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Abstract: In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a 
dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of 
dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of 
NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic 
sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. 
Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases 
reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have 
shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we 
investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) 
administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an 
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animal model characterized by inflammation and elevated liver fat content. On the basis of the 
results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, 
we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-
erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 
administration inhibited hHSC proliferation while improving anti-oxidant protection and energy 
homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To 
confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the 
methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, 
upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating 
inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed 
that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides 
species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration 
reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, 
possibly by restoring homeostatic lipid function in a model of liver inflammation with fat 
accumulation. 

Keywords: non-alcoholic steatohepatitis (NASH); human hepatic stellate cells (hHSC); liposomes; 
ceramides; adenosine monophosphate-activated kinase (AMPK); nuclear factor-erythroid 2-related 
factor 2 (Nfe2l2/NRF2); inflammation; apoptosis; phosphatidylcholine (PC); diacylglycerol (DG); 
lipidomics; methionine-choline deficient diet (MCD) 

 

1. Introduction 

Nonalcoholic fatty liver disease (NAFLD) represents a major health issue worldwide, with 
evolution into non-alcoholic steatohepatitis (NASH) in 10% of cases, and possible further progression 
to liver cirrhosis and hepatocellular carcinoma (HCC) [1–3]. Consequently, major efforts are currently 
dedicated to discovering targetable pathogenic mechanisms and designing strategies able to reduce 
or arrest disease progression [4,5]. 

Studies in patients with NASH and animal models have provided evidence for an altered 
regulation of lipid metabolism in the progression from NAFLD to NASH [6,7]. In particular, human 
lipidomic/metabolomic studies have highlighted a significant increase of sphingolipid metabolites, 
including ceramides, in addition to elevations in tri- and di-glycerides [8,9]. 

Ceramides constitute a family of sphingolipids that consist of sphingosine covalently linked to 
a fatty acid, which are generated through de novo synthesis from serine and palmitate, 
sphingomyelin hydrolysis, or by sphingosine recycling from sphingolipids in the endosomes. The 
pathways leading to the synthesis of ceramides have shown abnormal profiles in NASH [10,11]. In 
addition, NASH phenotypes are mitigated by generic inhibitors of de novo ceramide metabolism 
[12,13], or exacerbated by over-expression of ceramide synthases [14,15]. Regardless, the overall 
biological actions of ceramides in the development and progression of NASH are only partially 
defined [11,16,17]. 

In broader terms, ceramide and its metabolites have profound effects on cellular metabolism and 
energy homeostasis, leading to a shift from anabolic to catabolic pathways [18–20]. Along these lines, 
multiple ceramide species have been shown to contribute to ectopic lipotoxicity and may interfere 
with cellular signaling pathways, thus promoting insulin resistance and type 2 diabetes [21,22]. 
Ceramides have also been shown to exert a negative impact on the regulation of energy homeostasis, 
including the inhibition of the energy-sensor adenosine monophosphate activated kinase (AMPK) 
phosphorylation [23] and transcription factors such as nuclear factor-erythroid 2-related factor 2 Nrf2 
(Nfe2l2) [24,25]. In addition, AMPK phosphorylates Nrf2 (Ser550) [25–27], which regulates 
transcriptional induction of antioxidant response element (ARE)-containing genes encoding 
antioxidant enzymes, electrophile-conjugating enzymes, ubiquitin/proteasomes, and 
chaperone/heat-shock proteins in response to oxidative stress [27]. Therefore, ceramides may also 
reduce the natural antioxidant response and favor lipid peroxidation and progression of NASH. 
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On the other hand, evidence suggests that the overall effects of ceramides may be dependent on 
the dosing regimen, specific chain-lengths, and inherent hydrophobicity and impermeability [14]. It 
has been demonstrated that short-chain C6-ceramide can actually exert anti-inflammatory and anti-
lipogenesis effects [28,29], and we are proposing Lip-C6, a non-toxic hydrophilic delivery liposome 
vehicle containing ceramide-C6, specifically designed for systemic administration [30–32]. 
Remarkably, cell permeable ceramides can increase nuclear translocation and DNA binding of Nrf2, 
as well as c-jun, to control ARE-mediated transcriptional activity [33,34]. These ceramides also 
increase the interaction between Nrf2 and c-jun, leading to up-regulation of antioxidant enzymes and 
resultant amelioration of oxidative stress in astrocyte models [35].  

In this study, we firstly show a perturbation in Nrf2 and AMPK pathway genes in the liver tissue 
of NASH patients. Further, we investigated the effects of non-apoptotic doses of the cell permeable 
ceramide Lip-C6 on AMPK-and Nrf2-dependent oxidative stress in an animal model recapitulating 
hepatic fat accumulation and tissue inflammation typical of NASH. Finally, the effects of Lip-C6 
found in vivo were also investigated in primary human hepatic stellate cells, in key cells in liver 
fibrosis, and in the progression from NAFLD to NASH. 

2. Materials and Methods 

2.1. Reagents 

All reagents used in this study were from Sigma Aldrich unless otherwise mentioned. The list 
of antibodies and qRT-PCR assays-on demand utilized are shown in Supplementary Table 1 and 
Table 2, respectively. 

