
Mass Preservation for Respiratory Motion
Registration in both PET and CT

Elise C. Emond, Student Member, IEEE, Alexandre Bousse, Ludovica Brusaferri, Student Member, IEEE,
Ashley M. Groves, Brian F. Hutton, Senior Member, IEEE and Kris Thielemans, Senior Member, IEEE

Abstract—Registration of medical images corresponding to
different respiratory states is complicated, as respiration not
only moves the lungs and nearby organs, but it also causes
localised density and radiotracer activity concentration changes
of up to 20% in the lung. Nevertheless, few registration methods
incorporate mass-preserving constraints, which could lead to sub-
optimal estimation of the deformation. This is especially important
in the case of diffuse lung diseases for which the deformation field
could provide biomarkers for pulmonary mechanical properties.
This preliminary work is aimed at evaluating the impact of lung
expansion in CT and PET image registration. We use patient data
for which gated CT and PET acquisition data are available. We
compare results of mass-preserving registration with two novel
priors on the Jacobian determinant of the deformation field. Best
results were observed for edge-preserving regularisation, where
the mean errors in the lungs are decreased (−17.0% for CT
and −4.8% for regularised PET using average regularisation),
compared to warped images with no mass preservation.

I. INTRODUCTION

DENSITY and activity variations due to compression and
dilation of the lungs [1], [2] in Positron Emission To-

mography (PET) reconstruction have mostly been neglected
throughout the years. Motion compensation is an active area
of research, usually relying on registration either on gated
reconstructed images or within joint reconstruction of motion
and activity [3]. Although standard registration can dimin-
ish mispositioning issues, changes in density and activity
concentration should be included within the registration for
accurate deformation field estimation. This could provide in
return information on lung rigidity and elasticity, thus be a
biomarker for lung diseases. One way to do so is to add
the Jacobian determinant within the similarity measure to
approximate the volume changes, linked to density and activity
changes [4]–[6]. Mass-preserving registration is however non-
trivial and therefore regularisation and similarity measures need
to be optimised especially in the presence of noisy data.
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The aim of this work is to assess the feasibility of incorpo-
rating the Jacobian determinant in the similarity measure for
accurate mass-preserving image registration, prior to using it
in joint PET reconstruction and motion estimation.

II. THEORY

A. Activity and density distributions

Assume the tracer activity distribution λ ∈ C0(R3,R+) and
density distribution µ ∈ C0(R3,R+). We define the standard
warping operator Wϕ : C0(R3,R+)→ C0(R3,R+) associated
to a diffeomorphism ϕ : R3 → R3 such that:

Wϕ : f 7→ f ◦ ϕ where f = λ or h = µ . (1)

A mass-preserving warping operator W̃ϕ : C0(R3,R+) →
C0(R3,R+) can also be defined as:

W̃ϕ : h 7→ |det(Jϕ) | · h ◦ ϕ . (2)

where det(Jϕ(r)) is the determinant of the Jacobian matrix of
the partial derivatives of ϕ at a point r ∈ R3. The definition of
this operator is motivated by the consideration of local mass
preservation: if we consider a diffeomorphic deformation ϕ
which transforms a non-negative continuous distribution f1 into
f2 (i.e., f2 = f1 ◦ ϕ), then:∫

R3

f1(r) dr =

∫
R3

|det(Jϕ(r)) | f2(r) dr ,

where det(Jϕ(r)) consequently reflects the volume changes.
In this work, a B-spline parametrisation of ϕ is used. The
discretisation is performed after warping of the continuous
distributions.

B. Mass-Preserving Registration

The optimisation problem consists in finding a deformation
ϕ̂ such that the similarities between two images f and g are
increased, e.g., via minimisation of a similarity measure C:

ϕ̂ ∈ argmin
ϕ

{
C(W̃ϕf, g) + βR(ϕ)

}
, (3)

where R is a roughness penalty and β its associated weight to
ensure the estimation of a realistic deformation field. In this
work, C is the sum of squared differences (SSD), as more suit-
able for a preliminary study before using log-likelihood in joint
PET reconstruction and motion estimation [7]. Incorporating
the Jacobian determinant into the similarity measure can be
however challenging for noisy data, such as PET data [5]—the
noise difference between images could be partly compensated
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Fig. 1. Inputs: a) µexp, b) µinsp, c) end-expiration BSREM, d) end-inspiration
BSREM, e) end-expiration OSEM, f) end-inspiration OSEM.

