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and transverse momentum 0.1 < pT < 5.0 GeV and event multiplicities Nch up to six times

larger than the average 〈Nch〉 ≈ 5. The two-particle correlations have been measured in

terms of the angular observables cn{2} = 〈〈cosn∆ϕ〉〉, where n is between 1 and 4 and ∆ϕ is

the relative azimuthal angle between the two particles. Comparisons with available models

of deep inelastic scattering, which are tuned to reproduce inclusive particle production,

suggest that the measured two-particle correlations are dominated by contributions from

multijet production. The correlations observed here do not indicate the kind of collective

behaviour recently observed at the highest RHIC and LHC energies in high-multiplicity

hadronic collisions.
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1 Introduction

The search for a new state of matter, the quark-gluon plasma (QGP), has been a major

component of the heavy-ion physics programme at many laboratories. The evidence for

its observation in heavy-ion collisions [1–6] is strong; one of the key observations being the

collective behaviour of final-state particles. Similar behaviour has recently been observed

in high-multiplicity p + A and pp collisions. This has motivated the first search for such

behaviour in ep collisions at the Hadron Electron Ring Accelerator (HERA).

The evolution of a QGP in space and time can be described within the framework of

relativistic fluid dynamics [7–9], employing the thermodynamic and transport properties

of quantum chromodynamics (QCD) matter. The correlated production of the final-state

particles reflects this evolution and are referred to as collective behaviour or collectivity.
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Recent measurements [10–16] at the Relativistic Heavy Ion Collider (RHIC) and the Large

Hadron Collider (LHC) have revealed similar collective behaviour in lighter colliding sys-

tems at high multiplicity, such as proton nucleus (p+A) and even pp, compared to heavy-ion

systems. Experimental investigations of the space-time evolution and fragmentation of a

multi-parton state formed in ep collisions at HERA are important to study the presence or

absence of collective effects for even smaller interaction regions than those that characterise

pp interactions.

At present it is unclear whether the collectivity observed in different colliding systems

is of the same fluid-dynamic origin and how small the interaction region can be until such

a description of soft QCD breaks down. Fluid-dynamic calculations applied to A + A

and high-multiplicity pp and p + A collisions are able to reproduce reasonably the mea-

surements [17–20]. This suggests that even in relatively small systems, a state of matter

in local thermal equilibrium may be produced, indicating universality of a fluid descrip-

tion. On the other hand, purely initial-state effects arising from gluon saturation in the

colour-glass-condensate framework are also able to describe the qualitative features of the

data [21].

Collisions between fully overlapping heavy nuclei at RHIC and LHC are capable of

producing large interaction regions which are of the order of 7 fm in size. In pp and p+A

the interaction region is of the order of the proton size, which ranges from its size of around

1 fm, when undisturbed, to a few fm [22, 23]. The average size of the interaction region

in ep scattering depends on 1/Q, where the exchanged photon virtuality is defined by the

four-momentum difference between the incoming and scattered electron, Q2 = −(k − k′)2.

The terms low and high Q2 are used to distinguish two regimes of particle production

in ep collisions: photoproduction and deep inelastic scattering (DIS) [24]. The latter can

be further classified into neutral and charged current DIS. Neutral current (NC) DIS is

characterised by the exchange of a virtual photon or Z boson between the incoming electron

and proton. Charged current DIS occurs less frequently, when a W boson is exchanged and

a scattered neutrino instead of an electron appears in the final state. In photoproduction,

the electron emits a quasi-real photon (Q2 . Λ2
QCD ≈ (200 MeV)2), which can fluctuate

into an extended hadronic object with a size of the order of 1/ΛQCD ≈ 1 fm. On the

other hand, DIS is characterised by the exchange of a highly virtual and more point-like

photon (Q2 � Λ2
QCD) which strikes a single parton with a finer resolution of 1/Q� 1 fm.

Thus, NC DIS provides a unique opportunity to investigate the dynamics of a many-body

QCD system produced in smaller interaction regions than those available at RHIC and

LHC. This is complementary to a corresponding investigation using ALEPH data on e+e−

collisions at the Z pole [25].

In addition to the size of the interaction region, its spatial anisotropy also plays an

important role in the system’s space-time evolution. Depending on the interaction rate

during the collective expansion, the spatial anisotropy can be converted into a momentum

asymmetry of the produced particles. In a fluid picture, this arises essentially because

pressure gradients accelerate the fluid. This final-state asymmetry can be quantified with
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two-particle azimuthal correlations [26–29], which coincide with the two-particle cumulants:

cn{2} = 〈〈cosn∆ϕ〉〉 , (1.1)

where ∆ϕ = ϕ1 − ϕ2 is the difference in the azimuthal angles of particles 1 and 2. The

inner angular brackets denote an average over all pairs in a given event while the outer

angular brackets denote an average over all events.

In the case of collective fluid-like expansion, measurements of the first four harmon-

ics (n = 1 − 4) are sensitive to directed, elliptic, triangular, and quadrangular spatial

anisotropies, respectively (see review [30] and references therein). A prominent feature

of the collision between partially overlapping heavy ions is the elliptical shape of the in-

teraction region. This results in the dominance of an elliptical asymmetry, c2{2}, in the

momentum space. In ep DIS, the most prominent feature is the recoil of the hadronic

system against the electron (momentum conservation), which is reflected in the directed

cumulant c1{2}.

In this paper, measurements of cn{2} are presented for the first four harmonics as

a function of the number of charged particles, the laboratory pseudorapidity difference

|∆η| = |η1 − η2|, and the mean transverse momentum 〈pT〉 = (pT,1 + pT,2)/2.

2 Experimental set-up

The NC DIS data sample used in this analysis was taken with the ZEUS detector at HERA

during 2003–2007 (HERA II). During this period, the HERA accelerator collided 27.5 GeV

electron/positron1 beams with 920 GeV proton beams, which yields a nominal centre-of-

mass energy of
√
s = 318 GeV. The integrated luminosity recorded by ZEUS in HERA II

at this energy is 366± 7 pb−1.

A detailed description of the ZEUS detector can be found elsewhere [31]. A brief

outline of the components that are most relevant for this analysis is given below.

In the kinematic range of the analysis, charged particles were mainly tracked in the

central tracking detector (CTD) [32–34] and the microvertex detector (MVD) [35]. These

components operated in a magnetic field of 1.43 T provided by a thin superconducting

solenoid. The CTD consisted of 72 cylindrical drift-chamber layers, organised in nine

superlayers covering the polar-angle2 region 15◦ < θ < 164◦. The MVD silicon tracker

consisted of a barrel (BMVD) and a forward (FMVD) section. The BMVD contained

three layers and provided polar-angle coverage for tracks from 30◦ to 150◦. The four-layer

FMVD extended the polar-angle coverage in the forward region to 7◦. After alignment, the

single-hit resolution of the MVD was 24µm. The transverse distance of closest approach

1Hereafter, “electron” refers to both electrons and positrons unless otherwise stated. HERA operated

with electron beams during 2005 and part of 2006, while positrons were accelerated in the other years of

this data sample.
2The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

nominal proton beam direction, referred to as the “forward direction”, and the X axis pointing left towards

the centre of HERA. The coordinate origin is at the centre of the CTD. The pseudorapidity is defined as

η = − ln
(
tan θ

2

)
, where the polar angle, θ, is measured with respect to the Z axis. The azimuthal angle, ϕ,

is measured with respect to the X axis.
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(DCA) to the nominal vertex in X–Y was measured to have a resolution, averaged over

the azimuthal angle, of (46 ⊕ 122/pT)µm, where ⊕ indicates that the values are added in

quadrature, and with pT in GeV denoting the momentum transverse to the beam axis. For

CTD-MVD tracks that pass through all nine CTD superlayers, the momentum resolution

was σ(pT)/pT = 0.0029pT ⊕ 0.0081⊕ 0.0012/pT, with pT in GeV.

The high-resolution uranium-scintillator calorimeter (CAL) [36–39] consisted of three

parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each

part was subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter was called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, were σ(E)/E = 0.18/
√
E for electrons

and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp by a lu-

minosity detector which consisted of independent lead-scintillator calorimeter [40–42] and

magnetic spectrometer [43, 44] systems.

3 Event and track selection

3.1 Event selection

The ZEUS experiment operated a three-level trigger system [45, 46]. For this analysis,

events were selected at the first level if they had an energy deposit in the CAL consistent

with an isolated scattered electron. At the second level, a requirement on the energy and

longitudinal momentum of the event was used to select NC DIS event candidates. At the

third level, the full event was reconstructed and tighter requirements for a DIS electron

were made.

NC DIS events are characterised by the observation of a high-energy scattered electron

in the CAL and were selected with the following criteria:

• the scattered electron was identified using information from the distribution of energy

deposited in the CAL, including information from a silicon-detector system embed-

ded in the RCAL and from its associated track, when available. A neural-network

algorithm [47, 48] assigned a probability that a given electron candidate was correctly

identified as an electron. The probability was required to be larger than 90%;

• the event vertex was obtained from a fit to the measured tracks. To ensure reliable

tracking within the CTD, the position of the event vertex along the Z axis, VZ , was

required to be within 30 cm of its nominal value. The transverse distance of the

event vertex from the interaction point was required to be within 0.5 cm. For the

measurements of two-particle correlations, events were required to have at least one

track associated with the primary vertex. The fraction of primary-vertex tracks to

the total number of reconstructed tracks was required to be larger than 0.1 to reject

beam-gas background;

• the scattered-electron energy, Ee, as measured in the CAL, was larger than 10 GeV to

ensure good electron identification;
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• the virtuality, Q2, as determined by the electron method [49], was required to be

larger than 5 GeV2, just above the minimum reconstructable value;

• the polar angle of the scattered electron, θe, was required to be larger than 1 radian

to ensure a reliable measurement in the RCAL or BCAL, which results in an effective

upper limit of Q2 < 104 GeV2;

• the radial position of the electron on entering the RCAL was required to be larger

than 15 cm (θe . 3 radians) to help reject photoproduction events and to ensure a

well understood acceptance. Entrance locations (X,Y ) with poor acceptance were

excluded from the analysis: 5 < X < 11 cm for Y > 0 cm and −15 < X < −9 cm

for Y < 0 cm. Additionally, the region −10 < X < 10 cm for Y > 110 cm contains

a significantly higher material budget and was therefore excluded;

• for further rejection of photoproduction events, as well as rejection of DIS events

with large initial-state photon radiation, a cut based on the quantity E − pZ =∑
iEi(1− cos θi) was applied. The sum is over all energy-flow objects [50, 51] which

are formed from calorimeter-cell clusters and tracks, with energy Ei and polar angle

θi. For a fully contained NC DIS event, E − pZ should be twice the beam-electron

energy (55 GeV) owing to energy and longitudinal momentum conservation. This

cut also removes background events caused by collisions of protons with residual

gas in the beam pipe or the beam pipe itself. Events were accepted in the interval

47 < E − pZ < 69 GeV.

These constraints on the scattered electron implicitly remove events with an inelastic-

ity [24] y = p (k−k′)/(p k) & 0.65, where p represents the four-momentum of the incoming

proton. A total of 45 million NC DIS events were selected for the analysis. The con-

tamination from photoproduction events has been estimated to be on the order of 1% as

determined from studies of photoproduction Monte Carlo data as well as from events with

scattered-electron candidates with the incorrect charge.

3.2 Track selection

Reconstructed tracks were used in this analysis if their momentum transverse to the beam-

axis and laboratory pseudorapidity were within 0.1 < pT < 5.0 GeV and −1.5 < η < 2.0,

respectively. To reject unwanted secondary tracks and false reconstructions, each track

was required to have at least one MVD hit. The track associated to the scattered electron

candidate used to identify the NC DIS event was rejected in the correlation analysis. Owing

to occasional showering of the electron in the beam pipe and tracker material, this track

is not always uniquely identified. Thus, all tracks around the scattered electron candidate

within a cone of 0.4 in pseudorapidity and azimuthal angle were rejected.

Tracks corresponding closely to primary charged particles were selected in the analysis

by requiring the distances of closest approach to the primary vertex in the transverse

(DCAXY ) and longitudinal (DCAZ) directions to be less than 2 cm. Some secondary tracks,

e.g. from small-angle scattering in the beam pipe, were therefore retained. These tracks
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inherit information about the properties of the corresponding charged primary particles

and serve as their substitutes, thereby retaining correlations with other primary particles.

4 Monte Carlo generators

The LEPTO 6.5 [52] and ARIADNE 4.12 [53] Monte Carlo event generators were used for

the comparison of the measurements to known physics mechanisms and for the extraction of

efficiency corrections and the associated systematic uncertainties in the correlation analysis.

Both models are interfaced with PYTHIA 5.724 and JETSET 7.410 [54] to han-

dle hadronisation and decays. The initial hard scattering in ARIADNE is treated with

PYTHIA and JETSET. The LEPTO and ARIADNE generators differ chiefly in the treat-

ment of the QCD cascade process. In LEPTO, the cascade is treated as a Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP)-based backward-evolution shower [55–57]. The

ARIADNE generator treats the cascade within the colour dipole model (CDM) [58]. Initial-

state radiation (before the central hard scatter) and final-state radiation are treated inde-

pendently in LEPTO while ARIADNE includes initial- and final-state interference effects.

In the CDM prescription, the production amplitudes of soft gluon emissions are summed

coherently while in LEPTO the angular-ordering technique [59, 60] is used to emulate the

coherence effect.

The selected ZEUS data sample includes a diffractive component [61] where the ep

scattering is mediated by an object carrying the quantum numbers of the vacuum — a

Pomeron. A distinguishing feature of diffractive events is the absence of hadronic activ-

ity in the forward direction. The pseudorapidity of the most-forward energy deposit in

the CAL greater than 400 MeV is defined as ηmax. A diffractive and a non-diffractive

ARIADNE sample were combined in this analysis using a weighting scheme chosen to re-

produce the ηmax distribution in ZEUS data. The diffractive component was generated

with SATRAP [62] which was interfaced with ARIADNE and RAPGAP [63]. Purely non-

diffractive ARIADNE predictions were also used to illustrate the expected effect of the

diffractive component. The LEPTO Monte Carlo sample only contains a non-diffractive

component since a simulation of the diffractive component was not available.

Generated events were passed through GEANT3.21 [64] to simulate the ZEUS detector.

Additionally, a fraction of the low-pT tracks was rejected to compensate for the imperfectly

simulated loss of such tracks [65, 66]. The selection of Monte Carlo events to compute

reconstructed distributions and efficiency corrections followed the same criteria as for the

reconstructed ZEUS data, see section 3.1. Primary generated particles were defined as

charged hadrons with a mean proper lifetime, τ > 1 cm, which were produced directly or

from the decay of a particle with τ < 1 cm. This definition is the same as that used by

ALICE at the LHC [67].

5 Comparison of reconstructed data and Monte Carlo

To validate the extraction of efficiency corrections from ARIADNE and LEPTO, the data

are now compared to model predictions at reconstruction level. The distributions of Nrec

and Q2 are shown in figure 1. In addition, figure 1 shows distributions at generator level.
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For this, Monte Carlo events were selected based on Q2, Ee, θe, and E − pZ , which were

calculated using initial- and final-state electron momenta. These quantities were required

to be in the same intervals as used at reconstruction level. Generated primary particles

were selected from the same kinematic pT and η intervals as at reconstruction level without

a matching constraint.