2.2. RNA Sequencing of Human Tissue NAFLD 

For human RNAseq studies, human liver samples were obtained from the Human Biorepository 
Core from the NIH-funded international InTeam consortium (7U01AA021908-05) as previously 
described [36]. All patients gave written informed consent and the research protocols were approved 
by the local Ethics Committees and by the central Institutional Review Board of the University of 
North Carolina at Chapel Hill. For the present study, we compared non-diseased normal human 
livers (N = 10) with NAFLD patients according to Kleiner’s Criteria and without alcohol abuse (N = 
9) (Supplementary Table 3). Patients with malignancies were excluded from the study. 

RNA extraction, sequencing, and bioinformatic analysis: RNA extraction and sequencing was 
performed as indicated previously [36]. Total RNA from flash-frozen liver tissue was extracted by 
phenol/chloroform separation (TRIzol, Thermoscientific, Waltham, MA, USA). RNA purity and 
quality were assessed by automated electrophoresis (Bioanalyzer, Agilent, Santa Clara, CA, USA) 
and sequenced using Illumina HiSeq2000 platform. Libraries were built using TruSeq Stranded Total 
RNA Ribo-Zero GOLD (Illumina, San Diego, California, USA). Sequencing was paired end (2 × 100 
bp) and multiplexed. Ninety-four paired-end sequenced samples obtained an average of 36.9 million 
total reads with 32.5 million (88%) mapped to GRCh37/hg19 human reference. Short read alignment 
was performed using STAR alignment algorithm with default parameters. To quantify expression 
from transcriptome mappings we employed RSEM. 

2.3. Preparation of Nanoliposomal C6-Ceramide 

Briefly, 12% pegylated nanoliposomes (80 ± 15 nm in size) that contain 30 mol% ceramide were 
prepared as previously described with lipids 1,2-distearoyl-sn-glycero-3- phosphocholine, 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine, N-hexanoyl-d-erythro-sphingosine (C6-ceramide), 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy polyethylene glycol-2000], and N-
octanoylsphingosine-1-[succinyl(methoxy polyethylene glycol-750)] (PEG(750)-C8) combined in 
chloroform at a molar ratio of 3.75:1.75:3:0.75:0.75 [37]. Combined lipids were dried under C6-
nitrogen gas and resuspended in 0.9% sterile NaCl at 60 °C. Following rehydration, the resulting 
solution was sonicated for 5 min, followed by extrusion through a 100 nm polycarbonate membrane 
using the Avanti Mini Extruder (Avanti Polar Lipids, Alabaster, Alabama, USA). Control ghost 



Cells 2020, 9, 1237 4 of 21 

 

liposomes (Lip-G) were prepared in a similar manner, excluding N-hexanoyl-d-erythro-sphingosine 
(C6). Several Quality Assurance and Quality Control (QA/QC) parameters were evaluated after 
preparation of nanoliposomes that were formulated within the size range of 85 nM–90 nM, as 
measured by dynamic light scattering. Zeta potentials of the nanoliposomes were measured and were 
between –10 mV and –15 mV. For the MCD diet, each animal was given a single tail vein injection of 
100 µl of a 25 mg/ml solution of liposomes containing ceramide C6 (Lip-C6) or ghost (Lip-G). 

2.4. Animal Experiments 

Methionine choline deficient diet (MCD): Male BALB/c cN SPF mice, six weeks old, weighing 
between 20 and 25 grams, were purchased from Charles River Laboratories (Calco, Italy). All animals 
were housed five per cage and kept under a controlled temperature of 22 ± 2 °C, 50%–60% relative 
humidity, and 12 hours light/dark cycles. Injection of Lip-C6 and culling of animals were performed 
in the morning. Mice had free access to food and water ad libitum. One week after arrival, mice were 
subdivided and fed either a diet deficient in methionine and choline (MCD diet) or the same diet 
supplemented with methionine and choline (control diet, CD). Diets were prepared by Dottori 
Piccioni Laboratories (Milan, Italy) [38] and stored at 4 °C until used. After nine weeks on different 
diets, mice were further subdivided to receive a single tail vein injection of either C6-ceramide 
containing liposomes (Lip-C6) or empty liposomes (ghost, Lip-G), resulting in six experimental 
groups (CD n = 5; CD–Lip-G n = 5; CD–Lip-C6 n = 5; MCD n = 5; MCD Lip-G n = 5; and MCD–Lip-C6 
n = 10). One week after the tail vein injection, all mice were euthanized via exsanguination under 
anesthesia with an i.p. injection of 80 mg/kg 50% tiletamine hydrochloride and 50% zolazepam 
hydrochloride (Zoletil, Virbac, France). Body weight was recorded. Blood samples were centrifuged 
at 4500 rpm for 15 minutes at 4 °C to obtain serum that was kept at −20 °C until analyzed. Livers were 
rapidly dissected, weighed, snap-frozen in liquid nitrogen, and kept at −80 °C for further analysis. A 
portion of the liver was immediately fixed in formalin for histological analyses. Experimental 
protocols were conducted according to established international guidelines (Guide for the Care and 
Use of Laboratory Animals, NIH publication No. 86-23) and after approval by the University of 
Florence and Italian National Regulatory Authorities. 

2.5. Serum Aminotransferase Levels 

Serum alanine-aminotransferase (ALT) and aspartate aminotransferase (AST) activities were 
determined using a commercially available kit and Reflotron (Roche Diagnostic, Milan, Italy), as 
previously described [38]. 

