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Abstract

An investigation is presented into the ability of linear kernel-driven models to 

adequately describe the surface bidirectional reflectance distribution function (BRDF) of 

vegetation. Such models were developed primarily for deriving albedo from limited 

angular samples of reflectance at moderate resolution ( 100s of m to km) and are based on 

semi-empirical approximations to more complex physically-based models. They assume 

that BRDF can be described by a linear combination of separate scattering 'shapes' 

(kernels), each of which is a function of purely geometric terms (viewing and illumination 

angles) only.

The assumptions underlying the linear kernel-driven models were tested using 3D 

geometric canopy structural models allied to a description of the radiometric scattering 

behaviour within the 3D canopy. This is the first time the properties of the models have 

been explicitly tested in this manner. The assumption that canopy reflectance can be 

represented as a linear combination of volumetric and geometric-optic (GO) scattering 

terms appears to be well founded. The kernels perform less well when the canopy departs 

too far (structurally or radiometrically) from the assumptions made in the model 

formulation. It is shown that the volumetric and GO kernels are not always capable of 

separating the components of canopy reflectance and that there can be coupling between 

the kernels. It is also demonstrated that the model parameters are not purely geometric as 

intended and that they contain biophysical information (related to leaf area and leaf 

reflectance). However, this information may require ancillary data if it is to be extracted 

from the model parameters.

A linear kernel-driven model of spectral reflectance is proposed which would 

allow interpolation (and extrapolation) of narrowband spectral samples of reflectance 

across the solar spectrum. Results suggest that this approach is very effective and can 

complement the angular kernels, allowing a full spectral, directional kernel-driven 

description of canopy reflectance. This is likely to prove extremely useful for deriving 

broadband albedo and for separating the spectral components of soil and vegetation 

scattering for studies of canopy-atmosphere transfer and productivity.
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1 Introduction

1.1 Change and uncertainty in global climate

The development of remote sensing as a tool for better understanding the 

dynamics of biogeochemical processes controlling the Earth’s climate has been driven by 

a growing recognition of the need to determine human impact on the global environment 

(Global Atmospheric Research Program (GARP) report, 1975; Henderson-Sellers and 

Wilson, 1983; Sellers, 1994; Trenberth, 1995; Hall et a l ,  1995). This need has been 

exacerbated by the apparent increase in extreme climatic events o f recent years such as 

the unusually long-lived and severe El Nino event of 1997-8, the subsequent droughts and 

tires in South East Asia and flooding in Central America in the latter part of 1998 

(Webster and Curry, 1998). Such potentially catastrophic climate events have impacted 

virtually all aspects of human life around the globe: from minor regional climatic and 

ecosystem variability to life-threatening fires; the threat of sea-level rise inundating low- 

lying coastal regions (Schneider, 1999), to more indirect manifestations such as the 

instability of global economic and political conditions.

It is widely accepted that the increase in frequency of extreme climate events is 

related to changes in the overall global climate, and in particular, a gradual increase in 

global mean temperature over the past century (Intergovernmental Panel on Climate 

Change (IPCC), 1995a,b, 2001 a,b, w w w [l.I]; International Geosphere Biosphere 

Program (IGBP), 1998). It is mooted that such changes may be the result of (or be 

exacerbated by) anthropogenic activities such as the burning of fossil fuels, intensified 

agriculture and urban development, amongst other activities (IPCC, 2001b; www[1.2]). 

Scientific uncertainty over the projected impact of anthropogenic impacts on global 

climate has also led to international political conflict, most notably over the US 

government's refusal to ratify the United Nations Framework Convention on Climate 

Change (UNFCCC) 'Kyoto protocol' on planned reductions in CO2 (www[1.3]). 

Uncertainty over cause and effect has polarised the scientific community in some respects 

(Musser, 2001) and a great deal of effort is now being expended to quantify this 

uncertainty (Visser et a l, 2000; Wigley and Raper, 2001). Long term climate monitoring 

o f global climate processes has been identified as key to this task. Other aspects of global 

change and the impact of human activity have raised more general issues, such as how 

best to sustainably exploit natural resources, how to monitor and/or prevent reductions in 

biodiversity and how to predict and adapt to potential changes in climate (www[1.4]). As



a result, many governments recognise the necessity of investing heavily in research aimed 

at developing a better understanding of both the underlying mechanisms and the actions 

of global climatic processes (Sellers, 1992).

The drive towards a better understanding of climate processes is exemplified by 

recent efforts such as NASA’s Earth Observing System (EOS) (formerly the Mission To 

Planet Earth (MTPE)). EOS is an ongoing series of experiments, instruments and 

projects, the stated aim of which is “...is to develop understanding o f  the total Earth 

system, and the effects o f  natural and human-induced changes on the global 

environm ent (EOS press release, January 1998). As an indication of the seriousness with 

which such aims are being pursued, EOS was allocated a budget of $ 1.42 billion in the 

1998 Congressional spending projections {ibid.). Other projects with similar aims are the 

Japanese Advanced Earth Observing System (ADEOS), with instruments such as 

POLDER (Polarisation and Directionality of the Earth’s Surface) on board, designed to 

measure land surface reflectance, polarisation, and atmospheric aerosol distributions 

(Deschamps et a l,  1994; Leroy et a l,  1996), and the next generation meteorological 

observation programme NPOESS (National Polar Orbiting Environmental Satellite 

System, www[L5]).

In conjunction with developments in climate modelling such as rapid advances in 

computing speed and efficiency and sophistication of algorithms (Hack, 1995), Earth 

Observation (EO) has emerged as one of the most powerful tools for improving our 

understanding of the surface processes controlling global climate. Such processes operate 

over a huge range of spatial and temporal scales -  from local and regional weather 

variations, to long-term warming and cooling trends of global climate. In order to detect 

perturbations in the global climate system (such as might be caused by anthropogenic 

increases in greenhouse gases like CO2) methods of monitoring large (even global) areas 

over long time-scales are required (Charlson et a l,  1992). The spatial coverage afforded 

by EO makes it particularly suited to such a task. Long-term temporal coverage will 

require successive generations of EO programmes. This has led to the inception of major 

international interdisciplinary projects such as the International Satellite Land Surface 

Climatology Project (ISLSCP) (Sellers, 1994), which aim to exploit the potential for 

timely, large-scale coverage offered by remotely sensed data (Sellers, 1992; IPCC 

2001a,b).



1.2 Developments in Earth Observation

"[To] expand the observational foundation fo r  climate studies to provide accurate, 

long-term data with expanded temporal and spatial coverage.... there is a need fo r  long­

term consistent data to support climate and environmental change investigations and 

projections. ''

Part of conclusion of IPCC Working Group I, 2001 (IPCC, 2001a).

A great deal o f progress has been made in EO over the last thirty years. This has 

been driven largely by the realisation that the observation of global climate processes 

requires the type of spatial and temporal coverage only afforded by remote sensing. The 

current sophisticated, versatile and multi-purpose payloads exemplified by the NASA 

EOS programme (Running et a l,  1994; Kaufman et a l ,  1998) represent a significant 

advance from the days of Landsat 1, a crude multispectral radiometer launched in 1972. A 

great deal of money and effort has been invested in developing remote sensing 

instruments to probe all aspects of global climate. This encompasses a wide range of 

processes including: the role of atmospheric aerosols and clouds in climate change 

(Charlson et a l, 1992; Arking, 1991); ocean circulation and exchanges of latent and 

sensible heat with the atmosphere (Hsiung, 1985; Randall et a l ,  1992); carbon budget 

calculations (Schimel, 1995; IGBP, 1998; Wessman and Asner, 1998); biosphere- 

atmosphere transfer (Sellers et a l, 1995); the influence of the cryosphere (Nolin and 

Stroeve, 1997); and absorption (and reflection/re-radiation) o f incoming solar radiation at 

the Earth’s surface (Henderson-Sellers and Wilson, 1983; Dickinson, 1983, 1995).

The major obstacle to achieving more complete understanding o f global climate 

processes has been identifying very gradual underlying long-term trends in global climate 

indicators beneath the highly variable short-term fluctuations o f day-to-day weather 

patterns. The need for long-term, global data sets has led to an increased interest in the 

design and development of remote sensing platforms and methods specifically targeted at 

observing the Earth’s climatic processes. The NASA EOS program, with a number of 

planned missions, each carrying several complementary instruments, exemplifies the 

move towards a more comprehensive understanding of global climate processes through 

long-term integrated monitoring'.



The EOS program is designed to monitor the interchanges of energy, moisture and 

carbon, land use, and ocean and atmospheric circulation for at least eighteen years. The 

EOS era began with the launch of the EOS-AMI {Terra) platform in December 1999 

(Kaufman et a l,  1998. www[1.6]). The follow-up platform, EOS-PMl {Aqua), designed 

to monitor hydrosphere and cryosphere processes, is due to be launched in 2002. To 

illustrate the comprehensive nature of EOS, the various instruments aboard the Terra 

platform are listed below:

• ASTER (Advanced Spacebome and Thermal Emission and Reflection 

Radiometer) for monitoring local and regional processes such as surface 

temperature, energy balance and mapping of soils, geology and land cover 

change (Yamaguchi et a l, 1998);

• CERES (Clouds and Earth’s Radiant Energy System) to determine the 

radiative forcing effect o f Earth’s cloud cover and quantify the radiative 

budget (Wielicki et a l ,  1998);

• MISR (Multi-angle Imaging Spectro-Radiometer) a pointable instmment with 

nine look angles designed to observe the angular variations of scattering from 

the surface, atmospheric aerosols and clouds (Diner et a l ,  1998);

• MODIS (Moderate resolution Imaging Spectrometer) to provide 

comprehensive monitoring of land, ocean and atmosphere at moderate 

resolution, with high temporal coverage and capabilities to provide global 

estimates of land cover characteristics such as albedo (Justice et a l, 1998).

• MOPITT (Measurement of Pollution in The Troposphere) for mapping 

atmospheric CO and CH4 (Gilles et a l,  1996).

Early results from Terra have already provided a remarkable look at the Earth's 

climate processes and scientists are beginning to apply the data to some of the 

unanswered questions. Figure 1.1 is an example of reflectance data now being delivered 

by MODIS. This is one of 44 separate products delivered by MODIS now in their

' N A S A  is currently shifting the em phasis o f  future EO m issions toward the ‘sm aller, faster, cheaper’ m odel 
in order to reduce m ission lead-in times and potential losses from failed m issions.



thFigure 1.1 MODIS 16 day reflectance image (period ending 17 May, 2001). Bands 1,
4 and 3 (620-640nm, 545-565nm, 459-479nm).

advanced quality assurance phase before dissemination to the scientific community. 

These products represent a great improvement over data from sensors such as the 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR). Greatly improved sensor technology and calibration 

combined with sophisticated processing have resulted in products usable by the wider 

community rather than just raw radiance data or simple empirical indices. The variety of 

long-term data from EOS, in conjunction with the Japanese Advanced Earth Observing 

System mission (www[1.7]) and European missions such as the Environmental Satellite 

(ENVISAT) (www[1.8]) and the European Remote Sensing satellites ERS-1 and 2 

(www[1.9j), will enable a clearer understanding of the complex processes controlling 

Earth’s climate to be established. Data from a variety of such remote sensing platforms 

can also be combined to provide a synergistic view of the Earth’s climate processes.

1.3 Land surface processes

Land surfaces are particularly important in considering climate variability as they 

provide a lower boundary layer to the climate system (Dickinson, 1983; Graetz, 1991; 

Sellers, 1992; Dickinson, 1995). Ocean surfaces are generally more important in terms of 

the magnitude and mobility of stored heat energy but land surfaces tend to be far more 

spatially variable. As a result, land surface processes such as exchanges of moisture from 

the surface to the atmosphere, and reflection, absorption and re-radiation of incoming
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solar radiation are far less spatially and temporally predictable than their ocean surface 

equivalents. Another major consideration is that human existence is almost exclusively 

dependent on the state of the land surface.

Earth observation has been deployed in many ways to improve understanding of 

land surface processes either by directly observing processes where possible or, in most 

cases, utilising observations made of surrogate (dependent) variables. One area where this 

is extremely important and of direct relevance to this thesis is the observation of surface 

biophysical parameters. Parameters such as total biomass, the fraction of absorbed 

photosynthetic radiation (fAPAR), transpiration rates, surface roughness (Zo), and albedo 

provide linkages between biogeochemical processes such as nutrient availability, soil 

composition and the transfer of carbon and climatic drivers such as the fluxes of moisture 

and energy at the surface. These linkages take the form of near-surface atmospheric 

forcing, which in turn results in exchanges of water, radiation, and momentum between 

the surface and atmosphere (Sellers, 1995a). Consequently, much effort has been devoted 

to measuring and modelling land surface processes and their controlling biophysical 

parameters (Hall et a l, 1995; Sellers, 1995b; Sellers et a l ,  1997).

1.3.1 Biophysical parameters and vegetation

In considering biophysical processes for inclusion into climate models, models of 

land surface processes (LSPs) have been developed (Dickinson, 1984; Sellers et. al, 1986; 

Henderson-Sellers et a l,  1993). A wide range of surface types (vegetation, ice/snow, 

desert) are considered when modelling land surface processes, each having their own 

regions of influence and importance. Vegetation is recognised as one of the most 

important cover types, both in terms of the linkage between biogeochemical processes 

and atmospheric circulation but also in terms of impact on human beings (Aber, 1995). 

For obvious reasons humans tend to favour vegetated areas over desert or snow and ice 

covered ones. In addition, processes controlling vegetation growth and development tend 

to have time-scales allowing them to strongly influence the atmospheric climate processes 

to which they link. For example, leaf-scale chemical processes such as photosynthesis 

have time-scales of a few seconds or less; évapotranspiration, CO2, N2 and nutrient fluxes 

vary over time-scales of days to weeks. These scales are similar to those over which



atmospheric energy transport processes such as turbulence, convection and radiation may 

act (Sellers, 1995a).

Vegetation is also an important factor in mediating interactions between the 

biogeophysical system and atmospheric circulation processes through the biophysical 

parameters mentioned above, such as fAPAR, Zq and albedo^. An example of the 

influence of vegetation and the potential feedback on these surface-atmosphere 

interactions is illustrated in figure 1.2. This is the feedback cycle for surface roughness 

under hypothetical conditions of deforestation and/or desertification. Figure 1.2 

emphasises that the energy exchanges between the surface and the atmosphere are heavily 

influenced by the quantity and activity of surface vegetation.

-ve feedback+ve feedback

Rn decreases

Increase in a

ALBEDO, a

Increase in a

Increase in R,H, LE decreases

Reduction in soil 
moisture

Increase in 
insolation

Absorbed shortwave 
energy decreases

Reduction in:
Cloudiness -
Precipitation
Convergence

Figure 1.2 Potential positive and negative feedback loops resulting from large- 
scale change of surface albedo, a. Rn = net radiation, Wm'^; H = sensible heat flux 

(conduction to the air) Wm’̂ ; LE = latent heat flux (through evaporation of 
moisture to the air) Wm  ̂(after Sellers, 1995).

A lbedo is not an intrinsic surface parameter due to its relationship with atm ospheric state (see later).
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The driver of all climate processes is incoming solar radiation. Consequently, 

understanding the fate of solar radiation arriving at the Earth’s surface (through 

retlectance, absorption and/or re-radiation) is the key to understanding many of the major 

global climate processes. This thesis will concentrate on developments in measurement 

and modelling of incoming shortwave solar radiation interacting with vegetation. The 

emphasis is on shortwave radiation i.e. wavelengths from around 350nm up to 2500nm, 

as the vast majority of the radiant energy emitted from the sun lies in this wavelength 

range. Figure 1.3 shows the variation of incoming solar radiation with wavelength, in 

addition to the theoretical blackbody curve for a body at 5900° K (solar surface 

temperature). The energy distribution is shaiply peaked around 0.55pm, which has driven 

the evolution of chlorophyll pigments in green vegetation which efficiently facilitate the 

conversion of incoming solar radiation into carbohydrates used in plant growth.
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Figure 1.3 Solar irradiance at the top and bottom of the earth's atmosphere. Shaded areas 
indicate absorption by atmospheric gases (after Slater, 1980).



1.3.2 Shortwave energy budget and albedo

Remote sensing techniques have been applied in a number of areas in an effort to 

understand the processes affecting the Earth’s climate. One of the most important of these 

applications is that of shortwave energy budget studies: the study of the reflection and 

absorption of incoming shortwave (SW) i.e. visible and near-infrared (near IR, or NIR) 

solar radiation at the Earth’s surface, and its subsequent re-radiation into the atmosphere 

as thermal IR radiation. The role of surface reflectance in the Earth's radiation budget is 

illustrated schematically in figure 1.4. This demonstrates general mechanisms of solar 

interaction with the atmosphere and land surface.

Reflection, îscattermg, 
and Absorption of 
Incoming Sinilight

4%
Reflected
Upward

Incomiiç Solar 
Ra<liatioii
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J S])ace

Top  of  A tm osphete

19% 
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the
Atmosphere

- 16%
Absorbed by 

Gases’and Dust!
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Radiation Radiation 
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51% Absorbed 
at Surface as

Indirect 
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Figure 1.4 The fate of incoming solar radiation at the Earth's surface (from
www[1.10]).

The absorption of solar energy at the Earth’s surface is the primary driving force 

behind all climatic processes (Dickinson, 1983). The amount of energy absorbed at the 

surface is determined by the surface albedo. Albedo {a) is defined as the ratio between 

the hemispherical upwelling and downwelling fluxes (F^ and F^) at a point (Wanner et 

aA, 1997) Le.

F_
F

1.1



Albedo is a unitless quantity lying between 0 (all incoming energy absorbed) and 

1 (all incoming energy reflected), and is often expressed as a percentage. Albedo is a 

measure o f how much of the radiation incident on a surface is reflected back into the 

atmosphere, and consequently, how much is absorbed by the surface. If incoming solar 

radiation is the energy source driving all climate processes, to understand the mechanics 

of global climate more accurately it is vital to be able to determine the albedo of the 

Earth’s surface as precisely as possible (Henderson-Sellers and Wilson, 1983; Mintz, 

1984; Dickinson et a l, 1990). Figure 1.5 is a schematic representation of the relationships 

driven by incoming solar radiation, which illustrates the difficulty of this task. The 

presence or absence of surface vegetation and cloud cover, along with atmospheric 

composition, are some of the critical factors affecting the rate o f incoming solar radiation 

and emitted longwave radiation.

A wide variety of sophisticated numerical models have been developed to 

represent the circulation and transport processes occurring within the global climate 

system. Due to the importance of albedo in determining the amount o f energy absorbed at 

the lower boundary of the atmosphere it is desirable that it should be represented as 

accurately as possible within any general/global circulation model (GCM) (Hall et a l, 

1995). Henderson-Sellers and Wilson (1983) provide a detailed review of the major 

GCMs in operation at the time and list the variety of different representations of albedo 

that are used within these models. Their conclusion is that subsequent differences 

between model climatologies (predicted climate outcomes based on a fixed set of starting 

parameters) are quite likely due to the differences in albedo. In order to remove these 

uncertainties, studies to obtain global albedo estimates with an accuracy of ± 5% should 

be initiated immediately. Henderson-Sellers and Wilson (1983) also point out that the 

requirement for accurate estimates of surface albedo is not a new phenomenon even in 

1983, citing the G ARP Joint Organizing Committee report (1975) which concludes that 

“there is an increasing need for reliable data concerning surface albedo”. More recently, 

Dickinson (1995) and Bengtsson (1995) have highlighted the continuing requirement for 

accurate estimates of albedo for climate models.

If there have been such demands for estimates of albedo, why have they not been 

met? Henderson-Sellers and Wilson (1983) list a number of the difficulties involved in 

generating coherent global albedo data sets:
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Figure 1.5 An illustration of some of the complex interactions between incoming 
electromagnetic radiation, the surface and the atmosphere (after Smith, 1985).

Spectral variation of albedo (depending on the physical structure and chemical 

composition of the surface).

Angular variations of albedo leading to differences in direct and diffuse 

albedo. Measured albedo is assumed to lie between the two extreme cases, i) 

purely directional illumination conditions i.e. assuming no diffuse component 

of illumination (clear- or black-sky albedo), and ii) purely diffuse illumination 

(white-sky albedo). Consequently albedo is estimated as a function of the 

proportions of direct and diffuse illumination.

Increased estimates of clear- or black-sky albedo due to a scattering 

atmosphere.
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• Heterogeneity of the surface at various scales.

• Non-linearity of surface albedo in terms of spatial scale, necessitating 

generation of albedo at the correct scale for the application required (spatial 

interpolation and averaging are not generally appropriate).

These factors (and a number of others) combine to make albedo a very difficult 

parameter to determine accurately. It is still the case, however, as has been widely 

recognised, that satellite observations provide perhaps the best opportunity to compile 

global estimates of surface albedo (Henderson-Sellers and Wilson, 1983; Kimes and 

Sellers, 1985; Brest and Goward, 1987, Wanner et a l,  1997).

1.3.3 Albedo and surface scattering

Albedo describes the ratio of upwelling to downwelling fluxes, F and F , as 

expressed in equation 1.1. More exactly, albedo is defined as follows:

/ \ A  (^v ’ , ^)sin  9^ cos e^de^d(j)^
a{x)=  \  .------------------------------------------ 1.2

^  LI (^ ,, (j>i, ^ )s in 9. cos9-d9.d(j).

Li(0/, ([)/, X) is the downwelling radiance in the illumination (solar) direction (solar zenith 

angle 0, and azimuth angle (|),), at wavelength Lt(0v, (|)v, X) is the upwelling radiance 

from the surface in the viewing direction (view zenith angle 0y and azimuth angle (|)y) at 

wavelength Lt is of course also dependent on surface reflectance. Because Lt is a 

function of the angular distribution of downwelling irradiance, a(À) is a function of 

atmospheric state and will be affected by things such as water vapour concentration and 

aerosol loading. Albedo should therefore not be considered an intrinsic surface property 

and cannot be measured directly via remote sensing. What is required for climate 

modelling purpose is some average, integrated hemispherical value o f albedo that is 

independent of the atmospheric state, and is an intrinsic surface property (Wanner et a l, 

1997).

In order to produce such a parameter from remotely sensed data, a detailed 

understanding of the mechanisms determining the radiance (total incident energy) 

measured at the instrument is needed. This in turn requires knowledge of how the 

radiation incident on a surface is absorbed and scattered by that surface (ignoring for the
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moment any intervening atmosphere between the surface and the sensor). More 

specifically, some kind of mathematical model of the surface scattering behaviour is 

required. If such a model can be formulated it may be possible to use the model to 

interpret remotely sensed observations of the surface radiance. The increasing variety and 

availability of remotely sensed data has driven a corresponding increase in the 

development of models o f surface reflectance for a wide variety of applications (Goel, 

1988; Asrar, 1989; Myneni e ta l ,  1989; Hall et a l ,  1995; A ikm g e t a l,  1998; Knyazikhin 

et a l ,  1998a,b; Martonchik et a l ,  1998a,b). This thesis is concerned with one specific 

type of surface scattering model, developed primarily for examining predominantly 

vegetated land surface types.

1.3.4 Surface scattering and vegetation

One of the most important absorbing/scattering land surface types is that covered 

by vegetation (Dickinson, 1983; Mintz, 1984; Goel, 1988). Vegetated areas of one sort or 

another, from arable grazing land to tropical rainforest, cover between 50% and 70% of 

the Earth’s land surface (Dickinson, 1983). Moreover, vegetation plays an extremely 

important role in global climate (Otterman, 1985; Sellers, 1989; Graetz, 1991). It provides 

a primary mechanism for the exchange of oxygen and carbon dioxide in the atmosphere 

(Schimel, 1995), regulates the transport of moisture (Shukla and Mintz, 1982) and 

absorbs large amounts of solar radiation for use in photosynthetic activity which may then 

be re-radiated into the atmosphere at a range of wavelengths. It has been shown that the 

time integral of photosynthetically active radiation (PAR) absorbed by vegetation 

canopies can be related to net primary productivity (NPP), an indicator of vegetation 

health, age and biomass (Steven et a l, 1983; Asrar et a l ,  1984). NPP is primarily a 

measure o f carbon uptake; it is the quantity of carbon fixed within vegetation (per unit 

area per unit time, gCm'^yr ’) as a net result of the transpiration minus respiration (carbon 

released) and photosynthesis (carbon absorbed) (Running et a l,  1996). NPP has 

implications for global climate in terms of atmospheric CO2 variations (IGBP, 1998). In 

addition to understanding the biophysical impacts of vegetation cover on the Earth’s 

climate, the need to monitor and develop global agriculture has provided massive 

economic impetus to the development of remote sensing techniques for studying 

vegetation. For these reasons much emphasis has been placed on attempting to understand 

how vegetation can be identified and monitored from remote sensing measurements. One
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of the primary ways in which this has been achieved has been the development and 

refinement of techniques for modelling canopy reflectance {ç>canopy) (Goel, 1989; Privette 

et a l,  1997).

If it is possible to compute the radiant energy distribution within a vegetation 

canopy using a model of Pcanopy behaviour then a number of aims may be achieved. It may 

be possible to compute canopy photosynthetic rates from leaf surface projected 

irradiances. Hence ç>canopy (the exitant, measurable response of the canopy to an incident 

irradiance) may be calculated. This then describes the signal available for measurement 

from a remote sensing instrument. Models of Pcanopy rnay also be inverted against 

remotely measured pcanopy data to enable the estimation of canopy phytometric attributes 

and the computation of absorbed energy (Goel and Strebel, 1983; Goel, 1989; Kustas, 

1989; Sellers, 1989; Hall et a l,  1995). Research into remote sensing of vegetation has 

long aimed to derive accurate spatial estimates of important vegetation canopy parameters 

such as leaf area index (LAI)^, leaf angle distribution (LAD)"^ and fAPAR from observed

Pcanopy data.

Figure 1.6 illustrates some of the main processes governing radiation transport

within a vegetation canopy. These processes must be described accurately in order to
T 1model Pcanopy bchaviour. Expressions relating I and I in figure 1.6 (upward and 

downward diffuse radiative fluxes, normalised by incident flux) to observed reflectance 

can be derived (Ross, 1975). These expressions are based on approximations and 

assumptions regarding canopy structural properties (3D arrangement of scattering 

elements within the canopy), LAI, LAD and cumulative leaf area, as well as radiometric 

properties (leaf reflectance, pjeaf, and transmittance, %/ĝ ). Canopy reflectance modelling 

methods are discussed in more detail in chapter 2 .

 ̂ LAI is defined as the single sided lea f area o f  canopy per unit ground area (m^ per m^).

L A D  is a function describing the distribution o f  le a f  zenith angles w ithin the canopy.
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i) Re-scattering of an upward diffuse flux into an 
upward direction (function of /  ̂  ).

I
ii) Scattering of a downward diffuse flux into 
an upward direction (function o f/^  ).

t

iii) Scattering of a downward direct beam flux into an 
upward direction (related to canopy optical depth and 
leaf projection amongst other things).

Figure 1.6 Schematic representation of radiation transport processes within a 
vegetation canopy (after Sellers, 1989) relating up- and downward diffuse fluxes

within the canopy, I and T.

1.4 Surface reflectance anisotropy

“Research over the past 15 years has conclusively established that the Earth’s 

surface is non-Lambertian, and any future analyses, excepting perhaps the most simple 

and crude o f approximations, cannot legitimately assume Lambertian properties. 

Reflectance anisotropy is significant. ’’

Conclusion drawn by Diane E. Wickland (Manager, NASA Terrestrial Ecology 

Programme) following NASA workshop on multiangular remote sensing for 

environmental applications, Jan. 29-31 1997, Univ. Maryland, (in Privette et a i, 1997).
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It has long been known that natural surfaces do not in general reflect incident 

radiation equally in all directions but instead tend to display varying degrees of 

anisotropy (Minnaert, 1941; Nicodemus et a l ,  1977; Hapke, 1981). As mentioned 

previously, surface reflectance is not only a function of the spectral and spatial properties 

of the incident radiation and target respectively, but also of the direction from which the 

surface is illuminated and viewed (Ross, 1981; Goel, 1988; Privette et a l, 1997). The 

reflectance anisotropy of a surface is determined by two principal factors. Firstly, the 

intrinsic directionality of the spectral reflectance, transmittance and absorptance of the 

scattering material. Secondly, anisotropy is a function of surface roughness, or structure. 

The latter property is determined by the density and arrangement o f objects on a surface 

and hence the nature of the shadowing caused by these objects as a function of 

illumination and observation angles (Torrance and Sparrow, 1966; Otterman and Weiss, 

1982; Li and Strahler, 1986, 1992; Roujean et a l, 1992). Surface structure will tend to 

cause incident radiation to be reflected more strongly in some directions than others. This 

dependence of surface reflectance on viewing and illumination geometry is described by 

the Bidirectional Reflectance Distribution Function (BRDF). Knowledge of the surface 

BRDF can therefore potentially be exploited to provide information regarding the 

structure of the scattering surface. Clearly, knowledge of surface reflectance is also vital 

in order to calculate albedo, which is intimately related to BRDF. This thesis investigates 

models of surface reflectance which have been developed recently in response to the need 

for accurate characterisation of surface reflectance at global scales.

It is clear that the anisotropic nature of the Earth's surface will have an effect on 

the reflectance observed from a remote sensing platform and such effects can derive from 

a variety of sources. Sensors possessing wide viewing swaths, such as AVHRR and 

MODIS, have large variations in view angle across recorded scenes (Cihlar et a l, 1994; 

Leroy and Roujean, 1994). The same is true of sensors with along-track scanning or off- 

nadir pointing capabilities such as MISR, and the Along Track Scanning Radiometer 

instruments (ATSR and ATSR-2). Variations in the solar zenith (illumination) angle over 

a point on the Earth’s surface will also tend to have the same effect as varying the 

viewing zenith angle. This occurs if a particular point is imaged at different times of day 

or at the same time of day throughout the year. The anisotropy o f surface reflectance 

makes direct comparisons between such data impossible. Apparent observed changes in 

the nature of the surface may in fact be caused purely by variations in viewing and 

illumination conditions from one image to another. As the availability of time-series of
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reflectance data has increased, variations caused by inconsistent viewing and illumination 

angles has come to be recognised as a serious problem (Leroy and Roujean, 1994; Cihlar 

e ta l ,  1994).

Problems may also arise within individual scenes. Land surface process and 

climate modelling requirements have directed many new sensors towards global coverage 

at lower spatial resolution (of the order of km per pixel), and away from the high 

resolution observations of limited spatial coverage that have been the norm ( 10s of m per 

pixel). This is necessary in order to keep the quantities of data produced manageable. The 

wide swaths of such sensors such as AVHRR, MODIS and POLDER mean that there 

may be large variations in view angle across any single swath. MODIS for example has a 

swath width of approximately 2330km, with a consequent variation in view zenith of 

around 110° from one side to the other. So there are likely to be directional effects in 

observed reflectance within MODIS data simply because the viewing zenith angle varies 

from 0° at nadir to nearly 55° at either edge of the image. The orbital characteristics of the 

sensor also mean that on repeated orbits a particular point on the surface will be observed 

at a wide range of viewing (and illumination) angles.

Directional effects in BO data were typically ignored until relatively recently. This 

is exemplified by the widespread use of AVHRR maximum-value composite (MVC) 

products (Holben, 1985). It is now recognised that in order to make comparisons of 

measured surface reflectance across or between scenes, then directional effects must be 

accounted for (Roujean et al., 1992; Wu et al. 1994; Privette et al., 1997). In examining 

changes in cover type for example, comparisons must be made between data that may be 

separated in time by many months, and which may have been measured at significantly 

different viewing and illumination angles (Cihlar et a l,  1994). In addition to the effects 

mentioned above, which are often considered as obstacles to be overcome (e.g. Roujean 

et a l,  1992; Leroy and Roujean, 1994), the directional nature of surface reflectance can 

also be exploited. The directional dependence of the surface reflectance on its structural 

properties implies that observations of the directional component of reflectance will 

contain information relating to these properties (Goel and Strebel, 1983; Goel, 1988; Goel 

and Reynolds, 1989; Myneni et a l,  1989). It may be possible to relate variations in 

observations at different viewing and illumination angles to the surface features causing 

these variations (Asrar, 1989; Pinty and Verstraete, 1991; Myneni et a l, 1995).
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Analogous to the manner in which spectral variations in reflectance are exploited via 

multi-band data, the directional component can be exploited using multi-angle data.

The fact that the directional signature of remotely sensed surfaces will contain 

structural information has led to the development of new missions designed specifically 

to explore and exploit the directional signal. This signal is not available to sensors that 

have no directional sampling capability, either through a wide field of view, a pointing 

capability or orbital characteristics. Airborne instruments such as the NASA Advanced 

Solid state Array Spectrometer (ASAS) (Irons et a l,  1991) have been in use for some 

time (Barnsley et a l,  1997b; Lewis et a l, 1999). On a much larger scale, the MODIS and 

MISR instruments on-board the Terra platform are both specifically designed to exploit 

directional variations in surface reflectance (Wanner et a l ,  1997; Knyazikhin et a l, 

1998a,b; Martonchik et a l,  1998a,b). MODIS data exploit the instrument's wide swath 

and rapid repeat coverage to provide viewing and illumination variation, whilst MISR is 

has nine fixed cameras, giving four look angles in the along-track direction fore and aft as 

well as a nadir view. An intermediate instrument is CHRIS (Compact High Resolution 

Imaging Spectrometer) aboard the PROBA (Project for On Board Autonomy) platform 

launched in autumn 2001 (Barnsley et a l, 2000; w w w [l.l 1]). CHRIS is a high-resolution 

(25 to 50m) optical instrument which (uniquely) combines (19) selectable radiometric 

bands with a pointable multi-angle capability. This variety of instruments highlights the 

well-established (and growing) interest in multi-angle remote sensing.

1.5 Thesis outline

Much of the impetus for the work in this thesis derives from developments made 

in the design and algorithm development for a new generation of spaceborne instruments. 

Models of BRDF have been developed to allow both the correction of directional effects 

in measured reflectance data and also, more interestingly, the exploration of the 

directional signal. The range of approaches to modelling the reflectance of vegetation 

canopies has been extremely wide, with attendant variations in complexity. With MODIS 

already launched and entering its operational phase (and with other similar missions 

planned), it is becoming increasingly important to understand exactly what information 

can be practically and usefully extracted from the data, and how this process might be 

improved. This thesis presents work which is part of ongoing validation for sensor
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programmes such as MODIS and CHRIS, as well as contributing to the understanding of 

existing algorithms and the development of new ones.

Chapter 2 contains a theoretical discussion of BRDF as well as a review of 

important concepts and developments in surface reflectance modelling. In particular, 

simple semi-empirical kernel-driven models of BRDF developed specifically for use with 

the MODIS sensor are introduced. These models are an important development for near 

real-time production of the type of global, moderate resolution products required for the 

study of global climate processes. The kernel-driven models are just starting to be used 

operationally to produce estimates of albedo and bum scar area from surface reflectance. 

This thesis explores how these relatively simple models can apparently describe the 

complex scattering behaviour of vegetation canopies at a range of scales. In addition, the 

nature of biophysical information contained in the model parameters is explored and 

potential improvements and extensions of the modelling concept are proposed.

Chapter 3 is a description of fieldwork carried out to obtain a variety of plant 

canopy data. Detailed 3D models of canopy structural and radiometric properties are 

generated from structural measurements and subsequently used to simulate values of 

canopy reflectance, Pcanopy The simulations of pcanopy are the basis for exploration and 

understanding of the assumptions underlying certain canopy reflectance modelling 

techniques. Contemporaneous measurements of a variety of canopy parameters made 

during the field campaign are used to validate simulated values of pcanopy

Chapter 4 describes a set of experiments intended to establish the validity of the 

semi-empirical kernel-driven approach to modelling BRDF. Values of pcanopy are 

simulated under the assumptions made in the formulation of the linear kernel-driven 

models and the results are used to explore these assumptions. The assertion that pcanopy 

can be separated into its constituent scattering components is examined. Results show that 

the separate components o f simulated Pcanopy do in general describe what they are 

purported to in the model formulation.

Chapter 5 explores the relationship between the linear kernel-driven model 

parameters and the corresponding scattering components derived from the 3D canopy 

simulations. The assumptions underlying the linear kernel-driven models are tested and 

situations where these assumptions may break down are highlighted. This is the first time
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that these assumptions have been tested explicitly, rather than being inferred from the 

ability of the kernel-driven models to fit observed reflectance data.

Chapter 6 contains an analysis of the information content of the model 

parameters. Results show that model parameters may contain biophysical information that 

can be exploited but it may be coupled with other information. This indicates that the 

model parameters should be interpreted with great care, particularly in the absence of 

other ancillary information. Model parameters may have an indirect use for analysis such 

as land cover classification or change detection.

Chapter 7 presents a new extension of the linear kernel-driven modelling 

approach into the spectral domain. Such an approach appears to offer significant 

improvements over current kernel-driven models, which are limited to the angular 

domain. This is particularly true for the derivation of products such as broadband (across 

visible and NIR wavelengths) albedo from narrowband spectral samples. So-called 

'spectral kernels' are derived and tested against simulated (and measured) reflectance data.

Chapter 8 contains conclusions drawn from the experimental results presented in 

the thesis and discusses directions for further research. In particular, further developments 

of the spectral kernels are proposed and plans are outlined for the application of a full 

spectral directional kernel-driven model of the type developed in chapter 7 to airborne 

and spaceborne data.
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2 Review o f BRDF and canopy reflectance m odelling

Liang et al. (2000a) review the current state of multi-angle remote sensing 

following the International Forum on BRDF (IFB), San Francisco, December 1998. They 

conclude that multi-angle remote sensing, at the threshold o f the EOS era, is now yielding 

data which are set to provide unique insight into surface biogeophysical processes.

Radiation reflected from the Earth’s surface is characterised by a small number of 

key signatures (or domains of information) (Gerstl, 1990; Liang and Strahler, 1994);

1. Spectral (1): reflectance, transmittance and absorptance response of canopy 

elements to radiation of different wavelengths (Jacquemoud and Baret, 1990; 

Curran et a l,  1992).

2. Spatial (x, y): e.g. spatial structure at the macroscopic level (objects are much 

larger than the wavelength of incident radiation), arrangement of scattering 

objects on a surface, appearance of target at different scales, adjacency, mixed 

pixels (Woodcock et a l,  1988).

3. Temporal (t): e.g. seasonal change of vegetation growth profiles; inter-annual 

variability of vegetation quantity (Myneni et a l ,  1997).

4. Angular Q(0v, (|)v), Q ’(0/, (|),): reflectance anisotropy caused by surface 

structure e.g. hotspot -  the peak of reflectance in retro-reflection direction 

(viewing and illumination vectors, Q and Q ’, are near coincident) (Ross, 1981; 

Kuusk, 1985).

5. Polarization p((|)): e.g. polarization information contained in surface 

reflectance signal (Vanderbilt et a l ,  1985; Deschamps et a l,  1994).

6 . Time-resolved (5T): time-resolved returns from active instruments, such as 

optical (laser) LiDAR (Light Detection And Ranging), and phase information 

from microwave RADAR (Radio Detection and Ranging) instruments (A, of 

the order of cm).
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The intrinsic surface reflectance is a function of all of these signatures, but differs 

from the signal measured at the sensor due to the effects o f atmosphere, sensor response 

etc. Exploration of the first three signatures above has formed the basis of conventional 

remote sensing (Goel, 1988; Gerstl, 1990). The fifth component has only been 

deliberately exploited recently with the advent of the (now-defunct) POLDER, and 

forthcoming POLDER II instruments (Deschamps et a l ,  1994; Leroy et a l ,  1996). The 

sixth component has also been exploited only relatively recently: LiDAR is currently 

being explored as a new method of obtaining information on surface properties, 

particularly vegetation canopy structure (www[2.1]). Phase information from RADAR 

instruments can be used to determine information regarding the structure and scattering 

behaviour of the surface (Sun and Ranson, 1995; Saich et a l,  2001).

The directional signal (4) has historically been one of the least exploited of these 

signatures (Goel, 1992; Liang and Strahler, 1994; Myneni et a l ,  1995; Privette et a l,

1997) and was until relatively recently mostly ignored. Barnsley et a l  (1997a) have 

shown that multiple view angle (MVA) data contain information entirely separate from 

the spectral component o f measured reflectance. This indicates that the directional signal 

can be used to distinguish between cover types purely on the basis of surface structural 

detail, even where spectral responses are identical (Asner, 2000). This thesis is primarily 

concerned with the information content of the directional signature, but also examines the 

possibility of extending and including spectral information into simple directional 

modelling methods.

Considering the reflectance signal from a vegetation canopy, Goel (1992) extends 

the description by Gerstl (1990) given above to propose the following functional 

description of the relationship, R, between the measured spectral directional reflectance p 

of a vegetation canopy, and the parameters controlling that signature:

p  = R{X, t, {x, y),  (Q, 0')> P, dT; C)  2.1

In addition to the five signatures described above, R is also dependent on a set of canopy 

parameters, C, representing the characteristics of the canopy and its underlying surface 

(soil, snow etc.) contributing to the form of p. In order to derive information regarding 

vegetation from measurement of reflectance, models o f vegetation canopy reflectance 

(CR) are constructed (Goel, 1988). A model of CR is an attempt to i) formulate an 

accurate forw ard  relationship to predict p for given R and ii) determine C from measured
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p (at given values of X, t, (x,y), (Q, Q ’), dT, P) i.e. to invert (or understand) the canopy 

parameters from the relationship in equation 2.1.

The development of EO as a powerful tool for monitoring and mapping the global 

environment has been introduced in chapter 1. This chapter discusses the implications of 

the anisotropic nature of surface reflectance under variable viewing and illumination 

conditions. The potential for exploitation o f the directional nature o f surface reflectance 

through the application of canopy reflectance models is explored. Mathematical 

techniques for the inversion of such models against measured reflectance data are 

introduced. Following this a review of some of the many available canopy reflectance 

modelling (CR) techniques is undertaken. The conclusion of this is the introduction of a 

particular class of canopy reflectance models, developed for their simplicity and 

effectiveness, which are to be used to derive products from forthcoming sensors such as 

MODIS and MISR. Experimentation in subsequent chapters explores the potential for 

these models to extract information regarding vegetation canopies from reflectance data 

in practice.

2.1 Factors affecting surface reflectance anisotropy

The size, shape and distribution of objects on a surface have a direct impact on 

the nature of the radiation scattered from the surface (Hapke, 1981, 1993). The measured 

reflectance signal is therefore a function of surface structure. Vegetation is one of the 

most important absorbing/scattering land surfaces that can impact a remote sensing signal 

(Asrar, 1989; Myneni and Ross, 1990; Sellers, 1992; Asner, 1998). Examples of 

important biophysical parameters such as LAI, fAPAR and albedo, which are used by 

ecologists, climatologists and remote sensing scientists to describe the quantity and 

influence of vegetation, were introduced in the previous section.

Vegetation plays an extremely important role in the global climate 

(Dickinson, 1983, 1995; Otterman, 1985), providing a primary mechanism for the 

exchange of O2 and CO2 in the atmosphere (Schulz et a l, 2001; Zhan and Kustas, 2001), 

as well as energy fluxes through photosynthetic activity (Ross, 1981; Verstraete, 1987), 

moisture fluxes (Shukla and Mintz, 1982) and transfers of momentum (Sellers, 1995). 

Indeed, Asner (2000) notes "MVA remote sensing measurements are uniquely sensitive
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to variation in key structural characteristics of vegetation, soils and atmospheric 

constituents". For these reasons, much emphasis has been placed on attempting to 

understand how vegetation can be detected and monitored from remote sensing 

measurements. One of the primary ways in which this has been achieved has been the 

development and refinement of CR modelling techniques (Allen et a i, 1970; Ross, 1981; 

Goel, 1988; Asrar, 1989; Privette et a l, 1997; Strahler, 1996).

It is well-known that natural surfaces are generally not Lambertian reflectors (i.e. 

reflecting incident radiation equally in all directions), but will tend to display varying 

degrees of anisotropy (Minnaert, 1941; Nicodemus et a l, 1977; Hapke, 1981). Surface 

reflectance is therefore not only a function of the spectral, spatial and polarising 

properties of the target, but also of the direction from which the surface is illuminated and 

viewed (Ross, 1981; Goel, 1988). Measured reflectance (as opposed to the intrinsic 

surface reflectance) will also be dependent on the spectral and directional nature of the 

irradiance. The directional nature of surface reflectance is illustrated in figure 2.1.

O O

(a) o

(c)

(b) o

(d)

Figure 2.1 Four examples of surface reflectance: (a) Lambertian reflectance (b) 
non-Lambertian (directional) reflectance (c) specular (mirror-like) reflectance (d)

retro-reflection peak (hotspot).
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The degree to which incident radiation from a surface is reflected anisotropically 

is determined by factors such as the density and arrangement of objects on the surface, 

and hence the nature of the shadowing caused by these objects as a function of viewing 

and illumination zenith and azimuth angles, 0„v, and (|),> respectively (Otterman and 

Weiss, 1982; Li and Strahler, 1986, 1992; Roujean et a l,  1992), as well as the intrinsic 

directionality of the reflectance, transmittance and absorptance properties of the scattering 

materials (Asrar, 1989). Reflectance anisotropy can also be a function of the aggregated 

scattering properties of objects. The existence of surface structure tends to cause the 

surface to depart from Lambertian and, as a result, incident radiation is reflected more 

strongly in some directions than others. This directionality of surface reflectance can 

potentially be exploited to provide information regarding the surface structure. This is 

illustrated by the specular and hotspot peaks shown in figure 2.1c and d. The hotspot peak 

arises because a minimum of shadowed surface is viewed when the viewing and 

illumination vectors are collinear (Hapke, 1984). This is a characteristic feature of 

vegetation canopy reflectance and is related to the size and distribution of scattering 

objects within the canopy (Kuusk, 1985; Pinty and Verstraete, 1992). The next step is to 

introduce a formal description of surface reflectance anisotropy.

2.1.1 Bidirectional reflectance distribution function (BRDF)

Figure 2.1 illustrates the tendency o f natural surfaces tend to reflect incident 

radiation anisotropically. This behaviour is formally described by the (spectral) 

bidirectional reflectance distribution function (BRDF) (Nicodemus, 1970; Nicodemus et 

a l,  1997; Hapke, 1981). The BRDF of a small surface area ôA (at a particular wavelength 

of (non-polarised) illuminating radiance) is defined as the ratio of the incremental 

radiance leaving the surface through an infinitesimal solid angle in the direction defined 

by the viewing vector, Q(0v, ^v) (where 0v, are the viewing zenith and azimuth angles) 

to the incremental irradiance from direction defined by the illumination vector, Q ’(0/, 4)/) 

(where 0„ (|), are the illumination zenith and azimuth angles). This is expressed in 

equation 2.2 (ignoring any dependence of BRDF on wavelength, X)

Where dLc is the incremental radiance reflected from the surface into the differential solid 

angle in the viewing direction Q (Wm'^sr ') (Nicodemus et a l ,  1977; Martonchik et a l,
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Figure 2.2 Configuration of viewing and illumination vectors in the viewing 
hemisphere, with respect to an element of surface area, ÔA.

2000); dE; is the incremental irradiance (Wm'^sr"') arriving from the illumination 

direction, Q ’ i.e. dE. = L.(Q')cos<9. sm(j)^d6-d(p^. Figure 2.2 shows the configuration.

Equation 2.2 only deals with two of the domains of information described in the 

expression for measured reflectance given in equation 2.1, but for exploring spectral 

directional reflectance these are the important ones. BRDF as defined in equation 2.2 is a 

fundamental property of the surface, describing the intrinsic surface reflectance. 

However, it is defined only for infinitesimal viewing and illumination solid angles and an 

infinitesimal wavelength interval. Consequently it cannot be directly measured. In EO 

applications, illumination is typically over a hemisphere with both direct and diffuse 

sources (solar illumination, and sky radiance respectively). Viewing is typically over 

some finite sensor instantaneous field-of-view (IFOV), defined by the sensor optics and 

geometry, with a spectral response over some finite wavelength interval rather than at 

some discrete value of X.

In practice, it is assumed that the BRDF can be retrieved with some level of 

uncertainty, from radiance measurements over the IFOV using a collimated beam light 

source (e.g. laser or direct sunlight). In this case, BRDF is the limit case of biconical 

reflectance measurement. To overcome the problem that the BRDF is a non-measurable 

property, we define a bidirectional reflectance factor (BRE) p (1 0 , Q ’), which is the ratio

of radiance leaving the surface in a finite solid angle in the viewing direction Q to the
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radiance from a perfect Lambertian reflector under the same illumination conditions as 

the target, into the same finite solid angle i.e.

where Le is the radiance exitant from the surface (W m'^sr’); LLambertian is the radiance 

from a perfect Lambertian reflector (Wm’̂ sr'^); Lsky.sun are the sky and sun radiance 

distributions (Wm'^sr '). It can be seen that the BRF is dimensionless.