Figure 1(a) shows the distributions of track multiplicity, where Ngen denotes the num-

ber of selected generated tracks for either ARIADNE or LEPTO, and Nrec denotes the

number of selected reconstructed tracks in either data or Monte Carlo. Figure 1(b) shows

the equivalent distributions in Q2. The reconstructed Nrec and Q2 distributions as pre-

dicted by ARIADNE are compatible with the data to within about 10%, except for the

high-Nrec region, where the discrepancy is about 50%. The mean value of Nrec is about 5

and the mean value of Q2 is about 30 GeV2.

Reconstructed pT and η track distributions are shown in figure 2. The reconstructed

single-particle distributions in ARIADNE are compatible with the data to within about

10% except for the high-pT region, where the discrepancy is about 15%. Owing to the

asymmetric electron and proton beam energies and the occurrence of a beam remnant

in the proton direction, particle production is expected to peak in the forward direction

near η = 4.

The reconstructed two-particle correlations c1{2} and c2{2} versus Nrec in data and

Monte Carlo are shown in figure 3. Figures 3(a) and (b) represent the kinematic intervals

given by pT > 0.1 GeV and no |∆η| cut, while (c) and (d) represent pT > 0.5 GeV and

|∆η| > 2. From the comparison of the full ARIADNE distributions with the distributions

predicted by the non-diffractive component only, it is clear that the impact of diffraction

on these distributions is small. Thus, ARIADNE and LEPTO can be compared to the

data on an equal footing. It is clear that ARIADNE describes c1{2} better than LEPTO

in panels (a) and (c) while the opposite is true with c2{2} in panel (d) with a |∆η| and

stronger pT cut. For c2{2}, in panel (b), which corresponds to the full kinematic interval,

neither model fully satisfactorily describes the data.

Reconstructed two-particle correlations c1{2} as a function of |∆η| and 〈pT〉 are shown

in figure 4. It is clear that ARIADNE describes the data much better than LEPTO in

all of the kinematic intervals shown. In contrast, c2{2} as a function of |∆η| and 〈pT〉 is

described much better by LEPTO as shown in figure 5. In all cases the data are described

by at least one of the two Monte Carlo models reasonably enough, such that the efficiency

corrections can be derived reliably.

6 Efficiency corrections

The measurement of two-particle correlations can be affected by non-uniform particle-

tracking efficiency. The single- and two-particle efficiencies were estimated by comparing

the number of primary particles or pairs as generated with ARIADNE to the corresponding

reconstructed numbers. The single-particle efficiencies were extracted differentially in pT,

η, ϕ, charge, and data-taking period. Two-particle efficiencies, which characterise the
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degree to which two tracks close in ϕ can be distinguished in the CTD, were extracted

differentially in ∆ϕ, |∆η|, Nch, and relative charge.

Corrections for non-uniform efficiency were applied using two types of weights. They

were extracted in two steps from Monte Carlo event samples. In the first step, the single-

particle tracking efficiencies were calculated as the ratio of the number of reconstructed

to generated particles passing the track-selection criteria. The weight for particle i, wi, is

the inverse of the single-particle tracking efficiency. Such weights are valid provided that

there are no regions void of reconstructed particles (holes), which is the case for the chosen

kinematic interval. Projected against pT, the typical variation of wi from its mean value is

about 5% at high pT and 15% at low pT, where secondary contamination becomes larger.

The typical variation of wi projected against ϕ is about 5%. The true number of charged

primary particles within the fiducial region in a given event was estimated with a weighted

sum over the reconstructed tracks passing the track-selection criteria, Nrec:

Nch =

Nrec∑
i

wi. (6.1)

In a second pass over the Monte Carlo events, the wi weights were applied to the

reconstructed particles and two-particle reconstruction efficiencies were calculated as a

function of ∆ϕ. The ratio of the number of generated to reconstructed pairs passing the

track-selection criteria forms the second weight w∆ϕ. The typical variation of w∆ϕ is about

10% and is largest for same-sign pairs with |∆ϕ| < 0.3 radians.

7 Analysis method

The two-particle correlation functions measured in this analysis are defined by

cn{2} =

Nev∑
e

 Nrec∑
i,j>i

wij cos [n(ϕi − ϕj)]


e

/
Nev∑
e

 Nrec∑
i,j>i

wij


e

, (7.1)

where ϕi and ϕj are the azimuthal angles of the two particles. The first sum over e is per-

formed for all events, Nev, and the sums over i and j run over all selected charged particles

in the event with multiplicity Nrec. The pair-correction factor for non-uniform acceptance

is given by wij = wiwjw∆ϕ, which is normalised (see eq. 7.1) in the determination of cn{2}.

Two-particle correlations are also reported in a two-dimensional form, which is de-

fined as:

C(∆η,∆ϕ) =
S(∆η,∆ϕ)

B(∆η,∆ϕ)
, (7.2)

where S(∆η,∆ϕ) = N same
pairs (∆η,∆ϕ) and B(∆η,∆ϕ) = Nmixed

pairs (∆η,∆ϕ) are the number of

pairs for the signal and background distributions, respectively. These pair distributions

were formed by taking the first particle from a given event and the other from either

the same event or a different event (mixed) with similar values of Nrec and vertex Z

position. The S distribution was corrected with wij , while B was corrected with wiwj .

Both distributions were symmetrised along ∆η and then individually normalised to unity

before division.
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8 Systematic uncertainties

In principle, the application of the efficiency corrections as defined in eq. 7.1 to the re-

constructed Monte Carlo data should recover the distributions of cn{2} at generator level.

However, residual differences persist. This is called Monte Carlo non-closure. Qualita-

tively, the Monte Carlo non-closure was observed to be similar for ARIADNE and LEPTO.

Quantitatively, differences were observed, because the models predict different event con-

figurations to which the detector responds differently. For the results, the Monte Carlo

non-closure values from ARIADNE, δARIADNE
nc , and LEPTO, δLEPTO

nc , were averaged, δnc,

and are quoted as a signed separate uncertainty. The typical values of this uncertainty on

cn{2} versus Nch without a cut on |∆η| are < 15%.

Further systematic uncertainties were estimated by comparing the correlations ob-

tained with the default event- and track-selection criteria to those obtained with varied

settings. The difference between the cn{2} results obtained with the default and the varied

settings was assigned as the systematic uncertainty. The sources of systematic uncertainty

that were considered are given below (with the typical values of the uncertainty on cn{2}

versus Nch without a cut on |∆η|):

• secondary-particle contamination: the default analysis used DCAXY,Z < 2 cm,

while for the variation DCAXY,Z < 1 cm was used. The uncertainty was

symmetrised (< 10%);

• efficiency-correction uncertainty due to the choice of Monte Carlo generator: the

default analysis used ARIADNE, while for the variation, LEPTO was used. The

uncertainty was largest at high Nch (< 10%);

• consistency of cn{2} from events with different primary-vertex positions, VZ : the

default analysis used |VZ | < 30 cm. For the variations either −30 < VZ < 0 cm

or 0 < VZ < 30 cm were selected. The resulting deviations were weighted by their

relative contribution (< 5%);

• low-pT tracking efficiency: the default simulation included the low-pT track rejection,

while for the variation it did not. The uncertainty was assigned to be half of the

difference between the default and varied procedure and was symmetrised (< 3%);

• different data-taking conditions: the default analysis used all available data, while for

the variations, separate data taking periods weighted by their relative contribution

were used and the differences were added in quadrature and used as a symmetric

uncertainty (< 2%);

• DIS event-selection criteria: the chosen E − pZ interval, the scattered-electron po-

lar angle, the neural-network identification probability, and the excluded entrance

locations of the scattered electron in the CAL were found to have a negligible effect.

Each variation was applied to ZEUS data as well as Monte Carlo data for the recalculation

of efficiency corrections. Positive and negative systematic uncertainties were separately

– 9 –
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summed in quadrature to obtain the total systematic uncertainty, δsyst. The values of each

systematic uncertainty and the full information for the two models are also provided in

tables 1–26.

9 Results

Results are presented3 in the kinematic region defined by: Q2 > 5 GeV2, Ee > 10 GeV,

E − pZ > 47 GeV, θe > 1 radian, and primary charged particles with −1.5 < η < 2 and

0.1 < pT < 5 GeV. The kinematic intervals were chosen to avoid contributions from un-

wanted hard processes at very high pT and to provide good tracking efficiency.

Figure 6 shows C(∆η,∆ϕ) for low and high Nch and for particles with 0.5 < pT <

5 GeV. For both ranges in Nch, a dominant near-side (∆ϕ ∼ 0) peak is seen at small

∆η. The displayed range in C was truncated to illustrate better the finer structures of the

correlation. Also in both Nch ranges, at ∆ϕ ∼ π (away-side), a broad ridge-like structure

is observed. At low Nch, a dip in this away-side ridge is visible, while at high Nch it is

more uniform. There is no indication of a near-side ridge with or without the subtraction of

C(∆η,∆ϕ) at lowNch from that at highNch, which would be an indication of hydrodynamic

collectivity. This is in contrast to what has been observed in high-multiplicity pp and

p+ Pb collisions [11–13]. Similarly, an analysis of two-particle correlations in e+e− shows

no indication of a near-side ridge [25].

Figure 7 shows the Nch dependence of the two-particle correlations cn{2} for the first

four harmonics, n = 1 − 4. Results are presented for the full ranges of |∆η| and pT, and

with a rapidity-separation condition, |∆η| > 2, for pT > 0.1 and pT > 0.5 GeV. Without a

rapidity separation, the cn{2} correlations are strongest and positive at low Nch for all n,

indicating that particles are preferentially emitted into the same hemisphere, as expected

for the fragmentation of the struck parton. This is largely absent for |∆η| > 2, indicating

that cn{2} at small multiplicities is dominated mostly by short-range correlations. An

alternative way to suppress short-range correlations is to use multiparticle correlations [28]

such as four-particle cumulants cn{4}, which explicitly removes them. Owing to limited

statistics, they were not studied here.

All cn{2} correlations depend only weakly on Nch for Nch > 15. For |∆η| > 2, c1{2}

and c3{2} become negative, which is expected from the effects of global momentum con-

servation, e.g. back-to-back dijet-like processes with large eta separation between jets.

For pT > 0.5 GeV, c1{2} (c2{2}) exhibit stronger negative (positive) correlations than for

pT > 0.1 GeV.

Similar conclusions can be drawn by comparing figure 6 to figure 7. For low Nch and no

|∆η| cut, the peak in figure 6 is the dominant structure from which c1{2} = 〈〈cos ∆ϕ〉〉 > 0

and c2{2} = 〈〈cos 2∆ϕ〉〉 > 0 are expected. For large values of Nch, |∆η| and pT, the away-

side ridge becomes the dominant structure, which leads to the pattern 〈〈cos 2∆ϕ〉〉 > 0

and 〈〈cos ∆ϕ〉〉 < 0. It can be seen that |c1{2}| is much larger than |c2{2}| at high Nch and

|∆η|. This reflects that inclusive NC DIS events have a more directed than elliptic event

topology. This is in contrast to systems with larger interaction regions, where the positive

3The values are given in tables 1–26.
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magnitude of c2{2} is much larger than the negative magnitude of c1{2} [68], which is an

expected signature of hydrodynamic collectivity.

Figure 8 shows the two-particle correlations as a function of rapidity separation |∆η|.
Compared to results for pT > 0.1 GeV, the correlations with pT > 0.5 GeV are more

pronounced, as expected from particles in jet-like structures. The mean values of pT in

the low- and high-pT intervals are 0.6 and 1.0 GeV, respectively. The correlations c1{2}

and c3{2} have qualitatively similar dependences on |∆η| but with different modulation

strengths. Both change sign near |∆η| = 1, which shows that the short-range correlations

extend up to about one unit of rapidity separation, after which the long-range effects,

such as global momentum conservation, become dominant contributions to c1{2} and c3{2}.

Integrated for pT > 0.1 GeV, c2{2} approaches zero for |∆η| & 2. Positive correlations

observed in c2{2} for pT > 0.5 GeV extend out to |∆η| ∼ 3.

In figure 9, c1{2} and c2{2} are plotted versus 〈pT〉 with |∆η| > 2 in low- and high-

multiplicity regions. The third and fourth harmonic correlation functions have much larger

statistical uncertainties and are therefore not shown. Correlations at low Nch were down-

scaled by the factor 〈Nch〉low / 〈Nch〉high = 0.4, where 〈Nch〉low (〈Nch〉high) = 6.7 (16.8).

Studies in heavy-ion collisions suggest that correlations unrelated to hydrodynamic collec-

tivity contribute to cn{2} as 1/Nch [69, 70]. Applying the scaling factor provides a better

means to compare and investigate the possible collective effects, which enter each multi-

plicity interval differently, and investigate if there is an excess of the correlations at high

multiplicities. For both c1{2} and c2{2}, the correlation strength grows with increasing 〈pT〉
up to a few GeV, which is universally observed in all collision systems [10–16]. Despite the

observed excess of correlation strength for c2{2} at high compared to low multiplicity, an

even stronger excess is observed for c1{2}, which, as described above, is dominated by dijet-

like processes. This suggests that the 1/Nch scaling inspired by observations in heavy-ion

collisions may not be appropriate for ep scattering.

Comparisons of c2{2} at low and high multiplicity, as well as fits to C(∆η,∆ϕ), have

been performed at RHIC and LHC. The laboratory rapidity window used in the analysis

presented here is located about 2–5 units away from the peak of the proton fragmentation

region at η ≈ 4 (figure 2). The LHC measurements in pp collisions were made in between

two wide fragmentation peaks which are separated by about 4 units [71–73]. Despite this

difference in rapidity coverage, the typical magnitudes of c2{2} are compared. The value of

c2{2} at RHIC [15, 16] and LHC [10–14] lies in the range 0.002–0.01 at pT ≈ 1 GeV [14].

At a similar pT value, the corresponding difference between the central values of c2{2}

at low and high multiplicity in figure 9 is about 0.01. The further understanding of the

similarity of the c2{2} excess observed in both ep and pp, together with the much larger c1{2}

excess relative to that for c2{2} in ep, would require a consistent modelling of multi-particle

production in both collision systems.

The generated correlations in LEPTO and ARIADNE are compared to the measured

correlations c1{2} and c2{2} in figures 10–12. In figure 10, generated correlations are com-

pared to c1{2} and c2{2} versus Nch(a) and (b) without and (c) and (d) with a |∆η| cut.

The ARIADNE prediction is shown with and without a diffractive component. Figures 10

(e) and (f) show the expectations from the models for ≤ 1 and 2 jets. Massless jets were

reconstructed from generated hadrons using the kT algorithm [74] with ∆R = 1, rapidity

– 11 –



J
H
E
P
0
4
(
2
0
2
0
)
0
7
0

less than 3, and at least 2 GeV of transverse energy in the laboratory frame. Figures 10 (e)

and (f) confirm that dijet-like processes are responsible for the large values of |c1{2}| and

|c2{2}|. The models are able to reproduce the qualitative features of the data but do not

give a quantitative description in certain regions. Both LEPTO and ARIADNE predict an

increase of integrated c2{2} at high Nch, which the data do not show.

The correlations projected against |∆η| and 〈pT〉 in figures 11 and 12 confirm the

observation at reconstruction level (section 5) that ARIADNE describes c1{2} better than

LEPTO while the opposite is true for c2{2}. In particular, it is clear that long-range

correlations (|∆η| & 2) are underestimated by LEPTO for the first harmonic while they

are overestimated by ARIADNE for the second harmonic. The growth of c2{2} correlations

with 〈pT〉 is greatly overestimated by the ARIADNE model.

