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Abstract

This thesis is concerned with the development of methods for controllability anal­

ysis leading to process design modifications of nonlinear chemical processes with 

input multiplicity. The first part of this thesis presents an approach to controlla­

bility analysis, based on bifurcation and continuation techniques, that can identify 

input multiplicity behaviour in the parameter space and give insights into the de­

pendence of input multiplicity on the values of operating and design parameters. 

The algorithm developed incorporates the necessary condition for the existence 

of input multiplicity at a variety of steady states as an add-in subroutine into 

an available bifurcation analysis program, which is suitable for sizeable nonlinear 

processes. This allows one to study how operating conditions and design param­

eters influence input multiplicity behaviour, hence providing guidance to modify 

process designs to eliminate or avoid input multiplicity. The key features and 

application of the proposed approach are demonstrated through an exothermic 

continuous stirred tank reaction (CSTR) example and comparison made with the 

analytical results.

The second part of this thesis focusses on an approach to making process 

design modifications by using optimisation and bifurcation analysis. A process 

modification problem is formulated within an optimisation framework which aims 

at minimising design parameter adjustment to eliminate potential control difficul­

ties associated with input multiplicity behaviour for a disturbance, and results in

14



a nonlinear programming (NLP) problem. Results are presented for its applica­

tions to a reactor-separator system with recycle and an industrial polymerization 

reaction.
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Chapter 1

Introduction

1.1 General Overview

Nonlinear systems possess distinguishing characteristics from linear systems. One 

important characteristic of a nonlinear system is the dependence on the initial 

conditions. For a linear system, identical input changes implemented at differ­

ent operating steady-state conditions will give rise to output changes of identical 

magnitude and dynamic character. Many systems of engineering interest approx­

imate this behaviour for small inputs, which accounts for the universal study and 

application of linear control system theory.

However, for a nonlinear system, qualitative properties can change under small 

perturbation of the system parameters and operating conditions. By qualitative 

properties we mean the existence of multiple steady-state solutions, instability of 

the solutions, limit cycles, and even chaotic behaviour. Such complex behaviour 

is known to impose difficulties in system control and to affect adversely the perfor­

mance of the closed-loop system. But, with the increase of standards of product 

quality, stricter environmental regulations, and economic pressures, it is likely to

18
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F, c

A->B->C
2A->D

F,  C a , C b

Figure 1.1: Illustrative example: van de Vusse reactor

push chemical process designs into regions where complex nonlinear behaviour 

occurs.

As an illustration of this, consider Figure 1.1 which is a reaction, known 

as the van de Vusse reaction taking place in an isothermal continuous stirred 

tank reactor (CSTR) (van de Vusse, 1964). This is the most popular nonlinear 

study example in tlie literature, and is frequently utilised to demonstrate control 

problems in nonlinear control design and optimisation (Daoutidis et ai, 1990; 

Sistu and Bequette, 1995; Doyle et al, 1995).

The system illustrated has been designed with the maximum conversion of 

product B  for the nominal conditions, and is operated at a steady-state point 

to control the concentration of B, Cb , by manipulating the inlet flow rate, F. 

Although the process seems good from an economic point of view, it exhibits 

multiple steady-state behaviour as shown in Figure 1.2 which shows that more 

than one set of inputs exist for the same set of outputs, known as input multiplic­

ity. The input multiplicity behaviour can cause control difficulties subject to the 

changing operation conditions, such as the changes of disturbances and setpoints. 

Thus, there are questions arising while assessing the ability to keep the process 

at the desired level in the face of the changing conditions. This attribute of a 

system is termed controllability.

In particular for this case, one might ask:
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• How well can the process be controlled or is it a difficult control problem?

• How many variations in the set point change of the conversion of product 

B  can the process actually tolerate?

• If the concentration of the reactant A  is considered as a disturbance, how 

many changes in the disturbance can the process reject successfully?

and moreover

• How can the process be improved if it is not satisfied with the control 

requirements?

Such questions are clearly important, not only for examining and quantifying how 

controllable a process is, but also, more generally, for screening or comparing the 

process design alternatives at the process design stage.

Input multiplicity is one complex phenomenon that is encountered in chemical 

processes, and has been identified as a main cause of destabilisation of the control 

systems (Koppel, 1982; Dash and Koppel, 1989). Input multiplicity poses limi­

tations on achievable dynamic performance and proves the need for complexity 

of control design (Morari, 1983; Skogestade and Postlethwaite, 1996; Sistu and 

Bequette, 1995). For instance, with reference to Figure 1.2, there exists no fixed 

feedback controller that can stabilise both a pair of steady-states 1 and 2, since 

the steady-state solutions 1 and 2 have different qualitative behaviour (i.e. dif­

ferent gain signs). A conventional controller with integral action only keeps one 

of these two steady states stable, and will become unstable for another because 

the sign change in the process gain causes the control system from the negative 

feedback system to a positive feedback one. Therefore, such a characteristic of 

the process should be identified and eliminated or avoided in the process design 

stage in order to make the process easily controllable.
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O

.8

0.7

150
I n p u t .  F ( l / h )

Figure 1.2; Steady-state solution relationship between input and output

Studies in the literature have been shown that the design of a process de­

termines controllability and a controller only ensures the achievable performance 

(Morari, 1983; Skogestad and Postlethwaite, 1996). So, it is quite necessary to 

have a rough idea of what the inherent properties of the process are and how easy 

the process is to control at an early design stage. Controllability analysis could 

obtain insights into what the inherent properties of a process are and how they 

present limitations on the control performance of the process. Analysing the ef­

fects of these limitations early enough in the process design allows the opportunity 

to modify the design should the effects be critical to the dynamic performance 

of the process (Perkins et a/., 1996). Modifications of a process design itself, 

such as changing inputs or outputs, operating points, values of design parameters 

and even structure, can sometime affect the dynamics of the process significantly 

more than changes in the controllers (Morari, 1983).

Consideration of the controllability of a process at the very early phase of 

the process design is now being widely accepted in both academia and industry, 

as shown by a number of publications in the field (discussed in more detail in
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Chapter 2). A growing amount of evidence points to the desirability of incorpo­

rating controllability consideration into all phases of the process design. It may 

be better in the long run to establish a process that has higher capital and energy 

costs if the process provides more stable operation and achieves less variability 

in product quality. A number of relevant techniques have been proposed, in­

cluding optimisation-based approaches (Luyben and Floudas, 1994; Perkins and 

Walsh, 1996) and bifurcation-based analysis and design (Morari, 1992; Russo and 

Bequette, 1996, 1998).

In this thesis we present an approach to modifying a process design for im­

proving controllability, using bifurcation analysis and optimisation. Bifurcation 

analysis, a method for studying how qualitative behaviour of a nonlinear system 

changes as the parameters vary, is recognised as a powerful tool in nonlinear 

system analysis and widely applied to chemical processes (Aris, 1979; Seider et 

ai, 1991; Sistu and Bequette, 1995). Morari (1992) suggested that bifurcation 

analysis should be employed in controllability analysis for nonlinear systems. Bi­

furcation analysis could be sufficient to obtain a qualitative picture of the solution 

space for a nonlinear process as a parameter of the process varies at the design 

stage when there is only limited information available. This can be used to iden­

tify the potential control difficulties determined by the process design, and to 

investigate the effects of the design and operating parameters and disturbances 

on them, hence providing the guidance to eliminate them by modifying the pro­

cess design at the design stage.
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1.2 Objectives

The primary aim of this thesis is to develop a methodology for modifying an 

existing process design with a fixed control structure for improving controllabil­

ity over the operating regions in the face of a disturbance. In order to modify 

an existing process design for controllability it should be essential to understand 

what the potential control difficulties are and how the parameters under consid­

eration affect them. Results from this analysis lead to a process modification so 

that such difficult control problems are eliminated or avoided by adjusting the 

design parameter values. The methods presented in this thesis dedicate to these 

purposes. The objectives are:

• to develop a methodology, based on bifurcation analysis, for determining 

potential control problems associated with inherent characteristics of a non­

linear process over the entire operating region of interest and analysing the 

parameter effects on these problems, and then

• to determine a method for modifying the process to improve controllability, 

while preserving modifications as small as possible.

1.3 Outline of the Thesis

The work in this thesis is broadly divided into two parts: the first part is con­

cerned with the development of a new approach to controllability analysis of 

nonlinear systems with input multiplicity; the second part presents a static feed­

back optimisation formula as a trade-off between controllability and economics 

in process design modifications, and the applications of the proposed method to 

chemical process cases.
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Chapter 2 serves as a brief literature review and background introduction to 

the methods used in this thesis. The main ideas on nonlinear systems, controlla­

bility, and bifurcation analysis are given. A brief review on controllability analysis 

and design techniques available in the literature is presented, while identifying 

potential limitations of these methods for nonlinear systems and addressing why 

the bifurcation-based approach as an appropriate one.

In Chapter 3, a new bifurcation-based analysis method for nonlinear processes 

with input multiplicity such as this described in Figure 1.2 in §1.1 is described and 

applied to an exothermic continuous stirred tank reaction (CSTR) that exhibits 

multiplicity as an illustrative example. The results are compared with analytical 

solutions.

Chapter 4 presents an optimisation-based approach to modifying an existing 

process design that has control difficulties associated with undesirable dynamic 

behaviour determined by the process design. A static feedback optimisation for­

mulation is developed that can modify the process design to avoid the poor dy­

namics in the operating region while minimising changes to the process, namely 

producing a feedback optimising design (FOD). An exothermic CSTR as an illus­

trative example demonstrates the features and application of this method.

Chapter 5 presents case studies to demonstrate the applications of these ap­

proaches in chemical processes. Two cases are given: one is a reactor-separator 

system including recycle and another is an industrial polymerisation reaction. In 

each case study, the control problems associated with the given process design 

and control structure are identified and how the input, disturbance and design 

parameters influence them is investigated; then the process design modifications 

are given; and closed-loop dynamic simulations follow in the final section.

In Chapter 6, the major findings and contributions of the work presented in 

this thesis are summarised and recommendations for future research are outlined.



Chapter 2

Literature R eview

This chapter outlines the background of this thesis and serves as 

literature review. The main ideas on nonlinear systems and the con­

cept of bifurcation analysis which is used in this thesis are briefly 

introduced. Process inherent limitations on controllability are dis­

cussed in the context of perfect control and process inversion. The 

relationship between multiplicity and controllability is discussed. A 

brief review on controllability analysis techniques and design methods 

for design and control available in the literature is presented, high­

lighting issues that need addressing.

25
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2.1 Basic Concepts and Properties of Nonlinear 

Systems

2.1.1 Fundam entals

System  M odels

In this thesis we consider a continuous nonlinear dynamical system of the form:

x = f {x ,u) ,  (2 .1)

where a: G 5R” is the n dimensional state variable vector, u G % is the manipulated 

variable, and • denotes differentiation with respect to time t. The vector function 

/  and its partial derivatives with respect to x  and u are assumed to be continuous 

functions of x  and u.

N o Superposition Principle

The superposition principle states, in general, that the response of a linear system 

to a sum of inputs is the same as the sum of the responses of the individual inputs. 

That is, a linear combination of solutions

X  =  axi +  bx2 (2.2)

for a system with the form

X = f{x)  (2.3)

only satisfies the system ( 2.3) if

f {axi  +  bx2) = af{xi )  +  6/ ( ^ 2) (2.4)
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i.e. only if the system ( 2.3) is a linear one.

The superposition principle for a linear system does not apply to a nonlinear 

system.

D ependence on Initial C onditions

The dynamic character of a linear system response to an input change is indepen­

dent of the specific operating conditions at the time of implementing the input 

change. In other words, identical input changes implemented at different operat­

ing steady-state conditions will give rise to output changes of identical magnitude 

and dynamic character.

A nonlinear system response to a sum of inputs is not equal to a sum of 

the individual responses and the magnitude, and the dynamic character of the 

response to an input change are dependent on the initial operation conditions. 

A distinguishing characteristic of nonlinear systems that makes them differ from 

linear dynamic systems is that the qualitative properties of nonlinear systems 

could change under small perturbations of the system parameters.

2.1.2 Properties o f Solutions

Steady-state Solutions

For a fixed u, a steady-state solution x  of the dynamical system ( 2.1) is defined 

by the equation:

/ ( f ,u )  =  OG%", (2.5)

i.e. a solution which does not change in time. There are other terms used for the 

“steady-state solution” such as “ equilibrium solution” or “stationary point” . In 

this thesis these terms are alternatively used without distinction.
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S tab ility  of Solutions

Stability is an important concept in system analysis, which is concerned with de­

termining whether the resulting transient response ultimately settles and main­

tains a new steady-state when an input change is implemented on a system.

Qualitatively, a linear system that is described as stable if starting the system 

somewhere near its desired operating point implies that it will stay around this 

point. A linear system is said to be stable if and only if all the poles are in the 

left-half plane (LHP). Systems with poles on the imaginary axis are unstable from 

the above notion. The poles of a system with state space description:

X = A x  (2.6)

is defined as the eigenvalues of the constant matrix A, i.e. the roots of the 

characteristic equation:

det{sl -  A) =  0, (2.7)

where det{-) stands for determinant. More general, the poles of a system with 

transfer function G{s) may be loosely defined as the finite values s = p where 

G{p) has a singularity (or is infinity). The stability of a linear system can be 

determined from its poles (eigenvalues). A linear feedback system is internally 

stable if and only if all its closed-loop transfer functions are stable.

For the stability of the nonlinear system ( 2.1), the linearly stable notion is 

used, which is defined as follows (Wiggins, 1990):

D efin ition  2.1 Suppose all of the eigenvalues of Df {x )  have negative real parts.

Then the steady state solution x = x of the nonlinear equation (2. 1)  is asymp­

totically stable.

where Df(- )  is the derivative of function /  from equation ( 2.1), which is defined
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by

A steady state point x  is non-stable if at least one real part of the eigenvalues of 

Df{x)  is positive.

2.1.3 The C oncept o f B ifurcation A nalysis

One can draw conclusions about the local stability or instability of steady-state 

points for nonlinear systems based on the stability or instability of the linearised 

systems provided none of the eigenvalues of the linearised systems have zero real 

parts. The principle difficulty with cases where some of the eigenvalues of the 

linearised systems have zero real parts and are structurally unstable. A critical 

case occurs if some of the eigenvalues have zero real part and the other have 

negative real parts. That means that there are some of the eigenvalues crossing 

the imaginary axis. Below we provide a very brief introduction to the related 

concepts of bifurcation analysis used in this thesis which help to explain what 

happens when the critical case occurs. The text book by looss and Joseph (1990) 

provides more precise and complete description of these concepts.

The steady state solutions of the nonlinear system ( 2.1) depend on the values 

of u. It is often necessary to study the dependence of the steady state solutions

of the system ( 2.1) on the values of u. For generality, let us assume now that

w 6 is a parameter and set

a  =  w G 5Î. (2.9)

The system with the form ( 2.1) becomes

x = f {x ,a ) .  (2.10)
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A branch of solutions is defined as a continuous and uniquely dependent a:(a). 

Uniqueness means that for every fixed a  G (cKo, CKi) there exists an e > 0 such 

that there exists no other solution Xi{a) of equation ( 2.10) satisfying

||a:i(a) -  x (a)|| < e. (2.11)

The branch of solutions can be continued in both directions until certain limit 

values of the parameter a, say (g;o,û;i), are reached and the uniqueness assump­

tion no longer holds for these values. Such critical points will be called branch 

points. At the branch points the behaviour of the solutions of the dynamic sys­

tem undergoes a qualitative change. This change includes multiple steady-state 

solutions, instability of the solutions, limit cycles, and so on. Such a kind of 

phenomenon is commonly called bifurcation.

Normally, a gradual variation of a parameter in a system corresponds to the 

gradual variation of the solution of the problem. However, there exists a large 

number of problems for which the number of the solutions changes abruptly 

and the structure of the solution manifold varies dramatically when a parameter 

passes through these values. In order to understand how the qualitative behaviour 

of a system changes under the variation of the parameter, bifurcation analysis is 

introduced. Bifurcation analysis is a method for studying such qualitative changes 

in the behaviour of the nonlinear system when the parameters vary.

For the nonlinear system with the form of ( 2.10), if the steady-state x is a. 

regular steady-state point where all the parts of the eigenvalues of the Jacobian 

matrix Df{x)  are nonzero, a small perturbation in the parameter will not change 

the qualitative behaviour of the system. Bifurcations occur when some of the 

eigenvalues approach the imaginary axis in the complex plane. The simplest 

bifurcation is associated with a single real eigenvalue Ai becoming zero (Ai =
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0) or a pair of complex conjugate eigenvalues Ai 2 crossing the imaginary axis 

(Ai 2̂ =  ±zo;o, cjq > 0). The bifurcation where Ai =  0 is called a fold (turning or 

limit point) bifurcation. The bifurcation where A%_2 =  Tzwo, wo > 0 is called Hopf 

bifurcation. These are the most common bifurcations encountered in nonlinear 

systems. A fold bifurcation usually is the cause of multiple steady states. Hopf 

bifurcations are responsible for the appearance and disappearance of periodic 

solutions. The stability of the system must change at each bifurcation point, and 

only at such a point (looss and Joseph, 1990).

If the other parameter effects on the bifurcation points are considered, we 

have a picture of the solution dependence on the parameters, which is called a 

bifurcation diagram. This diagram can be used to determine how the system 

behaves under changing conditions, and then could provide a guideline to modify 

the system to avoid bifurcations.

Bifurcation analysis can obtain insights into what the dynamics of a nonlin­

ear process is and how parameters influence them and is used to investigate the 

behaviour of the process in terms of parameter-dependent branches of steady- 

state solutions. Several decades ago, bifurcation analysis was applied to chemical 

processes. In the 70’s, Aris (1979) applied bifurcation theory to discuss some 

complex phenomena in chemical reactors and Chang and Calo (1979) presented 

an bifurcation-approach to determining the regions of unique and multiplicity 

solutions to chemical reaction. Recently, bifurcation analysis is recognised as a 

powerful tool and widely applied to nonlinear chemical process analysis (Seider 

et al, 1991; Pinto et al, 1995; Russo and Bequette, 1996, 1997, 1998; Pushpa- 

vanam et al, 2001; Zhang and Henson, 2001). Using bifurcation analysis was 

also suggested in process design (Seider et al, 1991; Morari, 1992). Bifurcation 

analysis to aid in redesigning processes has been proposed (Russo and Bequette,

1995).
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The continuation technique, a numerical technique to obtain one or more 

branches of steady-state solutions mutually connected at bifurcation points, has 

been developed and is widely used for bifurcation analysis (Keller, 1977; Kubfcek 

and Marek, 1983). With advanced computational techniques and computer’s 

power, continuation and bifurcation analysis software packages available, such as 

AUTO (Doedel et aL, 1998), can allow one to carry out bifurcation analysis for 

large nonlinear systems.

2.2 The Concept of Controllability in Process 

Engineering

Qualitative changes of nonlinear processes resulting in the complex behaviour 

have been briefly discussed in last section and bifurcation analysis provides a 

method for exploring the complex solution spaces for a nonlinear process as a 

parameter of the process varies. When a nonlinear process exhibits complex 

characteristics, the control performance of the process might be adversely affected 

or possibly the process cannot be controlled. This section is concerned with the 

issue of controllability, which describes the achievable dynamic performance (set 

point following and disturbance rejection) for a process in control.

In the literature, there are many different definitions about controllability. 

Ziegler and Nichols (Ziegler and Nichols, 1943) first defined controllability as 

“the ability of the process to achieve and maintain the desired equilibrium value” . 

Later the term “controllability” became synonymous with the rather narrow con­

cepts of state controllability, which was introduced by Kalman in the 60’s. State 

controllability is defined as the ability to bring a system from a given initial state 

to any final state within a finite time. State controllability is still a widely used
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criterion for controllability in the control system community but not necessarily 

the most appropriate for chemical process control. This is because state con­

trollability is concerned only with the value of the states at discrete values of 

time, while in most cases we want the outputs to stay close to some desired val­

ues (trajectory) for all values of time, and without using inappropriate control 

inputs.

An alternative is functional controllability, defined by Rosenbrock (1970). A 

system with polynomial transfer function matrix G(s) is called functionally con­

trollable if it satisfies the following condition (Rosenbrock, 1970). Given any 

trajectory output which is zero for time  ̂=  0 and which satisfies certain smooth­

ness conditions, there exists an input trajectory u defined for time  ̂ > 0 which 

generates the output y from the initial condition 2 (0) = 0 .

Rosenbrock stated that a system with transfer function G{s) is functionally 

controllable if and only if G{s) is nonsingular. Sufficiency of this condition is 

obvious because the expression

u(s) =  G-^y{s)  (2.12)

has input trajectories which generate the required output trajectories.

Functional controllability has some advantages over state controllability for 

the evaluation of controllability of chemical process as indicated in Russell and 

Perkins’ paper (1987). State controllability does not guarantee that it is possible 

to independently specify arbitrary trajectories of the selected set of output vari­

ables, whereas functional controllability does (subject to smoothness conditions). 

This is important since the main goal of regulatory control is usually to maintain 

the plant at some steady state.

Rosenbrock (1970) stated that “most industrial plants are controlled quite
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satisfactorily though they are not (state) controllable” . An example of tanks in 

series was given by Skogestad and Postlethwaite (1996). As the result of this 

example, it is seen that the property of state controllability may not imply that 

the system is controllable in a practical sense.

Functional controllability depends on the invertibility of the transfer function. 

Thus an examination of the properties of the system which prevent the inversion 

of the system will provide a valuable tool for controllability analysis and therefore 

control system synthesis.

To avoid confusion with state controllability, Morari (1983a) also introduced 

the concept of ^''dynamic resiliences^ which describes the quality of control be­

haviour that can be obtained for a plant by feedback. This term does not capture 

the fact that it is related to control design.

Recently, the concept of input-output controllability is introduced. Skogestad 

and Postlethwaite (1996) defined the input-output controllability as “the ability 

to achieve acceptable control performance” and then followed an explanation 

“to keep the outputs (y) within specified bounds or displacements from their 

references (r), in spite of unknown but bounded variations, such as disturbances 

(d) and plant changes, using available inputs (u) and available measurements 

(ym) and (d^)” .

