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A B S T R A C T

This paper develops a three-dimensional in silico hybrid model of cancer, which describes the multi-variate
phenotypic behaviour of tumour and host cells. The model encompasses the role of cell migration and adhesion,
the influence of the extracellular matrix, the effects of oxygen and nutrient availability, and the signalling
triggered by chemical cues and growth factors. The proposed in silico hybrid modelling framework combines
successfully the advantages of continuum-based and discrete methods, namely the finite element and agent-
based method respectively. The framework is thus used to realistically model cancer mechano-biology in a
multiscale fashion while maintaining the resolution power of each method in a computationally cost-effective
manner. The model is tailored to simulate glioma progression, and is subsequently used to interrogate the
balance between the host cells and small sized gliomas, while the go-or-grow phenotype characteristic in
glioblastomas is also investigated. Also, cell–cell and cell–matrix interactions are examined with respect to their
effect in (macroscopic) tumour growth, brain tissue perfusion and tumour necrosis. Finally, we use the in silico
framework to assess differences between low-grade and high-grade glioma growth, demonstrating significant
differences in the distribution of cancer as well as host cells, in accordance with reported experimental findings.

1. Introduction

Gliomas are a common type of primary central nervous system tu-
mours [1,2]. The understanding of their origin has evolved from the
idea that they could be initiated by glia [3] to the current conjecture of
expansion from restricted progenitors, or neural stem cells [4,5],
whence tumour characteristics and behaviours are somewhat bound by
hysteresis to its origins. The median overall survival of patients affected
by gliomas varies from 6.5 to 8 years for low-grade gliomas, to a measly
1.25 years for glioblastoma multiforme [6,7]. The most important
hallmark of this kind of tumours is its phenotypic plasticity, under-
pinning both its ability for malignant progression from low- to high-
grade types, and its invasive behaviour regularly resulting in a

widespread infiltration of otherwise healthy brain tissue by glioma
cells. Especially the latter is largely responsible for the lack of effective
therapeutic approaches, and ultimately the aforementioned poor
prognosis.

Despite the accumulated clinical wisdom and biological data, the
invasion dynamics and its underlying mechanisms remain unclear as a
result of a lack of ethical means to investigate the connections between
clinical observables and in vitro data, for as instance the geometry of
tumour growth and shape can affect the biological data we can sample
in vivo [8]. The question about how to account for spatial characteristics
when analysing cancer growth dynamics is novel and largely un-
explored by current standards. Mathematical and computational
models – also collectively referred to as in silico models – can play an
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important role in extrapolating findings from in vitro experiments to in
vivo. Thus, in silico modelling as a means to synthesise, to test the
compatibility of different data speaking to the same theory, and to
discover known unknowns [9] has a long history in this field, as re-
cently reviewed by Alfonso et al. [10] and Magi et al. [11].

Herein we contribute a new tool to serve the community trying to
clear this complicated puzzle and open up a path towards better
prognosis: a novel method that combines the advantages of agent-based
and continuum models. In particular, the agent-based approach allows
to model detailed cellular dynamics (encoded either as logics or as si-
mulated genetic expression patterns), cell–cell and cell–matrix inter-
actions. Importantly, agent-based modelling allows to take into account
highly heterogeneous system dynamics. This is problematic to reconcile
with the continuum approach. However, continuum models allow to
cover a large spatial volume in 3D.

Specifically, we develop an interface between two software frame-
works, namely the agent-based modelling software platform
BioDynaMo [12] and the finite element (FE) analysis software for
multiscale modelling FEB3 [13–15]. The resulting hybrid toolkit offers
the advantages of both types of simulations, enabling highly efficient
models of large-scale 3D biological systems. Notably, it can take into
account macroscopic dynamics, which can be measured with medical
imaging for example, as well as cell–cell interactions, allowing the ex-
perimental assessment of model predictions on multiple scales [16].

Models that combine discrete cellular dynamics with continuous-
scale resolution models (such as growth-consumption dynamics) have
already emerged in the past decade [17] – usually referred as hybrid
models. In general, hybrid models are built by building interfaces across
different modelling solutions, each representative of the best practices
accumulated by the research community most concerned with the
specific problem and scale (tissue growth, electrical activity, mechan-
ical action, metabolism, etc.) [18–20]. Our approach builds on our
predecessors’ intuition by offering ways to model intracellular signal-
ling and the transport of growth factors and oxygen by differential
equations and the finite element method (Section 2.1), and combining
this with discrete cell dynamics simulated by an agent-based approach
(Section 2.2).

The agent-based simulation engine BioDynaMo is a member of a
powerful breed of computational biology solutions [21], together with
for instance PhysiCell [22], concerned with but not limited to (i) sim-
plifying access to simulation by providing toolkits and instructions; (ii)
translating the best practices in parallelization and code optimisation
from enterprise software to open-source software for research; (iii)
promoting seamless scalability of work from single researcher’s ex-
ploration of a conjecture, to large scale simulations and collaborations
across the cloud. The ability to scale from laptop to heterogeneous
multicore distributed architectures within the same framework would
promote better testing and reproducibility all along the pipeline of
work of the community, while maintenance and upgrading of the en-
vironment would ensure that the community could shoot for “HPC on
the cloud” performances while greening and securing their practices.