2.6. Liver Histology 

A portion of liver tissue was fixed by immersion in 10% buffered formalin (pH 7.4) for 24 hours. 
The fixed tissue was dehydrated in graded ethanol, paraffin-embedded, and sectioned at a thickness 
of 4 µm. Hematoxylin–eosin (H&E) and Sirius Red staining were performed as previously described 
[39]. Images were captured with an Axiocam IcC5 using Zeiss Axiovision (version 4.8.2). Liver 
histology was evaluated according to the NASH CRN scoring system [40] by an experienced hepato-
pathologist (T.V.L.) blinded to the type of treatment received by the animals. Four histological 
variables commonly described in NASH were analyzed on the H&E stained sections: (1) the presence 
of predominantly macro-vesicular or large droplet steatosis, graded 0–3 based on percent of 
hepatocytes in the biopsy involved; (2) lobular inflammation, graded 0–3 based on inflammatory foci 
per 20× with a 20× ocular; (3) hepatocellular ballooning, graded 0–3 based on numbers of ballooned 
hepatocytes (none = 0, a few = 1 and many = 3); and (4) apoptotic bodies, counted per 20× and graded 
0–3, as in lobular inflammation. Fibrosis assessment was based on the use of Sirius Red stained 
sections and evaluated according to the NASH CRN fibrosis staging system [40]. 

2.7. Human Hepatic Stellate Cell Isolation and Culture 



Cells 2020, 9, 1237 5 of 21 

 

Primary human hepatic stellate cells (hHSCs) were isolated from wedge sections of liver tissue, 
obtained from patients undergoing surgery in the Royal Free Hospital after giving informed consent 
(NC2015.020 (B-ERC-RF). Cells were isolated according to Mederacke et al. [41] with modifications 
for human liver [42]. Briefly, 10 g of total human liver tissue was digested with 0.01% Collagenase, 
0.05% Pronase, and 0.001% DNase I without performing perfusion. The homogenate was filtered 
through a 100 µm cell strainer (BD Falcon) and the flow-through was centrifuged at 50× g for 2 
minutes at 4 °C. After washing the supernatant, gradient centrifugation was performed at 1400× g for 
17 minutes at 4 °C using an 11.5% Optiprep gradient. Finally, the interface was collected and washed. 
Purity of hHSC was established by detection of CD140b (PDGFRβ), CD29 (Integrin β1), and 
Cytoglobin B (CYGB). 

The obtained hHSC were cultured in IMDM supplemented with 20% fetal bovine serum (FBS), 
glutamine, nonessential amino acids 1×, 1.0 mM sodium pyruvate, 1× antibiotic-antimycotic (all Life 
Technologies), referred to as complete HSC medium hereinafter. Experiments described in this study 
were performed on hHSC of at least three independent cell preparations/donors, between passage 3 
and 8. 

2.8. Cytotoxicity, Cell Proliferation and ATP Assays 

Primary hHSC were seeded (density 26 × 103/cm2) under basic serum-rich conditions for 24 
hours, followed by serum deprivation (serum free medium, SFM) for the next 24 hours prior to 
liposomes exposure. Next, cells were treated for 24 hours with a range of concentrations (100–12.5 
µM) of either Lip-C6 or Lip-G. Cytotoxicity and cell proliferation were assessed by MTT/MTS test 
(Promega, Southampton, UK) and BrdU ELISA (Sigma Aldrich, Dorset, UK), respectively [43]. 
Moreover, the Lip-C6 inhibitory effect on cell proliferation was further quantified by employing ATP 
assay. Cells were seeded at a density of 10,000 cells/well/100 uL in a 96-well plate in culture medium 
and serum-starved for 24 hours followed by incubation with 6.25 µM of Lip-C6 for up to 24 hours. 
Cell lysis was induced using the CellTiter-Glo® Reagent (Promega, Southampton, UK), according to 
the manufacturer’s specification. Luminescence was recorded and the intracellular ATP 
concentration was calculated from an ATP standard curve and normalized to hHSC proliferation, as 
measured by BrdU assay. All samples were assayed in quadruplicates and according to the 
manufacturer’s manual and as previously described [43]. 

For protein analyses, hHSC were exposed to non-cytotoxic doses of Lip-C6 and Lip-G (6.25 and 
3.125 µM) for up to 24 hours and total protein lysates were analyzed by Western blot, as described 
below. 

In another set of experiments, liposome uptake was monitored in hHSC grown on glass chamber 
slides. After 24 hours of incubation with the same non-cytotoxic doses of 6.25 µM rhodamine-labelled 
Lip-C6 and Lip-G liposomes, nuclei were counterstained with Hoechst 33342 (1 µM, final 
concentration) for 10 minutes, cells were then washed three times in 1× HBSS, and observed under a 
fluorescence microscope (AxioScopeA1, Carl Zeiss Ltd, Cambridge, UK). 

2.9. RNA Isolation and Quantitative Real-Time PCR 

Total RNA was extracted using Qiazol reagent and RNeasy Universal Mini Kit (Qiagen, 
Manchester, UK) and quality and quantity was assessed by Nanodrop 2000 Spectrophotometer. One 
µg of total RNA was reverse transcribed with random primers and MultiScribe RT enzyme (Applied 
Biosystems, Paisley, UK). Taqman® gene expression assays were used (Supplementary Table 2) and 
the signal was acquired with Applied Biosystems 7500 Fast Real-Time PCR System (ThermoFisher 
Scientific, Paisley, UK). Data were expressed as 2-∆∆Ct and GAPDH served as endogenous control 
[44,45]. 