The input-output controllability definition is more in tune with most engi­

neers’ intuitive feeling about what controllability means, though only a structural 

property of a process is involved. In particular, for instance chemical processes, 

there are a lot of bounds, such as inputs, measurements, devices, and disturbances 

and uncertainties, and chemical processes are likely to exhibit strong nonlinear 

and complex behaviour subject to changing operation conditions and uncertain­

ties. In this sense, the general notion of controllability, which follows the Skoges­

tad and Postlethwaite’s definition, is used in this thesis, and simply referred to
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as controllability.

Often the controllable performance of a system is assessed by exhaustive sim­

ulations, which requires a specified controller design. This implies that it is not 

possible to know from this kind of assessment if the behaviour is a fundamental 

property of the system, or if it is due to a specific controller used. By definition 

controllability does not depend on the controller but only on the system itself.

A potentially rigorous approach to controllability analysis is an optimisation- 

based test that formulates mathematically the control objectives, the class of 

disturbances, the model uncertainty, etc., and then attem pts to synthesis ideal 

control to see whether the performance objectives can be met (Perkins and Walsh,

1996). This could be applied to processes without detailed control designs on 

controllability assessment and much progress has been made in this area (see 

§ 2.5.3).

So, there are many different ways to definite and assess the controllability of a 

process. W hat is ultimately of interest is the dynamic performance of the process 

subject to disturbances, model parameter and operating condition changes, and 

other changes in its environment, and what is more desirable is to have a few 

simple tools which can be used to obtain a rough idea of how easy the process 

is to control. The methods should be independent of detailed controller designs 

so that the inherent limitations on controllability by the process design itself, 

which no control system, whatever sophisticated, will be able to overcome, can be 

identified; and the methods should enable to effectively analyse the effects of these 

limitations, which could lead an modified process with improved controllability. It 

is some of importance, as stated by Perkins et a i (1996), that analysing the effects 

of these limitations early enough in the design process allows the opportunity to 

modify the design should the effects be critical to performance.
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This thesis will focus on developing an analysis methodology for process mod­

ifications, rather than only for controllability evaluation as the majority work had 

been concerned with in this area.

2.3 Limitations on Controllability

Controllability describes the achievable dynamic performance of a process inde­

pendent of controller design. In order to analyse controllability, it is desirable 

to understand what imposes limitations on controllability and how the process 

behaves subject to changing conditions. It has been identified that some process 

characteristics will limit the control performance and pose control difficulties for 

controller design, such as input constraints, time delays, right half plane (RHP) 

zeros, and a number of techniques are now available to evaluate their potential 

impact on closed-loop performance mainly for linear systems (see Morari, 1983; 

Skogestad and Postlethwaite, 1996).

In this section the limitations on the control performance and difficult control 

design problems associated with the inherent characteristics of a process such 

as RHP zeros are addressed. Several concepts related to control system design 

and analysis are given. The definitions and ideas for linear systems are briefly 

described in order to explain the nonlinear approaches for nonlinear systems.

2.3.1 The C oncept of Zeros and Zero D ynam ics

A controller generates an approximate inverse of the process in an implicit or 

explicit form (Morari, 1983). This implies that the inverse characteristics of the 

process will determine if the control is easily realised or not. In order to study 

the inverse behaviour of a nonlinear process, the concept of zero dynamics is 

introduced, which is analogous to the notion of the zeros of a linear system.
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Zeros

For a single input single output (SISO) linear system with input-output transfer

function G{s), the zeros Zi are the solutions to G{zi) = 0, as in the following

definition:

D efin ition  2.2 (Zeros) The zeros of a linear system with the state space form:

X = A x  + B u  (2.13)

y = C x  (2.14)

are the roots of the numerator polynomial of its transfer function:

G(s) = C { s I - A ) - ^ B  
G a d j ( s I - A ) B  

det{sl — A)

i.e. the roots of Cadj(sI-A)B (Kravaris and Kantor, 1990a).

(2.15)

The definition of zeros is based on a transfer function description, which is a 

minimal realisation of a system.

There will be additional zeros found if the description is not minimal. Those 

additional zeros arise from hidden pole/zero cancellations in the non-minimal 

order description. A minimal order realisation of the system will, however, lead 

to the same zeros as the transfer function description (Kravaris and Kantor, 

1990a).

For a multivariable system, the following definition of the zero of a multivari­

able systems is used:
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D efin ition  2.3 (Zeros) The zeros of a linear multivariable system,

X = A x  +  Bu,

y = Cx, (2.16)

are the roots of the determinant of its transfer function matrix, i. e.

\Cadj{sI -  A)B\ = 0, (2.17)

where the transfer function matrix is square (MacFarlane and Karcanias, 1976).

When the transfer function matrix is not square, it is no longer possible to 

definite the zeros in terms of determinants. The more general definition of the 

zeros of a multivariable system resulting from the generation of the notion of the 

determinant of a square matrix is expressed as: those values of s for which the 

rank of the transfer function matrix G{s) is reduced are called the zeros of G{s).

R em ark  2.1 It is possible for a multivariable system to have poles and zeros 

in the same location. In evaluating the zeros of a multivariable system from the 

determinant of its transfer function matrix, it is therefore utmost important to 

ensure that the denominator polynomial contains all the system poles, i.e. ensure 

that there has been no pole-zero cancellation when forming the determinants (see 

Morari and Zafiriou, 1989).

An alternative interpretation of the zeros of a system is to view them as 

the poles of the inversion of the system. This view makes it easier to move to 

nonlinear systems and the notion of the zero dynamics.
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Zero  D ynam ics

For a linear system, the zeros are the roots of numerator polynomial and, in 

other words, are the poles of the inverse of its transfer function. The zeros of 

a linear system are completely determined by the characteristics of its inverse. 

For a nonlinear system, transfer function, on which linear system zeros are based, 

cannot be defined, and therefore cannot have zeros as a set of numbers. A notion, 

zero dynamics^ is imported, which is analogous to the right half plane (RHP) zeros 

of a linear system. The zero dynamics for a nonlinear system is defined to be the 

internal dynamics of the system when the system output is kept at zero by the 

input (Isidori, 1995; Slotine, 1991). In order not to disrupt the whole flow of this 

thesis, the more details about zero dynamics is given in Appendix B.

Regarding the stability of the zero dynamics, the terms of the minimum phase 

(MP) and nonminimum phase (NMP) are used and defined as:

D efin ition  2.4 A system is termed minimum phase (MP) at a steady state point 

X i f  its zero dynamics are stable at x, otherwise, it is nonminimum phase (NMP).

2.3.2 Perfect Control 

P erfec t C o n tro l o f L inear System s

Let the process model be:

y — G u Gd d, (2.18)

where G and Gd are the process and disturbance transfer functions, respectively.

“Perfect control” is achieved when the output is identically equal to the reference,

i.e. y = y ref- To find the corresponding process input, let us set y = y ref and 

solve ( 2.18) for u:

u = G ^yref ~  G ^Gdd, (2.19)
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which represents a perfect feedback controller, where G~^ is the inverse of the 

process. When proportional feedback control

u =  K { y r e f - y )  (2 .20)

is used, we have the form:

u = {I + KG)-^Kyref  -  (/  +  KGY^KGdd.  (2.21)

If we make K  “large” then we see qualitatively that ( 2.21) becomes

u ^  G ^yref — G ^Gdd. ( 2 .22)

An important lesson therefore is that perfect control requires the controller to 

somehow generate an inverse of G (Morari, 1983). From this perfect control 

cannot be achieved if

• G contains RHP-zeros (since then G~^ is unstable);

• G contains time delays (since then G~^ contains a prediction);

• G has more poles than zeros (since then G~^ is unrealizable).

Perfect Control o f Nonlinear System s

Consider a nonlinear system with the following form:

X = f{x ,u) ,  (2.23)

y = h{x),
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where x G u G 5R, denote the state variable vector and the manipulated 

variable, respectively, and f denotes smooth vector fields on 9%"̂ , h is a smooth 

scalar function on 5ft. The system ( 2.23) can, more generally, be described by 

the input/output nonlinear operator implied by the model:

y  =  P M ,  (2.24)

where P  is a general nonlinear operator that maps the input u into the output, 

or response, y. If ÿ represents the actual measurement of the plant output then 

the model error obtained as

e =  (2.25)

enables us to express

ÿ = P[u\ +  e (2.26)

as the relationship between the input and the actual plant output.

Given y^e/ as the desired trajectory for the actual plant output y to follow, 

the control action u that satisfies the objective

mm =  Wyref ~  ÿ\\ (2.27)

is obtained as

u = P~^[yref -  e], (2.28)

provided that the inverse of P~^ exists. If yref is selected as the set-point yset for 

2/, then

u = P ~ ^ [ y s e t  -  e\. (2.29)

It is noted here that nominal stability is concerned with the case e =  0, for which
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( 2.29) implies an open-Ioop control policy, and feedback appears only in the 

presence of the existence of the error, i.e. e ^  0.

It is clear that ( 2.29) results in so called “perfect control” when P~^ exists 

(and is realisable). For an nonlinear operator the P~^ may not exist. If this is 

the case, it cannot be realisable. For nonminimum phase systems, the problem is 

analogous to the linear case; the inverse of a time delay system is not realisable 

due to the necessity of producing predictions.

2.3.3 Ideal ISE O ptim al C ontrol

As stated in the previous section, perfect control is not possible for all systems. 

A way to have insight into the “best” control performance is to consider an ideal 

controller which is integral square error (ISE) optimal. For invertible system, this 

is equivalent to considering perfect control as above, but for non-invertible sys­

tems this approach makes it possible to determine the “best” possible controller 

(in terms of ISE). For a given output trajectory (which is zero for time t < 0), 

the ideal controller is the one that generates the plant input u{t) (zero for time 

 ̂ < 0) which solves the following;

1 r,
m m I S E  = - j ^  \ \ y r . i - y \ \ \  (2.30)

subject to

X =  f {x ,u) ,  (2.31)

y =  h{x),

x(0) =  To,
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where u is the input, y is the output, x  is the state vector, yref is the reference 

output, /  and h are the plant model equations, and Xq is the vector of the initial 

states. This controller is ideal in the sense that it may not be realisable in 

practice because the cost function includes no penalty on the input u{t). The 

perfect control { ISE  = 0) represents the inverse of the process.

For a SISO stable plant with real RHP zeros at Zi,i = 1, ...,m , the ideal ISE 

value for a step change in the reference is given by (Morari and Zafiriou, 1989):

m 2
I S E  =  (2.32)

2=1

or with complex RHP zeros z = x ± j y

4x 
x^ +  y^

I S E  = -. (2.33)

Thus, as for SISO linear systems, RHP-zeros close to the origin imply poor 

control performance. Therefore, to relocate the zero positions can improve the 

control performance (Skogestad and Postlethwaite, 1996).

R em ark  2.2 For a MIMO linear plant with RHP transmission zeros at Zi, the 

ideal ISE  value for a step disturbance or reference is also directly related to ^  

(Qiu and Davison, 1993).

For nonlinear systems having nonminimum phase behaviour the problem ( 2.31) 

cannot be solved numerically due to two major problems:

• An infinite time horizon is not implement able in a nonlinear setting

• The solution IS E  =  0 (a representation of the inverse of the process) is 

unstable for NMP systems
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Thus unstable zero dynamics impose unavoidable limitations on the closed-loop 

performance of nonlinear systems (Seron et ai, 1997).

2.3.4 Control Problem s A ssociated  w ith  U nstab le Inver­

sion

Unstable inverse behaviour of a system has been identified as one of the system 

inherent limitations on control performance. Such a characteristic also presents 

hard problem for the stability of the controller. Concerning the realisation of a 

controller for a linear system RHP zeros contribute additional phase lags to the 

system when compared to that of a minimum phase system with the same gain. A 

larger phase lag brings the system closer to its stability margin (Stephanopoulos, 

1984). The extra phase lag also causes a limited speed of response by limiting the 

obtainable bandwidth. The upper bound on the bandwidth lu for a SISO system 

is approximated by w < z/2 (z is a real RHP zero) (Skogestad, 1996).

For the control of a nonlinear system with NMP behaviour has a similar effect 

(Seron et al, 1997). The presence of unstable zero dynamics forbids the imple­

mentation of any controller from the class of nonlinear inversion-based controllers 

since such a controller is unstable.

R em ark  2.3 A NMP system could be stabilised either with longer prediction 

horizons or by putting a penalty on the input in the objective function within the 

framework of optimal control such as nonlinear model predictive control (NMPC). 

However, an off set-free performance (i.e. ideal optimal control) cannot be achieved 

in the presence of a disturbance when the input is penalised in the objective func­

tion ( Sistu and Bequette, 1995; Seki and Morari, 1998).
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Figure 2.1: Two possible types of multiplicity, a) input multiplicity; b) output 
multiplicity.

2.4 Input M ultiplicity and Controllability

In the previous sections, we have discussed difficult characteristic of a system 

with respect to the closed loop stability and performance. A stable and invert­

ible process is very desirable from a control design standpoint. However, for a 

nonlinear process, the characteristic behaviour of the system and its inverse such 

as stability may change with changes in operating conditions, resulting in difficult 

control problems.

A multiple steady-state phenomenon, namely multiplicity, is often found in 

nonlinear chemical processes, which shows multiple solutions and changes in the 

stability of the solutions. Chemical processes have been known to exhibit such 

nonlinear behaviour. A number of the papers published have reported multiplicity 

found in reactions, distillation columns, polymerisation reactions, etc. (Amund­

son and Aris, 1958; Uppal et ai, 1974; Balakotaiah and Luss, 1981; Dash and 

Koppel, 1989; Gani and Jprgensen, 1994; Sistu and Bequette, 1995; Ray and 

Villa, 2000).

There are two typical types of multiplicity as illustrated in Figure 2.1: input
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multiplicity and output multiplicity. Input multiplicity refers to the case where 

there exist more than one steady state solutions when the output is specified 

(curve (a) in Fig. 2.1); output multiplicity, the most common form, refers to the 

case where one input can produce more than one distinct outputs (curve (b) in 

Fig. 2.1).

Uppal et al. (1974) and Aris (1979) have presented multiplicity behaviour 

found in chemical reactors and Koppel (1982) have studied the effect of input 

multiplicity in control systems. Dash and Koppel (1989) have shown a number of 

chemical process examples with input and output multiplicity and demonstrated 

that input multiplicity can be a main cause of “sudden destabilisation” of the 

controlled system with integral action. Recently, Sistu & Bequette (1995) and 

Seki & Morari (1998) demonstrated the control performance and control prob­

lems imposed by input multiplicity behaviour under nonlinear model predictive 

control (NMPC). A process having input multiplicity behaviour is difficult to con­

trol because there exists more than one steady state manipulated variable value 

associated with a given output. A process with input multiplicity behaviour also 

places a limitation on the structure of the feedback controller (Koppel, 1982) 

and poses the feedback performance limitations since there must exist unstable 

zero dynamics on one “side” of the steady-state operating curve under some mild 

assumptions (Russo and Bequette, 1996). Therefore, the attention in this thesis 

focuses on processes with input multiplicity.
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2.4.1 Input M ultip lic ity  and R H P  Zeros

In this subsection the combination between input multiplicity and RHP zeros or

zero dynamics of processes will be discussed. It has demonstrated for SISO sys­

tems that models having input multiplicity behaviour will, under some assump­

tions have RHP zeros (Sistu and Bequette, 1995). This implies that a process 

with input multiplicity will have stability changes in its inverse.

Consider the SISO continuous nonlinear system with the form ( 2.23). The 

steady state solution to the system ( 2.23) is obtained by solving the equations 

of the form:

0 — (2.34)

ys = h(xs), (2.35)

where the subscript s indicates steady state values.

If the equation ( 2.35) has multiple steady-state solutions then the steady- 

state input-output relationship could be depicted by the curve (a) or (b) shown 

in Figure 2.1. A process having output multiplicity can reach a nonunique output 

ys for a given input depending on the initial conditions. On the other hand, 

a system with input multiplicity behaviour can have more than one steady-state 

input Us for a specified output It is noted from the curve (a) that the steady- 

state gain changes its sign in the operating region.

Mathematically, the condition for the existence of the steady state input mul­

tiplicity is (Koppel, 1982):

G(0) =  -C A - '^B  = 0, (2.36)

where G(0) is the steady state process gain (Morari, 1983, Jacobsen, 1994), A,
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B, and C  represent the gradients of function /(x , u) with respect to x, /(x , u) 

with respect to u, and h{x) with respect to x at the steady state operating point, 

respectively. A,  B, and C  are obtained by linearising ( 2.23) around the steady 

state point (xg, Ug)'.

^  =  -J^\xs,us^ (2.37)

^  ~  (2.38)

^  ^  (2.39)

Inserting the equations ( 2.37), ( 2.38) and ( 2.39) into the equation ( 2.36) gives 

the following equation;

G(0) =  C A- ^ B  
_  d h d x d f .

dh

=  0

Thus G(0) =  0 at the point [xs-,Us) implies that the output is at the poten­

tial maximum or minimum point. If one wishes to control at the maximum or 

minimum output, a control problem arises since the steady state gain is zero. 

However, even at points away the maximum or minimum output there may be 

limitations in the achievable control performance due to unstable zero dynamics. 

Sistu and Bequette (1995) state in their L em m a 1:

I f  the open loop steady state gain of a SISO nonlinear system changes sign 

in an operating region, then there is at least one zero of the linearised process 

crossing the imaginary axis under the following assumptions:
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1. There is no simultaneous change in the relative order of the linearised pro­

cess.

2. The linearised process dynamics are described by a strictly proper transfer 

function with at least one finite zero.

This implies that if the inverse of the system is stable on one side of the maximum 

in the steady state curve it must be unstable on the other side, and vice versa. 

It will be sufficient to note that whenever the equation ( 2.36) is true one must 

consider the possibility of the existence of input multiplicity and cannot be con­

fident of the unique behaviour (exchange of stability) of the inverse of the system 

(Koppel, 1982). Defined by the mathematics of bifurcation theory, the equation 

( 2.36) has it significance that can be referred to as a bifurcation condition in 

bifurcation analysis (discussed in Chapter 3).

2.4.2 Control Problem s A ssociated  w ith  Input M ultip lic­

ity

Input multiplicity implies a change in the steady state gain of a system which 

imposes difficult control problems in control system designs. The potential control 

problems associated with input multiplicity in several common control design 

techniques are discussed as follows.

When a process gain sign changes, the process with a fixed conventional con­

troller having integral action will result in a positive feedback loop and become 

unstable (Koppel, 1982). In addition systems with input multiplicity may be 

nonminimum phase in a region of the operating range - one of the major limi­

tations on controllability. Especially at operating points close to the maximum 

of the steady state curve, nonminimum phase behaviour can be expected to be
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detrimental to control performance because the linearised zero is situated close 

to the origin (Morari, 1983).

Within the framework of robust control (Morari and Zafiriou, 1989) this has 

been formulated as follows. It is possible to design a linear feedback controller 

which guarantees zero tracking error for steps, if and only if the steady state gain 

uncertainty does not exceeded 100 %, i.e. the process steady state gain does not 

change sign.

Using input/output linearisation controller design techniques by employing 

differential geometry methods for nonlinear process control have been proposed 

(Isidori, 1995; Kravaris and Kantor, 1990a; Slotine, 1991). However, stability 

of the zero dynamics is necessary condition for the input/output linearised con­

troller to yield an internally stable closed-loop system (Isidori, 1995). At the 

maximum (or minimum) of the steady state of the system the controller follow­

ing exact linearisation techniques generates infinite control moves due to zero 

process gain. Henson and Seborg (1992), who applied input/output linearisation 

controller design technique to a particular continuous fermenter process having 

input multiplicity behaviour, demonstrated the control problems caused by in­

stability of the zero dynamics. An ad hoc method for exact linearising controller 

design for improving the control performance of the system was proposed to avoid 

breaching input multiplicity condition by holding the manipulated variable con­

stant near the maximum, provided that the maximum is known.

Sistu and Bequette (1995) analysed the application of a nonlinear model pre­

dictive controller (NMPC) on processes with input multiplicity. Their work 

demonstrated problems caused by the instability of the employed controller in 

the nonminimum phase region, which resulted in the process moving to another 

steady state solution in the minimum phase region, where the controller is stable.

Seki and Morari (1998) employed receding horizon control (RHC) techniques
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(same as MPC in principle) for nonlinear processes which exhibit input multi­

plicity behaviour. An infinite-time horizon linear quadratic optimal problem was 

formulated with penalty on the control input as well as on its time-derivative in 

the performance index, based on local linearisation of the nonlinear process model 

around its trajectory. They showed that the input penalty in the performance in­

dex made it possible to handle SISO processes with input multiplicity. However, 

the offset removal could not be achieved due to the penalty on the input, and the 

tuning parameters must be carefully chosen to have a local closed-loop stability.

In general the following problems concerning the control of a process asso­

ciated with input multiplicity can be expected. At the maximum of the steady 

state curve the process is not controllable due to the zero steady state gain. In ad­

dition, systems with input multiplicity may have unstable zero dynamics which 

poses inherent limitations on the control performance and potentially internal 

instability problems.

When we consider a process having input multiplicity in an inverse-based 

control system framework, we could probably refer the occurrence of input multi­

plicity condition in equation ( 2.36) (see § 2.4.1), namely vanishing of the deter­

minant of the process gain matrix, to as a bifurcation condition. When equation 

( 2.36) is true, we cannot be confident the inverse of the control system exists as 

a one-to-one mapping from values of outputs to values of inputs and there exist 

more than one input for a specified output (Koppel, 1982), probably resulting in 

a big move in input or dramatic change in the control system.

Input multiplicity gives rise to a cause for considerable concern in control 

system design and complexity of controller designs (Morari and Zafiriou, 1989; 

Sistu and Bequette, 1995).
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2.5 An Overview of Controllability Analysis Tech­

niques and Process Design Methods for Im­

proved Controllability

In this section, an overview is presented of the principle, published methods 

for controllability analysis and integration of process design and control. Rather 

than going into specific details of the approaches, the focus is on investigating the 

classes of problems that they are able to treat. Much of this work in the literature 

has focussed on the development of analysis tools tha t provide some measures of 

the controllability of a process and that could allow design alternatives to be 

screened or compared on a common sense. There exist comprehensive review 

papers on this subject (Perkins, 1989; Morari, 1992; Perkins & Walsh, 1996).

2.5.1 D efin itions

In order to clarify the following discussions it seems necessary to define a number 

of terms. There are other definitions around but these ones will be used in this 

thesis.