Importantly, what makes our proposed in silico hybrid procedure
stand out is that it solves the multiscale modelling problem by coupling
the tissue scale with the cell scale by volume averaging (Section 2.3). To
the best of our knowledge, this approach is the first one to take into
account detailed genetic rules, cellular behaviours and cell–cell inter-
actions in 3D, while simulating substance diffusion using the highly
efficient volume averaging technique. All the above said, we believe the
proposed hybrid solution to hold a great potential interest for the
mathematical and computational oncology communities, and following
we will detail how the hybrid simulation environment works.

2. Methods

The methodological presentation of the in silico hybrid modelling
platform is outlined in the following paragraphs. The first and second

subsections will overview the macroscopic and microscopic in silico
methodologies respectively, while the third will describe the coupling
of the former approaches into the hybrid platform.

2.1. Macroscopic domain: continuum-based finite element solver

Let us denote the volume of the tissue domain of analysis – referred
hereafter as the macroscopic domain – by Ω, which is the total volume
of the biological tissue involved: both host and non–host (cancerous)
tissue, and is bounded by surface Γ. The boundary Γ is set sufficiently
distant from the focal region of interest (e.g., the tumour) in order to
avoid the imposed boundary conditions impacting the solution. Fig. 1A
shows a schematic representation of the three-dimensional domain of
analysis, with the total volume Ω being equal to (20 mm)3.

At the macroscopic (length scale) level, the continuum-based model
accounts for three compartments, each consisting of various species: the
biochemical components compartment, the cells compartment and the
extracellular matrix (ECM). The biochemics compartment encompasses
the balance of oxygen and nutrients, the concentration of which is
denoted by ξ , growth factors and enzymes, each type denoted by gj
( = …j N1, , g) and μ respectively. The cells compartment encompasses
the cells involved in the biophysical problem under consideration, each
cell species being denoted by ci ( = …i N1, , c), while the ECM com-
partment collectively accounts for the structural aspects of the stroma
(again both host and non–host tissue), denoted by ∊. Nc and Ng above
denote the number of individual cell phenotypes and growth factors
considered in the model, which can take any value. As described below,
each component is described at the continuum level through a
boundary value problem: the balance of each species is mathematically

Fig. 1. A. Cut-through illustration of the 3D unstructured finite element mesh
(outline surface mesh is shown slightly transparent) B. From the same per-
spective, the representative averaging volumes (RAVs) are illustrated in the 3D
domain (scaled up for visualisation purposes, while FEs are hidden) with each
agent represented as a small spheroid, coloured with respect to their phenotype
(purple for the neurons, green for the healthy glial cells, whereas orange for the
normoxic cancerous cells and red for the hypoxic ones). C. From bottom to top,
consecutive zoom-in pictures (2.5×, 9×) depict the cells, shown as spherical
agents and coloured with respect to their phenotype. The yellow arrows point
out the scattered cancerous cells, located at adjacent RAVs at the centre of the
3D domain of analysis. Light blue thick line depicts a one millimetre scale,
while the cells size in the RAVs is scaled up by a factor of five for illustration
purposes. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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modelled via coupled differential equations, accompanied with proper
boundary and initial conditions.

Assuming the presence of a microvascular network that supports
tissue with a uniform source of oxygen and other nutrients, oxygen
diffuses into the interstitial space and is consumed by the cells; thus, the
balance equation of the oxygen saturation level ξ , expressed in a
Lagrangian frame of reference, reads
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∂
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∂
∂
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where Dξ is the isotropic diffusion coefficient for oxygen (given in m2

day−1), αξ is the constant oxygen production rate owing to the supply
from the microvascular network (expressed in day−1), and δξ i, is the
oxygen consumption rate by each of the i-th cell phenotype species (in
day−1). Function = − ∊ − ∊ − ∊V (1 )s c f

γV (where ∈γ (0, 1)V ) controls
the supply of oxygen from the blood vessels to the adjacent tissue and,
consequently, the cells. Also, “d dt. / ” denotes the material derivative
(= ∂ ∂ + ∂ ∂t v x v. / · . / ; the interstitial biofluid flow velocity vector (ex-
pressed in spatial coordinates at a material point in the extracellular
matrix).

The present macroscopic model accounts for chemical cues that are
responsible for cell activation, growth, mitosis, migration etc. The
balance of these growth factors (each species denoted by gj in dimen-
sions: mg/mm3) is described by a set of reaction–diffusion equations
[23,24] that account for random spatial diffusion, growth factor se-
cretion and uptake by the various cell species, ci, and the natural decay.
The corresponding partial differential equations (PDEs) are expressed
as
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where Dj is the isotropic diffusion coefficient for each of the chemical
agents involved, gj (in m2 day−1), δj represents the decay rate of the
agent, and αj i, is the gross rate of gj due to both secretion and uptake by
the cells (given in day−1). In addition to this, the proposed model ac-
counts for the dynamics of the concentration of matrix metalloprotei-
nases (MMPs), μ. MMPs are enzymes that degrade the extracellular
matrix – also referred to as matrix-degrading enzymes. The balance of
the MMPs concentration, μ, in the extracellular space of the tissue
obeys an identical PDE to that of Eq. (2) [16], with corresponding
model parameters: D α,μ μ i, and δμ.