by changes in the Jacobian determinant. Two penalties on the
Jacobian determinant image |detJ ϕ| were considered:
• The quadratic Gibbs penalty [8]:

RQP(ϕ) ,

− 1

2

nv∑
j=1

∑
k∈Nj

ωj,k

(
|detJ ϕ|j − |detJ ϕ|k

)2
where nv is the voxel number, ωj,k is the inverse distance
between the centre of a voxel j and the centre of a voxel
k and Nj is the neighbourhood of voxel j.

• The smoothed total variation (STV) penalty:

RSTV(ϕ) ,
nv∑
j=1

√
||∇ |detJ ϕ|j ||22 + ζ2, ζ > 0

where ∇ |detJ α|j is the (image) gradient of the absolute
value of the Jacobian determinant at a voxel j (the
gradient approximation uses forward differences in Nj)
and ζ is used as a smoothing factor (here ζ = 0.3).

The gradients use the analytical derivatives of |det(Jϕ) |,
which were validated against finite differences. In both cases,
a small quadratic penalty on the B-spline coefficients is added,
to ensure that the deformation fields are globally smooth.

III. EXPERIMENTS AND RESULTS

A. Patient Data

FDG-PET listmode and CINE-CT data were acquired on a
GE Discovery STE with monitoring using the Varian RPM
system [2]. Both PET and CINE-CT data were gated into 5
bins based on the RPM displacement. The PET images were
reconstructed with either (i) 60 iterations of OSEM, using 7
subsets and post-filtering or (ii) BSREM [9] (both including
scatter and randoms modelling). The gated attenuation (µ)
maps matched the PET gates. The input µ, OSEM PET images
and BSREM PET images used as input images are displayed
in Figure 1.

In order to verify the stability of the registration, the PET
data were divided into 4 parts (random gating), each part also
gated into 5 respiratory bins. The end-expiration images were
registered to the end-inspiration images using either quadratic
regularisation or STV regularisation, for the three image types.
Weak, average and strong regularisations (for both priors) were
tested, normalised across PET and µ registrations using initial
value of the cost function. All registration results presented
incorporated mass preservation.

The registrations of the images corresponding to the entire
acquisition were assessed by computing the normalised root
mean squared deviation (NRMSD) between the warped end-
expiration images and the end-inspiration images. Normalisa-
tions use the mean image value in the lung at end-inspiration.

The registrations of gated partial PET data were evaluated
by plotting the variances in the Jacobian determinant images
against the squared biases in the activity images. The variances
in the activity image cannot be used as introducing the Jacobian
determinant in the registration will tend to overfit the image
noise, and therefore to lower variances (as discussed in [5]).
Here λinsp and λexp denote the end-inspiration and end-
expiration block sequential regularized expectation maximiza-
tion (BSREM) images, respectively. The measure of Jacobian
image variances Var is given as

Var =
1

K − 1

1

N

nv∑
j=1

K∑
κ=1

([
|detJ ϕ|[κ]

]
j
−mj

)2

,

where K = 16 is the number of realisations and |detJ ϕ|[κ]
corresponds to the Jacobian determinant image from the κ-th
realisation and

mj =
1

K

K∑
κ=1

[
|detJ ϕ|[κ]

]
j
.

The (image) activity squared bias Bias2 is defined as

Bias2 =
1

K

1

N

nv∑
j=1

(
K∑
κ=1

[
Ẇϕλ

[κ]
exp

]
j
− [λinsp]j

)2

,

where Ẇϕλ
[κ]
exp corresponds to the end-expiration image λ[κ]

exp

warped using the warping obtained from the κ-th registration
and λ[κ]

insp is the input end-inspiration image from the κ-th
realisation.

