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Abstract— Quantitative photoacoustic tomography aims
at estimating optical parameters from photoacoustic im-
ages that are formed utilizing the photoacoustic effect
caused by the absorption of an externally introduced light
pulse. This optical parameter estimation is an ill-posed
inverse problem, and thus it is sensitive to measurement
and modeling errors. In this work, we propose a novel
way to solve the inverse problem of quantitative photoa-
coustic tomography based on the perturbation Monte Carlo
method. Monte Carlo method for light propagation is a
stochastic approach for simulating photon trajectories in
a medium with scattering particles. It is widely accepted
as an accurate method to simulate light propagation in
tissues. Furthermore, it is numerically robust and easy to
implement. Perturbation Monte Carlo maintains this robust-
ness and enables forming gradients for the solution of the
inverse problem. We validate the method and apply it in the
framework of Bayesian inverse problems. The simulations
show that the perturbation Monte Carlo method can be
used to estimate spatial distributions of both absorption
and scattering parameters simultaneously. These estimates
are qualitatively good and quantitatively accurate also in
parameter scales that are realistic for biological tissues.

Index Terms— Quantitative photoacoustic tomography,
perturbation Monte Carlo, inverse problems, photoacoustic
imaging, optoacoustic imaging, image reconstruction

I. INTRODUCTION

PHOTOACOUSTIC tomography (PAT) is an imaging
modality based on the photoacoustic effect generated by

the absorption of an externally introduced light pulse in the
imaged target. PAT combines optical contrast and specificity
with the high spatial resolution of ultrasound. It has various
applications in imaging of soft biological tissue, such as
imaging human blood vessels, microvasculature of tumors
and the cerebral cortex in small animals [1]–[8]. Quantitative

This work was supported by the Academy of Finland (projects 314411
and 312342 Centre of Excellence in Inverse Modelling and Imaging),
and Jane and Aatos Erkko Foundation. (Corresponding author: Aleksi
Leino.)

A. Leino, T. Lunttila, M.Mozumder and A. Pulkkinen are with the De-
partment of Applied Physics, University of Eastern Finland, 70211 Kuo-
pio, Finland (email: aleksi.leino@uef.fi; tuomas.lunttila@uef.fi; megh-
doot.mozumder@uef.fi; aki.pulkkinen@uef.fi)

T. Tarvainen is with the Department of Applied Physics, University of
Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland and Department
of Computer Science, University College London, WC1E 6BT, London,
United Kingdom (email: tanja.tarvainen@uef.fi)

Copyright (c) 2019 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

photoacoustic tomography (QPAT) continues from the con-
ventional photoacoustic images and aims at estimating the
spatial distributions of the optical parameters [9]. This optical
inverse problem of QPAT is ill-posed, meaning that even small
errors in measurements or modeling can lead to large errors in
the solution. Therefore, solution of the QPAT inverse problem
relies strongly on accurate modeling of light transport.

A widely accepted forward model for light propagation in
scattering medium such as biological tissue is the radiative
transfer equation (RTE) [10], [11]. Given the light source,
geometry and the optical parameters of the medium, it can
solve the light fluence and optical energy absorption into
the tissue. Due to the computational complexity of the RTE,
its approximations, such as the diffusion approximation, are
generally applied in optical imaging [11]. However, the dif-
fusion approximation is not valid in typical QPAT imaging
situations where the size of the imaged targets corresponds
approximately to a few scattering lengths. Alternatively to
the deterministic models, the Monte Carlo method can be
used to simulate light propagation in tissue. Monte Carlo
is a stochastic method that can be used to simulate light
tissue interactions. It has been widely utilized in biomedical
optics, see e.g. [12]–[16], and various open-source Monte
Carlo implementations have been published [13], [17]–[21].

The optical inverse problem of QPAT is typically formulated
as a minimization problem that is solved using methods of
numerical optimization [9]. Essentially, one minimizes the
difference of the ’measured’ optical energy density and that
produced by a numerical solution of a forward model. This
is a large scale inverse problem with a large number of both
unknown parameters and data points. Although methods for
utilizing the RTE in the optical inverse problem have been
presented [22]–[25], the numerical implementations still suffer
from the computationally expensive nature of the problem.

In this work, we use the Monte Carlo method in the solution
of the optical inverse problem of QPAT. Previously Monte
Carlo has been utilized in QPAT inverse problem by assuming
the scattering as known and estimating the absorption [26],
[27]. In practice, however, the scattering is not known and
it needs to be taken into account when solving the inverse
problem. Alternatively, adjoint Monte Carlo models of radi-
ance have been applied to formulate the solution of the QPAT
inverse problem [28]–[30]. This approach necessitates solving
the radiance in several points in space and angular directions
which causes challenges to storing the angular solution and
having good enough sampling to allow an acceptable level of
noise. The approach has been utilized in QPAT in estimating
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either absorption or scattering while keeping the other one as
a known constant [28], [29], including a recent study with
experimental data [30].

