
NeuroImage 217 (2020) 116906
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal
fractions from compartment-specific T2 relaxation times

Ting Gong a,b, Qiqi Tong a, Hongjian He a,*, Yi Sun c, Jianhui Zhong a,d,**, Hui Zhang b

a Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
b Department of Computer Science & Centre for Medical Image Computing, University College London, UK
c MR Collaboration, Siemens Healthcare, Shanghai, China
d Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
A R T I C L E I N F O

Keywords:
Diffusion MRI
NODDI
T2 relaxation
Brain development
Brain maturation
Aging
Abbreviations: ACR, anterior corona radiata; AL
capsule; GCC, genu of corpus callosum; GM, gray
dispersion index; PCR, posterior corona radiata; PL
superior longitudinal fasciculus; TE, echo time; WM
* Corresponding author. Center for Brain Imaging

Zheda Road, Hangzhou, 310027, China.
** Corresponding author. Center for Brain Imagin
38 Zheda Road, Hangzhou, 310027, China.

E-mail addresses: hhezju@zju.edu.cn (H. He), jz

https://doi.org/10.1016/j.neuroimage.2020.11690
Received 23 January 2020; Received in revised for
Available online 7 May 2020
1053-8119/© 2020 The Author(s). Published by Els
nc-nd/4.0/).
A B S T R A C T

Neurite orientation dispersion and density imaging (NODDI) has become a popular diffusion MRI technique for
investigating microstructural alternations during brain development, maturation and aging in health and disease.
However, the NODDI model of diffusion does not explicitly account for compartment-specific T2 relaxation and its
model parameters are usually estimated from data acquired with a single echo time (TE). Thus, the NODDI-
derived measures, such as the intra-neurite signal fraction, also known as the neurite density index, could be
T2-weighted and TE-dependent. This may confound the interpretation of studies as one cannot disentangle dif-
ferences in diffusion from those in T2 relaxation. To address this challenge, we propose a multi-TE NODDI (MTE-
NODDI) technique, inspired by recent studies exploiting the synergy between diffusion and T2 relaxation. MTE-
NODDI could give robust estimates of the non-T2-weighted signal fractions and compartment-specific T2 values,
as demonstrated by both simulation and in vivo data experiments. Results showed that the estimated non-T2
weighted intra-neurite fraction and compartment-specific T2 values in white matter were consistent with pre-
vious studies. The T2-weighted intra-neurite fractions from the original NODDI were found to be overestimated
compared to their non-T2-weighted estimates; the overestimation increases with TE, consistent with the reported
intra-neurite T2 being larger than extra-neurite T2. Finally, the inclusion of the free water compartment reduces
the estimation error in intra-neurite T2 in the presence of cerebrospinal fluid contamination. With the ability to
disentangle non-T2-weighted signal fractions from compartment-specific T2 relaxation, MTE-NODDI could help
improve the interpretability of future neuroimaging studies, especially those in brain development, maturation
and aging.
1. Introduction

Neurite orientation dispersion and density imaging (NODDI) is a
popular compartment-based model in diffusion MRI for studying
microstructural changes of brain tissue (Zhang et al., 2012). The model
assumes that signals we measure originate from a combination of
intra-neurite, extra-neurite and free water compartments, each of which
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well as in brain development, maturation and aging, across the whole
lifespan, from the neonatal (Kansagra et al., 2016; Kunz et al., 2014) to
adolescent (Geeraert et al., 2019; Mah et al., 2017) and adult period
(Billiet et al., 2015; Chang et al., 2015; Cox et al., 2016; Kodiweera et al.,
2016; Merluzzi et al., 2016; Nazeri et al., 2015). In addition,
NODDI-derived intra-neurite fraction in combination with
myelin-sensitive technique can provide estimation of the g-ratio (Jung
et al., 2018; Stikov et al., 2015), which has been used as a marker of brain
myelination during development (Dean et al., 2016).

Despite the popularity of NODDI for tracking brain changes
throughout the lifespan, the intrinsic dependence of the derived diffusion
parameters on T2 makes it suboptimal, especially for investigating brain
development and maturation during which substantial alterations of T2
relaxation times have been well documented (Ding et al., 2004; Lee et al.,
2018). Like the other contemporary compartment models in diffusion
MRI (Alexander et al., 2010; Assaf and Basser, 2005; Jespersen et al.,
2007; Novikov et al., 2018), the NODDI model does not explicitly
consider the difference of T2 relaxation between compartments and the
data is routinely acquired with a single echo time (TE). As a result,
measures derived from those models, such as the signal fraction of each
compartment, can be relaxation weighted (Lampinen et al., 2019). Thus,
when differences of compartmental T2 exist, one cannot disentangle
differences in diffusion from relaxation between compartments. For
example, the much longer T2 in cerebrospinal fluid (CSF) compared to
tissue has been shown to cause an overestimation of free water fraction in
white matter (WM) with CSF contamination (Bouyagoub et al., 2016).
Between the intra- and extra-neurite compartments, the difference of T2
(Peled et al., 1999; Wachowicz and Snyder, 2002), while much smaller in
comparison, is known to cause TE-dependence of model-derived diffu-
sion parameters in WM (De Santis et al., 2016b; Qin et al., 2009). This
will be likely to have similar impact on NODDI-derived measures,
potentially reducing the interpretability of the NODDI findings from
studies where T2 changes dramatically, such as in brain development.
There is a clear need to develop techniques that can disentangle
non-T2-weighted NODDI measures from T2 relaxation.

