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CNV-association meta-analysis in 191,161 European
adults reveals new loci associated with
anthropometric traits
Aurélien Macé et al.#

There are few examples of robust associations between rare copy number variants (CNVs)

and complex continuous human traits. Here we present a large-scale CNV association meta-

analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study

reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two

known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The dis-

covered CNVs are recurrent and rare (0.01–0.2%), with large effects on height (>2.4 cm),

weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm

decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2

for each Mb of total deletion burden (P= 2.5 × 10−10, 6.0 × 10−5, and 2.9 × 10−3). Our study

provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common

and rare variants affecting body size and that anthropometric traits share genetic loci with

developmental and psychiatric disorders.
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Many human anthropometric traits are highly heritable.
Twin studies have estimated that genetic factors
contribute to 40–80% of the observed variability of

body mass index (BMI)1–5 and up to 80% of height6, 7. Findings
from the largest genome-wide association studies (GWAS) on
BMI8 and height9, including over 250,000 samples, revealed
97 and 697 single nucleotide polymorphisms (SNPs) explaining
cumulatively only 2.7 and 20% of the variance of the respective
phenotypes. Using genotyping arrays enriched for coding
regions (exome-chip) large meta-analysis GWAS for height and
BMI discovered several rare coding single nucleotide variants
(SNVs) associated with these traits. Still, these SNVs have thus
far explained only a very small variation in these traits (e.g., 0.51%
explained height variance10). Nevertheless, random effect
models accounting for imperfect imputation estimate that the
total additive effect of all SNVs explain 56 and 27% of height and
BMI variability, respectively11. While there is a growing
consensus that predominantly SNVs contribute to the heritability,
the impact of the structural architecture of the genome (copy
number variants, complex rearrangements, etc.) is understudied
and not negligible12. It has been shown that rare and large copy
number variants (CNVs), such as the 600 kb breakpoint 4–5
(BP4–BP5) 16p11.2 rearrangement13, 14, can exert substantial
impact on BMI, but little effort has been made towards assessing
the genome-wide impact of CNVs on complex traits. To our
knowledge, only one genome-wide CNV-association study (on
schizophrenia) has been performed in large adult population
samples15. The aim of our study is to establish a genome-wide
catalog of CNVs and to identify CNVs associated with height,
weight, waist-to-hip ratio (WHR) and BMI. To this end, we apply
the same CNV calling16 and association pipeline to 25 studies of
the Genetic Investigation of Anthropometric Traits (GIANT)
Consortium combined with the UK Biobank and perform a
genome-wide association meta-analysis study in up to 191,161
unrelated European adults. These analyses show that overall CNV
burden is linked to shorter stature and higher WHR. The
genome-wide scans reveal rare variations in several genomic
regions (1q21.1, 7q11.23, 3q29, 16p11.2, FIBIN/BBOX1, and
MC4R) to be associated with anthropometric measures. Some of
these loci have variable frequencies across cohorts and explain or
overlap previous SNP or rare variant associations. These results
highlight the important contribution of rare CNVs to complex
human traits.

Results
Summary of the methods. All the 25 GIANT cohorts were
genotyped on Illumina arrays, whereas the UK Biobank used the
Affymetrix Axiom chip. Only unrelated adult samples of Eur-
opean origin were included. As PennCNV was initially designed
for data generated on Illumina arrays, we took extra care with the
signal normalization and pre-processing of the UK Biobank data
(see “Methods”). Each cohort applied our standardised CNV
pipeline to call CNVs16 and to test associations between prob-
abilistic CNV dosages (a continuous value between −1 (deletion)
and 1 (duplication)) at each probe on the genotyping chip and
our target anthropometric traits. In brief, our pipeline combines
pennCNV calls, CNV- and sample parameters to yield a more
accurate probabilistic CNV call, especially in the case of rare or
low confidence CNVs. The number of probes varied between
~680,000 and 2,500,000 across the 26 cohorts. We then imputed
the summary statistics to the Illumina 1M Duo V3 probe set in
order to have a common set of probes for the meta-analysis.
Based on an in-house cohort we conservatively estimated the
number of effective tests17 to be ~29,400, resulting in a P-value
threshold of 1.7 × 10−6 to control family-wise error rate
(see “Methods”). We performed a CNV burden and a genome-
wide CNV association meta-analysis for BMI, weight, height, and
waist–hip ratio. The genome-wide CNV association scan was
performed considering a mirror effect model (assuming opposite
and equal sized effect of deletions and duplications at any given
locus) and the genome-wide significant signals were further tested
for deletion-only and duplication-only effects. As secondary
analysis, we also tested U-shaped (assuming the same effect of
deletions and duplications), deletion-only, duplication-only
models genome-wide. All reported CNV effect sizes (unless
specified otherwise) represent the impact of one additional copy
relative to the population average. For burden analysis all four
abovementioned models (mirror, U-shaped, deletion, duplica-
tion) were tested. Depending on the trait, the sample sizes varied
between 161,244 and 191,161.