• Controllability concerns the dynamic performance of a process and its abil­

ity to cope with variability and uncertainty (setpoint following and distur­

bance rejection) subject to feedback control independent of the controller 

design.

• Flexibility concerns the ability to accommodate uncertainty at steady state.

• Operability concerns the ability of a process to deal with uncertainty and 

disturbance and also with issue of reliability and maintenance.
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• Switchability is the ability of a process to cope with changes of operation 

between operating points.

• Dynamic resilience concerns the quality of the control system behaviour 

(setpoint following and disturbances rejection) that can be obtained for a 

process by feedback.

2.5.2 Techniques for C ontrollability A nalysis

The major works on controllability analysis are summarised in Table 2.1. In 

general, these measures are broadly classified into two main sets: linear model 

based approaches and nonlinear model based approaches.

Linecir M ethods

Commonly used controllability measures for linear systems include the relative 

gain array (RCA) (Bristol, 1966) and the minimised condition number (CN) 

(Nguyen et al.̂  1988), both of which rely on a linear model describing the effect 

of control variables on the process outputs (structural controllability). Typical 

resilience measures are the disturbance condition number (Skogestad and Morari, 

1987), the disturbance cost (Weitz and Lewin, 1996) and the relative disturbance 

gain array (Chang and Yu, 1992), which require input-output control structure as 

well as an additional disturbance model that describes the effect of the disturbance 

on the process outputs. A review and a procedure for controllability analysis for 

linear systems is demonstrated in Skogestad and Postlethwaite (1996). The prin­

ciple is to consider the effect of the different limitations separately and then to 

conclude whether or not controllability is sufficient for a given task and also to 

rank order different design alternatives. It is also one of major problems in con­

trollability analysis to date since there are many different aspects resulting from
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Table 2.1: Summary of the typical controllability analysis measures in the liter­
ature

Authors Merits Model
Morari (1983) IMC: RHP Zeros, time delay LD
Holt and Morari (1985) RHP Zeros LD
Perkins and Wong (1985) Time delay, CN, RHP Zeros LD
Palazoglu et al. (1985) CN LD
Morari et al. (1987) RHP Zeros LD
Russell and Perkins (1987) Time delay LD
Skogestad and Morari (1987) CN LD
Bogle and Rashid (1989) CN LD
Narraway and Perkins (1991) Economic back-off LD
Skogestad et al. (1991) Frequency-dependent RCA, CLDC LD
Elliot and Luyben (1995) Off-specified product time LD
Weitz and Lewin (1996) Disturbance Cost LD
Sorough (1996) Time delay LD
Zafiriou and Chou (1996) Process Zeros LD
Cao et al. (1996) Output deviation NLD
Young et al. (1996) Economic back-off LD
Kuhlmann and Bogle (1997) NMP performance NLD
Gal et al. (1998) Structural controllability LD
Chenery and Walsh (1998) Output deviation LD
Zheng et al. (1999) Surge tank LD
Vinson &: Georgakis (2000) Achieved output space NLD
Kim et al. (2000) Structural controllability NLD
Kuhlmann and Bogle (2001) NMP performance NLD
IMC =  Internal Model Control; RHP = 

CN =  Condition Number; RCA =  
NLD =  Non-Linear Dynamics;

= Right half Plane; NMP =  Non-Minimum Phase; 
Relative Gain Array; LD =  Linear Dynamics; 
CLDC — Closed-Loop Disturbance Gain,
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such analysis. It is the reason that many researchers now develop optimisation- 

based integration methods for controllability tests where a single value connected 

to the economics of the process is generated that allows for realistic use to rank 

alternative designs (Luyben et al.̂  1992, 1994; Perkins and Walsh, 1996; Chenery 

and Walsh, 1998; Ellito et ai, 1995; Zheng et oL, 1999; McAvoy, 1999; Kookos 

and Perkins, 2002).

As can be seen from Table 2.1, most tools rely on the use of steady-state or lin­

ear dynamic models, and the use of such models may be adequate in some cases. 

But, in general, it is quite unpredictable whether the conclusions drawn are cor­

rect, particularly in the face of process nonlinearities. Often, the final evaluation 

of the controllability of a system has to go through simulations, in particular when 

nonlinear characteristics are important. Moreover, while a dynamic simulation is 

used, several limitations can be identified:

• It is inefficient and potentially not inclusive, especially when the process 

possesses fast and slow modes;

• It is incomplete since only a limited number of simulation tests can be 

performed, and important and complex dynamic behaviour may not be 

observed for the specified conditions.

Nonlinear M ethods

In most cases, it appears that a controllability evaluation based on a linearised 

model for a nonlinear system by using controllability criteria as described above 

suffices (Perkins, 1989; Morari, 1992). Often, it is quite easy to design simple 

static nonlinear compensators which remove most of the process nonlinearity. 

The compensated system can then be analysed with linear techniques. This is 

true for the regulatory performance around a specified steady state point but fails
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for problems with the high degree of nonlinearity, ranged throughout the entirely 

operating regions. The reliability of the controllability analysis conclusions from 

these linearised methods is only around the specified conditions, which is main 

drawback of employing linear analysis methods for nonlinear systems.

But very important instances, processes can exhibit nonlinear behaviour which 

is not easily correctable with simple nonlinear transformations. These nonlin­

ear characteristics may have adverse effects on the dynamic performance of the 

systems. Therefore, it is of some importance to understand complex nonlinear 

behaviour of a process and to analyse the effects of the parameter and operation 

conditions on it.

The complex behaviour of a nonlinear process and its dependence of the pa­

rameters and conditions can be analysed by utilising nonlinear techniques such 

as bifurcation analysis. If this is done early enough at the design stage, the po­

tential control problems associated with the characteristics could be eliminated 

or avoided by modifying the process design itself (Morari, 1992).

It is argued that as long as the dynamics are known to the control engineers, 

modern nonlinear control algorithms that allow one to deal with almost any 

difficult control situation, and consequently regions of usual dynamic behaviour 

should not be avoided in process design, such as nonlinear predictive control could 

handle with difficult control problems. Carried to the extreme, one could conclude 

that such a nonlinear analysis is not needed at all at the design stage since any 

complex nonlinear behaviour can be fixed later on by the control algorithm (Seider 

et al, 1990). This may be true for controller design but is not satisfactory for 

analysing the controllability of a system since it is necessary to fully identify all 

potential problems associated with the complex behaviour and to assess how easy 

the design is to control when the design alternatives are considered at the design 

stage.
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2.5.3 D esign  M ethods for Im proved C ontrollability

Consideration of the controllability of a process at an early phase of the process 

design is now being widely accepted in both academia and industry. A number of 

methodologies and tools have been reported for taking account of the interactions 

between process design and process control. A class of approaches that include 

the question of controllability into the design problem formulation are the opti­

misation based methods for synthesis and design. The first approach employing 

optimisation is the steady-state flexibility approach by Grossmann et al. (1983). 

Here feasible operation is checked for a range of operating conditions including 

uncertainties and the design variables are determined accordingly. A formulation 

is used that includes operating variables that are allowed to be varied in order to 

compensate for the uncertainties at steady state. This work has been extended 

by Swaney and Grossmann (1985) in order to measure the flexibility of a process 

by maximising a scalar value called the flexibility index. Both measures evaluate 

the flexibility of a process at steady state. Dimitriadis and Pistikopoulos (1995) 

extended this approach for dynamic systems. Mohideen et al. (1996) further 

extended this work by employing an economic objective. They formulated the 

process and control design within an integrated optimisation framework, where 

process characteristics and control system parameters were determined simulta­

neously. Rigorous dynamic models, pre-specifled disturbance and PID controllers 

were used while significant economic benefits were reported. Further work fol­

lowing this measure has been presented by Bansal et al. (2000a).

Narraway and Perkins (1993) presented a method for selecting of the eco­

nomically optimal control structure of a process without designing the process 

controller, while preserving good controllability characteristics. Assuming per­

fect disturbance rejection by the control system and a linear dynamic model for
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the process, a systematic economic evaluation of the candidate control structures 

was performed using a mixed-integer linear programming technique. Recently, 

Kookos and Perkins (2002) presented a modification to the previous work of Nar­

raway and Perkins (1993). In their work, the control objectives are posed in terms 

of economic penalities associated with the effect of disturbance on key process 

variables aiming to identify optimal control structure selection for static output 

feedback controllers.

Luyben and Floudas (1994a) approached the design problem taking into ac­

count dynamic control performance characteristics in the form of matrix merits 

within a multi-objective optimisation framework.

White et al. (1996) proposed an approach to evaluate switchability of a 

process design, or its ability to move between operating points. Their approach 

was based on determining the optimal switching trajectory for the plant by setting 

up and solving an optimal control problem. One feature of this approach is the 

ability to include parameters characterising the design of the plant as decision 

variables.

Bahri et al. (1996) presented a back-off optimisation formulation to examine 

the disturbance rejection capability of the given design and find a back-off optimal 

design in order to reject the specified disturbance at steady state. One feature 

of optimisation formulation of Bahri et al. is the ability to include parameters 

characterising the design of the plant as decision variables without control design. 

In their later work, Bahri et al. (1997) extended their work in dynamic situation. 

In this work dynamic performance was evaluated dependent on detailed control 

design.

Zheng et al. (1997) based the selection of the controlled and manipulated
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variable set on the sensitivity of the optimal economic potential to process dis­

turbances in a hierarchy approach for plantwide control system synthesis. Rela­

tive gain array (RGA) and singular value were utilised in the selection of proper 

variable pairing. A controllability index introduced by Zheng and Mahajanam 

(1999) accounted for the minimum additional surge capacity required for a given 

structural process and control design to achieve the dynamic objectives of the 

control system.

McAvoy (1999) presented a methodology for the design of plantwide control 

systems for a given set of controlled variables that satisfied certain safety require­

ments and product quality control specifications. A set of manipulated variables 

was selected, which required the least changes to anticipate the effects of a speci­

fied step disturbances. A linear process model was incorporated and the resulted 

control scheme were deemed viable or not with the assistance of an integration 

analysis employing the relative gain array for the MIMO control system. This 

work was extended to a dynamic system (Wang and McAvoy, 2001).

The complete and combined approaches of rigorous and systematic screen­

ing of alternative process design with embedded control structure characteristics 

based on control and economic performance have been given proper attention 

(Mohideen et ai, 1996; Zheng et al., 1999; Skogestad, 2000; Kookos and Perkins, 

2002). The full count of all possible combinations between potential manipu­

lated and controlled variables may become large, especially for plantwide control 

system design. Thus, the complete enumeration of all possible sets of control 

structure for a number of disturbances incorporating the dynamic behaviour of 

the system within an optimisation framework would require great computational 

effort. Furthermore, use of the merits such as singular value and condition num­

ber of the system’s transfer function and interaction measures for the quality 

(Luyben and Floudas, 1994a,b) in the design of process and control systems may
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become prohibitive.

In general, the integrated design methods in the literature can be classified 

as having two different perspectives. The first set of approaches consider steady- 

state operation to be most desirable. They then seek to develop the steady-state 

designs that are economically optimal but are also dynamically operable in a re­

gion around specified steady-states. This is usually implemented by using trade­

off between an economic performance measure and a controllability performance 

index at steady-state, using one of merits listed in Table 2.1. The final deci­

sion as to what constitute the “best” design is often somewhat arbitrary in the 

sense that it depends on the relative weights used for the conflicting objectives. 

Furthermore, these approaches suffer from the inherent weaknesses of the perfor­

mance indexes used, namely that the controllability indicators may not directly 

and unambiguously relate to real performance requirements. The main drawback 

is that the solutions are only reliable around the specified steady-states. In order 

to check the validity of the conclusion drawn, closed-loop dynamic simulations 

are usually required.

The second set of approaches are dynamic approaches (Mohideen et a/., 1996; 

White et al, 1996; Bahri et al,  1997; Bansal et al,  2000a,b) that take the 

view that all processes are inherently dynamic, and that dynamic operation is 

inevitable or in some cases preferable to steady-state operation. They therefore 

explicitly consider the dynamic performance at the design stage through the use of 

the dynamic models. The ambiguity associated with controllability performance 

is thus avoided. These methods are not restricted to a small operating envelope 

around steady-states, thus the final decision drawn are reliable over a large region 

of the operation in the face of the disturbances. However, the optimal controller 

parameters strongly depend on the detailed dynamic process models of the process 

systems. The uncertainty (e.g. disturbances) seems to be solved at design stages.
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Uncertainty of the models will arise in practice. Moreover, the methods of the 

integrated process design and control optimisation, although they are reasonable 

and applicable from a mathematical point view, are not likely to be used in 

practice. One important reason is the cost of obtaining a “detailed” dynamic 

model.

Therefore, it is desirable that a method should be one that only use open-loop 

steady-state data while considering dynamic characteristics of a process design, 

i.e. information is independent of a detailed controller design, and could eliminate 

the design candidates for which a controller that achieves the control objectives 

in the face of disturbances does not exist, whatever controller design method is 

used. Bifurcation analysis can be one of the suitable nonlinear analysis tools 

that captures complex nonlinearity by using only steady-state data and applies 

to process design.

Bifurcation analysis proves its power in nonlinear system analysis and a few 

applications to process design have been reported. Ray (1989) demonstrated a 

limit cycle that occurs at typical operating conditions in emulsion polymerisation 

of vinyl acetate taking place in a CSTR. This limit cycle can be avoided either 

by increasing the solvent fraction or by decreasing the solvent volume fraction 

and increasing the initiator feed concentration. Russo and Bequette (1996, 1998) 

studied the influence of design parameters on the multiplicity behaviour of jack­

eted exothermic CSTRs. Morud and Skogestad (1998) discussed the dynamics 

of an industrial multibed ammonia reactor, where positive feedback due to heat 

integration led to oscillatory behaviour. They demonstrated that instability oc­

curs at a Hopf bifurcation point. Khinast et al. (1998) analysed the continuously 

stirred decanting reactor. They computed loci of the singular point, which divided 

the space of the design parameters into regions having different steady-states and 

bifurcation behaviour, and therefore desirable regions of operation and potential
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stability or operability issues were identified.

Bifurcation analysis does give a guideline to modify a process to avoid the 

undesirable behaviour and optimisation as a promising tool for design/control 

integration (Perkins and Walsh, 1996) is widely recognised. In this thesis, an 

approach to modifying process design for improved controllability is developed, 

using optimisation and bifurcation analysis.

2.6 Conclusions

This chapter served to introduce the background of this thesis. Bifurcation analy­

sis that provides a tool for analysing nonlinear system in the parameter space was 

discussed. The ideas of the inherent limitations on controllability and difficult 

control characteristics of a system were introduced by the means of perfect con­

trol and process inversion. It was shown that a system with complex behaviour 

such as input multiplicity is very difficult to control and the closed-loop system 

with respect to stability and performance will be limited.

Various analysis tools and design methodologies have been critically reviewed 

with reference to features that a general controllability analysis and design ap­

proach should possess. The linearisation-based measures of controllability analy­

sis are limited in their use for nonlinear systems since the results obtained from the 

linearised models are only reliable around the specific conditions, not through a 

large operating region, which is also main drawback of steady-state optimisation- 

based methods. Dynamic optimisation-based methods are strongly dependent on 

the detailed controller designs so that the results from these kinds of methods 

are not comparable. The controller-dependent methods are inefficient when prior 

controller design are required since controllability is determined by the process 

itself.
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Continuation combined with bifurcation theory has been identified as the most 

appropriate tool in nonlinear system analysis and the results of this analysis could 

be used to guide the process modification at the design stage.

Bifurcation analysis as a powerful tool in nonlinear system analysis ( Seider et 

a/., 1991; Moari, 1992; Sistu and Bequette, 1996) and optimisation as a promising 

tool for design/control integration (Perkins and Walsh, 1996) have been recog­

nised. In Chapters 3 and 4, we will show how these kinds of approaches can 

be used to analyse an existing process design with input multiplicity and then 

to modify the process to eliminate the control difficulties associated with input 

multiplicity in the operating regions of interest.
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A N ew  Analysis M ethod

This chapter presents a bifurcation-based approach to studying 

potential control problems associated with input multiplicity. An al­

gorithm is developed by augmenting the open-loop system with the 

necessary condition for the existence of input multiplicity that is incor­

porated as an add-in subroutine to a bifurcation analysis software code 

available. This allows one to identify input multiplicity behaviour in 

the parameter space and to investigate the dependence of input multi­

plicity on the values of the parameters of interest. The computational 

aspect of bifurcation analysis are briefly discussed in section 2 and a 

formulation is presented in section 3. The solution method for a SISO 

system is described in section 4. An isothermal CSTR, as an illustra­

tive example of application, is given to demonstrate the key features 

and applications of this proposed method, and results are compared 

with the analytical solutions.

64
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3.1 Introduction

The literature survey in Chapter 2 indicates that continuation computational 

method combined with concepts of stability and bifurcation theory is now recog­

nised as a powerful tool and widely applied to chemical process analysis.

In principle, bifurcation analysis is a method for studying qualitative be­

haviour changes of a process under parameter variations. The critical points 

or bifurcation points at which qualitative behaviour of the process changes are 

detected and located in the parameter space. The behaviour of the process is 

studied in terms of parameter-dependent branches of steady-state solutions. The 

characteristics of the process under disturbances and uncertainties such as op­

eration condition and model parameter changes can be highlighted. Bifurcation 

analysis does give insight into the qualitative aspects of the dynamic behaviour 

of a process such as multiplicity, and possibly leads to improved dynamic be­

haviour in the process (Aris, 1979; Seider, 1991; Teymour and Ray, 1989; Russo 

and Bequette, 1995).

The bifurcation-based approaches that have appeared in the literature are 

mainly concerned with open-loop characteristics of processes even though few 

bifurcation studies of systems subject to control have been performed (Chang 

and Chen, 1984, Ginona and Paladino, 1994, Russo and Bequette, 1996). It is of 

some of interest to study the properties of a control-related process.

The properties of a feedback system with respect to its stability and control 

performance limitations are directly related to the characteristics of the process 

gains as stated in Chapter 2, if a specified control strategy is considered. It is the 

nature of nonlinear systems for characteristic process parameters to be different 

at different steady-state operating conditions. Thus, while the process gains for a 

linear system consist of constant elements, the process gains for nonlinear system
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are the functions of process operating conditions and will therefore change as these 

operating conditions change. Hence, the linear-based methods, such as relative 

gain array (RGA), condition number (CN), etc, are inadequate for nonlinear 

systems. Carried to the extreme, no information is available from these methods 

when a process gain matrix vanishes, i.e. the determinant of the process gain 

matrix is zero. For instance, the inverse of a process gain matrix is used in RGA 

calculations. When the determinant of the process gain is zero, the inverse does 

not exist.

Defined by the mathematics of bifurcation theory, the zero of a process gain 

has significance, which can be one of the tests used by nonlinear analysis to detect 

the possible existence of input multiplicity for a SISO system so that the control 

difficulties caused by the input multiplicity can be investigated.

In this chapter, a formula for a SISO system is developed by augmenting an 

open-loop process with its gain, that can be incorporated as an add-in subroutine 

to a bifurcation analysis software code available, AUTO (Doedel et al, 1998). 

Thus, the occurrence of the existence of input multiplicity can be automatically 

detected by utilising bifurcation analysis. Hence, the properties of the process 

gain can be studied in the parameter space. The results from this analysis are 

then used to guide process modifications to eliminate or avoid input multiplicity, 

which will be discussed in Chapter 4.

3.2 Bifurcation Analysis

In § 2.1.3, the concept of bifurcation analysis was introduced. In this section, the 

computational aspect of determination of bifurcation points is discussed.
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Consider a continuous nonlinear system, which is expressed by

X =  / ( x , u ) . (3.1)

where z E 3%̂̂ is an n dimensional vector of the state variables; u E % is a 

manipulated variable; f{x^u)  is an n-dimensional vector of smooth nonlinear 

functions.

For a given u, an open-loop steady-state solution of the equation ( 3.1) is a 

point such that:

(3.2)

The behaviour of the open-loop steady-states can be evaluated by the Jacobian 

matrix of the system, J , which is expressed as:

J  =

d f i { x , u ) d f i  ( x , u ) d f i ( x , u )

d x \ d X 2 d X n

d f 2 { x , u ) d f 2 i x , u ) d f 2 ( x , u )

d x i d X 2 d X n

d f n { x , u ) d f n { x , u ) d f n { x , u )

d x \ d X 2 d X n

(3.3)

Eigenvalues A of the Jacobian matrix J  satisfy the equation:

det{J{x^ u) — XI) = 0. (3.4)

If all the eigenvalues of J  have negative real parts, then the steady-state solution 

of the nonlinear system is asymptotically stable. A steady state point is unstable 

if at least one real part of the eigenvalues of J  is positive. There may exist 

some branch points at which the stability of the system changes. Bifurcation
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theory is used to analyse the stability changes of the steady-state solutions and 

to understand what happens when a part of the spectrum of the matrix J  moves 

from the left hand plane (LHP) into the right hand plane (RHP) or vice versa 

when the parameter u changes. The term bifurcation point refers to branch points 

in general and is used in the foregoing discussion to mean the branching of the 

solutions.

The necessary condition which determines a bifurcation point for the system 

at steady-state, from the implicit function theorem, is described by (Kubicek and 

Marek, 1983):

f ( x ,u )  = 0, (3.5)

det(J) = 0. (3.6)

The eigenvalues A of the Jacobian matrix J  satisfy the equation ( 3.4). The equal­

ity is therefore equivalent to the statement that at least one of the eigenvalues of 

J  is zero. At a bifurcation point, the stability of the solutions in the transient 

sense can change.

Numerical solutions for the dependence of steady-states on u can be solved 

by using an iterative procedure known as continuation. Typically, one parameter 

is varied to allow the continued calculation of solutions as a function of this 

parameter. At each iteration, a step in the parameter is taken and a predictor-

corrector method is utilised to locate the solution. The step size of each iteration

is controlled by a convergence criterion. The procedure is repeated until a desired 

range of the parameter values has been evaluated. Bifurcation points can be 

detected and located. Branches of the steady-state solutions at the bifurcation 

points can be traced out in the parameter space. Therefore, continuation can 

provide a “complete” picture of the nonlinear behaviour.
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The results of the continuation calculations are typically presented as a bifur­

cation diagram where the behaviour of a key variable is shown as a function of 

the bifurcation parameters.