As a result o f the incident irradiance and exitant radiance being defined over 

infinitesimal solid angles 5Q and BRF can be calculated as an integrated property 

i.e. the numerator in equation 2.2 becomes:

2

L, (O, O’, E, (O, O' ), (O, O’ )) = I (O, O’ )dOdO’ 2.4
0 0

where ps is the surface reflectance function (BRDF); dCï= 6 sin OdOde/) (and

similarly for dQ*. It can be seen from equation 2.3 that in order to derive the exitant 

radiance, the viewing and illumination vectors are integrated over the respective viewing

O’. Q'))= -  c r y a
In

2.5
^ 0

and illumination hemispheres. In the same way, the radiance from the Lambertian surface 

is defined as

The integral is purely over the illumination direction as the observed reflectance, by 

definition, is the same regardless of the viewing direction. In practice, the BRF is often 

defined as the radiation exiting the scene in a given direction (an infinitesimal angle), 

rather than as an integrated property. If a point illumination source is considered i.e. no 

sky irradiance, then, for this case

B R F  (£2, n ’ ) = nB R D F  ( Q , Q ’ )  2.6

The expression in equation 2.6 utilises the fact that the BRDF of perfect Lambertian 

reflector is 1/ti. This is due to the fact that a perfectly diffuse surface reflects the same 

radiance, E/(0 ,)/7i in all directions. As a result, the BRF of any surface is equal to its 

BRDF multiplied by tt.

Practically, measured surface reflectance is a function of the direct and diffuse 

component of incident irradiance (rather than being an intrinsic surface property).
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Consequently, integrals of the BRDF over the viewing and illumination hemispheres are 

defined. The directional hemispherical reflectance (or DHR), p (Q ,Q ') , is the integral of 

BRF over the viewing (or illumination) hemisphere. It is the hemispherical reflectance 

assuming a directional (collimated beam) illumination source (or alternatively, the 

directional refleetanee for a diffuse illumination). This can be expressed as:

^ (Q ’; 2;r) = -  T  BRDF{C1, Q')dCl
7T •’

This expression defines the so-called black-sky albedo (Wanner et a l ,  1995) i.e. it defines 

the hemispherical reflectance under conditions of purely directional illumination (no sky

radiance). yô(Q') can be integrated over all illumination directions to yield p  the bi- 

hemispherical (or hemispherical-to-hemispherical) reflectance (or BHR). This is the 

reflectance of a surface over all viewing angles due to a diffuse illumination source i.e.

  27t 1 2;r In
p(2 ;r;2 ;r)=  jp (Q ')rfQ ' = — I  \BRD F{Q ,Q ')dQ dC l' 2.8

which is the so-called white-sky albedo i.e. the hemispherical reflectance under perfectly 

diffuse illumination conditions.

It is important in the context of remote sensing applications to note that BRDF 

cannot be directly measured because:

i) (from equations 2.2 and 2.3) BRDF is defined as the ratio of two partial 

derivatives and BRF is defined as reflectance relative to that of a perfect 

Lambertian reflector.

ii) No sensor has a perfectly discrete spectral response, and so measurement 

of BRDF is inevitably a convolution of the signal with the sensor spectral 

response function over a range of wavelengths. Additionally, the projected 

instantaneous IFOV of the sensor must be accounted for i.e. measurement 

is not over an infinitesimal angle.

iii) In practice, observations are made through some depth of atmosphere so 

that the measured signal is also a function of atmospheric absorption and 

scattering (reflectance and transmittance). To retrieve measures of surface 

reflectance through the atmosphere, the scattering behaviour of the
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atmosphere (and in particular the scattering phase function) must be 

characterised accurately.

Using the relationships in equations 2.2-2.S it is now possible to relate BRDF to 

albedo. The BRDF explicitly describes the directional nature of exitant radiation from a 

surface. As a result, albedo, the total irradiant energy (both direct and diffuse) reflected in 

all directions from the surface, is an integrated measure of the directional reflectance over 

the viewing/illumination hemisphere. Albedo is thus a function of the quantities of diffuse 

and direct illumination arriving at the surface. In the discussion above, dependence of 

BRDF on X has not been considered. In practice, BRDF is also a function of Typically 

reflectance data are either reported as a function of X, or the finite wavelength interval 

over which the parameters have been integrated during observation is specified. In such 

instances, parameters such as BRF, DHR and BHR are should be prefaces by "spectral" 

or "narrowband".

Further approximations are required in practice in order to relate estimates of 

albedo made at narrow wavelength bands (narrowband) to total albedo over the visible 

and NIR regions of the spectrum (broadband). This has been discussed by a number of 

researchers, in a variety of ways (Stephens et a l ,  1981; Stum et a l ,  1985; Kimes and 

Sellers, 1985; Cess and Potter, 1986; Brest and Goward, 1987; Koepke and Kriebel, 

1987; Dickinson et a l,  1990; Liang et a l,  1999). Spectral albedo a ( l )  can be 

approximated as a combination of the two components of black-sky and white-sky albedo 

(Wanner et a l ,  1997; Strugnell and Lucht, 1999), weighted by D, the proportion of 

diffuse illumination from the atmosphere i.e.

a(Z) = (l -  D(à , Q ', t ))p {à , Q ') + D{à , O ', t )p {à )  2.9

where D(^, Q ’, x) is function o f the illumination conditions and the atmospheric state, 

characterised by the atmospheric optical depth, x. Equation 2.9 is a reasonable 

approximation to spectral albedo except at high solar zenith angles (Lewis and Barnsley, 

1994). The total surface albedo, a  i.e. the ratio of the total incident shortwave radiation to 

the reflected radiation can then be approximated as an integral over all shortwave (SW) 

radiation (ignoring anisotropy of incident diffuse radiation) i.e.

a =  jp{X)a{À)dÀ  2.10
SW
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where p (l)  is the proportion of illumination in the solar spectrum, dependent on the 

atmospheric state. 1-a  is then the proportion of incident shortwave radiation absorbed at 

the surface (stored as heat energy and chemical energy through photosynthesis). 

Application of the method to EO data requires the integral over all SW to be 

approximated with a weighted sum of the available wavebands (Lewis et a l,  1999), or 

through the use of other modelling techniques (Liang, 2000; Lucht and Roujean, 2000). 

This limitation will be discussed in later chapters.

The properties defined above can be measured in practice. To characterise up- and 

downwelling radiation fluxes from the surface a description of the surface scattering 

behaviour is required. Indeed, surface properties cannot be related to measured radiance 

without such a model. Many models describing the scattering of radiation by vegetation 

have been developed; some to correct angular dependencies (Roujean et a l ,  1992; Cihlar 

et a l,  1994 Liang et a l,  2000b), some to relate canopy scattering behaviour to remote 

measurements of reflectance (e.g. Goel and Strebel, 1983; Goel 1988, 1992; Nilson and 

Kuusk, 1989; Pinty and Verstraete, 1991). An overview of these methods is given in 

section 2.5.

2.1.2 Removal o f reflectance anisotropy effects from observed reflectance

Reflectance anisotropy arises in a variety of ways. Sensors possessing wide 

viewing swaths such as AVHRR, with a swath width of 2500km, have variations in view 

angle across scenes (70° in the case of AVHRR) (Leroy and Roujean, 1994; Cihlar et a l, 

1994; Li et a l,  1996). In addition, a point on the surface may be located in different parts 

of the viewing swath on subsequent orbits, and will therefore be viewed from different 

angles. This is also true for sensors with along-track scanning or off-nadir pointing 

capabilities such as ATSR-2 (North et a l,  1999) POLDER (Deschamps et a l,  1994), and 

the forthcoming CHRIS instrument (Barnsley et a l ,  2000). This is schematically 

illustrated in figure 2.3. Surface reflectance is also dependent on the solar zenith angle. 

This is manifested if a point on the Earth’s surface is viewed at different times of day, for 

example from a geostationary viewing platform such as METEOSAT, or is viewed on 

different days from a polar orbiting platform such as AVHRR. Sun-synchronous 

observations will also tend to be affected by the annual cycles of variation in solar zenith
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Figure 2.3 Angular effects caused by satellite repeat pattern 
(differently shaded areas represent different numbers o f  samples).

angle. Liang et a i (2000b) review recent developments in the angular correction of 

BRDF data, in particular for modelling surface energy tluxes, and in particular, albedo.

With the increase in availability o f  large satellite data sets, the reflectance 

variations caused by inconsistent viewing and illumination angles has come to be 

recognised as a serious problem (Kimes et al., 1980; Royer et a i, 1985; Leroy and 

Roujean, 1994; Cihlar et a i, 1994). Assuming that the Earth’s surface is Lambertian and 

ignoring directional effects will introduce significant errors in estimates o f  surface 

reflectance from EO data. In order that observations separated in time by many months 

and measured at significantly different viewing and illumination angles may be 

compared, directional effects must be accounted for (Lee and Kaufman, 1986; Roujean et 

al., 1992; Wu e/ al. 1994; Privette et a i, 1997a). This may be achieved by normalising 

reflectance measurements to a standard viewing and illumination equivalent reflectance 

which permits intercomparison o f  data obtained at varying sun and view zenith angles 

(Gutman, 1994). It is now recognised that viewing and illumination angle effects should 

be considered significant: reflectance observations made at different viewing and 

illumination angles are not directly comparable, even if all other things are considered 

equal (Privette et a i, 1997; Roy et a i, 2001).
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2.1.3 Reflectance anisotropy as a source o f information

In contrast to the undesirable effects described above, the directional nature of 

surface reflectance can also be exploited as a source o f information. The directional 

dependence of surface reflectance on structural properties implies that observations of the 

directional signal will contain information relating to these properties (Goel and Strebel, 

1983; Goel, 1988; Myneni et a l,  1989; Pinty and Verstraete, 1991). If it is possible to 

relate radiant energy from a vegetation canopy to observed reflectance using a model of 

some kind, then it may also be possible to use such a model to relate variations in 

observed refleetanee to surface properties causing these variations (Asrar, 1989; Pinty and 

Verstraete, 1991; Myneni et a l,  1995; Asner, 2000). Such a relationship can be used to 

normalise directional effects in directional data sets, as discussed above (Roujean et a l, 

1992; Cihlar et a l,  1994; Liang et a l ,  2000b). More usefully for the study of vegetation 

characteristics however, such a model may be inverted against measured reflectance data 

to provide estimates of model parameters (Goel and Strebel, 1983; Pinty and Verstraete, 

1990, 1992; Hall et a l,  1995; Liang et a l ,  2000a). If the model parameters describe 

surface properties, such as the size and distribution o f scattering objects say, then 

estimates of these surface properties may be obtained. This thesis is concerned with 

recent developments in modelling surface scattering from vegetation, which are now 

being used to produce land-cover products from recent and forthcoming instruments. 

Before describing methods of CR modelling however, attention must be paid to the effect 

of the atmosphere on remotely sensed measurements.

2.2 Atmospheric effects on measured surface reflectance

Reflected solar radiation measured at a remote sensing platform must travel 

through the Earth’s atmosphere both on the way down from the direction of the sun, and 

on the way back up to the measuring platform. The intervening atmosphere contains 

various gases and aerosols, which absorb and/or scatter upwelling and downwelling 

radiation. The most abundant atmospheric gas in terms of absorption of incoming 

radiation is water vapour (contributing approximately 75% of the global greenhouse 

effect), which absorbs radiation strongly in the NIR and mid-IR regions (Salby, 1995). In 

addition, the atmosphere contains aerosol particles such as sulphates, mineral dust, soot 

and sea salt, originating from sources such as volcanic eruption, industrial and urban
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emissions or oceanic evaporation. These aerosols can have significant scattering effects 

(Rayleigh and Mie, depending on particle diameter) and cause the signal received at the 

sensor to be attenuated (Kaufman, 1989; Vermote et a l,  1997a,b). This can be 

particularly important when investigating surface properties such as albedo (Lyapustin,

1999). Atmospheric gases and aerosols can also be highly temporally and spatially 

variable and are therefore difficult to characterise accurately (Martonchik et a l,  1998a). 

This behaviour is generally characterised by the aerosol optical depth, t  (Zibordi and 

Voss, 1989).

o

target target

target

O V

target

Figure 2.4 Four sources of atmospheric perturbation to the measured surface
reflectance signal.

Figure 2.4 illustrates four sources of atmospheric scattering that cause 

perturbation of the surface reflectance signature. R| is incoming radiation reflected 

towards the sensor by a single scattering interaction in the atmosphere. R] is incoming 

radiation scattered first from the surface outside the target area then by the atmosphere 

into the path of the sensor. R3 is incoming radiation scattered by the atmosphere onto the 

target and then to the sensor. R4 is incoming radiation scattered from the surface outside 

the target, then by the atmosphere above the target back on to the target, then to the
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sensor. Note in R4 that a component of the signal reaching the sensor will contain 

radiation reflected from the area surrounding the target in addition to the desired signal 

(Kaufman, 1989). There are obviously more complex interactions if higher orders of 

scattering between the surface and atmosphere are considered. These will tend to be 

successively smaller in magnitude than the single scattered interactions due to attenuation 

by absorption, scattering and transmission at each successive interaction, and will also 

tend to be isotropic (Vermote et a l,  1997a,b). If information regarding the scattering 

behaviour of the target is sought, this extraneous atmospheric signal which acts to ‘blur 

out’ the surface reflectance signal, must be accounted for. It is clear that the atmosphere 

adds significantly to the path radiance at red wavelengths (and even more so at shorter 

wavelengths), whilst attenuating the surface reflectance at IR wavelengths (Kaufman, 

1989; Myneni et a l  1993).

In order to isolate the desired surface signal, the contribution of the intervening 

atmosphere must either be removed (as far as possible) or modelled as part of the signal 

through the application of a coupled model of surface-atmosphere scattering. Removing 

the atmospheric perturbation of measured surface reflectance is typically performed using 

a model of the scattering behaviour of the atmosphere (coupled with some assumption of 

surface reflectance behaviour). The Second Simulation of the Satellite Signal in the Solar 

Spectrum (6S) code of Vermote et a l (1996) for example, uses available ozone and water 

vapour concentrations, aerosol optical depth at 550nm, knowledge of sensor response and 

atmospheric pressure and a model of surface reflectance properties to generate parameters 

which allow surface reflectance to be calculated from at-sensor top-of-atmosphere (TOA) 

radiance values. There are a number of other models for the atmospheric correction of 

measured radiance data such as those of Rahman and Dedieu (1994) and Berk et a l 

(1992). Kaufmann (1989) gives a comprehensive review o f methods that have been 

developed in order to account for the atmospheric component o f remote measurements of 

the Earth’s surface.

The second approach to accounting for atmospheric effects is based on the 

observation that the measured directional reflectance signal is a function of both the 

surface and the atmosphere and the coupling between them (Myneni and Asrar, 1993). A 

number of combined surface-atmosphere models have been developed in order to 

characterise this coupling. Liang and Strahler (1993) described the coupled atmosphere- 

canopy system as two plane-parallel layers with a non-Lambertian soil boundary. The
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total radiation field in this case is calculated by treating the unscattered, single scattered 

and multiple scattered radiation separately. A similar approach is taken by Rahman et al. 

(1993a, b) in their coupled surface-atmosphere reflectance (CSAR) model. Their results 

show that the BRDF signal undergoes smoothing as a result of atmospheric effects, thus 

emphasising the importance of considering the coupling between surface and atmosphere. 

Lewis et al. (1999) demonstrate that both the magnitude and (more importantly) the shape 

of the surface BRDF can be completely mis-estimated if atmospheric correction is not 

performed accurately. In particular, the correct choice o f scattering phase function is 

shown as crucial in maintaining the surface reflectance shape. Lyapustin (1999), and 

Lyapustin and Privette (1999), have shown the importance of the accurate 

characterisation of atmospheric absorption and scattering in the derivation of albedo from 

multi-angular measurements. Interestingly, Lyapustin (1999) has recently shown that 

there appears to be a small, well-defined range of solar zenith angles between 

approximately 52° and 57° where surface albedo is almost insensitive to atmospheric 

opacity.

Atmospheric correction of remotely sensed data has generally been performed on 

a ‘per scene’ basis, ignoring spatial variability within scenes and assuming a uniform 

Lambertian surface (Tanré et a l,  1986; Fraser et a l ,  1992). Typically, the total radiation 

flux from the top of the atmosphere (TOA) to the surface is described as the sum of direct 

and diffuse components -  the latter caused by absorption and transmission of atmospheric 

gases sueh as water vapour and scattering by atmospheric aerosols. The assumption of 

Lambertian surface reflectance is made in order to simplify the calculation of radiation 

scattered multiply between the surface and atmosphere. Lee and Kaufmann (1986) 

demonstrate that this assumption can cause significant errors in the retrieval of surface 

reflectance, particularly in the backscattering direction and for large illumination angles 

(60° and above) due to coupling between surface reflectance and the atmosphere. Hu et 

al. (1999) state that such errors can be from 2-7% up to 15% in the worst case. As a 

result, when investigating directional reflectance variations, a more spatially accurate 

approach requiring per-sample (per pixel, depending on pixel resolution) corrections is 

required (Vermote et a l, 1997a). The additional computational effort required to achieve 

this is a major limitation on the rapid processing of large data sets. Recent instruments 

designed to measure surface reflectance variations (e.g. MODIS and POLDER) have been 

developed to use a variety of data regarding the state of the atmosphere and the surface 

surrounding the target in order to produce improved atmospheric corrections.
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Atmospheric correction developed for the MODIS surface reflectance product for 

example, assumes that the signal at the sensor is a distance-weighted sum of the 

contributions from the pixels surrounding the target (Vermote et a l,  1997a,b). 

Measurements of ozone, water vapour and pressure are also used in calculating 

atmospheric attenuation of the measured signal. Simultaneous multi-angle measurements 

of the surface during a single overpass from sensors such as MISR (Martonchik et a l,

1998) and CHRIS (Barnsley et a l,  2000) provide another possibility. The (now defunct) 

POLDER instrument was designed to measure the polarisation of incoming radiation in 

order to characterise the atmospheric aerosol scattering phase function. This information 

can be used to further improve the atmospheric correction process by identifying the 

various types and concentrations of scattering particles (Leroy et a l ,  1996).

It has been shown that the atmosphere between target and sensor contributes 

significantly to the difficulty of measuring surface BRDF remotely. As such, it is 

desirable to account for the scattering behavior of the atmosphere in some way. However, 

it should also be noted that the scattering caused by atmospheric aerosols is a valuable 

source o f information in its own right. Clearly, if radiation reflected from surface to 

sensor is attenuated due to atmospheric scattering, the same must also be true for 

incoming solar radiation. In fact, atmospheric aerosols play a major role in the Earth’s 

radiation budget (Charlson et a l,  1992; Kiehl and Briegleb, 1993). Tropospheric aerosols 

(and associated indirect effects) are thought to contribute of the order of IW m^ to 

atmospheric radiative forcing (IPCC report, 1995). The effects are not well understood, 

however, owing to the inherent spatial and temporal variability of atmospheric aerosols, 

combined with uncertainty regarding tropospheric composition of aerosols and their 

single scattering albedo and phase function. This is a severe barrier to understanding the 

impact of atmospheric aerosols on global climate.

As a consequence of the poor quality of available knowledge of atmospheric 

aerosol distribution and scattering behaviour, instruments such as MISR are now 

generating information regarding atmospheric aerosol concentration and type 

(Martonchik et a l,  1998a). Rather than attempt to compensate for the scattering 

behaviour of the atmosphere, the nine cameras of the MISR instrument (four spectral 

bands) characterise atmospheric scattering at the various path lengths experienced by 

each camera. Pre-determined aerosol mixture models have been used in conjunction with 

radiative transfer models of scattering behaviour to pre-calculate TOA radiance values.
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These are compared with measured radiance values in order to invert the actual aerosol 

scattering properties on a global scale. It is hoped that the creation o f a detailed aerosol 

climatology will enable a far more accurate characterisation of the impact of aerosol 

forcing on global climate than has so far been possible. Further, it is notable that the use 

of multi-angle imaging (e.g. MISR, ATSR etc.) can be used to overcome the difficulty of 

separating the components of surface and atmospheric reflectance inherent in the 

measured signal.

2.3 Canopy reflectance: The forward and inverse problems

Monitoring vegetation using remotely measured data is a problem of the sort 

occurring in the observation of almost any complex physical system (Twomey, 1977; 

Gershenfeld, 1999). The solution in general is to construct a model of the system. If the 

model describes the interactions of the system sufficiently well (i.e. to some desired level 

of accuracy), then the model can be used to describe the outcome of the system based on 

chosen inputs. This is described as running the model in ‘forward’ mode or ‘forward 

modelling’ (Goel, 1992). If the model predictions are in agreement with the observed 

behaviour of the system, we can have some degree of faith in the ability of the model to 

predict the behaviour of the system under arbitrary input conditions. An important caveat 

is that no matter how good the agreement between the modelled and measured state of the 

system, the model can never truly be ‘validated’. It is always prone to the twin problems 

that natural systems are never closed and that model results are always non-unique 

(Oreskes et a l ,  1994). The primary cause of non-closedness in a natural system is ‘noise’: 

unwanted perturbations of the desired signal by factors outside immediate consideration. 

For example, the intervention of the atmosphere between the surface and a remote sensing 

instrument causes perturbation of the observed reflectance, as does the imperfect spectral 

response of the sensor. As a result, a single point on the Earth’s surface may appear to 

have quite different reflectance if observed on different days, at different times of day or 

from different sensors. These effects can be modelled (Lucht and Lewis, 1999) but other 

factors such as the difficulty of accurately characterising generalised parameters and the 

sensitivity of the model inversion process to sampling (spectral and directional) conspire 

to make model validation difficult. This is an ever-present problem that must always be 

addressed carefully in modelling natural systems (Justice et a l,  2000).
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Figure 2.5 Schematic representation of forward and inverse modes of Pcanopy 
model operation (solid lines represent the model in forward mode; dashed 

lines and blue boxes represent path taken during model inversion).

Having a forward model that adequately describes the state of a system is useful 

in that it may allow predictions on the future state of the system to be made. However, 

what is often of most interest is the set of parameters governing the system. How can 

information regarding these parameters be derived from the model? The solution is to 

‘invert’ the model (or run the model in ‘inverse’ mode). This implies making observations 

of the system and then manipulating the model parameters so that the outputs of the 

model match the observations as closely as possible. It can then be postulated that the 

resulting parameter values are the values that cause the system to be in the measured 

state. This explanation relies on the fact that for any particular model state there exists a 

unique set of driving parameters (which in practice is never the case due to noise). 

However, model inversion against reflectance data provides a very powerful method of 

deriving information about canopy parameters from remote measurements. The generic 

forward and inverse process is illustrated schematically in figure 2.5. The solid arrows in 

figure 2.5 represent the modelling process for linear systems, which can be inverted 

analytically. The dashed lines represent the iterative inversion process that is typically 

required to invert a non-linear model of Pcanopy The experimental work presented in this 

thesis aims to investigate the possibilities for vegetation canopy parameter retrieval from 

measured reflectance data, primarily using linear models developed for the MODIS 

sensor (Wanner et a l, 1995, 1997). To fully understand the way in which such models

38



can be applied, and the type of information it may be possible to retrieve, a good 

understanding of the various methods of model inversion, both linear and non-linear, is 

required.

2.4 Mathematical approaches to model inversion

There are many ways of inverting mathematical models. In simple linear systems 

an analytical solution may be found to the problem of inversion (ignoring for the moment 

any uncertainty due to noise in the observations) as long as the system is determinate. 

This implies the system is neither underdetermined (N unknowns, less than N equations), 

or overdetermined (more than N equations in N unknowns, none of which are a linear 

combinations o f any others). Such a system can be inverted against observations using 

standard linear algebraic techniques, such as the method of linear least squares. This 

method is extremely widely used because of its simplicity and effectiveness.

The problem of inversion is relatively easy to state (if not always to carry out). It 

simply requires minimising some error function expressing the difference between 

modelled and observed reflectance values. Consequently, the first task in inverting a 

model of any sort, linear or non-linear, is to define a suitable error measure describing the 

difference between model values and measurements, which in practice contain noise of 

some sort. In least squares estimation, the assumption is made that random measurements 

of pn are described by a Gaussian (normal) distribution. This assumption is supported by 

the Central Limit Theorem, which states that in the limit as N approaches infinity, the 

distribution of the means of N (independent) samples taken from any distribution 

approaches a Gaussian irrespective of the shape o f the original distribution. This assumes 

that errors are equally distributed between positive and negative. In the absence of any 

other evidence a Gaussian is the most reasonable choice of probability distribution for a 

random variable. If no assumption is made about model variance, inverting a CR model is 

then a question of minimising the sum of the squared errors minimising e  ̂ (familiar least 

squares) i.e.

N
V \p i .observed P i,moclelled'\ 2.11
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i = 1, 2 ... N is the number of observations and w,- the associated weights attributed to 

each observation The aim is therefore, to find values for which e  ̂ is a minimum, 

potentially by finding partial derivatives of e  ̂with respect to parameter weights.

2.4.1 Linear inversion

The least squares method is often used in cases where the data are not necessarily 

normally distributed, but may not differ too far from the Gaussian assumption because of 

its simplicity and ease of implementation. It is not infallible however. Application of least 

squares to a bimodal distribution, for example, will result in a solution located between 

the two modes, where in reality there is only a very small probability of occurrence. 

Gershenfeld (1999) notes that the square of the difference between the modelled and 

measured values is not the only power that can be used: if the errors are distributed 

exponentially, the first power (the magnitude) is the maximum likelihood estimate; higher 

powers place more emphasis on outliers.

The next stage of model inversion is to obtain estimates of the parameters for the 

distribution that minimises equation 2.11. In the case of linear models, standard linear 

algebraic techniques can be applied. In this case, it is assumed the data can be described 

by a linear summation of M model parameters, k, i.e.

M

y=i
2.12

fj  are the associated weights of each term. The task is then to find the f  that minimise the 

sum of the squared errors between the model values, and a set o f N observations pn. This 

problem can be expressed in the form

2.13

or, more concisely Gm = d (Twomey, 1977). In order to invert a generic linear model of 

this sort against observed values of reflectance and determine values of f j  that minimise 

2.11, a covariance-variance matrix of the model parameters, k^w, is formed by 

multiplying G by its transverse, G'. The variance-covariance matrix is then inverted, to 

give [G'G]'*. Multiplying [G'G] ' by d then yields m, the vector off  values.

K  • Pobs,\

K K  ' • •  k ^ A Pobs,2

• •  k ^ _ _Pobs,N  _
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If the number of model parameters, M, is two or three, the variance-covariance 

matrix is trivial (and very quick) to invert. This is one reason why linear models have 

been favoured for many applications, as will be seen in later chapters. For larger order 

matrices however, inversion is not so simple. However, a variety of methods for 

performing this task exist, including various elimination and decomposition methods. 

Press et al. (1994) provide a readable and practical summary of some of these methods, as 

well as potential pitfalls of implementation and application. One such pitfall is deciding 

whether a particular system is over- or underdetermined. This is trivial for small systems 

(only a few model parameters and/or observations), but is not for systems where M and/or 

N are large. Further, very small changes in the numerical values o f some coefficients can 

rapidly disturb the system from a determined to an underdetermined or indeterminate 

(contradictory) state. This can cause problems in real systems where measurements 

always contain noise and the model itself is a series of approximations. The power of 

linear methods is such that inversion of non-linear systems involving integral transforms 

is often reduced to linear systems for ease of handling via techniques such as numerical 

quadrature (Twomey, 1977).

2.4.2 Numerical inversion

If the model under consideration is non-linear, and an analytical solution is not 

generally available (as is most often the case), then further numerical techniques are 

available to allow inversion of the model (Press et a l ,  1994; Gershenfeld, 1999). Such 

techniques can be complex, require a great deal o f computational time and may prove to 

be a limiting factor on the effective application of a particular model. However there are 

enough techniques that are sufficiently robust and efficient for them to be in common use 

for inverting non-linear CR models. The following section briefly introduces some of 

these techniques. The reader is directed to Press et al. (1994) and Gershenfeld (1999) for 

detailed and extremely readable texts on linear and non-linear model fitting methods.

The basis of numerical inversion of a CR model is the same as that described 

previously for linear inversion i.e. the formulation of an error metric describing the 

‘goodness-of-fit’ of modelled reflectances compared with observed reflectances (Goel, 

1988; Pinty and Verstraete, 1990; Rimes et a l,  2000). The problem is then to find the 

minimum of the error function, which is an optimisation problem (minimisation in this
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case). Optimisation problems are common in many fields, and as a consequence many 

tried and tested methods exist for their solution. Root mean square error (RMSE) is 

typically used as the error measure because of the assumption of normally distributed 

errors (equal probability of positive and negative errors), as in the linear least squares 

approach (Pinty and Verstraete, 1991). This is an optimal choice if no prior information 

regarding the form of the error distribution is available. However, it should be noted that 

this is not the only option (Tarantola, 1987). Numerical inversion is an iterative procedure 

and generally proceeds in the manner shown in figure 2.5.

Inversion of a CR model against reflectance data is a constrained minimisation 

problem where some variables lie between fixed limits and cannot take on arbitrary 

(physically impossible) values. A solution resulting in physically unrealisable parameter 

values is not valid (or useful). In practice, parameter values should be constrained to lie 

within physically realisable limits during inversion (this is discussed in greater detail in 

appendix 1). This is not simply a case of clamping parameters to boundary values when 

the boundaries are reached, as this equates to arbitrarily moving the location of the 

current solution on the N-dimensional error surface. Rather, the parameters should remain 

free but the penalty function (RMSE) should be heavily increased in some way (e.g. 

exponentially) as the solution heads out of bounds. In this way, subsequent iterations are 

‘encouraged’ to move back in bounds by virtue of preferential (lower) RMSE (Press et 

a l, 1994).

All methods of optimisation are prone to the twin difficulties of avoiding local 

minima and knowing when to stop. Many optimisation methods, gradient methods in 

particular, tend to ‘fall’ straight down (local) minimum closest to where they started, 

rather than finding the global error minimum. Unless the characteristic length scale of the 

problem is known, this is likely to be the outcome. Knowing when to stop can also be 

difficult, and will depend on the accuracy required: better solutions require a great deal 

more work for successively smaller improvements. It is also important not to continue 

past the point where such ‘improvements’ are smaller than the floating-point precision of 

the machine on which the calculations are being performed (Press et a l,  1994).

42



2.4.3 Multidimensional minimisation

A  range of multidimensional minimsation methods have been developed for 

solving optimisation problems of all types (Press et a l ,  1994) and many of these have 

been applied to CR model inversion (Kimes et a l ,  2000). Although they have mostly 

been developed for non-linear inversion problems, the distinction is now becoming 

blurred. As will be seen later, complex non-linear problems can often be well represented 

by much simpler linear approximations. Hence inversion becomes a hybrid process of 

linear and non-linear forward and inverse methods, depending on the speed and accuracy 

required for a particular application.

Some methods are based in the mathematical and computational theory of 

optimisation, including gradient (Acton, 1990) and simplex methods (Nelder and Mead, 

1965; Press et a l, 1994). Algorithms requiring well-behaved, continuously differentiable 

error surfaces have generally been avoided as the error surfaces were not well- 

understood. Recent work however shows that such surfaces may actually be rather 

predictable (O’Dwyer, 1999; Barnsley et a l,  2001) and this knowledge may be used to 

restrict parameter space during model inversion.

Other optimisation methods exist which are based on observation of natural 

systems, which can solve immensely complex optimisation problems in simple and 

elegant ways. Simulated annealing mimics the thermodynamic properties of cooling 

crystalline solids (Press et a l,  1994), and is particularly suited to problems with error 

surfaces having many small local minima. Genetic Algorithms (GAs) seek to emulate the 

slow, incremental improvements of evolution via natural selection (Goldberg, 1998). 

Artificial Neural Networks (ANNs) approximate the ability of biological neural networks 

(i.e. brains) to solve complex optimisation problems (Pierce et a l ,  1994). This is achieved 

by "training" an ANN to respond according to previously experienced situations, and 

adapting these responses to new situations. There are a number of examples of the 

application of ANNs to the problem of inverting biophysical parameters from optical and 

microwave data of vegetation canopies (Chuah, 1993; Jin and Liu, 1997; Abuelgasim et 

a l, 1996, 1998; Kimes et a l ,  1997, 2000; Bicheron et a l ,  1999; Gong et a l, 1999). 

ANNs have also proved very promising for the classification of EG data, where 

supervised methods (requiring training data) are already the norm (Foody, 1997).
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Knowledge-based systems (KBS) comprise a variety of methods which use 

ancillary data to constrain the parameter space of the optimisation problem (Kimes et al.,

2000). An example is the work of Kimes and Harrison (1990) and Kimes et al. (1991) 

who developed a KBS incorporating spectral (directional) data with a priori information 

derived from literature, field data etc., into a system for inferring physical and biological 

surface properties from reflectance data. More recently, Strugnell and Lucht (2000) have 

demonstrated the use of BRDF ‘archetypes’ (broad classes of BRDF shape) to constrain 

inversion of BRDF models in the derivation of albedo. The justification is that within 

classes, the BRDF shapes of different canopies are likely to differ much more in terms of 

magnitude than shape. Between classes, shape is likely to be more important. This idea of 

“magnitude inversion” is currently being used in the production of MODIS land surface 

albedo product for pixels where unconstrained inversion is not possible e.g. through lack 

of samples of directional reflectance.

Look-up tables (LUTs) are potentially a more promising approach for CR model 

inversion than either ANNs (limited by training data) or KBS (potentially limited by the 

ability to describe ancillary data) (Kimes et a l ,  2000). The LUT approach is to separate 

the calculation of CR from the problem of finding the optimum solution (model 

parameter set) to a specific model inversion. An arbitrarily detailed set of discrete CR 

scenarios can be pre-computed with an arbitrarily complex model and the corresponding 

parameter values are then stored in the LUT. The optimisation task is then to find the 

required parameter values in the LUT as quickly as possible, given a set of measured 

reflectance data (Kimes et a l,  2000). Knowledge of external parameters e.g. biome and 

cover type, viewing/illumination geometry etc. are used to limit the search space as far as 

possible. Closest matching parameters are then pulled out of the LUT yielding the 

inverted model parameter set. An important advantage of the LUT approach is that the 

majority of the computational load i.e. the repeated running of the forward model, is done 

prior to parameter retrieval and is therefore not a run-time operation. (Running et a l,  

1996; Kimes et a l ,  2000). In addition, as developments and improvements are made to 

the underlying CR model, the LUT can be recomputed and updated accordingly. 

Knyazikhin et al. (1998a, b) have developed a LUT algorithm for the retrieval of canopy 

parameters such as LAI and fAPAR from MISR data. ODwyer (1999) and Barnsley et al. 

(2000) examined the use of a LUT in the inversion of the widely-used CR model of 

Kuusk (1991). Simple grids of CR values of varying densities (two, three or four model 

parameters) were generated using the Kuusk model (Nilson and Kuusk, 1989) in forward
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mode. They showed that in the region of the grid closest to the required solution, the error 

surfaces are likely to be smooth and well-behaved. As a result, the best solution can be 

found very rapidly by piecewise linear interpolation between the closest values in the 

grid. Barnsley et al. (2000) showed that in many cases the error surfaces are simple 

enough for coarse LUT grids of the order of 4 or 5 steps on a side to be employed, in 

conjunction with localized linearisation, with no significant loss of accuracy in inversion. 

Weiss et al. (2000) have also shown the effectiveness o f LUT-based parameter retrieval, 

using (thresholded) average parameter values to interpolate between LUT grid points. In a 

further development, Combal et al. (2001) have shown that the use of prior information 

(e.g. ancillary biophysical and architectural measurements) can significantly improve the 

accuracy of biophysical parameter retrieval through LUT inversion of CR models.

2.4.4 Summary

Figure 2.6 Three extreme types of error surface that may be encountered in 
function optimisation (after Gershenfeld, 1999).

The preceding section gives a brief overview of some of the numerical methods 

available for optimisation in CR model inversion. Gershenfeld (1999) illustrates the 

difficulty of selecting between these methods by subdividing all minimsation problems 

into three extreme categories (figure 2.6). Each category lends itself to a different type of 

search. Smooth functions with a single well-defined global minimum are well-suited to 

gradient searches. Functions with many equally good nearby minima, but no global one, 

are suited to search by stochastic methods such as simulated annealing and GAs. The 

third case is characterised by many small local minim, and one clearly defined global 

minima, requiring some kind of global search method such as ANNs or LUTs. 

Paradoxically, large minimsation problems are often relatively simple to solve by virtue 

of having many possible solutions of nearly equal merit: finding one of these from any 

given starting point is not hard. Small problems are not hard either, as their size permits 

exhaustive search of the available solutions. Approaching the mid-point of these two size
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extremes from either direction however the system becomes too large to search 

exhaustively, yet not large enough for many good solutions to be obvious. This 

emphasises the importance of considering the nature of the model, the starting parameter 

values, and, most importantly, the error function being searched. Information regarding 

any of these may dramatically improve the search regardless of which algorithm is used.

O f all the methods discussed in the preceding section, LUT-based inversion using 

localised linearisation appears to be the most promising recent development for improved 

retrieval of biophysical variables from measured reflectance. This is a result of their 

highly attractive properties: separation of the major computational load from the 

operational stage; independence from specific models of CR; rapidity of inversion due to 

the possibilities for coarse parameterisation; easy incorporation of ancillary data. Much of 

the experimental work in this thesis is concerned with the application and inversion of 

linear models o f BRDF. However, the distinction between linear and non-linear methods 

is becoming blurred with the increasing use of LUT methods. Arbitrarily complex non­

linear models can be used for populating the search space of canopy reflectance values. 

However, the search through parameter space during inversion can often be reduced to a 

linear problem, particularly if the parameter space can be constrained and/or something is 

known of the error surface itself.
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2.5 Canopy reflectance modelling

Canopy reflectance, pcanopy, is known to be sensitive to a number of factors. These 

can be broadly divided into two categories:

i. structural i.e. the number, angular and spatial distribution of scattering elements.

ii. radiometric i.e. the scattering properties of individual canopy elements.

Vegetation components such as leaves and stems are radiometrically characterised 

by their reflectance (p) and transmittance (x) (Jacquemoud and Baret, 1990). A complete 

canopy, on the other hand, is an aggregation of individual scattering objects. The total 

Pcanopy depends on the nature of this aggregation, described by structural properties such 

as the area density, as well as the angular and spatial distribution (clumping) of scattering 

elements within the canopy (Ross, 1981; Qin and Liang, 2000). In addition to being a 

function of canopy (and atmospheric) parameters Pcanopy will also be a function of the 

lower boundary beneath the canopy e.g. soil, snow, leaf litter etc. This boundary has its 

own radiometric and structural properties (microscopic and macroscopic roughness) 

which may contribute to the measured reflectance signal (Price, 1990; Hapke, 1993). 

Ciemiewski (1987, 1999) and Ciemiewski and Verbrugghe (1997) discuss impact of soil 

roughness on surface BRDF, particularly in relation to large aggregated scattering objects 

and their resultant shadowing. Nolin and Liang (2000) review recent developments in 

modelling the BRDF of particulate media, such as soil and snow.

Mathematical models of numerous forms have been developed in order to 

describe the scattering of radiation from vegetation canopies (Ross, 1981; Goel, 1988; 

Myneni et a l,  1989; Pinty and Verstraete, 1992; Strahler, 1994; Goel and Thompson, 

2000). Models have been derived from sources including radiative transfer theory (Ross, 

1975), planetary astronomy (Hapke, 1981) and many other areas of mathematics and 

engineering (Asrar, 1989). The diversity of influences on CR modelling may be regarded 

as one of the strengths of the field -  the ability to adapt methods that have been developed 

and tested for a whole range of other applications. Approaches to CR modelling can be 

broadly divided into four categories described in sections 2.5.1 to 2.5.4 (Goel and 

Reynolds, 1989; Goel, 1992; Strahler, 1994). The following sections briefly describe 

some of the many modelling approaches, in particular their usefulness for derivation of 

biophysical parameter information from reflectance data.
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2.5.1 Empirical models

Empirical models attempt to describe surface scattering by fitting some (usually 

simple polynomial) function to observed reflectance data i.e.

P = F { p )  2.14

where F(p) is some arbitrary function not related to physical properties of the system 

under observation (Minnaert, 1941; Walthall et al ,  1985). The advantages of this 

approach are firstly that no assumptions are made regarding the type o f canopy under 

observation i.e. whether it is largely homogeneous (e.g. grassland) or more spatially 

discrete (e.g. tree crowns in a forest canopy). Secondly, the chosen function can be 

arbitrarily complex in order to describe the surface reflectance behaviour to a desired 

degree of accuracy. In practice, functions are selected that remain simple enough to invert 

rapidly. The huge disadvantage of the empirical approach is that there is no physical basis 

linking the physical scattering behaviour of the canopy and the model coefficients. As a 

result, purely empirical models tend to be useful for correction/normalisation of 

directional effects in multi-angular reflectance data, but are of little use for deriving 

biophysical information (Roujean et al ,  1992; Cihlar et a l ,  1994).

The simplest description of scattering from a surface is that credited to Lambert 

(Wolff et al ,  1992). All radiation incident on a Lambertian surface is reflected equally in 

all directions. In this case, the Lambert reflectance p t (recall figure 2.1) can be defined as 

(Hapke, 1981):

71

E, is the incident irradiance. The cos0/ term accounts for the reduced component of 

illumination incident on the surface with increasing illumination zenith angle 0/, a 

consequence of the reduced surface area projected in the illumination direction. 

Reflectance from a Lambertian surface is therefore perfectly diffuse. Minnaert (1941) 

proposed a simple two parameter empirical model to describe observed brightness 

variations across the lunar surface. Reflectance is expressed as a function of 0y and 0/

c_( c o s f f ,c o s f f ,y  = c (c o s  ^ J * (c o sp  = —:--------— -----^  = c^cos (_cos 2.16
COS 0 .
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where c and k are empirical constants. The model thus relates observed reflectance to 

purely photometric principles, and not to the nature of the observed surface. Hapke 

(1981) demonstrated that Minnaert’s model appears to describe some surfaces well at a 

limited range of angles, but also points out that both c and k themselves are empirical 

functions of the scattering phase angle and are thus not strictly constants at all. The 

Helmholz (H) reciprocity condition is also satisfied by Mirmaert's model i.e. the system 

appears the same if the viewing and illumination vectors are exchanged (Clarke and 

Parry, 1985). It should be noted that source/detector (S/D) reciprocity (which should not 

be confused with true H reciprocity) is violated in certain practical cases, particularly 

when considering reflectance at varying scales. This does not necessarily invalidate 

model assumptions or conservation of energy arguments (Li and Wan, 1998; Snyder, 

1998; Chen et al., 2000).

Walthall et al. (1985) proposed an empirical model more directly suited to 

describing pcampy, and outlined applications such as describing directional soil reflectance 

as the boundary condition in a more complex CR model, or as a tool for studying 

directional effects in multi-angle reflectance data. BRDF is expressed as

p  = aO ] + b 6 ^  cos(^^ 2.17

(|)v and (|)s are the view and solar azimuth angles respectively; a, b and c are constants to 

be determined empirically. Walthall et al. (1985) justify the model form by noting that the 

0ŷ  term describes the general upward ‘bowl’ shape of observed reflectance. ç>canopy 

generally increases with Gy,/ due to the reduced amount of shadowed canopy viewed at 

these angles (Ross, 1981; Goel, 1988). Figure 2.7 illustrates this. The 0ycos((|)v-(t)s) term 

provides a linear dependence of p on 0 y ,  which can account for observed anisotropy in 

surface reflectance i.e. increased reflectance in the back-scattering direction. The final 

constant c can be thought of as a ‘brightness magnitude’ term. Walthall et al. (1985) 

demonstrated the ability of their model to accurately fit a variety o f measured BRDFs. 

Due to its simplicity and robustness the Walthall model has been applied in many cases 

(Barnsley et al., 1997; Privette et al., 1997; Lewis et al., 1999a). As a linear model of 

three parameters it can also be simply and rapidly inverted. Walthall et al. (1985) updated 

their model with a fourth term to take account of 0/, the sun position, although the model 

was not reciprocitous. Nilson and Kuusk (1989) modified the Walthall model to satisfy 

reciprocity, although this is not strictly necessary in BRDF applications (Chen et al., 

2000; Leroy 2001). The updated expression is as follows
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p  -  a + b6 ,̂6  ̂ cos(^^, -  + c9~0~ + d{o .̂ + 6. ) 2.18

This expression bas been used extensively for both the correction o f  angular effects 

(Barnsley et al., 1997b; Wanner et a i, 1997) and to represent directional soil reflectance 

as a lower boundary for more sophisticated CR models (Nilson and Kuusk, 1989). Huete 

(1989) reviews methods o f  modelling the soil contribution to remote sensing 

measurements o f  soi 1-canopy spectra.
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reflection

Phollam
leaf 2

leaf 1

shadowed
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Figure 2.7 Canopy geometry contributing to BRDF (after Norman et al., 1985).
A sees the brightly lit top o f  leaf 2 and bottom of leaf 1, and very little o f  the 

shadowed regions. B sees much more o f  the shadowed top o f  leaf 1 and much 
less o f  brightly lit leaf 2. As a consequence, the scene appears much brighter to 

viewer A than viewer B due only to the canopy geometry

Empirical CR models may represent pcanapy well simply by their generic nature, 

but their domain o f  applicability is bounded by the limits o f  the measurements from 

which they were derived. A BRDF model may be required to extrapolate to angles 

beyond those from which the observations are taken (Wanner et al., 1995), or to describe 

reflectance o f  canopy types not used in the model derivation. Empirical models are not 

strictly valid in this case. The largest drawback o f  empirical models for use in remote 

sensing o f  vegetation however is the lack o f  physical meaning in the model parameters. If 

biophysical information is required, then physically meaningful relationships between 

Pccmopv and model parameters must be found (Asrar et al., 1989).

50



2.5.2 Physically-based models

A great deal of effort has been devoted to development o f physically-based 

models of surface scattering (e.g. Suits, 1972; Ross, 1981; Hapke, 1981, 1993; Goel, 

1988; Myneni et a l,  1988a, 1989). A primary advantage of using physical models is that 

they are based on physical processes and so their parameters will have some physical 

meaning. It is also often possible to make reasonable a priori estimations of the model 

parameters, and to constrain them to physically realistic values during inversion. The 

following section presents a brief overview of various approaches to physically-based CR 

modelling. Concepts that will reoccur in later chapters are introduced, particularly in 

regard to simplifications of radiative transfer (RT) and geometric optic (GO) models of 

reflectance. Goel (1988, 1992) provides a comprehensive review of the theoretical basis 

of many of these methods (updated by Goel and Thompson, 2000). Qin and Liang (2000) 

review recent developments in RT modelling techniques, while Chen et al. (2000) do the 

same for GO modelling.

Strahler ( 1994) proposes that BRDF is a function of three distinct scattering processes:

1. Coherent superposition of scattered incident radiation. This can cause a retro- 

reflectance peak (hotspot), but is dependent on the mean free path between scattering 

events within the canopy being of the order of the wavelength of the incident 

radiation. Coherence is generally ignored for vegetation, but is important for soils 

(Hapke, 1984, 1993).

2. Scattering effects resulting from the arrangement of objects on the surface i.e. 

specular reflectance, and reflectance variations caused GO shadowing assuming 

parallel rays of incident radiation (Otterman and Weiss (1984), Li and Strahler (1985, 

1986) for vegetation; Ranson and Daughtry (1987) for shrubs and snow; Ciemiewski 

(1987) for soil). The scale o f these effects ranges from microscopic roughness, to 

shadowing due to topography (Liang et a l,  2000a).

3. Volume (diffuse) scattering behaviour of aggregated canopy elements. This is 

particularly important for dense vegetation and is modelled using RT methods, based 

on the work of Chandrasekhar (1960). As higher orders of photon scattering are 

considered, the interactions become increasingly random in direction, and the volume 

scattering component tends to become isotropic.
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In a complex physical system such as that of photon interaction with vegetation, 

often the only effective way to achieve a manageable’ and tractable representation of the 

system is to make approximations. Typical requirements of a physical CR model are:

• To represent (selected/all) scattering features of the canopy in the spatial, 

spectral and angular domains.

• Agreement with pcanopy measurements of a real canopy of the same type to a 

specified accuracy (according to some criterion such as RMSE).

