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Abstract 

Predictive modelling is a cornerstone in early drug development. Using information for multiple 

domains or across prediction tasks has the potential to improve the performance of predictive 

modelling. However, aggregating data often leads to incomplete data matrices that might be limiting for 

modelling. In line with previous studies, we show that by generating predicted bioactivity profiles, and 

using these as additional features, prediction accuracy of biological endpoints can be improved. Using 

conformal prediction, a type of confidence predictor, we present a robust framework for the calculation 

of these profiles and the evaluation of their impact. We report on the outcomes from several 

approaches to generate the predicted profiles on 16 datasets in cytotoxicity and bioactivity and show 

that efficiency is improved the most when including the p-values from conformal prediction as 

bioactivity profiles. 

 

Introduction 

Machine learning has established itself as a key technology in the drug discovery process.1,2 Predictive 

modelling can be used to improve compounds properties and ADME-PK,3 improve on target activity, 

identify off-targets, and reduce the risk of toxicity. 

Whereas standard QSAR modelling typically relies on chemical features, biological features such as 

HTS fingerprints4 and affinity fingerpints5 have been shown to improve predictions when combined with 

chemical features.6,7 Studies have also demonstrated that data from similar targets in other species can 

improve the predictions8,9 and even entirely predicted bioactivity features have been used.10–13 

Essentially, these methods use information on the compounds bioactivity profile to help infer a new 

unknown activity.14 

Other developments in the field include new machine learning algorithms. Deep neural networks have 

recently attracted increasing attention also for applications in drug discovery.15 One of the attractive 



 3 

features of these methods is the ability to transfer learning, where information from one endpoint can 

be used to improve the prediction of another.16 However, this is not prominent in all settings.17 

Together, these developments have shown a lot of promise for methods that combine and learn from 

multiple data sources. However, a common limitation integrating data from multiple domains is that the 

resulting data matrix is often sparse.18 The usage of imputed bioactivity data can circumvent this 

limitation and has been shown to be able to greatly improve the predictive performance of bioactivity 

models.14,19–21 There are currently multiple machine learning based methods for predicting bioactivity 

profiles.22–24 

Useful models do not only require accurate predictions, but also some measure of confidence in how 

likely the prediction is to be correct, ideally on an instance by instance basis.25,26 Conformal predicton,27 

is a type of confidence prediction, generating predictions with a fixed error rate determined by the user 

set confidence level. As such, conformal prediction forms a well-defined framework for assigning 

predicted class probabilities. Conformal prediction is also a good choice for bioactivity modelling as it 

handles data imbalance very well.28,29 

We propose that data from multiple endpoints can be integrated using predicted bioactivity profiles 

generated from conformal predictors. Multiple single endpoints are modelled and these models are 

used to predict the activity of all compounds in the training matrix. Using these predicted bioactivities as 

additional features a new model is trained to predict the outcome of interest. We report on different 

approaches to generate the predicted bioactivity features and show that this approach can improve the 

predictions compared to standard approaches. 

Methods 

Datasets 

We used the 16 datasets from PubChem Bioassay30,31 previously reported by Svensson, Norinder, and 

Bender32 measuring compound cytotoxicity. 11 of these were used in the development of the methods 
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and five as validation sets. These were complemented by ten bioactivity datasets,18,33 also originating 

from PubChem. These datasets have also previously been used in predictive modelling. All the datasets 

used in this study are detailed in Table 1. Compounds were labelled as negative (inactive) or positive 

(active). 

Table 1. The datasets used in this study. 