This model treats the ECM as a porous solid medium of porosity, ep,
with the volume fraction occupied by stromal components (collagen,
fibronectin, laminin) is: ∊ = − e1s p. Therefore, the sum of the volume
fraction for all phases – this includes the ECM, ∊s, the cells, ∊c, and the
interstitial fluid, ∊f – gives unity: ∊ + ∊ + ∊ = 1s c f . The present model
assumes fixed volume fraction for the interstitial fluid, whereas the
structural integrity and composition of the ECM, and hence ∊s, is as-
sumed to change with time. We describe structural changes at the
stroma of the tissue (at the macroscopic level) using a first-order or-
dinary differential equation for the ECM volume fraction that accounts
for the remodelling of the ECM, and the degradation of the matrix due
to the presence of chemical cues (here metalloproteinases are modelled
to cleave ECM fibres) at the interstitium [19]
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where ∊δ is the ECM degradation rate due to the presence of matrix-
degrading biochemicals μ (given in days−1), ∊α is the ECM self-re-
generation rate and ∊α i, is the cell-stimulated ECM remodelling
(e.g. deposition of collagen or/and fibronectin as a result of cell ac-
tivity). Also, = − ∊ − ∊ − ∊H (1 )s c f

γH , with the scalar exponent para-
meter: ⩾γ 1H .

Finally, the population of each cell species is controlled by the fol-
lowing PDE:
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where αi is the cell production (if negative-valued, the cell decay) term,
while the first term of the equation in the right hand side describes the
potential for migration or invasion of the i-th cell phenotype. Both
terms are calculated by the solver at the microscopic domain and,
subsequently, projected to the macroscopic domain solver – in this case
the finite element solver as explained below.

In all differential Eqs. (1)–(4) a zero-flux boundary condition for all
species is considered, which is applied at the external boundary of the
macroscopic domain of analysis, Γ, see Fig. 1. Also, proper initial
conditions are selected based on the simulated problem as explained in
the Results section. The weak form of all coupled differential Eqs.
(1)–(4) can be subsequently derived using calculus of variations, and
the (continuous Galerkin) Finite Element (FE) method is employed as a
discrete method [25]. As in conventional three-dimensional FE pro-
blems, the domain of analysis is discretised here with 3D elements (e.g.,
tetrahedrons, hexahedrons) that employ Lagrange nodal basis func-
tions. Time discretization and numerical solution of the above equa-
tions was carried out through an explicit Euler scheme, where the time
increment was properly selected such that explicit time-integration
produces stable numerical solutions after the Courant-Friedrichs-Lewy
(CFL) condition is satisfied. More precisely, assuming that the diffusion
coefficient for the oxygen, Dξ , takes the highest value compared to the
corresponding coefficient of the growth factors, and provided the
smallest edge length of all FEs in the mesh, Δℓ, then, the time step must
comply with the CFL limit: <t DΔ Δℓ / ξ

2 . The model parameters
adopted for Eqs. (1)–(3) are listed in Table 1 of the supplementary
material.

2.2. Microscopic domain: agent-based modelling solver

At the microscale, cell behaviour and their mechanics is described
using an agent-based modelling (ABM) approach. Opposed to the use of
(partial or ordinary) differential equations in continuum-based model-
ling, in ABM cells are treated as discrete objects namely individual
agents, which obey certain rules and mechanisms with respect to their
phenotype, microenvironment and other external (biochemical or bio-
mechanical) factors. For an overview and comparison between con-
tinuum and discrete models, the reader is referred to the review of
Schaller and Meyer-Hermann [26]. In the present ABM, cells are de-
scribed as spherical entities residing in a control volume, the re-
presentative averaging volume (see Section 2.3). For simplicity and as it
will be clarified in the following subsection, the control volume of a
microscopic domain is considered cubic with fixed dimensions:
(100 μm)3, which contains various types of cells, Ci, host and cancerous
ones. The present brain tumour agent-based model assumes the pre-
sence of neurons (Ne) and glial cells (G), as well as cancerous glial cells
and cancer-associated fibroblasts (CAF). Also, the model distinguishes
between normoxic-state cancerous glial cells (CG) and hypoxic-state
cancerous glial cells (hCGs). For Ne and G species, the cells densities
considered are 5 × 104 per mm3 and 105 per mm3 respectively to
match observed density in human cortex [27]. Moreover, assuming
avascular tumour growth of a primary brain cancer, the initial popu-
lation of the CG species has a density of 104 cells per mm3, which for
simplicity are evenly distributed at the centre of the domain of analysis
(within radius ~0.5 mm).

Fig. 2A illustrates in a flowchart the phenotypic behaviour of host
(Ne, G), cancerous (CG, hCG, CAF) and necrotic cells (NC) with respect
to the level of oxygen saturation, chemical cues and the extracellular
matrix (ECM). The present model assumes a passive role for the host
cells: balance between cell apoptosis and duplication is preserved in the
simulation unless oxygen drops below a certain level, then they simply
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die and corresponding cell agents are removed from the simulation.
However, host fibroblasts trans-differentiation is implicitly de-

scribed by explicitly increasing the CAF population in a logistic fashion
and in proportion to the CGs population. CGs are prone to unregulated
cell growth and division, provided the oxygen/nutrients concentration
in the matrix doesn’t decrease below a certain threshold (oxygen sa-
turation level must be ⩾0.9) The growth rate value of CGs was set by
matching simulation results of our in silico hybrid model to in vitro data
of cancerous cells growth rate [28]; however, cancer cell mitosis is
modelled as a stochastic event governed by a probability density
function having uniform distribution.