One powerful approach to achieve this is to exploit the synergy be-
tween diffusion and T2 relaxation. The strategy was adopted in a seminal
NMR study (Peled et al., 1999) to assign different T2 components in frog
sciatic nerve to distinct tissue compartments, providing one of the first
evidence for intra-axonal T2 being larger than extra-axonal T2. This
relaxation-diffusion correlation technique was later extended to imaging
(Benjamini and Basser, 2016; Kim et al., 2017), enabling applications in
animal spinal cord (Benjamini and Basser, 2017; Kim et al., 2017) and in
ex vivo human brain (Pas et al., 2020). More recently, this approach was
combined with biophysical modelling to improve the estimation of tissue
microstructure parameters for in vivo human brain imaging. For example,
it has been demonstrated that combined modelling of diffusion and T2
relaxation, together with data acquired at multiple TEs, enables the
distinction of compartment-specific T2 relaxation in WM and the esti-
mation of non-T2-weighted diffusion parameters (Veraart et al., 2018).
The combined modelling is later demonstrated with multi-dimensional
b-tensor encoding (Lampinen et al., 2019).

Inspired by these studies, we propose to leverage the same strategy to
estimate non-T2-weighted NODDI measures from diffusion data with
multiple TEs; the resulting technique will be henceforth referred to as
multi-TE NODDI (MTE-NODDI). The technique works by incorporating
compartment-specific T2 relaxation times into the modelling of T2-
weighted compartment fractions, thereby enabling non-T2-weighted
fractions, together with compartment-specific T2 relaxation times, to
be estimated directly from T2-weighted fractions. We demonstrate the
TE-dependence of T2-weighted NODDI measures and assess the perfor-
mance of MTE-NODDI for estimating their non-T2-weighted counter-
parts, as well as compartment-specific T2 values, with both simulation
and in vivo human brain data acquired for multiple TEs, with a fixed
diffusion time across TEs and b-values.
2

2. Theory

This section describes the theory behind the proposed technique to
determine non-T2-weighted signal fractions in NODDI. A definition of
the NODDI model is first provided that makes the TE-dependence of its
T2-weighted signal fractions explicit. We then derive the analytical
relationship between these T2-weighted signal fractions and their non-
T2-weighted counterparts, which underpins the proposed MTE-NODDI
technique. Finally, we show how the compartment-specific T2 relaxa-
tion times can be estimated at the same time.
2.1. NODDI and its T2-weighted signal fractions

NODDI is a multi-compartment model of diffusion for characterizing
neuronal tissue. The model assumes the signal from any imaging voxel
originate from two non-exchanging sources: the tissue and free water
compartments. NODDI further models the signal from the tissue
compartment as from two non-exchanging components: the intra-neurite
and extra-neurite compartments.

The model can be expressed mathematically as:

A¼ð1� fisoÞðfinAin þð1� finÞAenÞ þ fisoAiso [1]

where A is the overall normalized diffusion-weighted signal; Ain, Aen and
Aiso are the normalized signals of intra-neurite, extra-neurite and free
water compartments; Ain is modelled as orientation-dispersed sticks with
a Watson distribution (Zhang et al., 2011) or a Bingham distribution
(Tariq et al., 2016), from which the orientation dispersion index (ODI)
can be derived; Aen and Aiso are modelled as anisotropic and isotropic
Gaussian diffusion respectively; fiso is the signal fraction of the free water
compartment, defined with respect to the overall signal such that 1� fiso
corresponds to the signal fraction of the tissue compartment; fin is the
signal fraction of the intra-neurite compartment, defined with respect to
the signal of the tissue compartment, such that 1� fin corresponds to the
signal fraction of the extra-neurite compartment.

The signal fractions of fin with respect to the signal of tissue, and fiso
with respect to overall signal can be expressed mathematically as:

fin ¼ S0ine
�TE=Tin

2

S0ine
�TE=Tin

2 þ S0ene
�TE=Ten

2

[2]

fiso ¼ S0isoe
�TE=Tiso

2

S0ine
�TE=Tin

2 þ S0ene
�TE=Ten

2 þ S0isoe
�TE=Tiso

2

[3]

where S0in; S
0
en and S0iso represent compartmental signals at b ¼ 0 and TE

¼ 0, and Tin
2 ; Ten

2 and Tiso
2 are T2 relaxation times for the intra-neurite,

extra-neurite and free water compartments respectively. Since T2 of each
compartment is different in general, both signal fractions are T2-
weighted and will typically be TE dependent. In contrast, ODI, by defi-
nition, does not involve any signal fractions and thus should not exhibit
TE dependence. With MTE data, we estimate its value as the arithmetic
mean of the ODI’s estimated for each TE. We explain in the following
how the TE-dependence of signal fractions can be directly used to esti-
mate their non-T2-weighted versions.
2.2. Estimation of non-T2-weighted signal fractions

We show here that the non-T2-weighted signal fractions can be
directly related to the T2-weighted NODDI measures. First, we define the
non-T2-weighted intra-neurite signal fraction with respect to the signal

of tissue as f 0in ¼ S0in
S0inþS0en

and free water fraction with respect to the overall

signal as f 0iso ¼ S0iso
S0inþS0enþS0iso

respectively. Then we can rewrite the T2-

weighted signal fractions in Eq. [2] and Eq. [3] in terms of f 0in and f 0iso as:
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finðTEÞ¼ f 0ine
�TE=Tin