Cytotoxicity data sets Number of compounds 

Negative Class Positive Class 

AID 2275 29745 193 

AID 847 40958 194 

AID 903 52445 338 

AID 624418 385836 524 

AID 719 83904 937 

AID 648 85197 924 

AID 602141 357738 1302 

AID 1486 215443 2408 

AID 1825 288346 2259 

AID 588856 400999 3018 

AID 2717 296777 3181 

AID 430 (Validation) 61506 1121 

AID 620 (Validation) 55759 706 

AID 598 (Validation) 32946 33 

AID 50464 (Validation) 80022 5139 

AID 463 (Validation) 86336 364 

Bioactivity data sets   

AID 687014 52572 4320 

AID 463190 52443 4449 
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AID 588726 51858 5034 

AID 652054 51857 5035 

AID 485346 51461 5431 

AID 2796 51322 5570 

AID 504652 50420 6472 

AID 743279 47459 9433 

AID 1814 40780 16112 

AID 2314 30586 26306 

 

Compounds were represented using 97 different physiochemical RDKit34 descriptors (cytotoxicity data 

sets32) or by the fingerprints used by de la Vega de Leon et al.18 (bioactivity data sets); these features are 

referred to as Structural Features. See the respective studies for details on compound preparation. 

The cytotoxicity data sets were divided into two groups consisting of 11 and 5 data sets (Table 1). The 

5 Validation data sets were used to evaluate the performance when adding a fixed array of bioactivity 

profiles to new datasets. 

The experimental assay matrix completeness, i.e. percentage of compounds tested in all assays, was 

21.6 % and 100 % for the cytotoxicity and bioactivity data sets, respectively. The experimental values of 

the assays were never used in the added bioactivity profiles. 

Modelling 

Prior to modelling, a 20 % random test set was split from the data for model evaluation. For the 

bioactivity data sets the training and test set were setup to be identical for each endpoint since they all 

contain the same compounds. The result of the split with respect to overlap of compounds between the 

test set of the investigated end point and the corresponding training sets for the added bioactivity 

profiles were, on average, 4.6 % for the cytotoxicity datasets while all training and test sets for the 

bioactivity datasets were completely disjoint, i.e. the overlap was 0%. QSAR models were trained for all 
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dataset using the Structural Features. Separate models were trained for all endpoints using Random 

Forests (RF)35 consisting of 100 trees. In addition to standard RF models, models were also trained using 

Aggregated Mondrian Conformal Prediction (CP)36 with 20 aggregated models per outcome. These 

models were based on underlying RF models with 100 trees, we refer to these models as CP-RF. CP is a 

well-calibrated framework for class probability assignments where predictions are a set of p-values; one 

p-value (related to probabilities) for each class.27,37 In this case, since we are looking at binary 

predictions (active or inactive) we obtain two p-values per predicted endpoint.  

Both standard RF and CP predictions were used to generate predictions for all outcomes for each 

compound in all datasets. These values constitute additional features (Bioactivity Features). A new 

model (Augmented Model) was constructed for each endpoint based on Structural Features with the 

addition of Bioactivity Features (referred to as Bioactivity Profile) for all other endpoints than the one 

being considered; see Figure 1. We added the bioactivity features either as the predicted label (0 for 

inactive and 1 for active, referred to as Binary Bioactivity Profile, for conformal models the whichever 

label had  the largest p-value was added), or using the number of trees from the RF (RF probability) or 

the conformal p-value for the active class (Continuous Bioactivity Profile). Predicted bioactivity profiles 

were only added from other data sets from the same source (Cytotoxicity or Bioactivity, Table 1). 

Scikit-learn38 (version 0.20.4) was used for building the underlying random forest models and 

nonconformist (version 1.2.5) for building the Mondrian conformal predictors. All parameters were kept 

at default unless explicitly stated:  A calibration set of 30 % was randomly selected from the training set 

and the remaining part used for building the model. In order to perform class-wise calibration 

(Mondrian conformal prediction) the python code was augmented with the following statement: 

icp = IcpClassifier(nc, condition=lambda x: x[1]) 
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Figure 1. Datasets for Augmented Models are constructed for all compounds Ci from both Structural 

(chemical) Features and predicted Bioactivity Features, where the latter are the predicted values using a 

model trained on only Structural (chemical) Features for each endpoint Tk. 