Total CNV burden. The increased burden of rare CNVs has
already been observed for persons with short stature18, higher
BMI19, and also schizophrenia15. Indirectly, increased deletion
burden is also reflected in longer regions with loss-of-hetero-
zygosity, which has shown to associate with stature and

Table 1 List of the CNVs associated with one or several traits

Chr Start End Frequency (%) BMI Weight Height Waist–hip ratio

(Mb) (Mb) Del Dup β P value β P value β P value β P value

1 145 145.9 0.03 0.049 – – 6.66 1.73E−06 3.46 3.75E−10 – –
3 197.7 197.9 0.004 0.005 – – 22.55 1.20E−06 – – – –
3 198.2 198.4 0.007 0.007 – – – – 13.3 2.32E–08 – –
7 72.61 72.75 0.005 0.005 – – – – – – 0.11 1.49E–06
11 26.97 27.19 0.126 0.011 – – – – 2.43 1.46E−06 – –
16 28.73 28.95 0.028 0.041 −3.07 5.31E−08 −10.35 5.03E−09 – – – –
16 29.5 30.1 0.027 0.031 −3.66 1.39E−12 – – 5.21 1.20E−14 −0.041 2.30E−07
18 55.81 56.05 0.018 0.004 −5.06 2.03E−07 15.9 1.45E−08 – – – –

All positions are hg18 in megabase (Mb). In case of genome-wide significant CNV-trait associations (P< 1.7 × 10−6), we report effect sizes (β) and P values coming from a mirror effect model, assuming
opposite and equal sized effect of deletions and duplications at any given locus. Further information and results from other models are available in Supplementary Table 2. The effects correspond to
change in the trait for each additional copy of the region: positive effect means that deletion of the corresponding region decreases the trait value and duplications increase it. The genes involved in these
regions are as follows: RN7SL261P, RNVU1-8, CHD1L, NBPF13P, GJA8, OR13Z3P, LINC00624, OR13Z2P, OR13Z1P, PDIA3P1, FMO5, RPL7AP15, CCT8P1, PRKAB2, GJA5, GPR89B, BCL9, ACP6, (Chr1:145–146Mb);
PIGX, (Chr3:197.7–197.9Mb); DLG1, MFI2, MFI2-AS1, (Chr3:198.2–198.4Mb); VPS37D, DNAJC30, WBSCR22, MLXIPL, (Chr7:72.61–72.75Mb); FIBIN, BBOX1, BBOX1-AS1, (Chr11:26.97–27.19Mb); MIR4721,
MIR4517, ATXN2L, SH2B1, CD19, RABEP2, TUFM, ATP2A1, NFATC2IP, ATP2A1-AS1, LAT, SPNS1, (Chr16:28.7–29Mb); MIR3680-2, RN7SKP127, C16orf54, PAGR1, CORO1A, MAZ, ALDOA, CDIPT, MVP, ZG16,
SEZ6L2, CDIPT-AS1, PRRT2, YPEL3, TMEM219, DOC2A, GDPD3, INO80E, KCTD13, HIRIP3, ASPHD1, MAPK3, TAOK2, PPP4C, FAM57B, C16orf92, SMG1P2, SLC7A5P1, CA5AP1, QPRT, SPN, TBX6, KIF22,
(Chr16:29.5–30.1 Mb); RNU4-17P, RNU6-567P, SDCCAG3P1, FAM60CP, RPS3AP49, (Chr18:55.8–56.1 Mb).
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cognition20. In this study we confirm the link between CNV
burden, measured as the total number of copy variant probes, and
height and BMI and we also found an effect on the waist–hip
ratio (Supplementary Table 1). Individuals with an additional 1
Mb of copy-altered interval tend to have 0.144 kg/m2 higher BMI
(P= 2.9 × 10−3). The effect of CNV burden was much stronger on
waist–hip ratio and height, for which increased CNV burden
(be it duplication or deletion) was associated with a 0.001
higher WHR (P= 6.9 × 10−5) and 0.132 cm shorter stature (P=
4.5 × 10−7). For both traits the impact was dominated by the
burden of deletions rather than duplications (0.003 WHR unit
(P= 6 × 10−5) and 0.41 cm (P= 2.5 × 10−10) per Mb deletion,
respectively). We did not observe any CNV burden effect on
human weight.

Genome-wide scan. The analyses on these four anthropometric
traits revealed seven independent CNV regions associated with
one or several traits with P value below the genome-wide sig-
nificance threshold (1.7 × 10−6, see “Methods”) (Table 1, Fig. 1).
Two of them correspond to the well known BP2–BP3 and
BP4–BP5 CNVs in the 16p11.2 region associated with BMI and
neurodevelopment. Three further CNVs (1q21.1, 3q29, and
7q11.23) overlap recurrent syndromic CNV regions, associated
with variable neurodevelopmental traits, schizophrenia and
developmental delay. One CNV (near MC4R) overlaps with SNPs
associated with BMI in GWAS and is part of a larger deletion
reported to be associated with obesity21. And finally one deletion,
encompassing BBOX1 and FIBIN genes (the latter harboring rare,
height-lowering coding variants10), seems to be particularly fre-
quent in the Finnish population (0.89% vs 0.02% in the non-
Finnish cohorts). In the following we provide a detailed
description of the impact of each of these CNVs (both deletions
and duplications). We tested U-shaped, deletion-only,
duplication-only models, but these did not yield further
significant associations (Supplementary Table 2).