2

in � � en
[4]
f 0ine
�TE=T2 þ 1� f 0in e�TE=T2

fisoðTEÞ¼ f 0isoe
�TE=Tiso

2

f 0isoe
�TE=Tiso

2 þ �
1� f 0iso

��
f 0ine

�TE=Tin
2 þ �

1� f 0in
�
e�TE=Ten

2
�

¼ f 0isoe
�TE=Tiso

2

f 0isoe
�TE=Tiso

2 þ �
1� f 0iso

�
f 0ine

�TE=Tin
2
�
finðTEÞ

: [5]

Eq. [4] shows that the NODDI-derived T2-weighted intra-neurite
signal fraction is determined by its non-T2-weighted counterpart
together with compartment-specific T2 values. In contrast, Eq. [5] shows
that fin also contributes to the TE-dependence of fiso; hence, estimating f 0in
is prerequisite to determining f 0iso.

Eq. [4] also shows that it is only the difference of 1= Tin
2 and 1= Ten

2 ,
not their respective values, dictates the TE-dependence of finðTEÞ, as it
can be simplified further to:

finðTEÞ¼ f 0ine
TEΔRen�in

2

f 0ine
TEΔRen�in

2 þ �
1� f 0in

� [6]

where ΔRen�in
2 ¼ 1=Ten

2 � 1=Tin
2 . This enables the estimation of f 0in and Δ

Ren�in
2 from finðTEÞ for multiple TEs.
Similarly, Eq. [5] can be simplified to:

fisoðTEÞ¼ f 0isoe
TEΔRin�iso

2

f 0isoe
TEΔRin�iso

2 þ �
1� f 0iso

�
f 0in
�
finðTEÞ

[7]

where ΔRin�iso
2 ¼ 1=Tin

2 � 1=Tiso
2 . This enables the estimation of f 0iso and

ΔRin�iso
2 , from fisoðTEÞ and finðTEÞ, as well as f 0in estimated from Eq. [6]

above.
Finally, observe that Eq. [6] and Eq. [7] can be rewritten in the form

of linear models, such that:

ln
finðTEÞ

1� finðTEÞ¼ TEΔRen�in
2 þ ln

f 0in
1� f 0in

[8]

ln
f 0infisoðTEÞ

finðTEÞð1� fisoðTEÞÞ¼ TEΔRin�iso
2 þ ln

f 0iso
1� f 0iso

: [9]

Eq. [8] suggestsΔRen�in
2 and f 0in can be immediately computed from the

slope and the intercept respectively, following a simple linear least
squares fitting. Furthermore, it shows that they can be estimated with
data from two or more different TEs. Eq. [9] suggests the same is true for
ΔRin�iso

2 and f 0iso. Moreover, they suggest ifΔRen�in
2 andΔRin�iso

2 are positive,
finðTEÞ and fisoðTEÞ will increase when TE increases.
2.3. Estimation of compartment-specific T2 relaxation times

The compartment-specific T2 relaxation times can be subsequently
estimated from b ¼ 0 signals acquired at multiple TEs. We first express
the overall b ¼ 0 signal as the sum of the b ¼ 0 signals from the com-
partments, such that

Sðb¼ 0;TEÞ¼ S0ine
�TE=Tin

2 þ S0ene
�TE=Ten

2 þ S0isoe
�TE=Tiso

2 : [10]

Substituting finðTEÞ from Eq. [2] and fisoðTEÞ from Eq. [3], we have

Sðb¼ 0;TEÞfinðTEÞð1� fisoðTEÞÞ¼ S0ine
�TE=Tin

2 [11]

which can be rewritten in the form of a linear model as

ln½Sðb¼ 0;TEÞfinðTEÞð1� fisoðTEÞÞ�¼ � TE
Tin
2
þ ln S0in: [12]

Hence, Tin
2 can similarly be estimated from finðTEÞ and fisoðTEÞ at
3

multiple TEs. And Ten
2 and Tiso

2 can be subsequently calculated from Δ
Ren�in
2 and ΔRin�iso

2 determined previously. Since the TE range typically
used in diffusion studies is not sensitive to the long Tiso

2 , we focus mainly
on Tin

2 and Ten
2 within tissue compartments.

3. Materials and methods

This section describes the datasets, implementation and experiments
used to assess the MTE-NODDI technique. Both the acquisition of the in
vivo imaging data and the synthesis of simulated data were given in de-
tails, followed by the implementation details and experiments conducted.
3.1. Datasets

3.1.1. In vivo data
To explore TE-dependence of NODDI-derived parameters and assess

the proposed technique, two healthy subjects (#1: male, 24-year-old; #2:
female, 25-year-old) underwent diffusion-weighted imaging on a
Siemens 3T Prisma scanner (Siemens, Erlangen, Germany) with a 64-
channel head-neck coil. The local ethical committee approved this
study and a written informed consent was obtained from each
participant.