10 Summary and outlook

Two-particle azimuthal correlations have been measured with the ZEUS detector at HERA

in neutral current deep inelastic ep scattering at
√
s = 318 GeV, using an integrated lumi-

nosity of 366 ± 7 pb−1. The kinematic region of the selected primary charged particles in

the laboratory frame is 0.1 < pT < 5 GeV and −1.5 < η < 2. The DIS scattered electron

was constrained to have a polar angle greater than 1 radian relative to the proton beam

direction, with energy larger than 10 GeV, and Q2 > 5 GeV2. The events were required to

have E − pZ > 47 GeV.

The correlations were measured for event multiplicities up to six times larger than

the average 〈Nch〉 ≈ 5. There is no indication of a near-side ridge in C(∆η,∆ϕ). Strong

long-range anti-correlations are observed with c1{2} as expected from global momentum

conservation. For pT > 0.5 GeV, the observed anti-correlations in c1{2} are stronger than

the correlations in c2{2}, which indicates that they originate from hard processes and not

the collective effects that characterise RHIC and LHC data at high multiplicities.

Models of DIS, which are able to reproduce distributions of Q2 and single-particle

spectra, are able to qualitatively describe two-particle correlations but do not describe all

distributions quantitatively. In particular, LEPTO provides a better description of c2{2},

while ARIADNE describes c1{2} better.

The measurements demonstrate that the collective effects recently observed at RHIC

and LHC are not observed in inclusive NC DIS collisions. Future studies with photoproduc-

tion are expected to shed light on the evolution of the multi-particle production mechanism

from DIS to hadronic collisions, where the size of the interaction region changes from a

fraction of a femtometer to femtometers.
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using the same scale factors as for the reconstructed distributions. The normalisation procedure for
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of events, Nev. The generator-level predictions of ARIADNE are normalised to reconstructed

ARIADNE at (a) pT = 0.1 GeV and at (b) η = 0. The other model predictions have been normalised

by the same factor (1.3). The kink in the ARIADNE prediction near η = 8 arises from the

contribution of diffractive events where the incoming proton remains intact. The other details are

as in figure 1.
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Figure 3. Reconstructed c1{2} and c2{2} versus Nrec. The (a) and (b) panels represent the kine-

matic intervals given by pT > 0.1 GeV and no |∆η| cut. The (c) and (d) panels are further

constrained by pT > 0.5 GeV and |∆η| > 2. The predictions from ARIADNE, ARIADNE non-
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Figure 10. Correlations c1{2} and c2{2} with and without a rapidity separation as a function of
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Figure 11. Correlations c1{2} as a function of |∆η| and 〈pT〉 for 15 ≤ Nch < 30. Also shown

are generated correlations from Monte Carlo models. Correlations measured in the full kinematic

interval are shown in (a) and (b), while (c) and (d) are further constrained by pT > 0.5 GeV and

|∆η| > 2, respectively. The other details are as in figure 7.
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Figure 12. Correlations c2{2} as a function of |∆η| and 〈pT〉 for 15 ≤ Nch < 30. Also shown are

the predictions from Monte Carlo event generators. The other details are as in figure 11.
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B Tables

Nch c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.35 ±2.6× 10−4 +2.0×10−2

−2.0×10−2 +2.8× 10−2 +3.2× 10−2 +2.3× 10−2

2.5–3.5 +0.29 ±1.6× 10−4 +1.4×10−2

−1.4×10−2 +1.7× 10−2 +1.9× 10−2 +1.4× 10−2

3.5–4.5 +0.24 ±1.2× 10−4 +7.2×10−3

−7.2×10−3 +4.7× 10−3 +4.1× 10−3 +5.2× 10−3

4.5–5.5 +0.19 ±1.0× 10−4 +5.3×10−3

−5.5×10−3 +9.7× 10−4 +1.3× 10−3 +6.9× 10−4

5.5–6.5 +0.15 ±9.2× 10−5 +4.2×10−3

−4.3×10−3 −2.3× 10−3 −3.8× 10−3 −8.1× 10−4

6.5–7.5 +0.12 ±8.7× 10−5 +3.5×10−3

−3.7×10−3 −3.6× 10−3 −3.6× 10−3 −3.6× 10−3

7.5–8.5 +0.10 ±8.4× 10−5 +2.9×10−3

−3.1×10−3 −4.6× 10−3 −4.7× 10−3 −4.6× 10−3

8.5–9.5 +0.08 ±8.5× 10−5 +2.7×10−3

−2.8×10−3 −4.9× 10−3 −4.7× 10−3 −5.1× 10−3

9.5–10.5 +0.07 ±8.7× 10−5 +2.4×10−3

−2.5×10−3 −4.3× 10−3 −4.0× 10−3 −4.6× 10−3

10.5–11.5 +0.06 ±9.2× 10−5 +2.2×10−3

−2.4×10−3 −3.8× 10−3 −3.4× 10−3 −4.3× 10−3

11.5–12.5 +0.05 ±9.9× 10−5 +1.9×10−3

−2.0×10−3 −3.7× 10−3 −3.2× 10−3 −4.2× 10−3

12.5–13.5 +0.05 ±1.1× 10−4 +1.3×10−3

−1.7×10−3 −3.8× 10−3 −3.3× 10−3 −4.3× 10−3

13.5–14.5 +0.04 ±1.2× 10−4 +1.0×10−3

−1.5×10−3 −3.6× 10−3 −3.2× 10−3 −4.0× 10−3

14.5–15.5 +0.04 ±1.4× 10−4 +9.4×10−4

−1.3×10−3 −2.8× 10−3 −2.6× 10−3 −3.0× 10−3

15.5–16.5 +0.03 ±1.6× 10−4 +1.1×10−3

−1.4×10−3 −2.2× 10−3 −2.0× 10−3 −2.3× 10−3

16.5–17.5 +0.03 ±1.8× 10−4 +1.0×10−3

−1.4×10−3 −1.6× 10−3 −1.7× 10−3 −1.6× 10−3

17.5–18.5 +0.03 ±2.1× 10−4 +9.1×10−4

−1.3×10−3 −1.4× 10−3 −1.6× 10−3 −1.3× 10−3

18.5–19.5 +0.03 ±2.5× 10−4 +7.4×10−4

−1.2×10−3 −9.4× 10−4 −1.2× 10−3 −6.5× 10−4

19.5–20.5 +0.02 ±3.0× 10−4 +5.8×10−4

−1.0×10−3 +4.9× 10−4 +5.7× 10−4 +4.1× 10−4

20.5–22.5 +0.02 ±2.8× 10−4 +1.2×10−3

−1.5×10−3 +1.0× 10−3 +7.5× 10−4 +1.2× 10−3

22.5–24.5 +0.02 ±4.2× 10−4 +1.5×10−3

−1.7×10−3 +2.6× 10−3 +1.4× 10−3 +3.7× 10−3

24.5–27.5 +0.02 ±6.0× 10−4 +1.5×10−3

−1.6×10−3 +3.0× 10−3 +1.4× 10−3 +4.5× 10−3

27.5–30.5 +0.01 ±1.2× 10−3 +8.1×10−4

−8.3×10−4 +2.5× 10−3 +1.2× 10−3 +3.7× 10−3

Table 1. c1{2} versus Nch from figure 7 (a) and figure 10 (a), pT > 0.1 GeV, no |∆η| cut; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.023 ±1.4× 10−3 +4.9×10−3

−4.8×10−3 +8.0× 10−3 +8.6× 10−3 +7.5× 10−3

2.5–3.5 +0.017 ±6.9× 10−4 +2.9×10−3

−3.1×10−3 +5.7× 10−3 +5.7× 10−3 +5.6× 10−3

3.5–4.5 +0.009 ±4.5× 10−4 +1.4×10−3

−1.7×10−3 +2.7× 10−3 +2.2× 10−3 +3.2× 10−3

4.5–5.5 −0.000 ±3.4× 10−4 +1.3×10−3

−1.8×10−3 +1.8× 10−3 +1.8× 10−3 +1.7× 10−3

5.5–6.5 −0.009 ±2.9× 10−4 +1.4×10−3

−1.8×10−3 +1.1× 10−3 +1.2× 10−3 +8.9× 10−4

6.5–7.5 −0.017 ±2.6× 10−4 +1.5×10−3

−2.1×10−3 +1.6× 10−3 +2.1× 10−3 +1.2× 10−3

7.5–8.5 −0.027 ±2.5× 10−4 +2.1×10−3

−2.5×10−3 +2.6× 10−3 +3.1× 10−3 +2.0× 10−3

8.5–9.5 −0.033 ±2.4× 10−4 +2.6×10−3

−3.0×10−3 +3.4× 10−3 +3.9× 10−3 +2.9× 10−3

9.5–10.5 −0.037 ±2.5× 10−4 +2.8×10−3

−3.1×10−3 +3.7× 10−3 +4.1× 10−3 +3.3× 10−3

10.5–11.5 −0.042 ±2.6× 10−4 +2.7×10−3

−3.0×10−3 +4.0× 10−3 +4.3× 10−3 +3.7× 10−3

11.5–12.5 −0.047 ±2.8× 10−4 +3.1×10−3

−3.2×10−3 +4.2× 10−3 +4.6× 10−3 +3.7× 10−3

12.5–13.5 −0.049 ±3.1× 10−4 +3.8×10−3

−3.8×10−3 +4.5× 10−3 +5.0× 10−3 +4.0× 10−3

13.5–14.5 −0.053 ±3.4× 10−4 +3.8×10−3

−3.8×10−3 +5.0× 10−3 +5.4× 10−3 +4.6× 10−3

14.5–15.5 −0.054 ±3.9× 10−4 +3.6×10−3

−3.6×10−3 +5.5× 10−3 +5.8× 10−3 +5.1× 10−3

15.5–16.5 −0.056 ±4.5× 10−4 +3.2×10−3

−3.3×10−3 +5.7× 10−3 +6.1× 10−3 +5.3× 10−3

16.5–17.5 −0.057 ±5.3× 10−4 +2.4×10−3

−2.7×10−3 +5.9× 10−3 +5.9× 10−3 +5.8× 10−3

17.5–18.5 −0.059 ±6.3× 10−4 +2.7×10−3

−3.0×10−3 +5.7× 10−3 +5.0× 10−3 +6.5× 10−3

18.5–19.5 −0.059 ±7.5× 10−4 +2.5×10−3

−2.7×10−3 +5.1× 10−3 +3.8× 10−3 +6.5× 10−3

19.5–20.5 −0.061 ±9.0× 10−4 +3.0×10−3

−2.8×10−3 +4.8× 10−3 +3.2× 10−3 +6.5× 10−3

20.5–22.5 −0.058 ±8.7× 10−4 +2.7×10−3

−2.2×10−3 +4.5× 10−3 +2.2× 10−3 +6.7× 10−3

22.5–24.5 −0.057 ±1.3× 10−3 +3.4×10−3

−2.3×10−3 +3.8× 10−3 +1.7× 10−3 +6.0× 10−3

24.5–27.5 −0.052 ±2.0× 10−3 +5.3×10−3

−4.5×10−3 +4.5× 10−3 +1.0× 10−3 +8.0× 10−3

27.5–30.5 −0.044 ±4.0× 10−3 +4.4×10−3

−3.7×10−3 +3.2× 10−3 +8.6× 10−4 +5.4× 10−3

Table 2. c1{2} versus Nch from figure 7 (a), pT > 0.1 GeV, |∆η| > 2; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.02 ±3.3× 10−3 +1.0×10−2

−1.1×10−2 +1.3× 10−2 +1.3× 10−2 +1.3× 10−2

2.5–3.5 +0.00 ±1.7× 10−3 +6.1×10−3

−6.4×10−3 +9.9× 10−3 +9.5× 10−3 +1.0× 10−2

3.5–4.5 −0.01 ±1.1× 10−3 +3.6×10−3

−3.6×10−3 +5.9× 10−3 +4.9× 10−3 +7.0× 10−3

4.5–5.5 −0.03 ±8.6× 10−4 +3.5×10−3

−3.5×10−3 +4.6× 10−3 +4.5× 10−3 +4.7× 10−3

5.5–6.5 −0.05 ±7.3× 10−4 +3.4×10−3

−3.5×10−3 +3.9× 10−3 +3.9× 10−3 +3.9× 10−3

6.5–7.5 −0.07 ±6.6× 10−4 +2.2×10−3

−2.6×10−3 +4.5× 10−3 +4.5× 10−3 +4.5× 10−3

7.5–8.5 −0.09 ±6.3× 10−4 +2.3×10−3

−2.6×10−3 +5.1× 10−3 +4.9× 10−3 +5.3× 10−3

8.5–9.5 −0.10 ±6.2× 10−4 +2.3×10−3

−2.6×10−3 +4.9× 10−3 +4.1× 10−3 +5.6× 10−3

9.5–10.5 −0.11 ±6.4× 10−4 +2.6×10−3

−2.8×10−3 +4.4× 10−3 +3.1× 10−3 +5.7× 10−3

10.5–11.5 −0.12 ±6.7× 10−4 +2.5×10−3

−2.6×10−3 +3.7× 10−3 +2.1× 10−3 +5.3× 10−3

11.5–12.5 −0.13 ±7.2× 10−4 +3.0×10−3

−3.0×10−3 +3.4× 10−3 +1.6× 10−3 +5.2× 10−3

12.5–13.5 −0.13 ±7.9× 10−4 +4.0×10−3

−4.0×10−3 +3.0× 10−3 +1.1× 10−3 +5.0× 10−3

13.5–14.5 −0.14 ±8.8× 10−4 +3.0×10−3

−3.2×10−3 +3.1× 10−3 +7.7× 10−4 +5.4× 10−3

14.5–15.5 −0.14 ±1.0× 10−3 +3.3×10−3

−3.4×10−3 +3.4× 10−3 +1.1× 10−3 +5.7× 10−3

15.5–16.5 −0.14 ±1.1× 10−3 +3.0×10−3

−3.4×10−3 +3.8× 10−3 +1.4× 10−3 +6.2× 10−3

16.5–17.5 −0.15 ±1.3× 10−3 +3.2×10−3

−3.6×10−3 +2.8× 10−3 +7.5× 10−4 +4.9× 10−3

17.5–18.5 −0.14 ±1.6× 10−3 +3.1×10−3

−3.8×10−3 +1.6× 10−3 −1.4× 10−3 +4.6× 10−3

18.5–19.5 −0.14 ±1.9× 10−3 +4.5×10−3

−4.8×10−3 +9.5× 10−5 −2.5× 10−3 +2.7× 10−3

19.5–20.5 −0.14 ±2.2× 10−3 +6.6×10−3

−6.4×10−3 −6.6× 10−4 −3.2× 10−3 +1.8× 10−3

20.5–22.5 −0.14 ±2.2× 10−3 +7.4×10−3

−6.0×10−3 −6.6× 10−4 −2.6× 10−3 +1.2× 10−3

22.5–24.5 −0.13 ±3.3× 10−3 +1.1×10−2

−8.6×10−3 −3.4× 10−3 −7.7× 10−3 +9.8× 10−4

24.5–27.5 −0.14 ±4.9× 10−3 +1.0×10−2

−9.1×10−3 −5.3× 10−3 −1.0× 10−2 −4.8× 10−4

27.5–30.5 −0.09 ±9.7× 10−3 +7.6×10−3

−7.2×10−3 −5.3× 10−3 −9.1× 10−3 −1.4× 10−3

Table 3. c1{2} versus Nch from figure 7 (a) and figure 10 (c), pT > 0.5 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.146 ±2.7× 10−4 +1.4×10−2