Similarity analyses were performed whereby the similarity to the nearest neighbour in the training set 

was calculated for all corresponding test as well as calibration set compounds, respectively, and 

averaged over each set for each endpoint (see Supporting Information). All features were scaled to 

range 0-1 for the features to have the same influence on the distance calculation. This only affected the 

cytotoxicity datasets since the features were physiochemical RDKit34 descriptors of various scales while 

the bioactivity datasets used fingerprints (0 or 1) as features. The Tanimoto similarity for the cytotoxicity 

datasets were based on the corresponding Tanimoto similarity formula for continuous variables while 

the traditional formula was used for the bioactivity datasets.39 

Model evaluation 

Conformal predictors are proven to always be valid (the error rate matches that defined by the 

operator) if the data is exchangeable.27 This is achieved by outputting a set of labels for each prediction. 

For a binary prediction, this set can be either empty, contain either of the two labels on their own, or 

both labels. While the validity defined as the fraction of sets containing the correct label is guaranteed 

by the method, the models will have varying efficiencies (number of single label predictions) depending 

on how well the target is modelled. At a given confidence level, a more predictive model should afford 

better efficiency, i.e. a higher fraction of single label predictions. We therefore choose to evaluate 

model performance by looking at the efficiency (defined as the fraction of single label predictions). More 

Structural Features Predicted Bioactivity Features

T1 Tk-1 Tk+1 Tn

C1

CN

.

.

. . . . . .

Dataset for Augmented Model for endpoint Tk
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traditional measures for imbalanced datasets such as balanced accuracy (BA) and Matthews correlation 

coefficient (MCC) have also been included in the Supporting Information for comparison. These 

measures were all calculated using only single label predictions. 

For a more in-depth explanation of the concepts behind the practical application of conformal 

prediction we refer the reader to Norinder et al.37 

Results and Discussion 

The first approach we investigated for adding Bioactivity Features was to add binary predicted labels, 

active or inactive. The results from these experiments are shown in Figures 2-5 and Table 2 and 3, 

displaying the change in model efficacy with and without the added binary bioactivity profiles. A clear 

improvement, with higher efficiencies for the higher confidence levels, could be observed across all the 

datasets when adding the additional labels. This was also mirrored by better model performance when 

evaluated using MCC and BA (Supporting Information). These results hold true for both the negative 

(inactive) and the positive (active) class. Importantly, the models remain valid for all the experiments 

(Table 2 and 3). 

 



 9 

 

Figure 2. Average efficiency of the positive class for the cytotoxicity datasets at different confidence 

levels with and without the binary bioactivity profile features. An increased efficiency is observed when 

adding the bioactivity profiles. 
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Figure 3. Average efficiency of the negative class for the cytotoxicity datasets at different confidence 

levels with and without the binary bioactivity profile features. An increased efficiency is observed when 

adding the bioactivity profiles. 
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Figure 4. Average efficiency of the positive class for the bioactivity datasets at different confidence 

levels with and without the binary bioactivity profile features. An increased efficiency is observed when 

adding the bioactivity profiles. 
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Figure 5. Average efficiency of the negative class for the bioactivity datasets at different confidence 

levels with and without the binary bioactivity profile features. An increased efficiency is observed when 

adding the bioactivity profiles. 

Although adding the predicted binary class labels as bioactivity profiles improved the predictive 

performance of the models, the method introduces a boundary problem as a cut-off needs to be defined 

to assign the labels. This may be especially challenging when using imbalanced data where the 

classifiers, most likely, will be expected to prefer the majority class. Alternatively, the predicted class 

label can be forced by assigning it with the largest conformal prediction p-value of the two classes. This 

however, completely overrides setting significance levels in conformal prediction, making it a less 

desirable approach. By instead adding the raw output (number of trees for the random forest or p-

values for the classes from the conformal models) these issues are circumvented. 
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To investigate this, the datasets were modelled with and without the addition of the predicted 

continuous bioactivity profiles and the results evaluated. Addition of the predicted continuous 

bioactivity profiles increase the efficiencies of the final models (Figure 6-9), both when adding the 

conformal p-values for each label or when using the number of trees predicting the outcome from the 

random forest model. Compared to using the predicted labels the continuous profiles generated slightly 

more efficient models (Table 2 and 3). 