• To relate observed reflectance behaviour to the controlling biophysical 

parameters sufficiently well such that these parameters may be derived from 

measured reflectances through model inversion.

• To allow generalisations of theoretical treatments of canopy scattering based 

on observed scattering behaviour.

The following section describes some of the approaches that have been taken to 

simplify the physical approach to CR modelling, and highlights the diversity of models 

which have been developed for a huge variety of cases.

2.5.2.1 Canopy reflectance^ the turbid medium and radiative transfer (RT)

One of the most powerful tools used in modelling canopy scattering behaviour is 

that of radiative transfer. RT theory was developed by Chandrasekhar (1960) as a method 

describing radiation transport in the gaseous clouds formed during stellar evolution. 

Chandrasekhar's idea has since been modified and applied in many fields, including 

canopy reflectance modelling. In this approach the canopy is approximated as a layer (or 

layers) of infinitely extended, plane-parallel homogenous scattering medium consisting of 

randomly oriented infinitesimal scattering phytoelements (‘leaves’). This so-called 'turbid 

medium' approach is illustrated in figure 2.8. The assumption of the canopy as a turbid 

medium allows a number o f approximations and simplifications to be made regarding 

canopy scattering behaviour (Goel, 1988; Myneni et al., 1989; Pinty and Verstraete,

1998).

’ ManageabJe implies the problem can be represented to an acceptable accuracy, and is not prohibitively 
computationally expensive.
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Figure 2.8 Schematic representation of the turbid medium approximation, showing 
the various scattered components of exitant radiation.

The turbid medium approach has proved a powerful technique modelling photon 

transport in vegetation canopies and has been applied widely to the problem (Ross, 1981; 

Goel and Strebel, 1984; Myneni et al., 1988a,b; Myneni et a i, 1989; Qin and Liang, 

2000). The radiance field resulting from single and multiple scattered photon interactions 

(see figure 2.8) can be described by considering the conservation of energy within each 

canopy layer, and specifying the sources of radiation external to that layer (boundary 

conditions). The result is an integro-differential equation describing the change in 

intensity along a viewing direction Q due to i) scattering interactions causing radiation to 

be scattered out of the illumination direction Q ’ (sink term), and ii) interactions causing 

radiation to be scattered from other directions into the direction O (source term). If the so- 

called far-field approximation is made (Myneni et a i, 1990), whereby scattering elements 

are assumed to be infinitesimal and there is no mutual shadowing (and polarization, 

frequency shifting interactions and emission are disregarded) the problem of upward and 

downward energy fluxes within the canopy can then be represented as a solution of the 

well-known radiative transfer equation (Chandrasekhar, 1953) i.e.

+ f C T ,(z ,£2 '^ .n )/(z ,Q V « ' = 0
dz 2.19

l(z, Q) is the specific energy intensity at a height z within a horizontal plane-parallel 

canopy of total height T (0 < z < T) (so ôI(z,Q )/ôz is the steady-state radiance
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distribution function); Oe is the extinction coefficient of the canopy medium; Os is the 

differential scattering coefficient for photon scattering from direction the illumination 

direction Q ’ into a unit solid angle about the viewing direction Q.

This problem has been studied extensively in astrophysics, planetary astronomy, 

particle physics and neutron transport among other fields, and many methods are 

available for its solution under certain conditions (Chandrasekhar, 1960). To solve 

equation 2.19 for a vegetation canopy, approximations regarding Gc and Gs are often made 

(Shultis and Myneni, 1988; Goel, 1988; Ross and Marshak, 1989; Myneni et a l,  1989, 

1990, 1995b). Other approaches attempt to include modifications for observed features 

such as the hotspot (Nilson and Kuusk, 1989; Gerstl and Borel, 1992). Perhaps the most 

difficult problem in solving equation 2.19 is that of modelling the source term, as this 

requires keeping a ‘scattering history’ of each photon from one interaction to the next 

(Myneni et a l,  1991). This problem is to all intents and purposes insoluble analytieally 

(Knyazikhin et a l ,  1992), but approximations can be made (Myneni and Ganapol, 1991) 

or a computer simulation model can be used (see section 2.5.3). It is also necessary to 

define the boundary conditions in the case of a canopy illuminated from above. At the top 

of the canopy the incident radiation can be considered to consist of diffuse and direct 

components of solar irradiation. In addition, some radiation arriving at the base of the 

canopy re-radiates isotropically back up through the canopy effectively creating a source 

funetion at the lower canopy boundary (Knyazikhin and Marshak, 2000).

Modified forms of equation 2.19 have been the basis for many detailed 

investigations into pcampy (Gerstl and Zardecki, 1985; Goel and Grier, 1988; Shultis and 

Myneni, 1988; Ahmad and Deering, 1992; Rahman et a l ,  1993a,b; laquinta and Pinty, 

1994; Liang and Strahler, 1993b, 1994; Knyazikhin and Marshak, 2000). Further 

approximations and simplifications have been applied for speeiflc types of canopy (e.g. 

Goel and Grier, 1988 for row crops). A variety of numerical techniques have been applied 

to solving RT in a vegetation canopy, including Successive Orders of Scattering 

Approximation (SOSA) (Myneni et a l,  1987a), Gauss-Seidel methods and discrete 

ordinates (Shultis and Myneni, 1988; Myneni et a l,  1988a). Perhaps the most widely- 

used simplification however, has been to treat single and multiple scattering interactions 

separately. A brief outline of these methods is given below.
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2.5.2.2 Approximations made possible by the turbid medium approach

One of the most powerful approximations used in modelling reflectance behaviour 

is to concentrate on single scattering interactions within the canopy. Single scattering 

interactions are in most cases the dominant component o f ç>campy (Myneni et a l,  1989; 

Myneni and Ross, 1990), particularly at visible wavelengths. Considering single 

scattering interactions within a turbid medium, the radiation intensity in the incident 

direction, Q ’, at a depth z within the canopy can be described using Beer's law (Beer- 

Lambert law) (Monsi and Saeki, 1953):

/(n',z) = /(Q ',0)exp
L{z )G{Q!) 2.20

I(Q’,0) is the direct irradiance incident on the top of the canopy; L(z) is the downward 

cumulative LAI in the canopy at depth z (m^m'^). This is actually u/(z), the leaf area 

density (one-sided leaf area per unit volume of canopy at depth z in the canopy in m^m'^) 

integrated over all z. G(Q') is the leaf projection function i.e. the fraction of leaf area 

projected in the illumination direction Q '; p' is the cosine of the illumination zenith angle, 

0/. G (Q ), the leaf projection function (in the viewing direction), is defined as

G (q ) = ~  g , { a , } Q , -  Ci'\dSl, 2.21

g/(Q/) is the angular distribution of the leaf normals, Q/ i.e. LAD. g/(Q/) is typically 

assumed to be spherical for simplicity i.e. all leaf orientations are equally probable 

(Myneni et a l,  1988a, 1990). Although this is a widely used assumption, it can cause 

inaccuracies (Kimes, 1984; Goel and Strebel, 1984; Verstraete, 1987).

Beer’s law as stated is for a perfectly homogeneous canopy, and the LAI 

parameter takes no account of the possibility of vegetation being clumped. This is highly 

unlikely in practice (Ross, 1981). If LAI is redefined as effective LAI, Lg, then a true LAI 

can be defined as L = Lg/C, where C is a clumping index (Ross, 1981; Nilson and Kuusk, 

1989). If C > 1 then leaves are regularly dispersed within the canopy e.g. row crops; if C 

= 1 then leaves are dispersed randomly; if C < 1 then the canopy is clumped dense 

patches of vegetation interspersed with voids (gaps between the clumps). As clumping 

increases, Lg decreases, and the probability of gaps in the canopy increases leading to a 

higher soil reflectance for given LAI.
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The assumption of the turbid medium, along with the approximations required to 

derive Beer’s law, permits a description of the single scattering radiance field within a 

vegetation canopy as a function of a small number of simple structural parameters. A 

normalised leaf scattering phase function, r ( Q ’^ Q ) ,  describing the angular distribution 

of scattering (from the illumination direction Q ’ into the viewing direction, Q) at each 

photon interaction (c.f. cjs in equation 2.19) and a joint gap probability, Q(Q’-^Q,z), can 

be derived (Ross, 1981). Q describes the probability of existence of free lines of sight to 

the top of the canopy for a photon travelling from Q ’ to Q at a depth z within the canopy. 

Clearly, if a photon is unable to make it both down and back up to the top of the canopy, 

it will not emerge to be available for measurement (without further scattering). If the far- 

field approximation is made, then Q(Q’^ Q ,z )  is simply the probability of photons 

travelling a distance z /p’ in direction Q ’, multiplied by the probability of travelling z/p in 

the direction Q. The individual gap probabilities in the downward and upward paths can 

be calculated according to Beer’s law (equation 2.20).

The far-field approximation applies when scattering elements are small enough 

not to interfere with the joint gap probability, such as in neutron transport or cloud 

physics (Chandrasekhar, 1960; Dickinson, 1983). However this is not the case in a 

vegetation canopy where scattering elements have a finite size (Myneni et a l, 1989; 

Myneni and Asrar, 1993). Further approximations are required to circumvent this 

problem (Myneni and Ganapol, 1991; Myneni et a l ,  1991; Knyazikhin et a l ,  1992; Pinty 

and Verstraete, 1998). Single scattered pcanopy can then be expressed as a sum of the single 

scattered contributions from vegetation and soil, and ç>\egetation- ç>\oH is simply the 

probability of a photon penetrating to the base of the canopy (z = 0) and escaping again, 

multiplied by the soil reflectance. Using Beer's law

p I , (Q',n) = Q{Q.’ ^  Q ,zK (G '.a )  2.22

P vegetation Can be shown to be (Ross, 1981)

o '  (n 'Q ) = _______ ^  __
’  g(cI)p + g{o)p '

1 -  exp - L 2.23

Thus single scattering ç>canopy is a function of both structural (LAI, g/(Q/)) and 

radiometric parameters (leaf and soil reflectance, leaf transmittance, Tieqj)- G(Q/) requires 

the evaluation of an integral (equation 2.21) so any attempt to find an analytical solution
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for equation 2.23 requires approximations regarding g/(Q/) to be made. Many models 

simply assume a spherical LAD (Goel, 1988) i.e. all leaf angles are equally likely, in 

which case g/(Q/) is 1 and G(Q/) is 0.5 (Asrar et a l,  1989; Myneni et a l,  1989). Other 

approaches include the discrete geometrical distribution of Bunnik (1978) based on 

observed data; the continuous two-parameter beta distribution of Goel and Strebel (1984); 

the elliptical distribution of Nilson and Kuusk (1989), controlled by mean leaf angle and 

eccentricity parameters.

Equation 2.19 can be further simplified if the assumption is made that p/eo/and x/eo/ 

can be considered Lambertian (bi-Lambertian) and equal (i.e. çyieaf= '̂ leaj) (Ross, 1981). In 

this case, single scattered canopy reflectance, p\anopy can be described as

Pc,
leaf

sm y-t-cos/
7T

r
wwpy 3;r

1-exp + Aw exp
2.24

where y is the phase angle between 0, and 0v. This relatively simple analytical expression 

has been widely used in practice (Wanner et a l,  1995, 1997) and forms the basis of some 

of the semi-empirical models described in section 2.5.4, which are the basis of much of 

this thesis.

Many models have been based on the approach outlined above (Goel, 1988), 

originating from the work of Monsi and Saeki (1953). The major assumption 

underpinning Beer’s law is that the number of scattering objects in a volume of canopy 

(leaves, stems etc.) is proportional to its volume. However, Knyazikhin et a l  (1998c) 

show that the structure of vegetation canopies may in some cases be fractal in nature, 

resulting in non-linear relationships between canopy volume and the density o f scattering 

elements. They suggest that modifications may need to be made to extend the 

applicability of Beer’s law in such cases. However, it has been shown that the basic 

formulation of Beer’s law can be a useful tool in describing single scattering interactions 

within the canopy (Monsi and Saeki, 1953).

Approximations based on the turbid medium approach have been widely applied 

to describing Pcampy Although single scattering interactions dominate Pcanopy at visible 

wavelengths (typically 95% of total reflectance), the multiple scattered component of 

Pcanopy becomes important if scattering in the near-IR region is considered (up to 50% of
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total reflectance). As a result, approximations to the multiple scattering component of 

Pcanopy have also been developed (although the multiple scattered component may be 

important in magnitude, it is less so in terms of BRDF as a result o f the tendency of 

multiple scattered radiation to be scattered in all directions). Descriptions of multiple 

scattering are typically based on simplifications of and approximations to the RT equation 

(equation 2.19), some of which are described briefly below. The remainder of this thesis 

concentrates on consideration of the single scatterering component of Pcanopy so a detailed 

description of the many formulations for canopy multiple scattering approximations is not 

given here. Myneni et al. (1989) and Qin and Liang (2000) review these methods in 

detail.

2.5.2.3 Limitations o f the turbid medium approach

A major drawback of the turbid medium approach is that the size of the scattering 

objects within the canopy is not considered. By definition, the canopy is assumed to be a 

homogeneous medium of infinitesimal scatterers (to satisfy the far-field approximation) 

with mutual shadowing not permitted. Consequently, expressions describing the reflected 

radiation from such a canopy do not contain information regarding the size of scattering 

objects (Qin and Liang, 2000). However, certain properties of observed pcanopy, 

particularly the hotspot, are directly controlled by the size and orientation of scattering 

objects (Kuusk, 1985; Hapke, 1986; Marshak, 1989; Jupp and Strahler, 1991; Pinty and 

Verstraete, 1998). Turbid medium approximations will not capture such features, and if 

the size of scattering objects is to be considered a different approach is needed. Myneni et 

al. (1991) considered voids between finite dimensional canopy elements in order to 

model the dimensions of scattering elements explicitly. Their model represents the 

hotspot feature quite accurately and gives far better agreement of scattered reflectance in 

the hotspot direction than treatments than those which ignore scatterer size.

In a series of excellent papers discussing the theory o f diffuse scattering from 

particulate media, Hapke (1981, [and Wells] 1981, 1984, 1986) developed a 

comprehensive model of bidirectional reflectance from the RT theory of Chandrasekhar 

(1960) for use in planetary astronomy. Hapke constructed an analytic expression 

describing the bidirectional reflectance from a particulate surface, formulating analytic 

expressions for (amongst other things) single scattering albedo, integral phase function
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and bihemispherical radiance. The importance of Hapke’s approach is the analytical 

nature of his model, and the inclusion of a hotspot term. Hapke’s approach has been 

successfully applied, with modifications, to modelling Pcanopy (Verstraete et a l,  1990; 

Pinty and Verstraete, 1991; laquinta and Pinty, 1994). Single and multiple scattering are 

treated separately with the single scattered radiation being characterised exactly and the 

multiple scattered radiation being approximated using a two-stream approach. This can 

cause errors however, because of the greatly increased multiple scattering occurring in the 

near-IR wavelength region (Liang and Strahler, 1994) as described above. Others have 

proposed a more exact four-stream approximation for the solution of multiple scattered 

radiation (e.g. Liang and Strahler, 1995). Some of the earliest developments in CR 

modelling used the two-stream approximation in order to describe the radiation field in a 

canopy. Suits (1972) used a four-stream approximation to calculate radiation intensity 

from the projected horizontal and vertical canopy scattering elements. This approach was 

extended by Verhoef (1984) to handle arbitrary leaf angles in the widely-used Scattering 

by Arbitrarily Inclined Leaves (SAIL) model.

Separation of canopy fluxes into uncollided and collided intensities of various 

orders (Kubelka and Munk, 1931; Suits, 1972; Hapke, 1981) has often been employed in 

order to simplify the RT approach (Myneni et a l, 1990; Verstraete et a l ,  1990; laquinta 

and Pinty, 1994; Gobron et a l,  1997). The discrete properties of the canopy (those related 

to the size and distribution of scatterers) tend to impact only the first few orders of 

scattering. As the scattering order increases, these features tend to become ‘smeared out’ 

by the multiple scattering interactions (Marshak, 1989; Liang and Strahler, 1993a; 

laquinta and Pinty, 1994). Dividing the radiation field into collided and uncollided 

intensities as opposed to following a standard RT treatment may preserve these features. 

Hapke’s original theory has been extended, notably Verstraete et a l  (1990), Dickinson et 

a l  (1990) and laquinta and Pinty (1994), to overcome the inability to account for finite 

sized scattering elements. Ahmad and Deering (1992) added a specular reflection term to 

Hapke’s empirical hotspot term, resulting in a relatively straightforward analytical model 

which agreed well with various measured reflectance data. But the number of model 

parameters (8) and the coupling between them limits the use o f the model for inversion of 

biophysical information.

The above discussion illustrates how the behaviour of a real vegetation canopy is 

likely to diverge rapidly from classical RT theory as a result o f finite leaf size (Myneni
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and Ganapol, 1991). As the canopy becomes denser, mutual shadowing cannot be ignored 

(Myneni et a l ,  1991; Myneni and Asrar, 1993). It also becomes increasingly difficult to 

justify using convenient values of scattering phase function, leaf normal distribution and 

leaf projection function based on the assumption that leaf normals are randomly oriented 

and azimuthally invariant. This is clearly partially or wholly violated for a number of 

canopies, particularly row-oriented agricultural crops. Verstraete et a l  (1990) proposed 

replacing the components of the full RT treatment explicitly dependent on leaf size and 

orientation (e.g. as and Qc, which are impossible to characterise exactly for a large canopy 

of many leaves) with a parameterised average description. However, accounting for the 

discrete nature of vegetation within a RT (continuous) description of the canopy radiation 

regime leads to an apparent paradox (Knyazikhin et a l,  1998c): the more accurate the 

representation of canopy geometry, the less accurate the description of radiation transport 

and photosynthesis in the canopy is likely to be. Knyazikhin et a l  (1998e) use a fractal 

description of a plant stand at scales at which the assumptions underlying the RT 

approach break down (i.e. at leaf level) to demonstrate the difficulty of scaling the RT 

approach from leaf to canopy scale.

Once the size o f scattering elements in the canopy is considered, gaps between the 

scatterers must also be considered. Myneni and eo-workers have developed a model 

based on considering the canopy as a binary medium of convoluted voids (gaps between 

leaves) only broken by the leaves themselves (Myneni et a l ,  1991). Further problems are 

caused by the fact that the diffuse component of illumination impinging on the canopy 

will itself contain a component of radiation reflected back from the top of the canopy 

(Knyazikhin and Marshak, 2000). A number of authors have considered this problem, and 

various coupled surfaee-atmosphere scattering models have been developed (Rahman et 

a l,  1993a,b; Liang and Strahler, 1994). These models can significantly improve 

agreement between measured and modelled refieetanees, at the expense of model 

complexity. Solution of the RT equation in a vegetation canopy is still a complex 

problem, however, despite all approximations. As a result, inversion of such models must 

also be performed numerically, or using LUTs. Additionally, the approximations made in 

order to formulate equation 2.29 result in the driving parameters o f such models being 

relatively far-removed from parameters directly representative of physical canopy 

properties.
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2.5,2.4 Geometric-optic (GO) models

shadowed
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Figure 2.9 Geometry of an illuminated cone and its shadow. Acrx = sunlit/shaded 

crown, A g/z = sunlit/shaded ground (after Li and Strahler, 1985).

In direct contrast to the turbid medium approach, GO models of pcanopy describe 

surface scattering due to discrete objects (spheroids, blocks, cylinders etc.) arranged on a 

surface under the assumption of parallel-ray geometry. This approach is exemplified by 

the work of Li and Strahler (1985, 1986, 1988, 1992) in a series of papers investigating 

the use of cones and spheroids to model the scene variance of forest canopies. Their work 

extended that of Egbert (1976), and Otterman and Weiss (1984) who were able to explain 

a significant proportion of the measured reflectance of soybean using a model composed 

of thin, vertical cylindrical protrusions. Significantly, they concluded that while retrieving 

the reflectance of the cylinders through inversion of the model might be possible, retrieval 

of the projected shadow (effectively the cylinder size) would not.

Li and Strahler postulated that a typical forest canopy comprises large, discrete 

crowns of a variety of shapes, separated by relatively large intervening spaces. They 

considered simple geometric objects (cones) with a lognormal height distribution and 

known number density located randomly on a Lambertian plane. The resulting areal 

proportions of sunlit and shadowed canopy and soil components were then calculated 

using GO theory. This is illustrated in figure 2.9. The scene geometry is controlled by r, 

the cone base radius; a  - half the crown apex angle; h, the crown height; y is the angle 

identifying the portion of the cone illuminated beyond the cone half (sin‘’(tana/tan0)). 

Scene reflectance is divided into four components: sunlit crown, sunlit ground, shadowed 

crown and shadowed ground. The geometry of a particular scene is calculated according
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the size and density distribution of objects, and the average reflectance of a scene pixel is 

then a linear sum of the various areal proportions i.e.

(^A^G + AçC + A^Z  + AjT  ) 2.25
A

^G.c.zj are the areas of illuminated background and crown, and shadowed background 

and crown respectively; G, C, Z, T are the multispectral reflectance vectors for unit areas 

of illuminated background and crown, and shadowed background and crown respectively. 

Variations in S are caused by variations in crown density and size in each pixel. Initially 

the model was fonnulated for non-overlapping cones, but a general case based on the 

theory of the moments of overlapping areas has been developed (Li and Strahler, 1992). 

Ciemiewski (1987, 1999) followed a similar approach in formulating a model of soil 

reflectance by calculating the shadowing of a square grid of equally sized spheres on an 

arbitrarily inclined plane.

b:
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Figure 2.10 (left) Geometry of spheroid-on-a-stick with shape controlling 

parameters and shadowed area A(0) (right) nadir (a) and off-nadir (b) areas of 

illuminated shadow (A c,t,z,g = as in figure 2.9) (after Strahler and Jupp, 1990).

Strahler and Jupp (1990) extended the GO approach, using Boolean models of 

random set overlap to model the BRDF of forest and woodland as a collection of 

randomly located ‘spheroids on sticks’. This is illustrated in figure 2.10. The spheroids, 

with major and minor axes b and r respectively, are located a height h above the surface 

(the concept of the stick is merely to indicate height above the surface). The nadir and 

of'f-nadir illumination and shadow components of the scene are also shown. The model 

treats the areal proportions of sunlit and shadowed components at both the scene level and 

the leaf level, resulting in a two-stage model. Chen and Leblanc (1997) have examined
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the application of GO modelling at scales larger and smaller than tree crowns, and in 

particular the impact of the departure from the Lambertian assumption with varying scale.

The GO approach has been further developed by consideration of a vegetation 

canopy as a collection of scattering elements located within a GO “envelope”. Scattering 

within the envelope can be handled using some model of attenuation (e.g. Beer’s law, or a 

full RT approach), whilst shadowing at canopy stand-level is modelled using the standard 

GO theory discussed above. This hybrid GO-RT approach (Li et a l ,  1994, 1995) relies on 

the calculation of gap probabilities between crowns and the path lengths within crowns 

(Li and Strahler, 1988). Roujean et a l  (1992) follow a similar line to that of Li et a l 

(1994) by combining non-overlapping opaque blocks randomly located on a Lambertian 

surface modelled using GO theory, with an RT description of the attenuation within the 

blocks. Goel and Grier (1988) modelled reflectance of inhomogeneous canopies by 

combining the GO and RT approaches with some success. In a similar way, Bégué (1992) 

models the directional reflectance of regular-clumped canopies by considering 

(radiometrically) porous cylinders located on a hexagonal grid. This hybrid approach 

combines the benefits of the GO approach i.e. the inherent ability to describe the discrete 

nature of a discontinuous canopy (shadowing, hotspot, crown size etc.), with the RT 

approach to scattering within the crown envelopes (accurate description of radiation 

interception and multiple scattering). For this reason both GO and RT models are 

considered in the semi-empirical approach described in section 2.5.4.

2.5.3 Computer simulation models

To solve the RT problem of photon scattering in a homogeneous medium, 

approximations regarding the size, orientation and spatial distribution of scatterers within 

the canopy are required. An ideal solution would specify these properties in 3D for every 

scattering element in the canopy in order that the behaviour of every photon could be 

modelled physically. This implies an enormous number o f parameters controlling pcanopy 

making it impossible to invert such a model direetly. However, with increases in 

computing power and memory it is possible to construct physically detailed 3D models 

which can be run in the forward mode. The results of these models can then be used to 

test the assumptions and approximations that are made in the physically based models 

described above (Govaerts, 1996; Kuusk et a l,  1997; Disney and Lewis, 1998), or to
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populate LUTs for indirect inversion algorithms (Kimes et a l,  2000). There are two 

primary methods for implementing "scene simulation" models, ray tracing (based on a 

Markov chains) and radiosity (originating from thermal engineering). Both these methods 

have benefited (particularly in terms of practical implementation) from developments in 

computer graphics (CG) (Goel, 1988; Goel and Thompson, 2000).

2.5.3.1 Ray Tracing

Ray tracing is a method of rendering realistic images of 3D scene representations 

through detailed modelling of scene illumination and shading (Foley et a l, 1992). Ray 

tracing essentially involves calculating the intersections of rays (photons) “fired” into a 

3D scene with the objects in the scene, and determining the behaviour o f the photons at 

each intersection. The subsequent direction and energy of a scattered photon following an 

intersection is governed by the radiometric properties of absorption, transmission and 

reflection of the surface at the point of intersection in addition to the geometric scattering 

properties (phase function) of the object. Objects are not limited to representation by 

simple polygons. Volumetric objects (treating scattering through radiative transfer) can be 

used, in conjunction with a description of the (volumetric) scattering properties of the 

materials contained within (North, 1996). Shadows can be simulated by the casting of 

‘shadow’ rays from objects to the light source and diffuse sampling can also be used to 

simulate diffuse light sources (Govaerts, 1996; Lewis, 1999). Realistic depiction of the 

bidirectional reflectance of any scene (represented as a collection of 3D objects) can be 

simulated by repeating the sampling process for every sample (pixel) in the viewing plane 

(Disney et a l ,  2000).

Ray tracing is computationally expensive compared to Pcanopy models based on RT 

or GO approaches. Every object within a scene must be represented accurately in 3D 

along with associated radiometric properties, and this information must be stored in 

memory. Intersection tests are carried out for each fired ray to see where (if at all) they 

intersect the scene, and for each subsequent interaction (and for shadowing). In addition, 

to achieve a convergent solution (representing the scattering behaviour of the scene to 

within some accuracy threshold) some form of numerical integration, typically Monte 

Carlo sampling (Press et a l,  1994; Veach, 1997) is used. Clearly, the more detailed the 

seene, the more calculations are required for each photon. Objects within the scene are
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composed of polygonal or volumetric primitives, and the primitives can be chosen to be 

of arbitrary size -  larger for coarser representation but quicker calculation and lower 

storage requirements; smaller for finer detail, but requiring more processing and storage. 

A range of variance reduction techniques and CG methods, such as the use of bounding- 

boxes, can be used to further speed up the ray tracing process (Disney et a l,  2000).

A variety of implementations of ray tracing have been developed for remote 

sensing scene simulation. Ross and Marshak (1988) developed a simple model for 

radiometric scene simulation. Goel et a l (1991) demonstrated ray tracing for simulating 

reflectance of com plants. The model of Govaerts (1996) has been used for comparison 

with a variety of RT modelling techniques (Govaerts et a l,  1995; Gobron et a l,  1997) 

and target BRDFs. Govaerts (1996) and Lewis (1999) have used ray tracing to simulate 

the timed-retum signal of LiDAR (Light Detection and Ranging) instruments, which are 

an interesting new development for probing vegetation canopy structure (Dubayah et a l , 

1997). Chelle and Andrieu (1999) have used ray tracing to validate a physically-based CR 

model (Kuusk et a l 1997). North (1996) developed a ray tracing model to simulate GO 

Pcanopy in forest stauds (Gerard and North, 1997), as well as for simulation of synthetic 

Along-Track Scanning Radiometer (ATSR-2) data. The BRDF modelling community has 

recently initiated an ongoing model intercomparison exercise, RAMI (RAdiation Transfer 

Model Intercomparison, Pinty et a l,  2001 and www[2.2]). The aim of the exercise is to 

establish the strengths and weaknesses of BRDF models o f all types, in a carefully 

controlled model “bake o f f ’. The ongoing RAMI exercise has shown that ray tracing 

models are the most flexible, if  slower than other types of model. The trade off is that 

they can simulate almost any conceivable canopy configuration and hence can be used to 

benchmark more approximate models.

2.5 .3.2 Radiosity

Radiosity methods originated in thermal engineering and have been adapted for 

realistic scene simulation techniques in computer graphics (Goral et a l, 1984). In contrast 

to the view/illumination oriented approach of ray tracing (all calculations based on a 

particular viewing/illumination configuration), radiosity is based solely on the scene 

geometry. All energy emitted or reflected by every surface in a scene is accounted for by 

its reflection and absorption by other surfaces (Foley et a l ,  1992). The rate at which
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energy leaves a surface (the radiosity) is then simply the sum of the rates at which the 

surface emits energy and reflects or transmits it from other surfaces. To calculate BRDF, 

all light interactions in an environment are calculated independent of view (the so-called 

'view' or 'form factors' of each surface). Scene radiosity can be calculated very simply for 

an arbitrary view. Radiosity is even more computationally expensive than ray tracing 

when the view factors are being calculated, but this need only be carried out once for any 

particular scene/illumination scenario (the two methods reduce to essentially the same 

solution calculated in different ways under certain conditions). Borel et al. (1991) show 

that radiosity methods can be used to simulate scenes for use in analysis of remotely 

sensed data. They apply the radiosity method to modelling a layered plant canopy, and 

draw parallels between the radiosity and RT solutions. Qin and Gerstl (2000) have 

coupled 3D plant models (derived from L-systems) with radiosity to simulate reflectance 

of semi-arid scrubland. Their results agree well with field, and provide further proof that 

explicit 3D plant modelling in combination with radiosity or ray tracing methods can be 

extremely useful in scene simulation at a range of scales.

2.5.3.3 Other numerical CR modelling methods

Another interesting numerical approach is that adopted by Gastellu-Etchegorry et 

al. (1996) in their DART (Discrete Anisotropic Radiative Transfer) model, which is some 

way between ray tracing and radiosity. Based on the 3D canopy transport model of Kimes 

and Kirchner (1982) DART simulates RT in heterogeneous 3D scenes that may contain 

many elements. A scene is simulated as a 3D matrix of parallelipipedic cells (voxels), and 

the phase functions of each cell are calculated from the scattering behaviour of the 

elements contained within the cell. DART significantly extends the Kimes and Kirchner 

model as it can cope with non-uniform, unequally spaced cells, and multiple scattering 

processes within cells. The microwave model of Sun and Ranson (1995) is functionally 

similar to that of Gastellu-Etchegorry et al. (1996) in that a solution is formed over 3D 

gridded (voxel) space. This raises the prospect of coupled microwave and optical models 

of canopy response based on 3D structural canopy representations. This appears to be a 

realistic and sensible goal in that in both cases, the models are designed to describe the 

physical interaction of light with matter; the difference is only one of wavelength of the 

incident radiation. This approach might also be extended to a third domain: thermal 

wavelengths.
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The major advantage of the explicit 3D representation of geometry required for 

ray tracing and radiosity is that every object within a canopy can be represented to 

whatever level of detail is required or is convenient. Ray tracing is ideally suited for 

precisely modelling the scattering processes used in RT techniques as leaves and voids in 

the canopy are modelled explicitly. Assumptions that are made in such models regarding 

the size and orientation distribution of scattering elements within a canopy can also be 

modelled explicitly. Clearly this type of complex numerical model cannot be inverted 

directly but such models can be very useful for testing the approximations made in other 

(invertible) scattering models designed. Further, the development of LUT methods make 

it increasingly feasible to invert biophysical information from such models, albeit 

indirectly.

2.5.3.4 BPMS/ararat model

Simulation of pcampy used in chapters 4-7 of this thesis is undertaken using the 3D 

model of Lewis (1999). This forms part of the Botanical Plant Modelling System (BPMS) 

(Lewis and Muller, 1990; Lewis, 1996, 1999) which has been used for simulating canopy 

radiation for a wide range of purposes (Lewis, 1996; Lewis and Disney, 1997, 1998; 

Disney et a l,  2000). The BPMS essentially consists o f software tools and protocols and 

for capturing, representing and processing 3D data representing the canopy-soil system; 

Ararat (the Advanced Radiometric Ray Tracer) is a Monte Carlo ray tracing tool for 

simulating the radiation regime within the 3D canopy.

3D canopy architecture can be specified within the model in a number of ways 

e.g. from photogrammetric measurements, or through the use o f growth rules, such as a 

modified L-systems approach (Prusinkiewicz and Lindenmayer, 1990; Prusinkiewicz, 

1999). L-systems have proved eminently suitable for the development o f 3D plant and 

canopy models (de Reffye et a l ,  1988; de Reffye and Houllier, 1997; Prusinkiewicz,

1999). 3D representations o f individual plants can be constructed within the BPMS from 

manual measurements of a few key structural parameters, such as leaf and stem lengths 

and widths, leaf base and tip zenith and azimuth angles etc. These properties are 

extrapolated (using specified functional relationships) to a full 3D representation of 

individual plants (surfaces are tessellated with polygons, triangles by default, during ray

67



tracing). Individual plants can then be ‘cloned’ (duplicated with arbitrary rotation and 

translation) and then ‘planted’ on a surface according to some predefined pattern to build 

up a full canopy.

The ray tracing part of the BPMS (ARARAT, the Advanced RAdiometric RAy 

Tracer) is also very flexible, having been designed specifically for investigating scattering 

in plant canopies. Information can be stored as a function of scattering order within a 

simulated scene, permitting analysis of multiple scattering (Lewis and Disney, 1998). 

Arbitrary camera models can be used (e.g. allowing integration over the entire viewing 

hemisphere in order to directly simulate albedo), as can texture mapping, material 

mapping and diffuse sampling. Associated information such as the proportions of sunlit 

and shadowed canopy components can also be calculated (Lewis, 1999). The BPMS can 

incorporate ancillary data in addition to measured plant parameter data, such as row and 

plant spacing, seed depth, digital elevation models (DEMs) of the underlying soil surface 

etc. This flexibility make the BPMS an extremely useful tool for examining BRDF model 

operation (Lewis and Disney, 1997, 1998; Disney and Lewis, 1998) as well as more 

general properties such as spatial variation of pcanopy (Lewis et a l ,  1999b).

The experiments described in chapters 4-6 use values of pcanopy simulated from 3D 

plant data measured in the field, processed via the BPMS plant modelling software, and 

rendered by the ray tracing component, ararat. The BPMS/Ararat model was chosen 

because of its flexibility as well as the capability for analysing canopy radiation as a 

function of canopy parameters. Several other models are used in the experimental 

chapters of this thesis, and these are listed below with an explanation of where and why 

they are used, as well as indications as to where more detailed descriptions of each model 

can be found.
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Table 2.1 Canopy reflectance models used in this thesis.

M odel Used Reason Details
BPMS/ararat Chapters 4-6 Flexibility: can 

represent full 3D 
structure at arbitrary 
scale, and simulate 
radiation under arbitrary 
viewing and 
illumination conditions.

Canopy simulation carried 
out using Monte Carlo ray 
tracing, in reverse mode 
(rays traced from viewer 
back to illumination 
source), with importance 
sampling at each ray 
intersection. More details in 
Lewis (1996, 1999).

Linear kernel- 
drive

Referred to 
and/or used in 
chapters 4-7.

Basis of thesis: models 
are currently in use 
generating MODIS 
albedo product. 
Assumptions underlying 
these models are tested 
using BPMS/Ararat 
model.

Simple semi-empirical, 
kernel-driven models, 
based on more complex 
physical models of BRDF. 
Described in detail in 
section 2.5.4

Kuusk Chapter 7 Used for simplicity 
& rapidity to simulate 

spectral directional 
reflectance samples for 
testing of with spectral 
kernels.

Physical model o f canopy 
reflectance (Nilson and 
Kuusk, 1989). Variant of 
ID RT solution in 
homogeneous medium. 
Considers unscattered, 
single scattered and 
multiple-scattered radiation 
separately.

2.5.4 Semi-empirical models

The final class of CR models to be mentioned are semi-empirical (so-called 

kernel-driven) models. These have been developed in response to the requirement for 

dynamic (near real-time) estimates of global albedo (Wanner et a l ,  1995; Lucht et a l, 

1999; Lucht and Roujean, 2000). Generation of albedo in near real-time from the large 

quantities o f moderate resolution (hundreds o f m to km scale) data from instruments such 

as MODIS and MISR requires rapidly invertible models capable of describing reflectance 

from spatially heterogeneous scenes at sub-km resolution (Roujean and Leroy, 1992; 

Wanner a/., 1997).

Semiempirical models attempt to bridge the gap between the physical and 

empirical modelling approaches (Wanner et a l, 1995). The aim is to maintain some 

physical basis, while still allowing rapid analytical inversion against moderate resolution
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data. The assumption is made that at moderate resolution, scattering from heterogeneous 

surfaces will be composed of separable scattering components (kernels). Each kernel 

represents a particular component of canopy scattering behaviour, and contributes to the 

overall reflectance 'shape'. Approaches using either linear additive or multiplicative 

combinations of kernels have been developed (Lucht and Roujean, 2000). Linear kernel- 

driven models assume reflectance is composed of volumetric and GO scattering 

components. Multiplicative models are based on magnitude, anisotropy and hot-spot 

terms. Both approaches are less flexible for describing BRDF than purely empirical 

models. This is because they are constrained to the basic shapes represented by individual 

kernels. A benefit of this constraint however, is that it permits extrapolation as well as 

interpolation, which is not the case for purely empirical models.

2.5.4.1 Linear (kernel-driven) semi-empirical models

Linear semi-empirical models assume that scattering from homogeneous surfaces 

can be described using a weighted linear superposition of a small number of kernels based 

on approximations to physical solutions for volumetric and GO scattering. The general 

form of the linear kernel-driven models is (Wanner et a l ,  1995)

BRDF{e, = k }) 2.26

Where the k„ kernels are purely geometrical expressions of fundamental scattering 

behaviour of radiation within the canopy;/, are the model parameters, and Pn are potential 

preset terms that may modify the kernels behaviour. More specifically, BRDF is typically 

considered as

BRDF{e, Lo W  + i ^ K , +  f a o A 4 )  2.27

v̂oi.GO are the kernels representing volumetric and GO scattering components of BRDF 

(k/,yo is assumed to be unity); ïiso,voi.GO are the spectrally dependent model parameters 

(weights associated with each kernel). Importantly, the kernels depend only on (0„ 8y, (|)) 

and hence can be pre-calculated for angular integration. Although approximate in nature, 

the physical basis of the various kernels can be used to provide meaningful constraint of 

the model inversion process (see appendix 1), as well as (potentially) providing
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biophysical information, as will be seen in later chapters. Semiempirical models require 

more samples than purely physical models, but far less than purely empirical ones.

Describing BRDF as a linear superposition of volumetric and GO BRDF ‘shapes’ 

is justified by considering that any moderate resolution pixel will contain surfaces 

contributing both volumetric and GO scattering to the total pixel reflectance. This is 

modulated by the respective sub-pixel areas (weights) of each cover type (Wanner et a l, 

1995). Even for scenes likely to be dominated by a single type of scattering there will 

probably be some contribution from the other component. Wanner et a l  (1995) use the 

example of a forest canopy, where reflectance from the discrete crowns is likely to be 

characterised largely by GO scattering. However, the dense vegetation within the crowns 

is likely to contribute some component of volumetric scattering to the total BRDF. This 

does assume that there is no multiple scattering between the separate components. The 

kernels are based on the assumption of single-scattering interactions only and to 

compensate for this multiple scattering is included in the isotropic term. Scattered 

radiation from a directional source tends to become increasingly isotropic with 

successively higher order scattering interactions. Hence it seems reasonable to include 

multiple scattering (as a first approximation) as an additive (scaling) "brightness" term, 

rather than as a function of viewing or illumination angle. In the linear kernel-driven 

models the isotropic term is defined as the nadir reflectance at nadir illumination.

There are several major advantages of the linear kernel-driven approach to 

modelling BRDF.

1. Being linear, the models lend themselves to rapid, analytical inversion using 

methods described previously (Lewis, 1995).

2. As the forms of the kernels are known in advance, angular integrals of BRDF

directional-hemispherical and bihemispherical reflectance ( p  and p  ) can be 

pre-calculated in a LUT. Total albedo can then be calculated as a weighted 

sum of the kernel albedos, avoiding computationally expensive numerical 

integration (Wanner et a l ,  1997).

3. Most importantly, if  adjacency effects over heterogeneous regions are 

neglected (Wanner et a l ,  1997), the linear models can be assumed to scale 

linearly with area. They can therefore be arbitrarily scaled for application to 

any required resolution, making them ideal for production of albedo at a range
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of scales. The linear scaling property also means that such models can be 

applied to surfaces with arbitrary combinations of volumetric and GO 

scattering with no requirement for a priori assumptions o f cover type.

4. Finally, as the model parameters have some physical basis there is the hope 

that parameter estimates might be inverted to provide biophysical information.

Due to the approximate nature of the kernels it is not straightforward to determine 

what information is contained within the inverted model parameters, or how this might be 

exploited (Disney and Lewis, 1998). The remainder of this thesis is concerned with 

examining what type of biophysical information may be derived from reflectance data 

using kernel-driven models, and how such models might be improved. The derivation of 

the kernels is presented below.

2.5.4.1.1 Volumetric kernels

A number of kernels approximating volumetric and GO scattering have been 

developed. The volumetric kernels are based on Ross’ (1981) solution for RT in a turbid 

medium. Two separate versions of the so-called Ross kernel for canopies with LAI »  1 

(RossThick) and LAI «  I (RossThin) are described below. The RossThick kernel was 

developed by Roujean et al. (1992), from Ross’s formulation for BRDF given in equation 

2.24, assuming: a horizontally homogeneous canopy (randomly oriented leaves) over a 

flat Lambertian surface of reflectance p ;̂ single scattering only; leaf reflectance {pieqj) = 

leaf transmittance {xiea .̂ The assumption is then made that LAI » I ,  in which case LAI 

dominates the exp(- LAI-^sqc 6- -f sec 0^ )terms. The ^sec 0- -t- sec 6^ terms (denoted B)

are replaced with a typical value over the angle range 0„ 0v = 0°, 30°, 60° of 1.5. In this 

case, Rthick = C|kw + C] and the RossThick kernel is

Komu) (RossThick) = (2 ■g)cos^ + sin^ _ ^
; cos0 ,+ cos0 , 4

^ is the phase angle of scattering, and cos^ = cos0/cos0v+sin0/sin0vcos(|). The 7i/4 term 

arises from a convention introduced by Roujean et al. (1992) that the kernels should 

satisfy the condition that kvo/ = 0 when 0/, 0y = 0. The constants C| and C] are

c, = --------
3;r ' ' 3

respectively. C| is the weight of
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the kernel in the full kernel-driven model (equation 2.27) and 0% is included in the 

isotropic term.

The adaptation of the Ross volumetric kernel for LAI «  1 has been proposed by 

Wanner et al. (1995). In this case the approximation that e* « 1+x if x is small is made. If 

= c\kthin + C2, the RossThin kernel for volumetric scattering (from equation 2.24) is

2.29
cos 9- cos 0^ 2

Ip l^rLAI  P l e a f  LAI
where this time, the constants c, = -------------  and = ------------ + A  • Iii the same way

1)71 3

as for the RossThick kernel, c, is the weighting of the kernel in the full linear model, and 

C2 is included in the isotropic brightness term. Both kernels are functions of 0, and By 

only, as desired.

2.5.4.1.2 GO kernels

The GO kernels are based on the work of Li and Strahler (1986), described above 

and Roujean et al. (1992). Shadowed regions are assumed perfectly black (no 

contribution to scene reflectance) and sunlit crown and ground components are assumed 

equally bright. Wanner et al. (1995) consider the proportions o f sunlit crown and ground 

resulting from spheroidal protrusions of length 2b and width 2r, number density X, 

randomly located at height h above a flat Lambertian surface (c.f. fig. 2.10). To calculate 

the area of projected shadow, the spheroids are transformed to the ‘equivalent’ sphere that 

would result in the same shadowed area at given 0/, By. The resulting (transformed) zenith 

angles are denoted B ’ „ y  = tan '(b/r tanB/ y). Two GO kernels are presented; one for scenes 

in which mutual shadowing of spheroids is not permitted (LiSparse), and one for the 

mutual shadowing case (LiDense). In the same manner as for the volumetric kernels, 

reflectance is expressed as Rgo = \̂ksparse + C2, and the LiSparse kernel is

kçjQ(LiSparse) = 0(9] ,6[)~  sec6'. -  sec9[ + ÿ (l + cos<J')sec6[ 2.30

cos^’ = cosB’/CosB’y+sinB’,sinB’yCos())’. 0(B ’„B’y,(|)’) describes the overlap between the 

areas of viewing and illumination shadow dependent on the transformed zenith angles, 

height h, and ratio of b to r. The constants C| and C2 in this case are CX'wP' and C
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respectively, where C is the reflectanee of the sunlit erown and ground (assumed equal). 

This dependence on the size distribution of the spheroids results in a family of kernels for 

different b/r and h/b. In practice these are redueed to four cases for oblate/prolate 

spheroids, and high/low erowns.

The LiDense kernel deseribes pcampy including mutual shadowing by considering 

the spheroids on the surfaee as tree crowns with lognormal height distribution. In this 

case, Rco ^  C\Kiense + C] and the LiDense kernel is:

’̂ ^oiLiDense) = -  2 2.31

The factor of 2 is subtracted to ensure the kernel is zero for 0„ 0v = 0°. All other terms are

as above, except C\ = C/2 and C] = C. The dependence on the ratios b/r and h/b remain.

Figure 2.11 shows the direetional variation of the full eomplement o f Ross and Li kernels. 

Ineluded are GC (Ground-Crown) versions of the LiSparse and LiDense kernels. The GC 

versions treat the ground and crown as having different brightnesses. The asymmetric 

bowl shape is apparent in both the Ross and Li kernels. The peak in the baekscatter 

direction is present only in the Li kernels as it is a manifestation of the finite size of 

scattering elements, and hence is not described by the RT approximation. This peak is 

more prominent in the LiDense kernel (mutual shadowing of spheroids permitted).

Figure 2.12 shows the family of LiSparse kernels with various values of h/b and 

b/r, including:

■ high oblate (HO) h/b = 2.5, b/r = 0.75;

■ high prolate (HP) h/b = 2.5, b/r = 2.5;

■ low oblate (LG) h/b = 1.5, b/r = 0.75;

■ low prolate (LP) h/b = 2.5, b/r = 2.5.

Figure 2.13 shows the eorresponding family of LiDense kernels. In praetiee (i.e. in 

produetion o f the MODIS nadir refleetance and albedo produet) the RossThick LiSparse 

kernel combination is used, in preference to RossThin and/or LiSparse. The RossThiek 

LiSparse eombination fits as well or better than any other in most eircumstances, and so 

has beeome the de faeto ehoice of linear kernels (Schaaf et a l,  2000a).
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Two other kernels should be mentioned. Firstly, a GO kernel developed by 

Roujean et al. (1992) based on the sunlit and shadowed scene components due to 

randomly oriented rectangular Lambertian blocks o f  height h, length I and width b 

arranged on a surface. Shadows are assumed perfectly black and all sunlit areas are 

considered equally bright, with reflectance po. Mutual shadowing is ignored, restricting 

the validity o f  the model to situations where shadows do not fall outside the basal area of 

the block casting them (i.e. 0„ 0v < 60°). Additionally / is assumed »  h, and / »  b in 

order that the shadowing by the sides of  the blocks (area bh) may be disregarded. The 

reflectance o f  blocks on a surface is expressed as ^Roujean = \̂̂ Rouiean + ci where is

= T [ ( ; r - (Z > )c o s ( i  + sin^>]tan6i, tan 6», -
I n

— (tan 0̂  +tan ^ tan  " 6̂  + tan “ + 2 tan 6̂  tan 6̂ . cos (f) )
2.32

and cl and c2 are Poh/b and po respectively. This has recently been extended to the 

LiTransit kernel (Gao et al., 2001 ).

The other kernel included is that o f  Walthall et al. (1985) described in equation 

2.17, and in its modified form in equation 2.18. This expression is also dependent only on
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viewing and illumination. In practice, the modified Walthall model often provides a better 

fit to observed data (in terms of RMSE) than the volumetric or GO kernels (Lucht et al., 

1999). However, it suffers from the drawback of all empirical models, namely that 

inverted model parameters have no physical meaning. Whilst the linear models were 

developed in order to facilitate production of integrated products such as albedo, there is 

naturally an interest in their capability for producing biophysical parameter information. 

