much faster to a minimum and thus starting the minimization from different locations 

is computationally more accessible.

Global minimization methods try to search the transformation space globally, either as 

a random process (e.g. stochastic minimization) or in some predefined order. Although stochastic
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optimization, such as simulated annealing and genetic algorithms (Metropolis 1953, Mandava and 

Fitzpatrick 1989) go uphill as well as downhill and may avoid local minima, their computation 

is too expensive to be applicable for the minimization of functions (of a small number of 

variables) which can converge by an alternative method. However, their role is important in 

solving combinatorial problems where a very large discrete configuration space exists (e.g. the 

order of circuit elements in a complex integrated circuits).

The alternative global minimization strategy is the grid search which can be reduced in 

a multiresolution based approach as introduced in chapter 7.

The aim of this chapter is to describe some of the common minimization algorithms, and 

to define the methods which are mostly used in the current work based bn their characteristics. 

The concept of search strategy in a minimization algorithm is addressed in section 5.2. Section 

5.3 constitutes a selection of the widely used algorithms for unconstrained minimization. In this 

respect, the direction set method of Powell, conjugate gradient convergence method of Fletcher- 

Reeves, and gradient method of Newton-Raphson are outlined in section 5.3.1, 5.3.2 and 5.3.3, 

respectively. Section 5.4 presents linear search methods which are known as line minimization. 

The concept of constrained minimization and its use in a general minimization problem is 

presented in section 5.5. In section 5.6, the choice of the algorithm and the characteristics of a 

suitable method is outlined. A brief summary of the methods is given in section 5.7.

5.2- Search methods for minimization

A fundamental problem in the implementation of a minimization algorithm is to design 

a search strategy by which a point is determined, given the points Xi,...,x^ and the function 

values f(x j,...,f(x j and/or the derivative of the function. The direct search methods refer to 

methods which rely only on evaluating f(x) at a sequence of points and comparing their function 

values, in order to obtain the minimum. The various approaches of these methods are as follow.

The simplest direct search method is known as 'grid search' in which a rectangular grid 

of points is used to evaluate f(x) at each of them in turn. The major disadvantage of this scheme 

is due to a large number of unwanted function values calculated in the search area. To overcome
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this problem, a variable grid spacing can be designed instead of a constant step size. In a large 

grid spacing search region, the function is evaluated at an initial guess and a neighbourhood 

surrounding that point for the best function value. The minimum point is then considered as the 

new base point. In this approach, the grid spacing is reduced for further evaluation, but only if 

there is no substantial difference in function values within the neighbourhood.

Other methods have been implemented using different techniques for direction setting or 

different step lengths. The problem of minimizing a function of several variables can also be 

reduced to a linear (one-dimensional) search as defined in the next sections.

5.3- Direction set methods

Two problems should be considered in any multi-dimensional minimization procedure. 

Firstly, how a direction d is chosen, and secondly, what step is taken in that direction away from 

a current point to the next. In the direction set methods, multi-dimensional minimization is 

reduced to a number of one-dimensional minimization {line- minimization){scQ section 5.4). A 

sequence of directions are constructed, and the function is minimized in each direction, 

separately.

Generally, it is desirable that a movement along a new direction does not spoil the 

minimization so far obtained along the direction d̂ . This is the concept of mutual conjugacy 

being desirable in any direction set method. This criterion may be regarded as the major part of 

a minimization algorithm.

Various multi-dimensional minimization algorithms differ in the way that they define and 

update the next search direction. A diverse class of them are based on the fact that f(x) (function 

value at point x) increases, or decreases in direction d according to the sign of the directional 

derivative Vf(x) (i.e. gradient methods). Although minimization along the basis vectors can be 

attempted, minimizing the function only in these directions is inefficient when many tiny steps 

are required in a long, twisted and narrow valley. Using gradient information, on the other hand, 

is the most powerful means of setting the direction d when the number of variables (directions) 

are large (Powell 1964). The methods of finding a direction in which to search for the minimum.
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are divided into two main categories: the methods that do not require the evaluation of the 

derivatives, and those based on the directional derivatives. Although, both can depend on the 

properties of conjugate directions, different complexities and thus accuracies and timings can be 

obtained by them. Both types of method have been revised and improved several times by

different workers since their initial implementations. However, in the following sections only the

latest known version of these algorithms are presented.

5.3.1- Powell method

The Powell method is a type of gradient method which does not require the evaluation 

of derivatives. A quadratic function f(x) can be approximated by its Taylor series as

f(x) » c - b.x + (l/2)x.A.x, Equ. 5.1

where vector b and matrix A are the first and second partial derivatives of the function. The 

gradient of such function can be expressed by

Vf= A.x-b. Equ. 5.2

Moving along some directions (d^+i) towards the minimum implies a change Ô in gradient

5(Vf)= A.(6x). Equ. 5.3

As defined by e.g. Powell 1964, the gradient must stay perpendicular to the previous 

direction d̂ , while moving along a new direction d̂ +i, in order to satisfy a conjugate condition 

for the two directions d̂  and d̂ +i. From the above equation this is just

d^.0(Vf)= dk.A.dk+i= 0. Equ. 5.4

As stated by Powell 1964, a set of n (number of dimensions) linearly independent 

conjugate directions (or n line-minimization) will find the minimum of a quadratic function. 

However, in a real situation the function is not exactly quadratic and thus the process needs to 

be iterated using a number of such the direction sets. Powell’s quadratically convergent method 

is a gradient method which does not require the evaluation of the derivatives, while it depends
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on the properties of the conjugate directions. He used the quadratic interpolation method to find 

the minimum of the function f(x) along a direction d (for a set of n directions).

The algorithm finds a quadratic function (e.g. Y(X)) which takes the same value as 

f(Xj,+^d) for three current values of X (step), where x̂  is the current point and d is a given search 

direction along the line x=x^+Xd. Having found the value of X at the minimum (i.e. X )̂ of the 

quadratic function Y(X), one of the old three values of X is replaced by X .̂ The process is 

repeated until the desired accuracy is obtained in the value of X̂  in each direction.

The directions dp d^,...» d„ are defined by the algorithm outlined in the following steps. 

The minimization in these directions are left for section 5.4.

a) Give an initial guess as starting point Xq in search space.

b) The n directions in the first iteration are initialized with the direction of the 

basis vectors

c) For k= l,2,...,n calculate step-size X̂  ̂ by a line-minimization algorithm (see 

section 5.4), so that f(Xk_̂ 4-X̂ dJ is a miniirium and define x^=x .̂i+X|.dt.

d) Find one of the old directions in which the function made its largest decrease 

(cL) and define Af=f(x^.J-f(Xn.), where 1 ^ ^ .

e) Calculate the function values fo=f(Xo), fn=f(x„) and fj=f(2Xn-Xo) at a point 

somewhere further along the proposed new direction.

f) If fd>fo and/or (fo-2f„+fjj) (fo-fg-Af)  ̂> (l/2)Af(fo-fd)^ repeat the above procedure 

(steps a to e) using the old directions dpd2,...,dn for the next iteration, and x„ for 

the next Xq, otherwise do next step.

g) Minimize the function f(Xg4-Xd) in a new direction d=Xn~Xo, set x^+Xd as 

starting point (Xq) for next iteration, and replace the old direction d„ by d, where 

the rest of the old directions would remain unchanged for the next iteration.

It was also shown by Powell that the way in which d is defined ensures the conjugacy 

criterion of all the directions after proceeding n iterations. As well as being simple, the method 

was claimed to be more efficient than those methods which are based on the evaluation of the 

function derivatives. However, it shares the problem of dropping into local minima with other 

direction set methods.
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5.3.2- Fletcher-Reeves method

The Fletcher-Reeves method (e.g. FRPRMN method) is a type of minimization algorithm 

which involves the calculation of the first derivative of the function. A sequence of mutually 

conjugate directions were constructed by Fletcher and Reeves 1964, using the derivative of a 

function approximated by a quadratic form. The method makes each (gradient of function) 

orthogonal to its immediate predecessor, and each conjugate to its predecessor.

gk+i-gk=0 dk+i.G.dk=0 Equ. 5.5

where G is the Hessian matrix (which is positive and definite) and the gradient vector of f(x). 

For a quadratic function f(x). The minimum along the direction d̂  can be found at the point

Xk+i = %k + ^\dk, Equ. 5.6

when moving from a current minimum at x̂ . The value is the step size required to minimize 

f(x̂ +X̂ d|̂ ). The gradient at such a minimum is obtained for a quadratic function as

gk+i = gk + ^*kG.dk (k=l,2,...,n) Equ. 5.7

X  is chosen by a line-minimization algorithm (see section 5.4) to take the function to the 

minimum along the line where the new gradient ĝ +i is orthogonal to the direction d̂ , satisfying

-Vf.dk = gk+î k = O' Equ. 5.8

The direction of downhill gradient (as in the steepest descent method di=-gi) is used 

initially. Subsequent conjugate directions are chosen by the following direction sequence 

satisfying the mutually conjugacy of the directions.

dk+i = -gk+i + Ydk (k=l,2,...,n), Equ. 5.9

where the coefficient \  can be determined by the condition of the conjugacy (dk+iGdk=0) and 

equations 5.7 and 5.9 which give
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Vk = (gw)V (gk)̂  Equ. 5.10

Xk can also be determined from these equations (e.g. equ. 5.5 and 5.7) as

= gk̂ k /  d^Gdi,. Equ. 5.11

Fletcher and Reeves suggested that the direction of search should revert periodically (e.g.

in directions d̂ , dn+i, djn+i,...) to the direction of downhill gradient when a non-quadratic function 

is minimized. Having found the conjugate directions, the method uses the line-minimization 

algorithm, like the Powell method, to find the minimum of the function along each direction. 

However, unlike the Powell Method the directional derivative of f(x) is used for line- 

minimization algorithm.

5.3.3- Newton type methods

The basic idea of the Newton-Raphson method is based on the approximation of the 

function f(x) by a quadratic function (see equ. 5.1) and taking into account the minimum of the 

quadratic. The derivative of the quadratic function at the point of minimum can be expressed as

Gk.(x^-xJ - gk = 0, Equ. 5.12

The minimum can then be obtained as the next point x̂ +j in the search direction by

Xk+i = Xk + X^Gk^gk, Equ. 5.13

where -Gk gk is the direction of the linear search, and takes the function to the minimum

along this direction. In order to avoid the difficulty of evaluating matrix inversion, a new class

of gradient method known as quasi-Newton (or variable metric) method is used (Broyden 1967). 

In this method, the matrix Gk* is replaced by a positive definite symmetric matrix Hk (e.g. 

initially is as unit matrix I) which is updated in each iteration. The resulting equation is then

Xk+i = Xk + %\Hkgk Equ. 5.14

The algorithms require calculation of the function derivatives, thus can be very time consuming.
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5.4- Line-Minimization

It is possible to localize a minimum between two one-dimensional points {bracketing), 

easily, if the multi-dimensional minimization is reduced to a one-dimensional problem {line 

minimization). The bracketing process starts with an initial guess for two points a and b on the 

search space, which give two distinct function values f, and fy. Then a third point c is selected 

in such a way to satisfy the following relation between the three points.

fb<f. and fb<fc, Equ. 5.15

where a<b<c and these three points bracket a minimum of the function (see for example points 

1, 2, and 3 in figure 5.1).

The step size introduced in the process proceeds downhill and is obtained either by using 

a constant factor or as the result of a quadratic or parabolic extrapolation. A constant step size 

is used where the function is not properly quadratic near to the minimum. In this respect, the 

optimal bracketing interval a<b<c has its middle point b a fractional distance (see section 5.4.1) 

between the two ends. The parabolic extrapolation method tries to find a new extrapolated point 

on a quadratic function (parabola) fitted on the original points (see section 5.4.2). In either of 

these methods, one of the old points is then discarded in the respect of the new point included 

in the bracket. This process is repeated until it yields its new point in a uphill trend.

Given an optimal triplet of points, the best minimum can be found by stepping downhill 

into the triplet. Like the bracketing algorithm, the minimization stage uses one of the above 

methods; constant step size, or the step size based on the result of a parabolic interpolation.

5.4.1- Golden section search

The step length can be defined based on the Fibonacci sequence (Fn=F„.i+F„,2). This is 

the concept of a technique known as Golden Section search which is used for minimization of 

a unimodal function. The Golden ratio to define the interval (step length) between the evaluating 

points is obtained by the Fibonacci relation
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Urn F^„,=(V5-1)/2=0.618034 Equ. 5.16
n—>00

by which for example a point b divides a line segment ac with the relation ab/bc = ac/ab.

The constant step size defined in this technique yields a fractional distance of 0.61803 

from one end and 0.38197 from other end of the bracketing interval. The new point obtained by 

this method is symmetric to one of the initial points, and therefor three resulting points have 

always the same fractional relation as the three initial points have.

Similar to the bracketing routine, one of the old points is discarded and replaced by the 

new point in the triplet, if its value is greater than that of the new point. Consequently, this 

technique provides each new triplet interval just 0.61803 times the size of the preceding interval.
  Parabola through 1,2,3
  Parabola through 2,4,3
— ^ Minimum of parabola
5 #  Minimum of the function

Figure 5.1- Minimization using parabolic
interpolation. Function is evaluated at 
parabola's minimum, 4, which replaces 
point 3. The minimum of the second 
parabola nearly corresponds to the 
minimum of the function.

5.4.2- Quadratic interpolation method

Constraint

Figure 5.2- 2-D constraint minimization. 
The thick line shows the constraint

minimizationconstraint2 D
The thick line shows the constraint
boundary. AB and CD represent direction 
in which the function is minimized. EC 
and DE correct the process when the 
constraint is violated.

A linear minimization method was defined by Powell 1964, in which a quadratic function 

is interpolated through three interval points (known as triplet) and its minimum is considered as 

a new point in the triplet. The process is iterated to obtain the desirable minimum.
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The technique has been revised and used by Brent 1973 for functions which are parabolic 

near to the minimum. In this approach a parabola is fitted through the three points of the 

bracketing triplet, and its minimum is considered as a new point which is near to the actual 

function minimum. This procedure also needs to be repeated few times in which discarding one 

of the old points and adding a new parabolic minimum points, until a function minimum is 

achieved (see figure 5.1).

5.5- Constrained minimization

The general aim of a constrained minimization is to reduce the minimization problem to 

a limited search area and to eliminate any non-feasible point from that search area. All the 

methods for dealing with unconstrained minimization can be extended to allow for the presence 

of constraints. Generally, the procedure is to transform a given constrained problem into an 

unconstrained problem and then solve that problem. In a common method known as 

Hemstitching (Robert and Lyvers 1961), the constraints are ignored until one or more of them 

is violated. The current point is then returned to the feasible region in for example a direction 

orthogonal to the constraint (see figure 5.2).

5.6- Selecting an algorithm

The choice of minimization method is very important in computer cost (timing and space) 

and accuracy of the true global minimum of a function. The followings are some of the criteria 

and factors influencing the choice of the minimization algorithm.

1) Non-iterative methods are much faster than the iterative methods. However, the use of 

a non-iterative method is restricted due to the nature of some registration problems.

2) In general, any effort to use techniques which require evaluation of the derivatives of the 

function, should be robust enough to compensate for the additional calculation of the derivatives.

3) Storage requirement should be considered with respect to those methods which require 

only of order n (number of dimension), and those that require if storage.
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4) The methods which reduce the multidimensional problem to a number of one-dimensional 

problems (i.e. methods requiring only a line minimization algorithm) are potentially of greater 

interest, because these methods seem to provide an easy and fast minimization algorithm (e.g. 

direction set methods such as PowelTs method).

In the surface fitting algorithm discussed in chapter 3, an iterative method should be used 

since the actual correspondence between the points are not known in advance. In this respect, 

each set of corresponding points needs to be updated in respect of the latest promising surface 

position obtained by applying a set of transformation parameters. In considering the above 

factors, direction set methods were mostly used throughout this project. Two direction set 

methods, Powell and FRPRMN, both reduce the multi-dimensional minimization problem to a 

series of simple one dimensional tasks. Newton type nlethods need higher precision arithmetic 

and thus are more time consuming.

5.7- Summary

Various methods for solving the minimization problems were described in this chapter. 

These methods are based on repetitive steps (iterative approaches). The simplest type of 

algorithm was defined as direct search (e.g. grid search) method which uses function evaluations 

and comparisons, together with a strategy for determining the next search point.

Golden section search and quadratic interpolation methods were addressed in a linear 

search strategy obtained by the conjugate direction methods. Gradient methods were used to 

generate a sequence of linear searches along successive directions of a multi-dimensional 

function. Some of these methods, e.g. the Powell method, the Fletcher-Reeves method, and the 

Newton type methods were presented which are the most efficient general purpose minimization 

techniques available at the present time. However, the use of the Flecher-Reeves algorithm and 

Newton type methods which require high-precision arithmetic and thus can be very time- 

consuming due to calculation of derivatives, is limited in most applications.

In this chapter the properties of a suitable minimization algorithm were also outlined and 

the best algorithm satisfying most of these characteristics was defined.
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CHAPTER 6 

SEQUENTIAL METHODS

6.1- INTRODUCTION

The shape of the human head is not strictly symmetric and there should be a unique 

transformation which could be expected to match exactly two images of the head. However, a 

number of transformations exist which produce incorrect matches having local minima in the 

distance function. This is due to the partially regularity and symmetricity of the head shape. The 

problem implies the need to check all the possible promising transformations which rnight be 

a candidate for obtaining the global true match. On the other hand, evaluating the function at an 

insufficient number of search locations (transformation parameters) might fail to find correct 

match location, that is, to give proper transformation parameters for registration. As discussed 

in section 3.2.5, a mean distance error (MDE) is required by the surface fitting process 

introduced so far, due to the nature of the minimization process (because the MDE value which 

is essential for setting the next search direction, is obtained after evaluating all the sample 

points). Accordingly, all the n extracted features (corresponding points) have to be evaluated at 

each transformation, prior to any decision on the correctness of the fit. Considering the two 

above requirements would result in a very slow convergence algorithm due to evaluating all 

points at all search locations. On the other hand, not to do this is the cause of the major 

disadvantage of the algorithm, that is, the detection of local minima (wrong minimization).

However, the accuracy which can be obtained by evaluating all the sample points is 

required only for those relatively few locations (transformations) near the match location. Hence, 

at a vast majority of locations, it would be a considerable waste of time to perform high- 

accuracy calculation using all sample points. This is the basic idea behind the introduction of a 

new technique for the surface fitting algorithm. In the minimization process applied in this new 

technique, all the possible transformation parameters are searched in order to find the best 

parameters. This process is known as a global search and is based on the grid search explained 

in section 5.2. Assuming that the scaling parameters of the images are known by the system 

parameters itself, the search space has six dimensions, three shifts and three rotations, to be
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searched during the minimization. The way that the error is computed and subsequently the 

decision is made about integrity of any transformation, is a sequential process. Accordingly, this 

new technique is known as the sequential method,

A class of sequential similarity detection algorithms was introduced by Bamea and 

Silverman 1972. In their method, a translational registration was implemented by a template 

based matching process. The method was extended and a more complicated sequential matching 

algorithm was introduced by Ramapriyan 1976, in which a template was partitioned and 

translational shift was applied in different size-level. The method was then assessed and used by 

other workers (Rosenfeld and Vanderbrug 1977, Vanderbrug and Rosenfeld 1977, Wong and 

Hall 1978, Wong 1978, Wong and Hall 1979). However, all the modifications made so far to 

the algorithm, only concern the applicability of the process to 2-D images (specifically optical 

and radar images) undergoing translational registration.