The increase of the CG population size leads to a decline of oxygen
concentration in the medium, resulting in a hypoxic microenvironment,
since blood vessels oxygen support is insufficient. This model assumes
host cells (Ne, G) incapable to survive under hypoxia, thus, as explained
above, they die – in other words they are simply removed from the ABM
solver. The present model, however, can assume that only cancerous
cells (normoxic or hypoxic) can transform permanently into necrotic
cells (NC). However, parts of the tissue with sustained hypoxia may
lead to anoxia where cancerous cells can survive and they become
necrotic, whereas adjacent blood vessels seize functioning and they stop
providing any oxygen/ nutrients (i.e., production rate parameter in Eq.
(1) is set: =α 0ξ ). Also, CGs under hypoxic conditions (hCG) can ex-
press a migratory phenotype dictated by local gradients of the oxygen
saturation level (chemotaxis), while ECM microstructural properties
become important to the cells’ preference to migrate (durotaxis).

In this model, tumour cells degrade the ECM locally (as outlined
briefly in Section 2.1) and hence they prefer moving towards a denser
matrix. Through transdifferentiation of native fibroblasts to CAFs, CGs
secrete matrix metalloproteinases (MMP) that in turn degrade the ECM
by breaking the structural fibres of the stroma (collagen, fibronectin) –
resulting in a heterogeneous ECM. Relevant observations have been
reported in gliomas in vitro and in vivo [29–31]. In addition, CGs
through CAFs also discharge platelet-derived growth factors (PDGF) for
vasculogenesis, which subsequently fuel the unregulated proliferation
of CGs [32,33]. Transition between cell states (normox-
ia↔hypoxia→necrosis) is modelled as a stochastic event depending on a
given cell’s internally encoded rules in interaction with the micro-
environment. Due to the motile phenotype of some cells, cells are
bound to interact with one another mechanically which, at each time
point of the simulation, is computed numerically via the repulsion force
between any two adjacent (neighbour) cells. The resultant force acting
on a given cell is evaluated by taking the vector sum of the concentrated
forces originating from all neighbouring cells. Subsequently, the re-
lative displacement of cells is then computed according to Newtonian
mechanical dynamics, where inertial force effects are assumed negli-
gible compared to viscous forces [34].

The agent-based model has been implemented using the BioDynaMo
platform [12]. BioDynaMo allows to simulate cell mechanics and their
interactions in 3D, while enabling the user to specify various model
properties such as the genetic “rules”, diffusable substance properties

and mechanical forces.

2.3. Hybrid macro-to-micro model

The in silico hybrid multiscale cancer model couples the macro-
scopic scale (i.e., the FE mesh representing the tissue and the corre-
sponding macroscopic state-variables; see Section 2.1) with the mi-
croscopic scale (of the agent-based discrete model representing the cells
and the extracellular space) using the representative averaging volume
(RAV) technique. The RAV technique has been successfully applied to
date studying various problems in porous media, including cancer
modelling [14]; however, a thorough treatise of volume averaging
methods can be found in manuscripts [35,36]. Briefly, each quadrature
point of a (macroscopic) finite element1 is associated with a unique
representative volume, the RAV, which contains a cloud of randomly
distributed points: the cells. For simplicity, the RAV takes a cubic shape,

LΔ 3, having dimensions as described in Section 2.2 and oriented to align
with the global frame of reference of the macroscopic domain. Initial
estimates for the amount of each cell population, their physiological
condition and state (i.e. oxygen levels, chemical cues, etc.) at each re-
presentative volume are determined by linear interpolation of the nodal
(macroscopic) data to every Gauss point within the finite element (i.e.,

∊ξ g μ c, , , ,j s i), see Fig. 2B. In turn, these nodal data are determined by
the macroscopic initial conditions imposed at the beginning of the si-
mulation, or by the applied boundary conditions (where applicable), or
obtained from the corresponding nodal data evaluated from the pre-
vious time increment of the FE solver, FEB3. Subsequently, the cells’
dynamics within each RAV is simulated by the agent-based modelling
solver – opposed to employing a constitutive equation or any other sort
of a deterministic model – at each quadrature point. After several in-
ternal iterations, of fixed time step TΔ , of the microscopic/cell-level
simulator BioDynaMo, cell populations Ci are re-evaluated for the
various species (see Fig. 2A; the neurons, Ne, the glial cells, G, the
normoxic and hypoxic cancerous glials, CG and hCG, and the necrotic
cells, NC), and for each representative volume. Subsequently, the
average cell rate at each RAV and the average direction vector of the
cells escaping the bounds of the representative (cubic) volume is cal-
culated – the latter computations being applicable to cells with a motile
phenotype only. These data are evaluated for each species Ci and then
up-scaled back to the macroscopic (tissue-level) FE simulator, FEB3,
through quantities αi and ∂ ∂c X¯ /i respectively. More specifically, at each
RAV and for each cell species, the average population increase (or de-
crease), CΔ i, is evaluated between successive increments of the mac-
roscopic FE solver, separated by a fixed time step tΔ , and the rate is

Fig. 2. A. Flowchart shows cell phenotypic
behaviour and cell–cell/-matrix interactions
for the agent-based model (abbreviations:
Ne: neurons, G: healthy glial cells, CG:
cangerous glial cells, hCG: hypoxic can-
gerous glial cells, NC: necrotic cells, CAF:
cancer-associated fibroblasts, PDGF: pla-
telet-derived growth factor, MMP: matrix
metalloproteinases, ECM: extracellular ma-
trix). B. Schematic representation of the
hybrid (continuum-/agent-based) multi-
scale modelling platform illustrating in
clockwise order the communication be-
tween the two solvers that operate at dif-
ferent length scales.