 

Figure 6. Average efficiency of the positive class for the cytotoxicity datasets at different confidence 

levels with and without the continuous bioactivity profile features. An increased efficiency is observed 

when adding the bioactivity profiles. 
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Figure 7. Average efficiency of the negative class for the cytotoxicity datasets at different confidence 

levels with and without the continuous bioactivity profile features. An increased efficiency is observed 

when adding the bioactivity profiles. 
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Figure 8. Average efficiency of the positive class for the bioactivity datasets at different confidence 

levels with and without the continuous bioactivity profile features. An increased efficiency is observed 

when adding the bioactivity profiles. 
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Figure 9. Average efficiency of the negative class for the bioactivity datasets at different confidence 

levels with and without the continuous bioactivity profile features. An increased efficiency is observed 

when adding the bioactivity profiles. 

Interestingly, for the cytotoxicity dataset the two different continuous profiles (RF number of trees or 

conformal p-values) generated very similar results but with a slight preference for the RF derived 

profiles. In contrast, for the bioactivity datasets the conformal derived continuous profiles had a clear 

edge in performance. 

Maximum efficiency for the datasets was observed for a confidence level of about 75-80%, in line with 

what has been observed previously for this type of data.32,33 

To check that the increased performance observed when using the bioactivity profiles was not due to 

the additional number of features contributing spurious correlations, we also included 20 columns of 
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random variables as features for the cytotoxicity data sets. The random features did not improve model 

performance (see Supporting Information for details). 

 

Table 2. Average validity and efficiency of the different methods for the bioactivity data sets 

Confidence 

Level (%) 

Bioactivity 

Descriptors 

Mean Validity 

Positive Class 

Mean Validity 

Negative 

Class 

Mean 

Efficiency 

Positive Class 

Mean 

Efficiency 

Negative 

Class 

90  None 0.92 0.91 0.62 0.56 

85 None 0.87 0.87 0.75 0.72 

80 None 0.83 0.82 0.85 0.84 

75 None 0.77 0.77 0.92 0.91 

70 None 0.72 0.72 0.90 0.89 

90  

Conformal 

Class Label 0.85 0.90 0.70 0.72 

85 

Conformal 

Class Label 0.79 0.85 0.85 0.86 

80 

Conformal 

Class Label 0.73 0.81 0.93 0.94 

75 

Conformal 

Class Label 0.67 0.76 0.92 0.93 

70 

Conformal 

Class Label 0.62 0.72 0.85 0.86 

90  

Conformal p-

value 0.90 0.92 0.75 0.77 

85 

Conformal p-

value 0.83 0.88 0.87 0.90 

80 

Conformal p-

value 0.77 0.84 0.94 0.95 

75 

Conformal p-

value 0.71 0.80 0.89 0.92 
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70 

Conformal p-

value 0.66 0.76 0.81 0.85 

90  RF Class Label 0.89 0.79 0.80 0.74 

85 RF Class Label 0.83 0.72 0.91 0.88 

80 RF Class Label 0.78 0.66 0.95 0.92 

75 RF Class Label 0.74 0.61 0.92 0.86 

70 RF Class Label 0.70 0.57 0.85 0.78 

90  

RF Number of 

Trees 0.82 0.91 0.68 0.73 

85 

RF Number of 

Trees 0.72 0.86 0.85 0.88 

80 

RF Number of 

Trees 0.63 0.80 0.92 0.94 

75 

RF Number of 

Trees 0.55 0.74 0.81 0.87 

70 

RF Number of 

Trees 0.47 0.69 0.68 0.77 

 

Table 3. Average validity and efficiency of the different methods for the cytotoxicity datasets. 

Confidence 

Level (%) 

Bioactivity 

Descriptors 

Mean Validity 

Positive Class 

Mean Validity 

Negative 

Class 

Mean 

Efficiency 

Positive Class 

Mean 

Efficiency 

Negative 

Class 

90  None 0.98 0.94 0.57 0.20 

85 None 0.94 0.90 0.68 0.46 

80 None 0.89 0.87 0.78 0.67 

75 None 0.84 0.83 0.85 0.81 

70 None 0.76 0.79 0.88 0.87 

90  

Conformal 

Class Label 0.97 0.93 0.62 0.29 

85 
Conformal 

0.92 0.89 0.72 0.57 
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Class Label 