However it is not clear to what extent the kernels contain (uncoupled) biophysical 

information, or how this information might be interpreted. The remainder of this thesis 

seeks to explore this problem.

Goel and Thompson (2000) note that a limitation of the kernel-driven approach to 

modelling BRDF is that the assumption that there is little cross coupling between 

volumetric and GO scattering within a scene may be hard to justify in some cases. They 

conclude that the sensitivity of the kernels to angular sampling makes it difficult to 

determine the weightings for different sensor sampling regimes. However Lucht and 

Lewis (2000) have shown that it is possible to determine in advance the dependence of 

the kernels on sampling. Knowledge of the sampling characteristics of new sensors 

(Barnsley et a l, 1994) can be used to overcome this dependence (Lucht, 1998).

2.5.4,2 Non-linear semiempirical models

There has been parallel development of non-linear (or semi-linear) semiempirical 

models (Rahman et a l,  1993). In contrast to equation 2.26, non-linear models typically 

follow the form

BRDF{e, ,e j - ,x )= Y \  /„ {e,, ej-, {f{x)„}) 2.33

where tn are the terms controlling basic scattering shape, a n d a r e  the model parameters. 

Multiplicative kernel-driven models of this sort tend to have complementary benefits and 

disadvantages over the linear models, and are currently being used to model surface 

reflectance from MISR data (Martonchik et al., 1998b). The RPV model (Rahman et a l, 

1993a) is based on Minnaerfs empirical function given in equation 2.18, modified to 

include a Henyey-Greenstein phase function term describing the asymmetry of the BRDF 

between forward- and backscattering, and a hotspot term. The advantages of this 

approach are that despite its empirical core, the RPV model has physically meaningful
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parameters. In addition, the multiplicative nature of the model means a larger number of 

BRDF shapes can be represented than with a purely additive model. However, non- 

linearity implies numerical (or iterative) inversion, which is a major drawback. In 

practice, a semi-linear modified version of the RPV model (MRPV) (Martonchik et a l, 

1998b) is used which may be inverted using an iterative LUT-based approach. This forms 

the basis of surface reflectance retrieval for MISR (Martonchik et a l,  1998b). 

Intercomparison between the best-performing linear and non-linear semiempirical models 

(RossThick LiSparse and MRPV) has shown their performance to be comparable in most 

cases, with only marginal differences between them (Lucht, 1998; Lucht et a l,  1999).

2.6 Conclusion

The preceding discussion illustrates the huge variety and ingenuity o f approaches 

to CR modelling, as well as some of the benefits and drawbacks in each case. Empirical 

models are simple, generally fit observed BRDF well and may be useful as directional 

interpolants. However they require many directional samples to constrain their fit, and are 

not valid for extrapolation. Physical models require many less samples and have 

physically meaningful parameters, but are generally complex and require numerical 

inversion. Computer simulation models can represent canopy scattering at in almost 

arbitrary detail but are often computationally intensive, and are not invertible directly due 

to the potentially very large number of controlling parameters. Semiempirical kernel- 

driven models bridge the gap between simple empirical and complex physical 

descriptions of BRDF. Kernels describing various scattering properties can be linearly or 

multiplicatively combined to describe BRDF. Kernel-driven models can be used to 

interpolate or extrapolate from limited samples o f BRDF, and can be rapidly inverted 

against measured reflectance at arbitrary scales.

The remainder of this thesis is concerned with the ability of the linear 

semiempirical models to describe BRDF. They are the models of choice for production of 

global BRDF and albedo products from the MODIS instrument. The ability of the linear 

models to describe BRDF, even in unfavourable circumstances, is examined, along with 

novel methods for extracting biophysical information from their parameters.
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3 Description of field-measured data

The data used in the experimental chapters of this thesis were collected during the 

growing season of 1997 from a study site based around Barton Bendish Farm, Norfolk (52" 

37.2' N 0" 32.0' E). The farm covers some 9 km^ and produces winter wheat, several 

varieties of spring barley, peas and sugar beet. Due to the initial work done here (Disney et 

a l, 1997) and subsequent field experiments, this site and the surrounding area has been 

taken on as a MODIS core validation site.

Three barley fields, and one wheat field were selected at the start o f the fieldwork 

campaign. These fields are identified as follows (and will be referred to as such throughout):

barley 24*’’ April Fields ba_104, ba_l 12 and ba_l 19.

barley 13̂ ’’ May

barley 4̂ ’’ June

barley 24*’’ June

wheat 23"̂  ̂March 

wheat 23*̂ *̂ April

Combines measurements made from the 13̂*̂ - 15̂  ̂May 1997 

(due to bad weather) in fields ba_l 12 and ba_l 19.

Fields ba_104, ba_l 12 and ba_l 19 

Fields ba_l 12 and ba_l 19 

Field ww_109 

Field ww 109
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Barton Bendish

Figure 3.1 AVHRR image of UK (top left); SPOT FCC image of East Anglia 
(top right); aerial photograph of Barton Bendish farm (bottom) showing selected 

fields used in fieldwork study, August 1997 (courtesy of NERC).
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Figure 3.1 shows the fieldwork site at three different scales: an AVHRR image of the 

UK (9/8/95) showing the East Anglia region; a false-colour composite SPOT image (4/4/97) 

of the NIR, visible red and green bands highlighting vegetation as red. Also shown is a 

scanned aerial photograph of the Barton Bendish farm and surrounding area (6/8/97), 

obtained by the Natural Environmental Research Council (NERC) Airborne Research 

System (ARS) Facility aircraft. The Barton Bendish farm area and the fields selected for this 

study are marked on the image. RAF Marham air-base, clearly visible in the SPOT image, is 

just visible at the top of the aerial photograph. The cereal crops have been harvested at this 

stage, and the remaining green areas are fields of sugar beet.

It can be seen that there are quite large variations in the soil brightness throughout 

the site, caused by differences in soil composition and drainage efficiency. To compensate as 

far as possible for any effect this variability may have on crop density and/or structure, as 

many samples as possible were taken fi*om within each field. Data were also collected from 

several fields during each visit to minimise the possibility of selecting an atypical field of 

any particular crop. The planned temporal sampling (a full set of complementary 

measurements every two weeks) was not achieved due to the inclemency of the weather 

during the growing season of 1997. This resulted in a lack of sampling between early May 

and early June.

3.1 Summary of data, collection methods and validation

The field data, collected on eight visits to the Barton Bendish field site between 

24̂  ̂ April and 6̂  ̂ August 1997, consist of measurements of a number of properties 

including:

Ground spectro-radiometric measurements.

Canopy coverage estimates.

LAI measurements.

Canopy height, and plant and row spacing.

3D plant structure, for BPMS modelling, characterisation of LAD. 

Airborne data (NERC ARS ATM, CASI data and aerial photography).
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Data collection methods are described in detail below, in addition to validation 

studies performed in order to provide confidence in the measured data. This is primarily a 

comparison of 3D barley and wheat canopies reconstructed from measured plant 

parameter data using the BPMS, with properties measured in the field such as LAI, LAD 

and BRDF. The ability to characterise the primary struetural properties (and the 

consequent radiometric behaviour) of the measured canopies within the BPMS is 

fundamental to this thesis. Much of the following work deals with analysis of BPMS- 

simulated canopy reflectance. Establishing agreement between reflectance behaviour 

simulated using measured plant parameters within the BPMS, and the reflectance 

behaviour of the real canopies, permits conclusions drawn from analysis of BPMS results 

to be applied to real data. The canopy structural data collected through manual 

measurement are first described, followed by various other measurements collected for 

validation of the BPMS data and for subsequent comparison with information derived 

from airborne data.

How the various sources of data described above are subsequently used within this thesis:

• 3D structural measurements', described in section 3.1.1, these measurements were 

used within BPMS/Ararat generate 3D scene representations of barley and wheat 

canopies. Values of pcanopy was simulated under realistie conditions (multiple 

scattering, direct and diffuse illumination) in order to compare with field- 

measured reflectance data. This provides independent validation of the 3D 

modelling approach (described in section 3.1.2). Subsequent simulations of Pcanopy 

are performed under the assumptions made in the formulation of the linear kernel- 

driven models (single scattering only, piea/= Veaf= 0.5, Lambertian soil) in order 

to investigate these assumptions (chapters 4, 5, and 6).

• Canopy structural measures: described in sections 3.1.2 and 3.1.3, properties sueh 

as LAI, %cover and canopy directional reflectance were measured directly in 

order to compare with values derived from canopies generated using the 3D 

struetural measurements within the BPMS.

• Airborne Thematic Mapper Data: deseribed briefly in section 3.1.5, these data are

used in ehapter 7 to test the kernel-driven approaeh to modelling spectral, 

directional reflectance (in particular, image of June 1997 is used).
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3.L I  Plant structural measurements

Plant and row spacing for each field were recorded along with the planting 

densities of the various crops i.e. the number of plants per m eter\ In addition, detailed 

descriptions of the topology and structure of individual plants were made for use within 

the BPMS. These measurement techniques are discussed in detail by Lewis and Muller 

(1990), Lewis and Disney (1997) and Lewis (1999). Typically five or six plants per field 

per date were measured. A set of ten measurements were made of each plant, with the 

'leaf subset of these measurements being made for every leaf of a plant. Brief details of 

the measurements are as follows:

For each tiller:

• tiller azimuth angle

• tiller zenith angle

For each stem section (emergent from ground, and between leaf nodes):

• stem length

• stem width 

For each leaf:

• lea f base zenith angle

• lea f tip zenith angle

• lea f length

• % lea f length to maximum width

• (maximum) lea f width

This does not take account o f  som e areas in the barley and w heat fields where the seed  drilling veh icle has 
crossed back on itse lf  leading to patches o f  doubly drilled crop. T hese areas are noticeably denser than the 
main body o f  the fields and were avoided for all measurements.
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Individual leaf angles (base, tip) and stem section angles were measured with a 

protractor to an estimated precision of 5°. Leaf length, maximum width and stem lengths 

were measured to an estimated precision of 1 mm. Figure 3.2 shows a measured barley 

plant. Sensitivity analysis was carried out to test whether simulated BRDF is sensitive to 

any particular BPMS measurement. The measured parameters were perturbed randomly 

according to a Gaussian distribution of specified mean and standard deviation and BRDF 

was simulated for each 'perturbed' canopy. Simulated BRDF was found to be more 

sensitive in shape to row and plant spacing than any of the individual structural 

measurements, and more sensitive in magnitude to the specified leaf and soil reflectance 

values. Figures 3.3 and 3.4 show simulated canopies using BPMS measurements.

stem zenith

leaf tip 
zenith angle

length to 

m axim um  
,  w idth

stem length

Figure 3.2 Wireframe representation of manually measured barley plant (13/5/97)
showing measured parameters.
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Figure 3.3 Simulated wheat canopy in early growth stage, Lambertian soil.

\

w » .

Figure 3.4 Simulated barley canopy (shortly prior to harvest) with 
Lambertian seed heads and soil properties modelled on observed soil spatial

statistics.
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3.1.2 Ground spectro-radiometric measurements

solar zenith 

angle, 0/ (assuming  
parallel rays)rotating boom

radiometer
head

view  
azimuth 

angle, (j>v

view  ze n im x  
angle, 0v (+ve)

shadow o f  boom and 
radiometer head

Figure 3.5 Viewing and illumination geometry of PS-II radiometer
measurements.

Measuring BRDF in the field is not trivial, largely because of variable 

atmospheric conditions and hence varying quantities of diffuse and direct illumination 

(Sandmeier and Itten, 1999). Other uncertainties are caused by the difficulty of 

determining precisely what the instrument IFOV is seeing, movement of crops due to 

wind, lack of a stable instrument base etc. Although no atmospheric scattering data were 

available during this field campaign (sun photometer measurements are now made at 

Barton Bendish to augment field measurements), measurements were recorded rapidly 

and repeated often to try and minimise the effects of changing atmospheric conditions. In 

addition, BRDF measurements were restricted to 'blue sky' days. However, these can be 

few and far between in a typical UK summer and 1997 transpired to be particularly wet. 

However, samples of directional reflectance were made with a boom-mounted ASD PS-II 

radiometer (www[3.I]) in the visible to NIR wavelength range (due to limitations in the 

instrument, effectively, 450-900 nm). Measurements were made at 10° intervals in view 

zenith (Oy) from -70° to +70° in both the principal and cross-principal solar planes^. The 

relative azimuth angle, (j), between Oy and the illumination zenith, 0„ is then 0° or 90° for

 ̂ N egative angles in this case imply measurements in the backscatter direction, and positive ones the 

specular direction.
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viewing in or across the principal plane. This viewing and illumination geometry is 

illustrated in figure 3.5. In addition to the target radiance measurements, near- 

simultaneous radiance measurements of a polythene (assumed) Lambertian reference 

panel were made. Reflectance is then calculated as the ratio of the target radiance to that 

of the reference panel (see equation 2.2). For each reference panel measurement, the so- 

called dark current response of the instrument was also recorded. This is a measurement 

of the signal recorded when no light is incident on the radiometer, caused by background 

(thermal) noise in the silicon detector. The dark current is subtracted from the measured 

radiance to provide an accurate measurement of target radiance. An example of measured 

barley BRDF is given in figure 3.6, along with reflectance simulated using the manually 

measured canopy structural parameters within the BPMS.

^ BPMS 
-Q m easured 850nm

0.68c
o0)
2

0.4

450nm
550nm0.2

0.0
-80 -60 -40 -20 0 20 40 60 80

view zenith angle (deg.) (sza = 34 deg.)

Figure 3.6 Measured and simulated canopy reflectance at four bands (barley field 

ba_l 19, 13/5/97, LAI = 3.89; and from laboratory measurements, p.ŝ v from field

measurements^).

Agreement between the modelled and measured reflectance data is reasonable at 

visible wavelengths (r“ > 0.7), but not so in the NIR (850nm) (r“ < 0.5). Whilst the

 ̂ Laboratory measurements provided by B. Hosgood from LOPEX data set (H osgood et al.. 1994); field 
measurements provided by E. J. Milton at NERC EPFS facility, Southampton, UK.
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directional variation of simulated refleetance may be reasonable, the magnitude is 

generally too low. This is a result of reflectance being simulated without multiple 

scattering (as discussed in section 2, the multiple scattered component of canopy 

reflectance tends to be isotropic, and will therefore increase the magnitude of simulated 

canopy reflectance without significantly changing the shape). In addition, the level of 

noise in the measurements can be seen. This is particularly obvious at nadir where three 

measurements were made, one at the start of the string of measurements, one in the 

middle and one at the end. The variability of these measurements (up to 10% reflectance) 

is caused largely by changes in atmospheric conditions during the measurement period, 

even on a 'blue sky' day with little or no cloud. This is a typical problem when performing 

field radiometric measurements and is discussed at the end of this chapter, as well as in 

chapter 8. Values of r  ̂ for linear regression of the measured against modelled reflectances 

are given in table 3.1.

Table 3.1 Values of r for comparison of measured to modelled reflectances.

values

canopy 450nm 550nm 650nm 850nm
ba_112 18/04 &82 0.84 &87 0.68
ba_119 13/05 0.94 0.95 &89 0.74

ba_112 04/06 0.90 0.96 0.95 0.80

ba 119 24/06 0.79 0.84 0.80 0.71

ww_109 23/03 0.78 0.80 0.78 0.64

ww 109 23/04 0.92 0.95 &89 0.83

The figures in table 3.1 demonstrate reasonable between the measured and 

modelled canopy reflectance values, however there is significant disagreement in a 

number of cases. The cases where agreement is not so good are likely to be due to the 

canopy being very sparse (LAI « 1 ) .  The agreement between the angular variation is 

higher than the spectral variation. Overall agreement between the BPMS and measured 

reflectance values is generally good in the visible but the variance of the NIR reflectance 

values is clear. The signal-to-noise ratio (SNR) of the detector in the region beyond 

900nm (SNR «5:1) is very much lower than in the visible part of the spectrum (SNR 

better than 20:1).
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Figure 3.7 Scatter of BPMS against measured Pcampy, barley 13̂  ̂May 1997.

3.1.3 Canopy coverage estimates

Nadir-pointing photographs were taken (from a height of Im above the ground) of 

the various canopies throughout their development. No photographs were taken during 

the later stages when the canopy heights exceed Im as there was total coverage in these 

cases. A series of canopy cover photographs showing the progression of cover in barley 

field 119 are shown in figure 3.8. The variability of local planting density (even in such a 

small region) is clear in the 13/̂  May image. The camera tripod is visible at the lower 

extent of the first two images.

Figure 3.8 Canopy cover photographs for barley canopy 119 (from 1 to r) on 18‘ 
April, 15“’ May and 24“’ June 1997.



Canopy cover was derived from the photographic data by estimating the 

proportion of visible soil per unit ground area (Disney et al., 1998). Only the central 

portion of each image was used to avoid image plane distortions caused by the relatively 

wide field of view (115°). RGB to HSI transformations were performed on the scanned 

images, which were then thresholded manually on hue. The mid-range hue values 

corresponded closely to soil, while the higher values corresponded to vegetation. This 

allows percent cover to be simply estimated. Values of % cover as estimated from the 

photography are presented in figure 3.9 in the form of a scatter plot with corresponding 

BPMS derived values. The error bars in figure 3.9 represent the variability of % cover 

estimates made from photography (one SO). For the barley, twenty eight separate %cover 

images were used from four dates; for wheat, ten images from two dates were used. The 

regression of all samples together shows reasonably high correlation, with a slight offset 

(overestimation) of around 10% in the values derived from photography. This is due to 

inaccuracy in the thresholding of the HSI-transformed photography. Relatively small 

changes in the value of the selected threshold cause significant changes in % cover. 

Conservative threshold values were chosen deliberately to make sure all vegetation was 

included.

100

Q .

gO)
2

8 r = 0.89

O  b a r l e y  
□  w h e a t20  -

0 20 40 60 80 100
% cover (BPMS)

Figure 3.9 %cover estimated from photography and BPMS simulations.
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3.1.4 LAI measurements

LAI measurements were made with a LI-COR LAI 2000 instrument, which works 

by comparing the intensity of (diffuse) incident illumination measured at the bottom of 

the canopy with that arriving at the top (LI-COR technical report; Welles and Norman, 

1990). Incident light is recorded over five concentric angular rings, each of approximately 

15° in width (giving a nearly hemispherical field of view). LAI is estimated by calculating 

the probability of a photon penetrating to a depth z in the canopy (under various 

assumptions regarding the arrangement and radiometric properties of scattering elements 

in the canopy), and comparing this with the measured radiance at the bottom of the 

canopy. The probability of non-interceptance at depth z within the canopy is described by 

Beer’s law (equation 2.20). The angular integral o f this property (over all zenith angles) is 

approximated as a weighted summation over the five concentric angular rings of the 

instrument.

The manufaeturer's recommendations were followed in deciding a measurement 

plan. One measurement was made at the top of the canopy followed by ten measurements 

at different locations below the canopy. This pattern was repeated three times per field, 

and the resulting thirty-three samples comprise one full set of measurements. 

Measurements were made following transects at an angle of between 30° and 45° to the 

row direction, and at intervals suitably spaced to avoid over or under-estimation of LAI 

caused by measuring at integer numbers of rows or inter-row gaps. Care was also taken 

with regard to the illumination conditions under which measurements were made. The 

instrument operates under the assumption that the canopy is illuminated by a diffuse 

source, and therefore should be shadowed from any direct sunlight. Due to the weather 

during the fieldwork campaign it was possible to make the majority of the measurements 

under diffuse conditions. On days with significant direct sunlight a 270° view cap was 

used to mask out both the operator and sun from the viewing hemisphere. Measurements 

were also made as late or early as possible in the day when penetration of the canopy by 

direct sunlight is minimised. Measured values of LAI for the barley and wheat canopies 

are plotted as a function o f day of year (doy) in figure 3.10. Also shown are estimates of 

LAI derived from BPMS canopies generated from the manually measured canopy 

structural data. These values are presented explicitly in table 3.2.
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Figure 3.10 Measured and modelled LAI for barley and wheat.

It can be seen that there is a wide spread o f  measured LAI values for some 

canopies during development, resulting in a relatively poor agreement between the 

measured and modelled values in some cases. The likeliest cause o f  this divergence is the 

intra-field variability o f  measured LAI: the coverage o f  the barley canopy of I3‘'' May 

(ba 119) varied from 10% to 70% across the field.

Table 3.2 Values o f  LAI derived from BPMS canopies.

canopy LA I
ba 112 18/04 0.70
ba 119 13/05 3.89

ba j  19 04/06 3.16

ba_l 19 24/06 3.19

ww 23/03 &09

ww 23/04 225
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3.1.5 Airborne data

A variety o f airborne data were collected by the NERC ARS aircraft over the 

Barton Bendish field site during the 1997 field campaign. Due to the weather, the dates 

on which data could be collected were not ideally spaced through the growing season (see 

below). In addition, atmospheric conditions were not ideal when airborne data could be 

obtained (clouds and/or haze). However, contemporaneous ground measurements of LAI 

and BRDF described above were made. The nature of the data collected by the NERC 

aircraft is as follows;

• Daedalus 1268 Airborne Thematic Mapper (ATM) data -  radiometer measurements in 

11 broadband channels in the visible/NIR, SWIR, and TIR. Parallel flight lines were 

flown over the scene to provide overlap which gives BRDF sampling in the central 

region of overlap due to the wide (70°) FOV of the sensor (Barnsley et a l, 1997a). 

The data were recorded at an altitude of 3000m giving a spatial resolution of around 

5m. Forty three flight lines were flown in total, on three dates: 5/6/97, 2/8/97 and 

6/8/97, each of which was accompanied by contemporaneous ground measurements 

of the properties described above. An ATM image of the field site is shown in figure 

3.11.

• Compact Airborne Spectrographic Imager (CASI) data - hyperspectral radiometer 

data, consisting of 288 channels in the visible/NIR, obtained concurrently with the 

ATM data. Forty two flight lines were flown in total, on the dates given above, with a 

spatial resolution of approximately 3 m.

• Colour aerial photography - obtained concurrently with the ATM and CASI data. The 

resolution of the photography is approximately 2m (see figure 3.1).
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Figure 3.11 NERC ATM image over 
Barton Bendish, 2/8/97.

3.2 Summary of field measurements and validation

The fieldwork described above was designed to provide information permitting 

validation of simulations of Pcanopy In particular, measurements of structural and 

radiometric canopy properties were designed for comparison with modelled properties 

derived from a full 3D (BPMS) structural model of the canopy. A number of general 

difficulties of conducting such fieldwork were encountered, in addition to specific 

problems caused largely by the weather conditions of summer 1997, which was an 

unusually wet summer.

In general, the BPMS estimates of canopy structural parameters agreed relatively 

well with the measured parameters. Given the inter- and intra-field variability of the crops 

agreement between measured and modelled values of %cover and LAI were generally 

good. Agreement of the measured and modelled values of canopy were not always so 

good but this is largely a function of the changing atmospheric conditions and the
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uncertainty of what is being viewed through the radiometer IFOV (to better characterise 

this variability, simulations should be performed using an equivalent size IFOV). Even a 

small wind can move the canopy enough to change this dramatically, particularly at low 

canopy LAI when soil can be very visible. Given these constraints, it was concluded that 

the BPMS characterisation of canopy structure was more than sufficient for the 

experimental work described in succeeding chapters.
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4 Exam ination o f volum etric and GO scattering behaviour

The basis of the linear kernel-driven BRDF models described in chapter 2 is the 

assumption that pcanopy can be described by a sum of one or two representative BRDF 

‘shapes’, each approximating the behaviour of a separate component of canopy 

reflectance. Studies have shown that certain (angular) features of canopy reflectance are 

common to many types of vegetation (Rimes, 1984; Walthall et a l ,  1985; Goel, 1988; 

Barnsley et a l,  1997b). Such features include the hotspot, increasing reflectance with 

view zenith angle (bowl shape) and the asymmetry of the bowl-shape caused by 

increased reflectance in the backscatter direction. In practice these features are modelled 

using a weighted sum of isotropic, volumetric and GO scattering components, each of 

which is a function of viewing and illumination geometry only (Wanner et a l,  1995). 

This was introduced in equation 2.27.

As described in section 2.5.4, the volumetric kernels are approximations to the 

solution of radiative transfer in a plane parallel homogenous medium (Ross, 1981; 

Wanner et a l,  1995). The GO kernels are derived from considering the proportions of 

sunlit and shadowed ground and canopy components from the illumination of spheroids 

randomly distributed on a Lambertian surface (Li and Strahler, 1986, 1990, 1992; Wanner 

et a l,  1995). In both cases a variety of approximations are made to the physically 

complete solutions to allow the kernels to be formulated as linear functions of viewing 

and illumination angles only. They can then be summed to describe the BRDF of 

arbitrary surfaces. Most importantly, they can be linearly scaled (spatially) and applied to 

heterogeneous surfaces at arbitrary resolution (ignoring adjacency effects), typically 100s 

of m to km-scale (Lucht et a l,  1999).

Linear kernel-driven BRDF models have been practically applied to airborne, 

spacebome and field-measured multi-angular reflectance data and have been shown to fit 

observed data well (Roujean et a l,  1992; Privette and Vermote, 1995; Hobson et a l, 

1999; Lewis et a l,  1999). In addition, such models have been inverted against reflectance 

data to produce model parameters estimates, which in turn have been used to derive 

integrated quantities such as surface albedo (Barnsley et a l ,  1997b; Disney et a l,  1997; 

Lewis et a l ,  1999; Strugnell and Lucht, 1999; Schaaf et a l ,  1999). There is ample 

evidence to suggest that the linear models are sufficiently flexible to describe the shapes 

of a variety of directional reflectance features. More recently, linear kernel-driven BRDF
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models are being used to produce the first global spatial albedo products from MODIS 

directional reflectance measurements have (Schaaf et a l,  1999, 2000a,b).

Given the approximations underlying the kernels it is perhaps surprising that the 

linear models are able to represent the form of surface reflectance so well. The kernels are 

severe simplifications of the physical solutions for volumetric and GO scattering from 

anisotropic surfaces, which are approximations in themselves. Further simplifications are 

needed in both cases to make the kernels linear functions of 0, and 0v only. Considering 

these various degrees of approximation, two questions regarding the modelling of 

scattered radiation by the linear kernel-driven BRDF models can be asked:

• How are kernel-driven models able to adequately describe complex

scattering from such a wide variety of surfaces, given their approximate

nature and the simplifications they contain?

• What biophysical information (if any) is contained within the linear

model parameters, and is it possible to extract and exploit such

information from model inversion against measured reflectance data?

These two questions form the basis of the work presented in this thesis. Linear 

models have been designed for use in processing global moderate resolution data sets 

because of their simplicity, linear scaling and rapid inversion properties. The application 

of linear models to process global MODIS data means it is now vitally important to 

understand both the limits of operation of the kernel-driven models and the information 

that may be accessible through their inversion.

This chapter presents results of experiments exploring the validity of modelling 

BRDF as a linear combination of volumetric and GO components. Chapter 5 presents 

further analysis of the information contained in the model parameters, and explores to 

what extent the kernels act independently. In chapter 6 knowledge gained from these 

experiments is applied to the development of a new linear kernel-driven model of BRDF 

with a spectral component. Chapter 7 proposes how improved kernel-driven models of 

BRDF might be applied to air- and space-borne data.
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4.1 Experimental method

In order to investigate how linear models are able to describe scattering from 

vegetation canopies, a method of examining the underlying scattering behaviour 

occurring within the canopy has been developed. Measured 3D plant parameter data 

(described in section 3.1.5) have been used within the BPMS to simulate the scattered 

radiation field of developing barley and winter wheat canopies. The BPMS permits 

scattered radiation to be analysed purely in terms of the controlling geometric factors 

such as the proportions of sunlit and shaded canopy and soil. Scattering behaviour can 

also be analysed independently of wavelength, which is essential if conclusions are to be 

drawn regarding the operation of the kernel-driven models: they are formulated purely as 

functions of viewing and illumination angle and not wavelength. Using the measured 3D 

plant data within the BPMS, an investigation of the scattering behaviour of the canopy 

under arbitrary viewing and illumination conditions can be carried out. Any assumptions 

made in the BRDF models under consideration can also be replicated, making it the ideal 

tool for benchmarking BRDF modelling techniques (Lewis, 1999).

The barley and wheat canopies were chosen because their properties differ 

sufficiently from those postulated in the formulation of the kernels so that they should 

provide a difficult test case for the linear models:

• They are row crops (azimuthal variability).

• They are not horizontally homogenous (clumping, and variable density).

• They do not have a uniform, spherical LAD.

• They do not exist over a Lambertian surface (non-Lambertian soil).

In addition to these factors, there are a number of other departures from the 

assumptions made in the linear models common to all canopies. Radiometric properties 

may differ from those assumed (e.g. pieaf ^  shadows within the canopy are not 

perfectly black (diffuse illumination will always be present); illuminated crown and 

ground regions are not likely to be equally bright. These canopies will provide a sterner 

test of the kernels' ability to describe BRDF than canopies which closely conform to the 

assumptions of the models. If the models can adequately describe the BRDF of the 

chosen canopy, then they are likely to work in less demanding cases, where less of the 

assumptions made in the linear models are violated. Information regarding (non canopy-
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specific) scattering behaviour derived from these canopies will be generally applieable. A 

secondary reason for selecting these crops is that agricultural canopies are of commercial 

and scientific interest to end-users attempting to derive biophysical parameter information 

from moderate resolution EO data (Lucht and Roujean, 2000).

Canopy reflectance generated using the ray tracing component of the BPMS 

software provides a full numerieal solution for scattering within a simulated canopy 

(referred to subsequently as BPMS, or BPMS-generated) (Lewis, 1999). It is used here as 

a ‘baseline case’ i.e. it is assumed to be the single scattered bidireetional reflectance of 

the measured canopy under given viewing and illumination eonditions, with the specified 

reflectance and transmittance behaviour of the canopy components. Results in chapter 3 

support this assumption, demonstrating that the BPMS simulations using measured plant 

data are eapable of accurately representing the observed features of the field-measured 

canopy reflectance, at the correct (angular) magnitudes. Derived structural parameters 

sueh as LAI, % cover and joint gap probability also agree within experimental limits 

(given the variability of measured values), although there is significant variability.

Recalling section 2.5.4, the assumption underpinning the linear kernel-driven 

BRDF models is that canopy reflectance may in general be considered as a linear 

superposition of volumetric and GO scattering components (Roujean et a l ,  1992; Wanner 

et a l,  1995). The assumptions are made that = kx;)̂  for eanopy elements (k is constant, 

unity in this case), and that only single seattering interactions are considered. It follows 

that canopy reflectance, Pcanopy, can be expressed simply as a linear sum of the scattering 

from the canopy and soil respectively i.e.

Pcanopy ~~ P le a f ^  P so il P

If equation 4.1 is compared with equation 2.27 (ignoring the isotropic term for the 

present) then, as a result o f the single scattering assumption (i.e. so il^ le a f  and leaf-^soil 

scattering events are precluded) the p/ea/x term must represent the volume scattering 

component of pcanopy, and the p̂ o//P term must represent the GO component. The volume 

scattering component, a , must originate purely from the vegetation elements within 

the canopy (and is therefore related to LAI) as there can be no leaf—>soil interaction; 

similarly, the GO component must originate purely from the soil. If this is the case, then (3
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is simply the proportion of sunlit soil visible to the viewer, and is hence a function of 0, 

and Gv (as well as the inherent LAI and LAD of the canopy). These two components of 

Ç>cLwoin’ are illustrated in figure 4.1 which shows two nadir simulated images of a barley 

canopy in early stages of growth. In the left image pieaf^ L x/eY// = 0 and psou = 0 i.e. white 

areas correspond to sunlit vegetation and blaek areas to sunlit soil. In the right image 

= 0 and p,vo;7 = I i.e. blaek areas eorrespond to vegetation and white to soil.

Figure 4.1 Components of Pccnopy- left image p^,/ = 1, Tieaj = psau = 0 (volume 
seattering); right image p&,„/= =0, psoU= 1 (GO scattering).

Recalling the form of the volume seattering kernels (2.5.4.1.1) the volume 

scattering eomponent of canopy reflectance is given as (c.f. equation 2.23):

1 -  e 4.2

P(0„ 0v, ())) is the single scattering phase function, LAI is the leaf area index, G’ and G 

are the leaf projeetion functions in the viewing and illumination directions, and p and p ’ 

are the cosines of 0, and 0y respectively. Note that both a  and P are funetions purely of 

viewing and illumination angle (and row azimuth in the case of row crops). As a result, 

any investigation of these parameters will be independent of wavelength. This is highly 

desirable for examining the operation of the linear kernel-driven (angular) models due to 

their reliance on purely geometric terms. Any eonclusions that can be drawn will be 

solely eoneerned with geometric dependencies and not spectral ones.
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4.2 Exploring the hypotheses behind the linear models

The linear kernel-driven approach to modelling BRDF is based on two 

fundamental and linked hypotheses, the first of which shall be examined in detail in the 

subsequent sections of this chapter, and the second in chapter 5:

1. Canopy reflectance can be modelled as a linear combination of volumetric 

and GO scattering components.

2. The volumetric component of pcanopy is adequately modelled by the volume 

scattering kernel alone and similarly, the GO component is adequately 

modelled by the GO kernel.

All other properties of the linear models are reliant on the validity of these two 

hypotheses. If either proves unreliable then it can be concluded that the linear kernel- 

driven approach to modelling pcanopy may need to be reconsidered. By testing them it is 

possible to demonstrate whether (and how) the linear models are capable of modelling a 

variety of different canopy types and surfaces. In addition it is hoped that the limits of 

their operation can be explored and extended. As noted previously, the kernels are 

designed to operate on heterogeneous surfaces at moderate resolution. In order to explore 

the scattering processes within canopies in detail however, we consider homogeneous 

surfaces at high resolution (cm).

4.2.1 Pcanopy ds Ü Umar combination o f volumetric and GO scattering

The initial part of this experiment is designed to test hypothesis 1 above -  namely 

that Pcanopy Can be satisfactorily modelled as a linear combination o f volumetric and GO 

scattered components. That is, can the two components be linearly related to the (purely 

geometric) terms governing the scattering from the vegetation and soil i.e. a  and p in 

equation 4.1? If the assumption of linearity is valid, it is vital to know under what 

conditions this assumption will hold and where it is likely to break down.

In order to test the hypothesis, BRFs were generated using measured plant 

parameter data characterising the 3D structure of barley (four dates) and winter wheat
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(two dates). The structural data measurements described in detail in chapter 3. Values of 

LAI and % cover are given for the various canopies in table 4.1 and simulated views of 

each canopy are shown in figures 4.2a-f.

Table 4.1 Details of the canopies used in simulations

) Canopy Date LAI i  % cover
1 barley 1 18'*’ April 0.56 i  15.1

barley : 13* M ay 3.44 1 663
barley i  4*  June 3 .14 6 2 9
barley i 24*  June ( 3.15 6&9

winter wheat ! 23"  ̂M arch i 0 .08 ; 3.4

winter wheat ; 23"" April i 2.03 : 2 5 3

The simulated canopies shown in figure 4.2 are (arbitrarily) pictured as Im 

patches. Much larger areas are used for subsequent experimentation, with only small 

central sub-regions of each canopy being viewed in order to avoid 'edge effects' (see 

below). Such errors are caused by the divergence of the canopy from the assumption of 

infinite horizontal extent. During simulation, rays escaping the scene from beyond the 

horizontal extent of the canopy will lead to inconsistencies in the integration of exitant 

scene radiation. Additionally, if  the modelled canopy is the same area as the area being 

viewed, some plant organs may extend beyond the edge of the scene leading to the 

possibility that there may be non-integer numbers of plants in a given area. It should be 

noted that the canopies in figure 4.3 are simulated over a non-Lambertian soil surface 

based on observed soil properties. The soil brightness characteristics have been modelled 

on the observed semivariance of soil properties extracted from photographs from the 

respective canopies. The height variation o f the soil (due to the ploughing and drilling) is 

modelled using a sine function with the wavelength and amplitude determined from 

observed soil roughness characteristics. Small amplitude Gaussian noise has been added 

to the sine function to simulate small-scale surface roughness variations. In subsequent 

simulations used in this chapter and chapters 5 and 6, the soil is a simple Lambertian 

surface (as is assumed in the linear kernel-driven modelling approach).
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b) barley -  13 Maya) barley -  18 April

c) barley -  4 June d) barley - 24 June

e) wheat -  24 March f) wheat -  24 April

Figure 4.2 Simulated images of measured barley and wheat canopies.
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The viewed area of each canopy is designed to contain an integer number of rows 

(seven) resulting in a viewed area of 0.49m on a side (row spacing is 7 cm). The 

horizontal extent of the canopy, /, is chosen to be 0.49m plus twice the ground projection 

of the tallest part of the canopy (h) at an angle greater than the maximum By to be used. In 

order to be safe, By (max) of 7B® is assumed even though in subsequent experiments By 

never exceeds 60° Therefore / = 0.49 + 2htanBy = 0.49 + 5.5h. This ensures the modelled 

canopy extends sufficiently either side of the viewed area to eliminate edge effects, even 

at extreme By. For example, the barley canopy of 13“’ May has hmax = 0.38m giving / = 

0.49 + 2(1.04) i.e. the canopy is extended to 1.04m on either side of the 0.49m central 

patch, giving a canopy of 2.57m on a side. Orthographic viewing projection is used to 

enforce parallel ray geometry. This ensures that the same area of surface is viewed 

regardless of By. As a result, the linear dimensions of off nadir scenes increase (relative to 

nadir) to ensure the same area is included in the simulation. This configuration is 

illustrated in figure 4.3.

illumination

viewer

2.75h viewed area, 0.49m 2.75h

Figure 4.3 Viewing and illumination geometry and canopy extent for simulations.
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BRFs were simulated in the manner described above under the explicit 

assumptions of the linear models (see section 2.5.4) i.e.:

single scattering interactions only 

bi-Lambertian leaf reflectance 

Pleaf= T/ea/(values: 0.5 or 0) 

psoil is Lambertian (values: 0 or 1) 

direct illumination only

Directional reflectance was simulated in the solar principal plane at 0v from -60° 

to 60° in steps of 10°, except within the 10° interval centred on the hotspot, where 

sampling was increased to every 2°. The row azimuth angle ((t)row) of the crop was fixed at 

angles of 0°, 45°, and 90° to the viewing plane, in order to provide the most extreme cases 

for analysis. This is likely to affect canopies with noticeable gaps between rows e.g. 

young crops. As <̂row increases shadowing will shift from along to across the rows. Figure 

4.4 shows an example of simulated directional reflectance of the 13‘̂  May barley canopy 

(0, = (j)roH’ = 0°). The transition of dark to light with increasing view zenith is quite clear, 

including the bright hotspot image at nadir (differing aspect ratios are caused by the 

orthographic projection). Three wavebands are simulated: 450, 500 and 650nm, with 

corresponding piea/^ 0.062, 0.093 and 0.068; xiea/ = 0; psou = 0.123, 0.118 and 0.132.

Figure 4.4 Simulated barley reflectance, Ov from -50° to 0° (left to right, top to bottom).

If there is a linear relation between the volumetric and GO components of canopy 

reflectance and the volumetric and GO kernels, kvoi and kco, then comparing equation 4.1 

with the general linear model form of equation 2.27, kyoi must be proportional to a  and
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kco must be proportional to p. In this case, it can be said for BPMS-simulated canopy 

reflectance that (under these specific conditions):

+ 4.3

^GO ~ ^GoP ^GO 4.4

where Uvo/, bvo/, ^go, ^go are constants. Following equation 4.1 the simulated canopy 

reflectance can be divided into separate volumetric and GO scattering components 

(scattering from vegetation and soil only) to give values of a  and p. If hypothesis I is 

valid then a  and kvo/, and p and kco should be linearly related. Slopes of regressions of 

these parameters will yield avo/ and bvo/, and the intercepts, a^o, bco- The following 

section presents results of the BPMS simulations pcanopy Results are also presented from 

regressing the volume and GO scattering components of the BPMS-simulated Pcanopy (ct 

and p) against the values of kvo/ and k^o for the same viewing and illumination 

conditions.

4.2,2 Volumetric and GO components o f pcanopy

The shapes o f the volume and GO scattering components of Pcanopy for the barley 

and wheat canopies are presented here and discussed in section 4.2.3. Results of the 

regressions of a  and P against kvo/ and kco, along with discussion of these results, are 

presented in section 4.3.

Figure 4.5 shows the variation of the BPMS-derived volumetric parameter, or 

leaf-scattered component of simulated reflectance {a  from equation 4.2) as a function of 

view zenith angle for four dates throughout the development of the barley (4.5 a-d) and 

wheat crops (4.5 e-f). Results are shown for 0v (0°, 30°, 60°) and for ^row (0°, 45°, 90°). 

Figure 4.6 a-f shows the variation of the BPMS-derived GO parameter of the various 

canopies (P from equation 4.1), the soil-scattered component, under the same viewing and 

illumination conditions (NB note the changes of scale that occur between each of the 

figures a-f).
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Figure 4.5 Variation with view zenith angle o f  BPMS-derived volumetric
component o f  barley and wheat canopy reflectance for six dates.

O-----O row azimuth 0
G-----El row azimuth 45
* ----- *  row azimuth 90

6.0

solar zenith 60 degrees

4.0
<D solar zenith 30 degreesE
2
CD
CL

C/5

2.0

2
0_
CD

0.0
solar zenith 0 degrees

-2.0
-80 -60 -40 -20 0 20 40 60 80

view zenith angle (deg.)

a) barley -  18"’ April

view zenith angle  (deg.)

24.0
-O row azimuth 0 
- 0  row azimuth 45 
-*  row azimuth 90

20.0

_Q.

a  16.0 
0)
I& 12.0

solar zenith 60 degrees

solar zenith 30 degrees
o>

CO

solar zenith 0 degrees0_
CD

0.0
-80 -60 -40 -20 0 20 40 60 80

b) barley -  13'’ May

107



30.0

G-----O row azimuth 0
Q----- □ row azimuth 45
*------^  row azimuth 9026 0

22.0
a.ro solar zenith 60 degrees

E
2

18.0

solar zenith 30 degrees
Q.

14.0

& 10 0
solar zenith 0 degrees

6.0

2.0
-80 -60 -40 -20 0 20 40 60 80

view zenith angle (deg.)

c) barley - June

2.0

view zenith angle (deg.)

G-----0  row azimuth 0
Q-O row azimuth 45
*------* row azimuth 90

mz:
CLro

solar zenith 60 degrees

0
03
E
2

solar zenith 30 degrees

CL solar zenith 0 degrees

CL00
0.4

0.0
-80 -60 -40 -20 20 40 80

d) barley -  24*' June

108



14.0

solar zenith 30 degrees

solar zenith 0 degrees

13.0
x:
Q.03
03
CD
E
E 12.0
CDCL
O>

C/) solar zenith 60 degrees

0_00
G O row azimuth 0
Q □ row azimuth 45
*—  -* row azimuth 90

60-20 0 20 
view zenith angle (deg.

-80 -60 -40

e) wheat - 2 3 ^  March

12.0 Q----- O row azimuth 0
□----- 0  row azimuth 45
* ------* row azimuth 90

solar zenith 0 degrees

10.0
03
Q .03
03
CD
E
E
CDCl 6.0

solar zenith 30 degrees2
CL00

4.0

solar zenith 60 degrees2.0

0.0
40 60-80 -60 -40 -20 0 20 

view zenith angle (deg.

0  wheat - 23' April

109



Figure 4.6 Variation with view zenith angle o f  BP MS-derived GO component
of barley and wheat canopy reflectance for six dates.
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4.2.3 Discussion o f directional shapes and magnitudes o f a  and p

4.2.3.1 Volumetric component o f pcanopyy ol

Figure 4.5 shows the volumetric component of BPMS-simulated pcampy to have (in 

general) an asymmetric, upward bowl-shape in the case of the barley canopy ipbarky)- 

Reflectance tends to be low (minimum) at nadir or in the forward scattering direction, and 

increases in the backscatter direction (increasing 0v) with a sharp peak in the hotspot 

direction, a^heat is much flatter in comparison, showing a downward bowl-shape for all 0/, 

again with a sharp hotspot peak, a^heat decreases between the 23^ March and 23^ April 

and the shape changes from a peaked downward bowl shape for 0 , = 0° to a flat, almost 

upward bowl shape for 0, = 60°. Variation with row azimuth ((j)row) is negligible in both 

cases because the row and plant spacing are almost interchangeable (7cm and 5cm 

respectively).

Differences in the amount of vegetation account for differences in shape between 

abariey and a^heat- hi the wheat canopy of 23^ March there is virtually no vegetation 

present (LAI = 0.08, see figure 4.2e) and hence little vegetation scattering. In this case 

Pcanopy is simply determined by the amount of sunlit soil. The barley canopy of 18̂  ̂April 

by contrast, has significant vegetation. Plots of the proportional contribution of the sunlit 

canopy components to scene reflectance for each canopy, shown in figure 4.7, support 

this. In each case, the fractional contribution of each scene component for each Pcanopy 

simulation (sunlit leaf, sunlit soil) is plotted with varying view zenith angle. Shadowed 

canopy components are not shown as they do not contribute to scene reflectance (no 

diffuse component of illumination, .'. shadows are perfectly black), pcanopy will in this case 

be a combination of sunlit leaf and soil only, so the proportion^„„//,/eo/= 1 - proportion, 

soil (and vice versa). For comparison, the scene contributions from simulations of the same 

canopies but including diffuse illumination (i.e. shadowed components are non-zero) are 

given in Appendix 2. Recall that in each case, two ’synthetic' wavebands are simulated, 

the first in which piea/= T îea/̂  0.5 and psou = 0 i.e. in this case all signal is (by definition) 

single scattering from vegetation only; the second waveband has pieaf = 'iieaf = 0 and p.,0,7 

= 1 i.e. in this case all signal is (by definition) single scattering from soil only. Sunlit soil 

is the dominant scene component in both low LAI cases (figure 4.7a and e) and the 

behaviour of a  reflects this. For wheat, sunlit soil represents greater than 85% of the total 

reflectance at all 0v,,. As the canopy develops, sunlit soil becomes prevalent.
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Figure 4.7 Proportional contribution of sunlit scene components to total scene 
reflectance, for barley (four dates) and wheat (two dates).
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A further difference between the crops which affects a  is that in the early stages 

o f  growth the wheat canopy is quite strongly erectophile, which can cause dramatic 

variations in observed retleetanee behaviour depending on 0, and 0^ (Kimes, 1984; Goel, 

1992). In an erectophile canopy, the LAD is biased towards higher leaf inclination angles 

(towards the vertical) so that visible vegetation is at a minimum closer to 0,, = 0° and 

increases relatively rapidly with 0y, while for the visible soil component, the converse 

applies. The cumulative LADs o f  the various canopies are shown in figure 4.8.
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Figure 4.8 Cumulative LAD for four barley and two wheat canopies.

Figure 4.8 shows that the canopies all depart significantly from the assumption o f  

a spherical LAD made in the formulation o f  the Ross kernels (section 2.5.4.1.1). The 

canopies generally tend towards an erectophile LAD i.e. the cumulative frequency 

distributions rise more slowly than the spherical ease to begin with, then much more 

shaiply at higher angles as more leaves are found with relatively high inclination angle. 

This is true to a greater or lesser extent for all canopies, but particularly wheat. Following 

the initial growth stages the wheat canopy becomes much more strongly erectophile than 

the barley. Although the modal LAD for both these canopies lies in the 85-90° range, the 

increase in frequency from the penultimate 80-85° range is 50% for wheat, and only 14%
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for barley. Additionally, the mean LAD of the wheat canopy is 79.3° and 66.5° for the 

barley. The barley canopy of 24^  ̂ June is closer to the spherical distribution than the 

others and also has far more leaves with lower inclination angles than any of the other 

distributions. However the structure of this canopy is strongly influenced by the seed 

heads, which cause the stems to 'bend down' under gravity (this can be seen in the 

photographs of figure 3.8). This canopy is also the most prone to permanent bending by 

prevailing winds - as a result of the seed heads again.