To exclude possible dependence on diffusion time (Fieremans et al.,
2016), a prototype diffusion sequence allowing fixed diffusion time was
employed. The otherwise identical protocol was repeated with 7 TE at
68, 78, 88, 98, 108, 118 and 132ms respectively. The protocol details are
as follows: three b ¼ 0 s/mm2 images, and monopolar diffusion
weightings of b ¼ 1000, 2000 and 3000 s/mm2 applied along 30 iso-
tropically distributed directions; three b ¼ 0 s/mm2 images in the
reversed phase-encoding direction; diffusion times were fixed, with
gradient width and separation δ∕Δ ¼ 17.1∕32.5 ms for all b-values and
TE’s. Other imaging parameters: TR ¼ 4000 ms; FOV ¼ 225 � 225 mm2;
slice number ¼ 50; resolution ¼ 2.5 � 2.5 � 2.5 mm3; slice acceleration
factor ¼ 2; phase acceleration factor ¼ 2; bandwidth ¼ 2416 Hz/pixel.
Total imaging time was 50 min.

3.1.2. Simulations
To assess the accuracy and precision of the proposed technique with

known ground truth, data from three typical WM voxels (without,
affected and dominated by CSF contamination) were simulated with the
NODDI MATLAB toolbox, modified to incorporate TE dependence. The
acquisition protocol of simulated data was identical to the in vivo data
protocol. The underlying parameter values of WM configuration were
chosen in accordance with in vivo measurement from a typical voxel at
internal capsule, and were as follows: f 0in ¼ 0.5, Tin

2 ¼ 90 ms, Ten
2 ¼ 60 ms;

concentration and mean orientation of Watson distribution: kappa ¼ 2.5
(corresponding to ODI ¼ 0.24), theta ¼ 1, phi ¼ 2; intrinsic free diffu-
sivity and isotropic diffusivity: Di ¼ 1.7 � 10�3 mm2 s�1 and Diso ¼ 3 �
10�3 mm2 s�1 respectively (Alexander et al., 2010; Zhang et al., 2011);
Tiso
2 ¼ 1000 ms and f 0iso ¼ 0/0.1/0.5 respectively for the three voxels

without, affected and dominated by CSF contamination. Each voxel was
simulated for 1000 random Rician noise realizations in the magnitude

signal by Snoise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ σÞ2 þ σ2

q
, in which the standard deviation of

Gaussian noise level σ was fixed for all signals achieving a SNR of Sðb ¼
0; TE ¼ 98 msÞ=σ ¼ 50 for pure WM voxel seen in vivo.

More extensive simulation experiments were performed with a vari-
ety of different scenarios, including: (1) different Tin

2 and Ten
2 values; (2)

different SNRs; (3) different intrinsic free diffusivities. The details can be
found in supplementary material S.1-S.3.
3.2. Implementation and experiments

3.2.1. Pre-processing and NODDI estimations
To reduce the effect of noise and imaging artifacts for the in vivo
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diffusion data, signal noise was first reduced by applying a method based
on random matrix theory (Veraart et al., 2016) separately for each TE
session, followed by the correction of B0 inhomogeneity, eddy current
and motion with TOPUP (Andersson and Sotiropoulos, 2016) and EDDY
(Andersson et al., 2016) in FMRIB Software Library (FSL, University of
Oxford, UK). NODDI-derived parameters were estimated for each TE
session with the NODDI MATLAB Toolbox, and the estimated parameters
were rigidly aligned to the first TE session. For the simulation data,
NODDI-derived measures were directly estimated with no pre-processing
steps.

3.2.2. Demonstration of TE-dependence of NODDI estimations
To demonstrate the TE dependence of NODDI-derived parameters for

in vivo data, ROI-based analysis as a function of TE was conducted.
Anatomical ROIs were extracted from the Johns Hopkins University
(JHU) WM atlas (Mori et al., 2005) by the following process: the
T2-weighted b ¼ 0 image was registered to the standard T2-weighted
image in JHU space using non-linear registration with FNIRT in FSL
(Smith et al., 2004); The inverse of the resulting warp field was applied to
the WM atlas to transform the ROIs into the subject space. The ROIs
studied were chosen in accordance with previous studies (McKinnon and
Jensen, 2019; Veraart et al., 2018): the genu (GCC), splenium (SCC), and
body (BCC) of the corpus callosum, the anterior (ACR), superior (SCR),
and posterior (PCR) corona radiata, the anterior and posterior limb of the
internal capsule (ALIC and PLIC, respectively), the external capsule (EC),
and the superior longitudinal fasciculus (SLF) (combined from both
hemispheres). To illustrate TE-dependence in gray matter (GM), the
frontal pole ROI was extracted from the Harvard-Oxford cortical atlas
(Desikan et al., 2006).

3.2.3. Compartment-specific non-T2-weighted fractions and T2 estimations
After demonstrating TE-dependence, the MTE-NODDI was imple-

mented for simulation data to assess the accuracy and precision of esti-
mations, and for in vivo data, with the following implementation details.