A number of software packages have been developed for bifurcation analysis 

of nonlinear systems. AUTO, a continuation and bifurcation analysis package de­

veloped by Doedel et al. (1998), is perhaps, to the author’s knowledge, the most 

widely used numerical bifurcation code. AUTO can perform bifurcation analysis 

of nonlinear systems described by algebraic equations, ordinary differential equa­

tions, and partial differential equations. In addition to the simple limit and Hopf 

bifurcations that commonly occur, more complex bifurcation behaviour such as 

tori and period doubling bifurcation as a function of two or more parameters can 

be solved. AUTO also includes a graphical user interface (GUI) which simplifies 

specification of computational parameters required by the continuation code. For 

these reasons, the AUTO package is utilised to conduct bifurcation analysis in 

this thesis.

The basic numerical techniques of continuation and bifurcation employed in 

the AUTO package are given in Appendix C and the details can be found in the 

published papers (Keller, 1977, 1987; Doedel et al., 1991a, b)

3.3 Problem Formulation

Consider a SISO process described by the following modelling equations:

X = f{x ,u ) ,  (3.7)

y = h{x),
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where x G 5R” is an n dimensional vector of the state variables; u G is a 

manipulated variable; / (x ,u )  is an n-dimensional vector of smooth nonlinear 

functions; h is smooth function on For the given SISO system, the process 

gain at steady state is expressed by:

G(0) =  (3.8)

where G(0) is the steady state process gain and A, B,  and C represent the 

gradients of function f {x ,u )  with respect to x, f { x ,u )  with respect to u, and 

h{x) with respect to x at the steady state operating point, respectively.

Mathematically, the necessary condition for the existence of steady state input 

multiplicity (Koppel, 1982) is:

G(0) =  - C A ~ ^ B  = 0. (3.9)

Whenever equation ( 3.9) is true, one must consider the possibility of the 

existence of input multiplicity behaviour and cannot be confident that the inverse 

of the system exists as a one-to-one mapping from the values of the output to the 

values of the input, resulting in a large move of the input for an inverse-based 

control framework. Therefore, equation ( 3.9) can be referred to as a bifurcation 

condition in bifurcation analysis.

An artificial dynamic equation is then defined by using the process gain, G(0), 

which is expressed as:

z> =  G(0)z/, (3.10)

where ly is an artificial state and the initial condition is assigned as 0 (the value 

of the G(0) is independent of the state ly).

Consider the system (3.10) where the eigenvalue of the system is G(0). The
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bifurcation condition for this particular system at steady-state is;

Cj (0)  =  0. (3.11)

Therefore, the necessary condition for the existence of input multiplicity char­

acterises a bifurcation point for this dynamic equation. Exact satisfaction of 

equation ( 3.11) is of course unlikely in physical problems. A very small value of 

G(0) is also meaningless. However, for our purpose, it is sufficient to seek changes 

in the sign of G(0) to detect the occurrence of the input multiplicity at a variety 

of steady-states.

If the original dynamic system (3.7) is augmented with the dynamic equation

(3.10), a new dynamic system is set up, giving the form:

X =  f ( x , u ) ,

V = G(0)i^,

(3.12)

(3.13)

or in short form:

(3.14)

where X  =  [x, r>] and

T { X ,u )  =
f { x ,u )

G{0)u
(3.15)

The steady-state solutions of the new system are given by:

0 = (3.16)
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The Jacobian matrix, J , of (3.16) with respect to X  at steady state is:

J  =
0 G(0)

(3.17)

where J  is Jacobian of the function /  with respective to x. The eigenvalues of J  

are determined by:

det{XI — J) =  det

= det

0 1 V
A/i -  J  0 

 ̂ 0 A — G'(O) J

J  0 

0 G(0)

— det (A/i — det (A — (7(0)), (3.18)

where I  and A are (n +  1) x (n +  1) and n x n  identity matrices, respectively. 

Eigenvalues A of the Jacobian matrix J  of the system (3.16) satisfy the equation:

det{XI — J{x, f/, u)) = 0, (3.19)

that is.

det (A/i — 7) det (A — (7(0)) — 0, (3.20)

which represents the characteristic equation of the system (3.7) with the equation

(3.10).

It is now possible to study the properties of the process and its process gain 

straight away by means of bifurcation analysis. Input multiplicity behaviour along 

with the open-loop characteristics of the process can be detected and located 

in the parameter space, in which the input multiplicity conditions are referred
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to as additional bifurcation points. Branches of these bifurcation points can 

be traced out to determine the bifurcation regions and the parameter effects. 

The continuation techniques within the software package AUTO can handle the 

problems with additional small calculation expense of the process gain at a variety 

of steady states by an add-in subroutine.

3.4 Solution Method

The bifurcation analysis package AUTO (Doedel et al, 1998), is utilised to solve 

the problem stated in the last section. An add-in FORTRAN subroutine that 

calculates the process gain at a variety of steady-states is incorporated with the 

AUTO software code so that input multiplicity condition can automatically de­

termined along with the open-loop characteristics of the process.

AUTO, as do most numerical continuation algorithms, can deal with problems 

with only one degree of freedom, i.e. one independently varying parameter. This 

method can be straight away applied to a SISO control system. The manipulated 

variable of the SISO system is selected as the first bifurcation parameter and 

then bifurcation points are detected and located in the manipulated variable 

space. Bifurcation condition, i.e. bifurcation diagram, can be traced out if other 

considered parameter such as a disturbance or a design parameter is assigned 

as the second bifurcation parameter so that how the parameters influence the 

behaviour of the process can be studied.

Implementation of basic computation for the augmented system in AUTO is 

outlined as the following figure (see AUTO 97 (Doedel et al, 1998) for the details 

of the use of AUTO).
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SUBROUTINE FUNG 

u = PAR{1) 

xi = X{l )

Xn — X  (n)

Xn+i = X{n  + I )

F\ = f i{x,u)

F2 =  f2(x,u)

F n  =  f n { x , u )

CALL sub-fxfuhx

CALL sub-gain 

Fn+l = G{0)Xn+l

RETURN

END

SUBROUTINE STPNT 

PAR{1)  =  uq

AT(1) =  xi^o

X  (71) — Xjî Q

X{n + 1) = 0

RETURN

END

Function subroutine in AUTO 

Bifurcation parameter definition 

State variables

New artificial state 

Original dynamic equations

Add-in subroutine to calculate 

the derivatives,/^, fu and hx 

Add-in subroutine to calculate gain, 0(0) 

New artificial dynamic equation

Starting point subroutine in AUTO

Initial condition of 

new artificial state

Diagram of basic computation of the augmented system with AUTO
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Figure 3.1: Schematic diagram of the van de Viisse reactor

3.5 Illustration: van de Vusse Reactor Example

In this section we consider the application of the proposed analysis method to 

the van de Vusse reaction taking place in an isothermal continuous stirred tank 

reactor (CSTR). A schematic diagram of the reactor considered here is shown in 

Figure 3.1. This example has been considered by a number of researchers as a 

l)enchmark {problem in the literature for nonlinear process control and optimisa­

tion study (van de Vusse, 1964; Daoutidis etai, 1990; Sistu and Bequette, 1995; 

Doyle et ai, 1995). It has been found that the reaction exhibits input multiplicity 

behaviour (see Figure 3.2).

The considered reaction kinetic scheme is:

A ^  ^  C,

2A D.

The reaction rates with respect to A and B are:

ta = - k i C A - h c \ , (3.21)

(3.22)

where ki,k'2  ̂ and k^ are the reaction rate constants. The feed stream consists of
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pure A. The mass balances for A and B are given by:

ca — —ki ca — -h — {cao — ca) i (3.23)

F
c-B = kiCA — k2 cb +  y { —CB)i (3.24)

where F  is the inlet flow rate of A, V  is the reactor volume, ca and cg are 

the concentrations of A and B inside the reactor, respectively, and cao is the 

concentration of A in the feed. The control problem focusses on regulating the 

concentration of component B, cb, by manipulating the inlet flow rate F.

The equations by setting the state variables Xi = ca, X2 = cb, u = F, and 

y = Cb are expressed as:

X\ =  —k\X\ — k"ix\ +  — (cao — Xi)u, (3.25)

±2 = k i x i  -  k2 X2 -  ^X2  u, (3.26)

V = X2, (3.27)

or in the standard state space form:

X = f (x ,u ) ,  (3.28)

V = h{x), (3.29)

where

 ̂ - k iX i  -  k^x\ +  ^{cao -  Xi)u ^
(3.30)

^  k\Xi — k2X2 — y ^2 U J

h{x) — X2 - (3.31)

The parameters and values of the reaction are given in Table 3.1, which are
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Table 3.1: Parameters and values for van de Vusse reactor

Parameters Values Units
h 50 h-^
k2 100 h~^
ks 10 I mol~^ h~^
Cao 10 mol l~^
V 1 I

referred to the published papers (Sistu and Bequette, 1995; Doyle et al., 1995).

3.5.1 A nalysis for th e  van de Vusse R eactor

Consider the system expressed by the equations from ( 3.25) to ( 3.27). The 

process gain G(0) as a function of the states is expressed by:

dx
d f
dx

G(0) =

We use the process gain to define a dynamic equation:

z> =  G { 0 ) u ,

where ly is an artificial state. An augmented dynamic system is set up as:

Xi  =  —k i X i — k s X i - \ - — { c A o ~ X i ) u ,

X2 — kiXi  — /C2 X2 — —T2 U,

Ù — G ( 0 ) i y .

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

The analysis for the new system is carried out by using AUTO (Doedel et al, 

1998), being incorporated to the add-in subroutine of calculating the determinant
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of the process gain at a variety of steady state conditions. The steady-state solu­

tions of the system with input multiplicity information are shown in Figure 3.2. 

The point indicated by the square in Figure 3.2 is an input multiplicity condition 

at which the value of the inlet flow rate F  is: F  ^  77.bl/h. This condition is 

referred to as a bifurcation point of the augmented system in bifurcation analysis.

Having this bifurcation point, one can investigate the effects of the other con­

cerned parameters on the input multiplicity behaviour. In this case, the feed 

composition cao as a main disturbance is taken into account to study how it in­

fluences the input multiplicity behaviour when it varies. Figure 3.3 shows the feed 

composition cao effect on the behaviour of the process as indicated by the dashed 

line. The locus of the input multiplicity condition is given in Figure 3.4, which 

indicates how the input multiplicity condition depends on the feed composition 

Cao over the operating range of the inlet flow rate.

The relationship between the input w, the output T2, and the disturbance cao 

at the input multiplicity condition can be obtained, as depicted in Figure 3.5. If 

the input moves to breach the input multiplicity condition in order to reject the 

disturbance of the feed composition during the operation, the input multiplicity 

behaviour will occur.

3.5.2 Com parison w ith  A nalytical Solutions

In section 2.4.1, we have discussed the combination of the existence of input mul­

tiplicity and process gain sign changes, resulting in the changes of zero dynamics 

behaviour. In this section it is shown for the van de Vusse example that the 

results from the proposed method and the analytic solutions are compatible.

For this equation system, it is possible to have the process gain at steady-state
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Concentration of B
1. 3a

1.2a

i . i a

i . o a

0 . 9 a

o. sa

0.7a

0.6a
0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 .

Inlet flow rate

Figure 3.2: Steady state solutions showing input multiplicity condition informa­
tion for the van de Vusse reactor. Square: input multiplicity condition
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Figure 3.3: Steady state solutions showing input multiplicity condition with vari­
ation of Cao for van de Vusse reactor. Solid line: steady states for a fixed c^o ; 
dashed line: input multiplicity condition with variation of caq
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Figure 3.4; Locus of input multiplicity condition between inlet How rate F  and 
feed composition c^o
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Figure 3.5: Contour of input multiplicity conditions as inlet flow rate, output, 
and inlet concentration change for the van de Vusse reactor
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by calculating (Sistu and Bequette, 1995):

—ki — 2k^X\s — ^Ug 0

ki —Â2 —

\

V ^ s  J

\ — ̂ X2s
dh

(3.37)

(3.38)

(3.39)

and therefore

G(0) — —
dx dx

-1

1 —k\{cAO — 371s) +  X2s{k\ +  2/C3X15 +  Ug/V)  
V  ( k 2 U g / V ) [ k i 2 k ^ x i g U g / V )

(3.40)

where the index s indicates steady state values. The steady states of the concen­

trations as a function of the input are:

— {y k \  +  Ug) +  J {y ^ k i  +  2Vk\Ug -|- 4 y CAokzUg +  u^)
X . =  ---------------------   W k , -------------------------------- . (341)

k\{^—Vk\ — Ug J {y ^ k i  +  2Vk\Ug AVĉ Qk-̂ Ug +  li^)) 

=  ------------------------------ ' 2 H V k ; + u , ) -------------------------------•

Substituting the equations ( 3.41) and ( 3.42) into equation ( 3.40), the process 

gain can be solved analytically. Figure 3.6 shows the process gain under the 

variation of the inlet flow rate for the given parameters. As can be seen, the 

process gain is zero at the value of 77.bl/h of the inlet flow rate F  and changes 

its sign crossing this value, which is the same as the result from the proposed 

method given in the last section. This point was detected and referred to as a 

bifurcation point in the above proposed method (see Figure 3.2).
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The sign change in the process gain indicates there exists a shift of the zero 

of the linearised process from LHP to RHP or vice versa as long as the relative 

order of the system is constant (Sistu and Bequette, 1995). Further to prove 

these statements, the zero dynamics of the system are given as follows.

Zero D ynam ics: For this system, the relative order is shown to be r  =  1 by 

differentiating the output, i.e. one equation for the zero dynamics is expected. In 

this case, the zero dynamics can be directly determined from the model equations, 

as they are in the normal form. Setting the output and its derivative equal to 

zero in the equation ( 3.26), solving the remaining system and substituting u into 

equation ( 3.25) leads to zero dynamics:

x^ = - h x , ~  k ,x \  +  (3.43)

The eigenvalue A of the zero dynamics of this system as the function of the states 

is expressed by:

x  =  - h -  2 h x ,  +  -fci^i + <=2y +  fci(c.4 0 -X i )  (3 44)
y

If the steady state solution equations ( 3.41) and ( 3.42) are inserted into equation 

( 3.44), an analytical expression for the eigenvalue of the zero dynamics as a 

function of the input in the whole operation region is obtained. The relationship 

between the eigenvalue of the zero dynamic and the input is depicted in Figure 3.7. 

The positive value of the eigenvalue of the zero dynamics indicates unstable zero 

dynamics. As can been seen, instability of the zero dynamics changes at the value 

of 77.5///1 of the inlet flow rate, at which the process gain of the process is zero as 

shown in Figure 3.6. This case also gives a confirmation of the theory discussed 

in § 2.4.1.
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Figure 3.6: Process gain as a function of inlet flow rate for the van de Vusse 
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Figure 3.7: Eigenvalue of zero dynamics as a function of inlet flow rate for the 
van de Vusse reactor
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3.5.3 Sum m ary

An isothermal CSTR with input multiplicity behaviour has been analysed by 

using the proposed methodology. The results were compared with the analytical 

solutions. It was shown that the proposed method was capable of determining 

the input multiplicity characteristic and of studying the parameter effects on it. 

The proposed approach can straightaway detect input multiplicity behaviour and 

then conduct the studies of different parameter effects on the process behaviour 

for a large nonlinear system.

3.6 Conclusions

In this chapter a bifurcation-based method is presented for determining input 

multiplicity along with other open-loop characteristics of nonlinear processes. 

The foundation of the approach is to use bifurcation analysis techniques to in­

vestigate the qualitative behaviour changes of process gain matrices in terms of 

the possibilities of the existence of input multiplicity and to study the parameter 

effects on them. The necessary condition for the existence of input multiplicity 

as an add-in subroutine is incorporated with an available bifurcation package. 

This provides a way to identify potential control difficulties associated with in­

put multiplicity in the parameter space for a given process design and control 

structure. This feature enables controllability in terms of qualitatively dynamic 

properties of the process to be analysed, independent of detailed controller design. 

The applicability and ease of calculation of this approach, compared to analytical 

methods, has been demonstrated through a process example. It is evident that 

the benefits offered by the bifurcation-based approach increase as the number of 

the considered parameter increases for large and complex nonlinear processes.
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Process M odification for

Improved Controllability

This chapter presents a method for modifying an existing process 

design with input multiplicity to improve controllability. The static 

controllability (setpoint following ability and disturbance rejection) of 

the process design is considered in conjunction with economic criteria 

for the modification of the process design. The control and economic 

objectives are incorporated within a feedback optimisation framework 

that evaluates the required contribution of the input variable and pro­

cess design parameters to alleviate the effects of an imposed distur­

bance on control performance. Bifurcation analysis is utilised to iden­

tify the potential control problems associated with input multiplicity 

behaviour and to determine the effects of the input, output, distur­

bance, and design parameters on them, hence providing the guide for 

the process modifications to eliminate or avoid such undesirable be­

haviour. Application of this method to an exothermic CSTR is given 

as an illustrative example.

85
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4.1 Introduction

In the proceeding chapter a bifurcation-based approach to identifying the complex 

behaviour of a process has been developed. This method can determine the 

potential control difficulties for an existing process design with selected controlled 

and manipulated variables, and allow one to study the effects of the disturbances 

and design parameters on the behaviour of the process over the entire operating 

range of interest. Results from the analysis indicate what the complex behaviour 

of a process is in the face of a specific disturbance and how the changes of the 

design parameter values influence it. This could make it possible for adjusting the 

design parameter values to eliminate or avoid the undesirable complex behaviour. 

In this chapter an approach to modifying process designs is proposed to realise 

the possibility.

In principle, the proposed method is a static optimisation-based approach, 

combined with bifurcation analysis. The optimisation problem formulated is a 

NLP problem that aims at minimising the absolute values of design parameter 

adjustments to avoid the complex behaviour inside the range of the input, subject 

to the specified disturbances.

It is worth pointing out that the focus of the proposed method is on modifying 

an existing process design itself rather than selecting control structures.

4.2 Process Modification Methodology for Im­

proved Static Controllability

In this section a process modification approach to improving controllability is 

proposed, based on the static feedback optimisation and combined with bifurca­

tion analysis. It should be emphasized that this method is not a synthesis tool
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for process and control system design. The method focusses on modifying an 

existing process design with a selected SISO control structure. The procedure 

and development of this method is described in the following subsections.

4.2.1 Econom ically O ptim al D esign

Initially, consider an existing process design, or a set of alternative fiow-sheet con­

figurations that are determined based on a process design procedure as proposed 

in Douglas (1988). Typically, for each process design, the optimal operating con­

ditions and equipment sizing around a nominal operating point are determined 

satisfying a number of economic criteria. These criteria usually incorporate the 

annualized investment and operating costs. Nonlinear process models are used for 

the prediction of the steady-state behaviour of the plant, while a set of constraints 

would enforce the satisfaction of safety, environmental and operating specifica­

tions. The solution found from optimisation is economically optimal. It has been 

assumed that the optimal values of the state variables, manipulated variable, and 

design parameters obtained are %*,%*, and p*, corresponding to the nominal value 

of disturbance.

The process design is then described by the equations:

X = f{x ,u ,d^ ,p*)  (4.1)

where a; (E 32̂  is the vector of state variables, u G 5R is the manipulated variable, 

d^  is the nominal value of disturbance, p* is the values of design variables, cor­

responding to the nominal value d^  of the disturbance, /  G are the smooth 

functions.

This economically optimal process design is referred to as the “base-case” 

design in the ongoing discussion.
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4.2.2 C ontrollability A nalysis for th e  “B ase-C ase” D esign

For the optimised fixed structural design with the selected SISO control scheme, 

the process at steady-state is described as:

f{u,x ,p%d) = 0, (4.2)

y = h{x).

We choose a set of scenarios for disturbance and design parameters to analyse 

the properties of the steady-state solutions and the behaviour of the process gain 

over the entire range of the selected manipulated variable u by using the method 

presented in Chapter 3. Bifurcation points are identified and located in the 

parameter space. The bifurcation relationship between the manipulated variable, 

the disturbance, and the design parameters at each bifurcation point is obtained, 

which is functionally expressed by uuf = fbif{d,p). This bifurcation relationship 

represents the complex behaviour that will probably cause control problems and 

indicates how the parameters affect it. If input multiplicity is considered, the 

function will represent the occurrence of the input multiplicity behaviour under 

changing conditions. We only consider such a bifurcation point that is close to 

the selected optimal operation point if there exist more than one bifurcation. It is 

clear that if there exists diflficult control problem in such a neighbourhood around 

the operating point, there is no hope of control in any larger sense.

4.2.3 D esign  M odification A lgorithm

An optimisation problem can be formulated and solved to modify the process 

design. The design parameters are adjusted to control y for a disturbance to avoid 

bifurcation over the operating range of the manipulated variable. The objective
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function is taken to be the differences that the design parameters and manipulated 

variable have to move from their original optimal steady-state values. These 

adjustments should be kept as small as possible. A scalar cost function J(u , p, d) is 

defined as a quadratic function that penalises deviations of manipulated variable 

and design parameter variables from their nominal steady-state economic optimal 

values in a least squares sense,

J (u ,p )  =  { p - p * Y H { p - p * )  +  { u - u * Y Q { u - u * ) ,  (4.3)

where TZ and Q are appropriate cost factor matrices that have to be chosen to 

reflect the operating cost change in the manipulated variable and capital cost 

change in the design parameter variables; u* and p* are the values of manipu­

lated variable and design parameters at nominal conditions, respectively. It has 

been assumed that all state variables have been eliminated from the cost function

so that the cost function is in terms of the independent variables. Thus an opti­

misation problem to determine the design modification to eliminate bifurcation 

problems can be formulated as:

m in J  =  {p — p*YlZ{p — p * ) { u  — Q{u — u*)

subject to

f {u ,x ,d ,p )  =  0, (4.4)

g{u,x,d,p) < 0,

y  -  V s e t  =  0,

sign{u* -  fbif{p\ d^)){u -  /w/(p, d)) < 0,
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where

u the manipulated (independent) variable

X  the vector of state (dependent) variables

p the vector of design (independent) variables

d the worst case value of disturbance

/  mathematic model of process, involving mass and 

energy balance and so forth 

g process limitations, involving raw materials 

product qualities and so forth 

fbif bifurcation function

the nominal value of the disturbance 

p* the economically optimal values of design variables, 

corresponding to the nominal values of d^  

u* the economically optimal value of the manipulated variable, 

corresponding to the nominal values of d^  

y set the set-point value of the controlled variable

For a specified disturbance d the optimisation problem ( 4.4) can be solved to 

have the optimal values of the manipulated variable, u**(d), design parameters, 

p**(d), and cost functionJ(d) =  J(u,p)\(^u**,p**)-

In physical terms, the interpretation of the optimisation problem is an attem pt 

to achieve the required control performance using a minimum magnitude change 

from the existing design. Therefore, the process design modification can result in 

adjusting the process variables and design variables with the constraints of the 

controlled variable setpoint and bifurcation condition, and it effectively turns the 

complex optimisation problem into a simple steady-state feedback problem that
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is called feedback optimising design (FOD).