2.10. Protein Extraction and Western Blot Analysis  

Briefly, liver tissue and cells were lysed in RIPA buffer containing 20 mM/l Tris·HCl, pH 7.4, 150 
mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 1 mM Na3(VO)4, 1 mM/l PMSF, 1X proteinase inhibitor 
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cocktail, and 0.05% aprotinin. Insoluble proteins were discarded by centrifugation at 10,000 rpm at 4 
°C, and total proteins were measured (Pierce, Rockford, IL) and stored at −80 °C for further analysis. 
For immunoblot analysis, whole cell lysates (25–35 µg) were separated on SDS–PAGE, transferred to 
nitrocellulose, and immunoblotted as described previously. Equal loading was demonstrated by re-
probing membranes with antibody against either -actin, total actin, or vinculin [46]. 

2.11. Lipidomics 

Liver lipids were extracted using methyl-tert-butyl ether as described by others [47]. Extracts 
were separated on a 2.1 mm x 10 cm C8 Ethylene Bridged Hybrid (BEH) column (Waters Milford, 
MA, USA) with 60:40 water/acetonitrile 10 mM ammonium acetate and 90:10 
isopropranol/acetonitrile, 10 mM ammonium acetate as the mobile phases. Eluate was analyzed with 
an inline AB Sciex 5600 TripleTOF mass spectrometer (Sciex, Framingham, MA, USA) using 
information-dependent acquisition. Data were analyzed using Progenesis QI and SIMCA-P for 
multivariate analyses. Orthogonal partial least squares-discriminant analysis was performed to 
identify features that distinguished between the groups. A cut-off of VIP [2] score >3 was used for 
feature (lipid) identification. 

2.12. Statistical Analysis 

Body/liver weight, ALT/AST quantification, and cellular assays were analyzed with two-way 
analysis of variance (ANOVA) and Tukey’s multiple comparisons test using Prism software (Graph 
Pad, CA, USA). Semi-densitometry analysis for protein analysis was performed by employing Fiji 
ImageJ and GraphPad Prism was used for standard error (SE). Histograms represent averages ± SE 
of two samples of each of the conditions investigated. Statistical analysis for RNA sequencing: data 
are shown as box plots, indicating the median, the inter-quartile range, the maximum and minimum 
values, and occasionally the outliers. The comparison between normal and NAFLD RNA counts was 
made using a differential expression analysis and fitting a linear model using limma package. The p-
value was corrected with the Benjamini–Hochberg method to calculate the false discovery rate for 
each gene in Figure 1, panels C, D, and E. qPCR data were analyzed using unpaired T test and the 
mean value of the controls was set to 1. Data were analyzed with Prism software (Graph Pad, CA, 
USA). Lipidomics data were analyzed using Progenesis QI and SIMCA-P for multivariate analyses. 
Orthogonal partial least squares-discriminant analysis was performed to identify features that 
distinguished between the groups. A cut-off of VIP [2] score >3 was used for feature (lipid) 
identification. 

3. Results 

3.1. AMPK and Nrf2 Signaling Pathways are Significantly Affected in NAFLD Patients 

Unbiased transcriptomic and ingenuity pathway analyses (IPA) revealed that the Nrf2-mediated 
oxidative stress response network was upregulated in liver biopsies from NAFLD patients. Gene 
products associated with Nrf2-mediated transcription – oxidative stress response were upregulated 
(Figure 1A,B). Of interest, two Nrf2 pathway genes, implicated in the cellular stress-induced 
antioxidant response, and more specifically MGST1, which regulates inflammatory eicosanoid 
responses, was upregulated, and GSTA5, which catalyzes glutathione conjugation, was 
downregulated in NAFLD [48] (Figure 1C,E). Genes belonging to the unfolded protein response 
(ATF-4) [49] and ubiquitin B (UBB), which is necessary to fulfill the protein ubiquitination and one of 
the most important proteins in post-translational modifications, was significantly downregulated in 
NAFLD patients. The endoplasmic reticulum stress-related genes (DNAJB9, DNAJC3) and those 
involved in insulin resistance (PRKCε) [50] were all strongly upregulated in NAFLD patients. 

No AMPK-related pathway was significantly enriched in NAFLD patients. We thus unbiasedly 
generated a list of AMPK related genes by means of STRING analysis (http://string-db.org/) [51] and 
UCSC Genome Browser data mining tool goldenPath (https://genome.ucsc.edu/goldenPath) [52] 
(Supplementary Figure 1A,B), and evaluated this particular set of AMPK-related genes in the RNA-
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seq of patients with NAFLD (Figure 1D,E). Besides the downregulation of several AMPK subunits 
(PRKAB1, PRKAB2, PRKAG1) [26] in NAFLD patients, most strikingly, a perturbation was found in 
many AMPK pathway genes such as those affecting the insulin/glucose homeostasis and 
downstream regulators (TBC1D1, SLC2A4/GLUT4, AKT1/2) [53], those genes involved in the 
regulation of lipid metabolism and activation/phosphorylation of AMPK (Sirt3) [54], and TSC2 
regulating AMPK activation [55] displayed significant downregulation in NAFLD patients. Overall, 
these results suggested a dysregulated expression of several Nrf2 and AMPK pathway genes in 
NAFLD patients’ tissue indicating that both the endogenous anti-oxidant/detoxifying system and the 
AMPK-related energy homeostasis are altered in NAFLD patients and could represent possible 
targets for treatment. 