1 In this work, the Gauss–Legendre integration rule was adopted where 4, 8,
6, 5 quadrature points were considered for linear tetrahedral, hexahedral,
prismatic and pyramid FEs respectively. However, should one choose to adopt a
reduced integration then a single quadrature point will be required for the
numerical integration.

J. de Montigny, et al. Methods 185 (2021) 94–104

97



computed accordingly through: C tΔ /Δi . Also, between successive in-
crements of the macroscopic FE solver, the net flux of inwards or/and
outwards cell migration is computed for each face of the RAV, CΔ i, thus,
giving the local gradient (that describes the cells migration potential)
from C LΔ /Δi . In summary, as illustrated in Fig. 2B, the simulation
procedure of the proposed in silico hybrid procedure is performed in a
partitioned manner, with FEM and ABM working alternatively and
passing necessary data interchangeably by projection and averaging
until all simulation steps have been completed.

The proposed in silico cancer model distinguishes two layers of
implementation that are identified from the two spatial scales involved.
The agent-based modelling (ABM) method has been implemented in a
multi-threaded, object-oriented, C++ code and incorporated in the
open-source framework BioDynaMo. BioDynaMo employs several open-
source libraries: ROOT, ParaView, and OpenMP. Moreover, the multi-
scale finite element procedure has been implemented in a scalable C+
+ code, and incorporated into the existing numerical analysis frame-
work FEB3. FEB3 (pronounced Phoebe) is founded on several high-
performance, open-source numerical libraries: PETSc, libMesh, GSL,
and blitz++. FEB3 has been designed in an object-oriented manner
and facilitates parallel computations using the message passing inter-
face technology of the MPICH library. The tissue domain FE three-di-
mensional meshes have been generated using Gmsh, and decomposed
and distributed across multiple processors using the ParMETIS library.
The coupling and communication between the (tissue-level) FE solver
and the (cell-level) ABM solver, BioDynaMo, has been fully facilitated
within FEB3. All simulations presented in this work were carried out on
a desktop machine having an Intel i9-7940X CPU (@3.1 GHz ×14) and
128 GB main memory, operating Linux (Ubuntu 18.04, kernel version:
4.15.0–54-generic). Simulations of a 30 days tumour development
(44,000 simulation steps) required on average 4 h to be completed
while the main memory usage was less than 3 GB. However, it is worth
highlighting here that the code of our solvers was not fully optimised –
future code development could yield further improvements in efficacy.
Furthermore, some numerical libraries used by FEB3 and BioDynaMo
were built without optimisation flags.

3. Results

3.1. Convergence and sensitivity analysis

A convergence and sensitivity analysis of the multiscale metho-
dology is presented here. This involved two separate sets of simulation
tests: (i) In the first set, the finite element (FE) mesh density2 varied
while the size of the representative averaging volume (RAV) of the
microscopic solver was fixed. Specifically, the coarsest FE meshes
consisted of 1626 elements and 425 nodes, and 4322 elements and 768
nodes respectively, the medium density FE mesh consisted of 3628
elements and 875 nodes, whereas the densest meshes consisted of 5526
elements and 1276 nodes, and 7594 elements and 1387 nodes respec-
tively.

The purpose of this parametric analysis was to investigate the sta-
bility and convergence of the present multiscale framework with re-
spect to the finite element discretisation.(ii) In the second set, the size
of the RAV varied: (80 μm)3, (100 μm)3 and (120 μm)3, while the size of
the FE mesh was kept fixed. Thus, the purpose of this parametric ana-
lysis was to investigate the sensitivity of the hybrid FEM/ABM proce-
dure to the scaling effects of averaging volume.

It is important to note here that in all simulation experiments, the
initial cell density for each population (G: 5 × 104 cells/mm3 and Ne:
106 cells/mm3 everywhere in the domain of analysis; CG: 104 cells/
mm3 were distributed spherically within a millimetre radius; zero for all

other cell phenotypes) and macroscopic state variable (O2 saturation
level set to unity; ECM volume fraction set to vary 0.299±0.1) was
considered the same, while the model parameters associated with the
macroscopic solver (oxygen uptake and vascular supply rate, growth
factors rates, etc.) were identical and the solution and space/time dis-
cretisation settings for the FE solver were the same throughout the
analysis. Also, for the purposes of this analysis, the model parameters
have been selected to simulate a slow tumour growth condition in order
to make cell-scale phenomena (i.e. low duplication rate, suppressed
cancer cell migration) easier to monitor within the adopted time frame.

Cut-through FE meshes of the (2 cm)3 domain of analysis is depicted
at the middle row in Fig. 3; whereas at the bottom row of the same
figure, the representative averaging volumes is shown as it increases
from 5.12 × 105 μm3 left to 17.28 × 105 μm3 in right. All three figures
of the RAVs are produced by taking a cut-through of the same FE mesh,
while the finite elements are made here transparent for illustration
purposes.