In this optimising design modification problem ( 4.4), we are concerned with 

the selected manipulated variable and the design variables as the degrees of free­

dom for optimisation. The optimisation takes the economically optimal solutions 

u* and p* from the standard steady-state economic optimisation as the modifi­

cation base. The sign of the difference between the steady state optimal value of 

the manipulated variable u* and the bifurcation value of the manipulated vari­

able, Ubif = fbi f{d^,P*),  corresponding to the nominal conditions, determines 

the desirable operating region. The bifurcation constraint can enable the mod­

ified process to stay in the desirable operating region without encountering the 

bifurcation problem for the specified disturbance in a steady-state sense.

Assuming that the problem ( 4.4) has been numerically solved yielding ma­

nipulated variable u** and design variables p** for the specified disturbance d, the 

modified process is expressed as the following:

X = f { u , x , p * \ d ^ ) ,  (4.5)

y  =

which is expected to be able to reject the predefined disturbance successfully in the 

operating region. The final operating conditions result in solving the equations 

in ( 4.5) at steady-state.

4.3 Illustrative Example: An Exothermic CSTR

In this section we will illustrate the application of the proposed process de­

sign modification methodology to an exothermic continuous stirred tank reactor 

(CSTR) that exhibits input multiplicity. This example is to demonstrate how
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to modify the process design to eliminate the control difficulties associated with 

input multiplicity for a specified disturbance in the operating range. The pro­

posed method in Chapter 3 will be used to determine input multiplicity behaviour 

of the process and to analyse the effects of the parameters on it. The process 

modification method developed above will be applied to the process to generate 

process alternatives.

4.3.1 P rocess D escription

Operating an exothermic reactor with cold feed can give rise to input multiplicity 

behaviour in temperature control problems. One specific example of this type was 

shown by Kravaris et al. (1994).

Consider a continuous stirred tank reactor with exothermic reaction where an 

inlet stream to the reactor consisting of pure A at concentration cao and temper­

ature To enters the reactor, and an exothermic irreversible first-order reaction

A B

takes place. A cooling jacket kept at a temperature Tj is used for the generated 

heat removal. The effluent stream leaves the reactor at concentrations ca, cb and 

temperature T. The mass and energy balances describing the dynamic behaviour 

of the process are:

Ca — y{cAo — Ca ) — k{T)cA, (4.6)

T  =  ^ { T o - T )  + ' f k { T ) c A - a ( T - T j ) / V ,  (4.7)
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Table 4.1: Parameters and values

ko = 7.2 X 10® h~^ F  = 4.1 X 10^ kJkmol ^
R = 8.345 kJkmol~^K~^ Cp = 4.2 kJkg -^K -^h -^

—A H  = 7.0 X 10'̂  kJkmol~^ P = 1000 kgm~^
U A  = 1680 k Jh -^K -^ Tj = 300 K

V  = 0.1 m® To = 300 K
Cao = 10 kmolm~^

where

k{T)

7

a =

ko exp{E/RT),  
- A H

UA
A '

and the values of the various process parameters and steady-state operating con­

dition are given in Table 4.1 (Kravaris et a/., 1994). The control objective is to 

control reaction temperature T  by manipulating the inlet flow rate F.  The inlet 

temperature Tq is considered as a disturbance, and the reactor volume V  as an 

adjustable design parameter.

4.3.2 A nalysis for the G iven Process

For the given design and control objective above, the system exhibits input mul­

tiplicity that is identified by using the method presented in Chapter 3. The 

steady-state solution relationship between the temperature T  and the inlet feed 

F  showing the input multiplicity condition under the variation of the inlet tem­

perature To is given in Figure 4.1. The solid line shows the steady-state solution 

under the nominal conditions, the open square indicates the input multiplicity 

condition, and the dashed line shows how the inlet temperature Tq influences
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the input multiplicity condition at steady state during operation. For clarity, 

the locus of the inlet flow rate F  versus the inlet temperature Tq at the input 

multiplicity condition is shown in Figure 4.2.

For the process, the desired operating point under consideration is chosen 

on the right side of the curve in Figure 4.1 to achieve a compromise between 

maximising conversion and maximising product rate (Kravaris et ai, 1994). As­

suming that the initial operating point is at the steady-state: ca — 4.29 kmol/m^  

and T  = 332 K.  The steady state value of the inlet flow rate corresponding to 

this operation point is F  =  0.203 As can be seen from Figure 4.2, the

multiplicity condition is likely to be breached for this selected operating point 

when there is a decrease in the disturbance of the inlet temperature Tq. Fig­

ure 4.3 gives the input multiplicity condition between the temperature T, the 

inlet feed F , and the inlet temperature Tq at steady state. It can be seen that 

the operating point will move towards or through the curved plane for a decrease 

in the inlet temperature Tq, while keeping the reaction temperature T  constant. 

This means that a large decrease in the inlet temperature is likely to cause the 

input multiplicity problem.

Now we consider the effect of the reactor volume V  on the input multiplicity. 

Figure 4.4 shows the input multiplicity condition between the inlet flow rate F , 

the inlet temperature Tq and the reactor volume V.  As can be seen from Fig­

ure 4.4, a decrease in the reactor volume and the inlet temperature will move the 

operating condition close to the multiplicity condition where the control problems 

associated with the input multiplicity will occur.

The results from the analysis indicate that a negative change in the inlet 

temperature T q can possibly cause input multiplicity behaviour during operation.
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Figure 4.1: Steady-state solutions showing input multiplicity condition with vari­
ations of inlet temperature. Square: input multiplicity condition; dashed line: 
input multiplicity condition with variation of inlet temperature
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condition
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Figure 4.4: Input multiplicity condition between the inlet flow rate, inlet temper­
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4.3.3 Process D esign  M odifications

In this section, the process design modification method proposed is applied to the 

process discussed above to eliminate input multiplicity for a disturbance in the 

inlet temperature inside the operating range of the inlet fiow rate. The condition 

for the existence of input multiplicity between the inlet fiow rate F , the inlet 

temperature Tq and the reactor volume V  is illustrated in Figure 4.4. The locally 

linearised relation of the input multiplicity condition between the inlet fiow rate 

and inlet feed temperature and reactor volume can be obtained by using the data 

from the proposed bifurcation analysis method in Chapter 3, and is expressed by:

Fim  = -1 6 .9 7 3 +  0.051To + 21.195F. (4.8)

For the chosen design variable V , the disturbance T q, and the manipulated vari­

able F, the feedback optimisation formula for the process design modification is 

described as the following:

min TZ(F -  2.03)^ +  Q{V -  O.l)'

subject to

F  E
y{cAo — Ca ) — koexp{^^)cA = 0, (4.9)

T  -  T s e t  =  0,

E  — Fjm < 0,

where F  and Q are the operating and capital cost coefficients of the changes in

the inlet fiow rate and reactor volume, respectively, and Fjm is given by equation
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( 4.8). In this case, 71 and Q take the values of 0.001 and 100 for demonstration, 

respectively. The values of these weights imply that the capital cost in the change 

of the reactor volume is much higher than the operating cost in the change of 

the inlet flow rate. Therefore, keeping the adjustment of the reactor volume as 

little as possible is expected to compensate the effects of the specified disturbance 

while eliminating the input multiplicity behaviour.

For each defined value of the disturbance of the inlet temperature, we have 

a corresponding design modification. The design modifications resulting from 

solving the optimisation problem ( 4.9) are given in Table 4.2. For instance, 

in order to have the rejection capacity of a ATq = —8 K  change in the inlet 

temperature without possibly encountering input multiplicity, the reactor volume 

V  is adjusted from 0.1 to 0.111 m^. As can be seen from Table 4.2, the reactor 

volume V  is kept unchanged for some of the specified disturbance values. This 

implies that the original process design has the ability to reject these changes in 

the disturbance so that the process does not need modifying. The relationship 

between the adjusted reaction volume and the specified disturbance of the inlet 

temperature rejection capacity of the process is shown in Figure 4.5. It has been 

seen that the original process design can only reject approximately 4 K  negative 

change in the inlet temperature without encountering input multiplicity problems, 

which will be shown by simulations in the next section.

The steady-state operating conditions for the modified process designs show­

ing the specified disturbance rejection ability are given in table 4.3.

The data used to obtain the functional expression equation (4.8) are from 

the analysis results by running AUTO with the add-in subroutine of determining 

input multiplicity while assigning the inlet flow rate F  as the first bifurcation 

(freedom) parameter and the inlet feed temperature Tq or reactor volume V  as 

the second bifurcation parameter at the input multiplicity condition which is
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Table 4.2: Process design modification results for the exothermic reaction

ATo (A:) -10 -8 -6 -4 0 +2 +4 +6 +8
V  {rrF) 0.116 0.111 0.106 0.101 0.100 0.100 0.100 0.100 0.100

Table 4.3: Parameters and operation values for the base-case and modified designs 
for the exothermic CSTR at steady state

Base-case FOD 1 FOD 2 FOD 3
(K) 

y  (m^)
T. m
Fs (m^h  
ca,s {kmolm~^)

-4
0.100
332

0.203
4.30

-6
0.106

0.190
4.05

-8
0.111

0.177
3.74

-10
0.116

0.169
3.52

referred to as a bifurcation point of the augmented system.

4.3.4 Closed-Loop Sim ulations

The initial operating point, located in the higher conversion region, is assumed 

to be at the steady state: ca = 4.29 kmol /m^ , and T  =  332i^ for the original 

design. A conventional PI controller was used and its tuning parameters were 

kept unchanged in all simulation runs for the purpose of comparison. All the 

simulations were done by using SIMULINK in MATLAB.

In the first simulation runs, the original design is considered. Figure 4.6 

illustrates the closed-loop response of the reactor temperature T and the profile 

of the input F  for the original process design, V  = O.lm^, with respect to negative 

step changes in the inlet temperature T q from 300 K  to 296 K  and from 300A" to 

295AT. It can be seen that the original design, V  = O.lm^, can successfully reject 

a —4A" step change in the inlet temperature, but cannot for a —hK  change in 

the inlet temperature. This is consistent with the analysis results in the above
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Figure 4.5: The relationship between design parameter and disturbance rejection 
ability

section. The control problem caused by input multiplicity is shown in Figure 4.7. 

For comparison, the profiles of the output T  and the input F  for a —4/v change 

in the inlet temperature are given in Figure 4.8.

In the next two simulation runs, larger negative changes in the inlet temper­

ature are imposed for the case of the modified design, V = O.lllm^, and the 

rejection capability of the modified process is addressed. As can be seen from 

Figure 4.9, the process can come to rest at its initial point in the face of a —8K  

change in the inlet temperature and no control problem exists. Figure 4.10 shows 

that the modified process design can avoid control problems caused by input 

multiplicity for the disturbance.

The final set of simulation runs addresses the cases where the setpoint follow­

ing ability is demonstrated. Figure 4.11 illustrates that the modification shows 

a slight improvement for controllability in the setpoint following ability of the 

reaction temperature in this case.
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Figure 4.6; Profiles of input and output for the initial design, V  =  0.1 m^, for 
disturbance rejection of inlet temperature: —4/v and —5 /i
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Figure 4.7: Profiles of input and output for the initial design, V = 0.1 m^, for 
rejection of —5 K  change in the inlet temperature
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4.4 Conclusions

This chapter has presented an optimisation-based approach to modifying an ex­

isting process design with a selected SISO control structure defined in terms of the 

controlled variable and manipulated variable. The optimisation problem solved 

is a NLP problem that aims at minimising the absolute values of design param­

eter adjustments to avoid the complex behaviour inside the range of the input, 

subject to the specified disturbances. The problem solved requires that the out­

put be kept constant and the input be constrained by the undesirable behaviour 

conditions .

The illustrative example has shown via simulations that the modified design 

can avoid input multiplicity for the specified disturbance over the operating range 

of the input by means of slight adjustment of the reactor volume.

The process design modification approach can generate a modified design that 

can meet the requirement of the specified dynamic performance of the process 

while minimising changes to the process.



Chapter 5

Case Studies

This chapter presents the applications of the methodologies de­

veloped in Chapter 3 and Chapter 4 to two chemical process cases: 

a reactor-separator process including recycle; and an industrial poly­

merisation reaction CSTR unit. They are chosen as illustrative ex­

amples because they are typical chemical processes, and the process 

designs resulting from economic optimisation possess potential con­

trol problems associated with input multiplicity. The objectives of 

these studies presented in this chapter are: (i) to demonstrate how 

the bifurcation-based analysis approach presented in Chapter 3 can 

be used to study potential control problems of the economical opti­

mal processes for the typical processes in the parameter space in order 

to achieve a better understanding of how the specific nonlinearity af­

fect control and operability; (ii) to illustrate the applications of the 

static feedback optimisation design method presented in Chapter 4 to 

improve the static controllability.

These case studies demonstrate that the proposed methods can 

determine such potential control problems, and can generate process

105
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modifications based on bifurcation analysis. The modified processes 

eliminate the control problems associated with input multiplicity in 

the operating regions for the specified disturbances. Closed-loop dy­

namic simulations show improved control performance for the modi­

fied designs.

The arrangement of this chapter is as follows. A reactor-separator 

process with recycle as recommended by Levenspiel (1972) is studied 

in § 5.1, and then a continuous polymerisation reactor as described by 

a detailed rigorous model (Daoutidis et al.  ̂ 1990) in § 5.2. A summary 

and conclusions follow in the final section of this chapter (§ 5.3).
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5.1 Case Study I: 

A Reactor-Separator System with Recycle

5.1.1 Introduction

The demand for more efficient and environmental production has resulted in 

chemical processes becoming more tightly integrated. Raw materials are recy­

cled to increase the effective conversion and simultaneously reduce emissions to 

the environment. Material recycle may give rise to instability or complex be­

haviour, even the individual processing units are stable by themselves (Morud 

and Skogestad, 1996; Jacobsen, 1997).

The reactor-separator process shown in the following is an interesting study 

with respect to its multiplicity behaviour. It is a grossly simplified process model, 

but the characteristics of this example are suited to showing the results concerning 

input and output multiplicity caused by recycle. Slight design parameter modifi­

cations may change the dynamic behaviour of the process that has been studied 

previously by Jacobsen (1997), who analysed the process with respect steady 

state, i.e. with respect to controllability around a steady state. An optimal de­

sign as recommended by Levenspiel (1972) was studied and it was shown that 

this economically optimal design is not controllable due to the zero of the process 

on the imaginary axis (Jacobsen, 1997; Kuhlmann and Bogle, 1997). Two slight 

different designs were proposed which demonstrated improved controllability.

In this thesis, the optimal design following Levenspiel (1972) will be inves­

tigated to understand how the recycle affects on multiplicity behaviour of the 

process, and the process modifications required to eliminate such undesirable be­

haviour in the operating region of interest will be given. The design modifications
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Figure 5.1; Schematic of the reactor-separator system

are determined based on the predefined setpoint following ability, rather than us­

ing an ambiguous rule of “the reactor should be operated away from the point of 

o])tiinal reaction rate” suggested by Jacobsen (1997).

5.1.2 P r o c e s s  D escr ip t io n

A reactor-separator system, illustrated in Figure 5.1, considers the problem of 

converting a feed containing 100% component A into a product containing 98% 

component R. The conversion is made feasible by the auto-catalytic reaction:

A -h R R ~h R,

where the reaction rate is:

r  =  k x A X R  =  k x a ( l  -  X r ) . (5.1)
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The desired conversion could be achieved in a stirred tank reactor. In this case 

one takes particular advantage of the reaction and separator combination be­

cause auto catalytic reaction has a maximum reaction rate for some intermediate 

conversion (see equation 5.1). Following Levenspiel (1972) a stirred tank reac­

tor operating at maximum conversion is combined with a distillation column to 

increase product purity (Jacobsen, 1997). The unconverted reactant from the 

distillation column is totally recycled to the reactor (see Figure 5.1). Component 

R  is considered to be the more volatile component. The distillation column used 

in this case has 10 trays, including reboiler and condenser. The feed tray is at 

tray no.4 from the bottom. The main objective is to control the product purity 

HD àt a. desired level.

5.1.3 P rocess M odel Equations

The reactor-separator system is modelled by the following set of equations (ma­

terial balances).

R eactor dynam ics

F  B
Xr = ^  {xf  -  Xr ) kXR{l -  Xr ), (5.2)

»  -  (5.3)

where xp  and xr  are the concentrations of the product R  in the inlet and outlet 

of the reactor, respectively, H  is the volume of the reactor, F  is the flow rate 

of the reactant into the reactor, B  is the flow rate recycled from the column to 

the reactor, and Xi is the concentration of the product R  in the recycled B.  The 

reactor is assumed to be perfectly mixed.
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There are simplifying assumptions for the distillation column model:

• constant molar overflow (no energy balance,)

• well-mixed liquid and vapour phases,

• constant relative volatility,

• constant holdup on all trays plus reboiler and reactor (perfect level control).

The relationship between liquid and vapour concentrations inside the column 

is defined as:

=  Ï T ( ^

with a constant relative volatility u, and yi are the vapour concentrations corre­

sponding to the liquid concentrations Xi.

Reboiler dynam ics

The reboiler has a liquid inlet from tray 1 of the column which is partially va­

porised by using an external heat input. Vapour is returned to tray 1 while the 

remain liquid from the column is totally recycle to the reactor (see Figure 5.2). 

The reboiler effectively acts as a tray and is modelled as:

X\ = {L F" -f- B ) x 2 ~  Bx \  — ^Vii  (5.5)

where L is the flow rate of the liquid reflux inside the distillation column, V  is 

the vapour flow that is equal to L -I- F  at steady state (see Figure 5.6), y\ is the 

concentration of product R  in vapour in the reboiler.
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Figure 5.3: Schematic of a distillation below feed tray

Tray below feed tra y

A schematic of the Ah tray below feed tray is shown in Figure 5.3. Molar balances 

are:

±2 = (L + F + B)(x3 -  X2 ) + V(pi -  y2), 

^ 3  =  F  F -h B ) ( x 4  — X 3) +  V ( y 2  — ys ) -

(5.6)

(5.7)

Feed tra y

A schematic of the feed tray is shown in Figure 5.4, Molar balances are:

X4 — (F  +  B)xfi  +  Lx^ — [L F F  F B )x 4 +  V{y^ — ^4). (5.8)
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Figure 5.5: Schematic of a distillation above feed tray

Tray above feed tra y

A schematic of the kth tray above feed tray is shown in Figure 5.5. Molar balances 

are:

Xjj =  L{xq — Xs) +  — ys),

xq — L{x-j — xq) + V[y^ — ye),

±7 = Z,(a:8 -  zy) + y (̂ 6 -  ̂ 7),

±8 =  L{xg — Xg) +  V(yj — t/g),

Xg =  L(Xio — Xg) +  V(ys — yg).

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



Chapter 5: Case Studies 113

V, y,

Figure 5.6: Schematic of a distillation overhead total condenser 

C o n d en se r

The condenser for the top part of the distillation column is shown in Figure 5.6. 

It receives vapour inlet from the top tray, which is totally condensed by means of 

a coolant such as cooling water flowing through a coil. R and D denote the flow 

rates of reflux and distillate. Dynamic equation for the condenser is given:

Vd = — (T + (5.14)

The optimal design parameters recommended by Levenspiel (1972), where the 

stirred tank reactor was designed to operate at the maximum reaction rate while 

the distillation column was designed to increase the product purity to the desired 

level, are given in Table 5.1 (taken from Jacobsen, 1997). The main control 

objective is to keep the product purity yo at a desired level, 98%. The possible 

manipulated variables are the reflux L, the recycle B  or vapour flow V.

In this example, the yo - L control configuration scheme: yo is controlled by 

manipulating L, is chosen. Alternative to this control configuration such 8iS yo 

- B 01 yo - V  is possible, which will result in the same control problem when 

considering control of yo alone (Jacobsen, 1997). Attention here focusses on 

determining potential control problems existing for the given process design with 

the selected control, analysing how the design parameters influence them, and
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Table 5.1: Parameters and values for the optimal design

xpQ — 0.0 F  =  1.0 kmol/min
k =  0.06 H  = 65.33 kmol

N  = 0 L  =  1.704 kmol/min
Np — 4 B  =  1.2 kmol/min

V = 3.0 yo  =  0.98 kmol/kmol
Xr =  0.5 kmol/kmol

then modifying the process design itself to be controllable for the selected control 

structure in the operating region. In the following process analysis, this optimal 

design with the yo - L control structure is referred to as the “base case” design.

5.1.4 Controllable A nalysis for the Base Case D esign

In this section, the proposed analysis method in Chapter 3 is applied to this 

base case design to study multiplicity for the “base case” design. The control 

problems of the product purity yo associated with input multiplicity and effects 

of the reflux L, recycle B, and reactor volume H  on the behaviour of the process 

are investigated.

Steady-state m ultiplicity and control problems

For the base case design with the assigned yo — L control configuration. Figure 5.7 

shows its steady-state solutions under the variation of the reflux L. It is seen that 

the process exhibits input multiplicity for the given parameter values and selected 

operating conditions.

The input multiplicity condition as indicated by the square in Figure 5.7 is 

at the selected operating point, at which L = 1.702 kmol /min  and yu = 0.98. 

Thus, the process is essential uncontrollable with the chosen control structure for 

the selected operating point (Jacobsen, 1997).
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Figure 5.7: Steady-state solutions showing input multiplicity condition for the 
variation of the reflux L for the base case design. Open square: input multiplicity 
condition.