New insights on the 16p11.2 region. The 16p11.2 region is well
known for several distinct recurrent CNVs, two of them asso-
ciated with anthropometric traits. The 220 kb BP2–BP3 deletion
was associated with severe early-onset obesity and developmental
delay22. The 600 kb BP4–BP5 rearrangement was first known for
its impact on autism but it has also been proven to have effects on
BMI and head circumference13, 14. Both have been recently
reported as associated with lower IQ and schizophrenia15. First,
we replicated the known effects of the 220 kb deletion (β= + 3.07
kg/m2, P= 5.3 × 10−8) and the mirror effect of the 600 kb rear-
rangement (mirror effect: β= −3.66 kg/m2, P= 1.4 × 10−12; dele-
tion: β= 6.15 kg/m2, P= 4.5 × 10−14; duplication: β= −1.81
kg/m2, P= 1.2 × 10−2) on BMI. In addition, we found that while
the 220 kb deletion increases BMI through increasing weight (by
10.35 kg, P= 5 × 10−9), the 600 kb deletion does so by both
decreasing height (by 5.21 cm, P= 1.1 × 10−14) and increasing
weight (6.57 kg, P= 5.3 × 10−5) (Supplementary Figs. 1–4). Fur-
thermore, our analysis revealed that the 600 kb rearrangement
also impacts waist–hip ratio (β= −0.04, P= 2.3 × 10−7) (Supple-
mentary Figs. 3C–4C). Neither analyzing deletions and duplica-
tions separately, nor their absolute effect showed stronger signal
for the 16p11.2 220 kb rearrangement than the mirror effect
association. On the contrary, the observed effect from the 600 kb
seems almost exclusively driven by the deletion, which demon-
strated a stronger signal than the duplications or the pooled
results (Supplementary Table 2). The list of the Online Mendelian
Inheritance in Man (OMIM) diseases corresponding to the genes
present in these two CNVs is available in Supplementary Table 3.
The top associations between these CNVs and 27 tested traits in
the UK Biobank are listed in Supplementary Tables 4–7.

We could not narrow down the BMI association signal to the
previously proposed SH2B1 (lowest P= 7.7 × 10−8) as it covers
other genes, including SPNS1 and LAT (lowest P= 5.3 × 10−8)
(Fig. 2). Fine-mapping of the signal using variable breakpoints
would be necessary, which are extremely rare due to the regional
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architecture shaped by segmental duplications and non-allelic
homologous recombinations (Supplementary Fig. 2).

Results from previous GWAS revealed BMI-associated SNPs
near SH2B1 located in the 220 kb rearrangement and height-
associated SNPs near FLJ25404 located in the 600 kb rearrange-
ment highlighting the importance of both common and rare
variants in these regions (Supplementary Table 8). Next, we tested
whether the previously published three independent BMI-
associated SNPs at this locus (rs3888190, rs2650492, and
rs4787491) could be explained by the CNV associations in the
16p11.2 region using the UK Biobank data for which both SNPs
and CNV calls were available. Our analysis showed that the
original BMI-SNP association P values increased substantially
(from 2.28 × 10−8, 6.45 × 10−5, 8.67 × 10−6 to 2.94 × 10−4, 3.80 ×
10−3, 1.56 × 10−2, respectively) when the most BMI-associated
CNV probe was included in the multivariate model. In the
meantime the BMI-CNV association signals remained
unchanged. Similarly, the height-FLJ25404 (rs11642612) associa-
tion P value increased more than 100-fold from P= 1.5 × 10−5 to
P= 4.35 × 10−3 when including the 16p11.2 CNV probe with
strongest height association, indicating that the previously
observed SNP-height association may be (at least partially)
explained by the 16p11.2 CNV-height association.

Cis eQTL analysis for height- and BMI-associated SNPs located
in the 600 kb rearrangement showed a potential effect of these
SNPs modulating the expression levels (in whole-blood) of
CORO1A (rs11150581, rs11642612) and INO80E (rs11150581,
rs11642612, rs2278557, rs6565173, rs9925915) genes (Supple-
mentary Table 9).

1q21.1 distal rearrangement. A CNV region on chromosome 1
(145–145.9 Mb, Supplementary Figs. 5 and 6) was associated with
both height (β= 3.46 cm, P= 3.8 × 10−10) and weight (β= 6.66
kg, P= 1.7 × 10−6). This rearrangement corresponds to the distal
part of the 1q21.1 recurrent CNV (OMIM deletion: #612474;

OMIM duplication: #612475). As for the 16p11.2 600 kb CNV,
this CNV is known to have a mirror effect on head circumference
and to be a potential cause of autism and schizophrenia15, 23. An
effect on height has been reported for the deletion, with 25–50%
of the carriers having short stature24. In contrast, duplication
carriers tend to be in the upper percentiles of height but the effect
is less clear. Supporting the effect on height, a common variant in
this region, near the FMO5 gene (rs6658763) was associated with
height in previous GWAS9 (Supplementary Table 8). This SNP
was not significantly associated with height in the UK Biobank
(P= 0.14), and thus, no conditional analysis was performed.
However, the SNP seems to be independent of the CNV (Dele-
tion: r2 = 0, Dʹ= 0.005−Duplication r2= 0, Dʹ= 0.022 in the UK
Biobank). As for the 16p11.2 600 kb rearrangement, the observed
effects seem to be mainly due to the deletions (Supplementary
Table 2). The list of the OMIM diseases corresponding to the
genes present in the CNV is available in Supplementary Table 3.
The top associations between this CNV and 27 tested traits in the
UK Biobank are listed in Supplementary Tables 10 and 11.