For the first simulation test, Fig. 3A shows the tumour volume
growth (in mm3) over a period of thirty days while Fig. 3B shows the
evolution of the total tumour cell density (the population is calculated
by taking the sum of CG, hCG and NC cell densities). Evidently from the
former plot, having fixed all model parameters, the numerically pre-
dicted tumour volume appears to converge towards 750 mm3 ap-
proximately as the mesh density increases. Despite of this, no clear
conclusion can be made from the time plots in Fig. 3B where a relative
difference between consecutive simulation end-point tumour cell po-
pulations is observed at about 5,000 cells/mm3. Videos 1—3 from the
supplementary material animate (in clockwise order) using colour
contours the cell density for CG, hCG and NC as well as the tumour cell
density (in ×103 cells/mm3) and the distribution of the oxygen level
for the FE (macroscopic) solver. Also, in the same videos, the ABM
(microscopic) solver simulation results of a selection of representative
averaging volumes is shown where different colours depict the cell
phenotypes: dark blue for the necrotic cells, light blue for neurons,
green for glial cells, and orange and red for normoxic and hypoxic
cancerous glial cells.

Furthermore, the computational time of the multiscale methodology
has been assessed with respect to the spatial resolution (FE mesh den-
sity), while keeping the time resolution fixed (i.e., the time integration
step, TΔ ) and the ABM parameters also fixed. The computational times
recorded for each FE mesh discretisation are illustrated in a plot in
Section 1 of the Supplementary Material. As expected, the computa-
tional cost increases with the density of the mesh (of the macroscopic
domain) which in turn translates in an increase to the amount of ABM
simulations required at the cell level. However, more importantly, we
observe that the ABM solver took up to approximately 70%—90% of
the total computational time required by the hybrid (multiscale FE-
ABM) simulator.

For the second simulation test, Fig. 3C shows the tumour volume
growth time plots for the three RAV sizes considered while Fig. 3D
shows the evolution of the total tumour cell density for the corre-
sponding averaging volumes. From Fig. 3C it can be seen that with a
25% increase of the RAV size (from 80 μm to 100 μm RAV side length)
the final tumour size prediction increases by 66%, while a further 20%
RAV increase (from 100 μm to 120 μm) gives an approximate 13%
increase in the final tumour prediction. Similarly in Fig. 3D, we observe
that the predicted tumour cells population prediction becomes less
sensitive to the size of the microscopic domain of analysis, in other
words the predicted values converge with larger RAVs.

Finally, Videos 4—6 from the supplementary material show ani-
mations of the simulation results for different averaging volume sizes,
which are evident by comparing amongst visualisations 4A, 5A and 6A.
Overall, the sensitivity analysis demonstrates convergence of simula-
tion results in these exemplary cases. Therefore, in summary of the
convergence and sensitivity analysis results above, a RAV size of
(100 μm)3 with a moderate FE mesh density of (3628 elements and 875

2 The finite element meshes used for this analysis contained 4-node tetra-
hedral elements and were generated using the open-source software Gmsh.
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nodes) has be selected for the brain glioma growth simulations. This
combination provides the best compromise between spatial resolution
and computational cost that permitted us to conduct in-depth in-
vestigations of tumour growth.

3.2. Brain glioma growth simulations

3.2.1. Low-grade tumour growth
Using our in silico hybrid model, we simulated the development of a

low-grade tumour over the period of a month. These low-grade tumours
are well-differentiated and characterised by a slower growth rate
compared to high-grade tumours. Thus, in this simulation, cancerous

Fig. 3. Convergence and sensitivity analysis of the in silico hybrid method. A,B. Tumour volume and total tumour cell density time plots
(population = CG + hCG + NC; expressed in cells/mm3), respectively, comparing simulations using five different mesh densities (three meshes are illustrated in
middle row below). C,D. Corresponding time plots of the tumour volume and tumour cell density for the sensitivity analysis using three different sizes of the
representative averaging volume (RAV; see illustrations in bottom row). In all plots, vertical bars denote standard deviation to the mean numerical values which are
represented with symbols.
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cells express a slow growth rate and no migratory behaviour. In the
resulting simulation, tumour expansion is observed as shown in Fig. 4B,
where the tumour diameter increases from about 37 mm at day 10 to
about 64 mm at day 30. Similarly, the total tumour
(TC = {CG + hCG + NC}) volume increases from 180 mm3 (±7.1
mm3) at day 10 of the simulation to 784 mm3 (±28 mm3) at day 30, as
shown in Fig. 4C. This tumour growth is supported by cell divisions of
the cells in the microscopic domains, and the cumulative number of
cells composing the tumour mass in all microscopic domains rises up to
54,800 (± 1120 cells/mm3) at the end of the simulation. This link

between macroscopic domain and individual cell elements is re-
presented in Fig. 4A. As CGs proliferate, and as we assume a uniform
microvascular network providing a uniform source of oxygen, an hy-
poxic region emerge at the centre of the tumour (Fig. 4D), leading to
CGs expressing hCGs phenotype. Later on, as oxygen becomes scarcer,
hCGs survival becomes impossible thus creating a necrotic centre, as
shown in Fig. 4G. This oxygen deprivation also impacts healthy hosts
(Ne and G), whose densities decrease as they get closer to the tumour
centre, even reaching a density of 0 at the centre. These characteristics
can be observed at both macroscopic and microscopic scale in Fig. 4A,