D esign param eter effects

The presence of recycle implies that the bottom  composition X\ affects the reactor 

feed composition xp-, and then the reactor feed composition xp  affects Xi, which 

seems like a feedback (see Figure 5.1). Jacobsen (1997) stated that the presence 

of the recycle “may move the poles towards, and possibly the zeros, across the 

imaginary axis” , resulting in input and/or output multiplicity. In other words, 

the recycle B  will affect the multiplicity behaviour of the process. Figure 5.8 

indicates that the system exhibits both input multiplicity and output multiplicity 

for a larger value of 1.8 km o l /m in  of the recycle B.  The locus in Figure 5.9 

indicates the output multiplicity conditions between the reflux and recycle, where 

the behaviour of the process is divided into open-loop stable and unstable regions. 

It can be seen tha t an increase in the recycle B  will cause an output multiplicity 

problem. Therefore, output multiplicity may occur if the value of the recycle B  

is above 1.68 km o l /m in  for the base case design.

The input multiplicity condition between the reflux L and the recycle B  is
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shown in Figure 5.10. As can be seen from Figure 5.10, there will exist no input 

multiplicity problem if the recycle B  is below the value of about 0.97 km ol/m in.

As a result of this analysis, a decrease in the recycle will possibly eliminate 

the output and input multiplicity behaviour.

Similarly, we study the effects of the design parameters on the multiplicity 

behaviour. The reactor volume H  is chosen as an adjustable design parameter 

and only input multiplicity is considered since it will impose control difficulty 

on the system (Dash and Koppel, 1989). Figure 5.11 illustrates how the reactor 

volume H  influences the input multiplicity behaviour for the variations of the 

recycle B  and reflux L. The curved plane indicates the possible occurrence of the 

input multiplicity. The relationship can be expressed as H) = fim{B, H).

The locally linearised expression of fim {B ,H ) is given by:

L im (B, H) =  -31.855 -  1.868B +  0.5479/7, (5.15)

which will be used as a constraint on the input in the modification optimisation 

problem to eliminate such an input multiplicity behaviour.

5.1.5 Process D esign M odifications

As a result of the analysis above, the changes in the recycle and the reactor 

volume could eliminate the control problem associated with input multiplicity 

behaviour in the operating region of the reflux.

Jacobsen (1997) proposed design alternatives, based on the rule that “the 

reactor should be operated far away from the point of optimal reactor rate” . As 

a result of this, the reactor holdup H  was adjusted from H  = 65.33 kmol (base 

case design in Table 5.2 where reactor rate is r  =  0.015 ) to / /  =  65.36 kmol 

(same as the case FOD 3 in Table 5.2 where the reactor rate r =  0.01499), which
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Figure 5.8: Input multiplicity and output multiplicity for the base case with a 
larger recycle: B=1.8 kmol/min. Dashed line: unstable state
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Figure 5.9: Locus of output multiplicity conditions between reflux and recycle for 
the base case
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Figure 5.10: Locus of input multiplicity condition between reflux and recycle for 
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Figure 5.11: Relationship between reflux L, recycle B, and reactor volume H at 
input multiplicity condition for the base case design
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shows improved controllability.

For the purpose of comparison with ones presented by Jacobsen (1997), the 

reactor holdup H  and recycle B  are also considered as the adjustable design 

parameters and the reflux L  as the manipulated variable for the following process 

modification problem. The effect of these parameters on the input multiplicity 

have been analysed in the last subsection, as expressed by the equation (5.15).

The aim of the process design modification is to have the desired setpoint 

following ability in the operating range of the reflux L, i.e. a setpoint change 

will not encounter control problems associated with the input multiplicity, while 

maintaining the process modification as small as possible. Thus, the design mod­

ification optimisation formula for improved setpoint following ability is expressed 

as;

min {K(L -  1.703)^ +  Q(B -  1 .2 f + W {H  -  65.33)^},

subject to

f {x)  = 0, (5.16)

U D  — V D, e x p  =  0 ,

L — L j m {B^H)  <  0 ,

where f {x)  represent the reactor-separator system model equations at steady-

state, yD,exp is the value of the output set-point to be followed, L im (B, H) is the 

input multiplicity condition given by the equation (5.15), TZ, Q, and W represent 

the appropriate operating cost factors in the change of the reflux L  and recycle 

B  operation, and the capital cost of the reactor volume change, respectively. 

For instance, the factors are selected to reflect the importance of the reactor
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volume change, which are 7  ̂ — 1, Q =  5, and W =  10. In the optimisation 

problem (5.16), there are three degrees of freedom, i.e. the reflux L, recycle 5 , 

and reactor volume H, and the constraint on the reflux L  forces the process to 

stay inside of the lower operating region of the reflux flow rate while eliminating 

the input multiplicity.

The optimal solutions from solving the optimisation problem (5.16), corre­

sponding to the required setpoint following ability of the product purity 7/z), are 

given in Table 5.2. If it is required that the process is able to follow a 0.1% 

change in the setpoint of the product purity yn, i.e. A y d,set = 0.1% of yD,seti for 

example for case FOD 4 in Table 5.2, the reactor volume H  has to be adjusted 

from H  = 65.33 kmol to H  = 65.40 kmol.

As can be seen in Table 5.2, the slight increase in the reactor volume H  and 

decrease in the recycle can improve the setpoint following ability of the reactor- 

separator system. In other words, the control problems associated with input 

multiplicity can be avoided by adjustment of the reactor volume and recycle B  to 

meet the specified setpoint following ability in the operating range of the reflux. 

For clarity and comparison, the steady state solutions for the base case design and 

modifications are shown in Figure 5.12. It is seen that the modified designs move 

the input multiplicity condition away from the operating point and thus enable 

the setpoint of the product purity yo  to have larger changeable margin. Simu­

lations in the next subsection will demonstrate the improved setpoint following 

ability for the modified designs.

R em ark  5.1 The data used to obtain the functional expression equation (5.15) 

of input multiplicity are from the analysis results by running AUTO with the 

add-in subroutine to determine the input multiplicity. The reflux L was defined 

initially as the first bifurcation (freedom) parameter to identify input multiplicity
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Table 5.2: Modification results of the reactor-separator system for cost weights: 
% =  1, Q =  and 10

Base case FOD 1 FOD 2 FOD 3 FOD 4 FOD 5 FOD 6
(%) 0.0 0.01 0.03 0.05 0.1 0.2 0.5

F 1.0
0.0

k 0.06
H 65.33 65.34 65.35 65.37 65.40 65.47 65.67
N 9 11

Np 4 55

V 3.0 n n V n

L 1.704 1.663 1.632 1.611 1.571 1.515 1.409
B 1.2 1.186 1.177 1.171 1.163 1.155 1.152

yD,set 0.98
Xi 0.10 0.105 0.108 0.111 0.117 0.127 0.150

0.5 0.505 0.509 0.511 0.516 0.523 0.536

.9 8 4

0 .9 8

H = 6 5 .4 0 .  8 = 1 .1 6 3

H = 6 5 .3 7 ,  8 = 1 .1 7 1.9 7 8

.9 7 6

1.6 1.8 2 2.2 2 .4 2.6 2.8 3

Figure 5.12: Steady states of the design modifications for the reactor-separator 
system. Square: input multiplicity condition
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Table 5.3: Modification results of the reactor-separator system for cost weights: 
% =  0.15, Q = 0.55, and W  = 1000

Base case FOD 1 FOD 2 FOD 3 FOD 4 FOD 5
^VD,set (%) 0.0 0.01 0.03 0.05 0.1 0.2

F 1.0
Xfq 0.0

k 0.06
H 65.33 65.34 65.35 65.37 65.40 65.47
N 9 11

N f 4
V 3.0
L 1.704 1.668 1.642 1.623 1.585 1.522
B 1.2 1.183 1.171 1.164 1.153 1.150

yD,set 0.98
Xb 0.10 0.104 0.106 0.109 0.114 0.125
Zf 0.5 0.505 0.509 0.511 0.516 0.523

in the reflux space, referred to as a bifurcation point, and then the recycle B  or 

reactor volume H  wwas assigned as the second bifurcation parameter starting at 

this bifurcation point.

To include a nonlinear expression for the bifurcation locus in the optimisation 

problem would required repeated automatic calls of the AUTO software.

R em ark  5.2 The results for the design modification optimisation problem (5.16) 

depend on the values of the cost weights selected. For comparison, results for a 

different set of the values of the cost weights were given as shown in Table 5.3. 

For this case, there is not a big difference.

5.1.6 Sim ulations

In this section, closed-loop dynamic simulations for the product purity set point 

control of the modified designs are given to demonstrate that the modified pro­

cesses have the set point rejection ability as required. A conventional PI controller
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b a s e  c a se  design 

H * 6 5 . 3 3 .  B = 1  .2
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Figure 5.13: Steady states for the modified design, H=65.40 and B=1.163, and 
the base case design. Open square: input multiplicity condition

(whose parameters were tuned following the Ziegler and Nichols’ rule for cpiarter 

decay ratio (Ziegler and Nichols, 1942)) was utilised in the simulation runs. One 

of the modified designs resulting from the feedback optimal design, the exam­

ple case FOD 4 in Table 5.2, in which the reactor volume was adjusted from 

65.33/jmo/ to 65.40A;mo/ to have the recjuired rejection ability of a 0.1% change 

in the set point of the product purity was chosen as demonstration.

As shown in Figure 5.13, there are two different stable operating points for 

Ud = 0.98: one operation point (A) with a lower reflux L =  1.567 

located on the left side of the peak point of the steady-state solution curve, and 

another operation point (B) with a higher value of 2.217 km ol/m in  of the reflux 

L, located on the right side of the peak. The operating point (B) with a lower 

conversion {xr =  0.4842) has unstable zero dynamics that will cause an inverse 

response in the product purity y^, to a change in the reflux L (Jacobsen, 1997).

Figure 5.14 illustrates that the modified process has the ability to reject the 

required set point in yD,set, 0.1% of yD,set, and fails for a slight increase over the 

required set point change, 0.12% of yo.set, while initially operating at point (A).

At time zero, a 0.1% positive change in yD,set is acting on the process. It is
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seen that the system comes to rest very quickly at the desired set point following 

such a set point change. Then a negative disturbance identical to the magnitude 

above in set point change in pD,set is applied to the process at about time 4 x 10  ̂

and the system returns to its initial set point. When a similar set point change 

of magnitude of 0.12% in is applied to the system at about time 6 x 10'̂ ,

the system becomes destabilised eventually. Figure 5.15 gives the details of the 

response of the yo  of Figure 5.14 for time from 0 to 500 minutes.

Similarly, Figure 5.16 shows that a sudden destabilisation occurs for the mod­

ified design initially operating at (B), if the change in yD,set exceeds the value 

as required in the process modification. Figure 5.16 also indicates the inverse 

response in y^  due to unstable zero dynamics in this operating region (Jacobsen, 

1997).

All other modifications can been proved by simulations that they have the 

required set point rejection ability in yD,set- The simulations for the modified 

design of the case FOD 5 in Table 5.2 {H = 65.47 kmol and B  = 1.155 kmol/min^ 

corresponding to meet the requirement of a 0.2% change in yD,set) is shown in 

Figure 5.17. As can be seen, the modified design rejects the set point change as 

required, 0.2% change in yo^set, but failed for the set point change over this value, 

a 0.21% change in yD,aet-

The simulations have demonstrated that the modifications resulting from the 

proposed feedback optimal design methodology have the set point rejection ability 

as required and the input multiplicity that could cause a sudden destabilisation 

problem in the control system is moved away from the operating range of the 

reflux.

All the simulations were done by using SIMULINK in M AT LAB.
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Figure 5.14: Step responses to 0.1% {t =  0) and 0.12% {t ^  6 x 10  ̂ ) changes in 
UD,set idr the modified design II = 65.40 and B = 1.163 initially operating at (A)
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Figure 5.15: Details of output yo for time from 0 to 100 minutes of Figure 5.14
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Figure 5.16: Step response to set point changes in yo^set for the modified design 
II = 65.40 and B = 1.163 initially operating at (B). Solid line: 0.1% change in 
i jD ,seû  clashed line: 0.12% change in ijD,set

0 .9 8 1

0 .9 7 9

0 .9 7 8
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i 2
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Figure 5.17: Step response to set point changes in yo^set for the modified design 
H =  65.47 and B  =  1.155 initially operating at point (B). Solid line: 0.2% change 
in ijD̂ seû dashed line: 0.21% change in yo^set
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5.1.7 Sum m ary

The approach to controllability analysis and process modification presented in 

Chapter 3 and Chapter 4 was demonstrated with the reactor-separator process 

with recycle. It showed that multiplicity behaviour of the process affected by 

the recycle is easily evaluated in the parameter space by using the bifurcation 

based approach. When the value of the recycle is larger, both input multiplicity 

and output multiplicity are found, but for the smaller value of the recycle, the 

process only has input multiplicity and possibly no multiplicity exists. The op­

timal operating point resulting from the design according to Levenspiel (1972) is 

fundamentally uncontrollable (Jacobsen, 1997) because input multiplicity occurs 

exactly at the operating condition. Slight modifications to the optimal design 

by means of the proposed feedback optimal design methodology move the input 

multiplicity behaviour away outside of the operating range of difficulty to obtain 

the required set point rejection ability.

The case study employed a specific set of design parameters, but the lessons 

can apply to a wider set of conditions. As already stated by Jacobsen (1997), the 

control problem discussed here is not caused by some specific choice of parameters, 

but the problem is generic in the sense that it applies to all reactor-separator 

systems with recycle, with an autocatalytic reaction of type (Skogestad et ai, 

1996) and designed according to Levenspiel (1972), at the nominal operating 

conditions. The results derived in this thesis also apply to any intermediate 

reaction scheme without side reaction if the process has only one maximum in 

the steady state locus (Kulhmann and Bogle, 1997).



Chapter 5: Case Studies 128

5.2 Case Study II:

An Industrial Polymerization Reaction

5.2.1 Introduction

A variety of industrially relevant polymerisation reactions are highly exothermic, 

and thus have very interesting and troublesome nonlinear dynamics that make 

these systems difficult to operate and control. Complex nonlinear dynamics found 

in polymerisation processes have been presented by Ray and Villa (2000) in their 

comprehensive review work, who analysed phenomena such as multiplicity, os­

cillatory behaviour in continuous stirred tank reactors (CSTRs), and these and 

other phenomena in other types of reactors for polymerisation. The particular 

nonlinear behaviour depends on the polymer produced, the type of polymeri­

sation kinetics, the reactor type, the phase behaviour, the heat removal system, 

etc. Multiplicity and sustained oscillation phenomena are common ones that arise 

routinely in industrial practice.

Previous researchers showed poor single-input-single-output control perfor­

mance due to multiplicity behaviour for a given set of polymerisation CSTR 

design parameters (Hidalgo et al, 1990; Daoutidis et a l, 1990; Russo and Be- 

quette, 1995; Lewin and Bogle, 1996). The poor heat transfer from the reactor to 

the cooling water jacketed in polymerisation systems is one of the major causes 

for strong process nonlinearity, and the effects of the cooling system on the poly­

merisation process should be considered in the control system design. Neglecting 

the cooling energy balance in the control system design is a poor assumption 

(Russo and Bequette, 1998).

In this case, a continuous polymerisation reactor including the cooling en­

ergy balance, as described by a detailed rigorous model (Daoutidis et al, 1990),
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is employed. The specific control objective is to maintain the molecular weight 

distribution of the polymer at a desired level by manipulating the coolant flow 

rate for a disturbance. The potential control problems of the process with the 

assigned SISO control configuration scheme will be analysed to identify that in­

put multiplicity behaviour in the jacket outlet temperature is a cause of sudden 

destabilisation in the process behaviour and to show how the design parameters 

influence it, leading to process modifications. It will be shown that the modified 

process designs by using the proposed methodologies in this thesis can successfully 

eliminate such potential control problems associated with the input multiplicity 

inside the operating region for a defined disturbance.

The outline of this section is as follows. The process model equations and 

optimal operation design resulting from the economical optimisation are presented 

in § 5.2.2, followed by controllability analysis on the optimal design. In § 5.2.5, 

the modifications to the process design are given, corresponding to the required 

disturbance rejection ability. Dynamic simulations are shown in § 5.2.6. A brief 

summary follows in the final subsection (§ 5.2.7) of this case study.

5.2.2 P rocess M odel and O ptim al O peration D esign

A free-radical polymerisation of MMA (methyl methacrylate) with AIBN (azo- 

bis-isobutyronide) as initiator and toluene as solvent takes place in a jacketed 

CSTR. A model for the process, which is given by Daoutidis et al. (1990), 

describes the dynamics of the monomer and initiator concentrations ( Cm and 

C j )  , the reactor and jacket temperature (T and T j ) ,  and the zeroth and first 

bulk moments of the molecular weight distribution of the polymer {Dq and Di). 

The following assumptions in the modelling are made:

• Perfect mixing in the reactor
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• Constant density of the reacting mixture (no volume shrinkage)

•  Constant heat capacity of the reacting mixture

• Uniform coolant temperature in the jacket

• Insulated reactor and cooling system

• Constant density and heat capacity of the coolant

• No polymer in the inlet stream

• No gel effect (because of low monomer conversion)

• Constant reactor volume

• Standard mechanism of free-radical polymerisation 

The dynamic equations of the system are given as:

Cm — —{Rp-^Rfm)CmPo{ClTT)-\-— {Cm,in — Cm)^ (5.17)

C l  =  — { R i  +  C j )  -f — { F j C i ^ i n  — F C i ) ^  (5.18)

f  =  i î p C „ ( - < 5 V p C ' ^ ) a ( C / , T ) - ^ ( T - T , )  +  ̂ ( T , „ - r ) . ( 5 . 1 9 )

Do =  (0.5flrc +  Hr<i)Po'(C/,T) +  D / „ C '„ P o ( C / , T ) - ^ .  (5.20)

FD^
D\ - Mm{Rp Rfm)CmPo{Cl,T) -\— (5. 21)

f j  = +  (5.22)
^0 P w ^ w * Q

where
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The kinetic expressions, Ri, are expressed in the Arrhenius form:

Ri = K iexp {-E i/R T ). (5.24)

The kinetic parameters are given in Table 5.4, and the design and operation 

parameter values in Table 5.5 from the study by Daoutidis et al. (1990). The 

typical outputs to be controlled are the molecular weight number MWav> given 

as the ratio D i / D q, and the reaction temperature T.  The possible manipulated 

variables are the initiator flow rate F / and the jacketed cooling flow rate Few- 

The main disturbances are the inlet monomer concentration Cm,in and the inlet 

reactor temperature Tm-

The operation objectives for this basic design are to ensure safe, steady oper­

ation of the reactor and to maintain the MWav constant despite disturbances in 

the monomer feed concentration and the temperature of the inlet feed. Further­

more, it is desired to operate the reactor with the minimum initiator flow rate 

possible because the initiator is expensive. An optimal operation condition of the 

reactor was sought in such a way, presented by Lewin & Bogle (1996), that the 

molecular weight number was maintained at M W av  =  25,000 while minimising 

the consumption of the expensive initiator. The conversion, AC =  Cmin ~  C^, is 

to be kept relatively low on purpose to avoid the gel effect.

Thus the operating optimisation formula is given by:

min Fj,

subject to

f i x )  =  0, (5.25)
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Figure 5.18: Process flow diagram for the jacketed polymerisation CSTR

D i/D o  =  25000,

Tin = 350, {nominal value)

AC = Cmin ~ Cm-,

where f{x)  represents six state equations (equation 5.17 to equation 5.22) of 

the process at steady state. The optimal operating point resulting in solving 

the optimisation problem ( 5.25) is Fj =  0.00354, corresponding to AC =  0.5. 

The relevant inputs at the optimal operation are : [Fcw,Cm,in\ — [0.1673,6.438], 

respectively. The process with the optimal operating condition is referred to as 

the “base case” design in the ongoing discussion.

5 .2 .3  A n a ly s is  for th e  B a se  C ase  D e sig n  

S tead y -S ta te  M ultip lic ity

The steady state solution diagrams for the controlled molecular weight number 

MWav and the six states versus the cooling water flow rate F^w are shown in
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Table 5.4: Kinetic parameters

h Rd, Ei,
Tc 3.8223el0^° km ol/m ^.h 2.9442el0^ kJ/km o l
Td 3.1457el0^^ km ol/m ^.h 2.9442el0^ kJ/km o l
I 3.7920el0^^ kmol/rrP.h 1.2877el0^ kJ/km o l
P 1.7700el0^ km ol/m ^.h 1.8283el0'^ kJ/km o l
fm 1.0067el0^^ km ol/m ^.h 7.4478el0^ kJ/km o l

f* = 0.58

Table 5.5: Process design and operation parameter values

c . =  2.0 kJkg~'^K~'^h-^ a = 4.2 kJkg~'^K~^h~^
- A H p =  57,800 kJkmol~^ Tin =  350 K

V =  0.1 Vo =  0.02 rrP
Pw =  1000 kgm~^ P =  866 kgm~^
u =  720 kJh~^ K~^ .7n~‘̂ A =  0.1 rrV

=  100.12 kg.kmol~^ T'ldn -  6.0 kmol.m~^
R'wo =  293.2 K R =  8.314 kJkmol~^K~^

F =  1.0 m^h~^
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Figure 5.19: Steady states of molecular weight number versus coolant. Solid line: 
stable state; dashed line: unstable state; solid square: Hopf bifurcation point

Figure 5.19 to Figure 5.25. As can be seen from these figures, the process ex­

hibits multiplicity and Hopf bifurcation behaviour in the space of the flow rate 

of the cooling water Few The molecular weight number MWav and the reaction 

temperature T  exhibit output multiplicity; the jacket tem perature Tj exhibits 

both input and output multiplicity; and the other states show output multiplic­

ity characteristics. One Hopf bifurcation point, indicated by the solid square in 

the diagrams, is found which is located in the upper reaction tem perature steady 

state region. The middle steady states are unstable because a small increase 

in steady state tem perature results in heat generation exceeding heat removal, 

which causes the reactor to operate at the upper steady state. Likewise, if there 

is a small decrease in steady state tem perature at the middle operating point, 

heat removal dominates heat generation, causing the reactor to operate at the 

lower tem perature steady states (Hidalgo et a/., 1990).