It is worthwhile to compare the canopy LADs with a theoretical distribution used 

in models of Pcanopy such as that of Bunnik (1978). Bunnik's approximation to LAD is a 

geometrical function with four parameters which can be varied to produce a range of 

desired distributions. Figure 4.9 shows the variation of Bunnik's theoretical LAD for five 

cases, erectophile (predominantly upright), extremophile (predominantly either erect or 

flat), plagiophile (predominantly mid-range), planophile (predominantly flat), spherical 

(all angles equally likely). Clearly, the barley and wheat canopies used here are closer to 

the erectophile LAD than any other. This is demonstrated in the correlation of measured 

canopy LAD values with Bunnik's LAD functions shown in figure 4.10. All canopies are 

relatively highly correlated with the erectophile distribution, except the 23^ April wheat 

canopy which has the lowest correlation with all LADs. The 24‘̂  June barley canopy does 

not follow the trends of the other canopies being nearly equally correlated with the 

erectophile, plagiophile and spherical distributions. This is a function of the change in 

canopy structure as it begins to senesce. Clearly, none of the canopies is planophile. The 

departure of the various canopies from the assumptions of a spherical LAD will tend to 

cause the scattering components of reflectance a  and p, to depart from agreement with 

their respective kernels and k^oi and k^o- This is also likely to have consequences for the 

separability of scattering components.
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It is also instructive to examine the leaf projection functions G(Q) (equation 2.21) 

and phase functions of the various barley and wheat canopies. Recall that G(Q) describes 

the total fraction of leaf area (per unit volume of canopy) projected into the viewing 

direction, Q. Figure 4.11 shows G(Q) for the various canopies for which the LAD are 

given in figure 4.8. G(Q) is shown for -90" <= Q <= 90".
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Figure 4.11 Leaf projection function G(Q) in viewing direction Q(0,., ()),,)•

Figure 4.11 shows the departure from the spherical LAD assumption of the 

various canopies, particularly the wheat canopy of 23^ April. The closest to the spherical 

LAD is the barley canopy of 18 ’̂ April, for which G(Q) varies from just below to just 

above 0.5. The largest departure is seen in the wheat canopy of 23^ April, which has 

G(Q) varying from 0.55 at 0,, = ±90", down to 0.2 at nadir. This highlights the more 

erectophile nature of the canopy. Phase function is more directly a measure of canopy 

structure, describing as it does the angular distribution of scattering from the illumination 

direction Q ’ into the viewing direction, Q, at each photon interaction. Figure 4.12 shows 

the variation of the phase function with view angle for the six barley and wheat canopies, 

for nadir illumination. Phase function varies with view angle with the wheat canopy of
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23^ April having the lowest values and the barley canopy o f  24"' June having the highest 

values (and being most variable).

0.5

barley 24/6/97
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Figure 4.12 Phase function, for 0, = 0°.

Returning to the various canopy scattering components, for the barley canopies of 

18"' April and 13"' May (figures 4.5a and b), increases by a factor o f  four as 0,

increases from 0° to 60° at the forward scattering extreme (0y = 60°) where the variation is 

greatest. This increase o f  aiuwiev with increasing 0,, is even more pronounced in the 

developed canopies o f  figures 4.5c and d, with ahaHev increasing by a factor o f  between 8 

and 10 at 0,. = 60°. This behaviour is caused by more vegetation being visible at extreme 

angles, as seen in figures 4.7b to f. Proportions of  sunlit leaf increase with 0,,, with a 

corresponding reduction in sunlit soil. The shadowed leaf component also increases with 

0,. but does not contribute in any way to scene reflectance. The magnitudes o f  â vheut are 

similar to ahaHev for canopies most closely corresponding in terms o f  LAI (18"' April and 

13"' May). However the variation in magnitude o f  â Hieat with 0,, in the 23^ March case is 

much smaller than for barley. Values of a,meat lie between 11 and 13 for all 0,., 0„ (j),,,,,'. 

ahaHev ranges between 0 and 8 and shows large variation with 0,., 0„ whilst for the 23'" 

April case, amieat varies between 0 and 12 depending on 0,,, 0,. The contrast in behaviour
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of a^heat between the 23  ̂ March (where the LAD resembles that of the 18‘ April barley 

canopy) to the 23^ April is again likely to be due to the increasingly erectophile LAD.

A feature of abariey in particular (and a^heat to some extent) is the asymmetry about 

6v = 0° and the variation with 0/. This is easily explained by considering the proportions of 

sunlit leaf in figure 4.7. By definition, a  represents the component of ç>canopy originating 

from sunlit vegetation. The proportions o f sunlit leaf in figure 4.7 are increasingly 

asymmetric about 0v = 0°, rising rapidly in the backscatter direction. This explains the 

behaviour of a . In addition, varying 0/ will cause very different amounts of vegetation to 

be visible, leading to the variations in a  with 0,.

The trends in magnitude of abariey and â ĥeat indicate that a  is directly related to 

scattering from vegetation. Figure 4.5a shows abariey varying from just above zero at nadir 

to almost 8 at 0v = 60° for the 18̂  ̂ April, abariey rises to between 2-20 for 13̂ "̂  May, 3-28 

for 4̂  ̂ June and then falls sharply back to below 2 for the 24̂  ̂ June at which point the 

barley has senesced prior to harvest. From this evidence it is clear that a  is related to the 

quantity of vegetation present in the simulated canopies. The March 23^ (wheat) and 

April 18̂ *̂  (barley) canopies are characterised as a sparse arrangement of small plants with 

few tillers and leaves (figures 4.2a and e). Both crops rapidly develop into tall, densely 

packed canopies with almost complete coverage. The latter stages much more closely 

approximate the canopy envisioned in the formulation of the volumetric kernels, and 

reflectance from such a canopy can reasonably be expected to be dominated by the 

volumetric component. In addition, it is clear from equation 4.2 that the maximum in a  

will be when the term approaches zero i.e. when LAI becomes large, in which case a  

tends to

AGjuju

A clear feature of the variation of a  in figure 4.5 is the increasing prominence of 

the peak in the backscatter direction at the point where the viewing and solar zenith 

angles are equal i.e. in the hotspot direction. This peak, caused by a maximum in the 

amount of visible sunlit scene components (and a corresponding minimum of visible 

shadow), is barely apparent in figure 4.5a as the canopy is very sparse. There is a lot of 

visible sunlit soil and very little shadowing, even at widely differing view and solar zenith 

angles. As can be seen in figure 4.7 (a and e) the scene reflectance of the 18̂ "̂  April barley
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and the 23'̂  ̂ March wheat canopies are dominated by the amount of sunlit soil present, 

with shadowed soil and sunlit leaf having similar, much lower proportions. In the 

extremely sparse wheat canopy of 23^ March the sunlit soil component has a maximum 

of 0.95 and never falls below 0.8, meaning that the remaining components (sunlit or 

shadowed) are virtually negligible.

4.2.3.2 GO Component o f pcanopy, P

The behaviour of the GO component o f BPMS-simulated reflectance (p) shown in 

figures 4.6a-f contrasts with that of a. Abariey is initially an inverted bowl-shape (18^ 

April, figure 4.6a), with a maximum at nadir and decreasing away from this point with 

increasing 0v, but becomes slightly peaked at nadir as the canopy develops, b̂arley has a 

maximum of approximately 0.8 at nadir viewing in the 18*̂  April canopy and a minimum 

of 0.6 at 0v = 60°. The nadir maximum falls to 0.35 by the 13**’ May, and falls further to 

between 0.1 and 0.2 in the most developed canopies of 4**’ and 24**’ June. For the 23^ 

March, ^wheat varies from 0.97 at nadir to 0.9 at 0^ = 60° and for the 23*** April ^^heat falls 

almost linearly from 0.8 at nadir to 0.05 at 6  ̂= 60°. \!>wheat displays similar trends to \Sbarky, 

with close agreement in shape between ^wheat of 23*** March and Abariey 18*** April, and 

^wheat of 23*** April and b̂arley 13**’ May. ^̂ vheat has a larger range of variation in each case. 

The ^wheat and ^barhy values of these dates are in much closer agreement than the 

corresponding abariey and â vheat- These trends (particularly the general downward bowl) 

are to be expected given that p is the proportion o f sunlit soil visible to the viewer. From 

figure 4.6 it can be seen that in all cases the amount of sunlit soil reduces with increasing 

Ov almost symmetrically about Oy = 0° as more sunlit vegetation and shadowed 

soil/vegetation becomes visible. The exception to this is around the hotspot where 

shadowing is at a minimum. The magnitude of p in all cases is also directly comparable 

to the proportions of sunlit soil in figure 4.7. An unexpected result is the absence of a 

strongly peaked hotspot feature in p, as might be expected. However, this feature is 

clearly seen in the behaviour of the volumetric component a  (where it is not expected), 

suggesting that a  contains elements of behaviour that would only be expected for p. 

Possible reasons for this behaviour are posited below.
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The transition in ^wheat from the smooth downward bowl of 23^ Mareh to the 

more sharply peaked case of 23"̂  ̂ April (seen to an extent in the barley canopy of 13̂  ̂

May) is explained by the much more erectophile LAD of the wheat canopy (particularly 

for the 23^ April canopy). In this case sunlit soil will tend to be at a maximum at nadir, 

dropping off sharply with increasing 0v as the predominantly vertical leaves obscure the 

soil from view. In contrast, the barley canopy shows a more gradual reduction of sunlit 

soil with increasing 0v away from nadir as a result of the less erectophile LAD.

The variations in magnitude of a  and P (particularly those of a ) support 

hypothesis 1 above (section 4.2), namely that pcanopy can be separated into volumetric and 

GO components. If this is the ease, a  would be expected to be low in comparison to p 

when the canopy is sparse, with Pcanopy dominated by the GO component of reflectance. In 

addition a  might be expected to increase as the canopy develops to more closely resemble 

the plane parallel homogeneous medium approximated by the volumetric kernels, with a 

corresponding reduction in the GO component, p. This is precisely the trend observed. 

Results also show that there is a continuum of volumetric and GO scattering at all stages 

of growth. GO scattering is prominent at early growth stages when relatively large areas 

of sunlit soil are visible, with volumetric scattering taking over as the canopy coverage 

increases from sparse to dense. The fact that there appears to be elements of both 

volumetric and GO scattering implies that although it may be reasonable to assume two 

independent components of Pcanopy, they are never likely to be perfectly separable. In 

particular, the behaviour of p (lack of a hotspot) suggests that the canopies used here 

depart significantly from the assumptions made in the formulation of the GO kernels. In 

particular, the assumption of independent scattering crown "envelopes" is not valid.

It is important to note that the semi-empirical kernels were originally formulated 

based on the idea that the reflectance of heterogeneous scenes observed at moderate 

resolution could be characterised by proportions of scattering dominated by volumetric 

and GO scattering respectively (Wanner et a l ,  1997). These separate scattering 

components are considered to originate from separate patches within the scene, each 

contributing to the overall scene reflectance, pcanopy considered at high resolution will 

have volumetric and GO scattering components present, although not quite as envisaged 

above. In the experiments presented in this thesis, the scattering from the canopy is being 

considered as a sum of volumetric and GO scattering components originating from within 

the same area of canopy. If the kernels cannot describe this case, then problems will arise
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at lower resolution simply because vegetation canopies are not typically homogeneous. At 

these scales there will be volumetric and GO components of pcanopy originating from 

within the IFOV of a given sensor.

4.3 Conclusion

Values of pcanopy for barley and wheat canopies at various stages of growth were 

simulated from measured canopy structural properties and field-measured soil and 

vegetation reflectance data. Simulations were carried out over a wide range of viewing 

and illumination configurations, under the assumptions made in the linear kernel-driven 

BRDF models {pieaf = '^kaf\ Lambertian soil, direct illumination and single scattering 

only). Volumetric and GO components of simulated Pcanopy were examined to see whether 

they can be treated as separate components as postulated in the formulation of linear, 

kernel-driven BRDF models. The trends in the magnitude of the volumetric and GO 

components of pcanopy were as expected (other than the lack of a hotspot in the p and the 

presence of one in a):

■ The volumetric component increased with LAI as the canopy developed, with the GO 

component reducing correspondingly.

■ The variation of the volumetric component with 8y was an asymmetric, upward bowl 

shape, with a peak in the hotspot direction and large variation with 0,.

■ The GO component (dictated by the proportion of sunlit soil in this case) displayed a 

downward bowl-shape, symmetric about nadir, varying little with 0„ but without the 

expected hotspot.

The GO component of Pcanopy is related to the proportion of visible sunlit soil in 

each scene and the shapes and magnitudes o f p tend to support this. In contrast to a , p has 

a downward bowl-shape and is generally symmetric about nadir, with a maximum in the 

hotspot direction. It is important to note that the sharp hotspot peak that would be 

expected if  p were directly equated with sunlit and shaded soil components envisioned in 

the formulation of the GO kernels is not present. This is a result o f the fact that Pcanopy was 

simulated using a canopy that departs very significantly from the assumptions made in the 

GO kernels described in section 2.5.4.1.2. In the formulation, the canopy is considered as
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a collection o f 'spheroids-on-sticks' (see figure 2.10) and is modelled as a function of 

sunlit and shaded scene components. In the simulations presented above (and in 

subsequent analysis), shadows are perfectly black (no diffuse component of illumination) 

so the shadowed scene components contribute nothing to reflectance. In addition, the 

scattering objects in the scene are of a quite different shape and distribution from those 

shown in figure 2.10, with a much finer spatial scale and distribution within the canopy. 

These factors combine to prevent the appearance of the hotspot that would be expected if 

the canopy were composed of large, well-defined solid geometric objects envisaged in the 

formulation of the GO kernels. In fact, both the barley and wheat canopies resemble the 

configuration envisioned in the volumetric scattering kernels (see 2.5.4.1.1) far more 

closely than they do the GO scattering configuration (see 2.5.4.1.2) This would explain 

why the angular behaviour of (3 is not quite as expected.

Differences between Abariey and ^wheat can be explained by differences in the LAD 

of the two canopies throughout their development: barley more closely approximates the 

spherical LAD assumed in the linear models; the measured wheat canopy has a more 

erectophile LAD, particularly for the 23^ April. The observed magnitude and behaviour 

of a  and p during the various stages of canopy development are strong evidence that 

Pcanopy Can be split into volumetric and GO scattering components and that the 

information contained in each is largely independent of the other. However, results also 

show that even in canopies with very little vegetation there is a scattering component of 

reflectance that closely resembles the modelled volumetric component. Similarly, even 

canopies that have almost total coverage (i.e. virtually zero sunlit soil) a component of 

GO-like scattering remains. This indicates that although the two components may be 

generally separable in many cases, the extent to which this is true will depend closely on 

the nature of the canopy being studied. This implies the kernels need to be applied with 

care when the nature of the vegetation in the scene departs dramatically from that 

envisioned in the kernels (in particular mixed regions of clumped and well-distributed 

vegetation such as widely spaced trees with a grass understorey).

The next stage is to examine the relationship between the volumetric and GO 

scattering components of pcanopy and the respective volumetric and GO scattering kernels, 

kvo/ and kco- The ability of the angular kernels to describe the respective scattering 

components is explored in chapter 5.
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5 Canopy scattering and the linear model param eters

It has been established that the volumetric and GO scattering components of 

Pcanopy Can largely be separated from each other on the basis of their angular behaviour. In 

addition, the respective scattering components can be related to the respective canopy 

elements from where they originate. The volumetric component, a , is related to the 

proportion of sunlit vegetation visible to the viewer and hence the leaf scattering phase 

function. The GO component, p, can be related to the amount of sunlit soil visible to the 

viewer and hence reduces with increasing canopy coverage. It should be stressed that 

these findings relate to single scattering reflectance only. The linear kernel-driven models 

of BRDF assume single scattering interactions only and this is followed in the simulations 

of Pcanopv used here. The results discussion in this chapter examine the relationship 

between a  and kvo/ and p and kco-

5.1 Relationships between a  and kvoi, and p and kco

a  has been defined to represent the volumetric scattering component of the 

BPMS-simulated pcanopy (equation 4.2). It would therefore be expected that a linear 

relationship between a  and kv<,/, the volumetric kernels (equations 2.28 and 2.29) exists 

(when fvo/, the volumetric parameter, is inverted against reflectance data), p is defined as 

the GO component of BPMS-simulated Pcanopy (equation 4.3) and it is similarly 

reasonable to expect a linear relation between the GO kernels, k^o (equations 2.30 and 

2.31) and p. The first step in determining how accurately kvo/ and kao describe a  and p is 

to plot the volumetric and GO kernels against the respective scattering components of 

Pcanopy As in chapter 4, values of Pcanopy simulated within the BPMS under the 

assumptions of the linear kernel-driven models of BRDF are employed.

Figure 5.1 shows plots of the BPMS-derived volumetric scattering component of 

Pcanopy, 06, as the abscissa, against the RossThick and RossThin volumetric kernels for 

barley (four dates) and wheat (two dates). Figures 5.2 and 5.3 show the GO component of 

Pcanopy, P, plotted against the LiSparse and LiDense kernels respectively*. Plots are also

Both the reciprocal and non-reciprocal versions o f  the GO kernels were used in order to exam ine any differences in behaviour. 
Results for both were very similar, with the non-reciproeal version proving to be a m arginally better fit in all cases. Consequently  
results from the non-reciprocal versions only are presented.
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shown from two slightly modified versions of these kernels, which treat the reflectance of 

the sunlit crown and sunlit ground independently, rather than assuming they are of equal 

brightness as in the standard Li kernels (see figure 2.12). They are included to explore the 

possibility that they might prove a better fit to the GO component of Pcampy than the 

standard kernels. If so, they may provide a better interpretation of the GO component than 

is the case in the original formulation of the models, given that sunlit and shaded crown 

and ground are likely to be of different brightness in practice. The standard and modified 

kernels are labelled G (for ground only) and GC (for ground and crown) respectively in 

figures 5.2 and 5.3. Results are presented from simulated reflectance data from all solar 

zenith angles and row azimuths combined, but the implications of treating individual 

solar zenith and row azimuth angles separately are discussed below.

The view and illumination configurations considered in each case are as follows:

•  ^row = 0°, 45°, 90°;

• 0/ = 0°, 30°, 60°;

• 0v in each case between -70° and 70°, in steps of 10° except for the 5° either side 

o f the hotspot, where sampling is every 2°;

As described previously, single-scattering pcanopy is simulated in each case with two 

nominal wavebands: one with pieaf= T/eo/ = 0.5 and pson = 0; the other with pjeaf= Veaf= 0 

and p5o// ^  0. This results in scattering either from the vegetation (a) or from the soil (P). 

These are plotted against their respective kernels in figures 5.1, 5.2 and 5.3. The lines in 

each figure represent the regression line of each data set.
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Figure 5.1 BPMS-derived volumetric component (a) against k,.,,/ for barley 
(four dates) and wheat (two dates).
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Figure 5.2 BPMS-derived GO component (P) against k c o  (LiOense) for barley
(four dates) and wheat (two dates).
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Figure 5.3 BPMS-derived GO component ((3) against k c o  (LiSparse) for barley
(four dates) and wheat (two dates).
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5.2 Variation of volumetric component, a  with kvo/

5.2,1 Results

Figure 5.1 shows a generally linear relationship between the BPMS-derived 

volumetric scattering component a  and the volumetric kernels, kvo/, particularly for the 

barley canopy. The relationship is less clear for wheat. Values o f the correlation 

coefficient, r, are presented in tables 5.1 The value of r is a direct measure of the sign of 

the correlation between two variables (positive or negative), but an indirect measure 

(square root) of the strength of the correlation. The coefficient of determination, r ,̂ 

represents the strength of correlation and is in effect the percent variance of the dependent 

variable explained by the regression equation. Clearly, r̂  can be calculated from values of 

r, but it is not possible to determine the sign of r in this way, which is why only values of 

r are given. Also included in table 5.1 are values of â o/ and b^/, the slopes and intercepts 

o f the regression relationships. These results tend to support the first hypothesis presented 

in 4.2 that a  is linearly related to the volumetric scattering kernels. An interesting feature 

o f the results presented in table 5.1 is the variation in r with the illumination (solar) zenith 

angle, 0,. While the variation with (j)^  ̂ is minimal, 0, appears to significantly affect the 

agreement between k^/ and a . Although we might expect a  to be independent of 0„ an 

explanation for the variation is that the increased path length of radiation through the 

canopy from higher solar zenith angles sun will increase the volumetric scattering 

component of pcampy in relation to p. The values of r increase, in some cases dramatically, 

with increasing 0,. The only cases where this is not clear are for the wheat canopies of 

March and April. In all cases for the barley canopies, the increases of awith 0/ are 

marked.

The RossThin kernel is included in this analysis to see whether evidence supports 

the adoption of the RossThick kernel for the MODIS albedo product (Lucht et a l,  1999). 

The values of the RossThick and RossThin kernels in table 5.1 are separated by colour, 

with the RossThin values in red. All correlations presented in table 5.1 are significant to a 

95% confidence level. Values in bold are those for which the upper and lower confidence 

levels lie within ±0.125 of the value of r, the correlation coefficient. This indicates 

correlations with the smallest confidence interval.
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Table 5.1 Slopes, intercepts and regression coefficients for volumetric kernels as a 

function of solar zenith (8,) and row azimuth ((jirmv) (RossThin kernels in red).

5.1a barley - IS*** April 5.1b barley -13**’ May

kernel 0, ^vol by»/ r

RossThick 0 0 -0.05 0.00 -0.67

R ossT hick 30 0 0.17 -0.11 0.92

R ossT hick 60 0 0.14 -0.10 0.99

RossThin 0 0 0.77 -0.18 0.99

RossThin 30 0 0.61 -0.14 0.96

RossThin 60 0 0.64 0.43 0.98

RossThick 0 45 -0.04 0.00 -0.63

R ossT hick 30 45 0.15 -0.09 0.93

R ossT hick 60 45 0.12 -0.06 0.98

RossThin 0 45 0.72 -0.14 0.97

RossThin 30 45 0.55 -0.07 0.96

RossThin 60 45 0.56 0.60 0.96

RossThick 0 90 -0.04 0.00 -0.60

R ossT hick 30 90 0.15 -0.08 0.95

R ossT hick 60 90 0.12 -0.04 0.98

RossThin 0 90 0.76 -0.17 0.93

RossThin 30 90 0.51 -0.03 0.94

RossThin 60 90 0.54 0.72 0.96

kernel 0, ^row a to/ bï’o/ r

R ossT hick 0 0 0.03 -0.12 ; 0.87

R ossT hick 30 0 0.06 -0.22 0.91

R ossT hick 60 0 0.06 -0.14
1

0.96

RossThin 0 0 -0.20 0 86 ! -0.53

Ross 1 hin 30 0 0.13 -0.22 ; 0.63

R ossThin 60 0 0.27 0.18 0.96

R ossT hick 0 45 0.03 -0.12 0.90

R ossT hick 30 45 0.06 -0.22 0.90

R ossT hick 60 45 0.06 -0.15 0.96

RossThin 0 45 -0.20 0 8 8 -0.60

RossThin 30 45 0.13 -0.19 ! 0.60

RossThin 60 45 0.28 0.19 0.96

R ossT hick 0 90 0.03 -0.12 1 0.88

R ossT hick 30 90 0.06 -0.22 , 0.91

R ossT hick 60 90 0.06 -0.13 0.96

Ross 1 hin 0 90 -0.21 0.90 -0.59

Rossi hin 30 90 0.13 -0.18 0.61

RossThin 60 90 0.27 0.26 0.96
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5.1c barley - 4*'’ June

kernel e, v̂ol hvo/ r

RossThick 0 0 0.02 -0.12 &83

R ossT hick 30 0 0.04 -0.21 0.87

R ossT hick 60 0 0.04 -0.12 0.94

RossThin 0 0 -0.15  ̂ 1.00 -0.63

RossThin 30 0 0.08 -0.14 0.56

R ossThin 60 0 0.20 0.30 0.94

R ossT hick 0 45 0.02 -0.12 0.87

R ossT hick 30 45 0.03 -0.19 0.88

R ossT hick 60 45 0.04 -0 .10 0.94

RossThin 0 45 -0.14 : 0.92 : -0.61

RossThin 30 45 0.07 ! -0.08 0.55

RossThin 60 45 0.19 0.40 0.93

RossThick 0 90 0.02 -0.12 1 0.85

R ossT hick 30 90 0.03 -0.20 0.87

R ossT hick 60 90 0.04 -0.14 0.95

RossThin 0 90 -0.15 0.96 -0.59

Rosslliin 30 90 0.08 -0.10 0.55

RossThin 60 90 0.21 1 0.25 0.94

5.Id barley - 2 4 'h June

kernel 8, 4*row 8vo/ r

R ossT hick 0 0 0.01 -0.05 0.91

RossThick ji 30 0 0.05 -0.07 0.64

RossThick 60 0 0.14 0.09 0.84

RossThin 0 0 : -0.12 0.49 -0.78

RossThin 30 0 1 0.05 0 J 3 0.20

RossThin ! 60 0 : 0.64 1.27 0 85

R ossT hick 0 45 0.01 -0.04 0.88

RossThick 30 45 0.03 -0.03 0.40

RossThick 60 45 0.08 -0.06 0.74

RossThin 0 45 : -0.07 0.30 -0.72

RossThin 30 45 ; -0.04 0.58 -0.15

Rossi hin 60 45 0.34 0.79 0.66

R ossT hick 0 90 0.01 -0.03 0.84

RossThick 30 90 0.01 0.03 0.13

RossThick 60 90 0.08 0.02 0.52

RossThin 0 90 -0.06 0.25 -0.66

Ross Ihin 30 90 -0.15 0.78 -0.41

Ross rhin 60 90 0.29 1.22 0.42
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5.1e wheat -  March

kernel 6, by»/ r

RossThick 0 0 0.05 -0.62 0.81

RossThick 30 0 0.12 -1.41 0 J 3

RossThick 60 0 0.46 -5.17 0.59

RossThin 0 0 -0.62 7.98 -0.92

RossThin 30 0 -0.28 3.97 -0.22

RossThin 60 0 2.08 -22.18 0.57

RossThick 0 45 0.05 -0.61 0.81

RossThick 30 45 0.14 -1.69 &43

RossThick 60 45 &46 -5.10 &66

RossThin 0 45 -0.62 7.95 -0.93

RossThin 30 45 -0.15 2.41 -0.14

RossThin 60 45 2.01 -21.51 0.62

RossThick 0 90 0.05 -0.61 0.81

RossThick 30 90 0.13 -1.57 0 J 9

RossThick 60 90 0.47 -5.21 0.61

RossThin (1 90 -0.61 7.90 -0.93

RossThin 30 90 -0.21 3.14 -0.18

Ross Ih in 60 90 2.06 -22.04 0.58

5.1f wheat -- 23''*̂ April

kernel e, r

R ossT hick 0 0 0.01 -0.05 0.94

RossThick 30 0 0.04 -0.05 0.51

R ossT hick 60 0 0.22 0.15 0.90

RossThin 0 0 -0.07 0.42 -0.79

RossThin 30 0 : 0.01 0.45 0.03

RossThin 60 0 1.03 1.55 0.90

R ossT hick 0 45 0.01 1 -0 .05 0.94

RossThick i 30 45 0.04 -0.05 0.51

R ossT hick 60 ' 45 0.23 0.17 0.91

RossThin j1 0 45 -0.07 0.42 -0.79

RossThin 30 45 0.01 0.45 0.02

RossThin 60 45 1.06 1.62 0.92

R ossT hick 0 90 0.01 -0.05 0.94

RossThick 30 90 0.04 -0.04 0.48

R ossT hick 60 90 0.22 0.17 0.90

RossThin 0 90 -0.07 0.44 -0.80

Ross I hin 30 , -0.00 0.48 -0.02

RossThin 60 90 1.05 1.66 0.91
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5,2.2 Analysis o f regression relationships

The results for a  plotted against kvo/ presented in tables 5.1 a-f, show r starting 

high for the 18*'̂  April barley canopy, exceeding 0.96 in most cases, then falling slightly 

for the 13̂ *̂  May canopy to around 0.9. There is little difference between the RossThin 

and RossThick kernels for 18̂  ̂ April, but by the 13̂  ̂ May, the RossThick kernel has 

significantly higher values of r than the RossThin at most 0, and ^row Values remain very 

similar for the June 4**̂ barley canopy, but fall significantly for the 24̂ *̂  June. The 

RossThick kernel has significantly higher values of r in this case, particularly for 0/ = 0 . 

The results for the wheat canopy of 23^ March show little consistency, with values of r 

between -0.93 (strong negative correlation) and 0.91, due to the fact that there is so little 

vegetation present. The values of r for the RossThick kernel are always positive, and are 

relatively high (>0.8) for 0/ = 0 . The values for the RossThin kernel by contrast are 

predominantly negative. Although the RossThin kernel was formulated for describing the 

reflectance of sparse canopies (see 2.5.4.1.1), the vegetation in this case is so sparse as to 

be almost negligible. This may explain why the RossThin kernel does not correlate with a  

- there is little or no volumetric scattering. The RossThick kernel appears to fit well 

regardless, suggesting it is much more flexible than the RossThin in a variety of 

conditions, a finding supported by other researchers (Lucht et a l ,  1999; Strugnell and 

Lucht, 2000).

The results for the wheat canopy of 23^  ̂ April are similar to those of the barley 

canopy of 13‘̂  May and 4̂  ̂June with the RossThick kernel providing a better fit in nearly 

all cases. For all <̂row, r values for the RossThick kernel are high for both 0/ = 0 and 0, = 

60 , but are much lower for 0, = 30 . Values of r for the RossThin kernel display a clear 

trend: a strong negative correlation for 0/ = 0 , almost zero correlation at 0/ = 30, and a 

relatively strong positive correlation for 0/ = 60 , again for all ^row The RossThick kernel 

is far more stable in all cases.

As discussed in section 2.5.4.1, the Ross kernels are based on a solution of 

radiative transfer in a homogeneous (turbid) medium. The thick and thin versions of the 

Ross kernels result from approximations for LAI »  1 and LAI «  1 respectively. It 

might therefore be expected that the RossThin kernel would correlate with a  more closely 

for the sparse canopies where LAI < 1 (i.e. the 18̂ *̂  April barley and 23^  ̂ March wheat 

canopies) and the RossThick kernel to correlate more strongly for the remaining canopies

142



where LAI exceeds 2. This is marginally true for the 18̂  ̂ April barley canopy, but not at 

all the case for the 23^ April wheat canopy, where the RossThin kernel is often 

negatively correlated with a. This is the sparsest canopy, with very little vegetation 

present and yet the RossThick kernel is more strongly correlated with a , although only at 

a significant level for 0, = 0°. This is a surprising result as the canopy departs not only 

from the assumption of high LAI, but also from the fundamental assumption of a turbid 

medium common to both kernels. This suggests that either the two components of pcanopy 

cannot be simply separated, or that the kvo/ kernels not only explain variations in pcanopy 

caused by volumetric scattering but also describe some aspects of GO scattering. For the 

more developed canopies the RossThick kernel is more closely correlated with a , having 

consistently high (>0.85) values of r. Results for the 23^ April wheat canopy are similar 

to those of the denser barley canopies. The exception is that values of r for the RossThick 

kernel fall significantly (to -0 .5) for 0, = 30 . This may be a result o f the erectophile LAD 

mentioned previously (figure 4.8).

This behaviour is consistent with previous results: the volumetric component of 

9canopy, ot, is strongly linearly related to kvo/ until the canopy rapidly senesces during the 

middle of June and there is little or no green vegetation remaining (e.g. although the 

barley LAI stays constant at around 3.15 in June, by 24̂ "̂  June, very little of the remaining 

vegetation is green). The RossThick kernel is favoured for nearly all dates except the 18̂ *’ 

April barley canopy, despite variations in LAI. This is true even of the 23^ March wheat 

canopy with LAI = 0.08. The ability of the RossThick kernel to out-perform the RossThin 

kernel has been found by other researchers (Lucht et a l ,  1999; Strugnell and Lucht, 

2000). This evidence supports the selection of the RossThick kernel as the volumetric 

kernel for production of global BRDF and albedo products from MODIS (Schaaf et a l, 

2000a, b).

5.2.3 Slopes and intercepts Uvob bvoi o f a  against kvoi

The slopes of kvo/ against a  (avoi) are small and generally positive (0 < avo/ < 1). 

The intercepts (bvoi) are non-zero and almost exclusively negative. Following the 

convention of Roujean et a l (1992) that the volumetric kernels should equal zero for 0/ = 

Ov = 0 , the RossThick and RossThin kernels contain offsets o f -7t/4 and -7t/2 (-0.79 and - 

1.57) respectively (equations 2.28 and 2.29). The values of the intercepts in table 5.1 are
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close in magnitude to these values - further evidence that the volumetric component of 

9canopy Can be separated from the GO component and represented by a relatively simple 

semi-empirical function. As detailed in section 2.5.4.1 the gradients correspond to the

expressions — (l -  ) for the RossThick kernel, where B is a constant with a value

of 1.5 (B is in fact a function of 0, and 0y but only varies between 1 and 2, so a value of

1.5 is chosen in order to simplify the kernels) and—  for the RossThin kernel.
Zn

Examining the values of avo/, bvo/ and r in table 5.1 according to solar zenith angle 0/ 

shows some interesting trends. In the 18̂  ̂ April case the RossThick kernel appears 

significantly better than the RossThin kernel except for 0, = 0 , when r is negative and <

0.7, implying a weak negative correlation. For the other dates the regression of the 

RossThin kernel produces negative values of r where 0/ = 0 .

5.2.4 Sum m ary

kvo/ is generally strongly correlated with a , the volumetric component of ç>canopy\ 

more so for dense canopies than sparse. There is very little variation in correlation with 

row azimuth angle, but considerable variation with illumination angle. For the barley 

canopy, correlation is low between the RossThick kernel and a  for the sparse (18*  ̂April) 

canopy. This is particularly true at nadir illumination where little volumetric scattering is 

present. Correlation between RossThin kernel and a  is much higher here. Correlation 

between RossThick and a  increases as the canopy develops, as expected. Conversely, 

correlation with RossThin reduces and becomes much more strongly dependent on 0,. 

This is likely to be a result of increased volumetric scattering at high 0/ due to increased 

path length though the canopy. For senescent barley (24^ June) the correlation between a  

and RossThick reduces rapidly with increasing 0/, and correlation with RossThin is 

generally low.

For wheat the correlation between the volumetric kernels and a  is generally much 

lower than for barley. In addition, RossThick is more strongly correlated than RossThin 

for the sparse wheat canopy (23^ March), unlike the barley case. Correlation is also 

generally more variable with 0,. For the more developed wheat canopy (23^ April)
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correlation between RossThick and a  is much greater than for the sparse canopy. 

Correlation of RossThin increases from strongly negative to strongly positive with 0,. 

Observed differences between results for barley and wheat are likely to be due to 

structural arrangement of the canopy (e.g. LAD).

5.3 Variation of GO component, P, with

5.3.1 Results

Results presented in figures 5.2 and 5.3 for the BPMS-derived GO component of 

Pcanopy, P, against the LiDense and LiSparse kernels do not show such clear linear 

relationships as the plots of a  against the volumetric kernels. There is a far greater spread 

of points than seen for the volumetric component, largely due to the variation between the 

separate 0, cases. The correlation between the values of P and the GO kernel values varies 

from being close to one in some cases, through zero to strong negative correlation in 

some cases. In addition, the differences of scale (an order of magnitude between ordinate 

and abscissa) result in low values of r. The slopes, intercepts and regression coefficients 

for p against GO kernels are presented in tables 5.2 and 5.3. Table 5.2 contains the results 

from the LiDense and LiSparse kernels, while table 5.3 contains the results from the 

LiDenseGC and LiSparseGC variants. The kernels are labelled in the tables as follows:

LiDense (G) => DG 

LiDense (GC) => DGC 

LiSparse (G) => SG 

LiSparse (GC) => SGC

As in table 5.1, the kernels are separated by colour, with the LiSparse (SG) values in table

5.2 and the LiSparseGC (SGC) values in table 5.3 being presented in red. Also as in table

5.1, all correlations are significant to a 95% confidence level. Values in bold are those for 

which the upper and lower confidence levels lie within ±0.125 of r. This indicates 

correlations for which the confidence interval is smallest, suggesting a strong correlation.
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Table 5.2 Slopes, intercepts and regression coefficients for the LiDense and LiSparse GO 

kernels as a function of solar zenith (0,) and row azimuth ((jî mv) (LiSparse kernels in red).

5.2a barley -18*  ̂April 5.2b barley - 13‘*’ May

k<,Y; e, à(;() r

DG 0 0 3.47 -3 J 3 0.69

DG 30 0 1.79 -2.14 0.17

DG 60 0 -5.37 2.60 -0.62

S(; 0 0 7.00 -5.92 0.96

SG 30 0 5.65 -4.90 0.52

SG 60 0 -5.90 2.55 -0.43

DG 0 45 3 J 5 -L 24 0.67

DG 30 45 &58 -1.23 0.06

DG 60 45 -5.93 Z 99 -0.74

SG 0 45 6.88 -5.85 0.95

SG 30 45 4.44 -4.00 0.42

SG 60 45 -7.28 3.53 -0.58

DG 0 90 3.44 -3.31 0.68

DG 30 90 -0.03 -0.76 0.00

DG 60 90 -6.25 L 20 -0.79

SG 0 90 7.03 -5.95 0.95

SG 30 90 3.92 -3.59 0.36

SG 60 90 -7.94 3 99 -0.64

kf;f; e, boo r

DG 0 0 2.98 -1.36 &82

DG 30 0 0.70 -0.92 0.08

DG 60 0 -4.08 -0.65 -0.58

s ( ; 0 0 5.28 -1.79 0.99

SG 1 30 0 3 jG -1.38 0.45

SG 60 0 -4.59 -1.00 -0.42

DG 0 45 3.15 -1.38 &82

DG 30 45 1.23 -1.02 0.15

DG 60 45 -3.75 -0.71 -0.52

SG 0 45 5.61 -1.82 0.99

SG 30 45 4.30 -1.46 0.50

SG 60 45 11 -3.91 -1.12 -0.34

DG 0 90 2.98 -1.38 0.80

DG 30 90 1.16 -1.02 0.14

DG 60 90 -3.94 -0.65 -0.58

SG 0 90 5.39 -1.83 0.99

SG 30 90 4.18 -1.48 0.50

SG 60 90 -4.35 -1.02 -0.40
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5.2c barley - 4*̂  June 5.2d barley - 24̂ * June

K ; o e, à(;() r

DG 0 0 5.02 -1.14 0.90

DG 30 0 -2.12 -0.66 -0.14

DG 60 0 -6.99 -0.94 -0.56

sc; 0 0 7.98 -1.30 0.98

SG 30 0 3.40 -0.84 0.22

SG 60 0 -8.1 1 -1.31 -0.41

DG 0 45 4.99 -1.12 0.91

DG 30 45 -2.99 -0.62 -0.20

DG 60 45 -6.97 -0.97 -0.55

SG 0 45 7.81 -1.25 0.98

SG 30 45 2.49 -0.76 0.16

SG 60 45 -8.12 -1.35 -0.40

DG 0 90 4.97 -1.13 0.90

DG 30 90 -3.75 -0.58 -0.25

DG 60 90 -7.16 -0.95 -0.57

SG 0 90 7.82 -1.27 0.98

SG 30 90 1.66 -0.72 0.1 1

SG 60 90 -8.45 -1.32 -0.43

e, bo'o r

DG 0 0 4.34 -1.83 0.84

DG 30 0 1.89 -1.25 0.15

DG 60 0 -6.06 0.03 -0.59

sc; 0 0 7.37 -2.52 0.98

SG 30 0 6.51 -2.22 0.51

SG 60 0 -6.96 -0.20 ; -0.43

DG 0 45 -0.19 -0.56 -0.11

DG 30 45 2.42 -1.81 0.92

DG 60 45 2.07 -2.12 1 0.86

SG 0 45 -0.55 -0.27 -0.24

SG 30 45 2.09 -1.48 0.86

SG 60 45 3.18 -2.96 0.90

DG 0 90 -0.19 -0.55 -0.13

DG 30 90 2.10 -1.78 0.92

DG 60 90 1.80 -2.09 0.86

SG 0 90 -0.50 -0.27 -0.25

SG 30 90 1.80 -1.46 , 0 86

SG 60 90 2.76 -2.90 ; 0.89

147



5.2e wheat -  23'̂ ‘* March 5.2f wheat -  23̂ ^̂  April

e, ^iO W,o r

DG 0 0 11.22 -11.31 0.69

DG 30 0 0.47 -1.22 0.01

DG 60 0 -20.04 17.43 -0.76

SG 0 0 22.65 -22.05 0.95

SG 30 0 13.39 -13.29 0 3 8

SG 60 0 -24.92 21.56 -0.60

DG 0 45 11.18 -11.27 0.66

DG 30 45 4.70 -5.24 0.13

DG 60 45 -19.37 16.83 -0.70

SG 0 45 23.14 -22.52 0.94

SG 1 30 45 17.3 1 -17.02 0.49

SG 60 45 -22,97 19.77 -0.53

DG 0 90 11.11 -11.22 0.67

DG 30 90 4.20 -4.77 0.12

DG 60 90 -19.25 16.72 -0.71

SG 0 90 22.89 -22.30 0.95

SG 30 90 16.79 -16.53 0.48

SG 60 90 -22.93 19.73 -0.54

koY; 8, ^K) boY; r

DG 0 0 1.49 -1.43 0.86

DG 30 0 0.63 -1.04 0.16

DG 60 0 -1.52 , -0.77 I -0.43

SG 0 0 2.52 -1.84 0.99

SG 30 0 2.07 -1.49 I 0.51

SG 60 0 -1.40 -1.23 -0.25

DG 0 45 1.48 1 -1.43 ; 0.85

DG 30 45 0.63 -1.05 ‘ 0.16

DG 60 45 -1.58 -0.75 ■ -0.46

SG 0 45 2.53 -1.85 0.99

SG 30 45 2.06 -1.49 0.51

SG 60 45 -1.51 -1.20 -0.28

DG 0 90 1.47 -1.43 0 3 3

DG 30 90 0 3 9 -0.95 0.10

DG 60 90 -1.73 -0.69 -0.50

S(, 0 90 2.53 -1.86 0.99

SG 30 90 1.87 -1.42 0.46

SG 60 90 -1.78 -1.10 -0.33
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Table 5.3 Slopes, intercepts and regression coefficients for GC variants of LiDense and 

LiSparse GO kernels as a function of solar zenith (0,) and row azimuth ((jirow)-

5.3a barley -18*^ April 5.3b barley - 13*̂  May

kf,Y; 8, r

DGC 0 0 19.64 -16.54 j 0.98

DGC 30 0 19.02 -16.32 0.86

DGC 60 0 -0.26 -4.58 -0.02

SGC 0 0 9.18 -7.71 0.98

SGC : 30 0 7.51 -6.41 0.73

SGC 60 0 -2.58 0,07 -0.37

DGC 0 45 19.38 -16.39 0.97

DGC 30 45 18.07 -15.63 0.82

DGC 60 45 -2.24 -3.16 -0.18

s c ;c 0 45 9.05 -7.64 1 0.97

SGC 30 45 6.80 -5.88 0.67

SGC 60 45 -3.27 0.55 -0.51

DGC 0 90 19.73 -16.63 0.97

DGC 30 90 17.90 -15.46 0.79

DGC 60 90 -2.98 -2.65 -0.24

s c .c 0 90 9.23 -7.76 0.97

SGC 30 90 6 56 -5.69 0.63

SGC 60 90 -3.60 0.78 1 -0.57

kf;f; 8, ^K) t>GO r

DGC 0 0 14.42 -4.83 1 0.99

DGC 30 0 13.42 -4.56 : 0.76

DGC 60 0 0.04 -4.77 0.00

SGC 0 0 6.77 -2.25 0.99

SGC 30 0 5.27 -1.76 0.65

SGC 60 0 -2.04 -1.48 -0.36

DGC 0 45 15.37 -4.94 0.99

DGC 30 45 13.87 -4.59 0.79

DGC 60 45 0.86 -4.88 0.07

SGC 0 45 7.22 -2.30 0.99

SGC 30 45 5.57 -1.80 0.68

SGC 60 45 -1.69 -1.53 ; -0.28

DGC 0 90 14.79 -4.98 0.99

DGC 30 90 13.87 -4.76 0.80

DGC 60 90 0.16 -4.78 0.01

SGC 0 90 6.95 -2.32 0.99

SGC 30 90 5.53 -1.86 , 0.69

SGC 60 90 -1.92 -1.49 !
________ i

-0.34
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5.3c barley - 4̂ '’ June 5.3d barley - 24^ June

8, r

DGC ' 0 0 21.37 -3.45 0.96

DGC 30 0 16.62 -2.92 0.52

DGC 60 0 0.62 -4.79 0.03

SGC 0 0 10.06 -1.60 0.96

SGC 30 0 5.90 -1.08 0.40

SGC 60 0 -3 56 -1.62 -0.34

DGC 0 45 20.89 -3.33 0.95

DGC 30 45 14.79 -2.71 0.47

DGC 60 45 0.80 -4.79 0.04

SGC 0 45 9.83 -1.54 0.96

SGC 30 45 4.97 -0.99 0.34

SGC 60 45 -3.53 -1 63 -0.33

DGC 0 90 20.92 -3.37 0.95

DGC 30 90 13.66 -2.66 0.43

DGC 60 90 0.51 -4.78 0.02

SGC 0 90 9.84 -1.56 0.96

SGC 30 90 4.26 -0.96 0.29

SGC 60 90 -3.66 -1.62 -0.35

8, ^;o t>0’0 r

DGC 0 0 20.07 -6.82 0.97

DGC 30 0 20.69 -6.98 0.78

DGC 60 0 1 -0.62 -4.63 -0.04

s ( ; c 0 0 ‘ 9.41 -3.18 0.98

SGC 30 0 8.49 -2.80 0.69

SGC 60 0 -3.21 -1.10 -0.38

DGC 0 45 -1.66 -0.62 -0.27

DGC 30 45 1.70 -2.53 0.35

DGC 60 45 2.19 -5.55 0.76

SGC 0 45 -0.76 -0.28 -0.26

SGC 30 45 1.38 -1.28 0.59

SGC 60 45 1.52 -Z 38 0.87

DGC 0 90 -1.50 -0.62 -0.29

DGC 30 90 1.49 -2.52 0.35

DGC 60 90 1.87 -5.50 0.74

SGC 0 90 -0.69 -0.28 -0.28

SGC 30 90 1.21 -1.27 0.60

SGC 60 90 1.31 -2.35 0.86
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5.3e wheat -  23"̂  ̂March 5.3f wheat -  23"̂  ̂April

k(/Y; 0/ r

DGC 0 0 63.70 -61.94 0.97

DGC 30 0 5 8 J 2 -57.05 0.80

DGC 60 0 -8 3 3 3.00 -0.20

SGC () 0 29.73 -28.89 0.97

SGC 30 0 21.59 -21.13 0.64

SGC 60 0 -1 1.23 8 68 -0.54

DGC 0 45 65.39 -63.54 0.97

DGC 30 45 62.94 -61.52 &86

DGC 60 45 -6.07 0.91 -0.14

SGC 0 45 30.51 -29.63 0.97

SGC 30 45 24.5 1 -23.93 0.72

SGC 60 45 -10.32 7.85 -0.47

DGC 0 90 64.63 -62.85 0.97

DGC 30 90 61.93 -60.57 0.85

DGC 60 90 -6.01 0.85 -0.14

SGC 0 90 30.15 -29.30 0.97

SGC 30 90 23.99 -23.45 0.71

SGC 60 90 -10.29 7.82 -0.48

0, T̂Oir bc;o r

DGC 0 0 6.87 -4.97 0.99

DGC 30 0 6 3 2 -4 3 5 0.75

DGC 60 0 0.92 -5.06 0.16

SG C 0 0 3.22 -2.31 0.99

SGC 30 0 2 3 8 -1.80 0.66

SGC 60 0 -0.57 -1.59 -0.19

DGC 0 45 6.93 -5.02 0.99

DGC 30 45 6 3 5 -4.59 0.77

DGC 60 45 0.74 -5.00 0.13

SGC 0 45 3.25 -2.33 0.99

SGC 30 45 2 3 8 -1.81 0.67

SGC 60 45 -0.63 -1.57 -0.22

DGC 0 90 6.91 -5.05 0.99

DGC 30 90 6 3 3 -4.55 0.75

DGC 60 90 0.54 -4.94 0.10

SG C 0 90 3.24 -2.35 0.99

SGC 30 90 2.47 -1.77 , 0.64

SGC 60 90 -0.76 -1.53 1 -0.27
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5.3.2 Analysis of regression relationships

The results for p against kao presented in figures 5.2 and 5.3, and tables 5.2 and 

5.3, show much greater variation than those seen for a  against kv„/, although some trends 

are similar. The variation o f  the correlation coefficient, r, with is negligible on the 

whole (as above) but there is significant variation with solar zenith angle, 8, (also as 

above). Unlike the a  case, it is expected for p given that the GO component o f  pcanopy will 

be strongly dependent on the amount of  shadowing in the scene, which will vary with 8, 

(and with the arrangement o f  objects within the canopy). The values o f  r are generally 

high and positive at nadir illumination, reducing with increasing 8„ becoming 

predominantly negative. These trends hold for all kernels. The values o f  r for the 

LiSparseGC (SGC) kernel, in the 18‘'̂  April barley case (table 5.3a) reduce from 8.96 to - 

8.43 as 8, increases from nadir to 68 . The exception to this trend is the barley canopy of 

24“' June where there is significant variation in r with Although r for (j),.»,,, = 8 

follows the same trend as for the other canopies, the trend is reversed for (j),vn. = 45 and 

(̂ row = 98 with r starting low or negative for 8, = 8" and increasing to the highest value at 

8, = 68 . This is the only canopy with significantly different canopy structure, having 

mature seed heads, a somewhat different LAD (from figure 4.10, correlating much more

Figure 5.4 Perspective view o f  barley plants from above.
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highly with the plagiophile, planophile and spherical LADs than any other canopy), and 

less green vegetation. Recent work has shown that the representation of these heads can 

significantly affect ç>canopy, particularly single scattered radiation (Saich et a l, 2001). 