The concept of the sequential method and its algorithm are presented in this chapter (see 

also IPMI’91; Oghabian & Todd-Pokropek 1991). In section 6.2, the theoretical discussion and 

properties of the method are explained. The algorithm is also outlined in this section. The 

properties (e.g. size) of search space (transformation parameters) used in the sequential process 

are outlined in section 6.2.1. The sequentiality of the cumulative distance error and its properties 

are described in section 6.2.2. Different sources of error and their contribution to the expected 

distance error are outlined in section 6.2.3. Section 6.2.4 and 6.2.5 will describe two types of 

threshold methods (i.e. constant and variable) used in this technique. The expression for the 

threshold sequence which depends on the number of sample points involved in the registration 

process, is presented in section 6.2.5. Some properties of these sample points are presented in 

section 6.2.6. Computational aspect of the process and cost expectation are presented in section 

6.3. Section 6.3.1 provides a quantitative analysis of the search locations and sample points based 

on which the cost expectation was made. Finally, a brief summary is given in section 6.4.

6.1.1- Terminology

Matching process is used synonymously with ^registration process" to find the best 

transformation parameters by which the two registering surfaces are matched. The term "location" 

refers to search location and that is a set of transformation parameters (i.e. 3 shifts and 3
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rotations in x, y, and z direction) at which the matching is evaluated. Search window is used to 

denote the whole proposed search locations over which the best transformation is searched. Two 

analogous terms, match location and registration pointy refer to the best transformation 

parameters yielding the minimum distance error between two surfaces. Mismatch location in this 

concept refers to any location not giving a match. The basic variables and expressions used in 

this chapter are listed below. A type of subscription may be used in each case which specifies 

that expression with a particular type of aspect (feature) as defined in the relevant text.

W search window

P sample points; that is the sampled points of the transforming surface

V tracing voxels; the voxels traced in 3-D space for detecting an intersection of P with the

objective surface 

e individual distance error

ê Mean distance error (MDE)

a  standard deviation (S.D) of the individual distance errors

E cumulative distance error

r MDE error at true match location

R cumulative distance error at true match location

g number of standard deviations (S.D.) from mean (r)

T threshold used in the sequential methods

C computational cost

n number of entities (denotes number of sample points if it is used without any subscript).

6.2- Algorithm

The new method implemented for registering 3-D medical images, is based on the 

evaluation of the cumulative distance errors (instead of the mean distance errors). Since building 

up the cumulative error is a sequential process, a test can be made as each point is added to see 

if a threshold has been exceeded. An adaptive termination of the function evaluation and 

abandonment of its corresponding transformation in the processing location, is the second 

characteristic of the method. The method reduces the redundancy (e.g. time consumption) of the 

previous methods by performing a sequential process which may be terminated before all points 

are tested for a particular transformation. These enable methods to be implemented which are
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Figure 6 .1 -  Diagram outlining the general algorithm of the sequential method used 
for registration. (TP denote transformation parameter).
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independent of the evaluation of the mean square distance function for determining the next 

direction in which to search (for obtaining the best transformation parameters as discussed in 

section 3.2.7).

As stated, checking all the possible transformation parameters and terminating a 

sequential process when the cumulative distance error exceeds a threshold is the main feature 

of the new technique. The termination is actually controlled by a preset variable threshold 

depending on the number of points. This threshold specifies the sufficiency of the number of 

sample points participating in the achievement of the cumulative distance error. However, there 

will be 1 trade-off between the possible misregistration error and the number of points for which 

the process is allowed to continue before the termination.

The diagram shown in figure 6.1 summarizes the sequential algorithm used for 

registration of surface images. The input to the algorithm are the surface data obtained by a 

surface detection algorithm and a set of transformation parameters obtained by either the manual 

interaction process or any other method of registration. Different steps and requirements of the 

sequential algorithm are outlined in the next sub-section.

6.2.1- search space

A global search is performed to find the best transformation parameters giving the global 

minimum for the mean square distance function. Due to the preliminary alignment (e.g. manual 

registration or/and centroid registration) of the two data sets, all the possible transformations 

(locations) are not required to be examined. Thus, a search space (search window) is designed 

which consists of only those likely transformations which can be candidates for the global 

minimum.

The decision on the size of the search window depends on the accuracy of the 

transformation parameters estimated in initial stage when the registering surfaces are primarily 

aligned. The decision also depends on the sensitivity of the distance function to six various 

transformation parameters (3 shifts and 3 rotations). As shown in figures 3.9 and 3.10, a 

misalignment of 5 to 10 voxels shift in x, y or z direction yields a mismatch value (distance 

error) of 3 to 7 voxels which is high enough to be judged by the viewing inspection. Centroid
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registration can also align the surfaces within this accuracy. The rotation, as shown in these 

figures, causes a smaller change in mismatch value, and thus it is more difficult to be assessed 

by viewing judgement. In this respect, a minimum rotation of 10 to 15 degrees (i.e. mismatch 

value of 2 to 7 voxels) shown to be adequate for a visually sensitive process. According to these 

results a maximum translational shift of 10 voxels and rotation of 15 degrees (in x,y and z 

direction) around the best transformation (obtained by the manual registration) seems to be 

generally adequate for setting the search window in the surface fitting process.

6.2.2- Cumulative distance error

As stated in section 3.2.5, the error measure is based on the L2 norm function

e ~  (Pti-Poi)  ̂ for i=l,2,..,n

where n is number of surface points which are going to be tested from the transforming image, 

Pj and Pq are vectors specifying the position of the corresponding surface points in 3-D space 

(for transforming and objective images, respectively).

The cumulative error after m measurements (i.e. the number of points from the 

samples tested until the current working stage of the process) is

E„=Z Cj, where i=l,...,mand m<n Equ. (6.1)

As shown by Bamea & Silverman 1972, the density distribution of error measures of type 

LI or L2 (1 Pt-Po I or (P̂ -P̂ )̂ ) can be represented by an exponential function. However, this 

exponential distribution can be approximated by a normal distribution by invoking the central 

limit theorem (Papoulis 1965) for large value of n assuming that the individual error terms are 

statistically independent. Taking into account the above theorem the cumulative error has a 

normal distribution with mean E^ and standard deviation (Vanderbrug and Rosenfeld 1977). 

These can be expressed as

Ëm= më Equ. (6.2)

ma a^=Vma=Vmë Equ. (6.3)
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where ê and a  are the mean and standard deviation (S.D.) of the error distribution of the 

individual distance errors.

6.2.3- Expected errors

The misregistration error due to surface images misalignment contributes the major part 

of the distance error. However, there is an expected distance error even at the point of 

registration (where two surfaces are truly matched) which is due to the surface extraction error 

affected by image noise, artifact, distortion (in the case of MRI), and transformation noise. This 

is an unavoidable error generated during the registration process due to any factor other than the 

misregistration error. Let the expected cumulative error be which is the sum of the error 

terms (square distance errors) for m points in the location of the true match.

mr , r= Ê /n, for m<n Equ. (6.4)

where r is the amplitude of the average individual error measurement and È„ is the mean 

cumulative error for total number of sample points (n), at the true match location.

The probability density distribution of the cumulative error E„j can be expressed by the 

following well known normal distribution equation as

'  J _2Cv'mr)*_

Equ. (6.5)

where g is the number of deviation (S.D.) from mean (expected error value) and a threshold (TJ  

is expressed in terms of g. In this respect, g is a function of the probability P .̂

g=(T„-R^)/(Vmr) Equ. (6.6)

6.2.4- Constant threshold algorithm

The efficiency of a sequential search depends on the proper choice of threshold which 

causes the termination of the process at some earlier stage when a mismatch location is
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examined. In a constant threshold algorithm, the test is made against a preset constant threshold 

T as the error for the corresponding pairs is accumulated. The value of T is very important with 

respect to accuracy and the computational cost of the process. A high accuracy may be achieved 

only by an associated increase in computation.

6.2.5- Variable-threshold algorithm

Optimally, the threshold value should minimize the likelihood that a search location 

other than the true registration point (match location) remains below the threshold, while it 

maximizes this criterion for the true match location itself. It should also keep the number of 

operations reasonably small. As an initial assumption, it would be reasonable for the threshold 

to have a shape approximately similar to that of error growth curve (see fig. 6.2). Moreover, in 

order to prevent the elimination of a promising search location influenced by only few number 

of noisy and high-distance points, the initial

value of T should be high enough.

There are three factors influencing the 

choice of threshold value required at each 

stage of the evaluation process. 1) The 

knowledge of the expected (mean) error at 

the true registration point (match location) is 

essential for setting the threshold sequence. 2)

The shape of the error growth curve 

(cumulative error) is very important in setting

the threshold. 3) As shown in equation 6.5, Number of sample points
the threshold is a function of the probability Figure 6.2- Schematic diagram showing error growth curves

at true match location and two mismatch locations. The 
f g  of the match based on the density suggested threshold sequence is indicated.

distribution of the cumulative error Ê . A n-

dependent variable threshold (n= number of evaluated points) may be used as a threshold 

sequence to bound the error growth curve (at match location) from above with distances 

depending on g. The replacement of the constant threshold by this variable threshold can 

improve the computation effort while the performance does not decrease.

Constant thresholdO)CJ
cca

O
<D
>
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The threshold T for stopping the evaluation of the distance function can be derived from 

the value of the expected cumulative error R .̂ Since this threshold should take account of 

possible variation in in order to secure the detection of the true match location, a criterion 

based on a number of standard deviations (g as defined in equation 6.5) away from the expected 

error (R ,̂) is used. The desired threshold T^ as a function of m the number of points tested can 

then be expressed by the following equation:

Tm= Rm+g(̂ m = R„,+gcWm= R^+grVm, Equ. (6.7)

where r is the ampUtude of the average distance errors at the true match location (considered as 

the expected error), o  is the S.D. of the error distribution of the individual errors, and R̂ , is the 

sum of the error terms (expected cumulative error) after evaluating m points of the registering 

surface data set. R  ̂ is obtained empirically for any particular type of data set based on a priori 

knowledge of the distance errors at an approximate match location on a well-defined image pair 

(models).

The initial values in the threshold sequence should be high enough to allow reasonable 

confidence for retaining all uncertain locations (i.e. whether they are match or mismatch 

locations) under the threshold. The conditional factor Ç is used which is true when m is small.

Tm = Rni+(g+Ç)Wm, Equ. (6.8)

where Ç>0 for small m in the sequence (e.g. if mc20), and Ç=0 when m is high. In most

applications, increasing the threshold value (g) by one or two extra error standard deviations (i.e. 

^=1 or Ç=2) is suggested.

6.2.6- Sample points

Since the evaluation of distance errors is sequential, the order in which the points 

participate in the evaluation is important. They should be ordered such that, firstly, evaluation 

in such an order causes the termination decision earlier, and secondly, a small number of selected 

points mimic the entire response of all surface points (e.g. they should selected from all parts 

of the data set and not from regions grouped together). The suggested ordering rules for sample
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points used in sequential process are shown (for a 

2-D image) in the schematic diagram of figure 6.3. 

As shown in this figure, even a small number of 

points (i.e. any subset of points) belongs to 

different parts around the object (head contour) 

and thus holds an overall positional information. 

The position and number of sample points, as 

discussed in section 3.2.3, are also two important 

factors influencing the accuracy and speed of the 

registration process (see section 8.3.2 and 8.3.2.1 

for experimental results).

7

1

Figure 6.3- Diagram indicating the order of the first 
few sample points used in the sequential method.

The points are sampled in a three-stage process. Firstly, the local-high-curvature points 

(i.e. breakpoints) are selected as discussed in section 3.2.3. In the second stage, the required 

number of sample points are selected from these breakpoints sampled uniformly around the 

whole head. Finally, the points are ordered and grouped into sets of points (e.g. groups of 6 

points) as suggested for the termination decision strategy in the sequential process. In this 

approach, the points in any group are also distributed equally around the whole head. Taking into 

account the same ordering strategy for sampling in a 3-D space (e.g. sampling in adjacent slices), 

the above process is performed on the global breakpoints from all the relevant slices.

6.3- Computation aspects of the sequential method

The expected computational cost for applying the sequential method depends on the 

number of search locations (n^), the number of sample points (np), and the threshold sequence 

which restrict the number of points evaluated in the process. The cost also depends on the 

number of operations required for distance error measurement. As discussed for the surface 

fitting algorithm, due to the nature of intersection process, evaluation of some number of voxels 

V are required along the intersection line in a 3-D space (see figure 6.5). Accordingly, the 

number of operations involved for evaluation of each sample point can be obtained from the 

number of voxels (ny) along the intersection line and the number of operations associated with 

each voxel (nopr). The diagram shown in figure 6.4 summarises these operations based on the 

number of the major and essential computational requirements. The cost can be expressed as
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Cost=nw * np * ny * * Copr Equ. (6.9)

where Qp̂  is the cost of each operation (i.e. usually expressed as the equivalent integer add 

operation: e.i.a). Note that the cost of point sampling, threshold sequence calculation, and search 

window selection are not included in all the calculations and cost predictions expressed in this 

chapter. This is due to the fact that these operations are required to be done only once in the 

sequential process, and thus their costs are small in respect to the rest of process. The cost of 

calculating the transformation matrix (which is required in respect of each rotation) is also 

negligible and thus is not included. The five parameters expressed in equation 6.9 are discussed 

in the next few paragraphs.

1) Due to the centroid registration and the initial manual registration, there is no need to 

apply a shift equivalent to the size of image, or 360 degree rotations in each direction. The 

number of locations n^ should be of an order sufficient to ensure the detection of the maximum 

possible distance between the two surfaces without being corrected by the centroid and manual 

registration (see section 6.2.1). The search space comprises regions (window) Wg referring to 

shifts, and referring to rotations around each direction (x, y and z) which is applied for each 

shift step. Based on the experiments performed throughout this project (as discussed in section 

6.2.1), it was found that a maximum shift of 16 voxels and maximum rotation of 15 degrees (in 

each direction x, y and z) are sufficient in most images initially registered by the centroid and 

manual registrations. In order to save computational cost, the rotation can be applied with step 

equal to 2. Considering shifts of from -8 voxels to +8 voxels, and rotations o f -10 degrees to +10 

degrees in the x, y and z directions, the number of search locations can be obtained by

nw= (8 x 2 + l)\ nw=(10x2/2+l)\

n^ — n̂ y, X n^g — 6.54x10^. Equ. (6.10)
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1 -  Do degradation (geometrical scaling) of the surfaces.
2 -  Select the  initial level in which the global minim ization is applied.
3 -  Select th e  sample points in each resolution level,
4 -  Calculate the  (variable) threshold sequence (as a lo o k -u p  table),
5 -  se lect  the  search window required in the  initial level.

0
3

For each location 
of search window

Celculeimg transforme lion matrix 
in respect of each rotation

üéîsmaich measuremanl routine

16 real multiplies
5 real adds
6 trigonométrie functions

0 ,
0

For each sample point

3 i.e. 25 @ size-level 32
i.e. 50 @ size-level 64

Distance error measurement 
for each Sample point

Initialization assignments 
Transformation of points 
Ray tracing initialization

46 e.i.a

20 e,i,a

6 real adds 
9 int. adds 
9 re a l m u ltip lie s

3 int. adds
4 intrinsic functions 
3 real multiplies

For each vovel along 
the intersection line

i.e. 5 Û> size-level 32 
i.e. Ô 0  size-level 64

inierseciion
routine

Kay tracing
(for half of the voxels) 
& intersection check

6 int. adds 
3 real adds 
3 intrinsic f.

Individual distance error measurement
t  int. adds 
3 in t  multiplies

Cumulative error calculation 1 r ^ l add, 1 Intrinsic f.
Mismatch test (comparison with threshold) 1 real compare

Checking MSD for the minimum value (only for some locations)
Selecting transformations for next resolution level (only for some locations)

Figure 6.4- Algorithmic-based diagram representing different steps of the sequential registration process and number or 
required operation. Intrinsic functions are functions used in Fortran, such as Sin().

112



2) The number of sample points np is significant in determining the cost of the process. This 

is the major factor whose contribution is controlled by the threshold sequence which thus 

regulates the speed and accuracy of the process. This threshold causes the number of evaluated 

points in 3-D space to be ideally much smaller than the expected number, due to the automatic 

termination of the point evaluation at certain undesirable transformations.

3) As stated earlier, due to the application of the initial centroid and manual registration, the 

two registering surfaces are initially not expected to be far away from each other. Therefore, only 

a small number of voxels along an tracing ray originated from the transforming surface needs 

to be ei.amined for the intersection with the objective surface (see figure 6.5). Allowing the 

maximum of 16 voxels shift in a high resolution image is based on the assumption (derived from 

the experiments) that the maximum initial distance expected between the two surfaces is not 

more than about 16 voxels in each direction. Accordingly, no more than 16 voxels (V) need to 

be examined around each sampling point, in order to detect the actual intersection with the 

objective surface (head). However, in the actual intersection process, the number of examined 

voxels is usually less than the expected value because of an earlier cessation of the ray tracing 

when the intersection occurs. Since, the tracing ray is originated from a point in 3-D space 

corresponding to the position of the sample point and then extended in two sides by 16 voxels 

(see figure 6.5), the number of examined

voxels is

ny= (2 X 16) 4-1 =  33. Equ. (6.11)

4) As it can be seen in figure 6.4, the number 

of operations results from contributions from:

a) the calculation of the transformation matrix 

at each search location, b) transforming each 

surface sample point to the new coordinate 

system, c) defining a 3-D ray tracing process 

(intersection line) for each sample points, and 

finally, d) comparing these points with the 

objective surface, thereby updating the 

distance error function if the ray intersects

Figure 6.5- Schematic diagram showing a tracing ray

objective surface.
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with the objective surface. In order to enable the comparison between the number of operations 

required by using different stages of the process, all the operations are expressed by a relative 

number based on the equivalent integer add operation. The actual timing response of different 

operations obtained by a |iVAX II, and the time ratio relating these operations with integer add 

operations are illustrated in table 6.1. The number of operations required for evaluating each part 

of the program (i.e. in respect of each search location W, sample point P, and ray tracing voxel 

V) during the registration process is as follows.

1) 1 integer compares /  W = 1 .5  e.i.a./ W
2) 17 integer adds /  Sample point ’P’ = 17 e.i.a./ P
3) 7 real adds /  P = 1 4  e.i.a./ P
4) 1 real compare / P = 4  e.i.a./ P
5) 5 intrinsic functions (e.g. Sin, Int)/ P = 1 0  e.i.a./ P
6) 3 integer multiplies /  P = 6  e.i.a./ P
7) 12 real multiplies /  P = 3 6  e.i.a./ P
8) 3 integer adds/ ray tracing voxel ’V ’ = 3  e.i.a./ V
9) 1 real adds / V  = 2  e.i.a./ V
10) 1 integer compare / V  = 1  e.i.a./ V
11) 2 intrinsic functions / V  = 4  e.i.a./ V

where e.i.a. denotes equivalent integer add operation. The number of assignments are not 

considered in these operations. Note that these number of operations do not take into account 

any improvement (i.e. termination of the evaluation) due to the use of the variable threshold. 

From this information, the total number of operations can be expressed as

T̂ot opr” (n^yXl.5) n^xnpx87 4" n ŷXnpXnyXlO e.i.a.

%ot_opr= "w [np (87+lOny)] e.i.a. Equ. (6.12)

The first part o f above expression is eliminated due to its smallness in relation to the 

other parts. From expressions 6.10, 6.11 and 6.12, the total number of operations at the highest 

resolution level (LG) is

nTot_opr = 6.54xl0^x(417np) e.i.a.

Due to the improvement obtained by using threshold sequence, it is not possible to 

specify exactly np for each location in the search window and in turn to define n-pot opr- However,
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Hp can be predicted based on some behaviourial knowledge of the distance function at different 

search locations. These are outlined in the next section.