We here focus on the following SISO control scheme: the molecular weight 

number MWav is controlled by the cooling water flow rate while the initiator 

F[ is fixed at its optimal operation value of 0.00354, and then study what the 

potential control problems caused by multiplicity and bifurcation are and how
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Figure 5.20: Steady states of reaction tem perature versus coolant. Solid line: 
stable state; dashed line: unstable state; solid square: Hopf bifurcation point
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Figure 5.21: Steady states of jacket temperature versus coolant. Solid line: stable
state; dashed line: unstable state; solid square: Hopf bifurcation point
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Figure 5.22: Steady states of monomer concentration versus coolant. Solid line: 
stable state; dashed line: unstable state; solid square: Hopf bifurcation point
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Figure 5.23: Steady states of initiator concentration versus coolant. Solid line:
stable state; dashed line: unstable state; solid square: Hopf bifurcation point
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Figure 5.24: Steady states of zeroth moment of molecular weight distribution 
versus coolant. Solid line: stable state; dashed line: unstable state; solid square: 
Hopf bifurcation point
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Figure 5.25: Steady states of the first moment of molecular weight distribution
versus coolant. Solid line: stable state; dashed line: unstable state; solid square:
Hopf bifurcation point
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the design and operation parameters affect them.

By using the proposed methodology presented in Chapter 3, input multiplic­

ity conditions were identified as indicated by open squares in Figure 5.26 and 

Figure 5.27. The selected optimal operation point for the “base case” design at 

steady state is: MWav,s = 25,000 and Fcw,s = 0.1673m^//i. The steady-states of 

the six states at the operating point are: [ C m , C i ,  T, D q , D i, T j ] =  [5.8667, 0.0276, 

350.89, 0.002, 49.98, 331.97], respectively. This operating point is close to one of 

the limit points [MWav =  23,516 and =  0.1666m^//i) at which the open-loop 

steady states change their stability and one of the input multiplicity conditions 

[MWav =  15,765 and Few = 0.1977m^//i) at which the jacket temperature gain 

changes its sign (see Figure 5.26 and Figure 5.27).

It can be seen that only output multiplicity exists in the controlled MWav ~ 

Few loop. It would seem that no potential control problems exist using feedback 

control with integral action since the steady state corresponding to the specified 

set point value of MWav will be maintained and no other steady state will be 

allowed (Koppel, 1985). In this case however input multiplicity in the jacket 

outlet temperature Tj-Fcw (Figure 5.27) may cause a sudden destabilisation of 

the controlled system. This case differs from one presented by Dash and Koppel 

(1989) in that input multiplicity exists in another internal state rather than in 

the controlled variable. To illustrate potential sudden destabilisation problems 

associated with the input multiplicity, closed loop dynamic simulations are given 

for the MWav controlled by a conventional PI controller (whose parameters were 

tuned following the Ziegler and Nichols’ rule (Ziegler and Nichols, 1942)) for a dis­

turbance of the inlet temperature Tin, initially operating at the selected optimal 

point [MWav = 25000 and Few = 0.1673). Figure 5.28 shows the transients of 

the controlled variable, MWav, manipulated variable. Few, and the internal state, 

Tj, for a 3K  positive step change in the inlet temperature, T ^ , (AT^^ =  F3K).
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As can be seen, the system comes to rest at the initial point following such a dis­

turbance. When a similar disturbance of ATj„ =  +AK  is applied to the process, 

it experiences a “sudden destabilisation” and finally comes to rest at its initial 

point, as shown in Figure 5.29. Such a sudden destabilisation in this example can 

be possibly explained as follows by using a pseudo-steady-state path followed by 

the process during such a destabilisation, depicted in Figure 5.30.

As shown in Figure 5.30, when the MWav is initially at the selected op­

timal operation point a, indicated by the solid circle, and an increase in the 

disturbance of the inlet temperature Tin is acting on the process, the MWav 

goes along the curve abl towards point 1 (input multiplicity condition indicated 

by the open square), and the coolant flow rate Few subject to the controller: 

Few = kp(MWav,set ~  MWav) + K  Jq {MWav,set ~  MWav)dt -f Few,s {^p and kc are 

proportional and integral gains of the controller, respectively) is increased slowly 

to compensate for the offset of the MWav imposed by the disturbance. The in­

ternal state Tj goes along the curve a ’b’V  towards point 1 ’ (input multiplicity 

condition indicated by the open square), following the increase in Few- At point 

1\ the steady state path followed by the reaction depends on how the coolant 

is manipulated. If the manipulated variable Few is reduced before reaching the 

point, i.e. the input multiplicity condition is not breached, the process comes 

to rest at its initial point without a sudden destabilisation problem, as shown 

in Figure 5.28. If the input multiplicity condition is breached and any further 

increase of coolant flow rate Few changes the internal state Tj behaviour and the 

Tj will go vertically to the upper stable curve c ’d ’ so that the MWav goes to the 

lower stable curve cd, directly below point 1.

At this point, the MWav is increased along the section cd towards the point 

d indicated by solid square (Hopf bifurcation point at which MWav = 3639 and 

Few = 0.6405) as the coolant flow rate Few is continuously increased due to the still
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existing offset in the controlled M W av  This continues until the point d is reached 

at which point oscillatory behaviour of the process occurs. But, this oscillation 

does not last once the second input multiplicity condition 2 {MWav = 5000 

and Few = 0.6425) indicated by an open square is breached, since the point d 

is very close to the second turning point e {MWav = 4286 and Few = 0.665) 

and the second input multiplicity condition point 2. At this instant, the jacket 

outlet temperature T j  changes its behaviour again as happened at the first input 

multiplicity condition, and the Tj goes to the lower stable curve f ’a ’ and the 

MWav goes to the upper stable curve fa. Thus the coolant flow rate Few is 

decreased dramatically due to larger negative offset between M W a v , s e t  and M W a v  

Along the stable curve fa  the process can reach the desired set point value of 

25,000 of MWva by proper manipulation of the coolant flow rate Few-

This pseudo steady state analysis possibly explains the sudden destabilisation 

in the controlled MWav because of the presence of input multiplicity in the inter­

nal state T j .  As a result of this analysis, one can conclude that input multiplicity 

that existed in the jacket outlet temperature Tj is the likely cause of sudden 

destabilisation during operation of the polymerisation reaction. Such a charac­

teristic is an inherent property of the process itself. Therefore, input multiplicity 

behaviour should be eliminated or avoided by modifying the process design itself. 

The following subsections will approach this problem.

5.2.4 Effects o f D esign  and O peration Param eters

In order to eliminate input multiplicity by means of process modification, the 

effects of the design and operation parameters on the input multiplicity behaviour 

of the polymerisation reaction is explored in this subsection.

fn the last subsection, the behaviour of the process under variation of the
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Figure 5.26: Steady states of MWav showing input multiplicity condition. Solid 
line: stable state; dashed line: unstable state; solid square: Hopf bifurcation 
point; open square: input multiplicity condition
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Figure 5.27: Steady states of the jacket temperature showing input multiplicity
condition. Solid line: stable state; dashed line: unstable state; solid square: Hopf
bifurcation point; open square: input multiplicity condition
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Figure 5.28: Trajectories of the output, input, and profile of the internal state 
for a step change in inlet temperature: ATi„ =  +3/F
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Figure 5.29: Trajectories of the output, input, and profile of the internal state
for a step change in inlet temperature: =  +4/F
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Figure 5.30: Pseudo-steady-state path followed by the process during such a 
destabilisation as depicted in Fig. 5.29

manipulated variable Few was discussed and the input multiplicity conditions 

were identified for the nominal conditions. There exist also many other possible 

changes for the process, such as the monomer feed concentration, initiator feed 

concentration, feed flow rate, reactor volume, overall heat transfer coefficient, 

cooling water inlet temperature, and reactor feed tem perature, which may affect 

the dynamics of the process.

In this case, only the reactor volume V  as an adjustable design parameter, and 

the flow rate of the cooling water Few as a manipulated variable, and the temper­

ature of the inlet feed as a main disturbance are considered. It has been assumed 

that the others do not vary significantly. The first input multiplicity condition 

{MWav — 15,765 and Few = 0.1977 m^//i under the nominal conditions) is con­

sidered, which is close to the selected initial operating point {MWav.s = 25,000 

and Few,s =  0.1673 The reason is that if stability is not attained in such
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a neighbourhood, there is no hope of control in any large sense.

Effects o f D isturbance

In § 5.2.3, the simulations (Fig. 5.28 and Fig. 5.29) have shown the effects of the 

specific values of the disturbance of the inlet feed temperature on the process 

behaviour. In this subsection, more generally, the effect of a disturbance of the 

inlet feed temperature Tin on the input multiplicity behaviour of the process is 

discussed. The locus of the first input multiplicity condition between the cooling 

flow rate Few and the inlet feed temperature Tin is shown in Figure 5.31. It can 

be seen that an increase in the cooling water flow rate will possibly move the 

initial operation condition {Tin — 350i^ and Few = 0.1673 m^//i) to breach the 

first input multiplicity condition where the value of the F^w is Few ~  0.1977 w ?/h  

(not the same as the values from simulations in § 5.2.3 because of the dependence 

of the input multiplicity condition on the operation conditions, i.e. different 

values of Tin in this example). For clarity, the relationship between the jacket 

temperature Tj, the cooling flow rate 7 ^ ,  and the inlet feed temperature Tin for 

the first input multiplicity condition is illustrated in Figure 5.32. It indicates 

that the input multiplicity is more likely to occur if there are both increases in 

the Few and Tin.

In this particular system, an increase in the inlet feed temperature will cause 

an increase in the cooling water flow rate to maintain the process at its initial 

condition since the reaction temperature will increase due to the increase in the 

feed temperature, and thus more cooling water is needed. Hence, an increase in 

the inlet temperature will be the worst disturbance to cause control problems.
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Figure 5.31: Locus of input multiplicity condition for the cooling water versus 
the inlet feed temperature
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Figure 5.32: Input multiplicity condition between jacket temperature, cooling 
water, and inlet feed temperature
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Figure 5.33: Locus of input multiplicity condition for the cooling water flow rate 
versus the reactor volume

Effects o f R eactor Volume

Similarly, the effect of the reactor volume on the first input multiplicity behaviour 

of the process is analysed. The locus of the input multiplicity condition between 

the cooling water flow rate and the reactor volume is shown in Figure 5.33. 

Figure 5.34 illustrates the relationship of the first input multiplicity condition 

between the jacket temperature, the reactor volume, and the cooling water flow 

rate. Clearly, a slight decrease in the reactor volume will significantly move 

the input multiplicity condition away from the operating point. Therefore, a 

decrease in the reactor volume may improve the controllability of the process 

since the modified operating point will be further away from the input multiplicity 

condition allowing a large margin to reject the disturbance.

The effects of the reactor volume and the inlet feed temperature on the steady- 

state characteristics of the process have been studied separately with respect to 

the cooling water flow rate Few- Figure 5.35 illustrates the simultaneous effects of 

the reactor volume V, the inlet feed temperature Tin, and cooling water flow rate
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Figure 5.34: Input multiplicity condition between the jacket temperature, the 
cooling water flow rate, and the reactor volume.

Feu, on the process, which is obtained by using a set of data from the bifurcation 

analysis. The relationship can be functionally expressed as Fcûjm  - fim(y,T.in). 

The locally linearised expression of is given as:

Fcwjm — —6.3383 +  2.71/ +  0.01795 (5.26)

which will used as a constraint on the input to avoid the input multiplicity in the 

process optimisation problem that will be discussed next.

5 .2 .5  P ro c ess  D e sig n  M o d ifica tio n s

As discussed in § 5.2.3, the base case (optimal) design will face control problems 

subject to changes in the disturbance when it is operated at the selected 

optimal point (MWav =  25,000 and Few =  0.1673m^//i). In order to have the 

desired disturbance rejection ability, the base case design needs modifying. As 

pointed out earlier (see § 5.2.3), the control problem is associated with the input 

multiplicity behaviour. The modification is to enable the process to eliminate the
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Figure 5.35; Relationship between the cooling water flow rate Few, inlet feed 
temperature Tin, and reactor volume V  for the first input multiplicity condition

potential control problem associated with the input multiplicity for a specihed 

disturbance of tlie inlet feed temperature Tin in the operating region by adjusting 

the design parameter, while keeping the modification cost at a minimum.

We here choose the reactor volume V as an adjustable design parameter in 

process modifications. The input multiplicity condition for the process subject 

to variations in the operating variables Few, the disturbances, Tin, and the design 

parameter V have been studied in the last subsection and is functionally expressed 

by equation 5.26.

The rnodihed design optimisation formula is expressed by:

min {Tl{v -  + Q(F^ ~

subject to

/ a )  = 0,

Di/Do  =  25000,

(5.27)
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Table 5.6: Process design modification results

-5 -3 -1 0 +1 +2 +3 +4 +5
V  (m^) 0.102 0.101 0.1 0.1 0.1 0.099 0.098 0.097 0.095

Fi = 0.00354,

F 2UI ^  Tew,/AT )

Tin = 350 +  àTini

where f { x )  represents the six state equations of the process at steady state; Fcw,im 

is the value at the input multiplicity condition; Vopt and Few,opt are the nominal 

design parameter value of 0.1 and optimal operation value of 0.1673 

respectively; ATin  I s  the disturbance value to be defined; TZ and Q  represent 

the cost factors in the changes of the reactor volume and cooling water flowrate, 

respectively { IZ = 60 and Q =  1, for instance). The degrees of freedom in the 

optimisation problem are the reactor volume V  and the cooling water fiow rate

p̂ cw

The solutions for the reactor volume resulting in solving the design optimisa­

tion formula ( 5.27), corresponding to the required disturbance rejection ability 

defined by the values of ATin, are given in Table 5.6. The optimisation problems 

were solved using GAMS/MINOS.

The results from the feedback optimal process design modifications indicate 

that a decrease in the reactor volume will improve the disturbance rejection ability 

of the process. This is consistent with the previous analysis results. The improved 

control performance will be illustrated by simulations in the next subsection.
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5 .2 .6  C lo sed -L o o p  S im u la tio n s

In this section closed-loop simulations are given to demonstrate the improved 

controllability of the modifications resulting from the feedback optimal design 

methodology. The process is initially at the selected operating point from the 

base case design, i.e. MWav,s = 25,000 and Fcŵ s = 0.1673

Figure 5.36 and Figure 5.37 illustrate the closed-loop (using a conventional PI 

controller whose parameters were tuned following the Ziegler and Nichols’ rule 

and were kept constant in all simulation runs for the purpose of comparison) 

responses of MWav for the base case (optimal) process to a positive step in the 

inlet feed temperature Tin from 350K  to 353K  (AT^„ =  -f3AT) and from 350iF 

to 354K {ATin = 4-4K), respectively. The base case design has the ability to 

reject a -\-3K step change in Tin but fails for a -\-4K step change in Tin- But, the 

output MWav comes to rest eventually at its set point by the feedback control.

Figure 5.38 shows that the modified design of the case o îV  = 0.097m^/h has 

the ability to reject a +4 step change in Tin as required. The modified process 

fails to reject a step change in Tin over the specified value of ATin = +4JT, for 

example ATin = +5iF as shown in Figure 5.39. However, as shown in Figure 5.40, 

the modified process design for the case oî V  = 0.93m^/h  can reject the +3K  

step change in Tin that is expected in the process design modification.

The simulations indicate that the modifications have the ability to reject larger 

disturbances in the inlet temperature Tin than the base case design does. It is 

worth noticing that both the base case and the modifications can be eventually 

stabilised by the feedback control since there only exists output multiplicity in 

the MWav — Few loop. But, a “sudden” change in the output could happen for a 

large disturbance during operation.
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Figure 5.36; Simulation for the base case design: V = O.lm^ and disturbance 
ATin =  +3A'
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Figure 5.37: Simulation for the base case: V  =  O.lm^ and ATin =  + 4 K
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Figure 5.38: Siiriulation for the design modification: V = 0.097m^ and distur­
bance AT^n = +4K
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Figure 5.39: Simulation for the design modification: V = 0.097m^ and distur­
bance ATin = +5iF
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Figure 5.40: Simulation for the design modification: V = 0.095m^ and distur­
bance AT,„ =  +5 A'

5 .2 .7  S u m m ary

It has been shown via simulations that the proposed process rnodihcation method 

can be applied to modify the design of an industrial polymerisation reaction. 

The method generated a modified process which has good dynamic behaviour 

and good economic performance as dehned by the objective function, and it was 

able to extend the range of control and permit safe operation following a sizeable 

disturbance.

The case study utilised a specific polymerisation reaction taking place in a 

continuous stirred tank reactor, but the lessons can apply to a variety of the poly­

merisation reactions for which multiplicities arise routinely in industrial practice 

(Ray and Villa, 2000).
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5.3 Conclusions

In this chapter, the reactor-separator system with recycle and the industrial poly­

merisation reaction have been studied. The control problems associated with in­

put multiplicity of the processes themselves were identified in the parameter space 

and the modified designs have improved control performance. These two case 

studies demonstrate that the bifurcation-based analysis method can identify the 

control problems associated with input multiplicity in the parameter space, and 

the proposed feedback optimising design modification methodology can generate 

a “near optimal” design, which has good controllability. The undesired behaviour 

of the processes can be avoided by adjusting the values of the design parameters. 

The feedback optimisation with output and input constraints effectively turns the 

complex optimisation problem for controllability into a simple feedback control 

problem, which results in a design modification that can eliminate potential con­

trol problems associated with input multiplicity for a disturbance in the operating 

region, while minimising changes to the process.
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Conclusions and Future Work

This chapter summaries the main findings and contributions of the 

work presented in this thesis. A number of suggestions are also given 

for future developments to build on this work.

6.1 Summary of Findings

6.1.1 N ew  M ethod  for A nalysis

The first part of this thesis focussed on the development of a new method for the 

controllability analysis of nonlinear systems. In Chapter 2, the aspects of control­

lability and limitations imposed by the inherent characteristics of a process with 

respect to the inversion of the process were presented, the existing approaches to 

controllability analysis were reviewed and a number of limitations were identified. 

These include the facts that: (i) Input multiplicity behaviour is a main cause of

a sudden destabilisation of a controlled process with integral action and proves

the need for and complexity of control system design, (ii) For a SISO process any 

combination is possible of input multiplicity and unstable zero dynamics. The

155



Chapter 6: Conclusions and Future Work_______________________________

presence of such behaviour forbids the implementation of any controller from the 

class of nonlinear inversion based controller since such a controller is unstable, 

(hi) A process having input multiplicity will pose inherent limitations on the 

control performance in the perfect control and optimal ISE sense, (iv) No linear- 

based controllability analysis methods could be extended to nonlinear systems in 

a large scale sense, (v) Bifurcation analysis is recognised as a powerful tool to 

carry out nonlinear system analysis that is widely used in chemical process anal­

ysis. Defined by the mathematics of bifurcation theory, the necessary condition 

for the existence of input multiplicity has significance and can be referred to as 

a bifurcation condition in bifurcation analysis since that when the condition is 

true one cannot be confident of the unique behaviour (exchange of stability) of 

the inverse of the system.

In response to this, a bifurcation-based analysis method was presented for 

identifying input multiplicity behaviour and analysing the parameter effects on 

it. The foundation of this approach is to augment the necessary condition of 

input multiplicity with the open-loop dynamic system to set up a new dynamic 

system. The algorithm developed incorporates the necessary condition for the 

existence of input multiplicity at a variety of steady states as an add-in sub­

routine to an available bifurcation analysis package, AUTO. This allows one to 

straight away determine input multiplicity along with the open-loop character­

istics of the system and to analyse the parameter effects on them. The results 

of this analysis provides guidance to modify the process to eliminate the control 

problems associated with the input multiplicity. Using bifurcation analysis to 

conduct controllability analysis has one significant advantage, that it can capture 

nonlinearity by only using open-loop data at steady-state. The qualitative be­

haviour of a control system can be evaluated being independent of the detailed 

controller design. The results and conclusions are reliable over large operating
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ranges compared to current static measures. Moreover, by employing numeri­

cal techniques, the size of the problems to be solved is significantly increased 

compared to analytical methods. It is evident that the benefits offered by the 

bifurcation-based approach increase as the number of the considered parameter 

increases for large and complex nonlinear processes.

All of the features described above have been demonstrated through a number 

of typical chemical process examples.

6.1.2 P rocess D esign  M odifications for Im proved Control­

lability

The second part of this thesis aimed at the development of a methodology for 

process design modifications for improved static controllability. An overview 

of the existing design methods for controllability was given in § 2.5.3. These 

methods were divided into the classes of problems that they are able to deal 

with and a number of limitations were highlighted. These include the facts that:

(i) Although optimisation-based approaches are able to handle most aspects of 

controllability with respect to simultaneous effects of disturbances, uncertainties, 

and changing operation conditions, the results and conclusions resulting from the 

steady-state based approaches are only reliable around the specified conditions 

and the controller-dependent dynamic measures are strongly dependent on the 

controller tuning parameters, (ii) Bifurcation analysis is recognised as a powerful 

tool for nonlinear system analysis, but mainly used for analysis purpose, and few 

applications to process design have been reported.

Chapter 4 presented an optimisation-based approach, combined with bifur­

cation analysis results, to modifying process design for improved static control­

lability. The feedback optimal control concept was utilised to process design
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modifications. The control and economic objectives were incorporated within a 

static feedback optimisation framework that evaluates the required contribution 

of the selected input variables and process design parameters to eliminate unde­

sirable behaviour in the operating regions for a disturbance. This optimisation to 

be solved is a NLP problem that aims at minimising the absolute values of design 

parameter adjustments to avoid the undesirable behaviour inside the operating 

regions. This gives a simpler static optimisation problem in process design for 

controllability.

The work in this thesis concentrated on a SISO control system to eliminate 

input multiplicity behaviour in the range of input for a specified disturbance by 

adjusting the values of design parameters. But, undesirable characteristics can 

be the other types of bifurcations such as Hopf bifurcation, depending on what 

are specified in the optimisation problem.

There are some limitations of using this method: (i) NLPs are not guaranteed 

to have solutions, particularly for systems with high degrees of nonlinearity; (ii) 

It is assumed that the function for input multiplicity condition is monotonie and 

the local linearisation of the function limits the accuracy of the modification 

solutions.

6.2 Key Contributions

The contributions of the work presented in this thesis can be summarised as 

follows:

• A new bifurcation-based method is proposed and verified for directly deter­

mining input multiplicity along with the open-loop characteristics of nonlin­

ear processes in the parameter space. The algorithm developed incorporates 

the necessary condition for the existence of input multiplicity at a variety
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of steady states as an add-in subroutine to an available bifurcation analysis 

package. This allows one to effectively analyse the effects of the parameters, 

such as inputs, disturbances and design variables, on the input multiplicity 

behaviour. The results of the analysis provides guidance to adjust the de­

sign and operation parameters to eliminate such behaviour in the operating 

regions for the disturbances.