A CNV overlapping FIBIN and BBOX1. A 220 kb CNV (chr11:
26.97–27.19Mb, Supplementary Figs. 7 and 8) was associated
with height (β= 2.43 cm, P= 1.5 × 10−6). While the duplication
frequency is low in all cohorts (0.008–0.016%), the deletion fre-
quency is much higher in the Finnish population than in the
others (0.89% vs 0.016%). This region has added interest, because
a case-report described an Iranian short-statured girl with
homozygous deletion of this region25. Separate analysis of the
deletions and duplications showed a highly significant effect from
the deletions (β= 2.56 cm, P= 8.2 × 10−8). The involvement of
the FIBIN gene for height was also confirmed by the GIANT-
exome study on height10 including 381,625 individuals. This
study revealed a strong association between the rare (0.3% in
ExAC) missense variant rs138273386, located in the FIBIN gene,
and height (P= 5.79 × 10−12) (Supplementary Table 12). The top
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associations between this CNV and 27 tested traits in the UK
Biobank are listed in Supplementary Tables 13 and 14.

CNV in the MC4R region. Single nucleotide coding mutations in
the MC4R gene cause severe obesity, and common variants near
the gene are associated with BMI8, 26, 27. Our analysis revealed a
rare (frequency 0.018% (del), 0.004% (dup)), 300 kb long CNV
(55.81–56.05Mb, Supplementary Figs. 9 and 10) associated with
BMI (β= −5.06 kg/m2, P= 2 × 10−7) and weight (β= −15.94 kg,
P= 1.4 × 10−8). Follow-up analysis demonstrated that the
observed signal is exclusively due to deletions (Supplementary
Table 2). This CNV encompasses the BMI-associated lead SNP
(rs6567160)8, 28 (Fig. 3, Supplementary Table 8), but we observed
virtually identical BMI-association P values for the SNP and the
CNV in univariate and multivariate analysis. Hence, the two
associations are most probably independent, further evidenced by
the low LD between them (r2= 0.0014, D′= 0.31 in the UK
Biobank). While rare height-increasing MC4R variants27 have
been previously reported, we found no height-effect of any CNV
probes in this regions. Previous evidence for CNVs affecting BMI
in the MC4R gene is scarce—there is only one case report of a
9-year-old obese boy carrying a larger (2.6 Mb) deletion encom-
passing theMC4R gene21. The top associations between this CNV
and 27 tested traits in the UK Biobank are listed in Supplemen-
tary Tables 15 and 16.

7q11.23 rearrangement. The only WHR-specific genome-wide
significant association implicated a CNV in the 7q11.23 region
(72.6–73.58Mb, Supplementary Figs. 11 and 12). Duplication
carriers tend to have a higher waist-hip ratio (β= 0.11,
P= 1.5 × 10−6). Separate analysis of deletions and duplications
and absolute effect association did not show any stronger asso-
ciation, nevertheless, the effect of the duplication is slightly larger
than that of the deletion (Supplementary Table 2). This CNV was
recently found to be associated with schizophrenia in a large

case–control study15. It also overlaps with a 1.55–1.84Mb long
region known as the Williams–Beuren (WB) syndrome critical
region (WBSCR)29, 30. WB syndrome31, 32 is responsible for
several complications: cardiovascular disease, neurologic
abnormalities, attention deficit hyperactivity disorder, cognitive
impairment, distinctive behavioral, and social traits. Due to
selection bias, our prevalence estimation for the duplication
(0.005%) and the deletion (0.005%) is somewhat lower than what
is estimated for the WBSCR in the literature (0.005–0.013% for
the duplication33, 34 and 0.008–0.013% for the deletion35). The
top associations between this CNV and 27 tested traits in the UK
Biobank are listed in Supplementary Tables 17 and 18.