Following the theory section, the T2-independent f 0in andΔRen�in
2 were

first estimated from Eq. [6] using the NODDI estimates from data of the 7
TEs with non-linear least squares estimation. Each fit was initialized
using one random starting point sampled from following parameter
ranges: 0� f 0in � 1, � 0:03 � ΔRen�in

2 � 0:03ms�1 (determined by
assuming 28 � Ten

2 ; Tin
2 � 200ms). The resulting estimates were used to

determine f 0iso from Eq. [7]. Initialization values for each fit were gener-
ated randomly from following parameter ranges: 0� f 0iso � 1, 0:004 � Δ
Rin�iso
2 � 0:024ms�1 (determined by assuming 40 � Tin

2 � 200ms; Tiso
2 ¼

1000 ms). The T2 ranges are in accordance with or wider than the ranges
of these parameters found in the literature (MacKay et al., 2006; MacKay
and Laule, 2016). The termination tolerance of all fittings on residual
sum of squares and changes between iterations are 10�10 with a
maximum iteration of 1000 times. The optimization algorithm chosen for
non-linear least squares uses an interior trust region approach (Coleman
and Li, 1996); lower and upper bounds for the parameters were set to
their respective initialization range. Tin

2 was estimated using Eq. [12]
from the NODDI estimates and b ¼ 0 measurements of the 7 TEs with
linear least squares, and Ten

2 was calculated using the estimated Tin
2 and

ΔRen�in
2 .

3.2.4. Robustness of MTE-NODDI to the number of TEs
To assess the robustness of the MTE-NODDI, we evaluated the esti-

mation performance when the number of TE measurements were pro-
gressively reduced. For any given number of TEs, we considered two
scenarios: 1) keeping the sameminimum andmaximumTEs of the full set
to maximise the TE range; 2) keeping only the shortest TEs to maximise
SNR. The cases maximising the TE range are: 2 TEs (68, 132 ms), 3 TEs
(68, 98, 132 ms) and 4 TEs (68, 88, 108, 132 ms); The cases maximising
SNR are: 3 TEs (68, 78, 88 ms), 4 TEs (68, 78, 88, 98 ms) and 5 TEs (68,
78, 88, 98, 108 ms). Experiments were conducted on in vivo data, and on
4

simulation data corresponding to the pure WM voxel. The estimation
process and the optimization settings were the same as described above.

4. Results

4.1. TE-dependence of NODDI-derived parameters in in vivo data

Fig. 1 shows the NODDI-derived fin, ODI and fiso maps from Subject
#1 at each TE, while Fig. 2 plots the mean and standard deviation of
these parameters for the set of chosen WM and GM ROIs as a function of
TE. As demonstrated qualitatively in Fig. 1 and quantitatively in Fig. 2, fin
increases with TE in all WM ROIs but remains relatively constant in the
GM ROI, suggesting ΔRen�in

2 is positive in WM but is negligible in GM. fiso
increases in both WM and GM ROIs, as expected, given the positive
ΔRin�iso

2 , a result of Tiso
2 being much longer than Tin

2 . The standard de-
viations of these two parameters also slightly increase when TE increases,
possibly a result of both decreased SNR and regional variation of ΔRen�in

2

and ΔRin�iso
2 . In contrast, ODI shows minimal TE-dependence, as

expected.
4.2. Simulations: accuracy and precision of NODDI and MTE-NODDI
estimates

The distributions of all estimates of the 1000 Rician noise realization
for three WM voxels are shown as boxplots in Fig. 3. The NODDI esti-
mates of signal fractions from the simulation data demonstrate the same
TE-dependence as in vivo data, with the slope of increasing finðTEÞ
determined by the T2 difference of intra-neurite and extra-neurite com-
partments, i.e. the ΔRen�in

2 , as demonstrated in supplementary material
S.1. Similarly, the ODI shows little TE-dependence as in vivo data. Un-
surprisingly, the ODI for the MTE-NODDI data as a whole demonstrates
considerably higher precision than the corresponding values for each
individual TE.

Focusing on the new parameters provided by MTE-NODDI, the mean
and standard deviation of their estimated values are given in Table 1. The
MTE-NODDI estimates overall show high accuracy and precision
compared to the ground truth. For the pure WM voxel, there is a slight
negative bias to the f 0in and Ten

2 , and a slight positive bias to Tin
2 . This is

introduced by the Rician noise, which causes a positive bias to NODDI-
derived T2-weighted fractions, especially for higher TE with lower
SNR. As demonstrated in supplementary material S.2, higher SNR re-
duces the bias, while lower SNR increases it. The precision of estimated
parameters was reflected by the interquatile range (IQR) in Fig. 2 and the
standard deviation in Table 1. The IQR increases from 0.011 to 0,029 for
T2-weighted fin from TE ¼ 68 to TE ¼ 132 ms, and the IQR for modelled
f 0in is 0.039, indicating the noise is slightly amplified in the estimation of
f 0in. The IQR for Tin

2 and Ten
2 are 2.268 and 4.941 ms respectively, sug-

gesting a higher precision of Tin
2 than Ten

2 .
For voxels with CSF contamination, it is interesting to note that the

Tin
2 is not heavily affected because the consideration of the free water

compartment. The effective SNR for WM signal is lower, reflected by the
wider IQR of estimated fin than pureWM voxel. However, the SNR for the
total signal is higher, hence reducing the estimation bias caused by Rician
noise to some extent considering the two factors. Overall, the simulation
results suggest a high accuracy and precision of f 0in, f

0
iso and Tin

2 estimation,
and that the precision of Ten

2 , which is determined by previously esti-
mated ΔRen�in

2 and Tin
2 , is less robust than Tin

2 esimation, especially when
CSF contamination exists.
4.3. In vivo data: TE-independent parameter estimates

The estimatedmaps of T2-independent parameters from both subjects
are shown together with their whole-brain WM histograms in Fig. 4.
Again, we focus on the new parameters provided by MTE-NODDI; the



Fig. 1. Conventional NODDI-derived fin, ODI, and fiso maps at different TEs from subject #1. As TE increases, there are visually appreciable increases of fin and fiso
in WM.