−1.4×10−2 +9.7× 10−3 +1.2× 10−2 +7.0× 10−3

2.5–3.5 +0.113 ±1.7× 10−4 +9.2×10−3

−8.9×10−3 +5.2× 10−3 +6.5× 10−3 +3.9× 10−3

3.5–4.5 +0.090 ±1.2× 10−4 +4.5×10−3

−3.8×10−3 +7.7× 10−4 +6.6× 10−4 +8.8× 10−4

4.5–5.5 +0.071 ±1.0× 10−4 +3.1×10−3

−2.3×10−3 −7.6× 10−4 −8.3× 10−4 −6.8× 10−4

5.5–6.5 +0.058 ±9.2× 10−5 +2.5×10−3

−1.7×10−3 −8.0× 10−4 −1.0× 10−3 −5.6× 10−4

6.5–7.5 +0.051 ±8.6× 10−5 +2.1×10−3

−1.5×10−3 −1.6× 10−3 −1.9× 10−3 −1.3× 10−3

7.5–8.5 +0.048 ±8.3× 10−5 +1.9×10−3

−1.5×10−3 −2.6× 10−3 −2.9× 10−3 −2.3× 10−3

8.5–9.5 +0.045 ±8.3× 10−5 +1.7×10−3

−1.3×10−3 −3.3× 10−3 −3.6× 10−3 −3.1× 10−3

9.5–10.5 +0.042 ±8.6× 10−5 +1.6×10−3

−1.2×10−3 −3.3× 10−3 −3.7× 10−3 −2.9× 10−3

10.5–11.5 +0.041 ±9.0× 10−5 +1.5×10−3

−1.1×10−3 −3.4× 10−3 −3.9× 10−3 −2.9× 10−3

11.5–12.5 +0.041 ±9.7× 10−5 +1.5×10−3

−1.2×10−3 −3.7× 10−3 −4.2× 10−3 −3.1× 10−3

12.5–13.5 +0.042 ±1.1× 10−4 +1.6×10−3

−1.2×10−3 −4.1× 10−3 −4.7× 10−3 −3.4× 10−3

13.5–14.5 +0.042 ±1.2× 10−4 +1.6×10−3

−1.3×10−3 −4.5× 10−3 −5.2× 10−3 −3.7× 10−3

14.5–15.5 +0.043 ±1.4× 10−4 +1.8×10−3

−1.5×10−3 −4.4× 10−3 −5.1× 10−3 −3.7× 10−3

15.5–16.5 +0.043 ±1.6× 10−4 +1.8×10−3

−1.5×10−3 −4.4× 10−3 −5.0× 10−3 −3.7× 10−3

16.5–17.5 +0.043 ±1.8× 10−4 +1.7×10−3

−1.5×10−3 −4.5× 10−3 −5.2× 10−3 −3.7× 10−3

17.5–18.5 +0.045 ±2.1× 10−4 +1.9×10−3

−1.8×10−3 −4.8× 10−3 −5.8× 10−3 −3.7× 10−3

18.5–19.5 +0.045 ±2.5× 10−4 +1.9×10−3

−1.9×10−3 −4.5× 10−3 −5.4× 10−3 −3.5× 10−3

19.5–20.5 +0.045 ±3.0× 10−4 +2.0×10−3

−1.9×10−3 −3.1× 10−3 −3.5× 10−3 −2.8× 10−3

20.5–22.5 +0.042 ±2.8× 10−4 +1.8×10−3

−2.0×10−3 −1.8× 10−3 −1.5× 10−3 −2.1× 10−3

22.5–24.5 +0.046 ±4.2× 10−4 +1.7×10−3

−2.6×10−3 +1.3× 10−3 +1.9× 10−3 +6.8× 10−4

24.5–27.5 +0.043 ±5.9× 10−4 +2.5×10−3

−4.2×10−3 +2.9× 10−3 +4.1× 10−3 +1.8× 10−3

27.5–30.5 +0.047 ±1.2× 10−3 +2.1×10−3

−3.0×10−3 +2.9× 10−3 +4.1× 10−3 +1.8× 10−3

Table 4. c2{2} versus Nch from figure 7 (b) and figure 10 (b), pT > 0.1 GeV, no |∆η| cut; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.0120 ±1.4× 10−3 +5.7×10−3

−5.7×10−3 −3.6× 10−3 −4.0× 10−3 −3.2× 10−3

2.5–3.5 +0.0034 ±6.9× 10−4 +3.5×10−3

−3.5×10−3 +2.0× 10−4 +2.5× 10−4 +1.5× 10−4

3.5–4.5 +0.0006 ±4.5× 10−4 +1.5×10−3

−1.5×10−3 +5.5× 10−4 +6.8× 10−4 +4.3× 10−4

4.5–5.5 −0.0007 ±3.4× 10−4 +1.0×10−3

−9.7×10−4 +1.1× 10−3 +1.2× 10−3 +1.0× 10−3

5.5–6.5 −0.0004 ±2.9× 10−4 +1.3×10−3

−1.2×10−3 +1.6× 10−3 +1.6× 10−3 +1.6× 10−3

6.5–7.5 −0.0004 ±2.6× 10−4 +1.5×10−3

−1.4×10−3 +1.7× 10−3 +1.7× 10−3 +1.8× 10−3

7.5–8.5 +0.0007 ±2.5× 10−4 +1.8×10−3

−1.7×10−3 +1.6× 10−3 +1.6× 10−3 +1.6× 10−3

8.5–9.5 +0.0014 ±2.4× 10−4 +1.8×10−3

−1.7×10−3 +1.4× 10−3 +1.5× 10−3 +1.3× 10−3

9.5–10.5 +0.0016 ±2.5× 10−4 +1.5×10−3

−1.4×10−3 +1.2× 10−3 +1.2× 10−3 +1.2× 10−3

10.5–11.5 +0.0027 ±2.6× 10−4 +1.2×10−3

−9.5×10−4 +1.2× 10−3 +1.2× 10−3 +1.1× 10−3

11.5–12.5 +0.0031 ±2.8× 10−4 +1.3×10−3

−1.2×10−3 +9.9× 10−4 +1.1× 10−3 +8.8× 10−4

12.5–13.5 +0.0036 ±3.1× 10−4 +1.1×10−3

−9.6×10−4 +9.5× 10−4 +1.0× 10−3 +8.9× 10−4

13.5–14.5 +0.0037 ±3.4× 10−4 +1.1×10−3

−9.6×10−4 +6.5× 10−4 +5.1× 10−4 +7.9× 10−4

14.5–15.5 +0.0043 ±3.9× 10−4 +8.8×10−4

−8.5×10−4 +8.2× 10−4 +7.6× 10−4 +8.7× 10−4

15.5–16.5 +0.0038 ±4.5× 10−4 +1.0×10−3

−1.0×10−3 +7.8× 10−4 +9.0× 10−4 +6.6× 10−4

16.5–17.5 +0.0047 ±5.3× 10−4 +1.9×10−3

−1.9×10−3 +6.7× 10−4 +9.3× 10−4 +4.1× 10−4

17.5–18.5 +0.0044 ±6.3× 10−4 +1.7×10−3

−1.7×10−3 +5.0× 10−4 +4.6× 10−4 +5.4× 10−4

18.5–19.5 +0.0041 ±7.5× 10−4 +1.7×10−3

−1.7×10−3 +2.7× 10−4 +1.4× 10−4 +4.1× 10−4

19.5–20.5 +0.0043 ±9.0× 10−4 +2.7×10−3

−2.6×10−3 +9.7× 10−4 +7.7× 10−4 +1.2× 10−3

20.5–22.5 +0.0024 ±8.7× 10−4 +4.3×10−3

−4.4×10−3 +7.0× 10−4 +6.3× 10−4 +7.6× 10−4

22.5–24.5 +0.0077 ±1.3× 10−3 +7.6×10−3

−7.7×10−3 +1.9× 10−3 +1.9× 10−3 +1.9× 10−3

24.5–27.5 +0.0052 ±2.0× 10−3 +7.0×10−3

−6.9×10−3 +1.2× 10−3 +1.2× 10−3 +1.1× 10−3

27.5–30.5 +0.0077 ±4.0× 10−3 +5.4×10−3

−4.9×10−3 +1.2× 10−3 +1.2× 10−3 +1.1× 10−3

Table 5. c2{2} versus Nch from figure 7 (b), pT > 0.1 GeV, |∆η| > 2; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.013 ±3.3× 10−3 +5.8×10−3

−6.0×10−3 −2.8× 10−3 −1.8× 10−3 −3.8× 10−3

2.5–3.5 +0.005 ±1.7× 10−3 +3.4×10−3

−3.4×10−3 +6.4× 10−5 −5.2× 10−4 +6.4× 10−4

3.5–4.5 +0.003 ±1.1× 10−3 +1.5×10−3

−1.4×10−3 +3.9× 10−4 +1.8× 10−4 +5.9× 10−4

4.5–5.5 +0.005 ±8.6× 10−4 +9.2×10−4

−8.6×10−4 +1.1× 10−3 +8.9× 10−4 +1.3× 10−3

5.5–6.5 +0.005 ±7.3× 10−4 +1.4×10−3

−1.4×10−3 +1.8× 10−3 +1.9× 10−3 +1.8× 10−3

6.5–7.5 +0.008 ±6.6× 10−4 +1.8×10−3

−1.8×10−3 +2.2× 10−3 +2.2× 10−3 +2.1× 10−3

7.5–8.5 +0.011 ±6.3× 10−4 +1.8×10−3

−1.8×10−3 +1.9× 10−3 +2.3× 10−3 +1.6× 10−3

8.5–9.5 +0.015 ±6.2× 10−4 +1.8×10−3

−1.7×10−3 +1.8× 10−3 +2.1× 10−3 +1.5× 10−3

9.5–10.5 +0.017 ±6.4× 10−4 +1.4×10−3

−1.4×10−3 +1.7× 10−3 +2.0× 10−3 +1.4× 10−3

10.5–11.5 +0.018 ±6.7× 10−4 +1.2×10−3

−1.0×10−3 +2.1× 10−3 +2.5× 10−3 +1.8× 10−3

11.5–12.5 +0.021 ±7.2× 10−4 +1.1×10−3

−9.9×10−4 +2.3× 10−3 +2.5× 10−3 +2.0× 10−3

12.5–13.5 +0.023 ±7.9× 10−4 +1.7×10−3

−1.4×10−3 +2.6× 10−3 +2.9× 10−3 +2.3× 10−3

13.5–14.5 +0.023 ±8.8× 10−4 +1.7×10−3

−1.5×10−3 +2.4× 10−3 +2.6× 10−3 +2.2× 10−3

14.5–15.5 +0.025 ±1.0× 10−3 +1.5×10−3

−1.4×10−3 +3.4× 10−3 +4.2× 10−3 +2.6× 10−3

15.5–16.5 +0.024 ±1.2× 10−3 +1.6×10−3

−1.5×10−3 +3.7× 10−3 +5.5× 10−3 +1.8× 10−3

16.5–17.5 +0.024 ±1.3× 10−3 +2.8×10−3

−2.9×10−3 +3.9× 10−3 +6.2× 10−3 +1.6× 10−3

17.5–18.5 +0.023 ±1.6× 10−3 +2.9×10−3

−2.8×10−3 +4.5× 10−3 +6.8× 10−3 +2.1× 10−3

18.5–19.5 +0.019 ±1.9× 10−3 +2.9×10−3

−3.6×10−3 +5.5× 10−3 +7.3× 10−3 +3.8× 10−3

19.5–20.5 +0.018 ±2.3× 10−3 +6.2×10−3

−6.1×10−3 +7.2× 10−3 +1.0× 10−2 +4.3× 10−3

20.5–22.5 +0.016 ±2.2× 10−3 +8.8×10−3

−9.4×10−3 +6.2× 10−3 +9.4× 10−3 +3.1× 10−3

22.5–24.5 +0.023 ±3.3× 10−3 +1.1×10−2

−1.2×10−2 +1.1× 10−2 +1.6× 10−2 +6.7× 10−3

24.5–27.5 +0.021 ±4.9× 10−3 +1.4×10−2

−1.7×10−2 +8.7× 10−3 +1.2× 10−2 +5.8× 10−3

27.5–30.5 −0.005 ±9.9× 10−3 +1.1×10−2

−1.4×10−2 +7.4× 10−3 +9.3× 10−3 +5.5× 10−3

Table 6. c2{2} versus Nch from figure 7 (b) and figure 10 (d), pT > 0.5 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c3{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.061 ±2.7× 10−4 +5.5×10−3

−5.3×10−3 +3.9× 10−3 +4.4× 10−3 +3.4× 10−3

2.5–3.5 +0.046 ±1.7× 10−4 +4.0×10−3

−3.8×10−3 +2.1× 10−3 +2.3× 10−3 +1.8× 10−3

3.5–4.5 +0.037 ±1.2× 10−4 +2.5×10−3

−2.0×10−3 +2.2× 10−4 +1.2× 10−4 +3.1× 10−4

4.5–5.5 +0.029 ±1.0× 10−4 +1.6×10−3

−1.0×10−3 −1.0× 10−3 −1.2× 10−3 −8.2× 10−4

5.5–6.5 +0.024 ±9.2× 10−5 +1.2×10−3

−6.7×10−4 −9.3× 10−4 −1.1× 10−3 −7.7× 10−4

6.5–7.5 +0.021 ±8.6× 10−5 +9.8×10−4

−5.8×10−4 −1.2× 10−3 −1.4× 10−3 −1.1× 10−3

7.5–8.5 +0.019 ±8.3× 10−5 +8.1×10−4

−5.5×10−4 −1.6× 10−3 −1.7× 10−3 −1.4× 10−3

8.5–9.5 +0.017 ±8.3× 10−5 +6.5×10−4

−5.1×10−4 −1.7× 10−3 −1.9× 10−3 −1.6× 10−3

9.5–10.5 +0.015 ±8.6× 10−5 +4.9×10−4

−3.8×10−4 −1.5× 10−3 −1.7× 10−3 −1.4× 10−3

10.5–11.5 +0.014 ±9.0× 10−5 +3.8×10−4

−3.6×10−4 −1.4× 10−3 −1.5× 10−3 −1.3× 10−3

11.5–12.5 +0.013 ±9.7× 10−5 +4.7×10−4

−4.5×10−4 −1.4× 10−3 −1.5× 10−3 −1.3× 10−3

12.5–13.5 +0.013 ±1.1× 10−4 +6.3×10−4

−6.3×10−4 −1.4× 10−3 −1.5× 10−3 −1.4× 10−3

13.5–14.5 +0.013 ±1.2× 10−4 +5.9×10−4

−5.8×10−4 −1.4× 10−3 −1.5× 10−3 −1.3× 10−3

14.5–15.5 +0.012 ±1.4× 10−4 +4.8×10−4

−4.7×10−4 −1.2× 10−3 −1.3× 10−3 −1.1× 10−3

15.5–16.5 +0.012 ±1.5× 10−4 +5.6×10−4

−5.6×10−4 −9.9× 10−4 −1.0× 10−3 −9.5× 10−4

16.5–17.5 +0.012 ±1.8× 10−4 +6.3×10−4

−5.5×10−4 −9.3× 10−4 −1.0× 10−3 −8.5× 10−4

17.5–18.5 +0.012 ±2.1× 10−4 +6.1×10−4

−4.6×10−4 −9.7× 10−4 −9.9× 10−4 −9.4× 10−4

18.5–19.5 +0.012 ±2.5× 10−4 +5.3×10−4

−4.9×10−4 −8.8× 10−4 −9.6× 10−4 −8.1× 10−4

19.5–20.5 +0.012 ±3.0× 10−4 +4.8×10−4

−5.1×10−4 −6.4× 10−4 −6.2× 10−4 −6.6× 10−4

20.5–22.5 +0.011 ±2.8× 10−4 +4.9×10−4

−5.4×10−4 −6.1× 10−4 −4.4× 10−4 −7.7× 10−4

22.5–24.5 +0.012 ±4.2× 10−4 +3.7×10−4

−4.1×10−4 +2.6× 10−4 −7.6× 10−5 +6.0× 10−4

24.5–27.5 +0.011 ±5.9× 10−4 +4.8×10−4

−4.8×10−4 +2.6× 10−4 −5.7× 10−5 +5.8× 10−4

27.5–30.5 +0.012 ±1.2× 10−3 +3.8×10−4

−3.7×10−4 +2.6× 10−4 −5.7× 10−5 +5.8× 10−4

Table 7. c3{2} versus Nch from figure 7 (c), pT > 0.1 GeV, no |∆η| cut; δstat, δsyst and δnc denote

the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c3{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.0024 ±1.4× 10−3 +8.7×10−4