80 

Conformal 

Class Label 0.86 0.85 0.84 0.76 

75 

Conformal 

Class Label 0.81 0.82 0.90 0.86 

70 

Conformal 

Class Label 0.75 0.78 0.88 0.87 

90  

Conformal p-

value 0.97 0.94 0.68 0.31 

85 

Conformal p-

value 0.92 0.91 0.78 0.62 

80 

Conformal p-

value 0.85 0.88 0.88 0.81 

75 

Conformal p-

value 0.78 0.85 0.90 0.88 

70 

Conformal p-

value 0.72 0.81 0.87 0.86 

90  RF Class Label 0.97 0.94 0.68 0.29 

85 RF Class Label 0.91 0.91 0.79 0.60 

80 RF Class Label 0.84 0.87 0.88 0.81 

75 RF Class Label 0.78 0.84 0.91 0.89 

70 RF Class Label 0.72 0.80 0.89 0.87 

90  

RF Number of 

Trees 0.97 0.94 0.70 0.32 

85 

RF Number of 

Trees 0.91 0.90 0.80 0.63 

80 

RF Number of 

Trees 0.84 0.87 0.88 0.82 

75 

RF Number of 

Trees 0.78 0.84 0.92 0.89 

70 

RF Number of 

Trees 0.71 0.80 0.88 0.86 
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Although generating the models for the continuous bioactivity profiles is relatively straight forward for 

the size of data sets used in this study, we also wanted to show their utility when applied as a fixed set 

to new datasets without adding additional models. This allows for more rapid training of models for new 

targets.  

We applied the 11 cytotoxicity models from the first part to generate features for the remaining five 

validation sets (Table 1). The results from the resulting models are shown in Figure 10 and 11. The 

results closely mimics those seen for the previous datasets. 

 

Figure 10. Efficiency for the positive class of the five external cytotoxicity data sets. 
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Figure 11. Efficiency for the negative class of the five external cytotoxicity data sets. 

It might be expected that adding information from targets with a high similarity to the one being 

considered would be more beneficial to the model than targets that are less similar. Using a slightly 

modified form of the similarity measure described by Helal et al.4 (defined as the Pearson correlation 

coefficient of binary compound activities in the assays using the measured activities for compounds 

measured in both assays) we compared the change in model performance with the average similarity of 

the five most similar assays from the bioactivity profile to the target being considered. The changes in 

model performance before and after the addition of the predicted bioactivity profiles alongside this 

similarity is shown in Figure 12. However, we did not observe a clear relationship between the target 

similarities and the gain in performance. Notably, it was clear that the models with a very high 

performance also before the added predicted bioactivity profiles did not on average benefit from the 
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addition for most cases, which is understandable. The lack of a clear relationship may reflect the balance 

between adding new information to the model, requiring a level of dissimilarity, without reaching such 

low levels of similarity that no valuable inferences can be drawn from the data.  

 

Figure 12. Change in efficiency after adding the predicted continuous bioactivity profiles generated by 

conformal prediction to the Cytotoxicity datasets models. Marker size is based on the average similarity 

to the five most similar targets in the predicted bioactivity profile (bigger is more similar). 

Overall, our results show that using predicted bioactivity features can serve to increase model 

performance. This is in line with previous findings in the literature. Compared to previous studies we use 

the more rigorous conformal prediction framework for method evaluation, and we investigate the 

differences between using predicted labels and probabilities, showing that adding continuous bioactivity 

features gives a larger increase in model performance. 
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Conclusions 

Similarly to what has been observed with bioactivity fingerprints, the addition of predicted bioactivity 

profiles increase the performance of QSAR modelling. The best performance was obtained when using 

the raw output, rather than the predicted labels, from the predictive models as additional features, 

either the number of trees or p-value for RF and conformal models, respectively. 

The addition of the conformal framework provides both well-defined probabilities to generate the 

predicted bioactivity profiles as well as a robust way to measure the influence of the profiles on the 

models. 

 

Supporting Information Available: 

Additional performance metrics for the modelled datasets and results from using randomly generated 

features in place of the bioactivity profiles. 
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