Fig. 2. Demonstration of TE-dependence of NODDI-derived fin, ODI, and fiso in the set of chosen WM (A)(C) and GM (B) ROIs from subject #1. The mean and standard
deviation of the parameters within the ROIs are plotted against TE. fin shows increasing trend in all WM ROIs while remains relatively constant in the GM ROI; fiso
shows increasing trend in all ROIs; and ODI remains relatively constant in all ROIs.
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ODI maps are included in supplementary material S.4. The following
observations can be made: First, the conventional NODDI-derived T2-
weighted intra-neurite and CSF fractions shown in Fig. 2 are over-
estimated with respect to their non-T2-weighted counterparts. The mean
of the non-T2-weighted f 0in in WM is about 0.46, while its T2-weighted
version ranges from 0.60 at TE ¼ 68 ms to 0.71 at TE ¼ 132 ms; the
mean of the non-T2-weighted f 0iso in WM is about 0.04, while its T2-
weighted version ranges from 0.07 at TE ¼ 68 ms to 0.13 at TE ¼ 132
ms. Second, the estimated ΔRen�in

2 in WM is consistently positive,
5

indicating Tin
2 > Ten

2 in WM. Third, the parameter estimates for MTE-
NODDI show high consistency between the two subjects, as reflected
by the overlapping parameter histograms. The mean and standard de-
viation of f 0in are 0.46�0:14 for Subject #1 and 0.46�0:13 for Subjects
#2; for f 0iso, they are 0.03�0:05 and 0.04�0:06; for compartment T2, they
are 82�18ms and 83�17 ms for Tin

2 and 51�17 ms and 53�17ms for Ten
2

respectively.
The detailed WM ROI-based analysis of these parameters are shown

in Fig. 5. The variations of the estimated parameters across different ROIs



Fig. 3. Distributions of all estimates from simulation data for (a) pure WM voxel (f 0iso¼0); (b) WM voxel affected by CSF (f 0iso¼0.1); (c) WM voxel dominated by CSF
(f 0iso¼0.5). In the boxplots, the TE-dependence of NODDI-derived T2 weighted fractions display the same tendency as in vivo data, and the following MTE-NODDI
derived non-T2-weighted counterparts display minimal bias; the ODI’s estimated from individual TE display little TE-dependence as in vivo data, and the
following ODI’s for MTE-NODDI data display higher precision; the blue box and blue dot reflect the interquartile range (IQR) and the median of 1000 Rician noise
estimations respectively and the red dot reflects the estimation without noise. The distributions of estimated Tin

2 (ms) and Ten
2 (ms) are displayed as black dots with

their probabilities indicated by colour.

Table 1
Mean/standard deviation of MTE-NODDI estimates from three WM configura-
tions (a-c) with their ground truth given at first row.

f 0in¼0.5; Tin
2 ¼ 90 ms; Ten

2 ¼ 60
ms

(a) f 0iso ¼ 0 (b) f 0iso ¼ 0.1 (c) f 0iso ¼ 0.5

f 0in 0.491/0.029 0.498//
0.041

0.493/0.042

f 0iso 0.003/0.003 0.103/0.016 0.497/0.020

Tin
2 =ms 91.035/

1.668
90.579/
1.972

90.697/
1.982

Ten
2 =ms 57.564/

3.744
59.884/
5.948

59.160/
5.851
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are considerable, especially for compartmental T2 values. While the
mean f 0in is from 0.40 to 0.54 and f 0iso is below 0.1, Tin

2 varies from 69� 6
ms from EC to 94�15 ms from PLIC; and Ten

2 varies from 42� 17 ms from
GCC 61�12 from PCR. These regional variations are consistent between
the subjects and in keeping with previous literature (McKinnon and
6

Jensen, 2019; Veraart et al., 2018). In comparison, for all the ROIs,
between-subject differences are considerably smaller, demonstrating the
robustness of the technique.

4.4. Robustness of MTE-NODDI estimates to the number of TEs

The results from simulation using the pure WM voxel are shown in
Fig. 6. The estimates with full data of 7 TEs, shown previously in Fig. 2,
are included for reference, which demonstrates slight biases relative to
the ground truth. When reducing the number of TEs, at the same time
keeping the shortest TEs, the strategy includes the least biased NODDI-
derived TE-dependent fractions, which slightly reduces the biases of
the MTE-NODDI parameters: reducing the underestimation of f 0in and Ten

2

and the overestimation of Tin
2 and ΔRen�in

2 . However, the estimation
precision of f 0in, T

in
2 and especially ΔRen�in

2 are noticeably reduced re-
flected by the wider IQR with 4 and 3 TEs; the precision of Ten

2 is affected
more as it is calculated from ΔRen�in

2 and Tin
2 . In contrast, when reducing

the number of TEs while keeping the same TE range, the accuracy and
precision of parameter estimation closely mirror those of the full data,



Fig. 4. MTE-NODDI estimated parameter maps and histograms of whole-brain WM voxels from both subjects. The parameter estimates show high consistency be-
tween the two subjects. In WM, f 0in is around 0.5, and Tin

2 > Ten
2 (ms) generally.