Fig. 4. Time snapshots of a growing in silico low-grade brain tumour. A. History plot of the (avascular) development of the tumour volume. B. Cut-through of the
macroscopic domain of analysis illustrating the tumour cell density (×103 per mm3) at different time points, with the semi-opaque surface depicting the outline of
the tumour. C. Distribution of the oxygen saturation level at day 30 where a poorly oxygenated tissue core is formed. D,E,F. Snapshots of the (normoxic) CG, hCG
(hypoxic CG) and necrotic cells density (scale is in ×103 cells/mm3) respectively. G. Same perspective cut-throughs of the macroscopic domain (finite elements are
transparent) depicting the microscopic domains in enhanced view and at different time points. The colours correspond to the cell phenotypes involved in the
simulation (blue for the neurons, green for the healthy glial cells, orange for the normoxic cancerous cells, red for the hypoxic ones, dark blue for necrotic cells). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where the tumour centre – composed of NC (coloured in blue) and hCGs
(coloured in red) – is surrounded by CGs (cells coloured in orange). The
tumour obtained at the end of this simulation is shaped as a spheroid
and clearly defined, with no isolated CGs outside of the tumour mass as
shown in Fig. 4D.

3.2.2. High-grade tumour growth
High-grade brain tumours are more malignant tumours and thus

have worse prognosis than low-grade tumours. They are known to have
a high regrowth behaviour, even after complete surgical removal of the
tumour mass, in some cases due to their more diffused organisation. In
order to simulate such more aggressive tumour development, three
modifications have been made to our model, the first one being the
secretion of MMPs by CAFs. These enzymes, by degrading the ECM,
facilitate cell migration and so give rise to more invasive behaviour of
cancerous cells. Secretion of a growth factor has also been added, re-
capitulating the beneficial effect of PDGF on tumour growth. Finally, in
this simulation cancerous cells adopt a “go-or-grow” phenotype [37],
where hCGs express a high migratory behaviour without the possibility
to grow or divide, while CGs grow and divide, without exhibiting any
migratory behaviour. In other words, when cancerous cells are in an
hypoxic environment, they express a migratory behaviour. Oxygen
supply is assumed to be uniform across all the tissue. Simulation results
for this case are illustrated in Fig. 5 and in Video 7 of the supplementary
material. During tumour development, we can observe that the early
growth behaviour, and the resulting shapes, are still similar between
low-grade and high-grade tumours, as they have a well defined sphe-
rical shape (Fig. 4B day 10 and Fig. 5B day 10 respectively). Likewise,
their volumes are still in the same range, being 151 mm3 and 212 mm3,
respectively. This means that under the specified conditions, high-grade
tumours exhibit a volume 1.4 times bigger than low-grade ones.

However, differences emerge as the development continues, with a
bigger volume difference between low and high-grade at day 20 (2.1
times bigger for the high-grade) and day 30 (2.4 times bigger for the
high-grade), tumours reaching a final volume of respectively 784 mm3

and 1890 mm3 after 30 days of development.
Moreover, differences in shape can be observed at day 30, high-

grade tumours exhibiting a more diffused phenotype with outgrowth of
lower density at the surrounding of the main tumour mass, while low-
grade tumours remain well defined and more spherical (Fig. 4B and
Fig. 5B).

In addition, healthy cells (glials and neurons) are significantly af-
fected by the tumour, as cancerous cells spread covering a larger area
when compared to the low-grade case (see Figs. 5B,D and 4B,D re-
spectively). As evident in Fig. 5C, due to the pronounced hypoxia and
anoxia, healthy cells within the tumour region are susceptible to abrupt
apoptosis. Fig. 5G, depict the absence of cells from both healthy po-
pulations respectively. Finally, secretion of MMPs by the proliferative
CGs at the rim of the tumour (Fig. 5D) lead to degradation of the ECM
both at the tumour localisation and surrounding (not shown here). As a
consequence, these changes of the ECM density facilitate migration of
cancerous cells, hence, the expansion and spread out of the glioma. All
these factors give rise to more aggressive tumours, exhibiting high
growth rate and migratory behaviour, with a more diffused phenotype
characterised by outgrowth of low CGs density at the surrounding of the
main tumour mass.

3.2.3. PDGF secretion promotes tumour development and invasive
behaviour

As experimental studies showed the promoting effect of PDGF on
tumour growth [32,33], we investigated in our model the role of PDGF
on tumour development. To achieve this, we modified the cellular re-
sponse to growth factor. Two simulation conditions are considered,
with or without beneficial effect of growth factor on cancerous cells (CG
and hCG), all other parameters remaining identical. More concretely,
this growth factor enhances the survival, growth and division behaviour

of cancerous cells.
Surprisingly, although the obtained tumours exhibit a similar vo-

lume at day 10 to the default development condition, important dif-
ferences emerge later on. Indeed, we can notice a smaller volume at day
30 for the tumour obtained without growth factor beneficial effect than
the tumour with growth factor beneficial effect (1300 mm3 and 1890
mm3 respectively). These results are summarised in Fig. 6A. In addition,
we can notice that the absence of the growth factor effect, the tumours
are more homogeneous. In particular, their shapes are more spherical,
with less outgrowth of low CG density around the tumour mass as
shown by Fig. 6B. Thereby, the promoting effect of PDGF on cancerous
cells gives rise to a bigger and more aggressive tumour, exhibiting more
heterogeneity and a quicker development, and so worsens patients
prognostic outcomes.