5) The duration of time 

taken by an integer add 

operation (i.e. Qp̂ ) is 

shown in table 6.1. The 

cost of applying sequential 

method is obtained by the 

product of n̂ ot by the 

time required for one 

integer add operation.

6.3.1- Decomposition of 

the search window and 

prediction of np

Operation time
s/10"

e.i.a.

Integer add 2.26 1
real add 4.9 2

integer multiply 4.9 2
real multiply 5.9 3

integer compare 3.5 1.5
real compare 8.3 4

Trigonometric function 4.95 2

Intrinsic function e.g. Sin() 4.95 2

» A R

Table 6.1- Timing response of the system corresponding to different operations
(for jiVax n, based on seconds per million operation). e.i.a. denotes equivalent 
integer add operation.

np varies with threshold in a way that depends upon the degree of misregistration between 

the two surfaces. The threshold is ideally set to permit an early termination of the evaluation at 

a certain misregistration window point, that is, the termination at a search location which give 

cumulative error greater than the threshold T„ (where T„=rm+grVm=rm(l+g/Vm); see equ. 6.7), 

when only a fraction of the total number of sample points are examined.

Both, the threshold and mismatch (distance error) values are expressed in terms of the 

number of voxels. Assuming that the misregistration error is the only source of the distance 

error, the threshold, which is expressed in voxels not in absolute value, is the maximum 

acceptable distance error between the two surfaces. Assuming that any unit o f the transformation 

(in one or all directions) moves the two surfaces away (i.e. produces a distance error) with the 

same magnitude, a neighbouring search window can be defined around the true match 

location which have its corresponding distance errors less than the threshold. Consequently, in 

respect of each unit of the threshold, the window is expected to be enlarged by about one 

voxel in each direction corresponding to one voxel shift or/and one to two degrees rotation 

(because the distance errors are less sensitive to rotation) around the true global match location.
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In the example shown in figure 6.6 (central 

shaded 3x3 square), this window consists of 

729 locations corresponding to 1 voxel shift 

and 1 degree rotation in x, y and z directions 

(obtained by (meanx2+l)^^\ where the 

threshold is equal to ’mean’ and mean=l 

voxel).

Only the locations of the search 

window have distance errors comparable 

with the threshold, and thus require more 

evaluation to be tested for the true match 

location. Therefore, all the sample points are 

expected to be examined at every location of 

this search window.

kn
Figure 6.6- The neighbouring locations around the true 
match (cenual square) for two pixels being matched 
together. Each region K corresponds to the same number of 
transformations around the true match location.

From the equation 6.7, the number of neighbouring locations n^  ̂ in which approximately 

all the sample points are likely to be evaluated can be obtained by

= (r(l+g/Vm)x2 4-1)̂ Equ. (6.13)

Other locations (denoted as search window êi) which produce sufficiently high 

distance errors would elevate the threshold at some earlier stages of the evaluation and thus only 

a few number of points are examined. However, the initial number of points should be high 

enough at any location, in order to establish conclusively that a certain misregistration has 

occurred. The number of locations in which the points are Partially evaluated can be obtained 

by

*w. Equ. (6.14)

As shown in figure 6.6, the window can be divided into different sub-windows

(W )̂ based on the expected distance error which they yield. The number of sample points 

allowed to be evaluated in the locations of a sub-window (where k is the transformation
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parameters, e.g. shift, to build that particular sub-window) depends on the threshold T (i.e. mean 

and value of g) and on the transformation k. Since the distance error contributed by each sample 

point increases as the applied transformation increases, a smaller number of points are allowed 

to be evaluated in these sub-windows than in the window This means a smaller number of 

sample points are needed to generate a distance error bigger than the proposed threshold value. 

The number of points (np^^J for a sub-window can be obtained by

= np X T/k Equ. (6.15)

when; p@Wk refers to the sample points examined at window location Ŵ . Assuming that any 

transformation (e.g. shift) makes the mean square distance between the two surfaces with the 

same magnitude, the number of locations n ,̂ of a sub-window can be obtained by

n*. = (kx2+1 )‘ - ((k-1 )x2+1 ) \  Equ. (6.16)

where k > r(l+g/Vm) and r is the mean of the distance between the two surfaces. From the 

definition of the neighbouring voxels, it can be shown that

n^. = n^  ̂ if k=r(l+g/Vm) i.e. k=T

The total number of window locations can then be expressed as

maxTR

nw = I  [nwJ Equ. (6.17)
k=T

where maxTR is the maximum transformation (e.g. shift) applied in the search window W (e.g. 

maxTR=10, if the maximum transformation is about 10 voxels). From equations 6.12 and 6.17, 

the total number of operations (njot_opr) can be obtained by

maxTR

"Tot opr = Z (n^J (417xP„xnp) e.i.a. Equ. (6.18)
k=T

where coefficient denotes the probability of the number of sample points involved in 

registration when a mismatch location is examined. Since the behaviour of the distance function 

is not clearly known at a mismatch location, the coefficient should be found empirically. 

However, an estimated value for can be obtained by considering the parameters effecting the
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probability of the matched points (e.g. mean and S.D.).

= T/k = mean(l+g/Vm)/k. Equ. (6.19)

In this sense, np can be replaced by np@̂ k from the equations 6.15 and 6.19. The total number 

of operations are then expressed as

maxTR

r̂ Tot_opr (riwk) (417np(g)Y/J e.i.a. Equ. (6.17)

It is apparent that there is some statistical noise and misregistration fluctuation that affect 

the number of evaluated sample points yet unexplored for determining the exact number of 

operation and thus the computing time.

6.4- Summary

This chapter introduced a new approach for matching the 3-D surface data obtained from 

medical images. This new approach was known as the sequential method in which a cumulative 

distance error was used instead of the mean distance error for the evaluation of the mismatch. 

The different sources of error contributing the cumulative distance errors were also outlined. 

Using this type of the error measure was shown to enable the application of a variable threshold 

which causes the termination of a mismatch location very efficiently. A formulation for this 

threshold sequence was also presented. It was shown that the application of the sequential 

process on 3-D surface data reduces the computational cost while it does not effectively change 

the performance of the process.

The computational aspects of the process and cost prediction were discussed in section 

6.3. Various factors influencing the cost were also studied. The expected time required for the 

algorithm to decide that there is not a match at a given location was shown to depend on the 

threshold, sampling strategy and ordering of the sample points.

118



CHAPTER 7 
MULTI-RESOLUTION REGISTRATION

7.1- Introduction

To improve the computational cost, the sequential method of registration was modified 

and implemented in a multi-resolution space (i.e. at different matrix sizes) (see IPMI’91 for 

initial results; Oghabian and Todd-Pokropek 1991). The proposed technique incorporates a 

hierarchical search for obtaining the best transformation (match location) which match the two 

surface images. Although the technique is applied on binary images of different grid (matrix) 

sizes, it is called multi-resolution throughout this project due to the fact that scaling an image 

to a bigger pixel size yields efficiently a coarser resolution image. In this process, there are some 

common features with the multi-resolution template matching introduced by Bamea and 

Silverman 1972, Wong and Hall 1978, and Wong 1978.

The fitting is started in low resolution surface images, and stepped to a higher resolution 

when a desired fit passes an appropriate threshold. During the search at each resolution level, 

the sequential testing and adaptive termination (see section 6.2.5) of a search location is also 

performed, in order to minimize the amount of computation, further. The whole process is 

summarized in the diagram shown in figure 7.1.

The aim of this chapter is to describe the proposed multi-resolution approach and discuss 

the computational aspect of the process. The general algorithm outlining different parts of the 

program is described in section 7.2. All the multi-resolution aspects of the surface creation and 

surface fitting process are presented in the subsections of 7.2. A fast method for creating low 

resolution surface images is suggested in section 7.2.1. The number of search locations and the 

basic strategy behind the selection of these locations are presented in section 7.2.2. The error 

analysis is given in section 7.2.3. The advantage of using a variable threshold is also addressed. 

Section 7.3 presents the expected computational cost of the multi-resolution algorithm and the 

cost saving gained by this process. A summary of the method is presented at the end.
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7.1.1- Terminology

Most of the variables and terms expressed in this chapter have been defined in chapter 

6. Here a superscript L is attached to denote the resolution level (as defined in section 7.2). 

Level L, in this concept, refers to the degradation (scaling) level applied to create a smaller low- 

resolution surface image. The size-level is referred to the size of image (in any direction) 

corresponding to the resolution level. The values assigned to L and the definition of some other 

variables are as follow.

L can be 0, 1, 2 or 3, denoted as LO, LI, L2 and L3, for image size of 256^, 128 ,̂ 64  ̂ and

32 ,̂ respectively. The size 256  ̂ in this respect is the size of the highest resolution image. 

L denotes the maximum level to which the image is degraded (i.e. the level in which the

global grid search is applied)

P the probability of a match (true or false) at below detection threshold.

7.2- Algorithm

The main features of the multi-resolution process are shown in the diagram of figure 7.1. 

The inputs to the multi-resolution image registration system are two sets of binary surfaces 

obtained by a surface detection technique, and a set of transformation parameters. A grid search 

(see section 5.3) is applied on surface images at different resolution levels, by which the 

computational cost is substantially reduced. Although the purpose of this technique is to apply 

a grid search including all the possible transformations (each having 3 shifts and 3 rotations in 

X, y, and z) for minimization process, it is unnecessary to check those transformations which are 

substantially too far from the expected match location. Therefore, further reduction of 

computation is also achieved by restricting the search to a smaller window around the best match 

location obtained by centroid and/or interactive manual registration.

A sequence of lower resolution surface data sets of a smaller sizes (e.g. 128*128, 64*64, 

32*32) are generated from two original surface data of size 256*256. The level to which the 

image size is reduced depends on the value of mismatch and "effective distance" error between 

the two registering surfaces. The effective distance means the average distance of only those
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Binary surface images of 
head and hat as input

Best transformation obtained 
by manual alignment

Geometric scaling of Head data 
to a level at half of its size

transformation of Hat to a 
size corresponding to Head

S e q u e n t ia l  m ethod  
as shown in  f i g .  6 . 1

Distance error measurment at new level

Setting lowest resolution level

Setting one of the possible 
transformations from search spac

Evaluating cumulative 
errors after examining 
a few number of points

Setting variable threshold 
after examining a few 

number of points

Terminâting 
evalua t ion 

urrent TP

Hav
all points been 

evaluated

Storing TP for 
higher level

betting the next 
iigher resolution 

level
C o m p a r i n g  o f  s t o r e d  T P s  i n  t h e  
h i g h e s t  r e s o l u t i o n  l e v e l  f o r  t h e  
b e s t  t r a n s f o r m a t i o n  p a r a m e t e r s

Figure 7.1- The main features of the multi-resolution process. EDE denotes 'effective distance error (see section 
7.2) and TP=transformation parameter.
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points on the surface which are not in match or close to match position with respect to their 

corresponding points. No attempt was made to reduce the image dimension to a size which gives 

an effective distance error of less than one voxel. This is due to the fact that the surfaces are 

defined in terms of whole voxels. Distance measures are therefore expressed as an integer 

number of voxels, which vary as a function of level L. Thus, the effective distance error between 

two surfaces reduces at the same rate as the image size is reduced.

7.2.1- Surface degradation methods

Two procedures were used to create low resolution surface images. The first process 

involves two-dimensional low-pass filtering of the original grey-scale image slices at each level 

and then sampling the filtered data at half of the image sample rate of the higher resolution level. 

The surface detection algorithm is then applied on each scaled data set at different levels. The 

major disadvantage of this procedure is that all the time consuming surface detection steps 

should be employed on the complex grey- scale images at all resolution levels.

An alternative criterion for creating a surface in a lower resolution image (having a bigger 

voxel size) can be defined which is based on the binary surface data set obtained at the highest 

resolution level. This method was mainly used in the current project. In this method, placing a 

surface point at a position (voxel) in a low resolution image depends on the location and number 

of neighbourhood surface points (for example eight adjacent voxels) in its corresponding higher 

resolution image. In the simplest sense, a surface point in the small matrix size of a low 

resolution surface image is set if at least two of its neighbourhood in the coiresponding higher 

resolution image are on the surface. This criterion is explained in an algorithmic manner in the 

following paragraph.

Let a voxel f̂ +i in a low resolution level (i.e. degradation level L+1) be set as a surface 

point if any two of the eight adjacent voxels in the higher resolution image (i.e. degradation level 

L) are on the surface.

fL+i(lj,k)=l, if fL(2i+a,2j+p,2k+Y)=l 

for at least two neighbouring voxels (where a ,p ,7 ^ ,l) ,

otherwise; fL+i(i,j,k)=0, Equ. 7.1
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where a, (3 and y are scalar values 0 or 1 

in order to define the eight neighbouring 

voxels for each surface point (2i,2j,2k) of 

the lower degradation level L ( for i,j,k 

between 1 and n; where n is the size of 

the 3-D binary surface data set at higher 

degradation level L-t-1). The schematic 

diagram of figure 7.2 shows this process 

in a two dimensional binary image.

Both the transforming and 

objective surfaces are scaled (degraded) 

to the same level by the preceding 

algorithm. The sampling points of the

.evel

Level 2

Level 1

Level 0

/ / / / / / . Contour in the 
highest resolution 
level

Figure 7.2. Schematic diagram showing the degradation of a 2-D 
binary image from level LO (size 256h to level L3 (size 32^.

transforming surface are then reselected in each new level. Alternatively, the original sample 

points (at the size-level 256) can be scaled to a level corresponding to the current matrix size 

of the objective surface. However, in the later method, more errors are incorporated in obtaining 

the actual locations of the sample points due to possible loss of consistency with the other points 

(e.g. neighbouring points) of the transforming surface.

7.2.2- Search Locations

All the transformations (locations) in a proposed search window are applied to the surface 

data sets of lower resolution level. In each location, the distance errors are measured and 

cumulated sequentially until they exceed an adaptive (variable) threshold. The goodness of any 

transformation is judged by comparing its corresponding distance error with the threshold. In 

order to overcome the effect of errors incorporated during the degradation process, a number of 

transformations which yield a mismatch value less than the predefined threshold, are considered 

in each level as candidates for acceptable matches in the higher resolution levels. In other words, 

the method uses some of the best transformation parameters (most promising search location) 

found at a given level L-bl, to pass them as search locations to the next lower degradation level 

L for further investigation.
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7.2.3- Error concept

As well as the registration 

errors introduced in section 6.2.3, 

there are other sources of error 

associated with the multi- 

resolution algorithm. These errors 

are mainly associated with the 

surfaces by losing some detail 

due to the nature of scaling 

(degradation) algorithm. This is 

known as scaling or degradation

noise throughout this thesis. As Figure 7 .3 -2-D cross section of head surface in the multi-resolution study.
_  ̂ , These correspond to levels LO (size 256b, LI, L2, and L3.

discussed in section 7.2.1, any

voxel in a lower level is formed from, and thus correspond to, eight voxels in the previous 

higher resolution level. Accordingly, any angled or oblique edge occurred in these eight voxels 

may be smoothed out (see fig. 7.2) and is thus counted as a straight line segment after the 

degradation. Nevertheless, there might be some noise on the surface due to surface detection 

process, which will smooth out as well. A low resolution image may also be less affected by 

distortion (in terms of voxels) than an image of high resolution would,

7.2.3.1- Scaling noise

In general, errors introduced in the creation of low resolution images depend on the 

degradation (scaling) method and thus the amount of detail and geometrical information lost in 

the process. The contour images extracted from the skin surface at four subsequent resolution 

levels are shown in figure 7.3 As illustrated in this figure more detailed information is contained 

in the contour of 256*256 image than 32*32. On the other hand, the lowest level image has a 

simpler shape which corresponds to the oval shape of the head contour (in axial cross section). 

This effect can sometimes be regarded as an useful phenomenon causing an easier and quicker 

convergence of the registration process. However, some noise on the contour of the high 

resolution image (indicated by a white arrow on fig. 7.3) are eliminated in the contour of the 

lower resolution image.
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7.2.4- Variable-threshold selection

The variable threshold T introduced in chapter 6 (equ. 6.8) can be modified to account 

for the termination of the function evaluation at different resolution levels L.

= R^^+(g+Ç)rWm Equ. 7.2

This threshold sequence guides the search from a low resolution to a next higher 

resolution level. The threshold should be low enough to select only the most promising 

transformations at each level for testing in the next level. However, it is desirable that this 

threshold does not eliminate those locations that are likely to be important as a potential true 

match location at a higher resolution level. The crucial and difficult problem in the selection of 

an optimal threshold is the choice of the expected (residual) mean error which exists 

between the two registering surfaces at each resolution level (see section 6.2.3). In many cases 

it is not easy to do this in advance, since different images may be processed with various noise 

levels. However, the threshold can be set based on the probability analysis (e.g. density error 

distributions) for two well-defined surface data sets (see chapter 8 for the results).

The expected error in a subsequent low resolution level is expected to be half that of its 

parent level. However, another factor should be considered in this concept. Since the surface is 

represented in terms of whole voxels, the individual distance errors are measured to voxel 

accuracy. Hence, scaling the image to a lower resolution level, forces some of the distance errors 

to a rounded number of voxels. This forces some of the errors to zero at lower resolution levels 

when successive scaling have been applied. Accordingly, the coarser the surfaces are made, the

lower the standard deviation of the distance error is expected. Therefore, in order to predict the

threshold at any level from the expected errors obtained in the previous level (e.g. higher 

resolution level), a coefficient (x) should be taken into account for such an unwanted error 

suppression mechanism. In this concept, T counts for those errors which are inherently bigger 

than the threshold, but have been scaled (rounded) to a value of less than threshold. The 

threshold sequence in a level L (obtained from the highest level LO) becomes as

T /  = (l-x)(R„“ +(g+0r“ Vm)/2«'“ > Equ. 7.3
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where LO denotes the highest resolution level. T is zero for the highest resolution level and 

varies between 0 to 1 depending on the fraction of points matched due to the degradation 

process. Since the fractional error resulting from the use of the whole voxel during the 

degradation process is unknown, their actual contribution to the expected error of a degraded 

level is not clear. This effect in addition to the other sources of error mentioned in section 7.2.3, 

causes an uncertainty in the prediction of x. The prediction of the mean (expected) error in the 

lower resolution levels are therefore obtained, empirically in each level, by using a well-defined 

scaled (degraded) data set.

7.3- Computational cost

As mentioned in the previous chapter, the cost of a sequential method is primarily a 

function of the number of search locations, the number of sample points, and the number of 

arithmetic operations involved in evaluating of each point. The basic approach in assessing the 

computational cost associated with the sequential concept of the multi-resolution technique can 

be found in section 6.3. All the formulations and discussions outlined in section 6.3 and 6.3.1 

are applicable to this approach of sequential multi-resolution, except that of incorporating an 

extra factor (coefficient) L defining the resolution level. The superscript L, in this sense, is used 

to denote the degradation or scaling level between the processing surface and the original high 

resolution surface (i.e. L=0 for image size of 256 \ L=1 for 128 ,̂ L=2 for 64 ,̂ and L=3 for 32 )̂. 

In this section, the computational aspects of the method at different resolution levels are 

discussed. Unless otherwise stated, the terminology and variables used in this section are based 

on those defined in section 6.1.1 and 6.3.

Since at a lower level of resolution both the size of data sets and the number of possible 

search locations decrease, the improvement (evaluation) of distance function terminates by giving 

an appropriate outcome for each transformation in a very short period of time. This outcome is 

either a rejection, or an acceptance of that particular transformation as a potential candidate 

location for the global minimum. Consequently, the cost efficiency of the registration process 

substantially increases as the size of the two registering images decreases. The number of sample 

points required is also reduced at coarser resolution which implies a higher convergence speed 

for the algorithm. These effects are the origin of some cost differences with the sequential
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process as discussed in the following paragraphs.