3q29 rearrangement. We discovered two CNVs in the 3q29
region, one 256 kb long (197.6–197.9 Mb), affecting weight (β=
22.55 kg, P= 1.6 × 10−6, deletion frequency= 0.004%, duplica-
tions frequency= 0.005%) and one 212 kb long (198.2–198.4 Mb)
affecting height (β= 13.3 cm, P= 2.3 × 10−8, deletion frequency
= 0.007%, duplications frequency= 0.007%) (Supplementary
Figs. 13 and 14). Running the meta-analysis separately on the
UKBB and the other cohorts, it appears that the signal comes
mainly from the UK Biobank, however, without evidence for
strong heterogeneity (Cochran P> 0.05). The proportional effects
on height and weight are concordant with the fact that no asso-
ciation has been found with BMI or WHR. Children with this
3q29 deletion suffer from feeding problems, which may result in
reduced adult weight36. A recurrent syndromic CNVs encom-
passing the two segments has recently been reported to be asso-
ciated with schizophrenia15. On the anthropometric aspect, case
reports from the literature are in agreement with our findings
regarding the deletion impact on both weight and height24, 37, 38.
Concerning the duplication, the phenotype spectrum is wider and
the literature mainly reports obese/overweight cases, which is in
agreement with our weight estimates. The reported effect on
height is less pronounced. Our (median) deletion frequency
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(0.004 and 0.007%, for the two segments respectively) is slightly
over the reported value in a control population (0.003%)36.
Finally, upon closer inspection of the region (Supplementary
Fig. 14) we observed that the centromeric part of the CNV is
implicated in weight regulation, while the telomeric end impacts
height (implicated genes are listed in the legend of Table 1).
Deletion and duplication frequencies were too low to be able to
reliably establish the effects of deletions and duplications sepa-
rately. The top associations between this CNV and 27 tested traits
in the UK Biobank are listed in Supplementary Tables 19–22.

CNVs with variable frequency across geographic locations. Our
meta-analysis revealed two population-specific CNVs. The first
one is the CNV overlapping FIBIN and BBOX1, for which Finnish
population cohorts have much higher deletion frequency. The
second one, near MC4R, is specific for UK population cohorts. In
both cases we compared potential confounding factors, such as
probe densities, call rates, and CNV quality, but none of these
could explain the frequency differences (Supplementary Figs. 8
and 10). Note that the frequency of the MC4R CNV both in the
UK Biobank (0.028% (del), 0.005% (dup)) and in other UK
cohorts genotyped on Illumina arrays (0.018% (del), 0.009%
(dup)) is consistently higher than the frequency in non-UK
samples (0.006% (del), 0.005% (dup)). Thus, the observed fre-
quency difference is, at least in part, not due to array effect.

Discussion
Our genome-wide CNV association meta-analysis on four
anthropometric traits in ~190,000 unrelated adults showed a non-
negligible CNV burden effect on BMI, height, and WHR. Fur-
thermore, we identified seven CNVs significantly associated with
at least one trait and three additional CNV regions have a close to
genome-wide significant effect on one of the four traits
(Supplementary Table 23). The analysis also gave new insights
into the two 16p11.2 rearrangements13, 14, 22.

As a proof of concept, we looked at CNVs known to be
associated with BMI or obesity39, 40. Only one CNV (22q11.21)
outside the 16p11.2 region was confirmed (Supplementary
Fig. 15, Supplementary Tables 24 and 25). This difference might
in part be explained by insufficient power or by the fact that,
contrary to most previously published CNV studies13, 15, 39, 41,
our samples come from general populations. In addition, some of
the previously reported CNVs might have been population-
specific or simply spurious42.

CNV burden analysis confirmed the already observed effect on
BMI19 and height18, and showed an important effect on fat dis-
tribution (WHR). These observed signals are dominated by the
deletions (up to five-fold larger effects), while the duplication
effects are minor, except for WHR. The overall CNV burden has
seemingly opposite effects on height and BMI, compatible with
having no significant CNV burden effect on weight.

Overall, the genome-wide P values showed good adherence to
the null distribution (Supplementary Fig. 16). For well-powered
GWAS studies on heritable traits (e.g., height9 and menarche43)
high genomic control lambda value rather reflects true polygenic
signals than uncorrected population stratification44. This was the
case for our study too: while we observed inflated genomic
lambda coefficients (λ= 1.16 (height), λ= 1.12 (weight), λ= 1.08
(BMI) and λ= 1.05 (WHR)), upon applying LD score regres-
sion44 in the UK Biobank sample the intercept terms revealed no
unaccounted population stratification (λLD= 0.971(height),
λLD= 1.005(weight), λLD= 0.993 (BMI), λLD= 0.942 (WHR)).

Among the seven significant CNVs, two might be ancestry-
specific, one Finnish and one British. It is not surprising, as these
two populations have contributed the most samples to our meta-

analysis. These results show the need for collecting large popu-
lation cohorts of the same origin since the frequency of many
CNVs may vary across populations. Therefore, we believe that in
the future, collecting larger, genotyped population-based cohorts
from other countries and ethnicities could be an efficient way to
discover novel trait-associated CNVs with larger effects.

Although we would have had higher power to detect associa-
tions with common CNVs, all of the anthropometric trait-
associated CNVs identified in this study are rare (0.01–0.07%).
This may be explained by the massive shift of CNV frequency
spectrum compared to that of SNVs: based on CNV calls from
>191,000 samples we observed that more than 92.4% of the
CNVs are present in <1 in 1000 samples and 99.4% of them are
rare (<1%). We are unsure whether the reason for the very low
number of common CNVs is due to the detection technology or
whether it reflects the nature of the underlying genomic events.
Given the low frequency of most of the discovered CNVs and the
neighboring genome structure, the majority of them may result
from de novo and recent rearrangements. The total explained
variance for all these rearrangements is ∼0.09% for BMI, 0.10%
for weight, 0.14% for height, and 0.04% for waist–hip ratio.