Herein, we introduce an approach to the QPAT inverse prob-
lem based on the so-called perturbation Monte Carlo (PMC)
concept [31], [34]. In PMC, the aim is to evaluate the effect of
a small change in the optical parameters, i.e. perturbation, effi-
ciently. This is achieved by re-using the trajectories of photons
from an unperturbed simulation so that the trajectories do not
need to be re-generated for each perturbation [31]. Previously,
PMC and a similar so-called white Monte Carlo approach have
been utilized in other optical tomographic imaging modalities
in diffuse optical tomography and fluorescence diffuse optical
tomography for example in [32]–[41]. Compared to the adjoint
Monte Carlo, PMC does not require forming the radiance or
its approximations, and thus it is numerically less expensive.
We approach the QPAT inverse problem in the framework of
the Bayesian inverse problems, and estimate both absorption
and scattering simultaneously. A methodology for forming the
Jacobian for the inverse problem of QPAT based on the PMC
methodology is presented and validated. To our knowledge,
this is the first work in which the PMC methodology is
formulated for QPAT, and the first study in which the Monte
Carlo method is used to estimate the spatial distributions of
absorption and scattering parameters simultaneously in QPAT.

The rest of the paper is organized so that the forward model
and the inverse problem of QPAT are described in Sec. II.
Monte Carlo is reviewed, PMC methodology is introduced,
and formulation for Jacobians is provided in Sec. III. The
methodology is evaluated with simulations and discussed in
Sec. IV followed by conclusions in Sec. V.

II. FORWARD AND INVERSE PROBLEMS OF
QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY

A. Forward model for quantitative photoacoustic
tomography

Modeling photoacoustic effect consists of modeling optical
light propagation and acoustic ultrasound propagation together
with their coupling. Due to the difference in time-scales
between the absorption of light and propagation of ultrasound,
the pressure increase due to the absorption of light can be
regarded as instantaneous with respect to the acoustic model.
Therefore, in the optical model, a time-independent light
transport model can be used. Further, the coupling of the
optical and acoustic models can be described by a linear
model.

1) Optical model: Let r ∈ Rd be a point located in a tissue
region of interest Ω ⊂ Rd with boundary ∂Ω where d = 2, 3
is the dimension of the domain, and and let ŝ ∈ Sd−1 denote
a unit vector in the direction of interest. Light transport in
biological tissue can be modeled with the radiative transfer
equation

ŝ · ∇φ(r, ŝ) + (µs(r) + µa(r))φ(r, ŝ)

= µs(r)

∫
Sd−1

Θ(ŝ · ŝ′)φ(r, ŝ′)dŝ′, r ∈ Ω

φ(r, ŝ) =

{
φ0(r, ŝ), r ∈ ξj , ŝ · n̂ < 0

0, r ∈ ∂Ω\ξj , ŝ · n̂ < 0.

(1)

where φ(r, ŝ) is the radiance, µs(r) is the scattering coefficient,
µa(r) is the absorption coefficient, Θ(ŝ · ŝ′) is the scattering
phase function, φ0(r, ŝ) is a boundary light source at a source
position ξj ⊂ ∂Ω and n̂ is an outward unit normal [10]. The
scattering phase function Θ(ŝ · ŝ′) describes the probability
that a photon with an initial direction ŝ′ will have a direction ŝ
after a scattering event. In optical imaging, the most commonly
applied phase function is the Henyey-Greenstein scattering
function [42] which is of the form

Θ(ŝ · ŝ′) =

{
1

2π
1−g2

(1+g2−2g(ŝ·ŝ′)) , d = 2
1

4π
1−g2

(1+g2−2g(ŝ·ŝ′))3/2 , d = 3
(2)

where g is the scattering anisotropy parameter that defines
the shape of the probability density. It has values between
−1 < g < 1, such that, if g = 0, the scattering probability
density is a uniform distribution, g > 0 for forward dominated
scattering, and g < 0 for backward dominated scattering.

The total energy at position r, often called photon fluence
Φ(r), is obtained from the radiance by

Φ(r) =

∫
Sd−1

φ(r, ŝ)dŝ. (3)

Further, the absorption of light creates an absorbed optical
energy density H(r) given by

H(r) = µa(r)Φ(r). (4)

Here we approximate the solution of the RTE with the
Monte Carlo method as implemented in ValoMC software and
MATLAB toolbox [21].

2) Acoustic model: Propagation of sound, created by the
instantaneous photoacoustic effect, in an infinite domain com-
posed of homogeneous non-attenuating medium is described
by the acoustic initial value problem [2], [43]

1

v2

∂2p(r, t)

∂t2
−∇2p(r, t) = 0, r ∈ Rd

p(r, t = 0) = p0(r)

∂

∂t
p(r, t = 0) = 0

(5)

where p(r, t) is the acoustic pressure, v is the speed of sound, t
is the time, and p0(r) is the initial pressure distribution created
by the absorption of a light pulse. The initial pressure is given
by

p0(r) =

{
GH(r), r ∈ Ω
0, r ∈ Rd\Ω (6)

where G is the Grüneisen parameter for an absorbing fluid that
is used to identify photoacoustic efficiency [2]. Throughout
this work, G is treated as a known constant, although in
general, this is not the case. The solution of the initial value
problem is obtained by numerically approximating the solution
of the wave equation using k-space time-domain method
implemented with the k-Wave MATLAB toolbox [44].

B. Inverse problem
The inverse problem in QPAT is to solve the optical pa-

rameters in the medium when the measured pressure wave on
the sensors and the amount of input light are given. This can
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be approached in one step by directly estimating the optical
parameters from the photoacoustic time-series or in two steps
by first considering the acoustic inverse problem and then the
optical inverse problem. Here we take the two-step approach.
Further, we concentrate on the optical inverse problem.