−7.3×10−4 +5.7× 10−5 +9.6× 10−5 +1.8× 10−5

2.5–3.5 −0.0003 ±6.9× 10−4 +5.8×10−4

−5.7×10−4 +5.7× 10−5 +1.2× 10−4 −3.2× 10−6

3.5–4.5 +0.0005 ±4.5× 10−4 +7.6×10−4

−7.9×10−4 +7.6× 10−5 +1.2× 10−4 +3.0× 10−5

4.5–5.5 −0.0010 ±3.4× 10−4 +8.8×10−4

−8.7×10−4 +6.9× 10−5 +8.4× 10−6 +1.3× 10−4

5.5–6.5 −0.0007 ±2.9× 10−4 +8.3×10−4

−8.1×10−4 +2.2× 10−4 +1.5× 10−4 +3.0× 10−4

6.5–7.5 −0.0005 ±2.6× 10−4 +3.8×10−4

−3.8×10−4 +3.1× 10−4 +2.4× 10−4 +3.8× 10−4

7.5–8.5 −0.0011 ±2.5× 10−4 +3.0×10−4

−2.1×10−4 +3.9× 10−4 +4.4× 10−4 +3.3× 10−4

8.5–9.5 −0.0015 ±2.4× 10−4 +4.5×10−4

−3.8×10−4 +3.9× 10−4 +4.5× 10−4 +3.2× 10−4

9.5–10.5 −0.0020 ±2.5× 10−4 +3.3×10−4

−2.6×10−4 +4.9× 10−4 +5.8× 10−4 +4.0× 10−4

10.5–11.5 −0.0018 ±2.6× 10−4 +2.8×10−4

−2.9×10−4 +5.8× 10−4 +6.6× 10−4 +5.0× 10−4

11.5–12.5 −0.0024 ±2.8× 10−4 +5.1×10−4

−5.1×10−4 +4.3× 10−4 +5.1× 10−4 +3.4× 10−4

12.5–13.5 −0.0028 ±3.1× 10−4 +6.1×10−4

−6.2×10−4 +2.8× 10−4 +3.6× 10−4 +2.0× 10−4

13.5–14.5 −0.0019 ±3.4× 10−4 +8.3×10−4

−8.5×10−4 +2.7× 10−4 +2.0× 10−4 +3.3× 10−4

14.5–15.5 −0.0024 ±3.9× 10−4 +1.0×10−3

−1.0×10−3 +4.0× 10−4 +2.7× 10−4 +5.3× 10−4

15.5–16.5 −0.0028 ±4.5× 10−4 +1.4×10−3

−1.5×10−3 +5.4× 10−4 +4.8× 10−4 +6.0× 10−4

16.5–17.5 −0.0029 ±5.3× 10−4 +1.7×10−3

−1.7×10−3 +4.3× 10−4 +5.2× 10−4 +3.5× 10−4

17.5–18.5 −0.0018 ±6.3× 10−4 +1.5×10−3

−1.4×10−3 +4.7× 10−4 +7.2× 10−4 +2.2× 10−4

18.5–19.5 −0.0035 ±7.5× 10−4 +1.6×10−3

−1.5×10−3 +2.6× 10−4 +4.1× 10−4 +1.2× 10−4

19.5–20.5 −0.0008 ±9.0× 10−4 +1.6×10−3

−1.2×10−3 +1.7× 10−4 +2.7× 10−4 +6.6× 10−5

20.5–22.5 −0.0037 ±8.7× 10−4 +1.8×10−3

−1.5×10−3 +4.9× 10−4 +8.5× 10−4 +1.3× 10−4

22.5–24.5 −0.0029 ±1.3× 10−3 +1.6×10−3

−1.5×10−3 +4.9× 10−4 +8.5× 10−4 +1.3× 10−4

24.5–27.5 +0.0009 ±2.0× 10−3 +3.3×10−3

−3.0×10−3 +4.9× 10−4 +8.5× 10−4 +1.3× 10−4

27.5–30.5 +0.0012 ±4.0× 10−3 +2.8×10−3

−2.7×10−3 −0.3× 10−6 −0.3× 10−6 −0.3× 10−6

Table 8. c3{2} versus Nch from figure 7 (c), pT > 0.1 GeV, |∆η| > 2; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c3{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.0045 ±3.3× 10−3 +4.8×10−3

−4.2×10−3 +2.0× 10−4 +7.0× 10−4 −3.1× 10−4

2.5–3.5 +0.0001 ±1.7× 10−3 +3.3×10−3

−3.2×10−3 +9.8× 10−5 +3.5× 10−4 −1.5× 10−4

3.5–4.5 −0.0006 ±1.1× 10−3 +1.4×10−3

−1.6×10−3 +1.7× 10−4 +2.2× 10−4 +1.2× 10−4

4.5–5.5 −0.0004 ±8.6× 10−4 +9.1×10−4

−1.0×10−3 +2.2× 10−4 +3.2× 10−4 +1.1× 10−4

5.5–6.5 −0.0029 ±7.3× 10−4 +5.4×10−4

−5.4×10−4 +5.0× 10−4 +3.0× 10−4 +6.9× 10−4

6.5–7.5 −0.0027 ±6.6× 10−4 +7.3×10−4

−6.0×10−4 +3.8× 10−4 +1.6× 10−4 +6.0× 10−4

7.5–8.5 −0.0034 ±6.3× 10−4 +9.6×10−4

−8.1×10−4 +5.2× 10−4 +4.2× 10−4 +6.3× 10−4

8.5–9.5 −0.0039 ±6.2× 10−4 +1.2×10−3

−1.1×10−3 +3.5× 10−4 +4.4× 10−4 +2.6× 10−4

9.5–10.5 −0.0050 ±6.4× 10−4 +1.0×10−3

−9.9×10−4 +5.4× 10−4 +5.4× 10−4 +5.4× 10−4

10.5–11.5 −0.0057 ±6.7× 10−4 +6.5×10−4

−7.0×10−4 +6.2× 10−4 +2.3× 10−4 +1.0× 10−3

11.5–12.5 −0.0070 ±7.2× 10−4 +1.5×10−3

−1.5×10−3 +5.1× 10−4 +2.4× 10−4 +7.9× 10−4

12.5–13.5 −0.0082 ±7.9× 10−4 +2.4×10−3

−2.4×10−3 +2.7× 10−4 +5.0× 10−5 +4.8× 10−4

13.5–14.5 −0.0074 ±8.8× 10−4 +2.6×10−3

−2.7×10−3 +4.4× 10−4 +2.2× 10−4 +6.7× 10−4

14.5–15.5 −0.0087 ±1.0× 10−3 +3.8×10−3

−3.8×10−3 +5.4× 10−4 −1.2× 10−4 +1.2× 10−3

15.5–16.5 −0.0095 ±1.2× 10−3 +5.7×10−3

−5.7×10−3 +5.4× 10−4 −1.6× 10−4 +1.2× 10−3

16.5–17.5 −0.0083 ±1.3× 10−3 +6.4×10−3

−6.4×10−3 +9.6× 10−5 −3.8× 10−4 +5.7× 10−4

17.5–18.5 −0.0067 ±1.6× 10−3 +4.8×10−3

−4.6×10−3 −9.6× 10−5 −2.9× 10−4 +1.0× 10−4

18.5–19.5 −0.0096 ±1.9× 10−3 +3.7×10−3

−3.3×10−3 −4.3× 10−4 −4.2× 10−4 −4.3× 10−4

19.5–20.5 −0.0054 ±2.3× 10−3 +3.4×10−3

−3.3×10−3 −3.7× 10−4 −3.7× 10−4 −3.7× 10−4

20.5–22.5 −0.0035 ±2.2× 10−3 +3.3×10−3

−3.5×10−3 +1.4× 10−4 +3.0× 10−4 −2.8× 10−5

22.5–24.5 −0.0058 ±3.3× 10−3 +5.7×10−3

−6.2×10−3 +1.4× 10−4 +3.3× 10−4 −5.4× 10−5

24.5–27.5 −0.0021 ±5.0× 10−3 +1.4×10−2

−1.5×10−2 +6.1× 10−4 +3.7× 10−4 +8.4× 10−4

27.5–30.5 −0.0163 ±9.8× 10−3 +1.4×10−2

−1.4×10−2 +4.7× 10−4 +2.3× 10−4 +7.0× 10−4

Table 9. c3{2} versus Nch from figure 7 (c), pT > 0.5 GeV, |∆η| > 2; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c4{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.025 ±2.7× 10−4 +3.3×10−3

−3.2×10−3 +2.2× 10−3 +2.0× 10−3 +2.4× 10−3

2.5–3.5 +0.018 ±1.7× 10−4 +2.4×10−3

−2.2×10−3 +1.3× 10−3 +1.2× 10−3 +1.4× 10−3

3.5–4.5 +0.015 ±1.2× 10−4 +1.4×10−3

−1.0×10−3 +4.8× 10−4 +4.4× 10−4 +5.2× 10−4

4.5–5.5 +0.012 ±1.0× 10−4 +9.7×10−4

−5.2×10−4 +2.6× 10−4 +2.2× 10−4 +2.9× 10−4

5.5–6.5 +0.010 ±9.1× 10−5 +7.0×10−4

−3.3×10−4 +2.6× 10−4 +2.3× 10−4 +2.9× 10−4

6.5–7.5 +0.009 ±8.6× 10−5 +5.4×10−4

−3.3×10−4 +1.8× 10−4 +1.8× 10−4 +1.8× 10−4

7.5–8.5 +0.009 ±8.3× 10−5 +4.9×10−4

−3.4×10−4 −7.1× 10−4 −1.1× 10−3 −3.3× 10−4

8.5–9.5 +0.008 ±8.3× 10−5 +4.2×10−4

−3.2×10−4 −1.0× 10−3 −1.1× 10−3 −1.0× 10−3

9.5–10.5 +0.008 ±8.6× 10−5 +2.9×10−4

−2.3×10−4 −9.4× 10−4 −9.7× 10−4 −9.1× 10−4

10.5–11.5 +0.007 ±9.0× 10−5 +2.4×10−4

−1.9×10−4 −8.5× 10−4 −9.1× 10−4 −8.0× 10−4

11.5–12.5 +0.007 ±9.7× 10−5 +2.1×10−4

−1.9×10−4 −8.7× 10−4 −9.6× 10−4 −7.8× 10−4

12.5–13.5 +0.007 ±1.1× 10−4 +2.1×10−4

−1.8×10−4 −1.0× 10−3 −1.2× 10−3 −9.0× 10−4

13.5–14.5 +0.008 ±1.2× 10−4 +3.3×10−4

−3.3×10−4 −1.1× 10−3 −1.3× 10−3 −8.9× 10−4

14.5–15.5 +0.008 ±1.3× 10−4 +4.3×10−4

−4.3×10−4 −9.3× 10−4 −1.1× 10−3 −7.9× 10−4

15.5–16.5 +0.007 ±1.5× 10−4 +4.7×10−4

−4.5×10−4 −7.4× 10−4 −9.1× 10−4 −5.7× 10−4

16.5–17.5 +0.007 ±1.8× 10−4 +4.0×10−4

−3.8×10−4 −7.4× 10−4 −8.6× 10−4 −6.2× 10−4

17.5–18.5 +0.008 ±2.1× 10−4 +3.1×10−4

−4.4×10−4 −8.3× 10−4 −9.8× 10−4 −6.8× 10−4

18.5–19.5 +0.009 ±2.5× 10−4 +3.3×10−4

−5.4×10−4 −6.3× 10−4 −6.0× 10−4 −6.5× 10−4

19.5–20.5 +0.008 ±3.0× 10−4 +2.4×10−4

−5.5×10−4 +9.1× 10−6 +2.9× 10−4 −2.7× 10−4

20.5–22.5 +0.008 ±2.8× 10−4 +3.4×10−4

−7.8×10−4 +6.0× 10−5 +2.1× 10−4 −9.1× 10−5

22.5–24.5 +0.008 ±4.2× 10−4 +3.2×10−4

−9.9×10−4 +2.1× 10−4 +4.8× 10−4 −6.5× 10−5

24.5–27.5 +0.009 ±5.9× 10−4 +7.8×10−4

−2.0×10−3 +2.0× 10−4 +4.2× 10−4 −1.7× 10−5

27.5–30.5 +0.011 ±1.2× 10−3 +6.5×10−4

−1.6×10−3 +1.5× 10−4 +3.5× 10−4 −5.3× 10−5

Table 10. c4{2} versus Nch from figure 7 (d), pT > 0.1 GeV, no |∆η| cut; δstat, δsyst and δnc denote

the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c4{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.0022 ±1.3× 10−3 +9.2×10−4