Our conditional analysis showed that CNV probes in the
16p11.2 region explain a substantial fraction of the association
between all previously published SNPs near SH2B1 and BMI and,
similarly, the association between the SNP near FLJ25404 and
height. None of the remaining associated CNVs showed evidence
for tagging common SNPs, nor do they explain known height/
BMI-SNP associations. Note, however, that our CNV data are
much noisier than SNP calls and thus the measured CNVs are
poorer proxies for the true CNV status, which biases the condi-
tional analysis towards the null (no tagging). Still, most of the
obtained results are in line with the proposed theory that the
majority of the discovered disease-associated common SNPs are
not synthetic associations due to rare variant tagging45.

Our study, besides reporting the association with anthropo-
metric traits, can serve as an atlas of CNV maps based
on a large general population of European ancestry46, 47 (https://
cnvcatalogue.bbmri.nl/ and underlying data in Supplementary
Data 1). Similarly to large compendia of sequenced population
individuals (e.g., EXaC48) for whole exome-/genome-sequence
analysis for rare diseases, our inventory of CNV frequencies could
help estimating their pathogenicity in the rare disease setting.

So far, many anthropometric GWASs have focused on BMI or
height, but less on weight. In our analysis we found that studying
the effect of CNVs on height and weight separately can carry
important additional information beyond what we can learn from
looking only at BMI. All the CNVs found to be associated with
BMI were also associated either with height or weight, but the
opposite does not hold. CNVs affecting height and weight in the
same direction (e.g., 1q21.1) have less impact on BMI.

Our study has several weaknesses, which we tried to mitigate.
Despite the fact that a plethora of software has been developed to
detect CNVs from SNP array platforms, these genotyping chips
were not initially designed for this purpose. This drawback
reduces statistical power in our analysis by introducing false
positive and false negative CNV calls. Importantly, there is no
particular reason to believe that CNV calling artefacts appear
specifically for samples enriched for low/high trait values. Thus,
we believe that false CNV calls do not translate to false positive
findings, but of course can substantially reduce statistical power.
We did not perform independent (e.g., qPCR) experiments to
confirm these CNV findings, but provided several lines of evi-
dences to support our claims: (i) most of our reported CNVs have
been reported before with similar frequency and breakpoints; (ii)
many of our CNVs fall into regions already associated with
obesity; (iii) QQ-plots for all traits show excellent adherence to
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the null for the bulk of the CNV probes (Supplementary Fig. 16);
(iv) our top CNVs show little or no heterogeneity across studies;
(v) cohorts used 15 different genotyping arrays eliminating array-
specific artefacts. Crucially, these genotyping platforms are more
reliable than low-coverage sequencing to infer CNVs and thus
remain the most cost-efficient to perform such large CNV-
association studies. Another limitation is selection bias: As shown
in the results, many of the anthropometric trait-associated CNVs
we discovered are syndromic and were already observed in
patients with specific genomic disorders (including traits like e.g.,
developmental delay41, schizophrenia15, etc.). In such situations
we cannot distinguish whether the effect of those are mere con-
sequence of the primary syndromes or trigger molecular
mechanisms that act independently on anthropometric traits.
Note, however, that this criticism is valid for any GWAS. The
anthropometric effects of most of the syndromic CNVs are often
poorly reported due to the small number of cases. We found
evidence that 1q21.1 duplication carriers fall to the ~80th
population height percentile49, equivalent to ~4 cm of height
increase, close to our observed effect of 3.46 cm. Carriers of the
22q11.2 deletion have on average 3 kg/m2 higher BMI by the age
of 2050, which is comparable to our estimated effect of 4 kg/m2.
Moreover, our pheWAS analysis on 27 traits in the UK Biobank
did not identify any non-anthropometric trait to be stronger
associated with the discovered CNVs. Furthermore, we could not
identify any trend between effects on anthropometric traits and
schizophrenia (Supplementary Table 26), indicating that the
anthropometric associations we observed cannot be secondary to
schizophrenia. These lines of evidence indicate that most of the
discovered CNVs affect anthropometric traits either primarily or
in a disease-independent fashion. Importantly, the samples we
analyzed come from population-based cohorts, healthier than the
general population51. Selection bias, thus, removes many carriers
of CNVs with larger effects52, implying that the effects seen in our
study are potentially smaller than the real ones. A further lim-
itation is the variability in the frequency of such rare CNVs across
populations. This phenomenon may render some of these dis-
coveries difficult to replicate across populations, as not only
similarly large replication studies would be necessary, but also
populations in which the CNV frequency is high enough to yield
sufficient statistical power. The final weakness to mention is that
—to reduce cohort analyst burden—although we adjusted the
analyzed traits for gender, but did not perform sex-specific ana-
lysis, which will be the central focus of a future study.

CNV studies in general population cohorts have been neglected
in the past due to data availability issues. We have shown that
such studies are feasible through a careful re-analysis of existing
genotyping data. Our study has identified several height- and
obesity-associated rare CNVs with substantial effect. We hope
that our study will open new avenues for research to understand
the impact of CNVs on human health on an unprecedented scale.
The pipeline used for this meta-analysis could be applied with any
other type of quantitative trait, and, with some modification, to
any binary trait. Given the considerable overlap between CNVs
associated with anthropometric traits, developmental delay and
schizophrenia, in the future it would be insightful to switch point
of view and apply a pheWAS approach in large, phenotype-rich
cohorts such as the UK BioBank, allowing deeper interpretation
of candidate CNVs.