1) Acoustic inverse problem: In the acoustic inverse prob-
lem, the initial acoustic pressure distribution p0(r) is estimated
from photoacoustic waves pS measured on the acoustic sensors
outside the imaged target. We use a time-reversal method im-
plemented with the k-Wave MATLAB toolbox for the solution
of the acoustic inverse problem [44]. In this approach, the
recorded measurements pS(t) are used in time-reversed order
as a time-varying Dirichlet boundary condition at the sensor
positions. The time evolution of the propagating acoustic
wavefield imposed by the Dirichlet boundary condition is
calculated using the wave equation with zero initial conditions.
The reconstructed initial pressure p̂0 is then obtained as an
acoustic pressure within the domain after a time T . The
medium is assumed to be non-absorbing and the speed of
sound is assumed to be known.

2) Optical inverse problem: In the optical inverse prob-
lem of QPAT, the optical parameters of the medium are
estimated when the absorbed optical energy density (or the
initial pressure) and the input light illumination are given.
Commonly multiple different illumination patterns are used to
provide sufficient data enabling estimation of both the optical
absorption and scattering. Here, we approach the problem in
the framework of Bayesian inverse problems [45], [46] , while
the PMC method could be implemented in other frameworks
as well.

A discrete observation model for QPAT in the presence of
additive noise is

Hmeas = H(x) + e (7)

where Hmeas ∈ Rm is a data vector where m is the
number of data which in the case of QPAT is the number
of illuminations multiplied with the number of discretization

points to represent the data space, x =

(
µa

µs

)
are the

optical parameters of interest, with the absorption coefficients
µa = (µa,1, . . . , µa,n)T ∈ Rn and the scattering coefficients
µs = (µs,1, . . . , µs,n)T ∈ Rn, n is the number of spatial
discretization points, H : R2n 7→ Rm is the forward operator
which maps the optical parameters to data predictions, and
e ∈ Rm denotes additive noise.

In the Bayesian approach to inverse problems, all parameters
are modeled as random variables. Using Bayes’ formula and
following derivation given e.g. in [45], the solution of the
inverse problem, i.e. the posterior distribution of the unknown
parameters, can be formulated.In this work, we limit to eval-
uating the maximum a posteriori (MAP) estimates based on
the posterior distribution. Thus, we seek to find absorption and
scattering coefficients by solving a minimization problem

(µ̂a, µ̂s) = arg min
(µa,µs)

{
1

2
‖Le(Hmeas −H(x)− ηe)‖22

+
1

2
‖Lµa

(µa − ηµa
)‖22 +

1

2
‖Lµs

(µs − ηµs
)‖22

} (8)

where noise is modeled as Gaussian with an expected value ηe
and Le being the Cholesky decomposition of the inverse of the
noise covariance matrix Γ−1

e = LT
e Le [46]. Prior information

of absorption and scattering is described by Gaussian prior
distributions where ηµa

and ηµs
are the expected values of

absorption and scattering, and Lµa
and Lµs

are the Cholesky
decompositions of the inverse of the prior covariance matrices
for absorption and scattering, Γ−1

µa
= LT

µa
Lµa and Γ−1

µs
=

LT
µs
Lµs , respectively.

The prior model for the unknown parameters µa and µs was
chosen to be based on the Ornstein-Uhlenbeck process [47],
[48]. In the authors’ previous studies, the prior has been found
efficient and versatile for multiple type of imaged targets. A
comparative discussion of the prior selection in applications
of QPAT is provided in Ref. [48]. Ornstein-Uhlenbeck prior
is a Gaussian distribution with a covariance matrix Γ defined
as

Γ = σ2Ξ (9)

where σ is the standard deviation of the prior and Ξ is a matrix
which has its elements defined as

Ξij = exp(−||ri − rj ||/`), (10)

where i and j denote the row and column indexes of the
matrix, ri and rj denote the coordinates of the discretization
points i and j, and ` is the characteristic length scale of
the prior describing the spatial distance that the parameter is
expected to have (significant) spatial correlation for.

The expected value and standard deviation of the prior are
chosen such that the relevant support of the Gaussian prior
describes that of the imaged target. These parameters can be
chosen, for example, based on expected range of variation
of the properties of the target. Similarly the characteristic
length scale ` is usually chosen to be in the same scale as the
expected size of heterogeneities found in the imaged target.
These parameters are application and imaged target specific
and hence are tunable parameters. Parameter choises used in
this work are described in Sec. IV-B.

Minimization problem (8) can be solved using methods
of numerical optimization. Here we use the Gauss-Newton
method augmented with a line-search algorithm [49]. A Gauss-
Newton iteration can be written in a form

x(i+1) = x(i) + s(i)

(
JT

(i)Γ
−1
e J(i) + Γ−1

x

)−1

·(
JT

(i)Γ
−1
e (Hmeas −H(i) − ηe)− Γ−1

x (x(i) − ηx)
) (11)

where x(i) = (µa, µs)
T = (µa,1, . . . , µa,n, µs,1, . . . , µs,n)T ∈

R2n are the estimated absorption and scattering parameters
and s(i) is the step length at iteration i, and

Γ−1
x =

(
Γ−1
µa

0
0 Γ−1

µs

)
, ηx =

(
ηµa

ηµs

)
. (12)

Further, J(i) is the Jacobian of the form

J(i) =
(
Jµa,(i) Jµs,(i)