1) Although the rotation is consistent at all the resolution levels, a bigger step-length is 

required to produce a noticeable change in position of the surfaces. Shifting at each level (in 

terms of voxels) is equivalent to its twice that shift in a next higher resolution level. 

Accordingly, if -8 to +8 voxels shift is required in size-level 256, this is equivalent to -1 to 4-1 

voxels shift in size-level 32. The search window is the initial shift window applied in the 

lowest resolution level (e.g. -1 to 4-1 voxels shifts in each direction x, y and z at the size-level 

32) and is the corresponding rotation window (i.e. -10 to 4-10 degree rotation applied with 

step-length 2 in each direction), where the superscript L denotes the initial level in which the 

whole transformations is applied (e.g. size-level 32). Note that the step-length is an estimate of 

the smallest step in transformation space that changes the position of the transforming surface 

(obtained by step=ArcTan(l/d); for a shift of one voxel, where d in the distance between the 

surface and centre of rotation). The total number of transformations initially used in level L3 is

nw"'" = nws"'" X Hwr"'" = = 3.6x10^. Equ. 7.4

Although this window size is much smaller than that of the proposed search window at

the original resolution level, it covers a wider range of transformations. W in the initial level (i.e. 

W )̂ is usually fixed, but it varies at other levels depending on threshold values. Optimally, the

size of window in the next higher resolution level is much smaller than W .̂

2) Based on the window size prediction outlined in section 6.3.1 (Equ. 6.13, 6.16), the size

of sub-window which requires all the sample points to be processed is reduced as the 

resolution (matrix size) is lowered. The fraction of points processed in sub-window (i G.

all sub-windows W,̂  of the shift or rotation space) is also reduced. These are due to the decrease 

in the value of ’mean’ of the distance between the two surfaces in voxels, which gives a lower 

threshold value (Note that the size of voxels as units of mismatch is relatively bigger at lower 

resolution levels).

3) Since the size of the registering images is reduced as the resolution level reduces, the 

optimal number of sampling points np̂  required for registration is also expected to reduce. The 

expected number of required sample points at different resolution levels depends on the ratio of 

size reduction between them. Based on the values selected for L (i.e. L is 0, 1 ,2  or 3 for image
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size of 266 \ 128\ 64  ̂ and 3 2 \ respectively), the size ratio between the images at different 

resolution levels and the highest resolution level (L=0), is a function of 2^\ Therefore, the 

number of sample points np̂  at level L can be obtained by

np"'72̂ >. Equ. 7.6

4) The change in the number of voxels required to be tested for an intersection in the 

ray tracing process at different levels, are also equivalent to the ratio of the size-level reduction. 

For example 2 voxels at size-level 32 corresponds to 16 voxels at size-level 256 (i.e. size 

reduction is 256/32=8). The general equation which specify the number of required voxels is

nyL = ny%(^\ Equ. 7.6

The number of operations in level L can be obtained from equation 6.18, but with some 

modification to take into account the influence of the resolution level. The cost of the 

degradation process and the selection of initial level are ignored in all the assessments, since this 

needs to be done only once. Thus

MuTR

"to. =X [nwi‘ ] [/’.xnp“ /2® (87+10nv“ /2<̂ >)] e.i.a.
k=T

Equ. 7.7

The expected cost of the whole multi-resolution process can then be obtained by 

Cost = (n-pg; opr^Copy) + ) X P^xnp^(87+10ny^)].

Equ. 7.8

where P is probability of a below-threshold mismatch at the lower resolution level L+1. The first 

part of the equation indicates the cost of applying the coarsest resolution level, and the second 

part shows the cost corresponding to the rest of levels. There is a trade-off between the 

probability f  as a function of threshold, and the accuracy of the registration. Finding a good 

accuracy for which the cost is minimum is an optimization problem which can be solved 

empirically. The saving of computation effort resulting from the process is shown in table 7.1.

7.4- summary

This chapter has presented a novel approach applied to the registration of 3-D surface
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L Size nw np (x87) Tly (XIO) ^Tot_opr®^^ Time

0 256 3.4x10* 100 33 1.4x10" 4726 min

1 128 505x10’ 50 17 6.48x10* 216 min

2 64 86.6x10’ 30 9 4.59x10® 15 min

3 32 18.7x10’ 20 5 5.12x10’ 102 sec

Table 7.1- Number of entities (e.g. operations) in the multi-resolution technique when it starts at 
different resolution level L (L denotes the initial resolution level). The reduction in number of 
operations and time is obvious, n^, np and n  ̂refer to the number of search locations, sample points 
and tracing voxels, respectively, n^ is based on a suggested window size (i.e. ±8 voxels shift and 
±10, ±6, ±8 degrees rotation with step 2 around x, y, and z direction), np and n  ̂ are based on the 
program and algorithmic diagram shown in figure 5.4. The value in parenthesis show the number of 
operations for each entity, npo, denotes the total number of operations based on the equivalent 
integer add (e.i.a)(n-ro, „pr=nwX(npX(87+10nv); see equ. 6.12). Note that no improvement was included 
resulting from the use of a variable threshold.

data from medical images. The approach employs a grid search on two low resolution (small 

image size) surfaces, and applies only the most promising transformation parameters on a 

corresponding bigger (high resolution) image. Therefore, the performance computed on the basis 

of some few voxels matched in a coarse resolution image is used for the next resolution level, 

and in turn for the original high resolution image.

A degradation technique has been introduced which uses only the 3-D positional 

information of the surfaces. The errors incorporated in the surface degradation technique and 

their effects on the registration process was also studied in this chapter. Other sources of error 

were outlined with a tendency of a noise suppression effect of the low resolution images.

In section 7.2.4, an expression was determined for the definition of a threshold sequence 

used in multi-resolution sequential methods. Various parameters influencing this variable 

threshold was discussed.

The expected computational cost and the factors influencing this cost were explored in 

section 7.3. The cost prediction of the sequential multi-resolution process was compared with that 

of the pure sequential method. A time saving ratio of about 1/2800 was obtained when using a 

multi-resolution method on a grid-based search strategy (in contrast to a global search at the 

highest resolution level).
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CHAPTER 8 

EXPERIMENTS, RESULTS AND DISCUSSION

8.1- Introduction

As discussed in chapters 6 and 7, the registration process manages to move and rotate 

a number of sample points (i.e. a template) from one registering surface across the other to find 

the besi match between them (minimization). The process of searching for the best 

transformation (location) can be thought as a grid search which locates the best match between 

two images. The ability to find the correct match is influenced by different types of parameters 

such as number of locations, number of sample points and the threshold level used in the 

sequential decision process. Noisy data, the structure of distance function and the deficiency in 

the registration process itself may distort, broad or mislead the minimization point.

The aims of the experiments and the results outlined in this chapter are to show the 

fidelity of the proposed multi-resolution and sequential methods used for registration of medical 

images. A set of experiments were designed to evaluate the sequential multi-resolution 

techniques used for registering different types of data set, and to compare practical results with 

those of the theoretical discussion. Two types of phantom, the Hoffman brain (10 cm thick) and 

the Jaszczak phantom were initially used in these experiments. The data from thirty routinely 

imaged patients, and ten patients with setting external markers were also used in the current 

assessment. Moreover, five sets of brain data from volunteer subjects were used in order to 

generate some high definition, known data sets. By transforming all the above data sets to a 

number of known locations (i.e. arbitrary transformation parameters), a number of well defined 

data sets were generated for verification of the proposed algorithms.

This chapter is organized in two main sections; experimental methods and results. First, 

in section 8.2, the experimental methods are presented. This introduces the methods applied to 

evaluate the multi-resolution and sequential process. The section also explains the data used for 

this assessment. The experimental results from the application of these methods to different data 

types are presented and discussed in section 8.3. The problem of noise involving in surface
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detection, geometrical scaling and registration itself contributes registration errors which are 

analyzed in this section. The behaviour of the least square distance function to different 

transformation parameters is also explored. Finally, the issue of accuracy and cost calculation 

and the analysis of the results are discussed in sections 8.3.4 and 8.3.5. A summary of the results 

and discussion can be found at the end of this chapter.

8.2- Experimental methods

All the experiments were performed on sets of known arbitrary-transformed data obtained 

by the following procedures.

Data type A: The images selected for the experimental computations consisted of a set of 2-D 

adjacent T2-weighted MR slices. To simulate the registering data for this assessment, the set of 

original grey-scale MR data were misregistered arbitrarily by different known transformation 

parameters (e.g. 5, 8 and 10 voxels, shift, and 5, 8,10 degrees, rotation, with respect to x, y, and 

z direction). These data sets were not truncated after misregistration. The surface of these data 

sets were formed and stored for surface fitting process and thus for the evaluation of various 

aspects of the registration algorithm.

Data type B: The original 2-D MR slices were degraded before applying the arbitrary 

misregistration, in order to simulate PET and SPECT data in a known geometrical environment. 

This degradation was performed by applying a Gaussian filter to the original MR data and then 

adding Gaussian noise to them.

Data type C: To provide a representative set of data for the real images taken by an imaging 

system and thus to simulate a more practical set of misregistered images, an alternative set of 

data was generated. The MR data were arbitrarily misregistered by setting different physical 

parameters (e.g. rates of gradients) of the imaging system itself (i.e. setting different 

combinations of x-y-z gradient amplitude of the MR slice-selection parameters which generate 

the slices in different directions).

Data type D: External markers visualized in both MR and SPECT were used. The images taken
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with these markers were registered by checking the marker position in both studies. Knowing 

the geometric information between the two original data sets, MR and SPECT, the multi­

resolution process was then applied and verified.

In the first set of experiments, an attempt was made to register the generated (well- 

defined) images with the original MR slices using the sequential multi-resolution algorithm. 

Different parameters (e.g. resolution and threshold) were set and tested in these experiments. In 

order to verify the fidelity and the performance characteristics of the sequential and multi­

resolution methods, alternative sets of experiments were designed, in which all the mismatch 

measures {MSD or MDE values) were examined in a search window around the optimal 

transformation (true known location). These transformations were applied following the 

registration of the two arbitrary-misregistered data sets. For obtaining the performance of the 

process at other low resolution levels, the original high resolution siufaces were degraded (i.e. 

geometrically scaled) before the registration. Then the corresponding geometrical transformation 

(e.g. a shift of 1 voxel on image size of 32̂  in respect of 8 voxels shift on image size of 256^) 

was applied at each level to register the two surfaces, originally, before assessing the search 

window.

When checking all the transformations in a search window, the minimization process 

recognizes some locations whose MDE values are less than a pre-defined threshold (or their 

cumulative errors are less than the variable threshold). Thus if only the known mismatch 

locations are checked, then any match location recognized by the process must be a false match. 

The probability that such an observed occurrence of the distance error being less than ilncshold 

T is called False Alarm Probability (FAP). The window search designed for FAP constitutes all 

the transformations defined in the proposed search window (i.e. n\y^°=(8x24-l)^ locations 

corresponding to -8 to 8 voxels, shift, and -8 to +8 degrees, rotation, in x,y and z directions; see 

section 6.3) except the actual true match location itself and except those neighbouring locations 

which can be assumed as match locations (e.g. W^°=( 1x2+1)® locations corresponding to a shift 

of -1 to +1 voxel, and a rotation of -1 to +1 degree, around the true match location; see region 

kl in figure 6.6). In order to evaluate the most uncertain false match locations, a smaller window 

size was considered for evaluating FAP in most experiments. This was done by constituting only 

the locations which need a minor extra transformation (e.g. ±2 to ±3 voxels, shift, or ±2 to ±3 

degrees, rotation; see region k2 and k3 in figure 6.6) in order to be counted as match location.

132



This helps to established the response of the registration process to various unacceptable 

transformations which are uncertain. An equivalent transformation range was applied in other 

resolution levels.

Similar sets of experiments were designed using the above simulated data sets, but at a 

number of locations which can be assumed as being acceptable matches (defined as true match 

locations). These locations can be defined as the neighbouring transformations of the true match, 

where they just pass the test for being as a true match location (i.e. they are very close to the 

true match location; e.g. region k l as shown in figure 6.6). In these experiments, the images 

were also registered in advance using the known transformation parameters. Then the distance 

errors {MDE values) at true match location and its neighbourhood (see figure 6.6 for a schematic 

diagram of these neighbours) were examined and compared to a preset threshold. The probability 

of the occurrence of the error being less than the threshold is, then, counted as True Match 

Probability {TMP). Ideally, the suggested match and mismatch locations need a small 

perturbation to reverse their behaviour to being as mismatch or match location, respectively.

In order to be able to use the central limit theorem, and thereby to have a normal error 

distribution, the cumulative error (being the sum of a number of individual distance errors; e.g. 

6 to 10 individual errors as confirmed empirically) was used. The errors were then compared to 

the corresponding variable threshold (i.e. the threshold corresponding to the number sample 

points which contribute to the error). The results of applying these experiments are outlined in 

the next section.

8.3- Results and Discussion

The various parameters (e.g. threshold, number of sample points, scaling noise, etc) 

which characterise and effect the performance of the registration process are studied in this 

section. The sensitivity and behaviour of the least square distance function to different 

transformation parameter is also revealed in this section. As explained in the previous section, 

in order to obtain a precise behaviour of the distance function to various transformations, a 

number of acceptable match locations are used for the evaluation of the true match location. The 

false alarm probability, on the other hand, is obtained by a number of known mismatch locations.
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This section is organized as follows. The error density distribution of the distance errors 

between the two registering surfaces at both match and mismatch positions is presented in 

section 8.3.1. The probability of the below-threshold match at different resolution levels using 

various threshold values are examined and presented in section 8.3.2. This section consists of 

a number of subsections outlining various aspects of the probability analysis. The probability of 

false matches are demonstrated in section 8.3.2.1. To assess the number of points matched in a 

particular location (either match or mismatch location), the probability of matching points are 

outlined in subsection 8.3.2.2. The probabilities and then performance of the sequential process 

is studied and presented in subsection 8.3.2.3. Next, the response of distance error measures, at 

differen ; resolution levels, to various locations near the minimum are studied and presented in 

section 8.3.3. The accuracy measurement and cost calculation are addressed in section 8.3.4 and 

8.3.5, respectively.

8.3.1- Error density distribution

The error density distributions of the registering MR-simulated data sets described in the 

previous section are shown in figures 8.1a-d, and their statistics are presented in table 8.1. The 

error measures in these results are based on a large number of surface points (e.g. not less than 

300) obtained at a number of match locations (i.e. when two surfaces have been registered), or 

at a number of mismatch locations. The graphs in these figures show a normal density 

distribution (conformed by e.g. the Kolmogorov-Smirnov test (Papoulis 1965)) which is due to 

using the accumulated sum of the individual distance errors. The two graphs (peaks) presented 

in each figure correspond to error densities at a number of match and mismatch locations, 

respectively. The common region between the two graphs belongs to some uncertain (ambiguous) 

match or mismatch locations.

8.3.2- Probability analysis

The probabilistic analyses of the multi-resolution matching given in this section emphases 

the proper choice of the number of sample points and investigates the effect of different 

threshold levels. Unless otherwise stated, the results of this section are based on the data and 

methods introduced in section 8.2 for obtaining true match probability (TMP) and false match 

probability (FAP).
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Statistics Level LO Level LI Level L2 Level L3

Sample size 3158 728 512 188
Average 1.64 1.01 0.797 0.417
Median 1.64 1.02 0.83 0.39
Mode 1.67 1 0.94 0.32
Variance 0.18 0.05 0.04 0.02
Standard 0.425 0.22 0.20 0.14
deviation 0.0076 0.0083 0.0089 0.0102
Standard error 0.66 0.42 0.3 0.17
Minimum 2.84 1.66 1.29 0.73
Maximum
Range

2.18 1.24 0.99 0.56

The results based on the MDE values at a number of match locations.

Statistics Level LO Level LI Level L2 Level L3

Sample size 39500 12100 2150 950
Average 3.35 2.61 1.42 0.61
Median 3.39 2.62 1.42 0.6
Mode 2.31 2.82 1.4 0.5
Variance 0.65 0.25 0.045 0.026
Standard 0.806 0.50 0.211 0.160
deviation 0.0278 0.0103 0.0068 0.0049
Standard error 1.46 0.99 0.82 0.18
Minimum 5.18 3.87 1.89 1
Maximum
Range

3.72 2.88 1.07 0.82

The results based on the MDE values at a number of mismatch locations.

Table 8.1- Statistical information of the error density distribution of the MR-MR registration at different resolution 
levels.

Figure 8.2 shows how the TMP increases when using a higher threshold level. The curves 

in figure 8.2a show that, apart from the lowest resolution level (L3), the probability of match 

increases as the resolution decreases. This is due to the fact that a simpler shape and inherently 

smaller misregistration error (see section 7.2.3.1) is expected at a lower resolution level. The 

occurrence of a significant scaling error in level L3 (i.e. size 32 )̂ causes a relatively lower TMP 

for this level. The results shown in two sets of graphs in figures 8.2-c and 8.2-d indicate the 

performance of various number of registering points (5 to 200) at levels LO and L3. In general 

a higher probability of the true match is obtained when the number of sample points is high.
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F i g u r e  8 . 1 -  a - d )  Error density distribution at a number of mismatch (i.e. false 
match) locations, and at a number of match locations (see section 8.2) for MR to 
MR (brain image) matching. These results are based on the sum of 10 individual 
errors.
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The graphs in figures 8.3a-d show the response of TMP to the various size of P (number 

of points). As shown in these figures, the probability of the match increases with number of the 

points in all the resolution levels except the level L3 which has a roughly similar response (i.e. 

shows a slight increase in TMP) to all different number of registering points. In general, the 

effect of the size groups of the sample points at different resolution levels is determined by the 

overall effects of various types of noise (e.g. surface detection noise, scaling noise, and 

misregistration noise) incorporated in the registration process. However, as will be shown in 

figure 8.12, in spite of these errors resulting from incorporation of noise, both images being 

registered are consistent at all resolution levels. That is demonstrated (see table 8.2) by the 

registration of two well defined image models. Eventually, their alignment lead to a 

transformation parameter which is very close to the optimal transformation in the highest 

resolution level, and their mismatch value is of the order of one voxel precision.

8.3.2.1- False alarm probability

The false alarm probability (FAP) examined by 5xl(P mismatch locations is shown in 

figures 8.4-8.6. These transformations belong to a window size of 9 rotational and translational 

shifts in each direction, obtained by W^-W\gi (see section 8.2). The graphs shown in figures 8.4 

and 8.5 present false alarm probabilities versus threshold value at different resolution levels. The 

FAP results in respect to different number of sample points are presented in figure 8.6. Finally, 

figures 8.7a-b show the FAP versus threshold values, corresponding to the registration of MR 

and SPECT brain data sets. In this respect, figures 8.7c-d show these results versus the number 

of sample points. The performance characteristic of matching process at different resolution 

levels and for various number of sample points are illustrated by Receiver Operating 

Characteristic curves (ROC) in figures 8.8 and 8.9, respectively. The results of these figures and 

the discussion are outlined in the following paragraphs.

I: As shown in figures 8.4 and 8.5, the false alarm probability increases as the threshold 

increases. This threshold can lead to a reasonable probability, even at the lowest resolution level, 

if it is set properly. The performance characteristics of the MR to MR matching at various 

threshold values shown in figures 8.2 and 8.4, indicates how the threshold plays a critical role 

in detecting a true match location or, on the other hand, in rejecting a false match location. 

Although, a lower threshold level is preferable in order to obtain a lower FAP, it is not
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recommended in lower resolution levels due to lowering TMP which might cause the false 

rejection of a likely match location. When processing in a low resolution level, a higher FAP 

might be acceptable in the favour of a higher TMP in order to guarantee the inclusion of the true 

match location inside the locations passed to a higher resolution level. The fidelity of the 

registration process is due to the fact that all these uncertain locations which are in the vicinity 

of the true match location would be tested subsequently in a higher resolution level, where their 

FAP are significantly low.