 
Figure 1. Adenosine monophosphate-activated kinase (AMPK) subunits and Nrf2 gene expression 
are significantly changed in nonalcoholic fatty liver disease (NAFLD) patients. RNA sequencing was 
performed on (A) normal (N = 10) and NAFLD derived liver tissue (N = 9 patients). (B) Summary of 
the functional enrichment analysis of the differentially expressed transcriptome using ingenuity 
pathway analysis. The significance of each gene set is indicated in the bar graph. The top functions 
belonging to the canonical pathway class are represented. The colors of the bars indicate the direction 
(blue meaning inhibition, and red activation) and the Z-score, which measures the magnitude 
(intensity of color) for the enrichment of a specific pathway. For some functions, no Z-score was 
calculated because of a lack of enough evidence regarding the specific gene functions or expression 
within a specific gene set (gray bars). The pathway “NRF2-mediated oxidative stress response” was 
significantly upregulated in patients with NAFLD. (C–D) Gene expression related to different Nrf2 
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and AMPK signaling pathways/mechanisms shown to be altered. (E) Representations of fold change 
(FC) and false discovery ratio (FDR) are shown for each gene investigated. 

3.1. Lip-C6 Affects Proliferation, and Promotes Phosphorylation of AMPK and the Endogenous Anti-
Oxidant System in Human Primary HSC 

As hepatic stellate cells (HSCs) are key cellular effectors in the progression from NAFLD to 
NASH and liver fibrosis, we investigated the effect of Lip-C6 treatment on energetic, metabolic, and 
anti-oxidant signaling pathways in cultures of primary human HSC (hHSC) in vitro. Cultured 
activated, serum-starved primary hHSCs were exposed to various concentrations (100 µM–3.125 µM) 
of Lip-C6 or Lip-G as control, for 24 hours. Higher doses of Lip-C6-treatment induced cytotoxicity 
(100 µM–12.5 µM, Figure 2A), whereas 6.25 µM Lip-C6 significantly inhibited hHSC proliferation 
without inducing cytotoxicity (Figure 2B). Next, immunofluorescence was performed and showed 
that liposomes containing rhodamine-labelled Lip-C6 and ghost were taken up as early as two hours 
after treatment (Figure 2C). On the basis of these data, we utilized non-toxic doses of Lip-C6 to 
investigate alterations of energy homeostasis and endogenous anti-oxidant signaling pathways in 
hHSC. Cells were exposed to 6.25 and 3.125 µM of Lip-C6 for up to 24 hours. Protein analysis showed 
an increase in activation/phosphorylation of AMPK and an upregulation in Nrf2 protein expression 
(Figure 2D). These data indicate that Lip-C6 inhibits proliferation in hHSC through activation of 
AMPK, which is possibly because of an increased production in ATP. Indeed, changes in ATP 
homeostasis were observed in cells exposed to 6.25 µM of Lip-C6 for up to 24 hours and showed 
increased ATP production (*p < 0.05, **p < 0.005 compared with SFM) (Figure 2E). 
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Figure 2. Liposomes containing short-chain ceramide C6 affect AMPK activation and proliferation, 
and promote the endogenous anti-oxidant system in primary human HSCs. Primary hHSCs were 
exposed to various concentrations (100–3.125 µM) of Lip-C6 or Lip-G for up to 24 hours. (A) Higher 
doses of Lip-C6-treatment induced cytotoxicity (100–12.5 µM) (n = 4 per condition) (*p < 0.05), whereas 
(B) 6.25 µM inhibited hHSC proliferation (*p < 0.05) compared with serum free medium (SFM) (n = 4 
per condition). (C) Representative images of liposomal uptake, which were evaluated by employing 
immunofluorescence and showed that liposomes containing ceramide-C6 with rhodamine (6.25 µM) 
were taken up as early as two hours after exposure. (D) Primary hHSCs were exposed to 6.25 and 
3.125 µM of Lip-C6 for up to 24 hours. Representative protein analysis showed an increase in 
phosphorylation of AMPK and upregulation of Nrf2 protein expression (n = 1 of 3 independent 
experiments). (E) Changes in ATP were observed when cells were exposed to 6.25 µM of Lip-C6 for 
up to 24 hours (n = 4 per condition, *p < 0.05, **p < 0.005 compared with SFM), Complete Medium 
(CM). 

3.3. Liposomal Treatment with Ceramide-C6 in MCD-Induced Liver Steatosis 

In this set of experiments, the possible beneficial effects of Lip-C6 treatment were analyzed in an 
in vivo model of fatty liver associated with inflammation and fibrosis, recapitulating some aspects of 
NASH. Animals fed the MCD diet had significant body weight loss and decrease in liver size 
regardless of the treatment with Lip-C6 or Lip-G in comparison with the control diet group (Figure 
3A,B ****p < 0.001). This coincided with no significant changes in the liver/body weight ratio (Figure 
3C). Administration of Lip-C6 or Lip-G did not alter the MCD-induced increase in ALT and AST 
levels (Figure 3D,3E). Histopathology data showed that MCD diet caused an accumulation of fat in 
hepatocytes, induced infiltration of inflammatory cells as stained with H&E, and collagen 
accumulation as stained with Sirius Red staining (Figure 3F). The NASH CRN scoring demonstrated 
that MCD-fed mice showed the presence of steatosis, mild lobular inflammation with minor 
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hepatocellular ballooning, and a fibrosis scoring of 1a (mild/delicate zone 3 perisinusoidal fibrosis) 
and 1b (moderate/dense zone 3 perisinusoidal fibrosis), in comparison with the control diet (Figure 
3G). 