)
(13)

where Jµa,(i) and Jµs,(i) are Jacobians for absorption and
scattering. The formulation of the forward operator and Ja-
cobian matrices are based on Monte Carlo and PMC methods
described in Sec. III.
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III. PERTURBATION MONTE CARLO METHOD FOR QPAT

A. Monte Carlo method for light transport

In Monte Carlo method for light transport in biological
tissue, the underlying model for light propagation has three
main principles [12]. Firstly, the probability for photon absorp-
tion in a small length ds in a propagation direction is µads.
Secondly, the probability for photon scattering is similarly
µsds. Hence, the scattering length follows an exponential
probability distribution function

f(l) = µs(l) exp

[
−
∫ l

0

µs(s)ds

]
. (14)

Thirdly, if a scattering occurs, the scattering angle follows a
probability distribution for scattering direction which in this
work is the Henyey-Greenstein phase function (2).

Typically, in order to generate sufficient statistics with
optimal efficiency, so-called photon packet method is used
[12]. In the photon packet method, instead of simulating
propagation of individual photons until an absorption event,
a ’group of photons’ (a photon packet) with an initial weight
w is simulated. As the photon packet propagates, its weight
along trajectory S is reduced due to absorption according to

w(S) = exp

[
−
∫
S

µa(s)ds

]
. (15)

This is continued until the photon packet exits the simulation
domain, or its weight becomes small. Sampling scattering
lengths from Eq. (14) with a weight factor assigned to those
trajectories according to Eq. (15) is a form of importance sam-
pling [31]. It produces statistically equivalent results compared
to the straightforward generation of photon paths that can end
on absorption events. This method is called the microscopic
Beer-Lambert law in [14].

In Monte Carlo simulation for QPAT with piecewise con-
stant optical coefficients µa,i and µs,i, the total absorbed
optical energy density Hj deposited to discretization element
j is computed as

Hj =
1

Aj

∑
e

we (1− exp [−µa,jSe,j ]) (16)

where we is the weight of the photon packet before entrance
to the j:th element, and Se,j is the distance traveled on each
entrance to j. Aj is the area/volume of the element in 2D/3D.
The summation over index e refers to each entrance, including
revisits, by the photon packet to the element.

B. Perturbation Monte Carlo

The goal of perturbation Monte Carlo is to evaluate the ef-
fect of a small change in the optical parameters (perturbation)
to the simulation results efficiently. This goal is achieved by
re-using the trajectories from an unperturbed simulation so
that the trajectories do not need to be re-generated for each
perturbation [31]. Considering the ratio between probability
density functions between scattering lengths in perturbed and
unperturbed regions of a domain and utilizing the knowledge
that scattering length does not depend on absorption, the

following expression for the weight of a photon packet in a
perturbed simulation can be derived

w̃ = w

(
µ̃s

µs

)k
exp [−(µ̃s − µs)Ltot] (17)

where w̃ is the perturbed weight, w is the unperturbed weight,
µ̃s is the perturbed scattering coefficient, Ltot is the total
distance travelled by the photon packet inside the perturbed
region, and k the number of scattering events in the perturbed
region. For more details of the derivation, see Appendix I.

Now, in QPAT in a perturbed medium with piece-wise
constant optical coefficients µa,i and µs,i, the total energy
density H̃j deposited to discretization element j is

H̃j =
1

Aj

∑
e

w̃e (we, µ̃s,i, ke,i, Le,i) (1− exp [−µa,jSe,j ])

(18)
where ke,i is the number of scattering events and Le,i is the
total distance travelled by the photon packet in the perturbed
element i.

C. Construction of the Jacobian
To construct the Jacobian for the Gauss-Newton algorithm

(11), derivatives of absorbed optical energy with respect to
the optical coefficients need to be evaluated. The derivative
for the absorption coefficient can be computed directly from
Eq. (16) by differentation. For construction of the Jacobian
for the scattering, perturbation Monte Carlo is utilized, and the
derivative with respect to the scattering coefficient is computed
using Eqs. (17) and (18).

Here, in the case of piece-wise constant absorbed optical
energy density Hj and optical parameters µa,i and µs,i, the
derivatives can be derived to take the following forms. For
absorption, if i 6= j,(

∂Hj

∂µa,i

)
i6=j

=
1

Aj

∑
e

−Le,iwe (1− exp [−µa,jSe,i]) (19)

and, if i = j,

∂Hj

∂µa,j
=

1

Aj

∑
e

we (Le,i (exp [−µa,jSe,j ]− 1)

+Se,j exp [−µa,iSe,j ]) .

(20)

For scattering

∂Hj

∂µs,i
=

1

Aj

∑
e

we

(
ke,i
µs,i
− Le,i

)
· (1− exp [−µa,jSe,j ]) .

(21)

Derivation of absorption and scattering derivatives and their
computational validation are presented in Appendixes II and
III.

IV. SIMULATIONS

The perturbation Monte Carlo approach for QPAT was eval-
uated with numerical simulations. Two types of simulations
were considered. First, only the optical problem was studied
to evaluate the performance of the proposed method with dif-
ferent targets and noise levels, and then, the full photoacoustic
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simulation including also the acoustic part was performed.
While idealized, the purpose of the latter simulation is to
mimick a more realistic imaging scenario by a fine-detailed,
biomedical target and a finite number of acoustic sensors. In all
cases, the simulation domains were two-dimensional squares
with edge length of 5 mm. Multiple different illuminations
were used to ensure that the optical absorption and scattering
can be estimated. The imaged target was illuminated by four
different illumination patterns originating from the four sides
of the domain respectively.