II: The effect of various types of noise on the probability of match, discussed in the previous 

section :an also be indicated in the graphs of figure 8.5. As the images get coarser, the expected 

distance error between the two surfaces tends toward zero, so that for any threshold ’g’, the FAP 

increases. However, the result obtained from the graph of the image at level LI (size 128 )̂ 

shows how a proper image scaling method can improve the performance of the registration 

process. In spite of the error introduced during scaling process, the FAP at this level is smaller 

than that at the higher resolution level (i.e. size 256^). This confirms the noise suppression effect 

of the scaling (degradation) process. Nevertheless, the level L3 (size 32 )̂ has undergone a few 

levels (stages) of the scaling process and thus was incorporated with a higher level of noise. In 

fact the noise due to scaling degradation, that is shape change, increases, while noise on the 

surface, resulting from edge detection decreases. The inconsistency in the surface shape (shape 

deformity) due to this noise phenomenon causes a relatively high FAP at the level L3.

Ill: It can be seen in figure 8.6 that the FAP increases as the number of sample points decreases. 

The effect is due to the existence of a better shape and geometrical information of a surface 

when a higher number of points is used to define the surface. The FAP of the level L3 is much 

higher than other levels. This can be due to a smaller misregistration noise (error, see section 

7.2.3) obtained at a lower resolution surface. Moreover, as illustrated in this figure, a lower 

resolution level is less sensitive to the number of sample points than a higher level especially 

when the number of these points are small. In higher resolution levels, the FAP decreases 

substantially with the number of points where the number of examined points are below a certain 

level (e.g. 20). As shown in this figure, no such significant change occurs in the FAP of the level 

L3. This shows that a smaller number of sample points can be used to define a surface in a 

lower resolution image. The results obtained at level LI (i.e. size-level 128) by using a small 

number of points demonstrates the fact that even some fewer number of points selected from a
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higher resolution image (i.e. having bigger size) can carry enough geometric information with 

less noise about the whole 3-D surface.

IV: As shown in figure 8.7, in general the same results as for MR-MR registration was obtained 

for MR-SPECT data registration, except with a more distinct response of FAP to the number of 

points. In general all types of noise (surface detection, misregistration and scaling noises) are 

expected to increase in MR-SPECT registration. These imply a higher expected error in the true 

match location and thus imply a higher threshold value. Therefore, a higher FAP is obtained 

when registering MR-SPECT data. The smaller difference shown between the FAP of levels LO 

and LI than that illustrated by MR-MR registration, confirms that the degradation error causes 

more changes in the slope of the FAP curve at a lower resolution level. A sharper response in 

the FAP of MR-SPECT registration than MR-MR is shown with respect to the increase in the 

number of sample points. This can also be explained due to the greater influence of noise and 

therefore less geometrical and shape information when a lower number of points are employed.

V: As shown in figure 8.8 the performance characteristic of the matching process changes as the 

resolution level varies. Note that the curves with higher probability of true match and lower 

probability of false match belong to the higher resolution levels. Nevertheless, the performance 

at all levels is reasonably high, allowing the registration of the two subject surfaces, if a good 

threshold level is employed. The ROC curves shown in figure 8.9 are based on the probability 

measures obtained by using four different size groups of sample points at different threshold 

values. The superiority of using a larger number of points is evident from these curves.
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Figure 8.2- The probability of the true match (TMP) as a function of threshold 
(in terms of g; the number of S.Ds) for the MR t o  MR registration. Level LO to 
L3 belong to image size of 256*256*256 to 32*32*32, respectively, (denoted by 
LO(256) to L3(32)). NPT is the number of sample points, a) Registration using 200 
sample points; b) using 5 sample points; c) Registration at level LO (i.e. image 
size of 256^); d) at level L3 (i.e. image size of 32^).
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Figure 8.3- The probability of the true match (TMP) versus the number of sample 
points for the M R - t o - M R  brain data registration, 'g' defines the threshold as 
number of deviation from the mean (expected) error, a) At threshold g=l; b) At 
g=2; c) At level LO (i.e. image size of 256^)/ d) At level L3 (i.e. image size 
of 32") .
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(NPT) at; a)  Level LO (denoted as LO (256) ; i.e. image size if 256^)/ b) Level LI; 
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Figure 8.5- False alarm probability (FAP) versus threshold at different 
resolution levels, a) Registration using 200 sample-points; b) using 5 sample- 
points.
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Figure 8.6- False alarm probability (FAP) of the matching process versus number 
of sample points at levels LO to L3 (size 256^ to 32̂ , respectively). ' g ' is 
number of S.Ds (standard deviation) from the mean, a) Registration at threshold 
(g=l S.D.); b) at g=2 S.Ds; c) at g=3 S.Ds; d) at 4 S.Ds.
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Figure 8.7- False alarm probability (FAP) for MR-to-SPECT  brain image 
registration at levels LO to L3 (i.e. size 256^ to 32̂ , respectively); a - b )  versus 
threshold; c-d) versus number of points, a )  Registration of 200 sample points; 
b )  Registration of 5 sample points; c) Setting threshold level as g=l S.D. 
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Figure 8.9- Receiver operating characteristic (ROC) curves for the registration 
of different number of sample points (i.e. 200, 50, 20 and 5 points). The curves 
indicate an improved performance with greater number of points. (Note that some 
near match locations were used for the TMP in this evaluation; also a number of 
mismatch locations for FAP).
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5.3.2.2- Probability of matching points

In order to assess the role of sample points in building up the cumulative error and 

compare them at different resolution levels, an alternative set of experiments was performed. The 

probability was defined as the fraction of number of sample points matched (i.e. have a distance 

error smaller than a pre-defined threshold) with their corresponding points at some specified 

locations. Few neighbouring locations adjacent to the true match location were considered for 

TMP. On the other hand, the FAP was measured at a few certain mismatch locations.

As shown in figures 8.10a-b, nearly the same response as in the previous experiments is 

demonstrated by these graphs. Level L3 (size level 32) has the highest number of sample points 

matched at each location and this leads to a higher probability (i.e. both the TMP and FAP) than 

the other levels. The relation between the probabilities at different resolution levels confirms that 

the distance error is reduced at a lower resolution level due to the alignment (or closeness) of 

some more registering sample points.

The graphs shown in figure 8.10c illustrates a sharper change in FAP of the low-P 

regions of all resolution levels than those with a higher number of sample points. A smaller 

change is obtained in FAP, when the number of points stands above 50 at all resolution levels. 

The performance obtained by these graphs confirms the preference of some higher number of 

points in the evaluation of a mismatch value (i.e. the distance between two surfaces).

5.3.2.3- Performance of sequential methods

The method used in this experiment is based on the following transformation set. A range 

of transformation parameters (e.g. a shift of 0 and 8 voxels, and a rotation of 3, 5 and 7 degrees) 

were initially applied to the original set of MR data (i.e. data types A and B; see section 8.2). 

The surfaces were detected at each location, separately. For TMP, the detected surfaces, from 

all these locations, were then transformed to the known match location and its neibourhood, and 

the probability of match was calculated by the methods described in section 8.2. By using this 

strategy, the effects of the geometrical transformation and interpolation errors are also 

investigated. The similar procedure was used for calculating FAP, except that the surface was 

not transformed back to the original match location, but was further transformed to -2 to 4-2
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degrees off from the true match location. This procedure leaves the two surfaces at a number of 

neighbouring mismatch locations (denoted as 'background locations') which can be counted as 

true mismatch or false matches depending on the threshold level. These ’background locations’ 

are mismatches in the vicinity of the true match. The decision on the acceptance or, on the other 

hand, on the rejection of any location (as being a match location) is then made by taking into 

account a certain number of sample points (e.g. 10, 20, 50, 80, 120 and 150 as done in this 

experiment). The high resolution surface at each location (after the desirable initial 

transformation) have the degradation method applied in order to obtain the surface models at all 

other resolution levels. Then, the corresponding transformation at each level is employed to put 

the two surfaces at a match (for calculating TMP) or a mismatch (for calculating FAP) location.

Figure 8.11 shows the probability of match versus the number of sample points where 

the locations in the background (i.e. outside the acceptable match region) are examined. This 

figure shows a sharp decrease in FAP as the number of sample points increses, where the 

number of points is small (e.g. less than 20 for level L3 (size 32 )̂ and less than 50 for all other 

levels). The FAP has a relatively flatter response for higher number of the registering points.

When a sequential process is used, a higher probability of match (i.e. the true or false 

match probability) is expected at an earlier stage of the process when the number of points are 

smaller. Accordingly, the fewer the number of points involved in the registration, the higher the 

probability of below-threshold residuals (i.e. cumulative distance errors) occurs. On the other 

hand, more (rejecting) examinations are applied at each search location as the number of points 

comprising in the evaluation increases. Setting a higher threshold level allows any location to 

be tested further with higher number of points. A high threshold level is not beneficial due to 

the increase in FAP and also in terms of computation effort required by the process. However, 

when a multi-resolution method is used, all these probable false match locations are evaluated 

more accurately in a higher resolution level.

8.3.2.3.1- Error growth curve

The shape of the error growth curves at match and different mismatch locations is very 

important for the prediction of error in the sequential process and setting the threshold level used 

in this decision algorithm. In this respect, the error is incremented as each of the sample points 

is compared, and the search location is rejected if the mismatch value is bigger than a threshold.
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Figure 8.10- The probability of the matching points used in the registration of 
(M R~to-M R) brain images, a )  TMP (i.e. The probability of the points matched to 
their pair at a match location) versus different thresholds ; b) FAP (i.e. The 
probability of the points matched to their pair at a mismatch location) versus 
different thresholds; c) FAP versus different number of sample points. All the 
probabilities were obtained at the different resolution levels.
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transformation settings). The thick plotted lines show the pre-determined 
variable threshold values for g=2 S.Ds. The superiority of the variable threshold 
over the constant threshold level is indicated from these graphs, a-d) show the 
results at level L3 (size 32̂ ) to LO (size 256^), respectively.
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The cumulative errors in the true match location and three mismatch locations are shown 

in figure 8.12. The results shown in this figure are based on the cumulative error distance 

composed of at least the sum of 6 individual error measures. This cumulative concept allows the 

summation over a larger number of points (i.e. more individual errors) as the error is 

accumulated. The expected contribution of some points to the cumulative error measure are 

sufficiently high in some locations and provides a rapid rejection of them based on the variable 

threshold (as defined in equation 6.8). As shown in figure 8.12b, in the level L2, the mismatch 

location 1 is rejected after testing 78 points, whereas the match location is not rejected at any 

point, and thus accepted as a candidate of the tme match location for further evaluation. The 

mismatch locations 2 and 3 are also rejected after testing 54 and 12 points, respectively. The 

superiority of the variable threshold over a constant threshold level is also shown in this figure. 

The thick line graph in this figure shows the predetermined threshold value for g=2 (2 standard 

deviations from the mean) using the equation 7.2. The dashed line in this figure belongs to a 

constant threshold value at the same value of g.

8.3.3- Sensitivity of the distance function to the transformation

In order to assess the behaviour and sensitivity of the distance function at each resolution 

level to different size of transformation parameters, a further set of experiments was designed. 

Two original high resolution registering surfaces from MR data were arbitrarily misregistered 

(e.g. data type A and B), from a match position, by different values of transformation parameters 

(e.g. 2, 4, 8, and 16 voxels shift or/and degrees rotation). The mean distance error {MDE) was 

then measured at each level after registering them by the multi-resolution process. As shown in 

table 8.2, the distance function is not sensitive to a small geometric change. The results shown 

in this table define this small change as being any change less than one voxel when scaled to 

the lowest resolution level. For example, a shift of 2 voxels at an image size of 256  ̂corresponds 

to a shift of 1 voxel at size 128  ̂ and 0.5 voxel at 64 .̂ The multi-resolution technique does not 

recognize this change at size-level 64 or 32 where the mismatch value is smaller than 1 voxel. 

The problem with the multi-resolution process can be arised from the fact that the outcome of 

any low resolution level is used for a higher level. As shown in this table, when a small change 

is applied to the original high resolution image, it might not be recognized in a coarser image. 

Thus, when a global search starts for registering two coarse images being originally close to 

match, any uncertainty in the transformation can be transferred to a higher resolution level.
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Figure 8.13- The Mean Distance Error (MDE) values in respect of different 
transformations at different resolution levels for MR data. Different sensitivities 
are indicated by different slopes of the curves.

The graphs shown in figure 8.13 represent the different sensitivities of the distance 

function to various transformations around the true match location at different resolution levels. 

As shown in this figure, the sharper change in MDE value of the higher resolution levels 

confirms that these levels are more sensitive to transformations than the lower levels. It also 

shows that the range of transformation applied in level L3 was not high enough to provide a 

reasonable change in MDE values in respect of these transformations.

As described in section 7.2, to overcome this problem, the algorithm was designed to 

recognize the original distance between the two registering surfaces, thereby to decide on the 

starting level of minimization. Secondly, several of transformations around the minimum found 

in each low resolution level are used as candidates passed to a higher level.

8.3.4- Accuracy measurement

Convergence of the match to a minimum solution should be possible by either of 

minimization methods introduced so far. However, the solution is not always correct due to 

presence of local minima and the contribution of different source of errors. The experiments
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show that even at the true global minimum there is a residual e.g. some non zero root mean 

square distance values (MDE), which may vary due to the repeatition of the registration on the 

same type of data set. All these create uncertainty in the goodness of a match and, in turn, in 

the estimation of the match location.

Geometric precision (Accuracy) which shows how good (Accurate) is the estimated 

location of a match, depends on the distance between the two images (i.e. distance between well- 

defined reference points) and the standard deviation of these distances. It was shown by Forstner 

(1982) that apart from the influence of noise (i.e. in the form of correlation value or, on the other 

hand, signal to noise ratio), the accuracy depends on the sharpness (gradient of the image) of the 

correlating images. In this sense, high frequency signals (not influence by noise) can lead to 

better precision.

In order to assess the accuracy of a matching process, some well defined images are 

required having some well known reference points on them. Measuring accuracy is easy on 

phantom images, but the results are not exactly relevant to actual clinical images. In the current 

work the data from multimodality imaging of two different types of phantom, the Hoffman brain 

phantom, and the Jaszczak phantom were used to assess 2-D and 3-D registration, respectively. 

The MDE values and standard deviation of 6-10 manually selected reference points on each data 

set gave an accuracy of 1.44 0.42 mm for MR-MR, 1.82 0.65 for MR-CT, 2.38 0.88 for MR- 

PET, and 3.17 1.12 for MR-SPECT registration. Note that all these measurement are subject to 

error in locating the position of reference points.

The accuracy of real clinical data sets was also obtained by setting four external markers 

on the head in both studies (i.e. MR and SPECT) and the results from 10 such data sets were 

assessed. This multiple measurement of the registration value shows also whether the residual 

values obtained by the surface fitting process are due to misregistration (displacement) error, or 

due to other type of error. The accuracy obtained in registration of MR and SPECT data using 

multi-resolution surface fitting was 3.47 1.17 mm. In order to have a more accessible method 

for evaluating the results of multi-resolution in a range of misregistration states, the following 

data set were used as described in the next paragraph.

The most accessible matching accuracy tests were performed through the use of arbitrarily
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misregistered data, degraded to different resolution and noise levels by using Gaussian Filters 

and Gaussian noise operators. All the methods of measuring accuracy rely on the use of known 

reference points and are subject to error in locating these points in both images. When using a 

surface fitting process, all the points contributing to the residual values can be thought as 

reference points showing the distance between two images (i.e. the accuracy), subject to the 

condition that the location of the estimated match is within an acceptable displacement (e.g. 1 

voxel shift and 1 degree rotation) from the known location. However, when these residual 

values are used to predict the true expected value (employed in the threshold sequence) for 

assessment of other un-known misregistered images, the goodness (accuracy) of them should be 

confirmed. This was done by obtaining the expected error by the use of a group of measurements 

from different images of the same type, registered after various displacements and tilts (e.g. more 

than 200). The mean distance error of each image pair and the S.D. of these mean values were, 

then, calculated to obtain the true expected error. The S.D. of the mean, in this respect, depends 

on the number of sample points.

The reliability (e.g. reproducibility) of all the experiments were also tested as an 

alternative measure of the precision and stability of the registration method. An arbitrary 

misregistration was applied on different images of the same types, before attempting to register 

each pair of images by the registration process. Their mean value and S.D. were then calculated 

in order to verify the reliability of the process.

As discussed above, the accuracy of a registration technique can be defined as the average 

distance error between the two surfaces at the match location. In this respect, the match is 

obtained by the registration of some pairs of well defined surface images obtained by applying 

a number of arbitrary transformations. The misalignment allowed (i.e. the decision on a match) 

between the two surfaces at match location is defined to be less than a certain value (e.g. a shift 

of 1 voxel and rotation of 1 degree in each direction).

As discussed in chapter 7 (e.g. see section 7.2.4), a higher threshold value at each 

resolution level allows more locations (transformations) to be passed and thus tested in the next 

higher resolution level. The results of applying the sequential multi-resolution method are shown 

in table 8.3. This table shows the number of locations passed to level LO (i.e. the highest 

resolution level). This number decreases as the threshold level decreases and thus a faster process
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is obtained. However, the accuracy is reduced at a low threshold level due to the elimination of 

some locations which may be likely candidates for obtaining the true match location.

One can see from the results at table 8.3 that a geometric mismatch of 8 or 10 voxels 

produces a better accuracy than the mismatch of 5 voxels. This is due to the lose of the partial 

volume information of the 3-D voxels during the degradation process (see section 7.2.1 and 

7.2.4). In spite of this deficiency, it was shown that the algorithm is capable of finding a close 

match position for both sets of MRI and SPECT data. The accuracy obtained in this experiment, 

was 0.81 voxel (about 1 mm) for MR-MR and 1.78 voxels for MR-SPECT registration.

In the table 8.3, the results of applying both the multi-resolution and the Powell methods 

are shown. The Powell method employs, a posteriori, the best results obtained by a fast multi­

resolution method (i.e. with a low threshold setting). As illustrated in this table, an accurate 

registration is obtained in a reasonably fast manner using both these techniques, together, in the 

registration process. All likely local minima are also eliminated due to the vicinity of the starting 

transformation point to the actual minimum point when using a local minimization algorithm.

8.3.5- Cost assessment

Table 8.4 summarizes different parameters involved in the multi-resolution method. 

Practically, the process might start at different resolution levels depending on the initial 

mismatch between the two surfaces. The search window size defined in this table includes only 

the locations (transformations) tested at the initial level. All other parameters shown in the table 

belong to the initial level. Since only a fraction of the locations are passed to a higher level, the 

costs of these levels are trivial in respect to that of the initial level.

Three search windows composed of different numbers of locations were suggested for 

most of these experiments (i.e. about -3 to +3 voxels, shift, and -13 to 4-13 degrees, rotation, in 

all X, y and z directions at the coarsest level, L3). Table 8.4 shows the number of operations 

calculated for the algorithm outlined in the diagram of figure 6.4. The costs (timings) shown in 

this table result from using the optimal parameters found either by the previous experiments or 

by the initial knowledge of the surface geometric relations. For example, only few voxels 

between the two surfaces are required to be traced for an intersection, where the suggested initial
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manual interaction can closely align them. Moreover, the cost can further be improved due to 

the fact that in a sequential process all the sample points are not required to be tested at each 

location. Accordingly, a faster process is expected when a sequential process is used.