Fig. 5. The mean and standard deviation of the estimated parameters for the chosen WM ROIs for subject #1 and #2. There are considerable regional variations,
which are consistent between subjects.
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including the slight biases.
The results from in vivo data, shown in Fig. 7, are consistent with the

results from simulation data. When keeping the same TE range, the
estimated parameters are robust to reducing the number of TEs, espe-
cially for the signal fractions and Tin

2 estimation, even with only 2 TEs, the
minimum requirement. In contrast, when keeping the shortest TEs, there
7

is a slight increasing trend for f 0in and decreasing trend of Tin
2 , corre-

sponding to the simulation results. However, reducing the TE range re-
duces the precision of parameter estimation, especially forΔRen�in

2 , which
in turn affects the Ten

2 estimation. One possible solution is to impose the
constraint of 0 � ΔRen�in

2 � 0:03 during fitting, given that the full data
has demonstrated Ten

2 � Tin
2 . By imposing this narrower range of ΔRen�in

2 ,



Fig. 6. The dependence of parameter estimates from simulation data of pure WM voxel on the number and range of TEs. Boxplots of 1000 noise realizations are shown
for each case.

Fig. 7. The dependence of parameter estimates from in vivo data on the number and range of TEs. The mean and standard deviation of each parameter for all the WM
ROIs are shown for each case.
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the outlier estimates of Ten
2 are noticeably reduced as demonstrated in

supplementary material S.5.

5. Discussion and conclusion

In summary, this study proposes MTE-NODDI technique to derive the
non-T2-weighted compartment fractions and compartment-specific T2
8

relaxations, and demonstrates it with both in vivo and simulation data.
The simulation data demonstrates the accuracy and precision of MTE-
NODDI, and the in vivo data demonstrates the TE-dependence of
NODDI estimated parameters and the ability of MTE-NODDI to exploit
such TE-dependence. Compared to NODDI estimates, the estimates from
MTE-NODDI suggest that conventional T2-weighted signal fractions will
give overestimated relative intra-neurite and CSF fractions, due to the
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estimated Tin
2 being larger than Ten

2 from the proposed technique, and
Tiso
2 ≫Tin

2 in studies respectively. Meanwhile, the T2-weighted intra-neu-
rite and CSF fractions will increase with TE. By disentangling the non-T2-
weighted compartment fraction with its specific relaxation, the MTE-
NODDI technique could facilitate the interpretation and quantification
of studies where alteration of T2 and fraction interacts and where
acquisition protocols (e.g. TE) are different.

The MTE-NODDI estimated non-T2-weighted intra-neurite fraction
and intra- and extra-neurite T2 values for in vivo data correspond well
with previous related studies. For the estimation of non-T2 weighted
fractions, our results for f 0in in WM ROIs are largely consistent with those
obtained from the TEdDI method (Veraart et al., 2018), though the TEdDI
method differs from ours in being an integrated two-compartment model
for WM voxels requiring complex fitting. For the estimation of
compartment-specific T2 relaxations, our results are also largely consis-
tent with both those obtained by TEdDI method (Veraart et al., 2018) and
by the direction-averaged diffusion method (McKinnon and Jensen,
2019). We did additionally consider the CSF compartment, hence miti-
gated the problem of inaccurate T2 estimation with two-compartment
model in areas with CSF contamination (Veraart et al., 2018). Actually,
the rationale behind Tin

2 estimations for our technique and (McKinnon
and Jensen, 2019) is similar. However (McKinnon and Jensen, 2019),
approximated the T2-weighted intra-neurite water fraction by using
direction-averaged signals from high b-value up to 8000 s/mm2, in which
the signals from extra-neurite and CSF were suppressed. In contrast, we
use NODDI model estimations of intra-neurite and CSF water fraction
from comparatively lower b-values which is clinical feasible in most
scanners. Meanwhile, compared to these two studies (McKinnon and
Jensen, 2019; Veraart et al., 2018), the fixed diffusion time in our study
eliminates the possibility of diffusion time dependence (Fieremans et al.,
2016) as a confounding factor to the findings.

Exploiting the compartment-specific T2 values estimated from T2
relaxometry methods could be another way to calibrate the T2-weighted
signal fractions from diffusion model, as demonstrated by (Bouyagoub
et al., 2016) to correct for the overestimation of CSF-fraction. However,
this method assumes a single T2 in tissue, hence could not provide
non-T2-weighted estimates of intra-neurite fraction. While a study using
multi-echo T2 relaxometry suggested the T2 values of the intra- and
extra-neurite spaces of tissue could be different (Whittall et al., 1997),
differentiating distinct T2 values with relaxometry methods alone was
found challenging due to the limited SNR available (Graham et al.,
1996). By combining relaxation and diffusion in a study of frog sciatic
nerve, Peled et al. (1999) observed a component with intermediate T2
and unrestricted diffusion consistent with extra-axonal water, and a
component with long T2 and restricted diffusion consistent with
intra-axonal water. This seminal study has inspired many techniques to
combine relaxation and diffusion. Recent examples include
diffusion-relaxation correlation imaging techniques (Benjamini and
Basser, 2017, 2016; Kim et al., 2017) which have been used to study ex
vivo human brain (Pas et al., 2020). These diffusion-relaxation correla-
tion methods estimate a 2D spectrum without assuming the number of
compartments a priori. In contrast, our modelling-based method extract
diffusion and T2 relaxation parameters from a pre-defined set of com-
partments, which help reducing the data requirement, hence, making the
technique potentially more clinically feasible. Future work could also
take T1 relaxation into consideration (De Santis et al., 2016a) to further
improve the specificity of estimated parameters.