Methods
Cohorts. We conducted the meta-analysis for BMI (N UKBB= 119,873, N GIANT
= 71,288), weight (N UKBB= 119,767, N GIANT = 55,416), height (N UKBB=
116,259, N GIANT = 65,706) and waist-hip ratio (N UKBB= 119,867, N GIANT
= 41,377) (Supplementary Table 27). All GIANT samples were genotyped on
Illumina platforms and the UK BioBank was genotyped on Affymetrix Axiom.

Participants of each cohort have signed the informed consent form of the
respective study. In addition to the ethical committee approval of each individual
study, this meta-analysis effort was also approved by the steering committee of the
GIANT Consortium and the ethical review board of the UK Biobank (applications
#17085, #16389, #9072). Only unrelated adults (genetic relatedness < 0.1) of
European ancestry were included in the study.

CNV calling. For the Affymetrix Axiom chip, additional preprocessing was
necessary: Raw probeset intensity values were quantile-normalized. Briefly, inten-
sities were sorted numerically across each chromosome with missing values being
allocated an overall median value to facilitate normalization. The mean intensity
across each genotyping batch was then calculated for each sorted position. Mean
intensities were then substituted in place of the equivalently ranked raw intensities
whilst ignoring missing values. Each transformed intensity value was then log2
transformed for processing in PennCNV-Affy. Mean values of all intensities across
each chromosome were checked to ensure that they were the same within each
genotyping batch of the UK Biobank. PennCNV-Affy was used to infer genotype
clusters, generate Log R Ratio (LRR) and B-Allele Frequencies (BAF). All other
cohorts used Illumina arrays, so LRR and BAF values were readily available.

We devised a pipeline that takes as input normalized BAF and LRR for each
probe and sample (using the PennCNV software53), assigns probabilistic CNV
calls16 and runs association with each trait. The pipeline created a “population B
allele frequency” (PFB) file for each cohort based on 200 randomly selected final
reports. Adjacent CNVs with small gaps (gap shorter than 20% of the total length)
were merged using the default PennCNV parameters. Finally, samples with more
than 200 CNVs were excluded from further analysis.

For each CNV probe the pipeline computed a quality score (QS)16. The QS,
based on the PennCNV quality metrics, estimates (Supplementary Table 28) the
probability for a pennCNV call to be a true positive CNV call. It is a continuous
value between −1 and 1, representing the product of the relative copy number
(+1 for duplication, −1 for deletion) and the probability of the call being true, i.e., it
is the expected copy number dosage relative to the copy neutral (2 copy) state. The
QS is computed for each probe j and sample i (QSi,j) and used as genotype value for
CNV-trait association assuming a mirror effect of deletions and duplications. Since
the QS accounts for various CNV characteristics (length, number of probes, etc.)
we did not apply any filtering on these scores, which was shown to be the most
powerful strategy for association16. However, probes with low imputation quality
(see below) are filtered out in each cohort.

CNV associations with anthropometric traits. We focussed on the following
anthropometric traits: BMI, weight, height and waist–hip ratio. BMI (kg/m2),
weight (kg), and waist–hip ratio were adjusted for sex, age, age2 and the first five
principal components of the genotype data when available. Height (in meters) was
adjusted for sex, age and the first five principal components of the genotype data
when available. The resulting trait residuals were then inverse normal quantile
transformed.

As CNV boundaries vary across individuals, all associations were performed at
the probe level. For this, CNV calls and quality measures were translated to probe
level. For each probe in each cohort, association summary statistics are computed
and collected for meta-analysis. The summary statistics for each probe are the
mean QS, the sum of squared QS s, the sum of the phenotype–genotype products,
the phenotype means and the sum of the squared phenotype values. These
quantities are sufficient to compute regression coefficients as if we had access to
each individual cohort data, which is, for rare variant associations, advantageous
compared to standard inverse-variance meta-analysis.

Summary statistics imputation. As we collected different SNP arrays with vari-
able probe content we imputed summary statistics to the Illumina 1M probes as
reference probe set. For each Illumina 1M probe not present in the summary
statistic probe list for a study we imputed its summary statistics based on the
closest neighboring probes on each side within a 5 kb window. The imputation
weights are set to be inversely proportional to the distance between the target probe
and the neighboring probes.

CNV imputation quality. Analogously to genotype imputation, we used the
MACH r̂2 measure54 to estimate the quality of the CNVs estimation using the QS.
This measure is the ratio of the variance of the Bernoulli distributed probabilistic
CNV (taking value 1 with probability |QSi,j|, 0 otherwise) averaged over the samples
to the empirical variance of an expected dosage across all samples

r̂2j ¼
P

i QSi;j
�� ��� QS2i;jP

i QSi;j
�� ���QS�;j
� �2

where QSi,j represents the QS for individual i and probe j, and QS�;j is the average
QSi,j for probe j across the samples. For each cohort, only probes with r̂2j � 0:1
were kept for the meta-analysis. Imputation qualities were also meta-analyzed
using sample-size weighting.
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Pipeline. Our published pipeline16 based on bash, perl and R has been imple-
mented to run all pre-meta-analysis steps. In brief, this pipeline formats the gen-
otype files to run CNV calls using PennCNV, it cleans and merges the raw CNV
calls, it computes a QS for each CNV and it finally calculates the summary statistics
at the probe level. All participating cohorts ran the exact same pipeline and shared
summary statistics with us. An example configuration file can be found in the
Supplementary Note 1.