 
Figure 3. Liposomal treatment with ceramide-C6 in methionine-choline deficient (MCD)-induced 
liver steatosis. (A) Animals fed the MCD diet have significant loss of body weight regardless of 
treatment with Lip-C6 or Lip-G in comparison with the control diet (CD) group (****p < 0.0001). (B) 
This coincided with a strong significant decrease in liver size in comparison with the control diet (CD) 
group (****p < 0.0001) without (C) changes in liver/body weight ratio when comparing the control diet 
with MCD-fed mice. (D, E) No significant differences were observed between alanine transaminase 
(ALT) and aspartate aminotransferase (AST) levels of animals treated with Lip-C6 or Lip-G in 
comparison with their specific control condition. (F) Lip-C6 treatment did not exacerbate the MCD 
diet, as analyzed by hematoxylin and eosin and Sirius Red. (G) NASH CRN scoring system 
demonstrating changes occurring during Lip-G and Lip-C6 treatment in MCD-fed mice (CD n = 5; 
CD–Lip-G n = 5; CD–Lip-C6 n = 5; MCD n = 5; MCD Lip-G n = 5; and MCD–Lip-C6 n = 9). 
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3.4. Lip-C6 Treatment in MCD Increases AMPK Phosphorylation/Activation, without Inducing Apoptosis 
in the MCD-Diet Model 

The effect of Lip-C6 treatment on AMPK and Nrf2 was investigated and showed that Lip-C6 
treatment induced a strong phosphorylation of AMPK in MCD-fed mice (Figure 4A, Supplementary 
Figure 3A). To exclude intra-variability within each group, samples belonging to each specific 
condition were pooled and protein analysis was performed. Densitometric analysis showed that 
MCD-fed mice had reduced AMPK protein levels in comparison with control diet-fed mice. Absolute 
levels of phosphorylated AMPK (P-AMPK), a marker of AMPK activation, were highly induced in 
MCD-Lip-C6 treated mice relative to both MCD-fed and MCD- Lip-G treated mice (Figure 4B). In 
this study, both Nrf2 and NQO1 protein expression were upregulated in MCD-fed mice in 
comparison with CD-fed mice, whereas Keap-1 protein expression was absent in MCD-fed mice 
(Figure 4C). Of interest, Lip-C6 did not alter Keap-1 or NQO1 levels in the control or MCD diet 
groups, but did slightly reduce Nrf2 protein expression induced by the MCD diet (Figure 4C, 
Supplementary Figure 3B). To see if any of these effects coincided with apoptosis under any of the 
conditions analysed and, more specifically, whether Lip-C6 injection coincided with cell death, 
several apoptotic markers and signalling pathways were investigated. The phosphorylation of the 
pro-apoptotic c-Jun N-terminal kinase (JNK) was investigated, as an increase in endogenous 
oxidative stress can induce JNK activation. Our data showed that JNK phosphorylation was absent 
in all MCD-fed mice in comparison with the control diet (Figure 4D). Further, cleaved poly (ADP-
ribose) polymerase (PARP) and cleaved caspase 3 protein expression were not observed in MCD-fed 
mice, with or without Lip-C6 treatment (Figure 4E, Supplementary Figure 3C,D). Moreover, 
phosphorylation of p62, which is regulated by the mRNA stabilizing protein HuR/ELAV1 and is 
known as an apoptotic marker, was not observed in MCD-fed mice, with or without Lip-C6 
treatment, indicating that the Lip-C6 treatment does not induce Keap1/p62 related apoptosis in our 
model (Supplementary Figure 2A). 

 
Figure 4. Liposome containing short-chain ceramide C6 treatment in MCD diet increases AMPK 
activation/phosphorylation and enhances the endogenous anti-oxidative stress signaling pathway 
without inducing apoptosis. (A) Representative Western blot analysis demonstrated an upregulation 
in activation/phosphorylation of AMPK by Lip-C6 treatment in MCD-fed mice in comparison with 
MCD-fed mice (n = 2 for each condition). (B) Inter-variability was assessed by protein analysis of 
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pooled samples of each condition and densitometry scanning. MCD-fed mice have reduced AMPK 
protein levels in comparison with control diet-fed mice. Absolute levels of phosphorylated AMPK (P-
AMPK) were highly induced in MCD-fed mice treated with Lip-C6 relative to MCD-fed mice and 
MCD-fed Lip-G treated mice. (C) Representative Western blot analysis demonstrated that Keap-1 
protein expression was absent in MCD-fed mice, whereas Nrf2 and NQO1 protein expression were 
upregulated in MCD-fed mice in comparison with CD-fed mice (n = 2 for each condition). (D) Lip-C6 
treatment in MCD-fed mice did not induce apoptosis by JNK activation/phosphorylation. (E) Cleaved 
poly (ADP-ribose) polymerase (PARP) and cleaved Caspase 3 protein expression showed to be absent 
in MCD-fed mice with no changes observed in Lip-C6 treated mice (n = 2 for each condition). 