The underlying microanatomical mechanisms of the estimated T2
difference between Tin

2 and Ten
2 remain unclear, but one contribution

factor could be the water exchange between myelin and intra/extra-
neurite compartments. One thing noted first, signal directly from
myelin is not considered in our study as well as in most diffusion studies,
because of the minimal TE (68 ms) being considerably longer than the T2
of myelin. However, as validated by (Lin et al., 2018) with Mote Carlo
simulation in a tissue model, the water exchange between myelin and
9

intra/extra-neurite compartments can lead to difference of measured T2
(Tin

2 >Ten
2 ), which plays a similar role as the difference of intrinsic T2 in

causing TE-dependence of diffusion tensor-derived measures. Since the
water exchange between intra/extra-neurite space and myelin sheath is
mediated by the surface-to-volume ratio of myelin water, therefore
affected by g-ratio, the simulation study further showed that increased
g-ratio during demyelination process can reduce the TE-dependence.
This inspired two of our hypotheses: first, the varying g-ratio across re-
gions (Campbell et al., 2018) could be a possible contribution of the
measured regional variation of the difference of Tin

2 and Ten
2 ; second,

hence decreased T2 difference estimated from our technique could
possibly indicate demyelination process. Proofs of these hypotheses need
not only simulation validation but more importantly histology corre-
spondence. Future work will put emphasis on the validation.

Sequence optimization to reduce acquisition time must balance the
need to reduce noise and to increase the TE range. On the one hand, the
Rician noise is known to cause a positive bias to MRI magnitude signals.
As has been demonstrated in the original NODDI paper (Zhang et al.,
2012) and further confirmed in our simulation results, the biased signals
introduce a slight positive bias to NODDI-derived T2-weighted parame-
ters, especially for data from longer TE, which in turn introduces slight
biases to the MTE-NODDI parameters. This argues for the use of TEs that
are as short as possible. On the other hand, the estimation of relaxation
parameters can benefit from widening the TE range. Our in vivo data
suggests, considering the precision alone, the positive effect from keep-
ing the longest TE outweighs the negative effect from reducing the SNR.
Future work will exploit sequence optimization algorithms, such as
(Alexander, 2008) to identify and test the most economical acquisition
protocol for specific applications.

As a technique based on NODDI estimations, the MTE-NODDI inherits
the limitations of model assumptions from NODDI, including tortuosity
assumption and fixed diffusivities. Despite these, NODDI metrics have
been shown to correlate with their histological counterparts (Grussu
et al., 2017). The fixed diffusivity used in NODDI by default has been
shown to be appropriate for WM across lifespan except for infancy
(Guerrero et al., 2019). Moreover, our simulation results (supplementary
material S.3) suggest only slightly negative bias of Ten

2 when actual
diffusivity is lower, and slightly decreased precision of Ten

2 when actual
diffusivity is higher. In contrast, Tin

2 estimation is not affected as much.
The robust estimates from NODDI allow us to exploit its TE-dependence
with MTE-NODDI technique, the estimation speed of which can be
largely accelerated (Daducci et al., 2015). Compared with the alternative
of incorporating all the MTE-NODDI parameters into a joint estimation
process with multi-TE diffusion data, the separate modelling of
MTE-NODDI might sacrifice the specificity of estimated measures during
intermediate steps, however, also mitigate the problem of joint estima-
tion with increased complexity of modelling and difficulty in fitting.

Another limitation of the current proof-of-concept is its long acqui-
sition time. Our experiments with reduced numbers of TEs suggest the
possibility to reduce scan time considerably. Moreover, we anticipate
that even shorter acquisition may be possible from exploiting recent
advances in deep-learning-based diffusion model reconstruction method
that could provide accurate parameter estimation from sparse acquisi-
tion. For example, recent works have demonstrated over 10-fold reduc-
tion of diffusion data with deep learning method for conventional NODDI
estimation (Gibbons et al., 2019; Golkov et al., 2016), as well as other
complex tissue properties in diffusion MRI (Li et al., 2019; Lin et al.,
2019). These approaches can be used to reduce the acquisition time for
MTE-NODDI to under 5 min, the exploration of which represents an
important avenue for future work.

For future applications, the MTE-NODDI could be beneficial to the
understanding and interpretability of neuroimaging studies, especially
for those investigating age-related brain alterations, in which substantial
alterations of T2-weighted intra-neurite fraction and T2 relaxation time
have been reported throughout the lifespan. For example, the T2-
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weighted intra-neurite fractions have been shown to increase during
brain development (Kansagra et al., 2016) and maturation (Geeraert
et al., 2019; Mah et al., 2017), followed with a plateau at adulthood
(Kodiweera et al., 2016) and to decrease during aging (Cox et al., 2016;
Merluzzi et al., 2016). In contrast, the T2 values in WM have been shown
to decrease quickly during early development and decrease slower dur-
ing maturation (Ding et al., 2004; Lee et al., 2018), followed by
increasing in most brain regions and declining in a few regions during
aging (Kumar et al., 2012). However, the intrinsic microstructural
changes behind the development process remain unclear due to the
limitations of conventional single TE method. With the ability to disen-
tangle the T2-weighted signal fraction from T2 weighting, the
MTE-NODDI developed in this study can be applied.
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