−5.3×10−4 −1.5× 10−4 −5.7× 10−5 −2.4× 10−4

2.5–3.5 +0.0003 ±6.9× 10−4 +7.2×10−4

−6.1×10−4 +1.9× 10−4 +9.3× 10−5 +2.8× 10−4

3.5–4.5 +0.0005 ±4.5× 10−4 +6.8×10−4

−6.6×10−4 +2.8× 10−4 +2.0× 10−4 +3.6× 10−4

4.5–5.5 −0.0009 ±3.4× 10−4 +5.4×10−4

−5.2×10−4 +3.6× 10−4 +2.9× 10−4 +4.2× 10−4

5.5–6.5 −0.0006 ±2.9× 10−4 +3.2×10−4

−2.9×10−4 +2.2× 10−4 +1.9× 10−4 +2.6× 10−4

6.5–7.5 −0.0007 ±2.6× 10−4 +1.5×10−4

−1.5×10−4 +2.1× 10−4 +2.0× 10−4 +2.2× 10−4

7.5–8.5 −0.0013 ±2.5× 10−4 +3.6×10−4

−3.5×10−4 +2.0× 10−4 +1.7× 10−4 +2.2× 10−4

8.5–9.5 −0.0009 ±2.4× 10−4 +4.9×10−4

−4.7×10−4 +2.0× 10−4 +2.8× 10−4 +1.2× 10−4

9.5–10.5 −0.0004 ±2.5× 10−4 +5.4×10−4

−5.3×10−4 +1.3× 10−4 +1.6× 10−4 +1.0× 10−4

10.5–11.5 −0.0005 ±2.6× 10−4 +5.5×10−4

−5.7×10−4 +1.9× 10−4 +2.5× 10−4 +1.4× 10−4

11.5–12.5 −0.0009 ±2.8× 10−4 +4.4×10−4

−5.7×10−4 +1.4× 10−4 +1.3× 10−4 +1.5× 10−4

12.5–13.5 −0.0001 ±3.1× 10−4 +7.0×10−4

−7.5×10−4 +1.8× 10−4 +2.2× 10−4 +1.4× 10−4

13.5–14.5 −0.0010 ±3.4× 10−4 +4.0×10−4

−5.1×10−4 +5.9× 10−5 +6.9× 10−5 +4.8× 10−5

14.5–15.5 −0.0001 ±3.9× 10−4 +4.2×10−4

−4.3×10−4 +5.9× 10−5 +1.0× 10−4 +1.4× 10−5

15.5–16.5 −0.0007 ±4.5× 10−4 +2.1×10−4

−2.3×10−4 +0.0× 10−6 −5.2× 10−5 +5.2× 10−5

16.5–17.5 +0.0002 ±5.3× 10−4 +2.7×10−4

−2.6×10−4 +0.0× 10−6 −5.2× 10−5 +5.2× 10−5

17.5–18.5 +0.0002 ±6.3× 10−4 +4.2×10−4

−6.0×10−4 −7.5× 10−5 −1.5× 10−4 −3.5× 10−6

18.5–19.5 +0.0002 ±7.5× 10−4 +1.1×10−3

−1.1×10−3 −7.6× 10−5 −8.5× 10−5 −6.7× 10−5

19.5–20.5 −0.0010 ±9.0× 10−4 +1.1×10−3

−1.2×10−3 −7.6× 10−5 −8.5× 10−5 −6.7× 10−5

20.5–22.5 +0.0009 ±8.7× 10−4 +1.4×10−3

−1.4×10−3 −0.3× 10−6 −0.3× 10−6 −0.3× 10−6

22.5–24.5 +0.0006 ±1.3× 10−3 +2.5×10−3

−2.5×10−3 +3.7× 10−4 +5.4× 10−4 +2.0× 10−4

24.5–27.5 +0.0024 ±2.0× 10−3 +3.3×10−3

−3.3×10−3 +3.7× 10−4 +5.4× 10−4 +2.0× 10−4

27.5–30.5 +0.0039 ±4.0× 10−3 +2.7×10−3

−2.7×10−3 +3.7× 10−4 +5.4× 10−4 +2.0× 10−4

Table 11. c4{2} versus Nch from figure 7 (d), pT > 0.1 GeV, |∆η| > 2; δstat, δsyst and δnc denote

the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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Nch c4{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

1.5–2.5 +0.0012 ±3.3× 10−3 +3.3×10−3

−2.8×10−3 +2.0× 10−4 −5.1× 10−4 +9.1× 10−4

2.5–3.5 −0.0002 ±1.7× 10−3 +2.1×10−3

−1.8×10−3 +2.0× 10−4 −1.0× 10−4 +5.1× 10−4

3.5–4.5 −0.0015 ±1.1× 10−3 +7.8×10−4

−7.3×10−4 +4.4× 10−4 +5.0× 10−4 +3.7× 10−4

4.5–5.5 −0.0025 ±8.6× 10−4 +8.8×10−4

−8.1×10−4 +7.2× 10−4 +7.7× 10−4 +6.7× 10−4

5.5–6.5 −0.0012 ±7.3× 10−4 +8.0×10−4

−7.3×10−4 +9.0× 10−4 +7.6× 10−4 +1.0× 10−3

6.5–7.5 −0.0026 ±6.6× 10−4 +5.8×10−4

−5.3×10−4 +8.7× 10−4 +9.3× 10−4 +8.1× 10−4

7.5–8.5 −0.0026 ±6.3× 10−4 +5.3×10−4

−5.4×10−4 +9.8× 10−4 +1.2× 10−3 +7.5× 10−4

8.5–9.5 −0.0020 ±6.2× 10−4 +4.1×10−4

−4.1×10−4 +1.1× 10−3 +1.3× 10−3 +9.1× 10−4

9.5–10.5 −0.0012 ±6.4× 10−4 +4.9×10−4

−5.0×10−4 +1.0× 10−3 +1.0× 10−3 +1.0× 10−3

10.5–11.5 −0.0011 ±6.7× 10−4 +1.1×10−3

−1.1×10−3 +9.7× 10−4 +1.0× 10−3 +9.3× 10−4

11.5–12.5 −0.0017 ±7.2× 10−4 +1.3×10−3

−1.3×10−3 +1.0× 10−3 +1.1× 10−3 +9.4× 10−4

12.5–13.5 +0.0018 ±7.9× 10−4 +2.0×10−3

−2.0×10−3 +1.1× 10−3 +1.1× 10−3 +1.1× 10−3

13.5–14.5 −0.0023 ±8.8× 10−4 +1.5×10−3

−1.5×10−3 +9.1× 10−4 +6.9× 10−4 +1.1× 10−3

14.5–15.5 −0.0010 ±1.0× 10−3 +1.5×10−3

−1.4×10−3 +6.5× 10−4 +6.7× 10−4 +6.3× 10−4

15.5–16.5 −0.0029 ±1.2× 10−3 +9.5×10−4

−1.0×10−3 +4.4× 10−4 +3.3× 10−4 +5.5× 10−4

16.5–17.5 −0.0018 ±1.3× 10−3 +2.1×10−3

−2.1×10−3 +2.7× 10−4 +2.5× 10−4 +2.9× 10−4

17.5–18.5 +0.0013 ±1.6× 10−3 +2.5×10−3

−2.7×10−3 +2.1× 10−4 +9.1× 10−5 +3.3× 10−4

18.5–19.5 +0.0029 ±1.9× 10−3 +2.2×10−3

−2.4×10−3 +1.3× 10−4 +3.2× 10−4 −7.0× 10−5

19.5–20.5 +0.0005 ±2.3× 10−3 +1.6×10−3

−1.8×10−3 +7.4× 10−4 +1.6× 10−3 −1.3× 10−4

20.5–22.5 +0.0009 ±2.2× 10−3 +1.2×10−3

−1.5×10−3 +6.1× 10−4 +1.5× 10−3 −2.6× 10−4

22.5–24.5 +0.0025 ±3.3× 10−3 +2.5×10−3

−4.2×10−3 +1.4× 10−3 +2.7× 10−3 +2.0× 10−4

24.5–27.5 −0.0042 ±5.0× 10−3 +6.2×10−3

−8.9×10−3 +8.3× 10−4 +1.2× 10−3 +4.6× 10−4

27.5–30.5 +0.0070 ±9.8× 10−3 +6.0×10−3

−8.7×10−3 +8.3× 10−4 +1.2× 10−3 +4.6× 10−4

Table 12. c4{2} versus Nch from figure 7 (d), pT > 0.5 GeV, |∆η| > 2; δstat, δsyst and δnc denote

the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.14 ±1.9× 10−4 +3.6×10−3

−4.1×10−3 −1.1× 10−2 −1.1× 10−2 −1.1× 10−2

0.2–0.4 +0.10 ±2.0× 10−4 +2.4×10−3

−3.0×10−3 −7.2× 10−3 −7.0× 10−3 −7.3× 10−3

0.4–0.6 +0.07 ±2.1× 10−4 +1.4×10−3

−2.1×10−3 −2.9× 10−3 −2.7× 10−3 −3.1× 10−3

0.6–0.8 +0.04 ±2.2× 10−4 +1.1×10−3

−1.7×10−3 +7.0× 10−4 +8.4× 10−4 +5.5× 10−4

0.8–1 +0.01 ±2.4× 10−4 +1.6×10−3

−1.8×10−3 +9.0× 10−4 +1.2× 10−3 +5.7× 10−4

1–1.2 −0.01 ±2.5× 10−4 +2.4×10−3

−2.4×10−3 +1.7× 10−3 +2.0× 10−3 +1.3× 10−3

1.2–1.4 −0.02 ±2.7× 10−4 +2.7×10−3

−2.7×10−3 +2.3× 10−3 +2.6× 10−3 +2.0× 10−3

1.4–1.6 −0.04 ±2.9× 10−4 +2.9×10−3

−2.9×10−3 +3.7× 10−3 +3.9× 10−3 +3.6× 10−3

1.6–1.8 −0.05 ±3.1× 10−4 +3.2×10−3

−3.2×10−3 +4.6× 10−3 +4.7× 10−3 +4.6× 10−3

1.8–2 −0.05 ±3.4× 10−4 +3.3×10−3

−3.4×10−3 +5.0× 10−3 +5.0× 10−3 +5.1× 10−3

2–2.2 −0.06 ±3.8× 10−4 +3.2×10−3

−3.4×10−3 +5.2× 10−3 +4.9× 10−3 +5.4× 10−3

2.2–2.4 −0.06 ±4.3× 10−4 +3.0×10−3

−3.1×10−3 +5.2× 10−3 +4.9× 10−3 +5.5× 10−3

2.4–2.6 −0.06 ±4.9× 10−4 +2.9×10−3

−3.0×10−3 +5.3× 10−3 +5.0× 10−3 +5.5× 10−3

2.6–2.8 −0.06 ±5.9× 10−4 +2.8×10−3

−2.9×10−3 +5.5× 10−3 +5.4× 10−3 +5.6× 10−3

2.8–3 −0.06 ±7.3× 10−4 +2.3×10−3

−2.3×10−3 +5.6× 10−3 +5.5× 10−3 +5.7× 10−3

3–3.2 −0.05 ±9.8× 10−4 +1.8×10−3

−1.6×10−3 +5.6× 10−3 +5.4× 10−3 +5.7× 10−3

3.2–3.5 −0.05 ±1.5× 10−3 +1.2×10−3

−7.6×10−4 +3.6× 10−3 +3.5× 10−3 +3.7× 10−3

Table 13. c1{2} versus |∆η| from figure 8 (a) and figure 11 (a), pT > 0.1 GeV; δstat, δsyst and δnc
denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.28 ±4.3× 10−4 +2.5×10−3

−3.8×10−3 +1.1× 10−2 +1.0× 10−2 +1.2× 10−2

0.2–0.4 +0.21 ±4.6× 10−4 +3.3×10−3

−4.2×10−3 +1.1× 10−2 +9.7× 10−3 +1.2× 10−2

0.4–0.6 +0.12 ±5.0× 10−4 +3.9×10−3

−4.5×10−3 +9.7× 10−3 +8.2× 10−3 +1.1× 10−2

0.6–0.8 +0.04 ±5.4× 10−4 +4.0×10−3

−4.2×10−3 +9.0× 10−3 +6.8× 10−3 +1.1× 10−2

0.8–1 −0.03 ±5.8× 10−4 +3.8×10−3

−3.9×10−3 +7.2× 10−3 +4.6× 10−3 +9.9× 10−3

1–1.2 −0.08 ±6.2× 10−4 +3.9×10−3

−3.9×10−3 +5.8× 10−3 +2.9× 10−3 +8.8× 10−3

1.2–1.4 −0.11 ±6.6× 10−4 +3.7×10−3

−3.7×10−3 +3.9× 10−3 +8.1× 10−4 +7.0× 10−3

1.4–1.6 −0.13 ±7.0× 10−4 +3.4×10−3

−3.5×10−3 +4.5× 10−3 +1.3× 10−3 +7.7× 10−3

1.6–1.8 −0.14 ±7.6× 10−4 +3.4×10−3

−3.5×10−3 +3.8× 10−3 +8.4× 10−4 +6.7× 10−3

1.8–2 −0.15 ±8.4× 10−4 +2.8×10−3

−3.0×10−3 +2.9× 10−3 −1.1× 10−4 +6.0× 10−3

2–2.2 −0.15 ±9.3× 10−4 +2.1×10−3

−2.7×10−3 +1.3× 10−3 −1.8× 10−3 +4.4× 10−3

2.2–2.4 −0.15 ±1.1× 10−3 +1.4×10−3

−1.7×10−3 +7.9× 10−4 −1.8× 10−3 +3.4× 10−3

2.4–2.6 −0.14 ±1.2× 10−3 +1.2×10−3

−1.6×10−3 +5.3× 10−4 −1.0× 10−3 +2.1× 10−3

2.6–2.8 −0.13 ±1.5× 10−3 +1.0×10−3

−1.7×10−3 +1.2× 10−4 −5.0× 10−4 +7.5× 10−4

2.8–3 −0.13 ±1.9× 10−3 +1.1×10−3

−1.4×10−3 +3.8× 10−4 +2.7× 10−4 +5.0× 10−4

3–3.2 −0.12 ±2.6× 10−3 +1.8×10−3

−2.9×10−3 +5.3× 10−4 +4.6× 10−4 +5.9× 10−4

3.2–3.5 −0.10 ±4.0× 10−3 +1.6×10−3

−2.1×10−3 +5.3× 10−4 +6.4× 10−4 +4.1× 10−4

Table 14. c1{2} versus |∆η| from figure 8 (a) and figure 11 (c), pT > 0.5 GeV; δstat, δsyst and δnc
denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.101 ±1.9× 10−4 +4.0×10−3

−3.9×10−3 −1.0× 10−2 −1.0× 10−2 −9.8× 10−3

0.2–0.4 +0.076 ±2.0× 10−4 +3.2×10−3

−3.1×10−3 −6.7× 10−3 −7.1× 10−3 −6.4× 10−3

0.4–0.6 +0.057 ±2.1× 10−4 +2.2×10−3

−2.1×10−3 −3.3× 10−3 −3.7× 10−3 −2.9× 10−3

0.6–0.8 +0.043 ±2.2× 10−4 +1.6×10−3

−1.4×10−3 −2.5× 10−3 −2.9× 10−3 −2.0× 10−3

0.8–1 +0.031 ±2.3× 10−4 +1.0×10−3

−8.1×10−4 −2.1× 10−3 −2.5× 10−3 −1.7× 10−3

1–1.2 +0.024 ±2.5× 10−4 +6.2×10−4

−4.8×10−4 −1.6× 10−3 −2.1× 10−3 −1.1× 10−3

1.2–1.4 +0.019 ±2.7× 10−4 +5.2×10−4

−3.6×10−4 −1.3× 10−3 −1.8× 10−3 −8.7× 10−4

1.4–1.6 +0.015 ±2.9× 10−4 +5.1×10−4

−3.4×10−4 −7.3× 10−4 −1.1× 10−3 −3.5× 10−4

1.6–1.8 +0.012 ±3.1× 10−4 +6.8×10−4

−5.1×10−4 +2.8× 10−5 −2.0× 10−4 +2.6× 10−4

1.8–2 +0.010 ±3.4× 10−4 +9.7×10−4

−9.1×10−4 +2.8× 10−5 −6.3× 10−5 +1.2× 10−4

2–2.2 +0.008 ±3.8× 10−4 +1.1×10−3

−1.1×10−3 +1.3× 10−4 +1.3× 10−4 +1.4× 10−4

2.2–2.4 +0.006 ±4.3× 10−4 +1.1×10−3

−1.1×10−3 +3.5× 10−4 +4.7× 10−4 +2.3× 10−4

2.4–2.6 +0.002 ±4.9× 10−4 +1.1×10−3

−1.3×10−3 +7.3× 10−4 +7.2× 10−4 +7.4× 10−4

2.6–2.8 +0.003 ±5.9× 10−4 +1.5×10−3

−1.6×10−3 +1.0× 10−3 +1.1× 10−3 +9.9× 10−4

2.8–3 +0.001 ±7.3× 10−4 +1.5×10−3

−1.6×10−3 +1.5× 10−3 +1.4× 10−3 +1.6× 10−3

3–3.2 −0.002 ±9.8× 10−4 +1.9×10−3

−1.9×10−3 +1.8× 10−3 +2.0× 10−3 +1.6× 10−3

3.2–3.5 −0.006 ±1.5× 10−3 +1.2×10−3

−1.2×10−3 +1.4× 10−3 +1.5× 10−3 +1.2× 10−3

Table 15. c2{2} versus |∆η| from figure 8 (b) and figure 12 (a), pT > 0.1 GeV; δstat, δsyst and δnc
denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.273 ±3.9× 10−4 +2.3×10−3