Figure 5.4 is a perspective view of a barley canopy from above, with seed heads modelled 

as simple Lambertian cylinders. These cylinders contribute disproportionately strongly to

canopy

The standard LiSparse kernel performs significantly better in all cases than the 

standard LiDense kernel, with maximum values of r almost always greater than 0.95 

(although this is only true at 0, = 0°) as opposed to values between 0.6 and 0.85 for the 

LiDense kernel (table 5.2a-f). In addition both the modified GC versions of the GO 

kernels perform better than the LiDense kernel, and perform comparably with the 

standard LiSparse kernel (table 5.3a-f). Correlations between (3 and kco  for barley rise as 

the canopy develops before falling back for 24̂ *̂  June. The wheat canopies of 23^ March 

and 23*̂  ̂April show much the same trends as for the barley. The results of the two barley 

and wheat canopies closest in terms of development (23^ March wheat, 18̂ '̂  April barley 

and 23^ April wheat, 13̂ *̂  May barley) show close agreement. This is in contrast to the 

results for correlations between a  and kvo/.

The values of r for the plots of p against kco suggest that is less clear that the GO 

component of pcanopy is characterised by the linear function of P proposed in equation 4.4 

(unlike the situation for a  seen in section 5.2). There is some agreement, but the 

variability of the results, particularly with varying 0/, suggests that the GO kernels do not 

work particularly well when faced with the row-based canopies comprised of relatively 

fine leaves used here. A consequence of this described in chapter 4 is the absence of a 

clear hotspot feature in the GO component of simulated Pcanopy, P, and the presence of one 

in the volumetric component, a . This departure from expectations is not altogether 

surprising given the departure of the barley and wheat canopies from the assumptions 

made in the formulation of the GO kernels i.e. spheroids randomly located on a 

Lambertian surface, with log-normal height distribution and perfectly black shadows. 

Figure 5.5 illustrates the type of canopy envisaged in the formulation of the kernels: a 

field of spheroids above a Lambertian surface. The heights are not log-normally 

distributed (as in the GO kernel formulation), but clearly it may not be realistic to expect 

the barley and wheat canopies shown in figures 4.2 to behave like the canopy in figure 

5.5. One approach to the dependence on 0, suggests that the GO kernels may need to be
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more flexible in situations where the assumptions underlying the kernels are not met. In 

some cases, the GO kernels just may not be appropriate. A solution to the row dependent 

behaviour of the GO kernels might be to define a new set of GO kernels based on 

canopies with strong row orientations. This would allow a greater degree of confidence to 

be placed in the ability of the kernels to describe reflectance over agricultural regions.

Figure 5.5 Simulated 'spheroids on sticks' canopy.

Such kernels would not have random distributions of spheroids on sticks, but would have 

a dependency on row azimuth angle, r̂ow (in relation to the viewer). In addition, taking 

account of the clumped vegetation that predominates when considering these high 

resolution scenes would improve matters, for instance by using effective LAI (LAL), 

rather than LAI directly for example (Nilson and Kuusk, 1989).

It has already been established that the GO component of pcanopy as simulated in 

these experiments is determined by P, the proportion of sunlit soil (it should be noted that 

this differs from the theoretical case envisioned by Li and Strahier (1985, 1986, 1992) for 

example, which is driven by scene components including sunlit and shaded crown and 

ground. In this case, shadowed crown and ground contribute zero to scene reflectance (no 

diffuse illumination), so the GO component of pcanopy by definition originates from the 

sunlit soil). Figure 4.6 shows that the proportion of sunlit soil is the dominant component 

of Pcanopy in the 18̂  ̂ April barley and 23^ March wheat canopies, accounting for the 

similarity in results of these two canopies. Although the proportion of sunlit soil varies in
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the same way with 0  ̂ for all eanopies (downward bowl-shape, peak in the hotspot 

direction), the magnitude is very different, reducing from 0.6-0.8 (18**’ April, 23^ March) 

when the canopy is sparse, to close to zero for the June (LAI = 3.19, 80-90% cover). 

The assumptions behind the GO kernels are more closely adhered to in the sparse 

canopies when the proportion of sunlit soil is highest and the regularly spaced plants with 

small leaf area are well-separated. Subsequent increases in cover reduce the proportion of 

sunlit soil, as well as the separability of the plants; they become a dense canopy rather 

than individual scattering objects. Consequently the GO component of ç>canopy is less-well 

characterised by equation 4.4. The decline in strength of the correlation with increasing 0, 

suggests that the projected area of plants departs from the projections assumed in the GO 

kernels. Although the proportion of sunlit soil reduces with increasing 0, it clearly does 

not do so in the manner assumed in theory (particularly in the case of the LiDense 

kernel). This is hardly surprising: the plants begin small, with leaves large in proportion 

to plant height; in the latter stages the plants are tall and very thin, with proportionally 

much smaller leaves. These plants are further removed from the spheroidal assumption 

than their immature counterparts. In addition, as the proportion of visible soil (sunlit or 

otherwise) reduces, the projected area of the plants will become proportionally more 

important.

5.3.3 Slopes and intercepts Ugo, boo o f p  against kco

In the same marmer as seen in 5.2.3 for the volumetric kernels, the values of a^o, 

bco in tables 5.2a-f and 5.3a-f correspond to the slopes and intercepts of the regressions 

of p against kco- The LiDense kernel contains an offset of -2  (equation 2.31) to ensure 

that the kernel is zero for nadir viewing and illumination (the LiSparse kernel is zero 

anyway under these conditions). The gradients aiQCÀTir^ for the LiSparse kernel, where C 

is the reflectance of the sunlit crown (equal to I), and X is the number density of

spheroids on the surface of width 2r, and ^ f o r  the LiDense kernel. Table 5.3a shows

that in the 18̂ *̂  April case the values of slgo are mostly positive and vary from close to 

zero up to 14 or 15 for the LiDense (GC) kernel. Values of be# are almost exclusively 

negative, varying from just below zero in most cases, down to -15 for the LiDense (GC) 

kernel. The values of a^o gradually increase for the barley canopy as it develops and the 

total scattering component increases, with the values of hco remaining similar for each
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date. The biggest changes are seen between the wheat canopies of 23^  ̂ March and 23^ 

April (tables 5.2 and 5.3 e and f). For the earlier canopy, the values of slgo and hco are 

extreme, ranging from -25 to 65 in the case of slgo, with slgo following similar patterns. 

However, for the 23^ April canopy the gradients and intercepts are comparable to the 

values in tables 5.2 and 5.3 a and b for the IS**̂  April and 13‘*̂ May canopies.

5.3.4 Summary

In most cases the correlation between p and kco (as measured by r, the correlation 

coefficient) is lower than that between a  and kvo/. Results suggest that in certain cases the 

volumetric and GO scattering components can be separated and are generally linearly 

related to the respective kernels used to describe them in the linear kernel-driven models 

of BRDF, although there is significant variation in this relationship. For both barley and 

wheat there is little variation with r̂ow in correlation in the earlier stages of the canopy. 

This changes for the 24‘*’ June barley canopy, when values of r increase dramatically with 

increasing ^row This is likely to be related to the structural variation in the canopy 

described above, with far less shadowed soil being visible as well as the presence of seed 

heads. There is significant variation in the strength of correlation with increasing 8„ with 

values of r moving from high positive values at nadir to zero or negative values for 8, = 

68 . This trend is true for each barley canopy.

In the early stages of growth of both the barley and wheat canopies the sparse and 

dense variants of kco are similar, with the sparse version having a slight edge in terms of 

correlation with p. The sparse variants become increasingly better as the canopy 

develops. This is further evidence to support the choice of the sparse family o f kernels as 

the GO kemels-of-choice for BRDF and albedo production from MODIS reflectance data. 

The GC variants of kco, treating ground and crown as having separate reflectance, 

perform better in nearly all cases, in the sense of being more closely correlated with p. 

The only exception to this is in the 24̂  ̂ June barley case. In terms of implementation the 

GC variants require extra parameters (shadowed crown and ground reflectance) but this 

evidence does suggest that these kernels may be better equipped to describe the GO 

component of ç>canopy in a wider variety of cases (for the type of canopy examined here). 

At the very least the GC variants should be considered a viable alternative to the standard 

GO kernels.
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5.4 Conclusion

The hypothesis that Pcanopy can be represented as a linear combination of 

volumetric and GO components, a  and p, was tested by separating these components 

from BPMS-simulated Pcanopy, and plotting their relationship with the respective linear 

model kernels, kvo/ and kco- Results from barley and wheat canopies show that there is 

generally a linear relationship between a  and kvo/, which becomes stronger as the 

canopies develop. The values of r for the regressions o f a  against kvo/ generally increase 

with 0/ and decrease with (̂ row until the canopy no longer adheres to the assumptions used 

in the kernels exemplified by the 24^ June barley canopy (LAI of 3.19, but little green 

vegetation and lots of seed heads). This behaviour is likely to be due to an increase in the 

proportion of volumetric scattering caused by increasing path length (of incoming 

radiation) through the canopy.

Results show a much weaker relationship between p and kco, than between a  and 

kvo/. There is also greater variability in the values of r in this case. The values of r for p 

against kco tend to fall as the canopy develops and volumetric scattering increases at the 

expense of GO scattering. Also in contrast to a , r falls with 0/ in all cases except for the 

24 '̂’ June barley canopy. There is little variation in correlation between p and kco with 

(j)row, except (again) for the 24̂ "̂  June barley canopy. Although results for a  (in particular) 

and p indicate that Pcanopy may be separated into a linear combination of volume and GO 

scattering components in some cases, it is clear that this separability will depend on 

canopy configuration. The canopies used here depart (deliberately) from those envisioned 

in the linear kernels (particularly the GO case): they are row-oriented, with non-spherical 

LAD and small, widely distributed scatterers rather than GO "envelopes". In particular, as 

the canopies develop, they resemble the idealised 'spheroids on sticks' assumption of the 

GO kernels less and less. The key issue is that Pcampy can always be approximated (badly) 

by a linear combination of volumetric and GO components. However, results presented in 

this chapter illustrate that in cases where the canopy configuration more closely resembles 

that envisioned in the formulation of the kernels, the linear assumption is reasonable, 

particularly in the volumetric case. The barley and wheat canopies used for the simulation 

of Pcanopy in this chaptcr resemble the configuration envisioned in the volumetric kernels 

far more closely than that envisioned in the GO kernels, so it is not surprising that 

agreement between kvo/ and a  is far higher than that between kco  and p.
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The canopies used in this experiment were deliberately chosen to diverge from the 

assumptions of plane-parallel homogeneity and distinct crown-shape on which kvo/ and 

kco  respectively are based. This was done in order to explore the applicability of the 

kernels in cases where their assumptions are not met directly (which perhaps applies to 

most cover types). When the assumptions underlying the kernels are not met, the 

assumption that pcanopy can be described as a linear combination of volumetric and GO 

scattering components tends to break down. These cases are listed below:

i) The canopy is very sparse, and there is almost no scattering from vegetation (kvo/ 

attempts to explain some GO scattering). This is seen in the variability (and 

general reduction) of r with kvo/ in table 5.1e.

ii) The canopy is very dense, but the LAI is (relatively) low e.g. when the canopy 

reaches maturity and is largely stems and seed heads with little green leaf area 

(see variation of r with kvo/ in table 5.1 d)

iii) There is noticeable azimuthal variation in the vegetation density due to row 

planting patterns (assumption of azimuthal uniformity invalidated). This is true for 

kco  in the 24^  ̂ June barley canopy case (table 5.2d). However, the large variation 

seen in the correlation between kvo/ and a , and kco and p with 0/ is also a function 

of variation in (|)̂ ow. As the canopy is seen across and along rows, the density of 

(viewed) vegetation changes significantly, causing variation in the amount of 

visible sunlit (and shaded) soil and vegetation (clumping). This is especially true 

for the barley canopy of June. Figure 5.6 shows the large variation in sunlit 

leaf and soil with r̂ow, at high 0,. The variation is not as pronounced for younger 

canopies or for lower 0/.

iv) Canopy LAD departs from the assumed spherical distribution (see figure 4.8) i.e. 

23^ March wheat (see variability of r values in table 5.1e)

v) Inappropriate kernel choices are made i.e. RossThick kernel when LAI is low 

(table 5.1a and e), or RossThin when LAI increases (table 5.1b-d) This is not true 

of kcc as the LiSparse kernel proved a better fit in nearly all circumstances (table 

5.2). So, interestingly, the "wrong" kernel choice can in some cases provide a 

better fit to reflectance. This indicates some kernel combinations may be 

inherently more flexible than others, although any biophysical information 

contained in the model parameters in these cases should not be trusted.
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Figure 5.6 Variation in sunlit leaf and soil, 24 '̂' June barley canopy, 8, = 60°.

The factors listed above highlight the importance o f  interpretation when using 

model parameters derived from satellite and airborne reflectance measurements. It is 

preferable that a minimum of  assumptions regarding the type and distribution of  cover be 

made. However results presented here suggest that the assumption o f  ç>ccinoin' as a linear 

combination o f  volumetric and GO scattering components is not always true. If cover 

types do not conform to the approximations underlying the linear models, attempts to 

evaluate parameters such as LAI and shadow fraction should not be made. Conversely, 

the parameters may directly indicate regions of  departure from the assumptions made in 

the linear models. In these cases it is still possible to derive integrated products such as 

albedo, but no conclusions should be drawn regarding surface biophysical parameters. 

Constraints may be applied in these cases to ensure adherence to physical principles such 

as energy conservation (see appendix 1). The next stage o f  analysis is to examine more 

closely the information content o f  volumetric and GO model parameters inverted against 

simulated Pcanopy It is important to understand whether it may be possible to retrieve 

biophysical infomiation from the inverted model parameters (and if  so, what sort) or 

whether the kernels should only ever be used for generating integrated products such as 

albedo, or predicting reflectance behaviour (Roy et al., 2001).
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6 Separability o f canopy scattering com ponents and inform ation content

6.1 Introduction

Evidence presented in chapters 4 and 5 supports the first hypothesis of section 4.2

i.e. that Pcampy can (in general) be modelled as a linear combination of volumetric and GO 

kernels describing the (angular) variation of the separate components. However as the 

structure of the canopy departs from the assumptions made in the formulation of the 

kernels this hypothesis tends to break down. For sparse canopies ky /̂ can apparently 

explain a significant part of the variation seen in Pcampy even though there is likely to be 

very little volumetric scattering in these cases (reflected in the high values of the 

correlation coefficient, r, seen in table 5.1). Likewise, kco generally seems to explain 

variations in Pcampy for the dense canopies when the scattering will be predominantly 

volumetric. This poses the question of whether the kernels can be said to be acting 

independently of each other. If not, attributing meaning to derived biophysical parameters 

will be much more difficult as the model parameters will be coupled in some way.

The issue of information in linear BRDF model parameters will be addressed in 

the subsequent section with reference to the second hypothesis of section 4.2, namely that 

the kernels describing the volumetric and GO scattering components of pcmwpy act 

independently of each other. If this hypothesis is true, then the volumetric component of 

Pcanopy should be adequately modelled by the volumetric kernel alone and the GO 

component of pcampy should be described solely by the GO kernel. This implies that no 

part of the variation of either component should be explained by the other kernel. In 

this case the components are separable and orthogonal. In practical cases where the 

models do not satisfactorily describe the BRDF, and assuming that angular sampling is 

reasonable (Lucht and Lewis (2000) have shown that poor angular sampling can severely 

affect the kernels' ability to fit BRDF), it is assumed that the basic kernel shapes are 

inadequate to describe the primary reflectance variations or that the assumptions 

underlying the kernels may not be fully met. The possibility that there may be secondary 

(and higher) components of the volumetric or GO components of the scattered reflectance 

field which may be described in part by the other kernel is not considered.

Kernel-driven models are specifically designed to cope with spatially 

heterogeneous surfaces where both volume and GO scattering may be present due to the
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variety o f cover types that may be contained in a single pixel (Wanner et a l,  1995). This 

permits inversion against moderate resolution reflectance data where heterogeneity can 

otherwise present severe problems. An example of this type of surface might be sparse 

woodland interspersed with grassland, where the shadows cast by the tree crowns 

conform to the GO model, whilst scattering within the tree crowns and from the grass is 

likely to be predominantly volumetric. Such a surface suggests that a continuum of the 

two scattering components exists, potentially operating at different scales (Wanner et a l, 

1997). Is it reasonable in such a case to assume that all variation in each of the two 

components can be completely described by the respective kernels? If not, it is likely that 

the model parameters cannot be ascribed the direct physical meaning given in their 

formulation (see equations 4.3 and 4.4), but rather that the parameters are coupled in 

some sense.

If we wish to invert the linear models against reflectance data in order to derive 

biophysical information it is essential to understand the physical meaning of the model 

parameters, whether the parameters are coupled, and if so, in what sense. As an example, 

consider equation 4.2; knowing P(0„ 8y, (})), 0  and O ’, p and p', is it possible to invert 

LAI explicitly from pcampy, or will LAI and ç>ieaf be coupled in some way? If so, then to 

derive LAI by inverting a kernel-driven model against measured Pcanopy would require 

knowledge of specific pieaf for the observed canopy. The following section investigates 

the possibility that ç>canopy cannot necessarily be separated into volumetric and GO 

scattering components and that some part of each component may actually be described 

by the other kernel. In addition, spectral variation of the angular kernels is discussed.
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6.2 Method

If the linear relationships between kvo/ and a  and kco and p described in equations

4.3 and 4.4, and demonstrated experimentally in chapter 5, are substituted into equation

4.1, a simplified expression for pcanopy is obtained in terms of the coefficients of the linear 

relationships presented in tables 5.2 and 5.3 (avo/,co and hyoiGo)'-

P.canopy
^vot , _ ^GO

P le a f  ---------------- +  P so il    +  P le a f    +  P so il
^vol ^G O  J

^vol , _ ^GO

^vol ^GO

isotropic volumetric GO
terra terra terra

Equation 6.1 contains a purely volumetric term, a purely GO term and a term comprising 

p/ea/and ç>soii multiplied by the ratio of b to a (slope over intercept) from equations 4.3 and

4.4 If equation 6.1 is compared with the general expression for a full kernel-driven model 

(equation 2.27) it can be seen that (except for the role f/̂ o has in taking up the multiple 

scattering component) there is a direct equivalence between the model parameters i.e.

f is c  =  -
V ^vol ^GO J

6.2a

r  _  P le a f
Jvol = 6.2ba.vol

■f =  ,  _J GO -  6.2ca GO

where iiso,co.voi are the model parameters (equivalent to the kernel weightings as described 

in section 2.5.4.1, ignoring multiple scattering effects). We can now obtain estimates of 

the volumetric and GO parameters fvo/ and fco  from two directions:

1. From the values of â̂ oi and slgo in tables 5.1 and 5.2 in combination with appropriate 

spectral estimates of p/g^and pson, using the relationships in equations 6.2b and 6.2c.

2. From inverting a full linear kernel-driven model (as expressed in equation 2.27) 

against Pcampy calculated from substitution of slvoI.go and Koi,go back into equation 6.1
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If the separate (single) scattering components o f  pcanopy can be modelled by 

isolating the purely geometric parameters controlling them (i.e. fyai and ïcch all other 

factors being equal) by assuming that Pcanopy can be represented as a linear combination of 

volumetric and GO components a  and P, then clearly the same values o f  hw and ïco 

should be obtained from method 1 above as from method 2. This is illustrated 

schematically in figure 6 . 1. If there are significant differences between the values o f  f^/ 

and i'co derived from a,w,co and byoi.co and those obtained through full model inversion 

then we must conclude that the volumetric and GO kernels are not entirely separable i.e. 

hypothesis two o f  section 4.2 is false, and, as a result, the retrieval o f  uncoupled 

biophysical parameters from linear model inversions may not be possible. In this case it 

may be possible to identify coupled parameter relationships which might be inverted, but 

the nature o f  the coupling will need to be understood. This has important consequences 

for the operational use o f  linear kernel-driven BRDF models: without a clear 

understanding o f  the physical meaning o f  model parameters inverted from retleetance 

data, they are likely to be wrongly used and interpreted.

Values o f  
and kco (spectrally 

varying)

1. Estimates of âyoi,GO and 
bvoi.Go derived from 

regression analysis, plus 
substitution o f  suitable

Pleaf,.soil

2. Inversion o f  full linear 
kernel-driven model 

against pccwopv 
using ?ivoi.GO and byai,GO 

plus suitable Pleaf.soU

derived

Figure 6.1 Estimates of  model parameters f,.yo, Go/ and fco obtained from
two directions.
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6.3 Results

The values o f  ^v„i,go and hvui.co presented in tables 5.1 and 5.2 were used in 

conjunction with suitable values o f  and psou to calculate (spectrally varying) values o f  

model parameters Ïgo and f,,,;/ according to equations 6.2b and c. The and p.„,// spectra 

used are shown in figure 6.2. These spectra were obtained during the field campaign 

described in chapter 3 using the PSII radiometer. Leaf spectra recorded in this manner 

(with leaves still attached to the plants) may not be a totally accurate measure o f  leaf 

reflectance as some radiation impinging on the leaf is lost via transmission through the 

lower surface o f  the leaf, while some reflected radiation will not fall within the instrument 

IFOV. Laboratory measurements are generally made using an integrating sphere, in order 

to ensure all incident radiation is recorded. However, in these experiments the absolute 

values o f  reflectance are not so important, it is the behaviour across the spectrum that is 

o f  interest. From figure 6.2, the values of  leaf are higher in the NIR than might be 

expected.

At the same time as values o f  f^f) and f^;/ are derived via the regression 

relationships o f  chapter 5, a full kernel-driven model of the type described in equation 

2.27 was inverted against values of  pcunoijy calculated by substituting the parameters 'àyoï.GO

0.8

0.6

l e a f  r e f l e c t a n c e

0.4

s o i l  r e f l e c t a n c e

0.2

0.0
400 500 600 700 800 900

w a v e l e n g t h  ( n m )

Figure 6. 2 p/,.„/ and psan used in BPMS pcanopy simulations
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bvo/.Go, p/ec7/ and ç>son into equation 6.1. These spectrally varying ïco and are presented 

alongside the values of ïco and fvo/ calculated directly from tabulated values of Uvo/ and 

diGo (plus pleaf and Psoil) via equations 6.2b and c. Figures 6.3 and 6.4 show the 

comparisons between the two sets of model parameters. Results are shown for the 

isotropic, RossThick and Li Sparse kernel combination (figure 6.3) as well as the 

isotropic, RossThin, LiDense combination (figure 6.4). In figures 6.3 and 6.4 the 

parameters derived through the use of the derived avo/,GO and bvo/,co values are referred to 

as BPMS (or “BPMS-derived”) parameters, and those through the inversion of a full 

linear model as “inverted”. These distinctions are artificial as both sets o f parameters are 

derived from BPMS simulations and both are obtained by inversion (although in different 

senses), but they need to be distinguished in subsequent discussions.
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Figure 6.3 Comparison o f  isotropic, volumetric (RossThick) and GO (LiSparse)
parameters derived from BPMS simulations and inversion o f  a full linear model.
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Figure 6.4 Comparison o f  isotropic, volumetric (RossThin) and GO (LiDense)
parameters derived from BPMS simulations and inversion o f  a full linear model.
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6.4 Discussion

Figures 6.3 and 6.4 show comparisons of the isotropic, volumetric and GO 

parameters (fiso, fvo/ and fco) obtained from:

i) Substituting values of avoi.co and hvoi.co (derived from relating the 

volumetric and GO components of BPMS-simulated pcanopy, ot and p, to 

kvo/ and kco) along with selected pieaf and psou back into equations 6.2a-c 

(in essence 'calibrating' the kernels to each canopy under consideration).

ii) Inversion of a full linear kernel-driven BRDF model against values of 

Pcanopy derived by substituting values of ^voI.go, bvo/.co, Pieaf and p,o// into 

equation 6.1 Inversion in this case is performed fitting three kernels 

(isotropic, volumetric, GO) to the BPMS-simulated values of pcanopy by the 

standard linear (matrix) inversion methods described in 2.4.1 Inversion is 

performed against values of pcanopy simulated at all 0v (-70° to 70°), 0, (0°, 

30°, 60°) and (0°, 45°, 90°).

The aim of this is to establish what information might be contained within the 

model parameters, fso, Go/ and fco- This has implications for how the inverted kernel- 

driven model parameters are used in practice and what information they can be expected 

to yield. Results for each canopy are discussed separately in turn in sections 6.4.1 to

6.4.6 In general terms however, the correlation between the two sets of parameters is 

very high as would be expected (values of the correlation coefficient higher than 0.95 in 

all cases). The main discrepancy is a tendency for the inverted GO parameter to 'flip' 

negative sometimes, in a mirror image of the BPMS-derived value. This is discussed 

below.

6.4.1 Barley canopy, 18^  ̂April

For the isotropic, RossThick, LiSparse kernel combination the two sets of 

parameters agree well, particularly in the visible, with some divergence in the near IR. 

Both estimates of are relatively small in magnitude and spectrally ‘flat’, with a small 

rise in the near IR. The largest spectral variation by far is in f^/. The volumetric
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component of Pcampy, ot, is proportional to the 1-e'^^^ term in equation 4.2, but the spectral 

shape indicates that a  is also a function of çneaf (the leaf-scattering phase function 

P(8(,8v,(|)) and the leaf projection function G(8/,8v,(|)) are both geometric terms i.e. not a 

function of 1). Both estimates of fvo/ exhibit spectral variation: very low reflectance at 

visible wavelengths due to chlorophyll absorption including a peak in the visible green 

centred at around 568nm, and a large increase of reflectanee across the red edge from the 

visible to the near IR wavelength regions at around 788-888nm. The form of fvo/ in figures 

6.3 and 6.4 follows exactly the form of p/eo/shown in figure 6.2. This is unsurprising as a  

is defined as the component of Pcampy due to scattering from vegetation (equation 4.3). It 

is independent of p/^o/ (a geometric parameter only) but the insertion of the spectra 

described above re-introduces this dependence. The degree of correspondence of fo/ to 

pleaf effectively defines the degree of dominance of the volumetric component of pcanopy 

by scattering from vegetation, and is a further indicator of the fact that pcanopy can be 

separated into volumetric and GO components.

In contrast fco, controlled by the amount of visible sunlit and shadowed soil, 

shows little spectral variation (compared to the assumed soil spectrum, psou, of figure 

6.2). The relation between the spectral variations of fo/ and fco and the spectral 

components of pcan opy, P le a f  and P so il,  suggest that model parameter estimates of this sort 

may well be useful for spectral discrimination of cover types i.e. classifieation. In such an 

application, the absolute values of the parameters are unimportant but the relative 

magnitudes could be used to map spatial distribution of volumetric and GO scattering 

components (equivalent to vegetated and non-vegetated regions). This is of consequence 

in applications where estimates of total vegetation amount are required, such as in 

analysis of carbon budgets and net primary productivity.

The isotropic, RossThin and LiDense kernels (figure 6.4a) are almost an order of 

magnitude smaller than for the previous case, with kvo/ barely rising to 1, as opposed to 

around 5.5 above. Values of f»/ still agree within a few percent but there are 

discrepancies between the BPMS-derived and inverted isotropic parameters in the visible 

region, with the inverted parameter showing a distinct “vegetation-like” rise in magnitude 

from the visible to the near IR. The same is true of the inverted foo, unlike the BPMS- 

derived Ïgo, which closely resembles the pson of figure 5.2. This suggests that perhaps fko 

and fco are describing some of the scattering due to vegetation that is not being explained
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by fvo/. This would also explain why the contrast between f/̂ o, fco and fvo/ in the near IR is 

not as great as would be expected. This combination of kernels is not as effective at 

describing pcampy as the previous one, although in this case ïco follows psoii more closely 

than in the previous case. As in chapter 5 this adds further weight to the choice of the 

isotropic, RossThick and LiSparse kernel combination for inversion against reflectance 

data where no a priori knowledge of cover type is assumed (Hu et a l ,  1997; Wanner et 

aA ,1997).

6.4.2 Barley canopy, 13̂  ̂May

The trends in the inverted isotropic, RossThick plus LiSparse model parameters 

for the 13̂ '’ May barley canopy are similar to those oflS^* April. Agreement in magnitude 

between the BPMS-derived and inverted parameters is very good, particularly (greater 

than 95%). Notable differences are the increased magnitude, particularly of the 

volumetric parameter (maximum of nearly 8 as opposed to 5.5 for 18̂ *̂  April), the 20% 

increase in magnitude of the BPMS-derived volumetric parameter over the inverted 

volumetric parameter in the near IR, and the clear rise of the isotropic parameters across 

the red edge. This last factor again suggests that some of the variation due to volume 

scattering may be being taken up by fiso- Both the fco are spectrally flat and very small in 

magnitude.

The isotropic, RossThin LiDense parameters for the 13̂  ̂ May are quite different 

(6.4b). The magnitudes are again much lower than for the isotropic, RossThick LiSparse 

combination, as was seen for the 18̂ "̂  April canopy (compare figures 6.3a and 6.4a). The 

f/io show the greatest spectral variation, increasingly resembling the volumetric parameter 

in figure 6.3. In addition, the BPMS-derived GO parameter, still relatively flat, differs 

markedly from the inverted GO parameter, which is much closer in appearance to the 

inverted volumetric parameter. These observations suggest that if  non-optimal kernel 

combinations are selected, the information content of the model parameters becomes 

increasingly difficult to explain.
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6.4.3 Barley canopy, June

The magnitude of both sets of parameters in the isotropic, RossThick, LiSparse 

combination increases again (figure 6.3c) up to a maximum of between 8.5 and 11.5 for 

both f/io. Both isotropic parameters again appear to explain some of the spectral variation 

due to scattering from vegetation. The inverted values of Ïgo also display a slight increase 

with wavelength, but this is not true for the BPMS-derived kco- This may indicate that the 

parameter space o f the full linear model inversion is larger than that for the parameter 

values derived using the estimates of a^/^co and bvo/,co, allowing spectral components of 

volumetric scattering to be spread across all three parameters rather than confined to one. 

The results presented in section 5.3 illustrate that in some cases the relationship between 

the GO component of pcanopy, P, and the GO kernels is not clear. It is predictable in these 

cases that the inverted model parameters are likely to describe a combination of both 

volumetric and GO components of Pcanopy Apart from the BPMS-derived GO parameter, 

all the parameters in figure 6.4c (isotropic, RossThin, LiDense) except the BPMS-derived 

GO parameter show a sharp rise in magnitude across the red edge suggesting that the 

volumetric component increasingly dominates pcanopy as the canopy develops.

6.4.4 Barley canopy, 24^ June

Results from this canopy are different again, as the canopy has matured and begun 

to senesce. The BPMS-derived values of Lo/ still display the strong vegetation-like shape, 

but, in contrast to previous results, the inverted parameters do not follow this pattern at all 

and are very much lower in magnitude. The inverted 4-0 is the only parameter which rises 

significantly above zero. It is perhaps ill-advised to attempt to explain the variations in 

this case as the canopy is now divergent from the assumptions made in the formulation of 

either the volumetric or GO kernels. It has already been shown that this divergence results 

in the inability of the linear kernel-driven models to describe the directional and spectral 

features of pcanopy adequately (see section 5.3.2). This inability is strongly apparent in the 

results of the isotropic + RossThin + LiDense kernel combination for the same date 

(figure 6.4d). The BPMS-derived isotropic parameter in this case has become virtually a 

negative reflection about the x-axis of the BPMS-derived volumetric parameter. The other 

parameters generally follow the same shapes as in the previous ease.
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6.4,5 Wheat canopy, 23'̂ ‘̂ March

Results from the isotropic + RossThick + LiSparse combination for the wheat 

canopy of March 23^ (figure 6.3e) show a number of differences from the results of the 

barley canopies. The two isotropic parameters agree closely but are similar in shape and 

magnitude to the volumetric parameter of the barley canopies of 18‘*’ April and 13‘*̂ May. 

However, both in this case are negative, with the BPMS-derived estimate of Lo/ being 

a virtual reflection of both f/̂ o about the x-axis. This suggests the volumetric parameter is 

over-compensating for the vegetation element contained in the isotropic parameter. All 

other parameters are close to zero. Similarly, the isotropic + RossThin + LiDense 

combination has both isotropic parameters following closely the shape of pieaf (in a 

similar manner to the behaviour of the volumetric parameter in the barley cases). This 

canopy is very sparse (LAI = 0.08) and the volume scattering component has been shown 

to be small (figure 4.5). This further illustrates how scattering originating from one 

component of pcanopy may be 'taken up' by another parameter if the assumptions 

underlying the kernels are not met and/or an unsuitable combination of kernels is 

selected. The BPMS-derived GO parameter is similar in shape (and relative magnitude 

compared with Lo/) to psoU which is less surprising, as it might be expected that pcanopy be 

dominated by pson with so little vegetation being present.

6.4.6 Wheat canopy, 2 Apri l

The behaviour of the isotropic, RossThick and LiSparse parameters for this 

canopy are similar to those of the previous wheat case, with an exaggeration in 

magnitude. Both isotropic parameters are (relatively) high and similar in shape to pieaj, 

although agreement between the two is less than for the previous wheat canopy, 

particularly in the near IR where the BPMS-derived parameter is significantly higher than 

the inverted parameter. As the volumetric component of Pcanopy increases from 23^ March 

to 23^ April, differences between the two sets of parameters become more apparent. The 

BPMS-derived and inverted volumetric parameters are both negative as in the 23^ March 

case but even more so, suggesting over-compensation during inversion. In terms of shape 

and magnitude the inverted estimates of the GO parameter lie somewhere between the 

inverted isotropic and the BPMS-derived GO parameter, which is close to zero across all
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wavelengths. This is due to the structure of the wheat canopy. It has been shown that this 

canopy has a somewhat different structure from the other canopies in this experiment, 

with a strongly erectophile LAD (figure 4.8). If 0v departs significantly from nadir, very 

little soil will be visible to the viewer (see figure 4.7). In this case, scattering from the 

canopy (under the assumption of single scattering interactions only) will be dominated by 

the component originating from the vegetation alone.

Results from the isotropic + RossThin + LiDense kernel combination (figure 6.4f) 

are even more variable than for the various barley canopies. Both isotropic parameters are 

similar in shape to the parameters inverted from the isotropic + RossThick + LiSparse 

kernel combination for this canopy (figure 6.3f) with the BPMS-derived parameter being 

similar in magnitude and the inverted isotropic parameter being significantly lower. The 

GO parameters also show similar behaviour but with the BPMS GO parameter rising 

above zero in this case. The volumetric parameters in both cases are negative.

6.4.7 Sum m ary

Results show that there is good agreement in some cases between the two sets of 

model parameters - those derived from inversion of a full kernel-driven model against 

Pcanopy and those derived from regression of the BPMS-derived reflectance components a  

and p against the separate volumetric and GO kernels. However, agreement is not always 

good and for some canopies the two parameter sets differ markedly, notably when the 

BPMS parameters turn negative. Table 6.1 shows values o f r  ̂ for the two sets of fio/ 

and Ïgo parameters. In each case, the values are given from the isotropic + RossThick + 

LiSparse kernel combination and the isotropic + RossThin + LiDense kernel combination.

As the barley canopy develops, the parameters (including the isotropic parameter, 

f/io) increasingly resemble pieaf. This indicates the parameters are not limited to 

dependence on purely geometric terms as intended (if this were the case, we would expect 

fvo/ to resemble leaf, fco to resemble soil, and fî o to be spectrally flat). The relative 

magnitude of the parameters generally varies as expected, with the volumetric parameter 

(and to an extent the isotropic parameter) increasing with LAI relative to the GO 

parameter but at the expense of increased coupling. As the canopy departs from
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assumptions underlying the kernels (geometrically and radiometrically) the parameters 

become negative, or become coupled. This is most obvious in the case of the wheat 

canopy of 23^  ̂ April, which has a strongly erectophile LAD. Discrepancies between the 

two sets of parameters also become more apparent in the barley canopy as it develops, 

particularly for the 24̂  ̂ June case (figures 6.3d and 6.4d) which least resembles the 

assumptions made in the kernel-driven models. In the case of the isotropic + RossThick + 

LiSparse kernel combination, the BPMS isotropic parameter is far larger then the 

corresponding inverted isotropic parameter, in fact larger than all other parameters by far. 

For the isotropic + RossThin + LiDense kernel combination, the BPMS isotropic 

parameter turns negative, indicating an unsuitable choice of kernels.

Table 6.1 r values for BPMS-derived against inverted values o f Lo/ and fco-

Values of r̂  for correlation (BPMS v inverted)

Isotropic RossThick LiSparse Isotropic RossThin LiDense

Canopy fiso fvol fco fiso fvol fco

barley 18/4 0.99 0.99 -0.88 0.98 0.99 &89

barley 13/5 0.99 0.99 0.95 0.99 0.99 0.95

barley 4/6 0.99 (199 0.94 (199 (198 0.94

barley 24/6 0.96 0.99 (196 -0.99 -0.99 0.96

wheat 23/3 0.99 0.98 0.95 0.99 -0.99 0.95

wheat 23/4 0.99 (198 0.95 (199 -0.99 0.95

6.5 Implications of coupling between model parameters

It is clear from results presented above (and previously) that the volumetric and 

GO components of pcanopy are separable in many cases. However, it is also clear that as a 

canopy develops and the magnitude of the respective volumetric and GO parameters 

increases (particularly Koi), observed behaviour departs from that which might be 

expected if the components were completely separable. The relationships between a  and 

kvo/ and p and kco presented in chapter 5 show that a proportion of both the volumetric 

and GO components of pcanopy are not described by the corresponding kernel: the 

relationships are not perfectly linear by any means. There is a possibility that a residual
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part of the volumetric component, a , not described by kvo/ may be described by kco, and 

conversely, some proportion of the GO component, p, may be explained by kvo/. As an 

example, the rise of the volumetric parameter across the red edge for the barley canopies 

of May and 4**̂ June and the wheat canopy of 23'̂  ̂ April are coupled to a similar 

increase in the GO parameter (figures 6.3 and 6.4). Clearly a  is not completely described 

by kvo/; the GO parameter, fco, also contains information related to a . From equation 4.2, 

for a given (0/, 0v, (|)), a  is proportional to (1-e'^^^) (all other terms in equation 4.2 being 

purely dependent on 0,, 0v, From equation 4.2 it can also be seen that the spectral 

variation of the volumetric component of pcanopy is controlled by pieaf- In all cases, the 

accuracy with which the kernels can describe pcanopy will be dependent on angular 

sampling (Lucht and Lewis, 2000). In the experiments presented in this thesis Pcanopy can 

be simulated at arbitrary (0/, 0v, as required and consequently angular sampling is not 

an issue. However, in practice the impact of poor angular sampling will compete with 

(and possibly outweigh) the coupling of volumetric and GO parameters to reduce the 

kernels' ability to describe pcanopy

Having shown in chapter 5 that it is possible (in the main) to isolate the geometric 

factors controlling pcanopy through wavelength-independent simulations, the results of the 

previous section present spectrally varying estimates of model parameters. It is 

immediately obvious from figures 6.3 and 6.4 that a  is proportional to piea/- This implies 

that the geometric and spectral parts of the volumetric component of pcanopy are linked. 

The question is whether they are inextricably linked. If so, it may not be possible to invert 

parameters such as LAI directly from reflectance data as the geometric factors are likely 

to be coupled to spectral information (i.e. pieq/)- hi order to separate LAI from a coupled 

P/eo/(l-e'^^^) term, an estimate of p/g^/would be needed. A requirement for ancillary data 

of this sort potentially limits the use of inverted biophysical parameter information unless: 

(i) p/go/data are available; or (ii) a priori assumptions are made regarding the cover types 

over which such models are applied. Option (i) is generally not practical if specific p/ĝ / 

data are required, simply because of the variety of vegetation types and the scarcity of 

high quality field-measured spectral reflectance data. Option (ii) is not desirable given 

that one purpose of the linear kernel-driven approach is to allow application of models to 

reflectance data of arbitrary cover types, at a range of scales (neglecting adjacency 

effects). In relation to (i) above it should be noted however that it is clear that most (if not
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all) green pieaf spectra share many attributes, namely a maxima of reflectance at visible 

green wavelengths, a minima in the visible red, and a sharp rise across the NIR region. 

The possibility that this can be exploited, in a manner similar to the generalisation of 

BRDF shape made in the linear kernel-driven models, is explored in chapter 7. At any 

rate, evidence presented here and in chapter 4 demonstrates that inverted parameters from 

reflectance data must be interpreted carefully if they are to be used directly (rather than 

for deriving integrated parameters such as albedo, or for classification).

If such parameter coupling is significant, then we might expect that the data used 

in chapter 4 to explore the relationships between i) kvo/ and a , and ii) kco  and (3, would 

show two distinct dimensions of information related to the two components of scattering 

behaviour. These data are the (supposedly) separate volumetric and GO scattering 

components of BPMS-simulated pcanopy, oc and f>. If canopy information is not coupled, a  

will describe onlv volumetric scattering, and p will describe onlv GO scattering, as 

defined in equation 4.1. If there is coupling however, each component of Pcanopy will 

contain information related to the other. In order to examine this possibility, principal 

component analysis (PGA) was performed on the respective combinations of a  and kvo/ 

and p and kco- PGA allows a set of correlated observations to be transformed to a set of 

uncorrelated (principal) components (pcs) by calculating the eigenvectors and 

eigenvalues of the variance-covariance matrix of observations (Jolliffe, 1986). The 

percent variance in the data described by each pc is simply the corresponding eigenvalue, 

scaled by the sum of all eigenvalues. In this case, the magnitudes of the first two principal 

components will indicate the relative importance of the scattering components. If a  

describes only the volumetric component of canopy scattering, it would be expected that 

pe l, the first principle component, would be completely dominant, with pc2 having a far 

lower magnitude. The same argument applies to p and kco- If there is significant coupling 

in either case however, it would be expected that the magnitude of pel and pc2 might be 

comparable. Results of the PGA are presented in figure 6.5. Results are presented for the 

simulations carried out with r̂ow = 0°, for all three values of 0, i.e. 0°, 30°, and 60°.

The main feature of the results presented in figure 6.5 is that in all cases the first 

principal component is always larger than the second. This indicates that in each case 

there is a “dominant” component to the observed variance in the data. This is particularly 

true for the volumetrie component of the early barley canopies, where pel of the
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volumetric components (represented by the RossThick of RossThin kernels) rises as high 

as 99% (hence pc2 = 1%). In these cases nearly all the variance in a  is explained by k^,/, 

and it is safe to assume that coupling is minimal. The case for p is not quite so clear cut, 

with pci for the various kco falling to between 60% and 70% in many cases, and down to 

almost 50% for the 23*̂  ̂April wheat canopy. In this case there is significant variation in p 

which is not being explained by kco- This supports the results presented in section 5.3 

where the relationship between p and kco is not demonstrably linear as was the case for a  

and kvo/.

A second feature of figure 6.5 is the variation in the magnitude of the principal 

components with 0/. For the 18‘̂  April barley canopy, pci for the RossThick kernel starts 

at 85% for 0, = 0°, rises to 96% for 0, = 30°, and again to 98% at 0, = 60°. There is even 

more variability for the various kco- The respective pels are virtually identical for 0, = 0° 

at 98%, except for the LiSparse kernel, where pci = 85%. For 0, = 30° there is a 

variability between the kernels in the magnitude of pci of around 20%, and by 0, = 60°, 

they have fallen again to around 70%. This is the opposite trend to that observed for a.
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Figure 6.5 Principal component analysis of  the separate a  and p components
of  Pcanopy for barley (four dates) and wheat (two dates).
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The trends observed in figure 6.5 of both the magnitude of pel for a  and p, and 

the variability with are broadly similar for all the canopies under investigation. The 

major differences lie in the spread of points, with the more developed canopies having 

lower values of pel (and correspondingly higher pc2). For the 23^ March wheat canopy 

where very little vegetation is present, pel and pc2 of a  are relatively close, implying that 

there is no dominant “dimension” of the data to be explained by k̂ oi- This agrees with the 

results presented in section 5.2.

For nearly all canopies the volumetric component has lower pel for 8, = 0° than 

the GO component, and higher pci for 0/ = 60°. In all cases except the barley canopy of 

18̂ *̂  April, a  is better described by the RossThick kernel. For p there is considerable 

variation with 0, within each canopy, but from one canopy to the next the pattern is the 

same: pci of p starts high for all kernels except LiSparse, then falls for 0, = 30°, where in 

all cases the LiDense canopy explains the most variance; pci falls again to 0, = 60° where 

the LiSparse kernel performs the best. The consistency from one case to another suggests 

that the choice of kernel is more important than the variability of the data.

Conclusions to be drawn from the results presented above are simply that in most 

cases there is good reason to believe that pcanopy can be separated into volumetric and GO 

components. The caveat is that under certain where either the assumptions of the kernels 

are not met (as is the case in these experiments) or an unsuitable choice of kernels is used, 

this is not necessarily the case and care must be taken. In the canopies studied here the 

volumetric component tends to dominate pcanopy, except in cases where the canopy is 

extremely sparse. The RossThick kernel tends to explain most variance in the volumetric 

component of pcanopy, while the LiSparse kernel explains most variance in the GO 

component. The results for the GO kernels are less conclusive than those for the 

volumetric kernels.

The RossThick LiSparse kernel combination has been chosen for operational use 

as it appears to be the best at describing reflectance irrespective of surface, allowing it to 

be applied without a priori knowledge of cover type. However this disguises the fact that 

over cover types where the assumptions underlying the kernels are not met, the RMSE of 

fît may not be significantly worse, yet the inverted model parameters are likely to have 

some very different, coupled meaning.
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New techniques are being developed to alleviate this situation. Strugnell and 

Lueht (2000) have implemented a LUT relating land cover classes to field-measured 

BRDF shapes. The shapes of these measured class “archetypes” - BRDFs representative 

of each land cover class, are used to constrain the inversion of linear BRDF models 

against measured data. The assumption is made that BRDFs of cover types lying within a 

particular class will typically be closely related in shape with intra-class differences being 

one of magnitude rather than shape. By contrast, whilst unrelated cover types may have 

very similar spectral reflectances, their respective BRDFs will tend to differ as the 

underlying structure of the cover types is likely to be different. This use of existing 

knowledge of BRDF shapes of different cover types may be one way in which to inform 

the inversion of biophysical parameter information from linear models such that the most 

(physically) appropriate kernel combination is selected wherever possible. This method 

has been implemented for the initial surface reflectance and albedo products from 

MODIS. This so-called "magnitude inversion" method is used where insufficient angular 

samples of reflectance are available over a given 16-day period to permit a full inversion 

(the uncertainty is reflected in the associated QA information). A modification to the 

method of selecting appropriate kernel combinations for production of albedo where 

sufficient angular samples are available has recently been proposed. Gao et a l (2001) use 

least variance of white-sky albedo (bihemispherical reflectance) to select kernel 

combinations, rather than conventional least-squares fitting as proposed previously. Least 

variance of white-sky albedo appears to be a more effective way of selecting kernel 

combinations than RMSE, particularly when angular sampling is non-optimal which it 

will be in many situations. White-sky albedo also has the advantage that, as an integral of 

directional reflectance over the viewing and illumination hemisphere rather than an 

angular measure, it is an intrinsic surface property. Variance of observed white-sky 

albedo is a function of measurement noise, angular sampling and the number of 

observations. It is therefore a direct indication o f the quality of any particular set of 

reflectance observations used to generate a retrieved albedo value. This can be compared 

with the constrained model inversion discussed in appendix 1, based on specifying that 

reflectance and directional hemispherical reflectance should lie between physically 

realistic limits (0 to 1).
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6.6 Implications of negative model parameters

The negative values of the isotropic and volumetric model parameters seen in the 

June barley and 23^ April wheat canopies raises the issue of what such negative 

model parameters mean and how they arise. In a physical sense a negative model 

parameter is meaningless: there cannot be negative volumetric or GO scattering, or by 

extension (and from energy conservation), negative reflectance. It is clear from these 

results however, and from other work (Disney et a l ,  1997; Hobson et a l ,  1999; Grant, 

2000) that negative parameters can and do occur in practice. They arise as a result of the 

inversion process, with one parameter over-compensating for another in a case where 

reflectance is poorly described by the chosen kernel combinations. This implies that the 

correct choice of kernels may determine whether model parameters obtained through 

inversion have any physical meaning.