Table 8.5 shows the experimental results of using such a sequential process. The 

threshold used in this process controls the number of sample points allowed when evaluating 

each location, which thereby regulates the speed of the registration. As shown in this table, the 

threshold used for the registration was reliable and permitted a satisfactory speed, in spite of the 

fact that the process started in level L2 (i.e. image size 64^). Nevertheless, a better speed could 

have been achieved at the expense of some loss of accuracy in the process.

8.4- Summary

In this chapter, the application of the sequential and multi-resolution algorithms 

developed in chapter 6 and 7 were tested on some well defined clinical data. Some sets of image 

models were generated to assess the process quantitatively and to predict the expected 

performance and cost of the algorithm on other data sets. The parameter requirements of the 

routine imaging processes can be also predicted by the results of these image models.

The probability analyses set forth in this chapter investigated the importance and the 

effects of different threshold level and various number of sample points at each resolution level. 

The results of these probabilistic analyses confirmed that a threshold level (g) of 2 or 3 (i.e. 

number of S.D. of the individual distance error measures at acceptable match locations) is 

adequate for detecting the true match location while keeping the FAP sufficiently low. The 

feasibility of the registration obtained under different number of sample points demonstrated that 

using a higher number of points (e.g. 200 in the original finest resolution level; i.e. image size 

of 256^) provides a better matching performance than a smaller number of points. The results 

at other resolution levels confirmed that the required number of points corresponds to nearly half 

of that of their original image (e.g. 100, 50 and 25 points for size-levels 128, 64 and 32, 

respectively). However, a smaller number of points (e.g. half of the above number) was shown 

to be adequate, specially at higher resolution levels, when sufficient care is taken during 

sampling of points from the whole surface data.
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In order to have a reliable match probability, a distance error measured at a mismatch 

location should correspond to a sufficient number of sample points which are not matched to 

those points on the other surface. Then, the problem of the existence of some high-distance 

corresponding pairs (noisy points) contributing to an error measure {MDE error or cumulative 

error) is avoided. A distance error measure at a match location, on the other hand, requires a 

sufficient number of points matched to their pairs. The experiments outlined in the section 

'probability of matching points', confirms the importance of the choice of the number and 

position of the matching points used in both match and mismatch locations.

The shape of the error growth curves at different mismatch and match locations and the 

suggested threshold sequence at each level show the advantage of the sequential process and the 

superiority of a variable threshold over a constant threshold level.

The sensitivity o f the distance function, at each level, to different geometric 

transformations indicated the need to start the multi-resolution process at the lowest resolution 

level where some transformation difference between the two surfaces still exists.

After discussing the problems associated with the registration algorithm in this chapter, 

a set of experiments were designed with respect to determine the matching accuracy. As 

indicated in the results (see table 8.3), an expected accuracy of about 1, 1.5 and 2 voxels (of 1 

mm size) can be achieved for the registration of MR, PET and SPECT, respectively.

The computational cost was determined with respect to certain search windows, template 

sizes (number of sample points) and other parameters required by the process (e.g. threshold). 

The cost of a multi-resolution process was determined to be in the order of 200 seconds for the 

actual search process, assuming other parts of the program to be brief enough to ignore. 

However, the results of applying a sequential multi-resolution process showed that the algorithm 

is faster even for the whole registration process (i.e. less than 240 seconds on a |iVax II). 

Finally, the cost of about 180 seconds as obtained by applying both the multi-resolution and 

Powell methods is very satisfactory.

The registration results obtained by using the conventional MR and SPECT images show 

that the algorithm as developed is useable in routine imaging studies.
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Transformation 
x,y,z Rx,Ry,Rz

MDE np Transformation 
x,y,z Rx,Ry,Rz

MDE np

Original TP 
mismatch @ LO

2,0,-2 0,0,0 1.93 135 0,0,0 2,-4,0 1.44 146

L3 1,1,-1 0,0,0 0.07 21 0,0,0 4,8,-6 0.26 17

Obtained L2 1,1,1 0,0,0 0.48 42 1,1,1 0,6,6 0.31 41

TP at 
match 

location

LI 0,0,0 0,0,0 0.67 87 0,0,0, 2,-4,0 0.36 87

LO 1,1,1 0,0,0 2.39 152 0,0,0 2,-4,0 0.85 152

Original TP 
mismatch @  LO

4,0,-4 0,0,0 3.51 148 0,0,0 4,-8,0 2.58 149

L3 -1,-1,0 0,0,0 0.12 17 0,0,0 8,-10,2 0.18 18

Obtained L2 2,0,0 0,0,0 0.50 40 1,1,1 0,2,4 0.30 40
TP at 
match 

location

LI 2,2,-4 0,0,0 1.16 82 1,1,1 2,-8,4 0.42 79

LO 6,-4,-4 0,0,0 2.32 151 0,0,0 4,-8,0 0.58 153

Original TP 
mismatch @  LO

8,0,-8 0,0,0 7.07 151 0,0,0 8,-16,0 4.67 127

Obtained 
TP at

L3 2,1,-1 0,0,0 0.11 22 0,0,0 6,-14,2 0.12 19

L2 2,1,-2 0,0,0 0.42 42 1,1,1 2,-18,2 0.21 42

match
location

LI 4,0,-4 0,0,0 0.25 94 0,0,0 8,-16,2 0.37 83

LO 8,0,-8 0,0,0 0.56 176 0,0,0 8,-16,0 0.65 140

Original TP 
mismatch @  LO

16,0,-16 0,0,0 9:60 84

Obtained 
TP at

L3 l,-l,-2 0,0,0 0.20 5

L2 4,1,-4 0,0,0 0.42 42
match

location
LI 8,0,-8 0,0,0 0.30 94

LO 16,0,-16 0,0,0 0.55 176

Original TP 
mismatch @  LO

0,0,0 0,0,0 0.25 172

L3 1,0,0 0,0,0 0.05 19

Obtained L2 1,1,0 0,0,0 0.16 43
TP at 
match 

location

LI 0,0,0 0,0,0 0.21 89

LO 0,0,0 0,0,0 0.25 172

Table 8.2- The results of applying multi-resolution process on different 
arbitrary misregistered MR brain data sets. TP denotes transformation parameters, 
MDE= mean distance error, np= Number of sample points participating in the 
evaluation (measurement) of distance errors. LO is the highest resolution level 
(image size is 256^) . LI to L3 correspond to image sizes of 128^ to 32̂ , 
respectively.
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Original 
TP 

mismatch 
x,y,z Rx,Ry,Rz

Errors in 
TP after 

Registration 
x,y,z Rx,Ry,Rz

MDE T at 
Levels 

L3/L2/L1

Tm
SecData Method

5,8,10 5,8,10 -1,0,0 0,0,0 0.81 2/3/3 368 234
5,8,10 5,8,10 -1,0,0 0,1,0 1.08 1/3/3 320 195
5,8,10 5,8,10 -1,0,1 0,1,0 1.25 1 / 2 / 2 240 170

Multi- 5,8,10 5,8,10 -1,0,0 2,0,0 1.65 1/1/1 176 144
res.

MRI 5,5,5 5,5,5 -1,0,0 0,0,0 0.86 2 / 2 / 2 240 433
With 5,5,5 5,5,5 1,0,1 0,1,0 1.35 2/1/2 235 419
MRI 5,5,5 5,5,5 -1,1,0 2,0,1 1.82 2/1/1 176 405

5,5,5 5,5,5 0,-l,-2 2,2,1 2.05 1/1/1 16 180

Multi-
res. & 5,8,10 5,8,10 -1,0,0 0,0,0 0.81 1/1/1 176 172
Powell 5,5,5 5,5,5 0,-l,0  0,0,1 0.83 1/1/1 16 2 2 0

Multi- 5,8,10 5,8,10 -1,0,1 2,0,-2 2.28 2/3/3 312 320
MRI res. 5,5,5 5,5,5 -1,2,0 2,1,-1 2.76 2/2/2 290 395

With
ECT

Multi-
res. & 5,8,10 5,8,10 -1,0,0 1,0,-1 1.78 1/1/1 155 195
Powell 5,5,5 5,5,5 -1,1,0 1,1,0 1.95 1/1/1 37 233

MRI Multi- 5,8,10 5,8,10 -1,0,0 1,0,0 1.6 2/1/1 295 285
with res. & 5,5,5 5,5,5 1,0,1 0,1,0 1.45 2/1/1 208 215
PET Powell

TP : Geometric transformation parameters.
T: Threshold; i.e. ’g ’ as number of standard deviation from mean. 

MDE: Mean distance error (here, after registration at the best match). 
L3, L2, LI: are resolution levels for image size of 3 2 \ 64  ̂ and 128\

LO.iw . Number of locations examined at highest resolution level LO. 
Tm : Duration of time taken by the process.
ECT : Emission computer tomography (e.g. HMPAO brain study)

Table 8.3- Accuracy measurement of the Multi-resolution algorithms for both 
transformation parameters and residual value (i.e. the minimum obtained distance 
error, denoted as MDE). MR and SPECT data (i.e. data type A and B; see section 
8.2) were used in this evaluation. (Note that the time is CPU time of M a c r o  VAX 
I I )  .
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L3

W

W1
W2
W3

‘w

18711
57915
375375

20
20
20

Ôpnsp

137
137
137

^Tol-opr

5.1*10’
1.58*10*
1.02* 10’

TmExp (Sec)

102
317

2057

L2
W4
W5
W6

31185
225225
1156155

30
30
30

177
177
177

1.65*10*
1.19*10’
6.14*10’

331
2391
12*10f

L: Initial resolution level for multi-resolution process (e.g. L3 for image size of 32  ̂ and L2 for size 64^). 
W: Window used for searching transformation parameters.

W1 is 3*3*3 voxels shift and 11*7*9 degrees rotation in x,y and z.
W2 is 3*5*3 voxels shift and 13*9*11 degrees rotation in x,y and z.
W3 is 5*7*5 voxels shift and 15*11*13 degrees rotation in x,y and z.
W4 is 3*5*3 voxels shift and 11*7*9 degrees rotation in x,y and z.
W5 is 5*7*5 voxels shift and 13*9*11 degrees rotation in x,y and z.
W6 is 7*11*7 voxels shift and 15*11*13 degrees rotation in x,y and z. 

n^: Number of locations (transformation parameters) at W. 
np: Number of points examined at each search l(x:ation. 
n̂ : Number of voxels in 3-D space, examined for each point P. 
nop^pi Number of operations (as equivalent integer adds) for each point P

(obtained by 87+lOnv as expressed in nwX(npX(87-i-10nv); see equ. 6.12). 
ny,:^  Total number of operations performed at all points and locations.
Tmg^: Cost as expected duration of time last by whole process.

Table 8.4- Expected cost calculation based on the sequential and multi-resolution 
algorithms outlined in diagrams 6.4 and 7.1. Number of sample points and locations 
(transformation parameters) are derived from the results and discussion set forth in 
section 8.3.2.2 and 8.3.2.3. All the operations are expressed by the number integer 
adds which takes about 2 sec/million on a |iVAX II machine. Note that no improvement, 
due to using a variable threshold, was considered in these calculations.

L T W riw ^Tot_P % o t.V ^Tot.opr Tm Sec

L2 2 W4 31185 29 6.3*10’ 3.6*10’ 9*10’ 181
LI 1 3375 47 9.6*10* 6.75*10’ 1.51*10’ 30
LO 3 1650 95 6*10* 5.4*10’ 5.76*10’ 11

L: Resolution level (i.e. L2 for size 64 ,̂ LI for size 128’ and LO for size 256’). 
T: Threshold (expressed as g; number of standard deviation from mean).
W: Window used for searching transformation parameters. 
n„: Number of locations (transformation parameters) at W.

Number of points examined at match location.
Total number of points examined at search locations (W).
Total number of voxels in 3-D space, examined by ray tracing.
Total number of equivalent integer add operations in the process.
Cost as the duration of time last by the process.

“ Tot_V

^T o t_ o p r

Tm:

Table 8.5- Experimental results showing cost measures and the timing response of the 
sequential multi-resolution method applied on MR to MR brain image registration. Note 
that the process started at the level L2 (i.e. image size of 64̂ ) .
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CHAPTER 9 

DISPLAY METHODS

9.1- Introduction

Current medical imaging modalities produce 3-D data in a series of adjacent slices which 

are routinely viewed as a sequence of 2-D grey-scale images. Development of 3-D surface 

display methods plays an important role in 3-D understanding of anatomical relationships which 

are required for radiotherapy treatment planning, surgical purpose and diagnosis. Although, a 3-D 

surface display provides desirable relational information, it does not provide certain types of 

important information obtained by grey-level changes in 2-D slices. Combining the two kinds 

of display strategies by either a side-by-side display method or by a superimposition process (i.e. 

2-D grey-scale slices combined with 3-D shaded surface images) can be used in many medical 

applications.

Generally, 3-D rendering techniques (display of visible parts of an object on viewing 

screen) can be categorised into two approaches. In the first approach, a primarily stage of surface 

definition is required (Surface rendering methods). This is based on surface positional 

information regardless of the intensity values assigned to each object volume element. Secondly, 

a class of techniques are defined, based on voxel intensity, which do not require surface 

definition in advance to display a surface (volume-rendering methods). Different rendering 

techniques are due to the various types of object representation and surface definition which were 

discussed in chapter 4.

The realistic display of a 3-D object on a 2-D surface display system requires depth cues 

to provide the illusion of the third dimension. Hidden surface removal and shading are essentially 

required to simulate the surface characteristics, position and orientation of the surface with 

respect to a viewer. In this chapter various approaches of displaying 2-D slices and 3-D shaded 

surfaces are discussed with a special interest in superimposition of the registered images from 

different modalities. Different methods of shading and illusion of 3-D surfaces are also outlined 

with the aim of obtaining a general and effective 3-D environment for the perception of such 

data. Various display approaches for the registered and superimposed data are also presented.
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Sections 9.2 and 9.3 present an overview of the existing display and shading methods 

with emphasis on the superiority of some techniques. In a similar respect, volume rendering 

methods are introduced as more promising display techniques in section 9.4. Various strategies 

of superimposition and displaying the registered images from different modalities together with 

the considerations which should be taken in the implementation of these techniques are addressed 

in section 9.5. Section 9.6 outlines 2-D and 3-D display and superimposition methods used in 

the current work. The methods of overlaying and combining the correlated images in order to 

identify the similarities or differences between these images with the aim of obtaining a better 

clinical interpretation, are also presented in this section. A few of the patients among the total 

of thirty cases investigated during this project are studied in section 9.7 and their registered 

images are demonstrated. A summary of this chapter is given in section 9.8.

9.2- Overview of surface rendering techniques

Surface rendering techniques can be divided into two broad categories, surface-based 

display techniques and binary voxel-based techniques. Both approaches require binary 

segmentation of grey-scale data. Geometrical information (e.g. position, depth and distance which 

are defined as range data) of the surface elements are used to associate depth cues, light intensity 

and reflection, luminosity, transparency, and shading with the surfaces, and to display them.

In the first category, geometric surface primitives (e.g. closed polygons) can approximate 

the surface of an object using a number of sample points on 2-D contours extracted from each 

grey-scale slices. This is usually implemented by a triangulation algorithm (Keppel 1975) which 

reconstructs a polyhedral surface in terms of the planer triangular faces.

In the second approach to surface rendering techniques, a binary voxel representation is 

used to define the surface points, and project them onto a display plane. As discussed in chapter 

4, voxels on the surface of a binary or grey scale object can be detected by a 2-D or 3-D surface 

tracking algorithm. The binary surface voxels are then used for shading and display. Either the 

whole voxels or their faces can be used to represent the surfaces and display them. These 

methods are outlined in the next two paragraphs.
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Voxel faces were used based on an adjacency and connectivity relation (Herman and Liu 

1977 & 1979). The voxels are preliminary discriminated in terms of their depths (distance from 

viewing projection plane) and the information stored in an array called z-bujfer. For each pixel 

of the projection plane, the voxels which are closer to the viewer participate in shading and 

display, and those which are further are removed from the assessment {hidden surface removal) 

(see figure 9.1). For each visible voxel, the visible faces are further specified to define the 

display parameters and thus surface shading.

A variety of techniques have been used to display visible surfaces (i.e. voxels on the 

surface) in a binary voxel-based approach. The object volume can be scanned in a back-to-front 

(BTF) order (Frieder and Gordon 1985), front-to-back {FTB) order (Meagher 1982), or along 

some introduced rays through the volume 

{ray tracing). In ray tracing (Tuy H.K.,

Tuy L.T 1984), the volume is scanned 

along some introduced rays in a discrete 

manner. In this display method the work 

progresses from the screen toward the 

object, with the assumption that each 

point on the screen serves as a light 

source emitting light in parallel rays 

perpendicular to the screen. Having found 

the first point of the object intersected by 

the ray, the appropriate screen point is

Object coordinate  
system

Display screen

y

Eye coordinate 
system

, ,. , . f  • Figure 9 .1 -showing a general z-buffer method used for hidden
painted according to the information surface removal.

associated with that intersection point. To

examine the object from all possible views, the screen is allowed to move around the object. 

These methods access all voxels of the scene at display time and the object volume elements are 

projected on screen as they are encountered. Once a region of the screen has been painted, the 

voxels projecting on it can be ignored if they are farther than the previous processed voxel from 

the projection plane (hidden surface removal).

Hohne et al 1987 & 1988 and Tiede et al 1988 proposed a display method in which both 

surface and grey-level data are presented to the viewer simultaneously. In their method, the grey
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values in the neighbourhood of a surface voxel are used to measure the relative volume of 

adjacent tissue types within the voxel. This indicates the direction of the object surface passing 

through the voxel. An improved 3-D visualization of multiple objects can be obtained by 

combining the context of grey-scale information (e.g. cut plane, windows, etc) as well as the 

clipped 3-D shaded surfaces. The grey-scale variation behind a surface can also be visualized 

by this interactive technique using a clipped surface or transparent projection.

9.3- Overview of shading methods

Shading is the final part of visualization process and provides the viewer with 

understanding of the surface characteristic, position and orientation (e.g. object normal). Using 

some information (e.g. orientation and slopes) associated with a 3-D object leads to a vast 

varieties of shading methods known as object-space shading. Image-space shading, alternatively, 

uses only information available in a 2-D image after applying coordinate transformation and 

hidden surface removal. The different shading methods discussed in the literatures (Foley 1980, 

Herman and Udupa 1981, Gordon and Reynolds 1985, Chen et al 1985, Bright and Laflin 1986, 

Hohne and Bernstein 1986) estimate and use the surface orientation in different ways. The 

general formula for calculating shading values (intensity Ip of point P) used by most of the 

methods is

Ip= (D-d) Cos(8)+I. Equ. 9.1

where d is the distance of point P from the viewer (i.e. projecting plane or display screen), 0 is 

the angle between the direction of incident light (or emitting light from a surface) and the object 

normal at P, and Cos(0) specifies the characteristic of a diffuse reflecting surface (see figure 

9.2). It is assumed that the light source is located at infinity and light rays pass through the 

projecting plane (display screen). I^„ is the maximum grey level assigned to the surface (e.g. 

255), I, is background light (intensity) and D is the depth of the object (the distance between the 

nearest to furthest object point from the viewer). Below, some of the widely used methods based 

on the above general formula are given.
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9.3.1- Object-space shading

Object-space shading methods use the object surface information before projection on a

2-D image plane. Extra data (e.g. face orientation, neighbour face normal, and vertex normal) 

are required to be stored with the object surface representation. Some of the commonly used 

object space shading methods are outlined in the next few subsections.

Distance-only shading; is the simplest 

method of shading which ignores the 

surface orientation. In this method, the 

shading is calculated with respect to the 

centre of each visible voxel (or voxel 

face as defined by Herman 1979) by 

setting Cos(9) to the constant 1 in the 

above formula. The resulting surface 

images are too smooth to give true 3-D 

feeling. Moreover, edges and small 

structural features are not noticeable by 

this method. However, distance-only 

shading has extensive use in medical 

imaging due to the ease of its 

implementation.