−2.3×10−3 +1.0× 10−2 +1.2× 10−2 +8.5× 10−3

0.2–0.4 +0.228 ±4.2× 10−4 +1.8×10−3

−2.1×10−3 +9.2× 10−3 +1.1× 10−2 +7.4× 10−3

0.4–0.6 +0.175 ±4.6× 10−4 +1.4×10−3

−1.7×10−3 +7.6× 10−3 +9.4× 10−3 +5.8× 10−3

0.6–0.8 +0.128 ±5.1× 10−4 +1.2×10−3

−1.2×10−3 +6.7× 10−3 +8.4× 10−3 +5.0× 10−3

0.8–1 +0.092 ±5.5× 10−4 +8.6×10−4

−6.2×10−4 +6.0× 10−3 +7.7× 10−3 +4.3× 10−3

1–1.2 +0.071 ±6.0× 10−4 +6.4×10−4

−3.0×10−4 +5.7× 10−3 +7.4× 10−3 +3.9× 10−3

1.2–1.4 +0.056 ±6.5× 10−4 +7.2×10−4

−4.5×10−4 +5.0× 10−3 +6.8× 10−3 +3.1× 10−3

1.4–1.6 +0.046 ±7.0× 10−4 +9.9×10−4

−7.9×10−4 +4.9× 10−3 +6.6× 10−3 +3.2× 10−3

1.6–1.8 +0.041 ±7.6× 10−4 +1.0×10−3

−9.3×10−4 +4.8× 10−3 +6.4× 10−3 +3.3× 10−3

1.8–2 +0.035 ±8.4× 10−4 +1.1×10−3

−1.0×10−3 +5.0× 10−3 +6.5× 10−3 +3.4× 10−3

2–2.2 +0.031 ±9.4× 10−4 +7.5×10−4

−6.9×10−4 +5.1× 10−3 +7.1× 10−3 +3.1× 10−3

2.2–2.4 +0.026 ±1.1× 10−3 +7.5×10−4

−8.6×10−4 +5.0× 10−3 +7.3× 10−3 +2.7× 10−3

2.4–2.6 +0.017 ±1.3× 10−3 +8.9×10−4

−1.4×10−3 +4.2× 10−3 +6.5× 10−3 +1.9× 10−3

2.6–2.8 +0.019 ±1.5× 10−3 +9.4×10−4

−2.0×10−3 +4.0× 10−3 +6.1× 10−3 +1.9× 10−3

2.8–3 +0.014 ±1.9× 10−3 +7.4×10−4

−1.6×10−3 +3.6× 10−3 +5.2× 10−3 +2.0× 10−3

3–3.2 +0.007 ±2.6× 10−3 +1.1×10−2

−1.0×10−2 +3.4× 10−3 +4.3× 10−3 +2.6× 10−3

3.2–3.5 −0.000 ±4.0× 10−3 +1.1×10−2

−1.0×10−2 +1.8× 10−3 +1.9× 10−3 +1.6× 10−3

Table 16. c2{2} versus |∆η| from figure 8 (b) and figure 12 (c), pT > 0.5 GeV; δstat, δsyst and δnc
denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c3{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.0477 ±1.9× 10−4 +2.1×10−3

−1.9×10−3 −5.3× 10−3 −5.4× 10−3 −5.2× 10−3

0.2–0.4 +0.0269 ±2.0× 10−4 +1.3×10−3

−1.2×10−3 −2.7× 10−3 −2.7× 10−3 −2.6× 10−3

0.4–0.6 +0.0155 ±2.1× 10−4 +5.1×10−4

−5.1×10−4 −7.2× 10−5 −8.9× 10−6 −1.3× 10−4

0.6–0.8 +0.0071 ±2.2× 10−4 +2.5×10−4

−2.7×10−4 +1.2× 10−5 +1.2× 10−4 −9.4× 10−5

0.8–1 +0.0015 ±2.3× 10−4 +3.3×10−4

−3.7×10−4 +1.2× 10−4 +2.1× 10−4 +3.6× 10−5

1–1.2 −0.0009 ±2.5× 10−4 +5.7×10−4

−5.8×10−4 +2.8× 10−4 +3.3× 10−4 +2.2× 10−4

1.2–1.4 −0.0025 ±2.7× 10−4 +5.9×10−4

−5.9×10−4 +3.8× 10−4 +4.1× 10−4 +3.4× 10−4

1.4–1.6 −0.0029 ±2.9× 10−4 +5.3×10−4

−5.0×10−4 +3.5× 10−4 +2.9× 10−4 +4.2× 10−4

1.6–1.8 −0.0029 ±3.1× 10−4 +5.3×10−4

−5.4×10−4 +2.5× 10−4 +1.6× 10−4 +3.4× 10−4

1.8–2 −0.0026 ±3.4× 10−4 +4.1×10−4

−4.6×10−4 +2.4× 10−4 +8.8× 10−6 +4.7× 10−4

2–2.2 −0.0027 ±3.8× 10−4 +3.3×10−4

−4.0×10−4 +2.1× 10−4 −5.6× 10−5 +4.7× 10−4

2.2–2.4 −0.0029 ±4.3× 10−4 +3.2×10−4

−2.7×10−4 +1.6× 10−4 +7.5× 10−6 +3.2× 10−4

2.4–2.6 −0.0024 ±4.9× 10−4 +4.2×10−4

−3.9×10−4 +2.5× 10−4 +2.2× 10−4 +2.8× 10−4

2.6–2.8 −0.0032 ±5.9× 10−4 +5.3×10−4

−5.4×10−4 +1.9× 10−4 +2.5× 10−4 +1.3× 10−4

2.8–3 −0.0011 ±7.3× 10−4 +6.2×10−4

−6.4×10−4 +2.5× 10−4 +3.6× 10−4 +1.3× 10−4

3–3.2 −0.0023 ±9.8× 10−4 +6.3×10−4

−5.7×10−4 +4.6× 10−4 +8.3× 10−4 +8.8× 10−5

3.2–3.5 −0.0003 ±1.5× 10−3 +5.3×10−4

−4.2×10−4 +4.6× 10−4 +8.3× 10−4 +8.8× 10−5

Table 17. c3{2} versus |∆η| from figure 8 (c), pT > 0.1 GeV; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c3{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.137 ±4.0× 10−4 +1.7×10−3

−1.8×10−3 +7.6× 10−3 +7.6× 10−3 +7.7× 10−3

0.2–0.4 +0.097 ±4.3× 10−4 +1.2×10−3

−1.4×10−3 +5.8× 10−3 +5.8× 10−3 +5.9× 10−3

0.4–0.6 +0.057 ±4.7× 10−4 +7.2×10−4

−1.3×10−3 +3.3× 10−3 +3.1× 10−3 +3.6× 10−3

0.6–0.8 +0.026 ±5.1× 10−4 +7.0×10−4

−1.1×10−3 +1.7× 10−3 +1.2× 10−3 +2.2× 10−3

0.8–1 +0.006 ±5.6× 10−4 +9.3×10−4

−1.2×10−3 +8.3× 10−4 +1.2× 10−4 +1.6× 10−3

1–1.2 −0.004 ±6.0× 10−4 +6.7×10−4

−9.1×10−4 +6.4× 10−4 −1.5× 10−4 +1.4× 10−3

1.2–1.4 −0.009 ±6.5× 10−4 +5.9×10−4

−1.1×10−3 +1.8× 10−4 −4.4× 10−4 +8.0× 10−4

1.4–1.6 −0.009 ±7.0× 10−4 +4.0×10−4

−7.8×10−4 +5.1× 10−5 −3.2× 10−4 +4.2× 10−4

1.6–1.8 −0.011 ±7.6× 10−4 +4.2×10−4

−8.1×10−4 +0.0× 10−6 −2.9× 10−4 +2.9× 10−4

1.8–2 −0.010 ±8.4× 10−4 +4.0×10−4

−3.5×10−4 +0.0× 10−6 −3.4× 10−4 +3.4× 10−4

2–2.2 −0.009 ±9.4× 10−4 +3.4×10−4

−3.2×10−4 +0.0× 10−6 −3.9× 10−4 +3.9× 10−4

2.2–2.4 −0.010 ±1.1× 10−3 +6.4×10−4

−6.0×10−4 +0.0× 10−6 −2.5× 10−4 +2.5× 10−4

2.4–2.6 −0.006 ±1.3× 10−3 +9.2×10−4

−9.1×10−4 +0.0× 10−6 −4.9× 10−5 +4.9× 10−5

2.6–2.8 −0.009 ±1.5× 10−3 +1.1×10−3

−1.1×10−3 +0.0× 10−6 +0.0× 10−6 +0.0× 10−6

2.8–3 −0.005 ±1.9× 10−3 +6.1×10−4

−6.3×10−4 +0.0× 10−6 +5.0× 10−5 −5.0× 10−5

3–3.2 −0.008 ±2.6× 10−3 +1.5×10−3

−1.4×10−3 +0.0× 10−6 +2.6× 10−4 −2.6× 10−4

3.2–3.5 +0.000 ±4.1× 10−3 +1.3×10−3

−1.2×10−3 +0.0× 10−6 +2.6× 10−4 −2.6× 10−4

Table 18. c3{2} versus |∆η| from figure 8 (c), pT > 0.5 GeV; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c4{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.031 ±1.9× 10−4 +1.1×10−3

−1.2×10−3 +2.4× 10−4 +2.0× 10−4 +2.8× 10−4

0.2–0.4 +0.014 ±2.0× 10−4 +5.9×10−4

−6.9×10−4 +4.7× 10−4 +4.0× 10−4 +5.3× 10−4

0.4–0.6 +0.008 ±2.1× 10−4 +2.4×10−4

−2.8×10−4 +5.1× 10−4 +4.8× 10−4 +5.4× 10−4

0.6–0.8 +0.004 ±2.2× 10−4 +1.3×10−4

−1.9×10−4 +2.9× 10−4 +3.1× 10−4 +2.8× 10−4

0.8–1 +0.002 ±2.3× 10−4 +2.2×10−4

−2.5×10−4 +1.3× 10−4 +2.1× 10−4 +5.2× 10−5

1–1.2 +0.000 ±2.5× 10−4 +3.3×10−4

−3.7×10−4 +1.2× 10−4 +2.1× 10−4 +2.4× 10−5

1.2–1.4 +0.001 ±2.7× 10−4 +2.3×10−4

−2.9×10−4 +9.2× 10−5 +1.8× 10−4 +6.2× 10−6

1.4–1.6 +0.000 ±2.9× 10−4 +2.8×10−4

−3.4×10−4 +3.1× 10−5 +7.6× 10−5 −1.5× 10−5

1.6–1.8 +0.000 ±3.1× 10−4 +4.3×10−4

−4.7×10−4 −0.3× 10−6 −1.3× 10−5 +1.2× 10−5

1.8–2 +0.000 ±3.4× 10−4 +4.3×10−4

−4.3×10−4 +0.0× 10−6 −1.2× 10−5 +1.2× 10−5

2–2.2 +0.001 ±3.8× 10−4 +4.1×10−4

−4.2×10−4 +0.0× 10−6 −1.4× 10−5 +1.4× 10−5

2.2–2.4 +0.000 ±4.3× 10−4 +2.1×10−4

−2.3×10−4 +9.3× 10−6 −4.5× 10−5 +6.4× 10−5

2.4–2.6 +0.001 ±4.9× 10−4 +2.4×10−4

−2.4×10−4 +9.3× 10−6 −8.2× 10−5 +1.0× 10−4

2.6–2.8 −0.001 ±5.9× 10−4 +3.5×10−4

−2.7×10−4 +9.3× 10−6 −7.7× 10−5 +9.6× 10−5

2.8–3 −0.002 ±7.3× 10−4 +3.6×10−4

−2.5×10−4 −0.3× 10−6 −3.2× 10−5 +3.1× 10−5

3–3.2 −0.000 ±9.8× 10−4 +4.7×10−4

−9.2×10−4 −0.3× 10−6 +1.8× 10−5 −1.8× 10−5

3.2–3.5 −0.004 ±1.5× 10−3 +2.9×10−4

−8.5×10−4 −0.3× 10−6 −0.3× 10−6 −0.3× 10−6

Table 19. c4{2} versus |∆η| from figure 8 (d), pT > 0.1 GeV; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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|∆η| c4{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0–0.2 +0.083 ±4.0× 10−4 +1.1×10−3

−9.3×10−4 +1.0× 10−2 +1.1× 10−2 +9.6× 10−3

0.2–0.4 +0.054 ±4.3× 10−4 +7.8×10−4

−6.2×10−4 +8.8× 10−3 +9.6× 10−3 +7.9× 10−3

0.4–0.6 +0.032 ±4.7× 10−4 +4.4×10−4

−4.9×10−4 +6.3× 10−3 +7.2× 10−3 +5.5× 10−3

0.6–0.8 +0.015 ±5.1× 10−4 +3.6×10−4

−4.5×10−4 +4.3× 10−3 +5.3× 10−3 +3.3× 10−3

0.8–1 +0.008 ±5.5× 10−4 +3.8×10−4

−4.9×10−4 +3.1× 10−3 +4.1× 10−3 +2.1× 10−3

1–1.2 +0.002 ±6.0× 10−4 +3.6×10−4

−4.2×10−4 +2.5× 10−3 +3.6× 10−3 +1.3× 10−3

1.2–1.4 +0.002 ±6.5× 10−4 +3.3×10−4

−2.9×10−4 +2.2× 10−3 +3.2× 10−3 +1.2× 10−3

1.4–1.6 −0.000 ±7.0× 10−4 +4.2×10−4

−3.6×10−4 +1.9× 10−3 +2.8× 10−3 +9.8× 10−4

1.6–1.8 +0.001 ±7.6× 10−4 +5.4×10−4

−5.2×10−4 +1.7× 10−3 +2.5× 10−3 +1.0× 10−3

1.8–2 −0.000 ±8.4× 10−4 +5.8×10−4

−5.6×10−4 +1.2× 10−3 +1.8× 10−3 +6.3× 10−4

2–2.2 −0.001 ±9.4× 10−4 +6.2×10−4

−5.9×10−4 +6.7× 10−4 +1.0× 10−3 +3.2× 10−4

2.2–2.4 +0.001 ±1.1× 10−3 +4.6×10−4

−5.5×10−4 +5.3× 10−4 +7.8× 10−4 +2.7× 10−4

2.4–2.6 −0.001 ±1.3× 10−3 +4.1×10−4

−4.8×10−4 +5.6× 10−4 +8.0× 10−4 +3.1× 10−4

2.6–2.8 −0.002 ±1.5× 10−3 +6.5×10−4

−5.8×10−4 +5.4× 10−4 +9.2× 10−4 +1.6× 10−4

2.8–3 +0.003 ±1.9× 10−3 +7.3×10−4

−3.4×10−4 +1.8× 10−4 +4.4× 10−4 −8.2× 10−5

3–3.2 −0.003 ±2.6× 10−3 +1.7×10−3

−4.2×10−3 +0.0× 10−6 +1.7× 10−4 −1.7× 10−4

3.2–3.5 −0.012 ±4.1× 10−3 +1.4×10−3

−4.1×10−3 +0.0× 10−6 +0.0× 10−6 +0.0× 10−6

Table 20. c4{2} versus |∆η| from figure 8 (d), pT > 0.5 GeV; δstat, δsyst and δnc denote the

statistical, systematic and Monte Carlo non-closure uncertainties, respectively.