Meta-analysis. We ran fixed effects meta-analysis as described by RAR-
EMETAL55. We directly computed the meta βMeta and seMeta for a given CNV
probe from the summary statistics from the multiple cohorts:

βMeta ¼
P

cpgcP
c g

2
c � Nc�gc2

seMeta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1P
c g

2
c � Nc�gc2

s

where g2c is the sum of the squared CNV dosage for all individuals in cohort c, pgc is
the sum of the products of phenotype × CNV dosage values for all individuals in
cohort c, gc is the average CNV dosage in cohort c, and Nc is the sample size of
cohort c. An overall Z score can be estimated as: ZMeta= βMeta/seMeta. Eventually
P values are computed for each probe as: Pvalue= 2 ∗ ϕ(−|ZMeta|). All reported
results in the paper are based on the full study population, unless stated otherwise
(e.g., conditional analysis).

In order to decrease the number of tests and to avoid spurious associations we
kept only probes that were CNV in at least four cohorts and had a frequency of at
least 0.01%. Beside, using a 1Mb sliding window over the entire genome, we
merged probes with exactly the same summary statistics (frequency, effect size, SE),
i.e., highly likely having the same profile across all individuals, within that window.

Number of effective tests. Based on an in-house cohort (HYPERGENES,
N= 2930) we estimated the number of effective tests for the probes that were not
discarded at the previous step (Ntotal= 399,665). We computed the QS for this
cohort and kept only the probes for which the QS was not zero (Nnon-zero). For each
chromosome we used a 1Mb window to calculate the number of effective tests
locally. The number of effective tests corresponds to the number of probes
explaining 99.5% of the variance in the window17. The results for each window and
chromosome were then summed to obtain an overall Neff number of effective tests
for the non-zero probes. This indicated the strength of dependence between CNV
probes, f =Neff/Nnon-zero. We obtained a ratio of f= 8.23 and applied this scaling
constant to the 242,022 probes tested in our meta-analysis study, yielding 29,407
independent tests and subsequently a 1.7 × 10−6 genome-wide significant threshold.
To ensure robustness, we repeated the same analysis for each of the 33 batches of
the UK Biobank samples and obtained a slightly less stringent ratio (median
f= 13.83, CI95%= [8.20, 20.17]), but we preferred to use the more conservative
threshold of 1.7 × 10−6.

CNV burden analysis. For each sample we calculated the total number of
(imputed) CNV probes showing deviation from the copy neutral state. To account
for uncertainty in the calls and to avoid arbitrary thresholding, we used the
absolute QS of each probe (for the U-shaped model) and summed them up for the
whole genome. For the other models (deletion-, duplication-only) we used the
respective modifications (minus deletion QS, duplication QS). We then ran a linear
regression between the total burden score and the various traits and meta-analyzed
the results from the 26 cohorts.

Candidate CNV regions. In order to validate our methodology, we decided to first
look at regions already associated with BMI, weight or height. Regions have been
defined based on proximity of GWAS SNP8, 9, CNVs report39, genes from OMIM
repository15 and from a very recent systematic review of known genes implicated in
genetic syndromes with obesity (Table 1 of Kaur et al.40). Regarding the candidate
CNVs/genes or the OMIM regions, all high quality (r2> 0.5) probes falling into the
regions were selected. For each GWAS SNP we selected all the probes with asso-
ciation results in a ±500 kb region around the SNP position. The CNV report
cataloged 84 BMI and obesity-associated CNVs from research published since 2008
via PubMed search (see Supplementary Table 2 of the publication by Petersen
et al.39). Out of the 84 CNVs, we had good quality probes for 48 of them that we
subsequently tested. Out of the 79 OMIM regions for weight and BMI, 37 had good
quality probes (r2> 0.5). The 96 Kaur et al. genes40 represent 65 regions, out of
which 57 are on autosomes and 32 of those contained probes within 10 kb with
good imputation quality (r2> 0.5). In every candidate region we computed the
minimal P value and multiplied it with the number of effective tests for that region
to obtain one (corrected) P value per region. We then computed quantile–quantile
plot to visually inspect potential inflation and computed the fold-enrichment of
regions with low P values (P< 0.05).

GWAS and eQTL lookup. In order to further interpret our findings, we checked
whether height-associated coding variants10 were located within our height-
associated CNVs. Genes whose expression is modulated by both trait-associated
SNPs and CNVs are good gene candidates and can help narrowing down the
critical region. To identify such genes, we asked whether known height/BMI-
associated SNPs8, 9 act also as cis eQTLs in blood56 for the genes located within
height/BMI-associated CNVs.

Data availability. All association results are available in Supplementary Data 1 and
can also be browsed at https://cnvcatalogue.bbmri.nl
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