Practically, a better fit to measured reflectance data is generally obtained by 

allowing parameters to go out of physieal bounds (i.e. to go negative) in order to 

compensate for the inability of the kernel combination to describe the shape of ç>canopy 

One or more parameters being out of physical bounds indicates that the kernel 

combination is fundamentally unable to describe the surface reflectance. Different 

approaches can be applied to this problem depending on the use to which the parameters 

are to be put. Negative model parameters may mean there is simply not enough 

information in the reflectance signal to provide an unequivocal solution to model 

inversion. In this situation, known as overfitting (Gershenfeld, 1999) the model has too 

much flexibility (too many free parameters) and can fit the data in a way that will not 

provide a physically meaningful solution. If inverted model parameters are to be 

interpreted directly e.g. for deriving LAI or crown density say, it may be appropriate to 

reduce the number of kernels (and hence model parameters) in order to reduce the number 

o f degrees of freedom of the inversion and recalculate the parameter values. This was 

carried out for two of the canopies in figures 6.3 and 6.4 for which negative model 

parameters were obtained from the full linear model inversions (24‘*’ June barley and 23^ 

April wheat). Scatter plots showing the comparisons of the isotropie, volumetric and GO 

parameters, obtained from inverting two kernels with the corresponding parameters 

obtained from the three inverting kernels are presented in figures 6.6 and 6.7.
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The scatter plots of figures 6.6 and 6.7 are laid out as follows:

Figure 6.6a (24^ June barley canopy)

• isotropic (isotropic + RossThick) v isotropic (isotropic + RossThick + LiSparse)

• isotropic (isotropic + RossThin) v isotropic (isotropic + RossThin + LiDense)

• isotropic (isotropic + LiSparse) v isotropic (isotropic + RossThick + LiSparse)

• isotropic (isotropic + LiDense) v isotropic (isotropic + RossThin + LiDense)

Figure 6.6b (24^ June barley canopy)

• volumetric (isotropic + RossThick) v volumetric (isotropic + RossThick + LiSparse)

• volumetric (isotropic + RossThin) v volumetric (isotropic + RossThin + LiDense)

• GO (isotropic + LiSparse) v GO (isotropic + RossThick + LiSparse)

• GO (isotropic + LiDense) v GO (isotropic + RossThin + LiDense)

Figure 6.7a (23^ April wheat canopy)

• isotropic (isotropic + RossThick) v isotropic (isotropic + RossThick + LiSparse)

• isotropic (isotropic + RossThin) v isotropic (isotropic + RossThin + LiDense)

• isotropic (isotropic + LiSparse) v isotropic (isotropic + RossThick + LiSparse)

• isotropic (isotropic + LiDense) v isotropic (isotropic + RossThin + LiDense)

Figure 6.7b (23^ April wheat canopy)

• volumetric (isotropic + RossThick) v volumetric (isotropic + RossThick + LiSparse)

• volumetric (isotropic + RossThin) v volumetric (isotropic + RossThin + LiDense)

• GO (isotropic + LiSparse) v GO (isotropic + RossThick + LiSparse)

• GO (isotropic + LiDense) v GO (isotropic + RossThin + LiDense)
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6.6.1 Discussion o f  two parameter inversions

Results presented in figures 6.6a and 6.7a show that where two kernels are 

inverted (isotropic and either kŷ / or kco), the correlation with their three kernel 

counterparts is generally high in all cases, as would be expected. The differences are 

mostly ones of magnitude. The two kernel isotropic parameter is generally smaller than 

the three kernel version. The only exception to this is the isotropic parameter of the 24^ 

June barley canopy (figure 6.6a) derived from inversion of the isotropic + LiSparse kernel 

combination, which is slightly higher than the three kernel (isotropic + RossThick + 

LiSparse) isotropic parameter. Conversely, the volumetric and GO parameters from two 

kernel inversions are generally larger than their three kernel counterparts (figures 6.6b 

and 6.7b). In the case of the barley canopy the difference is only significant for the two 

kernel volumetric parameters. In this case the volumetric parameter obtained from 

inverting the isotropic + RossThick kernels is significantly larger than the three kernel 

volumetric parameter.

Most importantly, the volumetric parameter obtained from inverting the isotropic 

+ RossThin kernels remains negative as it was in the original three kernel case (figure 

6.4f). Neither the two kernel (isotropic + RossThin) nor the three kernel (isotropic + 

RossThin + LiDense) combinations are capable of describing reflectance behaviour and 

these kernels are clearly inappropriate for this canopy. The two kernel GO parameters are 

virtually identical to the three kernel versions suggesting that a combination of an 

isotropic and a GO kernel (either LiSparse or LiDense) is sufficient to describe 

reflectance for this canopy. Similar behaviour is apparent for the wheat canopy of 23^ 

April (figure 6.7b). In this case, both the two kernel volumetric parameters are negatively 

correlated with their three kernel counterparts (almost perfectly in the case of the 

parameter derived from inversion of the isotropic + RossThin kernel combination), while 

the GO parameters are very similar to the three kernel versions.

These results indicate that in cases where inverted model parameters are negative, 

using two kernels as opposed to three is not likely to help. Two kernels are apparently 

sufficient to describe directional reflectance behaviour in some cases, particularly when 

appropriate choices of kernels are made (i.e. for these canopies, not the RossThin and/or 

LiDense kernels). Both the RMSE of model fit and the expected error in the derived
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model parameters are higher in the inversion of the two kernel combinations than in the 

three kernel case. This is to be expected as the model has fewer degrees of freedom, and 

is unable to fit the measured reflectance so accurately. If the parameter values are to be 

directly interpreted however, the validity of the inverted parameters is of greater 

importance than the overall RMSE of model fit. If on the other hand the parameters are to 

be used indirectly e.g. for classification as mentioned previously, the requirement for 

physical constraint of model parameters is less clear. In this case the parameters are being 

used to provide only an indication of the relative spatial variation in scattering behaviour. 

Results presented above support this statement, suggesting that the relative magnitudes 

and spectral shapes of the inverted parameters are representative of the types of scattering 

occurring within the canopy even if their absolute magnitudes may be not be physically 

realistic (and should not be interpreted).

In the operational processing of reflectance data using linear models, the inversion 

process can be constrained to prevent negative parameters arising, via the use of Lagrange 

multipliers for example (see appendix 1). Constraints can also be imposed to ensure that 

products derived directly from model parameters such as directional-hemispherical and 

bihemispherical integrals of BRDF (so-called 'black-sky' and ‘white-sky’ albedos) lie 

within physically realisable limits i.e. between 0 and 1. Albedo values for given 

conditions o f illumination and sky radiance can then be interpolated from these two 

limiting cases (Wanner et a l,  1995). As discussed above, this type of approach is being 

taken for the processing of the EOS MODIS data products (Schaaf et a l ,  2000a,b; Gao et 

a l,  2001; Schaaf gf a l,  2001a,b).

6.7 Conclusion

This chapter presents the results of experiments following on directly from those 

of chapter 4, which demonstrated that (with caveats) Pcanopy can be described as a linear 

combination of volumetric and GO scattering components. The experiments described in 

this chapter are designed to answer the second fundamental question regarding linear 

kernel-driven approach to modelling BRDF, namely whether the volumetric component 

of Pcanopy Completely described by the volumetric kernel, and the GO component by the 

GO kernel i.e. are they separable? The simple answer is "No", but with provisos.
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Understanding this issue is vital to determining the information it may be possible to 

retrieve by inversion of semi-empirical kernel-driven models against measured 

reflectance data.

Isotropic, volumetric and GO model parameters {Ïiso.voI.go) were derived from 

Pcanopy in two distinct ways: i) via substitution o f the parameters derived from regressing 

the volumetric and GO scattering components of (BPMS-simulated) Pcanopy against k^/ 

and kco (a and b in tables 5.1, 5.2 and 5.3) into equations 6.2b and c, along with 

appropriate spectral estimates of p/g^ and psou, and ii) via inversion of a full linear kernel- 

driven model against pcanopy calculated from substitution o f the values of a and b (tables 

5.1, 5.2 and 5.3) back into equation 6.1 This yielded spectral estimates of the angular 

model parameters. It was demonstrated that the volumetric and GO components of pcanopy 

are separable in some cases, with the volumetric parameter, fvo/, closely approximating the 

shape of the chosen p/ĝ y, and likewise fco and psou- If  the components were not separable, 

we would not expect f̂ oi and fee to resemble piea/ and pson respectively, but would expect 

f/io fvo/ and fco to (equally) resemble some combination o f them. This is apparent in some 

cases, where a significant proportion of the scattering from the canopy (kvo/) is taken up 

by the GO parameter, fco- hi all cases the isotropic parameter, 4-0, showed some 

component of both f̂ oi and fco, which is as expected. As the canopies developed the 

volumetric parameter came to more closely resemble the GO parameter implying that 

there is a degree of redundancy between the two kernels.

In order to examine the dimensionality of the separate components of Pcanopy 

principal component analysis was performed on the volumetric and GO components. 

Results showed that the majority o f the variance of each component was described by the 

corresponding kernel, as pel in most cases was often greater than 80% and in many cases 

greater than 95% (mean value pel was 81.6%). There was significant variation in the 

magnitude o f pel with <̂row This implies that for certain canopies (e.g. those with 

relatively strongly row azimuth variation such as managed forest stands, or developing 

crops) there can be significant coupling of the kernels. This is another important fact in 

assessing the usefulness of parameter information derived from model inversion. The 

RossThick and LiSparse kernels are able to explain the most variance of the volumetric 

and GO components of pcanopy respectively. This supports the choice of the isotropic, 

RossThick LiSparse kernel combination as a model for use in general BRDF applications.
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The occurrence of physically impossible (negative) model parameters arising from 

inversion was investigated. Such values typically occur when there are more degrees of 

freedom in the model than there are dimensions to the data (e.g. ç>campy might only vary 

with in relation to two parameters, but three are used to try and describe it), or an 

inappropriate choice of kernels is used. In this case the model has too much freedom to fit 

the data and overfitting occurs. This is typical o f an overdetermined system of more than 

N equations in N unknowns. Such a system can be very sensitive to small changes in the 

parameter values, particularly where measurement methods and approximations introduce 

noise into the parameter estimates (Twomey, 1996). This is the case for the inversion of 

semi-empirical BRDF models against measured reflectance data and the error inherent in 

inverted model parameters will be determined by the sampling strategy (Lucht and Lewis, 

2000). The results presented here are all based on good angular sampling (in the solar 

principle plane, 0v every 10° and every 2° around the hotspot). It is known that the linear 

kernel-driven models do not perform so well in cases where angular sampling is much 

poorer (Lucht and Lewis, 2000; Gao et a l,  2001). It was shown that in some cases, two 

kernels can describe reflectance nearly as well as three kernels, but the choice of kernels 

becomes crucial in determining whether model parameters are negative. Where inverting 

three kernels resulted in strongly negative model parameters, using two kernels did not 

appear to give much better results. However, where three kernels results in parameters 

which are just negative, using two kernels can result in positive (and more physically 

realistic) model parameters.

If inverted model parameters are to be used indirectly, for example in spatial 

classification, then physically unrealistic parameter values are not necessarily a problem, 

as the kernels may still contain information related to (spectral and directional) scattering 

behaviour, although this is not the case if overfitting occurs. If the parameters are to be 

used directly however, then the inversion should be reduced to a constrained model 

parameter space. In this case, a combination of an isotropic term (there will always be a 

“brightness” component of surface reflectance) and either volumetric or GO kernels with 

parameter values constrained to lie within physically realisable limits, will prove a better 

solution. The choice of kernel becomes important in this case and for the barley and 

wheat canopies, the RossThick volumetric and LiSparse GO kernels appeared to work 

much better, either separately (in combination with the isotropic kernel) or as a three 

kernel combination.
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It has been shown that although the inverted model parameters contain 

biophysical information, it is likely to be coupled to a greater or lesser extent. Indeed, 

spectral estimates of the angular model parameters show the influence of ç>ieaf on the 

inverted parameter estimates. This characteristic reflectance shape is common to all types 

of green vegetation in the same way that BRDF shapes for certain surfaces have 

significant commonality. The next chapter explores the idea that it may be possible to 

develop a spectral analogue of the angular kernels in order to model spectral variations of 

observed reflectance. This would have particular use for interpolating and extrapolating 

limited spectral reflectance samples and could augment the angular kernels to provide a 

full spectral, directional kernel-driven model of Pcanopy
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7 Developm ent and application of spectral kernels

7.1 Introduction

The previous chapters have explored the detailed operation of the angular kernels 

in describing angular variations of canopy reflectance. Despite their approximate nature it 

is clear that they can be very successful in describing BRDF. The caveat is that care is 

required in order to interpret biophysical information contained in the model parameters. 

Importantly, the end result of providing a viable, working description of BRDF is 

promoted at the expense of physical accuracy (given the severely approximations nature 

the semi-empirical kernels). One reason for this is that the kernels were primarily 

designed with their integrated properties in mind, particularly for production of 

broadband albedo at moderate spatial resolutions, rather than for parameter retrieval and 

interpretation. They are intended merely to act as angular interpolants for limited samples 

of directional reflectance. As a result, the angular kernels take no account of spectral 

reflectance behaviour -  they are independent of wavelength. Consequently, the analyses 

presented in chapters 4, 5 and 6 were expressly undertaken to be independent of 

wavelength. Despite this, it was shown that the angular kernels are sensitive to spectral 

variations in reflectance behaviour.

Accurate estimates of albedo are required in order to characterise the shortwave 

energy fluxes at the Earth’s surface, in particular for climate modelling. Land surface 

albedo is a measure of the proportion of incoming solar radiation reflected at the surface, 

and, more importantly, the quantity absorbed. As a result broadband albedo - across the 

spectral range of incoming solar radiation - is a lower boundary condition in models of 

global climate. However, albedo is generally parameterised in some way to overcome 

issues of measurement and spatial variability (Pinty et a l, 2000; Strugnell et a l,  2000). 

Henderson-Sellers and Wilson (1983) suggested that albedo is required to an accuracy of 

±5% in order to be useful for climate studies. Sellers (1993) has since proposed a standard 

of accuracy in albedo measurements of ±2%. Given these constraints, the general 

insensitivity of the angular kernels to spectral variation, and the resulting limitation to 

production of narrowband estimates of albedo is clear. More than 40% of the total 

incoming solar energy lies in the visible to mid-IR region o f the spectrum (0.35 and

0.7pm). In order to effectively describe surface energy fluxes, accurate estimates of 

albedo are required across this shortwave region (Justice et a l ,  1998). Conversion of 

limited spectral samples of albedo to a single broadband value requires a number of
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assumptions and approximations. As outlined in section 2.1.1, spectral albedo can be 

convolved with the solar spectrum (Brest and Goward, 1987). In this case, albedo, a , is 

calculated as

j p ( À ) a ( Â ) d ÀCC — j  jucyx i ^ ^

s o la r s p e c t r u m

where p (l)  is the proportion of the total downwelling solar radiation at wavelength X 

(dependent on current atmospheric state); and a{X) is spectral albedo, derived from the 

integration (with respect to the viewing and illumination geometry, Q and Q ) of the 

angular kernels. These integrated terms provide estimates of (spectral) directional

hemispherical and bihemipsherical reflectance (p(A,Q' )  and p (à )  respectively). a(X) is 

then a weighted sum of these two components, with the weights determined by the 

relative quantities of direct and diffuse illumination. A drawback of this method is that it 

relies on being able to characterise the current atmospheric state, and success or failure in 

this respect will largely determine the accuracy of the results (Lewis ei a l ,  1999). Liang 

et a l  ( 1999, 2000) and Liang (2000) have shown that it is possible to use a series of pre­

calculated conversion factors to calculate 'inherent surface albedo' (as opposed to 

'apparent surface albedo' observed in the presence of atmospheric scattering) from 

narrowband measurements of reflectance. This method works quite well for calculating 

visible albedo, but less so for total shortwave albedo (Liang, 2000). In addition, radiative 

transfer simulations of atmospheric scattering are required to decouple surface and 

atmospheric components of TOA reflectance, which in turn rely on assumptions about 

atmospheric state, and/or the use of standard models of atmospheric scattering. Another 

approach is to use hyperspectral measurements of reflectance as a first pass at a spectral 

interpolant. Lucht et a l  (2000) employed an observed hyperspectral reflectance profile as 

a spectral interpolant to convert spectral samples of satellite-observed albedo to 

broadband albedo (305-2800nm), rather than use an arbitrary spline curve. There is also a 

large body of work on spectral unmixing which seeks to extract (sub-pixel) areal 

proportions of so-called spectral end-members ('pure' vegetation and soil spectra) from 

multispectral reflectance measurements (Settle and Drake, 1993; van Leeuwen et el ,  

1997; Bateson et al ,  2000).

This chapter presents a method of directly exploiting existing knowledge of 

variations in the spectral reflectance behaviour of soil and vegetation in order to 

interpolate limited samples of spectral canopy reflectance, ç>canopy{X), over a much wider
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range of wavelengths (in particular 450-2500nm). In a direct analogy with the 

development of the angular kernels, it is proposed that PcanopyQ̂ ) can be split into 

constituent components of spectral soil and vegetation spectral reflectance, (pso//(^) and 

Pveg(^)) (c.f. separation of the volumetric and GO components o f pcanopyi^, ^ ’))- Further, 

it is demonstrated that a small number of simple pjo//(^) and pveg(^) terms can be 

combined in a weighted linear summation to describe the majority of observed variance 

in the behaviour of pcampyW- It will be shown that such terms (subsequently referred to 

as spectral kernels) can be readily derived and applied. More usefully, these spectral 

kernels can potentially be coupled with the angular kernels in order to provide a linear 

kernel-driven description of spectral directional canopy reflectance, pca^opv(K O, Q ’). 

There are several key areas where such a development is likely to prove extremely useful:

i. Generation of broadband albedo (across the visible, SWIR and NIR regions) 

from a potentially small number of narrowband samples. As described above 

this is currently problematic as it is reliant on an ability to accurately characterise the 

atmospheric conditions under which reflectance measurements are obtained. The 

ability to interpolate limited spectral samples across the observed spectrum 

(essentially a spectral integral of pcanopy( )̂) is analogous to the use of the angular 

kernels to derive angular integrals of directional reflectance samples in order to

derive p(A, Q ') and p(A) (so-called black-sky and white-sky albedo).

ii. Separation of the soil and vegetation scattering components of pcanopy( )̂- This is 

o f particular use for studies of radiation interception and photosynthetic efficiency. 

Parameters such as fAPAR are directly related to absorption of the 

photosynthetically active part of incoming solar radiation by vegetation within the 

canopy. The ability to isolate the spectral component o f scattering originating from 

the vegetation would clearly be of benefit to such studies. The separation of the soil 

and vegetation components of pca^py(X) is analogous to the separation of the 

volumetric and GO components of pcc7/?opy( ,̂ ^ ’)-

iii. Making better use of limited directional/spectral sampling to improve BRDF 

model inversion. The spectral kernels have the potential for exploring the meaning 

of derived spectral model parameters in the same manner as has been achieved with 

the directional kernels. This would permit better understanding of the impact of
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spectral sampling on the accuracy of BRDF retrievals, similar to the way in which 

angular sampling has been explored (Lucht and Lewis, 2000).

iv. Permitting the combination of multispectral data from sensors with different 

spectral bands and band-pass functions. This would have the benefit of 

maximising the information extraction from of sensors with complementary spectral, 

spatial and temporal capabilities e.g. Meteosat Seeond Generation (MSG) 

(www[7.1]) and POLDER (www[7.2]). ‘Data synergy’ has long been an aim of 

remote sensing studies. Spectral kernels could be used to ‘normalise’ samples of 

spectral reflectance to a common set of wavebands. This is analogous to the use of 

angular kernels to normalise samples of directional reflectance obtained under 

arbitrary viewing and illumination conditions to a common viewing and illumination 

geometry (usually nadir).

7.2 Concept of spectral kernels

What is proposed is a series of simple functions that can be superposed in a 

weighted linear combination to describe the dominant shortwave (visible and NIR) 

reflectance characteristics of spectral canopy reflectance. This assumes that Pcanopyi}̂ ) can 

be considered as follows

Pc.„opA^) = ‘̂ ^Ps + ‘̂ iP , + («3A A  + “t P . p l  + OsP I p , + Of,plpl  + ...) 7.2

single multiple
scattering scattering

component component

where a, are constants; and pv are the single scattering contributions to pcanopy from the 

soil and vegetation (reflectance or transmittance); terms in brackets are multiple 

scattering contributions representing higher order interactions between soil and vegetation 

(truncated). It should be recalled that the single scattered component of directional 

reflectance is the dominant feature, with successively higher orders of multiple scattering 

interactions becoming increasingly isotropic. The work of Price (1990) for soil, and Price 

(1992) and Hurcom et a l  (1996) for vegetation suggest this is a reasonable assumption 

for PcanopyQ̂ )- Figure 7.1 demonstrates the dominance of the single scattered component 

of pcanopyQ̂ ) (note that the plot is logarithmic with respect to the reflectance
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Figure 7.1 Direct and diffuse scattering contributions to simulated pcunopv as a 
function of scattering order (barley canopy, 15̂ '̂  May, nadir viewing and

illumination).

contributions). In this example, the single scattered components contain 98% and 95% of  

the total contribution to reflectance in the direct and diffuse cases respectively (this is 

low, and is a result o f  the relatively sparse canopy).

If pcunopyO ^)  =  ( p i ,  P 2 ,  • • • •  ,  p n )  I S  an obscrvcd reflectance spectrum for the set o f  n 

wavelength values X = (À|,À2, .... X^) then the desired spectral kernels (referred to by Price 

(1990) as basis functions) are k(À,,%, .... À»), and

7.3
/=1

where the fj are the weights associated with each spectral kernel. The total number o f  

basis funetions, M, clearly cannot exceed the number o f  available bands, n, in the 

observed data (e.g. four in the case of  MISR, and typically seven for MODIS), and 

ideally, M «  n. This must suffice for a description o f  both the soil and vegetation 

components o f  pco„o/,r(^).

If such spectral kernels are plausible, they eould be com bined with the angular
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kernels to create a spectral directional kernel-driven model of canopy reflectance. This 

situation is described in equation 7.4.

P c . n o , A ^ ’) =[p . eA^ )+ P so :M h \P vO L (^> ^ ') + 7-4

spectral directional
component component

The spectral kernels would then provide a link between the spectral and 

directional domains, which is currently missing in the kernel-driven approach to 

modelling ç>canopy The full spectral directional kernel-driven approach is then of the form

M N

/ = 1  y = l

where N is the number of angular reflectance samples, and k, and k, are the spectral and 

directional kernels respectively. This approach considers the spectral and directional 

components of pcanopy as separate, and models each of them correspondingly as a linear 

sum of terms (kernels).

The remainder of this chapter presents a derivation of spectral kernels for psouQC) 

and and demonstrates their use, in combination with the angular kernels, in

describing modelled and observed spectral directional pcanopy The structure is as follows;

i) Derivation of spectral kernels from laboratory reflectance spectra, in particular

Pveg(A.).

ii) Demonstration of kernels' ability to describe pao/v(l) and pygg(A,) individually, and

Pcanopy(,'̂ \

iii) Demonstration of ability of spectral and directional kernels to describe pcanopyiK 

(O, Q')).

iv) Discussion of implications, particularly in relation to the calculation of spectrally 

integrated products such as albedo.
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7.3 Derivation of spectral kernels

The kernel-driven models of BRDF arose from the observation that it is possible 

to consider Pcanopy{̂ -> as a sum of separate volumetric and GO terms (Roujean et a l, 

1992; Wanner et a l,  1995). This approach considers Pcanopy{ ,̂ Q ') to be a sum of the 

dominant volumetric and GO “shapes” governing reflectance behaviour. The derivation 

of the angular kernels was described in detail in chapter 2, and the separability and 

information content of the two components was explored in chapters 4 and 5. The spectral 

kernels outlined below are derived from a similar observation: that PcanopyQ̂ ) can be 

considered as a combination of the spectral reflectance behaviour of soil and vegetation 

respectively. This work is based on that of several authors, notably Price (1990, 1992, 

1998), who have noted that the major variations in reflectance behaviour of both soil and 

vegetation can largely be described by a few simple basis functions (spectral kernels).

7.3.1 Reflectance features o f vegetation

It is well known that that both vegetation and soil exhibit characteristic reflectance 

features (Carlson et a l, 1971; Huete, 1989; Jacquemoud and Baret, 1990; Price, 1990; 

Curran et a l, 1992; Asner, 1998). Different types o f vegetation tend to differ far more in 

the relative magnitude of characteristic reflectance features than the wavelengths at which 

these features occur. Examples of leaf and soil spectra in figures 7.2 and 7.3 illustrate 

this.
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Figure 7.2 Laboratory-measured vegetation reflectance spectra (Hosgood et a l, 1994).
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Figure 7.3 Field-measured soil and vegetation reflectance spectra (Milton,perv. comm.).
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Figures 7.2 and 7.3 show both laboratory- and field-measured reflectance spectra 

of a variety of vegetation. Figure 7.3 contains spectra o f a single leaf, a layered leaf 

medium, an optically thick leaf stack, and a pastille o f powdered green leaf material. 

These spectra represent an extremely wide range of physical conditions (some artificial), 

yet the characteristic leaf reflectance features are present in all cases: the reflectance peak 

in the visible green (~550nm) due to chlorophyll pigments; the sharp rise in reflectance 

from the visible red to the shortwave IR (the so-called red-edge); water absorption 

features in the NIR at around 1450 and 1900nm. The spectra in figure 7.3 also display 

these similarities, albeit with wider variation due to external factors present in field 

measurements (atmospheric conditions, field of view considerations etc.). The difference 

between the soil spectra (in the visible at any rate) is essentially a linear transformation of 

scene brightness caused by the presence or absence of direct sunlight. The question 

remains as to whether the variation in the soil and/or the vegetation reflectance can be 

represented using simple terms in linear combination.

7.3.2 Soil kernels: the soil component o f Pcanopy(^)

Price (1990) showed that the soil component of PcanopyQ̂ ) can be well-represented 

by a linear combination of basis functions, or kernels derived from measured spectra. 

Price {ibid.) applied principal component analysis (PCA) to laboratory-measured soil 

spectra o f a wide range of soil types. PGA allows a set of correlated observations to be 

transformed to a set of uncorrelated (principal) components, or basis functions, by 

calculating the eigenvectors and eigenvalues of the variance-covariance matrix of 

observations. The percent variance in the data described by each PC is simply the 

corresponding eigenvalue, scaled by the sum of all eigenvalues (and multiplied by 100). 

The first PC describes the largest variance within the data, with subsequent PCs 

describing successively less of the observed variance. PCA permits the decomposition of 

observed spectra into PCs (spectral basis functions) which can then be summed to 

regenerate the original reflectance spectra.

Price {ibid.) showed that the first four PCs of laboratory-measured soil reflectance 

explained nearly 98% of the observed variance in the data, with the remaining variance 

attributable to measurement noise. Price's first four soil basis functions are shown in 

figure 7.4 (the functions are scaled in this case - the first basis function described over
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95% of observed variance). Huete (1986) used factor analysis (closely related to PCA) to 

separate soil and vegetation spectral mixtures, whilst Huete and Escadafal (1991) applied 

spectral decomposition techniques (also closely related to PCA) to field-measured soil 

spectra. They found that four basis functions were sufficient to reconstruct observed 

spectra. Given the success of the spectral decomposition/PC A analysis of soil reflectance, 

and the use of Price's basis functions by a number of other researchers, notably by Nilson 

and Kuusk (1989) to describe p,a/v(?̂ ) in their physically-based canopy reflectance model, 

it makes sense to use these basis functions as the soil spectral kernels in the spectral 

kernel-driven model of pcanop\0̂ )- It then remains to derive corresponding vegetation 

kernels.
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Figure 7.4 Price's first four basis functions of observed soil reflectance spectra.

It is apparent from figure 7.4 why Price's first basis function describes so large a 

proportion of the observed variance of soil reflectance. The rise across the visible and 

NIR parts of the spectrum is characteristic of soil reflectance, as are the water absorption 

features at around 1300 and 1900nm. The second and higher basis functions can act to 

moderate the first basis function depending on the visible and NIR reflectance behaviour 

of the soil being modelled.
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7.3.3 Vegetation kernels: the vegetation component o f  pcanopy( )̂

The fact that spectral reflectance of vegetation has certain common features has 

been exploited by a number of researchers. Price (1992) showed that high resolution crop 

reflectance spectra measured in the field could largely be described using a weighted 

linear summation of the first five PCs of the observed data. Hurcom et al. (1996) used 

spectral decomposition to demonstrate that four factors (closely related to PCs) described 

99.86% of observed spectral variance of semi-arid Mediterranean vegetation species. 

Some of these factors appeared to be correlated with biophysical properties such as the 

proportion of directly irradiated green leaf area viewed by the measurement instrument, 

and spectral response in the chlorophyll absorption region. Hurcom et al. {ibid.), and 

Hurcom and Harrison (1998), have also suggested that these vegetation factors could be 

used to describe the variation of spectrally similar vegetation types in terms of 

biophysical properties, rather than as mixtures of various spectral classes as in the 

standard mixture modelling approach. Indeed, work by Jacquemoud and Baret (1990), 

Baret et al. (1994) and Jacquemoud et al. (1996) has demonstrated that leaf reflectance is 

mainly controlled by a small number of physical parameters affecting leaf absorption 

behaviour (as opposed to scattering behaviour), such as leaf mesophyll structure, pigment 

concentration (chlorophyll a and b), and water, lignin and cellulose content. These are the 

minimum terms required to model leaf reflectance accurately. However, these terms are 

non-linear and so cannot be combined in a linear fashion as required here.

Following the approach of Price (1990, 1992), and Hurcom et al. (1996), 

vegetation spectral reflectance kernels (basis functions) have been derived through PCA 

of a large number of measured reflectance spectra. The primary difference between the 

analysis described here and Price’s work is the availability o f both transmittance and 

reflectance spectra. This potentially permits the derivation of single scattering albedo 

kernels, given that single scattered albedo co = p + t. One of the aims of developing a 

linear kernel-driven model of pcampy is to allow broadband estimates of albedo to be 

derived from limited spectral samples. The most logical way to achieve this (and the most 

consistent with respect to energy conservation) is to use single scattering albedo from the 

outset.

Other differences from the analysis of Price (1990, 1992) are that the spectra used 

here were measured under laboratory conditions, rather than in the field where
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measurement error increases due to atmospheric effects. In addition, the number and 

variety of spectra used are much greater, with nearly two thousand vegetation spectra, 

from one hundred and twenty distinct vegetation types. This compares with less than two 

hundred spectra of at most five crop types in Price's analysis. Finally, due to advances in 

computational capability it is now straightforward to carry out robust and accurate 

numerical inversions of matrices of the order of 2000 x 2000 in a few minutes. Price was 

forced to use numerical approximations in order to carry out piecewise inversions of 

significantly smaller matrices.

The reflectance and transmittance data used in this analysis were measured in the 

controlled environment of the European Goniometric Observatory (EGO) facility, at the 

Joint Research Centre (JRC), Ispra, Italy'. These data were the result of the Leaf Optical 

Properties Experiment (LOPEX) (Hosgood et a l,  1994), and formed the basis of work 

relating biochemical properties to reflectance (Jacquemoud et a l ,  1995) as well as for 

development o f the PROSPECT-REDUX leaf reflectance model (Jacquemoud et a l,  

1996). A range of optical configurations are included within the LOPEX data, such as 

optically thick media (bark), fresh and dry (oven-dried) leaf samples, in addition to 

pastilles of powdered leaf samples, and fresh and dry leaf stacks (layered media) which 

are included to represent leaf-scale multiple scattering. It is known that the reflectance of 

oven-dried leaf spectra is not quite the same as naturally dry, brown vegetation and this 

will affect results slightly, in particular in the transition from visible to NIR wavelengths. 

However, it is intended that if/when naturally dry leaf spectra become available, these 

will he added to the analysis presented below. The spectra in figure 7.2 are drawn from 

the LOPEX data. Figures 7.5a and b show the (normalised) spectral vegetation kernels 

derived from the fresh and dry single scattered spectral albedo. These kernels are likely to 

be the most widely applicable, as they are derived from fresh and dry reflectance and 

transmittance spectra, as well as the pastille and leaf stack spectra. The latter spectra will 

potentially allow the kernels to describe at least the first order (spectral) multiple 

scattering terms of equation 7.2.

’ Kindly provided by B. H osgood, technical director o f  the E G O  facility.
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Figure 7.5a First Five vegetation spectral kernels derived from fresh and dry single
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Figure 7.5b First five vegetation spectral kernels derived from fresh and dry single
scattered albedo ( 1000-2500nm).
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The cumulative variance of the original data explained by each of the spectral 

kernels is given in table 7.1. The first and second kernels explain 83.9% and 14.5% of the 

observed variance respectively. The third component explains less than 1% of observed 

variance. This suggest that in most cases, two to three vegetation kernels should be 

sufficient to describe the majority of observed variance, particularly in the case of 

green vegetation. More kernels can be used (at the expense o f requiring more spectral 

samples), but this will generally only serve to significantly improve fitting when the 

spectra diverge from healthy vegetation.

Table 7.1 First five eigenvalues of PCA of LOPEX fresh and dry single scattering 

albedo, and the corresponding percent variance.

PC eigenvalue cumulative variance (%)
1 43.85 8T85
2 7.56 9831
3 0.39 99.05
4 0.11 9930
5 0.067 99.71

The reduction in explained variance from PC 1 to 2 in this case is smaller than for 

any of the other possible combinations of LOPEX spectra. For example, if  only fresh leaf 

reflectance is used, the first PC explains 95.8% of observed variance, and the second, 

3.4%. If dry leaf transmittance is used, the first PC explains 96.5% of observed variance, 

and the second PC, 2%. As a result, these combinations are likely to permit fewer 

vegetation kernels to be used to model a given set of observations of Pcanopyi'̂ )- However, 

the ability to describe albedo directly is of greater importance, and hence the combination 

of fresh and dry single-scattered albedo is thought the most appropriate at this stage.
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7.4 Testing the spectral kernels

The first step in demonstrating the applicability o f the spectral kernels is to show 

they can reconstruct independently measured soil and vegetation spectra. These data are 

provided by the Natural Environment Research Council Equipment Pool for Field 

Spectroscopy (NERC EPFS), based at Southampton University^, from spectra measured 

in a variety of locations and (field) conditions. The EPFS data comprise 85 spectra of 

various cover types (not just soil and vegetation), measured using a 15° FOV hand-held 

radiometer, with a wavelength range of 400 to lOOOnm in steps of Inm. Results are 

presented from inversions of spectral kernels derived from fresh and dry leaf reflectance 

and transmittance as well as fresh and dry single scattered albedo, against all available 

observed spectra. This is to examine the limitations (if any) of using only the fresh and 

dry single scattered albedo spectral kernels to reconstruct observed spectra. Following 

this, specific examples of inversions of the derived spectral kernels against field- 

measured reflectance are presented, such as green and senescent vegetation. Following 

this, results are presented for inversion of both spectral and directional kernels 

simultaneously against spectral, directional reflectance samples generated using a 

physically-based (radiative transfer) model of canopy reflectance (the model of Nilson 

and Kuusk, 1989). In this case, samples of reflectance are simulated with 0  ̂varying from 

-75 to 75 degrees (0, = ()),> = 0°) in steps of 5°, with spectral bands from 400 to 2500nm in 

steps of 20nm. This is designed to test the kernels' ability to fit the spectral component of 

Pcampy> related to pieaf- Although pcanopy coutaius a significant (non-linear) multiple 

scattering component, a linear combination of kernels (including a kernel related to 

multiple scattering, derived from leaf stack spectra) may be capable of describing spectral 

variation in this case. Lastly, the spectral kernels are inverted against multi-spectral ATM 

data (described in section 3.1.5).

2 Many thanks to Dr. E. Milton and colleagues at EPFS for use o f  the field data.
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7.4.1 Inversion against all NERC EPFS spectra

The results presented in figures 7.6, 7.7 and 7.8 illustrate the kernels' performance 

in inversion against the entire EPFS data, containing spectra of (amongst other things) 

concrete, water, gorse, limestone and vegetation. These surfaces cover a variety of spectra 

that are likely to be found in the pixels of a moderate (km-seale) resolution satellite image 

of the land surface.
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Figure 7.6 Cumulative relative error of inversion of vegetation spectral kernels derived 
from fresh and dry retlectance and transmittance spectra, against all EPFS spectra.
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Figures 7.6, 7.7 and 7.8 shows the cumulative (relative) error frequency for 

inversion of the kernels against all 83 spectra included in the EPFS data set. The vertical 

axis represents the percentage of samples in total with RMSE below this level and the 

horizontal axis shows the RMSE at that cumulative error level. There is a noticeable 

increase in RMSE at around the 90% cumulative relative frequency level (except for the 

five kernel case). This error level, at which 90% of inversions have a lower error, is used 

as a comparison between the various cases. The fresh and dry reflectance and 

transmittance (p and x) case (figure 7.6) is included to examine whether using single 

scattering albedo confers any advantage over using reflectance or transmittance spectra 

alone. The p and x cases are separable on RMSE at the 90% level, particularly in the one 

to three kernel cases. Results are presented in table 7.2.

Table 7.2 RMSE of inversion of various kernel combinations against field-measured 

spectra.

RMSJ I (at 90% cumu ative error level)
no. of kernels fresh + dry p fresh + dry x fresh CO fresh + dry co

1 0.09 0.1 0.11 0.106
2 0.046 0.042 0.04 0.106
3 0.016 0.028 0.02 0.064
4 0.019 0.013 0.014 0.063
5 0.009 0.009 0.008 0.013

As might be expected, increasing the number of kernels improves the ability of the 

spectral kernels to recreate measured spectra. As might also be expected, increasing the 

number of kernels produces progressively less improvement each time. Kernels derived 

from reflectance or transmittance spectra alone exhibit broadly similar characteristics. For 

a fixed number of kernels those derived from fresh spectra tend to perform slightly better 

than the same number derived from dry spectra. Kernels derived from both fresh and dry 

reflectance spectra generally performed better than those derived from fresh and dry 

transmittance spectra. Operationally, it is preferable to keep the number of spectral 

kernels to an absolute minimum so that the number of bands required for inversion is kept 

small (ideally less than seven). Given that between two and four soil kernels will be 

required in order to describe the PsonÔ ) component of pcanopyQ̂ ), it is desirable that the 

pvgg(l) component of pcanopyÔ ) can be described by two or three vegetation kernels.

Figures 7.9a and b show the relative error of inversion (mean RMSE as a fraction 

of mean reflectance) for all the various EPFS field-measured reflectance spectra. RMSE
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for the one and four kernel cases are shown for all samples. In the cases where the spectra 

resemble green vegetation spectra closely, the relative error is between 5% and 10%. The 

difference in error between using one or four kernels is small. As the spectra depart from 

green vegetation (asphalt, concrete, limestone and water), relative error increases and the 

difference between the one and four kernel cases becomes larger, doubling in the most 

extreme cases. This demonstrates further that two kernels may well be sufficient to 

describe reflectance of green vegetation. Figures 7.10a and b show spectral plots of 

measured and modelled lush and dry grass spectra in the visible and NIR respectively. 

Although there is excellent general agreement, it can be seen that differences tend to be 

concentrated in the visible part of the spectrum. This is not necessarily desirable for 

studies of albedo, as the incoming solar radiation is at a maximum here, which will tend 

to exacerbate such errors.
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Figure 7.9a Relative error of inversion, EPFS reflectance spectra samples 1-47, 1 and 4
kernels.
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Figure 7.10a Original and m odelled lush and dry grass spectra, 1 and 4 kernels,
visible.
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Figure 7.10b Original and m odelled lush and dry grass spectra, 1 and 4 kernels, NIR.
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7.4.2 Demonstration o f vegetation spectral kernels against specific measured spectra

Figures 7.11 a and b show scatter plots of measured against modelled retlectance 

of the lush grass and dry grass spectra shown in figure 7.10. These spectra representing a 

broad range of vegetation reflectance characteristics, from healthy, green vegetation to 

senescent. The spectra were measured in the field under varying atmospheric conditions, 

so providing a stem test of the kernels' flexibility. In each case, one to five vegetation 

kernels are used to derive the forward modelled reflectance spectra. Using more kernels is 

always more likely to provide a better fit to the observed data due to the increased degree 

of freedom (assuming overfitting is not occurring), at a cost of requiring more spectral 

bands.
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Figure 7.1 la  Measured against modelled lush grass refleetanee, I - 5 vegetation kernels.
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Figure 7.1 Ib Measured against modelled dry grass refleetanee, 1 - 5 vegetation kernels.

It can be seen from figure 7.11a that there is close conelation between the 

measured and modelled lush grass reflectance (r values greater than 0.98 in all cases). 

There is greater variation in the scatter o f  the dry grass reflectance values (figure 7.1 lb, r 

around 0.95), in particular at visible parts o f  the spectrum (lower values of  reflectance). 

The pattern o f  variation in the RMSE is not unexpected. The lush grass has by far the 

lowest RMSE and, although the error reduces as the number o f  kernels increases, the 

reduction is relatively small (0.0099 for 1 kernel to 0.0065 for 5 kernels). This illustrates 

that when fitting spectra o f  green vegetation, only one or perhaps two kernels are 

necessary to achieve a good fit, simply because o f  the close resemblance of, in particular 

the first kernel, to the general green leaf reflectance shape. The RMSE in the ease of  dry 

grass is approximately double that o f  the lush grass case, with the exception o f  the five 

kernels case where the RMSE values are comparable (0.020 for 1 kernel, 0.0056 for 5 

kernels). This demonstrates that a larger number o f  vegetation spectral kernels can, if 

necessary, fit a wide range of  spectra. The addition o f  more kernels will allow more 

flexibility, but it is not necessarily desirable to allow the kernels to fit any kind of 

reflectance as they are intended in part to allow the separation o f  vegetation and soil 

spectra from pc„„r,/n,(^).
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Figure 7.12 shows the residual eno r  between the measured and modelled lush and 

dry grass retlectance values shown in figure 7.10. There are two main areas of difference 

- firstly in the visible green and red (500-650nm) where the modelled reflectance tends to 

be on the low side in the lush grass case, particularly in the regions o f  strong chlorophyll 

absorption at around 580nm. The one and four kernel cases are virtually identical. 

However, for the dry grass case they differ in the visible region, with the one kernel case 

over-estimating reflectance, while the four kernel case has a much smaller residual error. 

Across the red edge and into the NIR the lush grass case has a very low residual eiTor, 

while the modelled dry grass reflectance overestimates the measured values. This is 

largely a function of  the difference in the position o f  the red edge in the dry grass spectra. 

The gradient o f  the spectral reflectance at this point is such that if the red edge position is 

very slightly out, the differences between measured and modelled values will be 

amplified.
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Figure 7.12 Residual eiTor between measured and m odelled lush and dry grass 
reflectance, one and four kernel cases.

It is worth noting that RMSE may not be the most appropriate measure o f  fitting 

error in the case o f  modelling vegetation spectra. There may be regions o f  close 

agreement between measured and modelled spectra in some parts o f  the spectrum and 

disagreement in others and RMSE over the whole spectrum will not reflect this. Other
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error measures based on specific features of observed vegetation reflectance may be more 

instructive. For example, discrepancies in the red edge position between measured and 

modelled spectra may represent the ability of spectral kernels to reconstruct spectral 

reflectance in the visible and NIR more accurately than RMSE. Red edge position also 

has the advantage of being (empirically) related to the biophysical properties of 

vegetation (particularly in the visible and NIR).

Another measure of goodness of fit might be a spectral index such as NDVI 

(Normalised Difference Vegetation Index) (Rouse et a l,  1974) which is simply the 

difference between the NIR and visible red signal divided by their sum. A more general 

measure o f the suitability o f a particular model (in this case represented by type and 

number of spectral kernels) is an information criterion (IC) such as that of Akaike (1974) 

(AIC). AIC balances the (log) maximum likelihood selection of a particular model against 

both the number of observations and the number of free model parameters. Table 7.3 

shows the results of applying these three criteria to the inversions of one and five (fresh 

and dry single scattering albedo) spectral kernels against lush and dry grass spectra (A 

values represent differences from the original spectra; lower AIC values represent better 

model fit). The red edge position in table 7.3 is calculated by finding the wavelength at

which — Y  -  0 • Red edge position in this case is defined as the wavelength (between 670 
dX

and 750nm) where the gradient of p(A,) is at its steepest. At this point, the derivative of 

p(X) will be at a maximum, and hence the second derivative will be zero.

Table 7.3 Comparison of RMSE to alternative estimates of model fit (k is kernels).

Grass
spectra

RMSE A(N1DVI) A(red edge)/nm AIC
1 k 5 k 1 k 5 k 1 k 5 k 1 k 5 k

dry I 0.043 0.019 0.089 0.021 5 2 -414.3 -646.6
dry2 0.042 0.019 0.098 0.015 5 2 -465.8 -630.0
dry3 0.050 0.017 0.123 0.016 0 3 -433.9 -684.4
dry4 0.068 0.015 0.195 0.015 6 2 -379.4 -699.6
lushl 0.025 0.024 0.026 0.069 10 9 -587.2 -653.2
lush2 0.032 0.027 0.019 0.089 14 10 -549.7 -626.3
lush3 0.038 0.027 0.001 0.084 14 9 -519.3 -633.1
lush4 0.028 0.024 0.012 0.067 11 9 -571.9 -648.1
lush5 0.048 0.033 0.018 0.097 14 9 -457.3 -583.9

In this case, the various measures exhibit broadly the same trends as RMSE 

(particularly AIC). However certain features are emphasized e.g. A(NDVI) varies more 

strongly then RMSE in the 1 kernel lush grass case and is actually more sensitive
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generally. Table 7.3 highlights the fact that RMSE may not always be the best (or most 

appropriate) measure o f  model fit, particularly when modelling biophysical processes. 

This fact should be considered (along with parameter constraint and energy conservation 

requirements) in any implementation o f  a full spectral directional kemel-driven model of

^canopy

7.5 A spectral directional kernel-driven model o f  p̂ ,canopy

In order to test the spectral kernels fully (as they would be applied in practice) 

they must be applied in conjunction with the angular kernels (equations 7.4 and 7.5) to 

samples o f  spectral directional reflectance. In order to provide a stable comparison 

(avoiding the ambiguities that may be introduced at all stages during field measurement 

o f such data), spectral directional reflectance data were generated using the physically-

based canopy retlectance model o f  Nilson and Kuusk (1989). This model was used as it

can be run in forward and inverse modes quite rapidly. Retlectance data were generated 

for canopy contlgurations as follows:

■ LAI of  0.1 and 4 (sparse and dense canopy cases).

■ 0,. varying from -75 to 75 degrees (0 ,  = (j),,,.. =  0 ° )  in steps o f  5°.

■ Spectral bands varying from 400 to 2500nm in steps o f  20nm.

reflectance
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Figure 7.13 Simulated ĉanopy. LAI = 0.1, 0, = 0°. 
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Figure 7.14 Simulated pca/,«/;v, LAI = 4, 0, = 0°.

Figures 7.13 and 7.14 show the simulated spectral directional pcanopy data for low 

and high LAI eases (0.1 and 4 respectively). The LAD for each canopy was uniform. 

Spectrally, the low LAI ease is unsurprisingly very close in shape to soil retlectance, 

while the high LAI case is typically characteristic of vegetation. In directional terms, the 

low LAI canopy possesses a shallow, inverted 'bowl-shape' with a relatively low overall 

magnitude (maximum of around 30%). The high LAI case is relatively flat in the visible 

region, with a peak in the hotspot direction but is more significantly peaked across the red 

edge and into the NIR. Reflectance is generally higher overall in this case, rising to close 

to 70% at nadir in the NIR.