〈pT〉 (GeV) c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 −0.01 ±8.6× 10−4 +2.3×10−3

−2.2×10−3 +1.4× 10−3 +1.2× 10−3 +1.5× 10−3

0.2–0.4 −0.02 ±3.6× 10−4 +2.2×10−3

−2.2×10−3 +2.4× 10−3 +2.5× 10−3 +2.4× 10−3

0.4–0.6 −0.05 ±4.1× 10−4 +1.9×10−3

−2.0×10−3 +4.1× 10−3 +4.1× 10−3 +4.1× 10−3

0.6–0.8 −0.07 ±5.4× 10−4 +1.8×10−3

−1.8×10−3 +4.7× 10−3 +4.0× 10−3 +5.4× 10−3

0.8–1 −0.10 ±7.4× 10−4 +2.2×10−3

−2.2×10−3 +4.4× 10−3 +3.0× 10−3 +5.9× 10−3

1–1.2 −0.13 ±9.9× 10−4 +2.5×10−3

−2.4×10−3 +2.5× 10−3 +8.4× 10−4 +4.2× 10−3

1.2–1.4 −0.15 ±1.3× 10−3 +2.9×10−3

−2.9×10−3 +1.1× 10−3 −6.7× 10−4 +2.8× 10−3

1.4–1.6 −0.17 ±1.7× 10−3 +2.1×10−3

−2.0×10−3 −3.1× 10−4 −2.8× 10−3 +2.2× 10−3

1.6–1.8 −0.18 ±2.2× 10−3 +1.5×10−3

−1.5×10−3 −1.8× 10−3 −5.0× 10−3 +1.3× 10−3

1.8–2 −0.20 ±2.7× 10−3 +1.7×10−3

−1.9×10−3 −3.9× 10−3 −7.7× 10−3 −5.8× 10−5

2–2.2 −0.22 ±3.4× 10−3 +1.2×10−3

−1.9×10−3 −5.8× 10−3 −1.1× 10−2 −1.9× 10−4

2.2–2.4 −0.23 ±4.1× 10−3 +2.5×10−3

−2.8×10−3 −7.7× 10−3 −1.5× 10−2 −3.7× 10−4

2.4–2.6 −0.24 ±5.1× 10−3 +3.1×10−3

−3.2×10−3 −8.5× 10−3 −1.7× 10−2 −1.5× 10−4

Table 21. c1{2} versus 〈pT〉 from figure 9 (a), 15 ≤ Nch ≤ 30, pT > 0.1 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.

– 42 –



J
H
E
P
0
4
(
2
0
2
0
)
0
7
0

〈pT〉 (GeV) c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 +0.001 ±2.1× 10−4 +6.4×10−4

−8.6×10−4 −3.5× 10−4 −3.0× 10−4 −3.9× 10−4

0.2–0.4 +0.000 ±8.3× 10−5 +5.4×10−4

−8.1×10−4 +1.9× 10−4 +2.1× 10−4 +1.7× 10−4

0.4–0.6 −0.004 ±9.1× 10−5 +5.1×10−4

−8.0×10−4 +6.5× 10−4 +7.2× 10−4 +5.8× 10−4

0.6–0.8 −0.010 ±1.2× 10−4 +5.8×10−4

−8.6×10−4 +1.2× 10−3 +1.3× 10−3 +1.1× 10−3

0.8–1 −0.018 ±1.7× 10−4 +6.6×10−4

−8.5×10−4 +1.4× 10−3 +1.4× 10−3 +1.4× 10−3

1–1.2 −0.027 ±2.3× 10−4 +6.7×10−4

−8.2×10−4 +1.1× 10−3 +9.5× 10−4 +1.3× 10−3

1.2–1.4 −0.034 ±3.1× 10−4 +6.7×10−4

−7.5×10−4 +5.5× 10−4 +3.6× 10−4 +7.3× 10−4

1.4–1.6 −0.041 ±4.1× 10−4 +4.8×10−4

−6.6×10−4 +1.8× 10−4 −4.3× 10−4 +7.9× 10−4

1.6–1.8 −0.048 ±5.3× 10−4 +5.1×10−4

−7.3×10−4 −8.6× 10−4 −1.8× 10−3 +5.2× 10−5

1.8–2 −0.055 ±6.8× 10−4 +6.0×10−4

−8.0×10−4 −1.1× 10−3 −2.2× 10−3 −5.0× 10−5

2–2.2 −0.060 ±8.5× 10−4 +7.9×10−4

−9.5×10−4 −1.4× 10−3 −2.6× 10−3 −1.5× 10−4

2.2–2.4 −0.063 ±1.1× 10−3 +5.9×10−4

−8.1×10−4 −1.8× 10−3 −3.4× 10−3 −1.6× 10−4

2.4–2.6 −0.070 ±1.3× 10−3 +5.6×10−4

−7.8×10−4 −2.0× 10−3 −3.8× 10−3 −1.7× 10−4

Table 22. c1{2} versus 〈pT〉 from figure 9 (a), 5 ≤ Nch ≤ 10, pT > 0.1 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.

〈pT〉 (GeV) c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 −0.002 ±8.6× 10−4 +2.2×10−3

−2.2×10−3 +2.5× 10−4 −8.4× 10−5 +5.9× 10−4

0.2–0.4 −0.001 ±3.6× 10−4 +1.7×10−3

−1.7×10−3 +2.4× 10−4 +5.7× 10−5 +4.1× 10−4

0.4–0.6 +0.001 ±4.1× 10−4 +1.5×10−3

−1.5×10−3 +7.1× 10−4 +5.6× 10−4 +8.6× 10−4

0.6–0.8 +0.005 ±5.4× 10−4 +1.1×10−3

−1.2×10−3 +1.3× 10−3 +1.3× 10−3 +1.4× 10−3

0.8–1 +0.010 ±7.4× 10−4 +8.5×10−4

−8.9×10−4 +2.2× 10−3 +2.4× 10−3 +2.0× 10−3

1–1.2 +0.016 ±1.0× 10−3 +5.4×10−4

−5.2×10−4 +3.2× 10−3 +4.4× 10−3 +2.0× 10−3

1.2–1.4 +0.025 ±1.3× 10−3 +5.6×10−4

−4.0×10−4 +5.3× 10−3 +7.1× 10−3 +3.6× 10−3

1.4–1.6 +0.027 ±1.7× 10−3 +7.5×10−4

−5.0×10−4 +7.3× 10−3 +9.6× 10−3 +4.9× 10−3

1.6–1.8 +0.031 ±2.2× 10−3 +1.6×10−3

−1.3×10−3 +8.4× 10−3 +1.2× 10−2 +4.7× 10−3

1.8–2 +0.040 ±2.8× 10−3 +2.3×10−3

−2.0×10−3 +9.1× 10−3 +1.4× 10−2 +4.0× 10−3

2–2.2 +0.053 ±3.5× 10−3 +2.7×10−3

−2.4×10−3 +1.1× 10−2 +1.7× 10−2 +5.8× 10−3

2.2–2.4 +0.054 ±4.2× 10−3 +2.3×10−3

−2.2×10−3 +1.3× 10−2 +1.9× 10−2 +7.6× 10−3

2.4–2.6 +0.062 ±5.2× 10−3 +2.6×10−3

−2.6×10−3 +1.5× 10−2 +2.0× 10−2 +9.5× 10−3

Table 23. c2{2} versus 〈pT〉 from figure 9 (b), 15 ≤ Nch ≤ 30, pT > 0.1 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.
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〈pT〉 (GeV) c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 −0.001 ±2.1× 10−4 +5.7×10−4

−5.4×10−4 +5.6× 10−4 +5.9× 10−4 +5.4× 10−4

0.2–0.4 −0.001 ±8.3× 10−5 +6.3×10−4

−5.9×10−4 +6.0× 10−4 +6.2× 10−4 +5.8× 10−4

0.4–0.6 −0.001 ±9.1× 10−5 +5.3×10−4

−4.7×10−4 +6.5× 10−4 +6.7× 10−4 +6.3× 10−4

0.6–0.8 −0.000 ±1.2× 10−4 +5.4×10−4

−5.1×10−4 +7.0× 10−4 +7.1× 10−4 +6.9× 10−4

0.8–1 +0.001 ±1.9× 10−4 +5.2×10−4

−5.1×10−4 +8.5× 10−4 +8.6× 10−4 +8.4× 10−4

1–1.2 +0.002 ±2.3× 10−4 +6.2×10−4

−6.2×10−4 +9.2× 10−4 +9.9× 10−4 +8.6× 10−4

1.2–1.4 +0.004 ±3.1× 10−4 +4.3×10−4

−4.2×10−4 +1.2× 10−3 +1.3× 10−3 +1.0× 10−3

1.4–1.6 +0.006 ±4.1× 10−4 +3.1×10−4

−2.2×10−4 +1.3× 10−3 +1.7× 10−3 +1.0× 10−3

1.6–1.8 +0.007 ±5.3× 10−4 +3.0×10−4

−2.1×10−4 +1.8× 10−3 +2.2× 10−3 +1.3× 10−3

1.8–2 +0.011 ±6.8× 10−4 +4.3×10−4

−3.8×10−4 +2.0× 10−3 +2.4× 10−3 +1.6× 10−3

2–2.2 +0.013 ±8.5× 10−4 +6.7×10−4

−6.5×10−4 +2.3× 10−3 +2.8× 10−3 +1.8× 10−3

2.2–2.4 +0.016 ±1.1× 10−3 +7.8×10−4

−7.7×10−4 +2.6× 10−3 +3.6× 10−3 +1.6× 10−3

2.4–2.6 +0.020 ±1.3× 10−3 +8.4×10−4

−8.4×10−4 +2.8× 10−3 +4.3× 10−3 +1.3× 10−3

Table 24. c2{2} versus 〈pT〉 from figure 9 (b), 5 ≤ Nch ≤ 10, pT > 0.1 GeV, |∆η| > 2; δstat, δsyst
and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties, respectively.

〈pT〉 (GeV) c1{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 +0.016 ±3.1× 10−4 +8.1×10−4

−1.2×10−3 −6.1× 10−3 −6.7× 10−3 −5.4× 10−3

0.2–0.4 +0.024 ±1.3× 10−4 +7.3×10−4

−1.1×10−3 −4.8× 10−3 −5.1× 10−3 −4.5× 10−3

0.4–0.6 +0.035 ±1.4× 10−4 +8.1×10−4

−1.3×10−3 +6.6× 10−5 −1.3× 10−3 +1.4× 10−3

0.6–0.8 +0.038 ±1.9× 10−4 +8.5×10−4

−1.5×10−3 +1.2× 10−3 +8.8× 10−4 +1.6× 10−3

0.8–1 +0.037 ±2.5× 10−4 +1.0×10−3

−1.6×10−3 +3.4× 10−3 +2.5× 10−3 +4.3× 10−3

1–1.2 +0.035 ±3.3× 10−4 +1.1×10−3

−1.5×10−3 +6.2× 10−3 +4.4× 10−3 +8.0× 10−3

1.2–1.4 +0.032 ±4.3× 10−4 +1.7×10−3

−1.9×10−3 +8.8× 10−3 +6.0× 10−3 +1.1× 10−2

1.4–1.6 +0.029 ±5.5× 10−4 +1.5×10−3

−1.6×10−3 +1.1× 10−2 +7.2× 10−3 +1.4× 10−2

1.6–1.8 +0.027 ±6.9× 10−4 +1.9×10−3

−1.9×10−3 +1.2× 10−2 +8.1× 10−3 +1.6× 10−2

1.8–2 +0.022 ±8.5× 10−4 +1.5×10−3

−1.4×10−3 +1.3× 10−2 +8.8× 10−3 +1.8× 10−2

2–2.2 +0.018 ±1.0× 10−3 +1.3×10−3

−1.1×10−3 +1.5× 10−2 +9.7× 10−3 +2.0× 10−2

2.2–2.4 +0.014 ±1.2× 10−3 +8.0×10−4

−7.6×10−4 +1.7× 10−2 +1.1× 10−2 +2.3× 10−2

2.4–2.6 +0.011 ±1.5× 10−3 +5.8×10−4

−6.1×10−4 +1.8× 10−2 +1.2× 10−2 +2.4× 10−2

Table 25. c1{2} versus 〈pT〉 from figure 11 (b), 15 ≤ Nch ≤ 30, pT > 0.1 GeV, no |∆η| cut;

δstat, δsyst and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties,

respectively.
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〈pT〉 (GeV) c2{2} δstat δsyst δnc δARIADNE
nc δLEPTO

nc

0.1–0.2 +0.012 ±3.1× 10−4 +1.1×10−3

−8.4×10−4 −8.0× 10−3 −8.7× 10−3 −7.4× 10−3

0.2–0.4 +0.006 ±1.2× 10−4 +9.2×10−4

−6.3×10−4 −5.2× 10−3 −5.9× 10−3 −4.6× 10−3

0.4–0.6 +0.022 ±1.4× 10−4 +9.4×10−4

−8.1×10−4 −2.6× 10−3 −3.2× 10−3 −2.0× 10−3

0.6–0.8 +0.049 ±1.8× 10−4 +1.2×10−3

−1.3×10−3 −2.7× 10−3 −3.3× 10−3 −2.1× 10−3

0.8–1 +0.079 ±2.4× 10−4 +1.7×10−3

−1.8×10−3 +4.7× 10−4 +5.5× 10−4 +3.8× 10−4

1–1.2 +0.107 ±3.2× 10−4 +2.0×10−3

−2.0×10−3 +2.3× 10−3 +2.6× 10−3 +1.9× 10−3

1.2–1.4 +0.132 ±4.1× 10−4 +2.0×10−3

−2.0×10−3 +5.4× 10−3 +5.9× 10−3 +4.8× 10−3

1.4–1.6 +0.154 ±5.1× 10−4 +2.0×10−3

−1.9×10−3 +9.1× 10−3 +9.9× 10−3 +8.3× 10−3

1.6–1.8 +0.173 ±6.3× 10−4 +2.1×10−3

−2.1×10−3 +1.3× 10−2 +1.4× 10−2 +1.2× 10−2

1.8–2 +0.192 ±7.8× 10−4 +2.2×10−3

−2.2×10−3 +1.6× 10−2 +1.7× 10−2 +1.5× 10−2

2–2.2 +0.208 ±9.4× 10−4 +2.0×10−3

−1.8×10−3 +1.9× 10−2 +2.1× 10−2 +1.8× 10−2

2.2–2.4 +0.221 ±1.1× 10−3 +2.0×10−3

−1.6×10−3 +2.2× 10−2 +2.4× 10−2 +2.1× 10−2

2.4–2.6 +0.235 ±1.3× 10−3 +1.9×10−3

−1.3×10−3 +2.4× 10−2 +2.5× 10−2 +2.2× 10−2

Table 26. c2{2} versus 〈pT〉 from figure 12 (b), 15 ≤ Nch ≤ 30, pT > 0.1 GeV, no |∆η| cut;

δstat, δsyst and δnc denote the statistical, systematic and Monte Carlo non-closure uncertainties,

respectively.
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