In the first simulation concentrating only on the optical
inverse problem of QPAT, two targets were studied. The
absorption and scattering parameters of these targets are
shown in Figs. 1 and 2. The first target, i.e. ’bars’ (Fig. 1),
featured 4 bars with absorption values 0.05, 0.02, 0.005 and
0.0001 mm−1 and scattering values 0.01, 0.5, 2 and 5 mm−1.
The background absorption coefficient was 0.01 mm−1 and the
background scattering coefficient was 1 mm−1. In the second
target, i.e. ’cards’ (Fig. 2), the absorption coefficients of the
clover and spade were 0.05 and 0.02 mm−1, respectively, and
the scattering coefficients of the spade and heart were 2 mm−1.
The diamond had a spatially varying scattering coefficient
between 0.8 and 1.8 mm−1. The background absorption
coefficient was 0.01 mm−1 and the background scattering
coefficient was 1 mm−1. In all simulations, the anisotropy
parameter of the Henyey-Greenstein phase function was g =
0.9. The refractive index of the target was a constant and
matched with the refractive index of surrounding medium,
i.e. no light reflections on the boundary or within the target
occurred.

In the full photoacoustic simulation, a blood-vessel mim-
icking numerical phantom of the k-Wave toolbox illustrated
in Fig. 4 was studied. In that case, the absorption coefficients
of the vessel and background were 0.4 and 0.07 mm−1,
respectively, and the scattering coefficients of the vessel and
the background were 20 and 9 mm−1, respectively. These
values correspond approximately to absorption and scattering
of blood and adipose tissue at wavelenghth λ ≈ 900 nm
[50], [51]. The anisotropy parameter of the Henyey-Greenstein
phase function was again g = 0.9, and the refractive index of
the target was a constant matching with the refractive index
of the surrounding medium.

In addition to visual inspection of the simulation results, we
compared the differences between estimated and ground truth
values using

E = 100% ·

√∫
Ω

(f(r)− fref(r))2dr∫
Ω
fref(r)2dr

(22)

where f is a discrete presentation of the parameters being
estimated at point r, i.e. absorption or scattering coefficient,
and fref is the reference (ground truth value) mapped to the
reconstruction mesh for comparison.

A. Data generation
The simulation domains were discretized into triangular

elements using NetGen [52] software for the ’bars’ and ’cards’
simulations. The ’vessel’ simulation used a 350 × 350 pixel

TABLE I
NUMBER OF ELEMENTS AND NODES OF THE DISCRETIZATION, AND THE

NUMBER OF PHOTON PACKETS USED IN EACH ILLUMINATION IN DATA

SIMULATION.
Target Elements Nodes Packets
’bars’ (Fig. 1) 92182 46494 109

’cards’ (Fig. 2) 89516 45161 109

’vessel’ (Fig. 4) 245000 123201 108

grid, where the pixels were spit into two identical triangles.
The number of elements and nodes in each mesh is given in
Table I.

Photon fluence and absorbed optical energy density were
simulated with the Monte Carlo method implemented with
ValoMC MATLAB toolbox [21]. The targets were illuminated
from the left, right, bottom and top faces separately with a
collimated light source (i.e. all photon packets travel initially
in the direction of the face normal and the whole face acted
as a light source). The number of photon packets used in
simulations for each illumination is given in Table I.

In the pure optical simulation with ’bars’ and ’cards’, the
absorbed optical energy density within the domain was stored
as data. Two separate noisy datasets (for both targets) were
obtained by adding uncorrelated Gaussian noise with standard
deviation equal to 1 % or 0.1 % of the maximum value of the
simulated data. In addition, Monte Carlo simulations contain
also intrinsic noise. To estimate the intrinsic noise level for
these targets, we ran an additional forward simulation and
computed the standard deviation of the difference between the
two results. These values were small compared to the added
noise (less than 0.03 % of the maximum for both targets).

In the full photoacoustic simulation with the ’vessel’ target,
we continued from the absorbed energy density obtained
from the optical simulation by computing the initial pressure
using Eq. (6). In this work we assumed a known Grüneisen
parameter. This makes mapping between the initial pressure
and the optical absorbed energy density trivial, and thus the
choice of its value arbitrary. The initial pressure was computed
in 1050 × 1050 pixel grid, that was then used to simulate
the photoacoustic wave propagation. The acoustic initial value
problem (5) was solved using the k-space time-domain method
implemented with the k-Wave toolbox [44]. For the speed
of sound, value c = 1500 m/s was used, which is similar
to the speed of sound in water and soft tissues. The time-
varying acoustic pressure was recorded at 600 sensors spread
uniformly on the boundary of the grid with sensors being sepa-
rated by 33µm. Ideal point like sensors were used. A perfectly
matched layer [44] with 50 grid points in each dimension
was used outside of grid to dampen the escaping waves. The
pressure signals were sampled for 12 µs and discretized into
12602 temporal points at each of the acoustic sensor locations.
Noise with a standard deviation of 1 % of the peak amplitude
of the simulated pressure signal was added to the simulated
data. This type of sensor positioning and noise can roughly
be regarded to simulate a Fabry-Pérot based photoacoustic
sensor-head [53]–[55]. In order to obtain the data for the
optical inverse problem, the acoustic inverse problem was
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solved using the time-reversal method implemented with the k-
Wave toolbox. Discretization of 850×850 pixels was used. As
a result, the initial pressure within the domain was obtained.
Then, the absorbed optical energy density can be obtained
trivially from the initial pressure using the known Grüneisen
parameter, and regridded to the discretization of the optical
inverse problem.