B. Results

In BSREM PET and µ registrations, weak and average
regularisation for the two penalties showed similar results
in terms of visual assessment of the alignment of the inner
structures, however |det(Jϕ) | images appeared considerably
smoother for the PET registration with average regularisation,
and less prone to image noise. Strong regularisation failed to
capture the motion appropriately and |det(Jϕ) | images were
not realistic. OSEM PET registration showed poorer results,
due to the lack of edge preservation and lower Signal to Noise
Ratio than BSREM PET. The relative differences between
mass-preserving and standard warping of µexp and µinsp for
STV regularisation are shown in Figure 2.

NRMSD measures in the lung—between the end-inspiration
images and the end-expiration images warped using W̃—
are given in Table I. |det(Jϕ) | images corresponding to an
average penalisation (for STV prior) are shown in Figure 3.

We also compute the NRMSDs between the end-inspiration
images and the end-expiration images warped using the stan-
dard operator Wϕ instead of W̃ϕ (where ϕ is the deformation
obtained from the mass-preserving registration). For an average
STV regularisation, we have the NRMSD equal to 23.15%
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Fig. 2. Relative difference images between µexp ◦ ϕ and µinsp (left)
and between |detJ ϕ)| · µexp ◦ ϕ and µinsp (right), for (a), (b) weak
regularisation, (c), (d) average regularisation and (e), (f) strong regularisation
using the STV penalty.

TABLE I
NRMSD BETWEEN THE TARGET IMAGES AND THE IMAGES WARPED USING

THE MASS-PRESERVING OPERATOR FOR WEAK, AVERAGE AND STRONG
REGULARISATIONS.

STV Weak Average Strong
BSREM PET 20.66% 26.42% 31.96%
OSEM PET 65.36% 72.45% 76.64%

µ 3.66% 6.19% 13.29%

Quadratic Weak Average Strong
BSREM PET 20.74% 26.46% 32.01%
OSEM PET 65.42% 72.48% 76.64%

µ 3.60% 6.26% 13.47%

for µ and 31.19% for BSREM, up from 6.19% and 26.46%,
respectively.

The plots of the variance in the Jacobian maps against
the bias in the activity images confirmed better results in
the BSREM PET image registrations. As expected, using a
stronger regularisation diminishes the variances but increases
the biases (see figures 4 and 5 for BSREM). STV prior showed
smaller variances in the entire image than the quadratic prior,
although the variances in the lung were similar for both priors.
The biases for the quadratic prior were slightly lower than for
STV prior.

IV. DISCUSSION AND CONCLUSION

Mass-preserving registration with a new regularisation
scheme was evaluated on gated PET and CT images, for a
standard “static” FDG scan of the thorax. Results indicate
that the approximation of density and activity changes via
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Fig. 3. Jacobian maps obtained with STV regularisation, for µ images: a)
weak, b) average, c) strong; for BSREM PET images: d) weak, e) average, f)
strong. The PET regularisation uses the activity images from the gated entire
PET acquisitions.
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Fig. 4. Tradeoff between variance in the Jacobian determinant images and the
(squared) bias in the activity images (in Bq2/mL2), in the entire image, for
the BSREM sampled PET data.
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Fig. 5. Tradeoff between variance in the Jacobian determinant images and the
(squared) bias in the activity images (in Bq2/mL2), in the lung only, for the
BSREM sampled PET data.

volume changes (Jacobian determinant) provides good quan-
titative image values, especially in the lung, provided that
regularisation is adequate. Using an edge-preserving image
reconstruction helped with the registration and could be further
optimised. Overall, both quadratic and STV priors performed
well, although the STV prior showed reduced variances in
the entire Jacobian maps, while the biases were reduced
using the quadratic prior. The results here agree with [5]: (i)
regularising is important for optimal registration and estimation
of the Jacobian, otherwise volume changes could be underes-
timated [4], (ii) registration is more stable for less noisy input
images, such as CT images or penalised PET images, where
less regularisation is required. Future work will assess mass
preservation in joint reconstruction.

REFERENCES

[1] B. A. Simon, “Non-invasive imaging of regional lung function using
x-ray computed tomography.,” Journal of clinical monitoring and com-
puting, vol. 16, pp. 433–42, 2000.

[2] V. Cuplov et al., “Issues in quantification of registered respiratory gated
PET/CT in the lung,” Physics in Medicine and Biology, vol. 63, no. 1,
2018.
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