In addition, we demonstrate here that the shape and characteristics
of the tumours are strongly influenced by the behaviour of individual
cells. Results of the simulation without the promoting impact of the
growth factor on cancerous cells are presented in Video 8 in the sup-
plementary material. Moreover, we have also investigated the sensi-
tivity of the tumour growth to changes of hCG migration direction,
dependent upon the ECM and oxygen gradients (Supplementary
Material: Section 2 and Video 9). We find that tumour shape and vo-
lume are not strongly dependent on such changes.

4. Discussion

This paper presents a novel in silico hybrid modelling procedure that
couples tissue biomechanics using the finite element method and cell
mechanics via the agent-based method. To achieve this, we have in-
tegrated two open-source numerical analysis platforms: FEB3 and
BioDynaMo respectively. Although the hybrid continuum-/agent-based
modelling concept is not new [19], to the best of our knowledge, this is
the first that the two modelling methods are coupled using the volume
averaging technique.

The proposed in silico hybrid platform demonstrates great potential
to simulate the development of brain gliomas in a detailed but com-
putationally cost-effective manner. For the working cases presented in
this paper, each simulation took about four hours to finish on a multi-
core desktop machine. In particular, the ABM solver required the si-
mulation of ~5.5 × 105–7 × 105 agents coupled via the RAV technique
with a FE mesh (of a 8 cm3 tissue volume) consisting of ~4 × 103

tetrahedral elements in total. Had we employed ABM alone to simulate
glioma growth in a domain of the same size, it would have required for
the solver to simulate approximately ~1.3 billion agents – the scale of
data involved in such an analysis is numerically prohibitive even for a
moderate sized computer cluster. Furthermore, the proposed in silico
hybrid platform was capable to recapitulate the dynamics of a growing
tumour in the brain that may exhibit either a benign or an aggressive
behaviour. In addition to this, the platform recapitulated the main
points of brain tumour necrosis and oxygen deprivation, as well as the
dynamics of a heterogeneous developing tumour matrix.

In spite of the successes demonstrated, there is significant scope for
improvement and alleviating model simplifications involved in the
proposed in silico hybrid platform. For instance, we plan to circumvent
the existing coarse-grained description of the extracellular matrix het-
erogeneity, and incorporate explicitly the ECM solid and fluid me-
chanics directly at the microscale. To achieve this, the present model
will be coupled with our biphasic multiscale model that encompasses
the matrix microstructure and interstitial fluid (micro) flow [14], and
therefore directly model the biomechanics of proteoglycans (i.e. hya-
luronan and collagen) and the parenchyma.

Moreover, a natural extension of this hybrid model is to include
tumour-induced angiogenesis, which will be accomplished by plugging
the proposed procedure in the coupled angiogenesis model we have
recently developed [13]. Moreover, our hybrid model can be further
used as a platform for the study of the efficacy and delivery of drugs to
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tumour spheroids in in vitro experiments. This can be achieved by
adding extra equations in the macroscopic solver FEB3 and, hence,
model the balance of the therapeutic agents at the interstitium – it can

be seamlessly accomplished by plugging into our modular re-
action–diffusion solver the extra PDEs required [15]. In a similar
fashion to adding more biochemical factors and drugs into the

Fig. 5. Time snapshots of a growing in silico high-grade brain tumour. A. History plot of the tumour volume in cubic millimetres. B. Cut-through of the macroscopic
domain of analysis illustrating the tumour cell density (×103 per mm3) at different time points, with the semi-opaque surface depicting the outline of the tumour,
and C. the distribution of the oxygen saturation level at day 30 where a poorly oxygenated tissue core is formed. D, E, F. Snapshots of the cancerous glial cells, the
hypoxic ones and the necrotic cells density (scale is in ×103 cells/mm3) respectively. G,H Distribution of the glial cells and the neurons respectively (×103 per mm3)
at two time points. Notice the absence of native cells within the necrotic core of the tumour.

Fig. 6. A. Comparison of the tumour volume history plots (with growth factor: black dashed line; without growth factor: red solid line). B. Outline of the tumour and
colour map contours of the tumour cell density (×103 cells/mm3) distribution at different time points for the developmental condition with growth factor being
knocked-out. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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simulator, one could also incorporate extra agents in BioDynaMo to
introduce more cell types in the in silico experiments. Last but not least,
our hybrid model offers great promise being used for the design and
development of organ-on-chip devices in cancer, neurodegenerative
diseases, tissue regeneration, etc.

To conclude, our simulations yield differences in the spatial dis-
tribution of CGs relative to the core of the tumour. These results are
explanatory powerful and yield experimentally verifiable predictions.
Histological analysis of the density of cancerous and host cells in the
adjacent environment of the tumour could provide further support for
these simulation results. The possibility for hypothesis generation fur-
ther supports the case of mechanistic computer models to complement
experimental cancer research. Ultimately, such models could generate
generate predictions of tumour progression to inform on surgical and/
or radiotherapy planning [38,39]. The practicality of the proposed
hybrid method is an important feature for such a clinical setting.

We anticipate our modelling approach can be further employed for
a wide range of biomedical problems, other than cancer. In particular,
models of healthy biological development, biofilm growth, immune
system dynamics, or synthetic tissue growth are based on relevant dy-
namics.

5. Data availability

All data and computer codes used in the simulations of this paper
are freely available through the figshare repository: In silico hybrid FEM-
ABM model (https://figshare.com/projects/In_silico_hybrid_FEM-ABM_
model/67343).
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