B. Image reconstruction
In the solution of the inverse problem the photon fluence

and absorbed optical energy density were represented in a
mesh constructed of regular triangular elements (two triangles
form a rectangle) with 20000 elements and 10201 nodes. The
absorption and scattering parameters were represented in a
100×100 rectangular pixel grid. It should be noted that, even
though we used regular meshes in the solutions of the inverse
problem, it could be solved in an irregular mesh as well.

In the solution of the inverse problem, the measurement
noise statistics were assumed to be known. For the ’bars’
and the ’cards’, simulated 1 % or 0.1 % noise levels were
used, while for the ’vessel’ a 1 % noise was used. For the
Ornstein-Uhlenbeck prior, the expected values ηµa and ηµs

were set to the midpoint value between the maximum and
the minimums. The standard deviations σµa

and σµs
were set

such that maximum target values corresponded to two standard
deviations from the prior mean. The characteristic length scale
was set as 0.5 mm for the ’bars’ and ’cards’ targets and as
0.1 mm for the ’vessel’, corresponding approximately to the
size of the inhomogeneities.

The MAP estimates were computed using the Gauss-
Newton method. As the initial guess for absorption and
scattering in the Gauss-Newton iteration (11), the expected
values of the prior were used. During the iterations, the
forward solutions and the Jacobians were computed using
Monte Carlo and PMC as described in Sec. III. To optimize the
computational efficiency, the forward model and the Jacobian
were evaluated in a single simulation utilizing the same photon
packet trajectories. The number of photon packets used to
produce the forward solution and Jacobian during the Gauss-
Newton iterations was 108 for each illumination of the ’bars’
and ’cards’ and 107 for the ’vessel’.

Difference between consecutive reconstructions was com-
puted using Eq. (22), where f were the estimated values and
fref were the estimates of a previous iteration. The Gauss-
Newton iteration was stopped once the average difference
between three consecutive reconstructions had fallen below
0.5 %.

C. Results
The reconstructed absorption and scattering coefficients for

’bars’ and ’cards’ targets with both noise levels are shown in
Figs. 1 and 2. As can be seen, in all cases the absorption
coefficients are well reconstructed and represent the target
features well. Based on qualitative inspection, the noise level
does not have a significant impact on the absorption estimates.
In the reconstructions on scattering, however, the impact of
noise is clearly visible, although also in these the main features

TABLE II
NUMBER OF ITERATIONS NEEDED TO REACH CONVERGENCE OF THE

RECONSTRUCTION ALGORITHM AND THE RELATIVE ERRORS OF THE

ABSORPTION Eµa(%) AND SCATTERING Eµs(%) ESTIMATES

EVALUATED USING EQ. (22) IN DIFFERENT SIMULATIONS.
Target Noise level (%) Iterations Eµa (%) Eµs (%)
’bars’ (Fig. 1) 0.1 18 0.3 11
’bars’ (Fig. 1) 1.0 10 2.2 20
’cards’ (Fig. 2) 0.1 9 0.2 6.1
’cards’ (Fig. 2) 1.0 7 1.9 11
’vessel’ (Fig. 4) 1.0 10 5.5 20

of the target are quite well captured. This is especially evident
in the cards experiment shown in Fig. 2. Some artefacts are
seen in particular in the region with the lowest absorption
coefficient in Fig. 1.

We refrain from making definite judgments about the per-
formance in relation to other reconstruction methods due to
differences in the simulations. However, compared to the
previous [22], [23], [28] reconstructions obtained using the
RTE or Monte Carlo as the forward model, those presented
here do seem to show a promising quantitative accuracy in
general. Results that enable a more straightforward comparison
with the closely related adjoint Monte Carlo method [28] are
presented in the supplementary material. The comparison fa-
vors PMC, but it should not be taken as a proof of superiority.
This is because computation expense can vary greatly between
the methods, which is discussed in the supplementary material.

For the ’vessel’ target, the reconstructed initial pressure
distributions are shown in Fig. 3. The estimates resemble
the true distributions (data not shown) qualitatively with a
smooth absorbed energy density field emanating from the
light source overlaid with strongly absorbing heterogeneity
mimicking blood-vessels. The relative errors of the estimated
initial pressure distributions were in range 7.7− 9.9%.

Further, the reconstructed absorption and scattering coeffi-
cients for the ’vessel’ target are shown in Fig. 4. As it can be
seen, the main features of the target are captured well both
in the absorption and scattering images. The absorption image
represents clearly also the small vessels. The scattering image,
on the other hand, is not as sharp as the absorption, which was
noticed also in other simulations.

The relative errors of the estimates computed using Eq. (22)
are given in Table II. As can be seen, the quantitative accuracy
of the absorption estimates is good for all tests. The relative
errors are approximately on the same level for both ’bars’
and ’cards’ tests with the same amount of additive noise with
lowest error of 0.2 % obtained with ’cards’ test with 0.1 % of
noise and highest error of 2.2 % obtained with ’bars’ test with
1 % of noise. The relative errors of scattering are larger, and
only in the ’cards’ test with lower amount of additive noise the
error is below 10 %. In the case of the ’vessel’ simulation, the
relative errors of both absorption and scattering are slightly
larger than in the other simulations.