3.5. Lip-C6 Does Not Alter the Pro-Inflammatory Response in MCD-Fed Mice 

In reason of the protective anti-oxidant Nrf2 and energetic AMPK signaling networks induced 
by Lip-C6 in the in vivo model, the pro-inflammatory mechanisms potentially affected by these 
pathways were analyzed. Quantitative RT-PCR showed that Lip-C6 treatment did not significantly 
affect gene expression in MCD-fed mice (Figure 5), as no significant changes were observed in CC 
chemokine ligand 2 (CCL2), CD11b, tumour necrosis factor α (TNFα), and nuclear factor kappa B 
(NF-kB) mRNA transcripts from control and MCD diets in the presence or absence of Lip-C6. 

 
Figure 5. Lip-C6 does not exacerbate the pro-inflammatory response in MCD-fed mice. qRT-PCR 
showed that the Lip-C6 treatment in MCD-fed mice did not induce significant changes in mRNA 
expression of pro-inflammatory key genes versus internal control diet (CD) (CD n = 2, CD-G n = 5, 
CD-C6 n = 5, MCD n = 2, MCD-G n = 5, and MCD-C6 n = 8, mean value of controls was set to 1). 

3.6. Lip-C6 Treatment Restores Specific Phosphatidylcholines and Diacylglycerides in MCD-Fed Mice 

It is well established that the MCD diet significantly reduces phosphatidylcholine (PC) pools 
and decreases PC/phosphatidylethanolamine (PE) ratio, as well as diacylglycerol (DG) classes, which 
are critical to maintain membrane integrity [56,57]. To understand whether Lip-C6 treatment could 
resolve the dysregulated lipid metabolism in MCD-fed mice, we assessed lipidomics via an 
untargeted Liquid chromatography–mass spectrometry ( LC-MS)-based approach, after a single tail 
vein injection of Lip-C6. Major changes were observed in the lipid classes of PC and DG. The MCD 
diet diminished the amount of multiple phosphatidylcholines, which included PC(16:0/18:1), 
PC(18:1/20:4), PC(18:2/20:4), PC(18:1/22:6), and PC(18:2/22:6) (Figure 6A), as well as a few 
diacylglycerides DG(16:0/18:1), DG(18:0/20:4), and DG(18:1/20:4) (Figure 6B). With the exception of 
PC(16:0/20:4), a single injection and short-term C6-ceramide treatment in MCD-fed mice did not 
rescue the decrease on these specific PCs. However, Lip-C6 treatment led to the elevation of other 
PCs that included PC (16:0/18:2), PC (18:1/18:1 and 18:0/18:2), PC (16:0/20:4), and PC (18:0/20:4). Lip-
C6 also increased PC (18:0/20:4) and PC (18:2/20:4) in mice on the control diet (Figure 6A). Likewise, 
Lip-C6 treatment led to elevated levels of DG(16:0/18:1), DG(16:0/18:2), DG(18:1/18:1 and 18:0/18:2), 
DG(18:1/18:2), DG(18:2/18:2), DG(18:0/20:4), DG(18:1/20:4), and DG(18:2/22:5) in mice on the MCD 
diet, but not the control diet (Figure 6B). Overall, these data indicate that Lip-C6 treatment has a 
beneficial effect on the dysregulated lipid metabolism in MCD-fed mice. 
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Figure 6. Lip-C6 treatment restores specific phosphatidylcholines (PC) and diacylglycerides (DC) in 
MCD-fed mice. Animals received MCD or CD diet for nine weeks and were further subdivided and 
administered a single tail vein injection of Lip-C6 or Lip-G. One week after treatment, all mice were 
euthanized. Lipids from liver samples were extracted and untargeted LC-MS/MS lipidomics 
approach was performed. (A) Major changes were observed in the lipid classes of 
phosphatidylcholine (PC) and (B) diacylglycerol classes (DG) when MCD-fed mice treated with Lip-
C6 were compared with MCD-fed mice treated with Lip-G. No changes were detected for short-chain 
DG and TG. * p < 0.05 CMCD + Lip-G (n = 5) vs. MCD + Lip-G (n = 5), CMCD + Lip-G vs. CMCD + 
Lip-C6 (n = 8) # p < 0.05 MCD + Lip-G vs. MCD + Lip-C6 (n = 9). 

4. Discussion 

The available literature makes a strong case for ceramide accumulation as a contributor to NASH 
progression as elevations in ceramides are observed in patient samples and various models of NASH, 
and pharmacological and molecular strategies to reduce ceramide levels are associated with reduced 
NASH progression [11]. Despite this body of evidence, the actual effects of non-apoptotic doses of 
ceramide on the pathophysiological mechanisms of NASH, and, in particular, energy homeostasis, 
are still controversial. 

For example, ultraviolet and H2O2 treatment generates ceramide, which activates AMPK [58], 
while short-chain ceramides inhibit Nrf2 activation [34], and knock out of acid ceramidase 3 
augments C18:1-ceramide levels, which alleviates early inflammation, oxidative stress, and fibrosis 
in a mouse model of NASH [59]. It has also been suggested that ceramide-activated AMPK can limit 
nutrient-induced stress and autophagy [60]. Altogether, these evidences could suggest an 
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unappreciated compensatory action of ceramides upon energy metabolism in NASH or, 
alternatively, that non-toxic sub lethal doses of exogenous ceramide may have unappreciated effects 
upon energy metabolism. Finally, it could be conceivable that ceramide metabolites, and not 
ceramide itself, have a role in NASH pathophysiology [61]. 