Surface
normal

A rough surface 
(Light is emitted 
from the surface)

Figure 9.2- Showing the direction of emitted lights (i.e. viewing
direction) from a diffuse reflecting surface.

Constant shading; benefits the estimation of surface normal vector for calculation of shading 

value. It is mainly used for surfaces approximated by planar polygons. A constant intensity is 

assigned to all visible points on a face (planar facet) of a boundary surface based on the facet 

normal vector. This normal can be express as

Cos(0)=N-L. Equ. 9.2

where N is the unit vector normal to the surface (at each planar facet) and L is unit vector along 

the incident light (note that only diffuse reflection is considered where the surface scatters light 

equally in all directions). L can be simplified by assuming an orthogonal incident light in 

perpendicular direction to projection plane (parallel to z axis), and thus the vector L is [0 0 1].
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Expression N*L is dot product of the two normalized (unit) vector. The angular dependency due 

to using Cos(0) may create sharp intensity difference for two adjacent faces. The effects of 

distance and angular dependency can be weighted by

(Cos(0)/nF = ((N-L)/n)P Equ. 9.3

where n and p are two empirically determined parameters (e.g. n=2, p=0.6 as found 

experimentally). However, the angular dependency is too high to produce a useful smooth 

looking image in binary voxel based methods where only six possible orientations exist (6 voxel 

faces).

Gouraud & Phong shading; by which a smoother surface and better impression of a curved 

surface can be obtained (Gouraud 1971). The normal vector at each vertex (where polygons or 

voxels meet) is calculated and an intensity is firstly assigned to the vertices. The intensity 

assigned to each point of the surface is obtained by interpolation between the adjacent bounding 

vertices. The possible discontinuity, produced by the Gouraud method, between the adjacent 

polygons can be resolved by the Phong method (Phong 1975). He interpolated the normal vector 

component itself across the polygon surface by first finding the normal vector o f each edge 

joining the vertices and then interpolating for the normal vector of each point of the polygon. 

In binary voxel based display methods (e.g. cuberille representation), the normal vector of each 

vertex is calculated and stored when each voxel face is processed.

Contextual shading; is a visually similar method to Phong shading, introduced by Herman and 

Udupa 1981 and Chen et al 1985. The angular dependency problem mentioned in constant 

shading arises if the angle is small for a particular face, while it is not so small for an adjacent 

face (a face which share an edge with it). The problem can be overcome by using relative 

orientations of the adjacent faces. Herman & Udupa 1981 suggested the contextual shading 

method which was revised by Chen et al 1985. They assign a shade to points on a voxel face 

depending on the orientation (normal vector) of the face itself and four adjacent faces.

The major disadvantage of all object space shading methods is the necessity to recalculate 

the normal vector components each time the object is modified. This is very time consuming 

when the normals of neighbouring faces are required.
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9.3.2- Image-space shading

Image-based shading uses a pre-defined image obtained by coordinate transformation, 

hidden-surface removal and viewer-to-object distance (z-buffer) measurements. No extra data 

need to be stored with the surface representation and the method is very easy to be implemented. 

Two well known image-space shading methods are discussed in the following subsections.

Gradient shading; in which the input is an image having distance (depth or z-buffer)

information as its pixel values. The representation of such an image is in the form of I=z(x,y),

where z is the distance information at any point (x,y). The surface normal (or the angle 6) at 

each point can be estimated by the gradient vector Vz at that point. As proposed by Gordon and 

Reynolds 1985, the normal can be obtained as the vector

Vz=(3z/8x,3z/3y,l), Equ. 9.4

where the derivatives 3z/3x and dz/dy can be estimated from the forward difference 5f and 

backward difference 6y, These differences can be expressed, in respect of the x direction, as

Sf = Zj+ij-Zy, = Zjj-Zj.ij, Equ. 9.5

where z,j=z(x=i,y=j) for i=l,2,...,N and j=l,2,...,N (N*N is the size of image). The weighted 

average of the forward and backward differences has been suggested (Gordon & Reynolds 1985) 

for each derivative such as

dz/dx=(Wfô[ + Wbôb)/(Wf+Wb), Equ. 9.6

where Wf and Wb are positive weights which depend on |0f| and |0b|, respectively. Small 

differences are given large weights and vice versa, (dzjdy is obtained by a similar expression).

Grey-level gradient shading; can represent the fine features (e.g. inclinations) of surfaces 

which may be lost in the previous shading methods due to the coarse quantization of the surface 

angles. This occurs in segmentation process even where the voxel structure is used to represent 

the object boundary. The technique proposed by Hohne and Bernstein 1986 tries to make use
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of the partial volume effect especially when two adjacent objects are at different distinct grey 

level ranges. Since the grey value of a voxel represents the mean density of all the structures 

within that voxel, the relative change of grey value from one voxel to its neighbour can be 

considered to represent the surface angle (normal) within the voxel. The intensity (shade) I(i,j) 

assigned to each pixel of image plane was computed by Hohne 1986 as

I(i,j)=AxCos[(f(i,j+1 X ) - m - 1 ,k))/B] Equ. 9.7

where f(i,j,k(i,j)) is the grey value at the depth k(i,j). The cosine function is used to achieve a 

diffuse reflection. A and B are scale-factors depending on the grey-level range of the original 

images (A=255 and B=100 for CT images, as suggested by Hohne 1986).

9.4- Volume rendering techniques

To overcome the incorrect classification of the small and fine features, which arise from 

the techniques based on a binary classification decision, the surfaces can be displayed using the 

original volume data. A variant of voxel based techniques has been developed by Drebin et al 

1988 and Levoy 1989, in which the surface is allowed to pass partially through a voxel. Each 

voxel of a 3-D object is assigned a colour (i.e. shading value) and a partial opacity (i.e. 

estimated occupancy fractions for each of the set of materials presented in the voxel). Images 

are obtained by projecting all the voxels along a line to a similar point on the picture plane and 

blending together the resulting coloured semi-transparent voxels. This is done by tracing parallel 

rays (from the viewer) into a data volume in a desired direction.

Using one of the object-based shading method (e.g. Phong), the colour values are 

assigned to the voxels based on the grey-scale values of them and their neighbourhood. The 

depth cuing component of the shading model (see equations 9.1 and 9.3) should be scaled to 

allow the contribution of all the voxels along a ray. Two constants kj and ^2 used in the 

following equation were defined by the previous researchers (e.g. Levoy 1989) for a linear 

approximation of the depth-cuing.

C(i) = [l/(Â:;+M(i))][QN(i).L,-HCJ, Equ. 9.8
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where the colour C(i) is indicated for each voxel indexed by a vector i=(i,j,k) (i,j,k=l,...,N and 

N*N is the size of the projection image), d(i) is perpendicular distance from voxel i to the 

observer, Q  is the colour of the light source (i.e. the maximum gray level in a medical image 

approach), and Q  is the colour of ambient light source. L, is normalized vector in direction of 

light source (e.g. the perpendicular direction to viewing screen). Surface normal N(i) at voxel 

i is obtained by gradient vector Vf(i) as

V f(i)/|V f(i)| for vector i=(i,j,k). Equ. 9.9

The gradient Vf(i) of grey-scale image f(i,jjc) can be approximated using

Vf(i)=Vf(i,j,k)=[l/2(f(i+l,j,k)-f(i-l,j,k)),

l/2(f(i,j+l,k)f(i,j-l,k)),

l/2(f(i,j,k+l)f(i,j,k-l))]

Equ. 9.10

An opacity a (i) is assigned to each voxel (having value f(i)) in a procedure called 

'classification'' based on the tissue types falling within any voxel. The important assumptions are 

that each type of tissue touches tissues of at most two other types and if the types be ordered 

by their values, then each type touches only the types which are adjacent to it in the ordering. 

The classification process begins with assigning an opacity fxfi to voxels having a selected value 

fy (correspond to a particular tissue type) and an opacity to voxel (for n=l,...,N; N>1 

is the number of tissue types). The intermediate voxel values are then converted to intermediate 

opacities by construction a piecewise linear mapping process (Levoy 1989). This mapping (for 

the case of two tissue) can be obtained by expression

a (i)= |V f(i)| {a,-'[(f(i)-f/)/(f/+Lf^")] +
CX,“[(f-Lf(i))/(f-Lf^n)jj

if f,"<f(i)^,“"'

otherwise a(i)=0

Equ. 9.11

where the scaling by the gradient Vf(i) is used to suppress the opacity of the tissues which are 

interior and enhance the opacity of their bounding surfaces.

Composing the colour and opacity components at each location of projection image plane
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Figure 9.3- Showing the general concept of volume rendering methods used to display an object. Both the object space 
and the image space are represented.

is obtained in a front to back manner by processing the voxels along the ray u (see figure 9.3). 

The colour C(u;V) and opacity a(u;V) of ray u after processing sample voxel V inside the data 

volume is obtained by

C(u;V) = C(u;V) + C(u;V®)(l-a(u;V)), and 

a(u;V)=a(u;V)+a(u;V°)(l-a(u;V)),

Equ. 9.12

where V® is the sample voxel in process, C(u;V)=C(u;V)a(u;V), and 

C(u;V®)=C(u;V°)a(u;V®). After processing all the voxel samples along a ray u (see figure 9.3), 

the colour C(u) (intensity of the pixel P on image plane) is obtained by expression

C(u)=C(u;V)/a(u;V) Equ. 9.13

9.5- Superim position & display of registered images

Comparison of images performed by different imaging modalities or taken at different 

time instant is due to a two-stage process consisting registration and display. Registration as 

discussed in chapter 3, provides only a set of transformation parameters which relates the data
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in the coordinate system of one study to the data in other study. Employing the relevant 

information and displaying the aligned or superimposed images, in the second stage, allows for 

spotting similarities and differences in clinical features between the two studies and thus 

improves diagnosis. This benefit is due to the capability to reslice the image data from one study 

along the planes of the other study. In this section the different approaches of displaying the 

relevant information are outlined.

The original 2-D images (from different modalities) are collected under different imaging 

parameters and system characteristics. Superimposition and even side-by-side display of the 

images should be done in a similar matrix size, zooming, and scaling environment, and nearly 

identical grey level range. The images may also require geometric and grey-scale transformation 

(before visualisation) based on the characteristics of the display systems.

In order to display the relevant information between the two studies in a clinically useful 

form (such as aligned planes), the following requirements are essential. Firstly, three dimensional 

grey level data are required in order to allow access to the relevant features of both studies. 

Image processing is also necessary to improve the visual quality of the original and resliced 

grey-scale images. The desirable orientation of images should be decided by an operator (viewer) 

based on the characteristics and limitations of the display system. The decision on the type of 

display method (e.g. 2-D or 3-D), data alignment (e.g. side-by-side display or superimposition), 

and the type of shading used in the visualization are also very important in clinical applications. 

These requirements are discussed in the next few sub-sections.

1) The routine medical imaging (MRI, SPECT, CT) provides adjacent (e.g. contiguous) 2-D 

grey-scale slices of a few millimetres thickness (e.g. 6 to 10). In some cases (e.g. MRI), a gap 

is introduced between two adjacent slices. In order to access all the feature in one study 

corresponding to the other, 3-D information is required. Grey level interpolation is the common 

key to obtained the grey level of the structures within the gap region. For thick slices which 

contain fine features, some uncertainty might be presented in the definition of the features in the 

interpolated region between the two slices. The problem is much worse when interpolation is 

required between routine MRI slices having non cubical voxels. The artifacts shown in figure 9.4 

are due to this interpolation deficiency. For this reason, it is desirable to keep the original slices 

of a non-cubical image intact, and to resample through the images having cubical voxels
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(reslicing process). The problem can also be overcome by using a shape-based interpolation (see 

section 4.4.4) when binary images need to be interpolated (i.e. for 3-D external surface of an 

object).

2) The original images formed by medical imaging systems are influenced by the system’s 

physical attributes and thus contain various image characteristics such as noise level, contrast and 

brightness. A digitally processed image may also occupy a grey-scale range which is different 

from the range of the other corresponding images (e.g. registered images). The images should 

be processed to improve their visual appearance and thus enhance their clinical interpretation. 

In this respect, different methods of image enhancement (e.g. digital image filtering) might be 

used. However, there is no unique effort to improve the quality of an image with regard to 

different observers. Moreover, different applications might imply different types of image 

enhancement.

3) As mentioned above, a set of transformation parameters is the result of a registration 

process which is used as an input to the desired image reformation algorithm and display system. 

This coordinate transformation is given in reference to either a world coordinate system 

(reference coordinate system recognized by both modalities), or the coordinate system of one of 

the modalities (e.g. the one which produces the objective data). The aim of the superimposition 

process is usually to display both images of an object in one common coordinate system. 

However, different viewing directions might be required for clinical assessment. The diagram 

shown in figure 9.3 demonstrates the relation of two different coordinate systems, for example 

object coordinate and image coordinate systems (screen coordinate). In order to calculate the 

position of an image point (being originally on any coordinate system; e.g. the world system) 

on a display screen, the point must be transformed from the world coordinate system [x^, y^, z ]̂ 

into the eye or screen coordinate system [x,, y,, z,].

[Xs, ys, z,]=[x^, y^, zJ[TR] Equ. 9.14

The transformation matrix [TR] may be built up from several rotations and translations, 

determined by a desired viewing direction. Three viewing rotational angles 0, (j), \|/ are defined 

to rotate the world coordinate system around x, y and z axis of screen coordinate system, 

respectively, using the matrix equations discussed in section 2.4.1. For displaying 2-D slices in
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an orthogonal viewing direction, only a -90 or +90 degrees rotation is required to provide the 

desirable direction. However, it is sometimes of concern in visualization to represent three 

dimensional coordinates of a 3-D shaded object at some oblique angle to the viewer so that a 

better 3-D feeling and perception be obtained. The images shown in the top left comer of figures 

9.4c, 9.8, and 9.9 were obtained under 20 degrees rotation around z axis. The translation of an 

image inside the screen coordinate system (e.g. positioning to the coordinate centre) may also 

be required.

4) In terms of display types, the most straightforward method is to display the 2-D images 

from different modalities side-by-side on the screen. The original grey-scale image of one 

modality (i.e. destination image) can be displayed together with the resampled (resliced) slice 

through the data set of the other study (see e.g. figures 9.6, 9.7). The decision of the choice of 

destination image is influenced by the clinical use and the type of data sets. In this respect, 

attempts are made to reslice through the data with cubic voxels and those having a better 3-D 

resolution.

9.6- Methods

For a 3-D display, the external surfaces represented as discrete binary voxels were used 

and shaded. The distance-only shading, was used to display the fitting of two surfaces during 

the registration process. The surface normals were also defined in an image-based approach, to 

shade the 3-D surfaces and display them more realistically, during the superimposition process. 

To improve visualization, the volume rendering process was also used for displaying the skin 

surface and the surface of some internal structures of the head (e.g. brain, tumour, ventricles). 

As discussed in section 9.4, this process does not need binary segmentation of images, and 

displays surfaces directly from the sampled scalar field of a 3-D volume. However, its use is 

limited due to its sensitivity to the presence of artifact and the critical need for a proper opacity 

assignment (to the tissues) which alter the quality of the image, substantially.

The 3-D shaded display of external surfaces (skin, brain or ventricles) as shown in figure 

9.4b, helps for understanding 3-D environment during the surface fitting process. 3-D shaded 

surfaces can also be used to show the 3-D relation of various displayed features (e.g. tumour and
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ventricles) in the superimposition process. The lines passing through the data on a displayed 

surface (see top left images of figures 9.6 and 9.7) show the position of destination slice on the

3-D data volume.

In order to produce the 2-D registered slices, the reslicing was performed by a trilinear 

greyscale interpolation process. The coordinates of the destination slice are transformed by the 

registration parameters in order to obtain the coordinates of the resliced image. In this respect, 

the 3-D coordinates of four comer points of a destination sliced image can be used to define the 

coordinates of four points o f the new resliced image plane. The data can then be sampled on the 

plane defined by these points.

Typical side-byside display of the registered slices (images) is shown in figure 9.5 and 

in the lower half of figures 9.6-9.10. Three techniques were used to facilitate assessment of the 

relative structures (information) between the two side-by-side images.

1) The regions o f interest {ROI\ e.g. tumour) were selected manually and their contours were 

superimposed on the 2-D grey-scale images of the other study. The contours of some specific 

structures (e.g. brain ventricles in MRI) were also superimposed on the 2-D images. The top right 

images of figures 9.6-9.10, demonstrate this visualization technique.

2) As shown in the bottom lower half of figures 9.6 and 9.7a, a linked cursor can be used 

which moves by a mouse digitizer orthogonally on the screen by an operator and shows the 

corresponding structures between the two images.

3) The ROI from one modality can alternatively be mapped on the context of the other 

image and displayed in different colour coding (scale).

Due to the difference in the grey level ranges o f the registered images, contrast 

enhancement was used during display process. Interactive linear image scaling was widely 

employed to process all the images displayed simultaneously on a screen. Filtering of images 

(e.g. median filtering) was performed where noise degraded the image quality. Images might 

need to be blurred (i.e. by a low-pass filter) to obtain smoother edges and facilitate the 

segmentation and contour detection used for the superimposition. Using colour coding and colour
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scaling by the use of different pre-defined look-up tables allows enhancement of the visualisation 

and improves diagnostic aspects. All the image processing techniques are performed under the 

user interaction during the display process while the original grey-scale images are viewed by 

the observer (e.g. clinician).

9.7- Subjects and results

The registration process was performed on the images of thirty different patients. Most 

of the patient were children of age less than sixteen years old. The cases were selected from the 

patients whose images showed a demonstrated abnormality in one or both modalities for which 

registration was performed. The technique was applied for correlating MR with MR, PET with 

MR, CT with MR, and SPECT with MR images. All the scans on each patient were done within 

a maximum period of two months. In this section a few cases which mostly have a major 

abnormality are demonstrated.

The images shown in figure 9.4 are taken from a 28-years-old male volunteer, with no 

abnormality in the MR images. As described in section 8.2 (data type C), two sets of images 

were obtained by setting different system parameters to obtain misregistered images for 

experimental assessments (see figure 9.4a). Figure 9.4b shows a typical display system 

corresponding to the images of the subject patient, visualized during the registration process. The 

registered T1-weighted MR images displayed side-by-side in figure 9.4c indicate, visually, that 

a good correlation has been achieved.

The MR-SPECT correlation shown in figures 9.5 was also obtained by the performance 

of the proposed fitting process on axial MR slices and HMPAO SPECT images. Four external 

landmarks were also used (see figure 9.5a) to verify the surface fitting process by the results 

obtained by the landmarks registration. Both the experimental results and the visual judgement 

of the displayed correlated images confirmed the reliability of the process.

As illustrated in figure 9.6 metabolic activity level {O2-I6  FDG; fluoro-deoxy-D-glucose) 

as imaged by PET is shown, correlated with soft tissue anatomy from axial T2-weighted MRI 

scans. In figure 9.6a, the correlated MR slice (bottom right comer) was obtained by resampling
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the original grey scale MR data oriented along the scan planes of the PET study. The resampled 

PET slices shown in figure 9.6b (top and bottom right comers) were taken along an original scan 

plane of the MR data. As demonstrated in these images, the ventricles in the PET scan nearly 

coincide with the ventricle areas in MR scan. The contour of the anatomy revealed by the MR 

image is seen in the context of the functional PET image by this type of combined display. The 

linked cursor also demonstrates the correlated structures in the two types of images.