The computations were performed on a computer with two
Intel(R) Xeon(R) Gold 6136 processors with a total of 24
cores and 256 GB of system memory. The reconstructions took
about 150 minutes per step, out of which 20–30 minutes
was spent outside of PMC computation (e.g. in the line
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Fig. 1. Reconstructed absorption (left column) and scattering (right
column) distributions. Rows from top to bottom: simulated true values
(first row), reconstructions from data with 0.1% of additive noise
(second row) and reconstructions from data with 1% of additive noise
(third row).

search and matrix inversions) for the ’bars’ and ’cards’. For
the ’vessel’ simulation, the reconstruction times were longer
due to the higher scattering of the target which resulted in
longer Monte Carlo simulation times. This time consuming
nature was eased by reducing the number of photon packets
which still remained large enough to maintain the numerical
accuracy of the method. Since it took from 10 to 30 steps
to reach convergence (see Table II) and larger discretization
is needed in a realistic geometry, the computation times are
long for practical applications. However, the photon counts
were based on a simple criterion and not optimized. Moreover,
the method is trivially parallelizable and easy to implement.
Therefore, it seems plausible that implementations using e.g.
GPU and adaptive meshing could well succeed in reducing
the computation time by orders of magnitude. A systematic
study of the quantitative accuracy of the reconstructions as a
function of photon packet count remains future work.

V. CONCLUSION

Fig. 2. Reconstructed absorption (left column) and scattering (right
column) distributions. Rows from top to bottom: simulated true values
(first row), reconstructions from data with 0.1% of additive noise
(second row) and reconstructions from data with 1% of additive noise
(third row).

In this work, a perturbation Monte Carlo method was
introduced for the optical inverse problem of quantitative pho-
toacoustic tomography. Bayesian framework was used for the
formulation of the inverse problem resulting in a minimization
problem that was solved using the Gauss-Newton method. In
the proposed approach, Monte Carlo was used as a forward
model and perturbation Monte Carlo was used to evaluate the
Jacobian matrices for the absorbed optical energy density with
respect to the optical absorption and scattering. Evaluation of
both the forward model and the Jacobians can be implemented
in a simultaneous fashion. Although Bayesian framework was
utilised in this work, the perturbation Monte Carlo is not
limited to that. It can be utilized similarly with regulariza-
tion approaches and with different prior models. Future
work includes extending the method to three dimensions. In
addition, evaluating efficient ways to implement perturbation
Monte Carlo using graphics processing units (GPU) should
be sought as the approach is (at least in principle) trivially
parallelizable. However, potential pitfalls with the GPUs can
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Fig. 3. Reconstructed initial pressure distributions (arbitrary units) for
the four illuminations of the ’vessel’ target. Reconstructions shown for
illumination originating from the left (top left), top (top right), right (bottom
left), and bottom (bottom right).

Fig. 4. Reconstructed absorption (left column) and scattering (right col-
umn) distributions. Simulated true values (top row) and reconstructions
from data with 1% of additive noise (bottom row).

include inefficient memory usage or unideal parallelization
efficiency. Furthermore, the method should be evaluated with
experimental data.

APPENDIX I
PERTURBATION MONTE CARLO

To simulate energy absorption E into a domain (or in
general to approximate the solution of the RTE [31]), one
integrates a function g of a trajectory s over probability
distribution function (PDF) of f

E =

∫
S

g(s)f(s)ds (23)

where g(s) describes energy absorption and S the ’space’ of
all photon trajectories. According to the law of large numbers,

N∑
n=1

g(sn)→ E, when N →∞ (24)

and sn are samples drawn from f .
In case we would want to use another PDF f̃ instead, we

can obtain these by ’correcting’ samples drawn from f by
weighting, and write Eq. (23) as

E =

∫
S

g(s)f̃(s)ds =

∫
S

g(s)
f̃(s)

f(s)
f(s)ds (25)

and similarly as in the approximation (24) we can write

N∑
n=1

g(sn)
f̃(sn)

f(sn)
→ E, when N →∞ (26)

where sn are samples drawn from f .
Considering a photon trajectory consisting of multiple steps

with a scattering distance Li, a modified weight w̃ utilizing
photon trajectories in perturbed and unperturbed regions can
be derived

w̃ = w

(
µ̃s

µs

)k
exp [− (µ̃s − µs)Ltot] (27)

where w is the weight of an unperturbed simulation, Ltot is the
total trajectory inside the perturbed region and k the number
of scattering events in the perturbed region. The correction
factor to the weight is the ratio of the PDFs as indicated by
Eq. (26). An example for a piece-wise domain is outlined in
Fig. 5. Eq. (27) is valid for any range of perturbation. However,
in optically challenging simulations, the variance of the Monte
Carlo simulation can increase and an increased number of
photon packets may be required to reach an acceptable level
of noise.