On the other hand, some studies have suggested that individual species of ceramide (C16 as 
compared with C24:1) are more inflammatory or apoptotic in NASH models [62]. On the basis of the 
available evidence, it seems that ceramide-C6, in contrast to physiological ceramides, is not as 
metabolically active, and exhibits unique improvement in energy metabolism surrogates, although 
the effects on AMPK and Nrf2 are unknown. Of note, short-chain C6-ceramide can exert anti-
inflammatory and anti-lipogenesis effects [28,29]. For these reasons, we choose to evaluate the effects 
of Lip-C6, a non-toxic hydrophilic delivery liposome vehicle containing C6-ceramide, specifically 
designed for systemic administration [30,31]. Preclinical toxicology studies, including 
physiochemical characterization and PK/PD analyses, showed that this 90 nm sized, −8 mV, 15 molar 
percent PEG, 30 molar percent C6-ceramide nanoliposome is non-toxic, where ceramide is released 
from Lip-C6 by intra-bilayer movement [32,63,64]. While Lip-C6 has been demonstrated as an anti-
neoplastic, pro-apoptotic, in vivo therapeutic agent by activating anti-tumor immune response of 
tissue-associated macrophages [65–67], the action of Lip-C6, at non-apoptotic doses, has not been 
investigated in models of NAFLD or NASH. 

On the basis of the evidence of a dysregulation in Nrf2 and AMPK pathway genes in liver tissue 
of patients with NAFLD by employing transcriptomic and RNA sequence analyses provided by the 
present study, we evaluated the effects of Lip-C6 on the AMPK/Nrf2 pathway in primary human 
HSC, key cellular effectors in the progression from NAFLD to NASH. Our results indicate that 
incubation with Lip-C6 activated AMPK, induced ATP and Nrf2, without inducing cell death. 

In addition, this possible beneficial effect of Lip-C6 was evaluated in an in vivo model of diet-
induced steatohepatitis and liver fibrosis. Although the methionine and choline-deficient (MCD) 
mouse model does not recapitulate the pathophysiological background on NASH in a context of 
metabolic syndrome, the model provides insights on the association of steatosis, inflammation, and 
fibrosis within the liver tissue. In particular, the MCD diet promotes a dysregulation in anti-oxidant 
homeostasis, and thus this model can serve to investigate the putative effect of ceramide upon AMPK 
and Nrf2 signaling oxidative stress, inflammation, and fibrosis. Lip-C6 treatment significantly 
elevated AMPK, while reducing Nrf2 expression in mice treated with the MCD-diet. 

Taken together, it is reasonable to speculate that elevations in Nrf2 transcriptional events are 
compensatory events to modulate the anti-oxidant stress responses in NASH, while the decrease in 
the energy-sensor AMPK expression, or activity, leads to a direct exacerbation of NASH pathology, 
which can be diminished by Lip-C6. Human NASH omics-studies have shown that a dysregulation 
in ceramides and a deficiency of both methionine and choline, essential precursors of hepatic 
phosphatidylcholine synthesis, provokes hepatic steatosis. The MCD diet used in this study is known 
to induce steatosis by choline deficiency [68–73]. In animals with the MCD diet, while liver injury 
and oxidative stress occur rapidly, inflammation and fibrosis develop only after prolonged feeding, 
typically longer than eight weeks, and the severity of the histological changes observed is dependent 
on the genetic background and gender of the mouse strain utilized. For example, Galastri et al. have 
identified that a lack of CCL2 in Balb/C MCD-fed mice reduces inflammation, oxidative stress, and 
fibrogenesis, but not in CCL2 deficient C57Bl/6 MCD-fed mice, indicating that the effects of CCL2 
deficiency in mice and their response to MCD are markedly dependent on the mouse genetic 
background [74,75]. Moreover, single amino acid methionine deprivation triggers dramatic and 
specific transcriptional amino acid responses in genes such as Nrf2, thus indicating a link between 
methionine deficiency and the endogenous anti-oxidative stress response of Nrf2 [76]. This 
association was further confirmed in the MCD diet used in this study with increased Nrf2 protein 
levels in MCD-fed mice and a modest decrease upon Lip-C6 treatment. 

Through an untargeted lipidomics analysis, the most significant features identified in mice on 
the MCD diet were characterized by a marked decrease of hepatic phosphatidylcholine and 
diacyglyceride levels. Surprisingly, a single Lip-C6 tail vein administration after nine weeks of MCD 
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diet reversed these pathological decreases in PC and DG species. The change in profile, especially in 
18:2 and 20:4 fatty acyl species, could reflect a global elevation or changes in omega-6 fatty acid 
uptake, metabolism, or oxidation. Of note, activated AMPK modulates fatty acid metabolism by 
controlling acetyl-CoA carboxylase, malonyl-CoA decarboxylase, and fatty acid synthase [77–79]. 
Alternatively, the enzyme sphingomyelin synthase, which generates diacylglycerides from 
phosphatidylcholine at the expense of forming sphingomyelin from ceramide may also be mediating 
the action of Lip-C6 to restore phosphatidylcholine levels [80]. 

Overall, the in vivo and in vitro data further support that AMPK and Nrf2 are potential Lip-C6 
“drug-able” target genes/proteins to treat NAFLD/NASH. Furthermore, the link between restoration 
of physiological lipid metabolism and activation of protective energetic and anti-oxidant cascades by 
Lip-C6 treatment deserves further investigation. 
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