Figures 9.7 show the MR-SPECT correlated image of a 7-month old female suffering 

from seizures. Axial double echo STIR sequences were performed to obtain MR images which 

were correlated with HMPAO SPECT data. The MR data shows high signal in the white matter 

alongside the body of the right lateral ventricle. There is also a diffuse area of the increased 

signal in the right temporo-parietal lobe involving the grey matter. As shown in these figures, 

the low uptake area in the SPECT images corresponds to the abnormal area of MR.

The images shown in figure 9.8 were obtained from a 4-year male patient with an 

extensive abnormality of left frontal and left ffonto-parietal regions. The axial T2-weighed MR 

images show extensive abnormalities in white and grey matter of these regions, as well as the 

involvement of the posterior limb of the left internal capsule, with a further lesion in the right 

striatum and parietal occipital region. As shown in the correlated SPECT image, multiple 

abnormal signal areas are observed, consistent with ischaemic lesions. This suggests that the 

nature of the multiple infarcts are in the vascular distribution of the brain. In these images, the 

contour of some lesion regions which are well visualized in MR images has been placed in the 

context of SPECT scans acquired under uptake of HMPAO.

The CT-MR correlation shown in figure 9.9 belongs to the same patient whose images 

displayed in figure 9.8. Overlaying the features (e.g. contours) of MR on the CT images, as 

shown in the top right comer of this figure, demonstrates the relationship between the skull and 

detailed brain structures in a slice image. The bone and soft tissue morphology demonstrated by 

the superimposition of MR and CT images provides useful positional information for surgical 

purposes.

The results obtained by the registration of three modalities {MR, CT and SPECT) are
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presented in figure 9.10. As shown in this figure, three correlated images of the same patient can 

be displayed on one viewing screen together with a superimposition image showing the 

correlation between these images more accurately.

9.8- Summary

The problem of image superimposition (overlaying and combining the correlated images) 

and display were presented and discussed in this chapter. Some of the commonly used display 

techniques were outlined and their superiorities in displaying clinical images were discussed. 

These techniques involve two different image shading categories known as object space and 

image space shading methods.

The objects (e.g. 3-D surfaces) displayed in the current work were based on voxel-based 

representation methods. The surface normals were defined in an image-based approach^ so as 

to shade the 3-D surfaces and display them realistically during superimposition process. To 

improve visualization, the volume rendering process was also used for displaying the skin 

surface and the surface of some internal stmctures of the head (e.g. brain, tumour, ventricles).

Four methods for combining and displaying the correlated (registered) images were 

employed as described in section 9.6. The correlated 2-D slices from one study were created by 

resampling their original grey scale data oriented along the scan planes of the other study. The 

side-by-side display of these correlated images was then employed to provide corresponding 

clinical information between the two studies. The contours o f regions o f interest (e.g. ventricles 

or tumours) were superimposed on 2-D grey-scale images of the other study. A linked cursor 

was used, moved manually by a mouse digitizer on the screen, showing the corresponding 

structures between the two images. A colour-coded display was also suggested in which different 

colour ranges (e.g. look-up tables) are assigned to the structures (e.g. tissues) of each image. 

Superimposition of these structures then has a distinct display of the two overlaying images.

Due to the difference in grey level ranges of the registered images, different image 

processing techniques (contrast enhancement) were applied during display process. An interactive 

image processing scheme was employed to display an image desirably and improve the clinical
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interpretation.

Thirty patients who had been routinely imaged in a clinical department were studied by 

the proposed registration processes. A few cases among them having abnormal brain regions 

were discussed and their images demonstrated in section 9.7. The fidelity of the registration 

process and data alignment was judged by the clinicians and radiologists in the department where 

the work carried out.

179



(a )

(b)

Figure 9.4- Shows MR-MR registration 
of a volunteer subject. Two well- 
defined misregistered images (data 
type C; see section 8.2) were used, a )  

The original known misregistered (i.e. 
rotated around the z direction) MR 
images, b) A type of the viewing 
screen (the surface contours at 3 main 
orthogonal directions). c) The 
registered images displayed as a 2-D 
side-by-side method. Note that the 
artifacts shown on the two bottom 
images are due to the reslicing 
through M RI data set.

( c )
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{a;

(b)

Figure 9.5- Shows M R -SPE C T registered images of a patient brain data set. a) 
shows four landmarks (two frontal and two on mastoid process) used to be 
registered independently from the surface fitting, in order to verify the 
proposed method, b) shows two registered image planes displayed side-by-side.
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( b )

Figure 9.6- Shows M R -PET correlated images (see section 9.7 for the explanation) . 
Both the contour overlay (top right images) and linked cursor (bottom images) are 
shown on a side-by-side image display, a )  The reslicing was employed on MRI data 
set from which the contours of brain ventricles were obtained, b) The reslicing 
was performed on SPE C T data set, but the superimposed contours were obtained from 
the MRI slice (the top right image) .
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(a)

(b)

Figure 9.7- Shows M R -S PE C T registration of a 7-month old female, a) Shows the 
reslicing through SP E C T data set (bottom right image) with a linked cursor 
display. The top right image shows the brain surface and sample points used for 
the registration as well as a solid line showing the position of the displayed 
image plane, b) Shows the reslicing through MRI data set (bottom right image) 
with a contour superimposition of the registered MRI brain ventricles on the 
original SP E C T image slice (top right image).
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(a) (b)

(c)
Figure 9.8- Shows M R -SPE C T registered images of a patient having a big lesion in 
frontal and parietal lobes. In all images, the reslicing were applied on SPECT  

data set. The original MR slice images are presented.
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Figure 9.9- Shows CT-MR registration of a patient brain data set. The side-by- 
side display is shown in the bottom half, and the superimposed contour-image 
display in the top right corner.

185



(a)

Figure 9.10- Shows C T -M R -S P E C T registration obtained by the proposed technique 
(Multi-resolution surface fitting). Three registered images (C T ,  MR and SPECT)  

are shown as a side-by-side display, and as a superimposed contour-image display 
of M R I - S P E C T data set (the top right corner).
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CHAPTER 10 
CONCLUSIONS

10.1- Research objectives

The main objective of the work presented in this thesis is to introduce a suitable 

technique for correlation of tomographic brain images, integrating and combining them by a 

proper display method. Several attempts have been made to develop algorithmic and 

computational techniques which allow a reasonable confidence (in terms of accuracy and timing) 

in the correlation of brain images.

The preliminary objective was to review and verify all available registration techniques 

and assess those techniques which are suitable for correlating the complex medical images. A 

method for registration of multiple medical images which does not require any extra information 

obtained from, for example, stereotactic frames, external markers, or even internal anatomical 

landmarks, was selected. This is an edge-based method known as surface fitting which discards 

all the internal structures of the object (e.g. brain).

Due to the nature of the selected registration algorithm, a number of related subjects such 

as surface reconstruction and minimization have been explored. The obstacles and potential 

limitations of the surface fitting process were studied. The strengths and drawbacks of this 

method and its relevant processes were also assessed. Initially, the surface fitting algorithm was 

modified and revised in order to overcome the obstacles and problems associated with this 

matching process. There are several new approaches and modifications of the previously existing 

algorithms, recommended throughout this project (see section 3.3). Overcoming the problems 

associated with the deformations of the external surface of the brain (e.g. presence of holes on 

the brain surface) which may occur during imaging or surface reconstruction, is an example of 

this objective. Other modifications include; 1) using a more reliable and accurate surface 

representation (e.g. by the use of ’circularity check’ and shape-based interpolation, 2) using a 

better distance measurement between the two surfaces (e.g. by the use of a 3-D ray tracing 

method and the variance of distance errors), and 3) implementing a closer alignment between
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the registering surfaces, both as an initial process and during the stages of the registration 

process (e.g. by viewing inspection, manual registration, and frequently updating the position of 

the registering surfaces and re-sampling the sample points after each promising stage of the 

matching process, i.e. minimizing transformation). In general, most of modifications in the 

previous algorithms were implemented in the surface reconstruction approach and some in 

distance-function evaluation and registration.

Two new matching strategies known as sequential and multi-resolution (multi-grid) 

techniques were introduced as the key improvements of the fitting process, which are the main 

achievements of the project. In the first approach, a variable threshold sequence was 

implemented to reduce the search effort of the global transformation space and, therefore, to 

make the process usable in routine medical image application. In the second approach, a multi­

resolution based technique was introduced in order to reduce the size of the registering images, 

the size of transformation (search) space, and the size of other algorithm’s entities (e.g. sample 

points, ray tracing), thereby to reduce the computational cost required to converge the process 

in a global search strategy.

All the above processes were verified using different types of data set. Their accuracy 

and computational performance were measured using some well-known image models and well- 

defined clinical images (e.g. phantom images, well-known misregistered images, images of the 

brain with external markers). Analysis of the computational aspects of the algorithms and 

programming difficulties to make the process usable in routine clinical applications were also 

investigated.

10.2- Summary of the research

Different scans of brain contain complementary information which may be useful when 

correlated and displayed simultaneously. Correlation of structural and functional images is 

essential in quantitative image analysis and understanding of the origin of some abnormalities. 

Using structural information provided by morphological images is important in data analysis of 

functional images. Many brain functions are related to structures of very small size, for which
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data correlation is required in assessment of the physiological information of these regions.

The research presented in this thesis is an investigation into the problems of the 

registration and display of brain images obtained by different imaging modalities. Following the 

introduction of the research objectives, the research topics and organization of this thesis were 

presented in chapter 1. Some clinical useful application of the registration and superimposition 

were also defined. This chapter also demonstrated the imaging and computer systems and 

facilities employed for developing the work presented in this thesis.

The various widely used registration algorithms were introduced in chapter 2. The 

applicability of these methods to medical images was also described in this chapter. The 

advantages and disadvantages of each algorithm were described. A registration process based on 

the reliability criteria was selected and introduced in this chapter. In this approach, the edge- 

based algorithms, which are based on a least-square-distance matching, were suggested for 

registering of brain images. These algorithm minimise the sum of square-distances between the 

two surfaces. The minimization is applied over a set of six geometrical transformation parameters 

(3 shifts and 3 rotations) which indicate how one surface should be transformed in order to 

match with the other surface.

The general technique of the surface fitting, as defined by the other workers, was 

described in chapter 3. A number of improvements to the general surface fitting algorithm were 

also suggested in this chapter. One of the suggested key improvements was the use of a global 

minimization algorithm which increases the accuracy of the registration. This algorithm has led 

to two novel approaches: sequential and multi-grid registrations, as discussed in two separate 

chapters (6 and 7).

In chapter 3, the imaging parameters and data types used through this project were also 

introduced. Most o f the data introduced in this chapter was used as well-defined image models 

for verifying the applicability of the different aspects of the registration process. Based on this 

data the proposed technique was verified and its results were presented in a separate section. In 

general, a number o f local minima were shown to exist in the distance function between the two 

surfaces. The sampling strategy (e.g. position and number of sample points) was also shown to 

influence the behaviour and sensitivity of the distance function. It was shown that the accuracy
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depends on the resolution of the data set and thus varies with the type of imaging study. The 

accuracy was shown to be of the order of half the pixel size of the original grey-scale image.

A survey of surface reconstruction methods, as an essential element of the surface fitting, 

was presented in chapter 4. In this respect, surface representation, segmentation (2-D edge 

detection), and surface formation were studied. Potential techniques were selected following the 

introduction of suitability criteria. The representation capabilities of most of the representation 

techniques were defined to be poor in satisfying all of these criteria. However a voxel-based 

approach was implemented using a 3-D binary array which can maintain the level of details 

comparable to that of original 2-D slices. Due to the nature of original grey-scale data in most 

medical applications, a slice-level boundary detection mainly based on a gradient operator was 

suggested. For the surface formation process, various interpolation methods were outlined; 

among them the shape based methods were found to be superior and therefore used extensively 

throughout this project.

Chapter 4 also outlined the new approaches for handling the abnormal regions and 

deformities occurring in some nuclear medicine brain images. A verification known as the 

circularity check, for the shape of the detected head contours was defined, based on the curvature 

measurement. Any unacceptable deformity or hole in the brain surface can be detected by the 

circularity check and then reformed by a type of interpolation process. Two techniques were 

suggested, based on median filtering and contour reflection, to correct for Çreform') these 

abnormal regions.

Chapter 5 described various methods for solving the minimization problems. The iterative 

approaches were indicated as an essential process for surface fitting algorithms. Gradient 

methods were used to generate a sequence of linear searches along successive directions of a 

multi-dimensional function. Golden section search and quadratic interpolation methods were 

addressed in a linear search strategy as two powerful methods for quadratic functions. The 

Powell method, the Fletcher-Reeves method and Newton type methods were also described as 

the most efficient multi-dimensional minimization techniques available at the present time.

In this chapter the properties of a suitable minimization algorithm were also outlined, and the 

Powell method was selected as the best algorithm satisfying most of these characteristics.
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In chapter 6, the application of the sequential process for 3-D surface registration was 

described, in a new approach. A reduction in computational cost with respect to the global grid 

search was obtained while the quality of the result was not degraded. The cumulative error was 

suggested for use instead of the mean distance error for evaluating the mismatch between two 

surfaces. The different sources of errors contributing to the cumulative distance error were 

outlined. Using this type of error analysis, the application of a variable threshold was 

implemented. It produced a very efficient method for termination of mismatch locations. An 

expression for the calculation of the threshold sequence was also developed.

In chapter 6, the computational implementation of the sequential process was presented 

as well as the cost prediction. Various factors influencing the computational cost were also 

studied. The expected time required for the algorithm to decide that there is not a match at a 

given location was shown to depend on the threshold, sampling strategy, and ordering of the 

sample points.

In chapter 7, a novel approach for a modified fast registration algorithm was presented. 

The approach, known as multi-resolution, employs a variable grid search on two low resolution 

(small image size) binary surfaces. It applies only the most promising transformations on a 

corresponding bigger (high resolution) image. In this approach, results computed on the basis of 

some few voxels matched in a coarse resolution image are used for the next resolution level, and 

in due course for the original high resolution image.

A degradation technique was introduced and the error incorporated in the surfaces created 

by this technique was studied. In addition to that, other sources of error were also studied. In 

chapter 7, an expression for the definition of the threshold sequence used in multi-resolution 

sequential methods was also derived. Various parameters influencing this variable threshold were 

discussed. The expected computational cost and the factors influencing this cost were also 

explored. The analysis shown in this chapter confirmed a potential reduction of the 

computational cost by using a multi-resolution sequential method at a grid-based search strategy 

instead of a pure sequential method.

The application of the sequential and multi-resolution algorithms, developed in chapters 

6 and 7, was tested on some well defined clinical data, and its results was presented in chapter
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8. A number of well defined clinical image data sets, selected and modified to assess the above 

mentioned algorithms, were described in chapter 8. The technical aspects of the routine imaging 

systems producing these clinical data were also addressed. The advantage of a sequential process 

and the superiority of the variable as opposed to the constant threshold level, was also 

demonstrated in the experiments set forth in this chapter.

The probability analysis presented in chapter 8 investigated the importance of the effects 

of different threshold levels and various number of sample points used at each resolution levels. 

The results of this probabilistic analysis confirmed that a threshold level (g) of 2 to 3 (S.Ds of 

the individual distance error measures at match location) is required for detecting the true match 

location while keeping the FAP {false alarm probability) sufficiently low. It was also shown that 

using a higher number of points (e.g. 200 in the original finest resolution level; i.e. image size 

of 256^) provides a better matching performance than a smaller number of points. The number 

of points required at any resolution level was shown to correspond to nearly half of that required 

in the next higher resolution level. The number and fraction of sample points which are matched 

in a mismatch location, and on the other hand, the number of points mismatched in a match 

location, are two important factors indicating the reliability of the matching process.

Following the specification of the problems associated with the registration algorithm, a 

set of experiments was designed to determine the matching accuracy. An expected accuracy of 

about 1, 1.5 and 2 voxels (whose size is in the order of 1mm) for MR, PET, and SPECT 

registration was achieved, using the arbitrary misregistered data sets. Using some selected 

reference points (e.g. external markers or internal landmarks) to verify the proposed algorithm, 

the accuracy of 1.44^0.42 mm, 1.82^0.65, 2.38^0.88 and 3.17? 1.12 was obtained for MR-MR, 

MR-CT, MR-PET and MR-SPECT registration, respectively. The computational cost was also 

determined with respect to certain search windows, template sizes (number of sample points) and 

other parameters as required for the process. The cost of the multi-resolution process was shown 

to be about 200 seconds (on the VAX II) for the actual search process. The results obtained by 

the conventional MR and SPECT images show that the algorithm can be used for the routine 

imaging studies.

In chapter 9, the problem of superimposition of resulting images was defined, as 

overlaying and combining the correlated images and displaying them to an observer. Some of
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displaying clinical images were discussed. The display technique employed in the current work 

was a type of surface rendering technique based on voxels in a 3-D space. The surface normals 

used in shading method were defined in an image-based approach. The volume rendering 

process was also used for displaying the skin surface and the surface of some internal structures 

of the head in order to improve visualization.

Four types of combining and displaying the correlated (registered) images were employed, 

as described in chapter 9. The correlated 2-D slices were displayed side-by-side illustrating the 

corresponding clinical information between the two studies. The contours of regions of interest 

(e.g. ventricles or tumours) were superimposed on the 2-D grey-scale images of the other study. 

A linked cursor was used, moved manually by a digitizer on the screen and showed the 

corresponding structures between the two images, A colour-coded display in which different 

colour ranges are assigned to the structures of each image was also suggested. Due to the 

difference in grey level ranges of the registered images, different interactive image processing 

tasks were applied during display process.

The images of thirty patients were studied using the proposed registration processes. The 

fidelity of the registration process and data alignment was judged by the clinicians and 

radiologists in the department where the work was carried out. The potential work of the 

research outlined in this thesis provides a suitable algorithm for registering medical images, 

integrating the correlated images, and displaying them.

10.3- Suggestions for further work

The problem of data alignment and superimposition is of great interest in the current 

available imaging modalities which are incapable of producing an image having both functional 

and morphological information. However, even if alignment was obtainable, the problem 

associated with correlating images at different times remains unexplored. For these two simple 

reasons, this issue requires further investigation in the future. There are a number of suggestions 

for further work to extend the research presented in this thesis.

The surface fitting process can be extended in order to be applied to body imaging as
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well. This involves an improvement of the segmentation process by which noisier images can be 

processed. For example, internal structures o f the chest and abdomen such as heart and liver are 

adjoined to other soft tissue anatomies and are difficult to extract from their neighbourhood.

The timing response o f the global grid search is not very favourable even in the sequential and 

multi-resolution algorithms. The search window size, which is the main factor influencing the 

speed, should be modified to include only the most promising search locations. A further 

suggestion is to generate a location matrix (grid) as a look-up table. In this implementation, all 

search window elements around the true match location o f two well-defined image models should 

be checked. Then only a single location from each number of neighbouring locations (e.g. 27 

locations), having the maximum distance error would be selected, and stored in the location 

matrix. Using the locations selected by this process, one could avoid inclusion of the local minima 

in the registration process.

Another area which requires more consideration is the degradation process used to create the 

low resolution surface images. Shape analysis process should be taken r t o  account, thereby 

enabling different approaches for binary surface scaling to be investigated. Other surface 

representation techniques, not used in the surface fitting process, could be employed as atemative 

procedures. Defining the surfaces by parametric equations could be a potential technique for this 

task

3-D integrated display o f internal objects within a 3-D image and interactive image editing are 

of great interest. In this respect, further work should be done to improve the 3-D display o f the 

correlated images from different modalities such as MR angiographic images and CT bone 

images, using an interactive strategy.

The final recommendation for further research is to investigate the display requirements and 

routine clinical applications (and utilities) o f the registration process, to enable extraction o f  

useful clinical values. With respect to that, an easily operated clinically viable package, for use by 

clinicians, applicable in routine medical imaging environment, needs to be produced.
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