Now, in QPAT in a perturbed medium with piece-wise
constant optical coefficients µa,i and µs,i, the total optical
energy density H̃j deposited to discretization element j is (c.f.
Eq. (16))

H̃j =
1

Aj

∑
e

w̃e(we, µ̃s,i, ke,i, Le,i) (1− exp [−µa,jSe,j ])

(28)
where ke,i is the number of scattering events and Le,i is
the photon trajectory in the perturbed element i (see Fig.
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Fig. 5. a) Example PDFs for determining the first scattering length in the
original (f ) and perturbed simulation (f̃ ) for a domain with a piece-wise
constant scattering coefficient. Shown is also their ratio that determines
the correction factor. b) Domain geometry for the PDFs. Shown is also
an exemplar path of a packet. Note that the PDFs are only valid for
the first line in the path. The index of the perturbed region is i and the
region in which the energy density is evaluated j. The length traversed
in i before entrance to j is given by Le,i, and the length traversed in
j by Se,j . The number of scattering events in the perturbed region is 1
(ke,i = 1).

5). Further, Se,j is the distance traveled on each entrance in
element j and Aj is the area/volume of the element in 2D/3D.
The summation over index e refers to each entrance, including
revisits, by the photon packet to the element.

APPENDIX II
CONSTRUCTION OF JACOBIAN

The derivative for the absorption coefficient can be com-
puted directly from Eq. (16) by differentation, but all oc-
curences of µa,i must be made explicit since they are only
implicitly affecting we. This results in

Hj =
1

Aj

∑
e

we′ exp [−µa,iLe,i] (1− exp [−µa,jSe,j ]) (29)

where we′ is the weight before entrance to the j:th element
without the contribution from the i:th element, and Le,i is the
distance traveled in element i before each entrance. For i 6= j,
differentation gives(

∂Hj

∂µa,i

)
i6=j

=
1

Aj

∑
e

−Le,iwe (1− exp [−µa,jSe,i]) (30)

where we contains the contribution that was excluded from
we′ in Eq. (29). If i = j,

∂Hj

∂µa,j
=

1

Aj

∑
e

we (Le,i (exp [−µa,jSe,j ]− 1)

+Se,j exp [−µa,iSe,j ]) .

(31)

For construction of the Jacobian for the scattering, per-
turbation Monte Carlo is utilized. Then, the derivative with
respect to the scattering coefficient can be computed using
Eqs. (27) and (28). An analytical expression for ∂Hj

∂µs,i
is

obtained by writing the difference quotient and taking the limit
µ̃s,i − µs,i → 0

∂Hj

∂µs,i
= lim
µ̃s,i−µs,i→0

H̃j −Hj

µ̃s,i − µs,i

= lim
∆µs,i→0

∆Hj

∆µs,i

=
1

Aj
lim

∆µs,i→0

1

∆µs,i

(∑
e

we

(
µs,i + ∆µs,i

µs,i

)ke,i
· exp [−∆µs,iLe,i] (1− exp [−µa,jSe,j ])

−
∑
e

we (1− exp [−µa,jSe,j ])

)
(32)

The limit can be evaluated using the first order expansions for
two the expressions in the numerator with ∆µs,i to obtain

∂Hj

∂µs,i
=

1

Aj

∑
e

we

(
ke,i
µs,i
− Le,i

)
· (1− exp [−µa,jSe,j ]) .

(33)

Computation of the Jacobian was validated with simulations
described in Appendix III.

APPENDIX III
VALIDATION OF THE JACOBIAN COMPUTATION

Computation of the Jacobian was validated by evaluating
derivatives of absorption and scattering, Eqs. (19), (20) and
(21), and comparing them to a least-squares estimation of
the derivatives from a finite difference approximation utilizing
conventional Monte Carlo simulations. A simple rectangular
test geometry of size 3 mm× 3 mm that was discretized into
81 pixels was used. The absorption and scattering coefficients
of each pixel were selected at random in the intervals µa ∈
[0 , 0.05] mm−1 and µs ∈ [0 , 3] mm−1. Scattering anisotropy
was selected as a constant value for the whole simulation
domain randomly in the interval of g ∈ [−0.8 , 0.8].

The derivatives using the least squares approach were
computed as follows. First two random pixels i and j were
selected. Symbol i stands for the pixel in which the absorbed
energy is evaluated and j for the pixel where the optical
coefficient is varied. Then, to evaluate e.g. the derivative
for absorption Ji,j = ∂Ei

∂µa,j
, we introduced a small random

variation δµa to µa,j into the absorption coefficient of the pixel
j several times and computed the energy absorbed in the pixel
i using Monte Carlo. Since δµa is small, a least-squares line
can be fitted to these values to estimate the derivative from
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Fig. 6. Energy absorbed to one pixel of a rectangular simulation domain
of size 3mm × 3mm at a distance of 0.67mm from another pixel
where scattering was varied, a linear fit for determining the slope ∂E

∂µs
(grey region), and a line with a slope that is estimated at δµs = 0 using
perturbation Monte Carlo (black line).

the slope. Derivatives with respect to the scattering coefficient
were evaluated in the same way.

All the derivatives produced in this way agreed to those
computed using Eqs. (19), (20) and (21). The photon count
and the magnitude of the varied parameters were improved
(i.e. increasing photon count and decreasing the magnitude)
until the results agreed within 95 % confidence. However,
the numerical noise in the data for the least-squares estimate
sometimes became too high to obtain good enough relative
accuracy for comparison. Generally, this tends to happen if
the distance between the pixels i and j is large. An example
of evaluating scattering derivatives using two pixels located at
a distance of 0.67 mm from each other is shown in Fig. 6.
In general, the simulations showed a good agreement between
the derivatives evaluated using the two approaches.
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