The full spectral directional linear kemel-driven model (equations 7.2 and 7.4) 

was inverted against the simulated pcanopy data, generating modelled estimates of 

directional and spectral reflectance, each with the associated model kernel weights, 

foi*ward modelled refleetanee components, and RMSE values. The spectral kernels were 

inverted against the spectral estimates of pcanopy (Erst term of equation 7.5) while the 

angular kernels were inverted separately against the angular samples of pcanopy in each 

waveband (second temi of equation 7.5). It should be noted that in future applications the 

set of kernels will include spectral and angular temis, which will be inverted together 

against pcanopy In this way the kernels will be explicitly linked. This raises the possibility 

that the spectral kernels may end up fitting angular refectanee variations (and vice versa),

222



as the inversion process simply minimises ê' between observed and modelled values of 

ĉanopyQ̂ , (O, Q ')), ^^d does not discriminate between "angular" and "spectral" variation. 

However it is likely that the fit of spectral kernels to PcanopyQ̂ ) and angular kernels to 

ç>canopy{̂ , O ') will achieve this. If necessary, constraints can be applied to enforce this.

As in previous chapters, the RossThick and LiSparseModis kernels are used 

(volumetric and GO kernels respectively). The spectral kernels are applied in varying 

combinations to modelling the spectral component of the simulated samples of pcanopy 

The number of separate soil and vegetation spectral kernels applied to each set of 

simulated Pcanopy (varying LAI) is varied between one and three. Hence, the minimum 

total number of spectral kernels is two (one soil and one vegetation) and the maximum is 

six (three soil and three vegetation). Results are presented as follows:

■ Original spectral reflectance against reflectance reconstructed using spectral

kernels and scatter plots of one against the other.

■ Analysis of RMSE and residuals for different numbers of kernels.

■ Original directional reflectance against reflectance reconstructed using angular 

kernels and scatter plots of one against the other.

■ Directional component of reconstructed spectral reflectance and comparison

with spectral component of reconstructed directional reflectance (c.f. chapter 6).
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7.5. /  Performance o f spectra! kernels against simulated spectral directional canopy

0.8
G---- o  LAI = 0.1 (original)
Q---- Q LAI = 4 (original)
O----OLAI = 0.1 (s i v1)
6 ----A LAI = 0.1 (S3 v3)

^  LAI = 4 (si v1) 
■<1 LAI = 4 (s3 v3)0.6

§
§  0.4  0)

0.2

0.0  ' 

400 2000 2400800 1200 1600
wavelength (nm)

Figure 7.15 Demonstration of spectral kernels' ability to reconstruct spectral retlectance 
for two LAI cases, for two separate kernel combinations (By = 0, = 0°).

Figure 7.15 shows results from inverting a spectral kernel-driven model against 

simulated ç>canopy (labelled original) for low and relatively high LAI canopies (0.1 and 4 

respectively). Inversions of  one soil plus one vegetation kernel (labelled s l v l ) ,  and three 

soil plus three vegetation kernels (labelled s3v3) are shown. It can be seen immediately 

that in most cases the spectral kernels do an excellent job o f  reconstructing pcm,o/;y(A.), 

particularly across the red edge in the high LAI case and in the NIR. An exception to this 

is for the low LAI canopy when only two kernels are used. This configuration lacks the 

flexibility required to accurately reconstruct observed reflectance. As a result the forward 

modelled reflectance spectra overestimate reflectance in the visible and SWIR and 

underestimate at longer wavelengths. This inflexibility is also apparent in the high LAI 

case, particularly in the water absorption features at 1600 and 1850nm where reflectance 

is over-estimated by the s l v l  kernel combination. RMSE values for these inversions are 

given in table 7.4. In terms of  using a spectral kernel approach to derive albedo, the 

magnitude o f  RMSE suggests that more than one soil and vegetation kernel should be 

used, in order to keep error below I or 2% if possible.
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Table 7.4 RM SE o f  inversion o f  spectral kernels against reflectance data.

LAI kernel combination RMSE (% )
0.1 s lv l 3.96
0.1 s3v3 0.086
4 s lv l 3.67
4 s3v3 0.981

Figures 7.16 and 7.17 show scatter plots of original against forward modelled 

reflectance for the low and high LAI cases, for each kernel combination (s lv l, s2v3, 

s3v3) and for three separate view zenith angles (nadir, 30° and 60°). For the LAI = 0.1 

case, correlation increases dramatically from the two to four kernel cases, less so for the 

four to six kernel cases. Again, the largest discrepancies appear at lower reflectance 

values, particularly for the s lv l case. The LAI = 4 case shows distinctly higher 

correlation for the s lv l cases. In the low LAI case, r  ̂ tends to decrease with decreasing 

view zenith angle, particularly for the s lv l case. The reverse is true for the high LAI 

case.

Figure 7.18 shows a scatter plot of the combined results presented in figures 7.16 

and 7.17. The correlation for both LAI cases is generally high, with the LAI = 4 having a 

slightly higher value of r .̂ The disagreement is greatest at lower reflectance values (below 

0.15) as observed previously. Figure 7.18 illustrates clearly the effectiveness with which 

the spectral kernels can model the spectral component of pcanopyiKi^-P-^)), particularly if 

more than one soil and vegetation kernel are used. Results illustrating the separation of 

the vegetation and soil component are shown in the next section.
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Figure 7.16 Original against modelled reflectance, LAI = 0.
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Figure 7.17 Original against modelled retlectance, LAI = 4.
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Figure 7.18 Scatter plot o f  all v iew  zenith angles and kernels combinations.

Figure 7.19 shows the residuals associated with the model fitting o f  figures 7.16 

and 7.17. The residuals indicate that the model fit is (unsurprisingly) poorest for the two 

kernel case (s lv l) for both canopies. In particular, the kernels underestimate refleetanee 

in the visible by up to 7% for both canopies. In the NIR, results differ for the two 

canopies, with the kernels continuing to underestimate reflectance in the LAI = 0.1 ease, 

and overestimate in the LAI = 4 case. The residuals swap signs at around 1380nm before 

fluctuating in the 2000nm  range as a result o f  the inability to fo llow  the water absoiption  

features. The residuals for the six kernel cases (s3v3) are very much smaller, indicative o f  

the better fit obtained. The residuals in the case o f  the low LAI canopy are close to zero 

across the spectrum, w hile for the high LAI case, the only significant residuals are in the 

visible region, with residuals o f  around +/-3%.
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Figure 7.19 Residuals from fitting spectral kernels to renectance data.

7.5.2 Separation of soil and vegetation components

One aim o f  developing the spectral kernels is to allow the separation of  the 

spectral soil and vegetation components o f  Results presented below show the

spectral components o f  soil and vegetation retlectance extracted with the spectral kernels 

from the original pcanopy values. Figures 7.20 and 7.21 show the original spectral 

reflectance, as well as the modelled soil and vegetation components for the low and high 

LAI canopies respectively. The components o f  the two and six kernel inversions are 

shown and labelled respectively as s i, vl (k=2) and s[l,2,3] v(l,2,3| (k=6), where the s 

and V represent the number o f  soil and vegetation kernels respectively, as before. If the 

kernels are able to separate the spectral soil and vegetation components of  pcanopy. it 

would be expected that the soil kernels would dominate the soil component with minimal 

contribution from the vegetation kernels and the vegetation kernels would dominate the 

vegetation component.
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Figure 7.20 Soil and vegetation model parameters, LAI = 0.1.
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Figure 7.21 Soil and vegetation model parameters, LAI = 4.
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For the low LAI canopy s lv l  case, the single soil parameter dominates reflectance 

as would be expected. However, the vegetation parameter is exclusively negative (acting 

to reduce overall reflectance) indicating that one soil kernel is not sufficient to describe 

the soil component accurately. The soil parameter strongly overestimates reflectance in 

the visible and SWIR but matches reflectance quite closely at longer wavelengths, 

particularly in the water absorption feature at 1850nm. For the six kernel case, the first 

two parameters dominate the modelled reflectance and the third soil parameter is very 

much smaller, suggesting that two soil kernels may well be enough in some cases. The 

vegetation parameters are all close to zero.

For the high LAI ease, the separation of the soil and vegetation components is 

even clearer. In both the two and six kernel cases the vegetation parameters dominate 

reflectance. In the former case, although the single vegetation parameter dominates, 

particularly in the visible and NIR regions, the soil parameter contributes up to about 15% 

of total reflectance, mainly beyond lOOOnm. For the six kernel case, the first vegetation 

parameter is significantly larger than the corresponding parameter in the two kernel case, 

with the first soil parameter being lower. The remaining two soil parameters are close to 

zero. These results indicate that the kernels are quite capable of separating soil and 

vegetation components of spectral reflectance, even in a potentially tricky case such as a 

high LAI canopy where the single scattering contribution to soil reflectance is likely to be 

small due to the density of the canopy.

Figures 7.22 and 7.23 are scatter plots of all soil and vegetation components of 

forward modelled reflectance respectively, for both LAI eases. Correlation for the soil 

component is almost identical for both canopies (r  ̂ values of 0.837 and 0.833 

respectively). There is, however, a significant negative component for the high LAI 

canopy, where the magnitude of the original soil component is very low, and is generally 

much smaller than the vegetation component. However, the primary conclusion is that 

the soil kernels can successfully separate the soil component of Pcanopy and do it 

equally well for high or low LAI canopies.

Correlation between the original and forward modelled vegetation components of 

the low LAI canopy shown in figure 7.23 is close to zero. This suggests that the 

vegetation kernels have trouble separating out the vegetation component o f Pcanopy when it 

is small in comparison to the soil component. For the high LAI case correlation is
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virtually the same as in both the soil cases (r“ value o f  0.83). The modelled vegetation 

component is overestimated by around 7-10% across all values. This is reflected in the 

slope of the regression relation (0.9) and the intercept o f  0.09. These two results suggest 

the soil kernels are perhaps more flexible in being able to separate out the soil component 

in both high and low LAI canopies. The vegetation kernels can also separate out the 

vegetation component from ç>canopŷ  but tend to struggle when the soil component 

dominates.
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Figure 7.22 Scatter plot o f soil components o f  pcanopy, two LAI eases.
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Figure 7.23 Scatter plot o f  vegetation components oï p canopy, two LAI cases.

7.5.3 Reconstruction from  limited wavebands

Reconstruction of full spectrum reflectance has so far been carried out by 

inverting kernels against reflectance samples generated at wavelength intervals o f  20nm 

from 400 to 2500nm. In order to demonstrate the kernels' ability to interpolate from 

limited samples o f  reflectance, a brief demonstration o f  the inversion o f  the kernels 

against selected MODIS wavebands at visible and NIR wavelengths is presented. A 

limited set o f  available MODIS wavebands was selected to coincide with (in particular) 

visible blue, green and red, as well as NIR reflectance features. These bands are 443.0, 

469.0, 555.0, 645.0, 858.5, and 940.0nm. The small number o f  bands provides a more 

stringent test o f  the kernels' ability to interpolate (and potentially extrapolate) limited 

retlectance samples and reconstruct full spectra. Figure 7.24 shows the inversion o f  the 

s l v l  and s3v3 kernel combinations against six reflectance bands.
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Figure 7.24 Retlectance generated from samples at selected MODIS wavebands.

Figure 7.24 shows that the spectral kernels can reconstruct full spectrum 

retlectance from limited wavebands very effectively. Even with only six retlectance 

bands (just enough to perform a valid inversion) the forward modelled retlectance agrees 

extremely closely with the original values, particularly for the s3v3 case. The RMSE 

values in each case are eorrespondingly small, 9x10^ for both s lv l cases and 4x10^^ for 

the s3v3 cases. If the reconstructed spectra are to be used for spectral interpolation (e.g. 

for production o f  broadband shortwave albedo), rather than direct interpretation, then the 

spectral kernels may permit better use to be made o f  available reflectance information 

than is currently the case. Typically, broadband albedo is derived from limited samples 

using simple convolution across the solar spectrum, or with empirical coefficients derived 

for particular sensors (Liang, 2000; Liang et a l, 2000c).

Figure 7.25 shows scatter plots o f  original against forward modelled reflectance 

values given in figure 7.24. The correlation is extremely high, with r  ̂ values exceeding

0.99 in all cases. It should be noted that in practice, spectral sampling will become an 

issue for the application of  spectral kernels as angular sampling is for the angular kernels 

(Lucht and Lewis, 2000). The location o f  spectral samples (and the bandpass of  the
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instrument under consideration) will have an impact on the enor associated with 

inversion of the spectral kernels against spectral reflectance data.
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Figure 7.25 Scatter of reflectance generated at selected MODIS wavebands ( 1 soil +

vegetation and 3 soil + 3 soil kernels).

7.5.4 Directional component

Following analysis of the spectral kernels' ability to reconstruct the spectral 

component of PcanopÂ'^À^  ̂Q ') the directional component of the spectral kernels is briefly 

examined. Although the spectral kernels are independent of view zenith angle (in the 

same way that the angular kernels are independent of wavelength), they may contain 

directional infonnation. This is analogous to the spectral variation seen in the inverted 

directional kernels shown in chapter 6. Figure 7.26 shows the soil and vegetation spectral 

kernel parameter values for the s lv l case plotted as a function of view zenith angle (the 

s3v3 cases are not shown as they follow the same patterns but with each successively 

reducing in magnitude). For the low LAI canopy the soil kernel, s i, dominates as 

expected. The angular variation of si is characteristic of the GO component of pcanopyi^,
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Q ') seen in chapter 4. The vegetation kernel, v l, is close to zero, as expected. For the high 

LAI canopy, the soil kernel is slightly above zero while the vegetation kernel is sharply 

peaked in the hotspot direction. This strongly resembles the directional variation o f  the 

volumetric component o f  O') seen in chapter 4.

0.3
O----GS1 (LAI = 0.1)
G------ Q  V l  (LAI = 0.1)
G -.... -o s i  (LAI = 4)

0.2
0)
CD

E
g
CD
CL

CD

E
CD

E 0.0
Q..0 O.

o...- O '

.0
0 - .

. 0

-0.2
-75 -50 -25 0 25

view zenith angle (deg.)
50 75

Figure 7.26 Angular variation o f  inverted spectral kernel parameter values ( s l vl  case).

The observation that the soil and vegetation spectral kernels contain angular 

information related to the GO and volumetric angular kernels is continued by regression 

of the spectral kernel parameter values against the respective volumetric and GO 

components o f  BPMS simulated canopy reflectance. Using volumetric and GO 

components o f  BPMS-derived canopies with similar LAI to those used above (wheat 

canopy o f  23^ March, LAI = 0.9; barley canopy o f  13̂ '  ̂ May, LAI = 3.9) r" values of  

greater than 0.95 were obtained for the GO components o f  both canopies. Values of  r  for 

the relationship between volumetric components were greater than 0.85. These results 

indicate that the spectral kernels are likely to contain angular information when inverted 

against directional data.

It is intended that the spectral kernels be developed more fully, integrated with the 

angular kernels into a spectral directional kernel-driven model and tested on airborne and 

spaceborne remote data, with the eventual aim of  producing spatial estimates o f  spectral
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estimates of albedo. This is discussed in more detail in chapter 8, but a demonstration of 

spectral kernels ability to retrieve spatial estimates of soil and vegetation parameter 

information is given below.

7.5.5 Demonstration o f spectral kernels against airborne reflectance data

The effectiveness of the spectral kernels to reconstruct spectral reflectance has 

been demonstrated. The final part of this experiment presents a brief example of the 

application of the spectral kernels (three soil and three vegetation) to airborne data over 

Barton Bendish, shown in figure 7.27. This demonstrates the possibilities for using the 

spectral kernels to generate spatial estimates of spectral model parameters.

The false colour composite (FCC) original ATM image shown at the top left of 

figure 7.27 forms part of multiple flight lines of data collected over the Barton Bendish 

area on various dates (described in section 3.1.5). These data are geometrically but not 

atmospherically corrected (due to a lack of information on atmospheric conditions during 

the overpasses, such as aerosol optical depth, water vapour and ozone concentrations). 

Pixel radiance values are weighted by a solar irradiance spectrum calculated for the date 

and time of the overpass. The inverted soil and vegetation parameters are also shown as 

FCC images i.e. first, second and third soil parameter on the red, green and blue channels 

respectively and the same for the vegetation parameters.

It can be seen in figure 7.27 that the soil parameters are bright where the original 

false colour composite ATM image is blue-ish, corresponding to soil areas and darker 

where there is likely to be vegetation (red in FCC). The third soil parameter is dominant 

over the farm area (see figure 3.1) which comprises harvested crops (stubble) and sugar 

beet. This behaviour contrasts with that over the airfield at the top of the image (areas 

covered by short grass and tarmac) where the first soil parameter is dominant. The 

vegetation parameters are generally bright where the likelihood of vegetated cover is 

highest in the original FCC image. The first parameter (and the third parameter to a lesser 

extent) is dominant except over the airfield, where the second parameter is bright 

resulting in a green colour. Interestingly, the RMSE image shows consistently lower 

values for areas o f vegetation, than for bare soil. This figure demonstrates that there is 

significant information in spatial estimates of spectral model parameters, not only in
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Figure 7.27 Top left, FCC of NIR, red and green bands, ATM image,
June 1997; top right, soil parameters (FCC parameters 1, 2 and 3); 

bottom left, vegetation parameters (FCC parameters 1,2 and 3); bottom 
right, RMSE image of inversion.

regard to differentiating areas of soil and vegetation cover but also in separating the 

spectral behaviour of different soil and vegetation types.

Figure 7.28 shows a scatter plot of original against modelled pixel values selected 

randomly from the original ATM image. Agreement between the two is high with an r̂  

value of 0.96 when all bands are considered together. Individually, the only bands where
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r  values fall below 0.9 are 435nm (possibly due to atmospheric scattering which is 

significantly higher at shorter wavelengths), 6l5nm and 830nm. The close agreement 

overall demonstrates the ability of the spectral kernels to describe spectral reflectance of 

soil and vegetation. In addition, the kernels appear to be capable of generating spatial 

estimates of soil and vegetation scattering components. This has far greater theoretical 

justification than an empirical estimate of vegetation such as NDVI and is nearly as rapid 

to apply. It will be straightforward to apply the full spectral directional kernel driven 

model to spectral directional reflectance data in the future, and use the resulting parameter 

values to interpolate estimates of narrowband albedo to broadband. This is discussed 

briefly in chapter 8.
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Figure 7.28 Scatter of original against modelled radiance values (using spectral 
kernels) for random points within ATM image of figure 7.27.

238



7.6 Conclusion

It has been demonstrated that the concept of a spectral directional kernel driven 

model of PcanopyiK (Q, Q ’)) is feasible. Results indicate that such a model is likely to 

provide significant improvement over current kernel-driven models of directional 

reflectance, which operate independently of wavelength. It is shown that vegetation 

kernels derived from PGA of measured laboratory reflectance and transmittance spectra 

(combined as single scattering albedo) are capable of accurately describing spectral 

reflectance of a number of vegetation types. Some green vegetation spectra can be 

described adequately using only one vegetation kernel, but in most cases two or three 

kernels are necessary. In conjunction with two or three soil kernels, derived by Price 

(1990), it is shown that spectral canopy reflectance can be modelled very accurately. This 

approach is similar in some ways to linear unmixing (Settle and Drake, 1993), but differs 

in that the aim is to allow spectral interpolation of limited samples of reflectance, rather 

than the derivation of spectrally 'pure' end-members.

Results also show that the spectral kernels are highly effective in separating the 

constituent soil and vegetation components of spectral canopy reflectance. This is of 

significance for studies of photosynthetic activity (fAPAR), canopy efficiency and 

general vegetation influence, where it is desirable to be able to isolate the contribution of 

the vegetation component to total pcanopy The vegetation spectral kernels are particularly 

successful for canopies with LAI > 0.5. Even with only two or three vegetation spectral 

kernels it is likely that the majority of the single scattering contribution of vegetation 

reflectance to pcampyi^) can be extracted in most cases. The implication is that in cases 

where limited spectral sampling is available (e.g. MISR data, with only four bands), the 

kernels can act as spectral interpolants to generate full spectrum estimates of reflectance.

The spectral kernels can be simply combined with the directional kernels 

discussed in previous chapters to provide a full spectral, directional kernel-driven model 

o f PcanopyiK (^ ,  O^)). fiiversion of this type o f model against simulated reflectance data 

indicates that full spectrum reconstruction of spectral directional reflectance from limited 

spectral directional samples is very accurate. As an example, reconstruction from selected 

MODIS wavebands is demonstrated. Derived spectral model parameters may well contain 

directional information, similar to the spectral information contained in the derived 

angular parameter values seen in chapter 6.
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The success of the spectral kernels in reconstructing spectral reflectance confirms 

their utility as spectral interpolants, although much further validation is required in order 

to confirm their applicability. This will be of use for converting narrowband to broadband 

albedo and this will comprise the main direction for further research based on the spectral 

kernels. The next stage will be to test the kernels on aerial and spaceborne reflectance 

data in order to produce full shortwave spectrum reconstructions of reflectance data from 

limited spectral samples (an example of the spectral kernels' ability to describe spatial 

estimates of surface scattering and separate soil and vegetation scattering components is 

shown). These will then be used to generate shortwave albedo from airborne and 

spaceborne remote sensing data. A full spectral directional kernel-driven model can then 

be inverted against remotely sensed directional spectral reflectance data, such as that 

currently being produced by the MODIS instrument. Shortwave albedo can then be 

compared with the current operational MODIS albedo product. It is foreseen that the 

spectral directional kernel-driven model will greatly reduce the need for assumptions 

regarding atmospheric state and instrument band pass behaviour when interpolating 

narrowband samples of directional reflectance to produce broadband albedo. This is 

discussed in more detail in chapter 8.

Recent follow-up work by colleagues on the spectral kernels has indicated that it 

may be more effective to separate fresh and dry reflectance and transmittance spectra 

when generating the kernels in order to generate separate fresh and dry kernels (Codings, 

2001). Using a suite of kernels in this manner (using the best fitting for a given 

circumstance) may be operationally feasible given that the computational overhead of 

inversion is very small. This is equivalent to the original AMBRALS (Algorithm for 

MODIS Bidirectional Reflectance and ALbedo) algorithm proposed for MODIS 

processing (Wanner et a l,  1997), where a range of angular kernel combinations are 

inverted against each reflectance sample.

The final chapter sums up the results presented in this thesis, highlighting the 

most significant results. Areas related to this work where research is currently progressing 

are described, particularly in regard to the extension and application o f the spectral 

kernels as part of a full spectral directional kernel-driven model. Suggestions are also 

made for where future research related to these topics might be directed.
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8 Conclusions and directions for further w ork

8.1 Exploring the concept of linear kernel-driven models

This thesis sets out to explore the assumptions underlying the development and 

application of linear kernel-driven models of BRDF. The simplified semi-empirical 

approach to modelling ç>canopy underlying such models is examined, as is their potential for 

extracting biophysical information from refleetanee data. Results presented here show 

that the linear kernel-driven models largely conform to the assumptions made in their 

formulation. In particular, evidence indicates that it is often justifiable to consider canopy 

scattering as a linear combination of volumetric and GO scattering components. This 

justification is less clear-cut in cases where the canopy departs markedly from the 

assumptions made in the kernel-driven models, particularly in a structural sense (strongly 

clumped, non-spherieal LAD etc.). It has also been demonstrated that the volumetric and 

GO kernels are, in general, linearly related to the volumetric and GO components of 

canopy scattering, as would be expected if the kernels operate as intended. The 

relationship is generally much stronger for the volumetric component than for the GO 

component. This relationship has not previously been established quantitatively. In the 

past, the fact that the linear kernel-driven models tend to fit observed reflectance well has 

been used to justify their simplified nature.

Detailed 3D structural models of vegetation based on field measurement of 

canopy structure were used to simulate barley and wheat Pcanopy over a growing season. 

Validation against measured data indicated that the models represented the radiometric 

response of the vegetation reasonably well. Variation between measured and modelled 

reflectance values was due to variability in both field measurements and intra-field crop 

density. Simulations of Pcanopy were carried out under the same assumptions made in the 

formulation of the kernel-driven models i.e. independently of wavelength and considering 

only single scattering interactions and using a Lambertian soil surface.

The linear kernel-driven models assume that Pcanopy can be treated as separate 

(purely geometric) volumetric and GO components. In practice, these components are 

described using a linear superposition of separate volumetric and GO kernels (with an 

isotropic brightness term representing the multiple scattering contribution). Simulated 

Pcanopy was scparatcd into its constituent volumetric and GO components. The volumetric 

component, related to scattering from vegetation only, was shown to behave as expected
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for vegetation reflectance. The GO component (related to the proportion of visible sunlit 

soil in this case) does not agree precisely with expectations, in that a hotspot feature was 

not apparent due to the departure of the canopies used in the experiments from the ideal 

GO canopy visualised in the formulation of GO models of CR. The respective volumetric 

and GO canopy components were shown to change with the developing canopy as 

expected during the growing season. The volumetric component increased with 

increasing LAI until the canopy reached senescence. Conversely, the GO component 

reduced over time as a result of the soil becoming obscured by the developing vegetation.

Two fundamental hypotheses were presented, both of which must hold true for the 

kernel-driven models to be valid. Firstly, it must be possible to describe Pcampy as a linear 

combination of separate volumetric and GO terms. Results showed that in many cases this 

hypothesis was true, with strong linear relationships between the volumetric and GO 

scattering components and their respective kernels. However, there was significant 

variation, particularly in the relationship of the GO component to kco, the GO scattering 

kernel. This is a result of the fact that the GO component being modelled is significantly 

different from the theoretical GO component of pcanopy envisioned in the kernels (Li and 

Strahler, 1985, 1986; Wanner et a l, 1997), in particular, the canopy is composed of many 

relatively small leaves rather than scattering 'spheroids-on-sticks' (see 2.5.4.1.2).

The agreement between the scattering components and their respective kernels 

was particularly noticeable in canopies with one dominant scattering component. The 

assumption broke down in more extreme cases when either there was very little 

vegetation present (and hence virtually no volume scattering) or else the canopy had 

senesced, with little green vegetation remaining. In these cases the canopy had diverged 

even further from the general assumptions of the linear models. Departure from the 

assumption of spherical LAD was shown to have a significant impact on the relation of 

the volumetric and GO components of canopy scattering to the respective model kernels. 

The tendency of agricultural canopies to have regular planting patterns exacerbates this 

by violating the assumption of azimuthal invariance. This can lead to significant 

clumping, particularly at early stages of growth. This appeared to impair the ability o f the 

models to describe the reflectance of this type of canopy. Forests also tend to have non- 

uniform distributions of vegetation and/or LAD and may pose similar problems.

The second hypothesis examined was that the volumetric and GO components of
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Pcanopy Can be described adequately by the volumetric and GO kernels alone. Results 

indicated that this hypothesis is true in some cases, with the individual scattering 

components of Pcanopy being largely separable. Again, discrepancies tended to occur where 

the canopy departed from the assumptions of azimuthal invariance and spherical LAD. In 

these cases it was clear that some proportion of volumetric scattering was explained by 

the GO kernel, while conversely, some GO scattering was taken up by the volumetric 

kernel. This indicated an element of coupling between the kernels. The implication is that 

model parameter values need to be interpreted very carefully in practice. In cases where 

the vegetation canopy departs from the (structural) assumptions underlying the kernel- 

driven models it will not be possible to relate the model parameters directly to their 

respective scattering components.

Spectral estimates of the angular kernels were derived. As expected, the 

volumetric kernel tended (spectrally) to resemble pieaf and the GO kernel resembled p̂ o//. 

In some cases the respective kernels clearly contained information regarding the other 

scattering component. In particular, the isotropic kernel appears to be correlated with pjeaf 

in some cases. As the canopies developed, the volumetric and GO parameters 

increasingly resembled each other, indicating an increased degree of coupling as well as 

the difficulty of separating the components in these cases. As a consequence it may not be 

possible to interpret parameter values direetly without ancillary data, such as estimates of 

pieaf- This may not be practical in many cases, for example in applications involving 

moderate resolution data with large areal coverage (thousands of km^).

In nearly all cases the RossThick LiSparse kernel combination was the best fit to 

observed reflectance, supporting the choice of this combination as the primary model for 

processing MODIS reflectance data. The behaviour of the spectral estimates of the 

angular kernels indicates that they may be suited to classification of reflectance data, as 

they might be used as extra channels of information regarding scattering from soil and 

vegetation. In particular, the model parameters may be able to separate soil and 

vegetation scattering components, which will prove useful for studies of carbon budget, 

fAPAR and NPP. It was noted that, in some cases, derived values of the model 

parameters could take physically unrealistic (negative) values. This is not a problem if the 

parameters are to be used for classification for example, as in this case it is simply the 

relative values that are important. However, if the parameters are to be interpreted then 

inversion should be constrained so that parameter values are physically realistic.
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8.2 Extension of the kernel-driven modelling concept

The linear kernel-driven models are based on the idea that simple volumetric and 

GO ’shape’ terms can be combined to describe the dominant angular features of surface 

BRDF. This concept was adapted and extended into the spectral domain based on the 

observation that vegetation (and soil) spectral reflectance displays a number of common 

features. There are a number of benefits that a combined spectral directional kernel- 

driven model of Pcanopv confers. Chief amongst these is the ability to interpolate 

narrowband samples of reflectance over a wide range of wavelengths. This is analogous 

to the application of the angular kernels to interpolate/extrapolate limited directional 

samples of reflectance to arbitrary viewing/illumination angles. This ability to interpolate 

(and possibly extrapolate) narrowband reflectance samples would be extremely useful in 

deriving albedo, which typically requires assumptions to be made regarding spectral 

weightings of narrowband reflectance samples and the shape of the solar spectrum. A 

spectral kernel-driven model will obviate the need for such assumptions. Another benefit 

is the ability to separate the spectral components of scattering from soil and vegetation. 

This is of particular importance in studies of fAPAR and NPP, where only scattering from 

vegetation is of interest. A further advantage is that spectral kernels will permit the 

combination of data from sensors with different bandpass functions. Spectral kernels 

could be used to ’normalise’ spectral reflectance to some common set of wavebands. This 

is analogous to normalisation of directional reflectance to specified viewing and 

illumination angles (typically nadir) using the angular kernels.

Based on previous work deriving soil basis functions (or spectral kernels), a 

number of vegetation spectral kernels were derived from measured reflectance and 

transmittance spectra. It was demonstrated that three or four of these spectral kernels are 

sufficient to describe greater than 98% of observed variance in a large range of measured 

vegetation spectra. It was shown that a combination of five or six soil and vegetation 

kernels were able to describe observed spectral pcampy extremely well. In some cases as 

little as two or three spectral kernels in total were required to adequately fit observed data. 

This is likely to be sufficient for many multispectral sensors, which tend to have four or 

more spectral bands. The spectral kernels were applied in conjunction with angular 

kernels to simulated values of spectral directional pcanopy The full spectral directional 

kernel-driven model fitted the simulated reflectance values extremely well, with RMSE of 

< 4% in all cases. In cases where three soil and three vegetation kernels are used, RMSE
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of fit falls to between 0.1% and 1%. The kernels were also shown to be capable of 

separating soil and vegetation spectral components of pcanopy successfully. Spectral 

estimates of the angular kernels were derived which illustrated that some angular 

information was contained in the spectral kernels. Full spectrum reconstruction of spectral 

reflectance from limited (MODIS) wavebands also showed the success of the spectral 

kernels. These results indicate that the spectral directional kernel-driven model is likely to 

provide significant improvement over current kernel-driven models of directional 

reflectance, which operate independently of wavelength. Further work is needed to 

explore the ability of the kernels to generate albedo but initial results suggest they may be 

very effective.

8.3 Directions for future research

The work presented in this thesis is part of ongoing research into the scattering 

behaviour of vegetation canopies and how this behaviour can be modelled and hence 

exploited. However, there are a several specific areas in which the work in this thesis will 

be built upon and extended and these are briefly outlined below.

8.3.1 Application o f full spectral^ directional kernel-driven model

A full spectral directional linear kernel-driven model is under development. This 

will be applied to airborne thematic mapper (ATM) and compact airborne spectrographic 

imager (CAST) data obtained over the Barton Bendish site in 1997. ATM data are limited 

to 11 visible and NIR wavebands, whilst CASI has up to 288 bands (depending on the 

chosen configuration). It is proposed that the spectral kernels be used to reconstruct the 

CASI data spectrally from the ATM data. This will provide an excellent test of the 

spectral kernels ability to model spectral reflectance. Once these data are atmospherically 

and geometrically corrected to the required accuracy (sub-pixel registration accuracy is 

required for BRDF studies) they will be used to derive broadband albedo. These values 

will then be compared with MODIS albedo estimates over the same area. This will 

provide a link between high resolution albedo derived from the airborne data and the 

moderate resolution (km scale) MODIS product, contributing to ongoing MODIS 

validation work (www[8.1]). Validating albedo is difficult given that field-measured
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albedo is typically a point measure from an albedometer and relatively few samples can 

be collected over areas covered by even a very small number of MODIS pixels (Lucht et 

a l, 2000). The spectral kernels will also be used to generate spatial estimates of soil and 

vegetation spectral and directional reflectance components (as in section 7.5.5). These 

will be compared with estimates derived from field measurements. If this is successful it 

will demonstrate the use of the spectral kernels for applications requiring scattering 

information from vegetation alone.

It is intended that the full spectral directional kernel driven model be applied to 

the spectral directional reflectance data as described above and that the resulting 

parameter values be used to interpolate estimates of narrowband albedo to broadband. 

This has typically been a laborious process requiring a number of approximations and 

assumptions (see chapter 2). Conversion of narrowband to broadband albedo will be 

carried out once the ATM and CASI airborne data have been pre-processed to the 

required accuracy. This includes sub-pixel geometric correction required for BRDF 

model inversion (Barnsley et a l, 1997) and accurate atmospheric correction based on the 

MISR algorithm of Martonchik et a l, 1998a). In addition, data from the CHRIS mission 

(launched in October 2001 aboard the PROBA platform) will be available for comparison 

with airborne estimates of albedo. CHRIS is a pointable high resolution optical 

instrument with selectable bands (w w w [I.ll]). It is anticipated that the spectral 

directional kernel-driven models will be ideal for inversion against CHRIS data. 

Estimates of albedo (and biophysical parameters) can then be compared directly with 

MODIS products over the same area. It is expected that this will provide better 

understanding of the issues involved in scaling albedo from ground-based, to moderate 

resolution data.

8.3.2 Other canopy types

Much of the work in this thesis is intended as a benchmark for the application of 

the kernel-driven models, as well as an indication o f the information it may be possible to 

derive from their parameters. The methods employed here can be used in the future to test 

modifications to the kernels and try out new formulations. In addition, it is now possible 

to simulate the reflectance of forest canopies using the explicit 3D geometric BPMS 

model (given suitable field measurements). It is likely to be an interesting and worthwhile
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exercise to apply the methods used in this thesis to such different canopies. This would 

give a more direct indication of the applicability of the kernel-driven models to a wide 

range of land cover types.

A further possibility is to construct detailed 3D models of the GO and volumetric 

scattering arrangements postulated in the kernel-driven models. In the case of the GO 

kernels this requires constructing arrangements of 'spheroids on sticks'; the volumetric 

kernels require approximating the horizontally homogeneous scattering 'cloud'. It would 

then be possible to explore what size and shape of scattering objects and/or combinations 

most closely correspond to 'real' plant canopies. Figure 8.1 shows an example of this 

approach carried out as part of the RAMI exercise (Pinty et a l,  2001). This is a 

simulation of a vegetation canopy with spherical 'clumps' of vegetation of fixed LAI, 

comprised of randomly located disks with specified LAD.

Figure 8.1 Simulated 'vegetation' canopy
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8.3.3 Multiple scattering

The assumption of single scattering interactions made in the formulation of the 

kernel-driven models has (intentionally) received little attention in this thesis. It is clear 

that single scattering interactions do dominate Pcanopy, particularly in the visible part of the 

spectrum (see figure 7.1). However, this is not necessarily the case in the NIR where 

reflectance is much higher. Application of the spectral kernels over the wider spectrum 

means that multiple scattering is likely to become more important. It may also be possible 

to derive information regarding the canopy structure from analysis of multiply scattered 

information. It is known that there are approximations that can represent multiple 

scattering reasonably well (Knyazikhin and Marshak, 2000). If  this information can be 

modelled using relatively simple terms it may be possible to construct a kernel-driven 

expression for the multiple scattering component, rather than lump it in as 'brightness' 

term as is currently the case in the kernel-driven models. An advantage of this is it may 

lead to a better description of pcampŷ  In addition, the multiple scattering component is 

known to contain information regarding canopy structure, which it may be possible to 

extract.

Some analysis of the multiple scattering component of pcanopy from the canopies 

used in this thesis has already been attempted (Disney and Lewis, 1998). This work has 

shown that there may be a simple approximation for describing multiple scattering as a 

function of scattering order within the canopy. This may not be so important for studies of 

albedo, due to differences in scattering behaviour between the visible and SWIR regions: 

single scattering dominates in the visible, whilst multiple scattering dominates in the 

SWIR and NIR. Visible radiation has a larger impact on shortwave albedo than SWIR 

and NIR, as around 40% of total solar energy arriving at the surface lies between 0.3 and

0.8pm (see figure 1.3). However, a simple approximation for representing the multiple 

scattering component of pcanopy is likely to be useful for deriving biophysical information. 

Lewis and Disney (1998) have shown that such an approach is very similar to theoretical 

work by other groups based on solutions to the 3D radiative transfer equation in a 

vegetation canopy (Knyazikhin, pers. comm.). It is intended that studies of multiple 

scattering will be fully incorporated into future analysis of kernel-driven BRDF 

modelling, again through the use of full 3D structural models o f vegetation.
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8.3.4 Improved fieldwork measurements

The fieldwork described in chapter 3, intended to validate canopy radiometric 

simulations, was subject to a number of problems. Chief amongst these was poor weather, 

which (unfortunately) cannot be legislated for. However, part of ongoing research into 

linear kernel-driven models of çicanopy will be to refine the methods used here in an effort 

to generate a significantly better set of fieldwork measurements. Following the fieldwork 

of 1997, it is much easier to determine what needs to be measured in the future, how 

accurately these measurements can be expected to be, and how existing measurements 

may be improved.

The scope and detail of what can be measured is partly determined by available 

manpower. Most of the measurements used in this thesis were carried out by two groups 

of two people (often less). This severely restricts the degree of spatial sampling that can 

be carried out as well as the overall number of parameters which can be measured. 

However, within these limitations, a number of improvements can be made. Firstly, 

radiometric measurements can be carried out using a larger FOV (15°) radiometer head. 

The advantage of this is that it is not as sensitive to the pointing accuracy of the 

radiometer (a few degrees at best). The disadvantage of this is that features of measured 

BRFD such as the hotspot will become 'smeared out'. However, for validation it is more 

important to characterise the general magnitude and angular variation of BRDF than to 

measure features such as hotspot width, say.

Another way of significantly improving future field radiometric measurements is 

with the use of a sun photometer to characterise atmospheric scattering. This is vital not 

only for ground-based radiometric measurements (seen figure 3.7), but also for 

atmospheric correction of airborne and satellite remote sensing data. One of the 

difficulties of processing the airborne data collected in 1997 has been the lack of 

contemporaneous measurements of atmospheric aerosol and water vapour properties. This 

is considered essential for studies of BRDF (and hence albedo). A CIMEL (www[8.2]) 

sun photometer has been made available for fieldwork at Barton Bendish, as part of the 

NASA Aerosol Robotic Network (AERONET, www[8.3]) and general MODIS validation 

effort. This will allow accurate characterisation of atmospheric scattering during future 

campaigns. Walthall et a l  (2000) describe a number of protocols including angular and 

spatial sampling regimes and atmospheric measurements which are generally accepted as
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essential in field measurement of BRDF. These protocols will be adopted for future 

fieldwork. Finally, in order for useful comparisons to be made between spatial albedo 

values generated at high spatial resolution (e.g. from airborne data) and satellite-derived 

values, some validation at the surface is required. The use of an albedometer through the 

growing season would achieve this. It is limited essentially to point measurements, but if 

large, relatively homogeneous (at the field scale), fields of barley and wheat are used, the 

albedo can be assumed to be fairly constant over a whole field. This would provide the 

required link between albedo generated from airborne and spaceborne using the speetral 

kernels and albedo measured (and simulated) at canopy scale.

8.3.5 Optical and microwave scattering

One final, broad area where the work carried out in this thesis will be continued 

and extended is the marrying o f scattering in vegetation in the optical and microwave 

domain. Currently, physical descriptions of scattering these two domains are very 

different. This is because the dimensions of canopy scattering objects (such as leaves) are 

far larger than optical wavelengths, but typically of the same order of magnitude as 

microwave radiation (A. of mm to em). This leads to a number o f problems for those 

constructing models of canopy scattering in this domain, in particular the consideration of 

absorption and scattering at the leaf level. It is not a simple matter of reflectance, 

transmittance and absorptance behaviour as in the optical domain. Nor can useful 

simplifications such as Lambertian scattering be applied. In microwave models of canopy 

scattering, gross simplifications are required such as the use of ’equivalent disks’ to 

represent leaves, and cylinders representing stems. Complex phase scattering matrices 

and assumptions about dielectric behaviour are required to solve even these cases. 

However, the fundamental representations of canopy structure are the same. It may be 

possible to apply the type of assumptions regarding simple scattering ’shapes’ made in the 

kemel-driven models to microwave baekscatter models. This would prove extremely 

useful, given the advantages that RADAR instruments hold over optical ones in being 

able to penetrate cloud and operate on the Earth’s dark side. It has already been 

recognised that the conceptually different approaches to modelling of vegetation in the 

optical and microwave domains are in fact linked by a common need to consider 

vegetation structure (Saich et a l ,  2001). It is intended that methods developed in this 

thesis will be applied to examining possible linkages between microwave scattering and 

the kemel-driven approach to modelling canopy reflectance in the optical domain.
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Appendix 1

Constraint of linear model parameters for inversion (Lewis, comm.)

The inversion of linear kemel-driven BRDF models against measured reflectance 

data can, in practice, result in model inverted parameter values that are physically 

unrealisable (Stmgnell and Lucht, 2000). This tends to occur when a chosen kernel 

combination cannot describe surface reflectance adequately. There are two reasons for 

this failure. Firstly, the selected kernel combination may simply be inappropriate for the 

cover type under observation. This typically occurs in areas where the surface may be at 

the extremes of what was envisioned in the kernel formulation e.g. sparse canopies over 

very bright/rough soils; canopies with extreme LAD (departure from spherical 

assumption of volumetric kernels); dense forest canopy where the assumptions of discrete 

crown and ground areas break down. Secondly, there may be insufficient information in 

the signal (variation related to surface structure in the reflectance data) for a full linear 

model comprising an isotropic, volumetric and GO kernel, to be inverted, hence the best- 

fit solution (lowest RMSE) may be physically unrealistic.

If the parameters are to be used indirectly e.g. as an additional channel of 

information for classification (beyond the spatial and spectral) then the absolute values 

are not important, only the spatial variations. As demonstrated in chapters 5 and 6, 

inverted linear model parameters do contain biophysical information related to the 

volumetric and GO scattering properties of a surface, and this is the important issue for 

indirect use. If parameters are to be used directly however e.g. to extrapolate/interpolate 

directional reflectance values, or to derive associated surface properties such as 

directional hemispherical reflectance or spectral albedo, then clearly it is sensible to place 

physical constraints on the derived properties. These constraints can then be used to direct 

the inversion procedure.

Recall from section 2.5.4.1 that a linear model of BRDF can be represented 

as = /o + /i^ i + f i K -  Recall also that the unconstrained inversion of such a model

against a set of observations over varying k,, k] is simply the minimisation of e ,̂ the sum 

squared error between modelled and measured reflectances i.e.
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~  X  ( a  -  ( /o + / i ^ i + )yJy ,=i

A 1.0

which results in a series of linear equations, one for each observation. This can be simply 

solved using matrix algebra (see section 2.4.1.1, after Lewis, 1995) i.e. P = M~^V where

vv ,=1
A 1.2

and

1 i=N

M = — y
/=i

1 K, kii

K K K i A 1.3

^2, *2, .

Lagrange multipliers can be applied to such a system to impose arbitrary 

constraints under which inversion may be carried out. Lagrange multipliers allow the 

minimum (or maximum) of a function f(fo, f|, f]) to be found by using a relationship 

between the function parameters and some constant i.e. (p(fo, fi, f]) = constant (e.g. Boas, 

1983). In this case, the function (p(fo, fi, 1%) is the constraint equation, based on some 

physical limits, e  ̂ can now be minimised based on the original model in addition to the 

constraint equation i.e. we wish also to minimise ̂  = = 0 or

C f  = 6/ where C is the transpose of the matrix containing the Lagrange multipliers i.e. 

C = (a, b, cY  and the minimisation is now a function of the constraint equation in addition 

to the original expression i.e.

1 i=N

~ ( / o  + / i ^ i  + f i ^ 2)Y + b f ^ + c f 2 ~ d )iV
A 1.4

Minimisation therefore leads XoV = MP + XC and V -  XC = MP  and multiplying by the 

inverse of M i.e. M~' V - XM~' C  = P o x P ' - X C  = P w h e re f  = M 'Y  and C  = M~'C,  

and P’ is the parameter values obtained from unconstrained minimisation. Now, 

clearly P' C -  X C  C = P C and we have already seen that C.P=d, so that we can derive 

an expression for ^ i.e.

X  =
P ' - C - d

c  c
A 1.5
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and since we know that M  -À.M  *C = P then  

P ' - C - d
P ’ - C ' = P  A 1.6

c  c

i.e. if  M'* and P ’ are calculated in an unconstrained manner then the inverse matrix can be 

multiplied by the constraint vector C to obtain C ’, and hence P, the set of constrained 

parameters, can be calculated. Practically the difficulty is to find a constraint equation 

that relates the model parameters to some constant. The most obvious physical constraint 

is that the surface reflectance should be > 0. In this case, we can say that /o , / i , A  ^ 0

i.e. /o + / ,  + /2  > 0 a n d -  0 • Furthermore, it seems sensible to constrain the 

DHR and for both the maximum and minimum kernel values, to lie between 0 and 1 i.e.

o < / „ + / ; ï , ( o ) + / Â ( o ) < i  A 1.7

In which case it should also be reasonable to constrain the BHR to lie within the same 

limits i.e. 0 < /^ +/A:, + < 1. Constraint requires the calculation of the unconstrained

parameters followed by a test of the various products against each constraint in turn. If 

any constraint is not met, all constraints should be applied'. Following re-calculation of 

the constrained model parameter sets, RMSE can be used to select a single, final set of 

values. Although this may seem arbitrary, it requires no a priori assumptions to be made 

about which constraints the model “should” and “should not” adhere to. The requirement 

for speed may be what limits the application of constraints in practice, although the 

number of extra calculations required for each constraint is not prohibitive.

+  /2 ^ 2 < 1 A  1.8

y

’ A lthough individual constraints could be used, this is probably not p hysically  very sound. I f  just one o f  the 
constraints is not met, w e can must conclude that the inversion is m isbehaving.
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Appendix 2

Figure A2.1 Proportional contribution o f  sunlit and shaded scene components
to total scene reflectance, for barley (four dates) and wheat (two dates).
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Sunlit and shaded scene components of barley and wheat

The results presented in figure A2.1 should be compared with those in figure 4.7, 

which were generated using no diffuse component of illumination, and hence have no 

contribution to overall scene reflectance from the shadowed canopy components. The 

reflectance and transmittance in each case are the same i.e. two 'synthetic' wavebands are 

simulated, the first in which ç>ieaf= Veaf= 0.5 and pson = 0 i.e. in this case all signal is (by 

definition) scattering from vegetation only (only single scattered interactions are 

counted); the second waveband has pieaf= '^leaf^ 0 and ç>son = 1 i.e. in this case all signal 

is (by definition) single scattering from soil only. Results are presented from 0/ = 0°, 30° 

and 60°, as well as for ^row = 0°, 45°, 90°. Separation of the different r̂ow cases increases 

with LAI. It can clearly be seen in figure A2.1a, for example, how the sunlit leaf is at a 

maximum in the hotspot (0, = Ov = 0°) and shadowed soil is a minimum (close to zero).

It can be seen that in these cases, the sunlit soil is the dominant scene component 

in both low LAI cases (figure A2.1a and e), particularly in the 23"̂  ̂March wheat canopy. 

In this case the sunlit soil component represents greater than 80% of the total reflectance 

at all Ov,/ with all other components representing less than 10%. For barley the 

contribution of other components, sunlit leaf in particular, is significant.
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