• A formulation developed for static feedback optimisation for process mod­

ifications is of significance since it is independent of the detailed controller 

designs while considering the dynamic performance of process designs sub­

ject to changing conditions. The results from bifurcation analysis are di­

rectly embedded in a process design modification formulation as a trade-off 

between economics and controllability.

• Two typical chemical processes a polymerisation reactor and a reactor- 

separator process with recycle, employed in the case studies, clearly demon­

strated: (i) how the input multiplicities can be detected and the processes 

can be modified while preserving minimum economic loss and avoiding the 

control difficulties associated with input multiplicity over the operating re­

gions in the presence of the disturbances and setpoint changes; (ii) and that 

it is now possible to solve a simple static feedback optimisation problem in 

process design for desirable qualitative dynamic behaviour being indepen­

dent of detailed controller design.

6.3 Recommendations for Further Work

The work in this thesis raises a number of issues tha t could be directions for 

further work.
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• Improved m ethods for m ultivariable nonlinear control system s

This work has mainly concentrated on the aspects of controllability (the 

ability to cope with setpoint following and disturbance rejection) with re­

spect to input multiplicity on one particular system- a SISO control system. 

Naturally one would like to consider more general, multivariable types of 

control systems in order to form a readily applicable method for control­

lability analysis and process design modifications at process design stage 

for multivariable control systems. Future work in this project should con­

tribute to the development of a framework for multivariable control systems 

in a practically meaningful sense when manipulated variables change simul­

taneously in the presence of disturbances. In other words, the interaction 

between parameters for multivariable control system should be further stud­

ied.

• Incorporation of bifurcation m odels

In the feedback process modification optimisation method, input multiplic­

ity constraint expression on the input is a locally approximated function 

between the input, design variables and disturbances. If a precise bifurca­

tion model is embedded in the optimisation problem, the accuracy could be 

improved. It may be possible to utilise neural network techniques to obtain 

the bifurcation model with a set of data from the proposed bifurcation-based 

analysis method, and to interface the bifurcation model onto the optimisa­

tion. But, one should be aware of the possible problems arising from the 

bifurcation model itself such as nonmonotonicity.

• Process Synthesis Issues

The process design modification case studies presented in Chapter 5, based 

on the existing structural process designs and control strategies, did not
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explore process alternative issues such as whether it might be preferable 

to use two or more reactors or more separator columns. However, the 

consideration of alternative process structure may not straightforward from 

a modelling and analysis perspective since bifurcation constraints on inputs 

depend on each individual structure.
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A ppendix A

Acronym s

A cronym s M eanings

BP Bifurcation (or Branching) Point

CLDG Closed Loop Disturbance Gain

CN Condition Number

CSTR Continuous Stirred Tank Reactor

FOD Feedback Optimising Design

GUI Graphical User Interface

HP Hopf bifurcation Point

IM Input Multiplicity

IMG Internal Model Control

ISE Integral Square Error

LD Linear Dynamics

LHP Left Hand Plane

MIMO Multiple Input Multiple Output

MP Minimum Phase

MPC Model Predictive Controller

NLD Non-Linear Dynamics
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NLP Non-Linear Programming

NMP Non-Minimum Phase

NMPC Nonlinear Model Predictive Control

OM Output Multiplicity

PID Integral Proportional Derivative

RGA Relative Gain Array

RHP Right Hand Plane

SISO Single Input Single Output
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A ppendix B

Zero Dynam ics

This chapter presents the concept of the zero dynamics of a non­

linear system and how to obtain them. The necessary mathematical 

background from differential geometry that is used in obtaining the 

zero dynamics is given.

B .l Introduction

Analogous to the RHP zeros of linear systems, the concept of zero dynamics 

of nonlinear systems is introduced. The zero dynamics for a nonlinear system 

is defined to be the internal dynamics of the system (Isidori, 1995). The zero 

dynamics of a system represent the characteristic behaviour of its inverse. The 

study on the dynamics of the inverse can be carried out by employing the zero 

dynamics.

184
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B.2 Mathematical Preliminaries

B .2.1 Lie D erivatives

The Lie derivative Lfh{x)  is the directional derivative of a scalar field h{x) in the 

direction of a vector field /(a;), defined as

Lfh{x) = +  •••• +

=  (B.l)
i = l

Repeated Lie derivatives are defined as the following;

L g L f h { x )  = (B.2)
i = l

If the scalar field is repeatedly differentiated in the direction of the same vector 

field, the following notion is used

L )  =  L f L f

L) = LfL}

(B.3)

B .2 .2 Lie Brackets

The Lie brackets [/, g] of the vector fields f {x)  and g{x) are defined as 

[f,9]{x) = adfg(x),
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(B.4)

where and are the Jacobian of f ( x )  and g{x), respectively. 

If the Lie brackets are used repeatedly the standard notion is

— 9.

ad)g = [/,

ad!jg - [A 9 ]]

adj9 = [/, ad)~^

(B.5)

B.3 Nonlinear Inversion: Zero Dynamics

For a linear system, the zeros are the roots of the polynomial numerator of the 

system. In other words, the zeros are the poles of the inverse of its transfer 

function. The zeros of a linear system are completely determined by the dynamics 

of its inverse. A transfer function, on which linear system zeros are based, can 

not be defined for nonlinear systems and therefore can not have zeros as a set of 

numbers. For nonlinear systems the analogue to the linear system, the notion of 

zero dynamics is imported. It is defined as the dynamics of the minimal order 

realisation of the inverse of a nonlinear system.
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B .3.1  R elative Order

Consider an SISO affine control nonlinear system with form:

X = f { x ) g { x ) u ,  (B.6)

y =  h{x).

It is assumed that f(x) and g(x) are C°° vector field on and h(x) is a C°° scalar 

field on The relative order has been defined by Hirschorn (1979) as following:

D efin ition  B .l  The relative order of the system of the form ( B.6) is the smallest 

integer r for which

f  0, (B.7)

where LgL^jT^ are Lie derivatives.

The relative order, in other words, represents the number of times that the 

system output y has to be differentiated with respect to time in order to have 

the input u explicitly appearing. This definition is consistent with the relative 

order of the linear system, where one considers the difference in the degree of 

the denominator and the numerator polynomials. It is important to note that 

there may exist some points xq, at which LgL)~^h{x) = 0, but nonzero at points 

arbitrarily close to them. If this is the case, the relative order is said to be not 

well defined. Such points are called as singular points (Slotine, 1991; Doyle and 

Henson, 1997).

B .3 .2 N orm al Forms

The normal form of a system is of interest since it gives the system equations a 

structure convenient to extract the zero dynamics. It is obtained by means of a
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change of coordinates in the state space.

A new coordinate transformation from 3R” to is given by the form:

C l  “ 1  ( ^ I  J  ^ 2  5 •  •  •  5 ^ n )  5

C2 — ^2(2^1 ) ^ 2 5  • • • 5 ^ n )j

Cti — ^2) • • • 5 ^n)î

(B.8)

where are scalar fields on 3%"̂ , or in a more compact form:

Cz =  -z(T). (B.9)

The transformation ( B.8) is invertible if and only if Si ,E 2 , . . . ,  are linearly 

independent. An invertible transformation T E Ci =  Ei(x)x  G 3%̂ define

a new coordinate system. To transform a dynamic system in new coordinates 

means transforming the vector fields f(x) and g(x) and the scalar field h(x) in 

new coordinates (Kravaris and Kantor, 1990a). Under such a transformation, the 

nonlinear system (B .6) will become

ÔE
(a;)/(T)

dx
+ u. (B.IO)

or, in a more explicit form.

C l =  [< d E i J ( x )  +  [< dEi,g(x) >]^=^-iu,

C2 = [< d“ 2, f {x)  >]x=H-i +  [< dE2 , g{x) >]x=e-^u,

(B .ll)
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& =  [< dEn, f {x)  +  [< dEn, g{x)

y  =  [ (̂3 )̂]x=s-i-

When the relative order r is defined and r < n , a. nonlinear system can be

transformed, using y, ÿ, ÿ , . . . ,  7/̂  as part of the new state components, into the

so called ’’normal form”, which will give a more formal look at the notions of 

internal dynamics and zero dynamics that will be introduced.

Applying the following transformation:

^  —  ^ { x )  —  y

ÿ

\  y }

where ^i, ^2, ■ ■ ■ dn-r are linearly independent to y, ÿ, j / , . . . ,  leads to a 

system in normal form.

If t i , t 2  ̂ ■ ■ ■ d n - r  are chosen to be solution for the uj[x) of the partial differential 

equation

< duj{x),g[x) >= 0

The transformation transforms the system to Byrnes-Isidori normal form 

(Isidori, 1995, Kravaris and Kantor, 1990a)



Appendix B: Zero Dynamics 190

& =  ^iK ),

& =  ^ 2(0 5

^ n -r  — -^n—r ( 0 ?

^n—r+1 ~  ^n—r+2} (B12)

^ n -1  — 4nj

& =

2/ =  &,

2/' -  $K )u =
G ( 0  '

where

^ ( 0  =  [<dti{x),f{x)>]^='E-^, i = l , . . . , n - r ,

*̂ (0 =  W f h { x ) ] x = ^ - i ,

The normal form is useful to obtain a minimal realisation of the inverse of a 

nonlinear system with form ( B.6), as shown in the next.

B .3 .3 N onlinear Inversion

D efin ition  B .2 (Hirschorn Inversion). Consider a dynamic system of the form  

( B.6) whose relative order is r. Then the inverse of the system ( B.6) can he
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calculated via

j/W -  L’jhjZ)  
" L,Uf^h(Z)  ■

It has been pointed out by Kravaris and Kantor (1990a) that the inverse 

thus obtained is not the realisation of non-minimal order since there are r zero 

pole cancellations at the origin. The following method is suggested by Kravaris 

and Kantor (1990a) to have the minimal order realisation of the inverse. Since 

the input and output behaviour of a dynamic system is coordinate-independent, 

one can first transform the system in normal form and then apply the Hirschorn 

Inversion to obtain the inverse. Therefore, the minimal order realisation of the 

inverse is as the following:

Z\ = F i(Z i , . . .  . . .  ,2/’̂  ^),

Zfi—r Ffi—f i^Zi, . . . ,  ,z / ,^ ,. . . ,r /  ),
~  $ (Z i,...,Z „ _ ^ ,î/, 2/, . . . ,? /”■’")

(B.14)

G { Z i , . . .  ,2/" ^)

B .3 .4 Zero D ynam ics

The zero dynamics can be extracted from the normal form. The zero dynamics 

are characterised as the remaining dynamics of the nonlinear system if the outputs 

are required to be 0 (constant) for all time (Isidori, 1995).

The zero dynamics are defined as the dynamics of the minimal order realisation
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of the inverse of a nonlinear system, which are governed by:

Zx = Fi {Zi , . . . ,

Z f i —r  r ( ^ l  5 • • • 5 ■̂ n—r? 2/7 2/) • • • J 2/ )•

The minimal order inverse given by equation B.15 is called the forced zero dynam­

ics because it is the system driven by the inputs and its derivatives {y, ÿ, ÿ , . . . ,  y^). 

As discussed above, this contains more information than the system zeros. In or­

der to have the same information as the linear zeros, the steady state is required. 

Then the dynamic system become

(B.16)

called the unforced zero dynamics^ namely the zero dynamics.

The eigenvalues of this expression for a particular steady state are equal to the 

zeros of the linearised system at this steady state ( D’Andrea and Praly, 1988).

Doyle and Henson (1997) indicate that in the case where the system output 

is constrained to a constant set point, which can be assumed to be zero without 

loss of generality, the stability of the closed -loop system in which the inverse is 

employed as the controller is completely determined by the stability of the zero 

dynamics. In the case where the output must follow a trajectory, the inverse 

dynamics are driven by the output and its derivatives. In this case, the stability 

of the forced zero dynamics must be assessed to determined closed loop stability.
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R em ark  B .l  See the papers by Kravaris and Kantor (1990a, h), Doyle and Hen­

son (1997) and Daoutidis and Kravaris (1991) and the hooks by Isidori (1995) 

and Slotine et al. (1991) for more details.



A ppendix C 

Num erical Techniques in 

Bifurcation Problem s

This appendix describes the basic numerical techniques of con­

tinuation and bifurcation, which were used in the software package 

AUTO. Throughout, the fundamental tool is pseudo-arclength con­

tinuation. Much of the chapter was derived from the Tata Institute 

Lecture Notes of Keller (1987) and the Doedel’s papers (1991a, b).

C .l Introduction

We consider here the problems for nonlinear equations in the form:

x = f {x ,a ) ,  (C.l)

where re, /  G 3̂ ” and a  G 3̂ . Throughout, it is assumed that the function /  is

sufficiently smooth.

194
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C.2 Continuation of Solutions

A first step in the bifurcation analysis of the system (C .l)  consists of determining 

the steady state solution branches (or solution path). These solutions are (x{s)^ 

q(s)) of the nonlinear system of equations at steady state:

0 =  f{x{s),  o;(s)), X, f  e  CK G (C.2)

where s denotes a parameter. Let X  = {x,a).  Then the equations of ( C.2) are 

written as:

0 =  /(% ), /  : - ,  (C.3)

In the formulation ( C.3), it is not distinguished between parameter and state. 

A solution path to ( C.3) is denoted as %(s).

C .2 .1  R e g u la r  S o lu tio n  P a th s

A solution Xq = X(sq) is called regular if f x  = f x { ^ o )  has rank n. A segment of 

a solution path is regular if A'(s) is regular along the segment. In the parameter 

formulation ( C.2), we have Rank [fxi^o)] = Rank [/° |/°] =  n iff either (i) 

is nonsingular, or (ii) dimN{f^)  = 1 and /°  0  R{fx)-  h  a solution X q is regular, 

then the path X{s)  will also be regular nearby X q .

R em ark  C .l  I f  Rank [f^lfa] — then either / °  is nonsingular and, from the

Implicit Function Theorem, we obtain x = x{a) near X q =  (xo,o;o), or we can

interchange columns in f x  to see that the solution can be locally parametrised by 

one of the components ofx .

Thus it can be seen that a unique branch of the solutions passes through a 

regular solution. It has been assumed that f  is sufficiently smooth so that the 

Implicit Function Theorem holds and the resulting solution branch is smooth.
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C .2.2 Folds

A solution is called a simple fold (or simple limit point ) if

d i m N i f J  =  1. and  / “ ^ i î ( / “). (C.4)

Differentiating the equations (C .2) gives

fxx{s) +  faà{s) = 0. (C.5)

Note that at a fold point (xo,o;o}, <̂o =  0 because /°  0  R(fx)-  Thus f ^x  = 0, 

and since dimN{f^)  =  1 we have N{f^)  = span{x}. Differentiating ( C.5) give

fxXo +  /a^O +  f^^XoXo +  2f^^Xodo +  faaC^oào ~  0. (C.6)

At a simple fold point (^o, <ao)), we can take

^ i f x )  = span{(l)},

^ i i f x f )  =  span{ij}.

Multiplying ( C.6) on the left by and using do =  0 and the fact that 'ip _L i?(/°)

gets

+  V I ^ X qXq = 0. (C.7)

Since ^  B (/°), we obtain ilF 7̂  0, and so

( a s ,
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But Xq = I3(j) for some scalar p, thus

“ 0 =  (C-9)

If ^ Jrfo^ 0 , then the point (xq,û!o) is called a simple quadratic fold. Similarly,

we can define a “fold of order m” if a;^^)(so) =  0 for all /c =  1, • • • ,m  — 1 and

aW (go) f  0.

C .2.3 N atural Param eter C ontinuation

We here take the a  as the continuation parameter. Suppose we have a solution 

(a:o,û!o) of ( C.2) as well as the direction vector xq. To find the solution x\  at a 

fixed, nearby value of a , say, Qi =  ao +  A a, we use Newton’s method:

f x { x ' l , a i ) A x \  =  - / ( x { , a i ) ,  ( C . I O )

=  x î +  AxJ,

where A; =  0,1,2, • • •. x\  = xq + Aax’o can be taken as an initial approximation. 

If CKi) is nonsingular and A a is small enough, the iteration will converge.

After convergence of the Newton iterations the new direction X\ can be obtained 

from differentiating f{x{a),  a) =  0 with respect to a:

f x {xua i )x i  = - f l -  (C .ll)

This clearly indicates that natural parameter continuation fails at a simple 

fold point.
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N=

Figure C.l; Schematics for pseudo-arclength continuation

C .2.4 Pseudo-arclength Continuation

It has been already mentioned above that Newton’s method fails at fold points 

on a regular path during natural parameter continuation. A pseudo-arclength 

continuation was proposed by Keller (1977), which is the fundamental tool in the 

software package AUTO. The main idea of this method is to drop the natural 

parameterisation by a  and use some other parameterisation.

Consider the system with the form of ( C.2):

/(T (s),a(g)) =  0, (C.12)

If (To, Cko) is any point on a regular path and (To, do) is the unit tangent to the 

path, then we adjoin to ( C.2) to have the scalar parameterisation:

(ti — To)^t’o +  (»! — ao)do — As — 0. (C.13)
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This equation ( C.13) represents a plane, which is perpendicular to the tangent 

(afo, do) at a distance As from (a:o, CKo). Superscript T  is the transpose.

Then the continuation can be formulated as:

/(x i,o :i)  =  0,

(xi — x^j'^xo +  (di — o;o)^o ~  A s =  0,

(C.14)

(C.15)

known as pseudo-arclength continuation.

Geometrically interpreted, this method is to find a solution (xi, a i)  to f{x,  a) = 

0 in a hyperplane that is at distance As from (a:o,a;o) and that is perpendicu­

lar to the direction vector (a:’o,do). Equation ( C.13) is one of the planes. This 

plane will intersect the curve (solution path) F if As is sufficiently small and the 

curvature of the F are not too large (see Figure C .l).

Using Newton’s method for solving the equations ( C.14) and ( C.15) simul­

taneously for (a:i,CKi) leads to the linear system:

(/i)'= ( û r

(xo)^ do J 

 ̂ (^1 ~  Xo)^xq 4- (a^ — o;o)do — A s ^

\
(C.16)

and the iterates are = x^ Ax^ and =  o;̂  -f Aa*, and the A: =  1,2, • • •. 

The next direction vector (x i,d i) can be defined by the equations:

f ^ x i  + f l d i  = 0, 

{xo^x i  -f- aodi =  1 {normalisation) .

(C.17)

(C.18)
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T h eo rem  C .l  (Doedel et a l, 1991a). The pseudo-arclength method works when­

ever (To, Oq) is a regular solution point and A s is sufficiently small. In particular 

the method works at a quadratic fold.

Recall that such a path / °  may be nonsingular or singular but the {N +  1) order 

coefficient matrix of ( C.16) should be nonsingular (Keller, 1987).

C.3 Singular Points and Bifurcation

C.3.1 Sim ple Singular P oints

A solution %o =  %(so) along solution path %(s) of ( C.3) is called a singular 

point if f x  = f x i ^ o )  has rank n — 1. In terms of the parameter formulation 

( C.2), (To, Oo) is a simple singular point iff either one of the following holds: (i) 

dim N (/0) =  ! , / « €  B(/«), (ii) dim AT(/0) =  2, 0  R(/0).

C .3 .2 B ifurcation Theorem

Suppose we have a smooth solution branch X{s )  of f ( X )  =  0. Differentiating 

the equations ( C.3) gives : f x i X{ s ) ) X{ s )  =  0 at any point along the branch. 

Here %(s) is the tangent to the branch. Assume that X q be a simple singular 

point with N{ f x )  = span{4>i,(p2 } (since f x  is an A" x (A + 1) matrix, f x  has two 

independent null vectors) and N{{ fx)^ )  =  span{ip} for some nontrivial 'ip 6 

The direction vector A (s) lies in N{ f x )  since the equation fx{Xo)Xo = 0. Hence, 

Xq has the form Xq = P4>i +  7^2 for some /?, 7  E %.

Differentiating the equations ( C.3) twice and evaluating at X q we have:

f x { X o ) X o f x x { X o ) X o X o  = 0 (C.19)
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Now multiplying this relation on the left by -0^, the first term vanishes and we 

get:

=  (C.20)

Substituting X q =  /?0i +  7^2 gives:

+  2ai2/?7 +  û227  ̂ — 0; (C.21)

where a\jS are given by f x x  h j  = 1, 2. This equation ( C.21) is

called the algebraic bifurcation equation (ABE) (Keller,1977).

Since the equation ( C.21) is a quadratic equation, the roots are governed by 

the discriminant:

A =  <2̂2 — ^11^22- (C.22)

Thus, it can be seen that there are two distinct real solutions for the equation if 

A > 0. The discriminant A cannot be negative since one real root already exists 

corresponding to the direction vector X q . If A > 0 then there exist two distinct 

“direction vector” , and a bifurcation is expected, i.e. a second solution branch 

passes through X q .

C .3.3 D etection  o f B ifurcation Points

Let

/
F{X,s)  =

f { X )
(C.23)
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and let X q be a simple singular point. Then,

Jx

y
(C.24)

T h eo rem  C .2 . (Keller, 1987) Let X q =  X { s q ) be a simple singular point on 

a smooth solution branch X{s)  of f { X)  = 0. Assume that the discriminant 

A  is positive and that 0 is an algebraically simple eigenvalue of ■ Then the 

determinant of Fx, det[Fx\, changes sign at X q .

T h eo rem  C .3 . (Doedel et a i, 1991a) Let X{s)  be a smooth solution branch 

X{s)  of F {X,s)  = 0, where F  : x 9%"̂ ^  is , and assume that

det[Fx(A(s); s)] changes sign at s = Sq. Then A'(sq) is a bifurcation point, i.e. 

every open neighbourhood of X ( sq) contains a solution of F{X , s )  = 0 that does 

not lie on X{s).

In AUTO, the determinant of the Jacobian Fx  is monitored along the solution 

branch AT(s) =  (x(s), a(s)). Solution points at which the determinant changes 

sign are located by a secant iteration scheme and are treated as potential bifur­

cation points. Once the bifurcation point is detected, the solution branch can be 

continued in the new direction using the pseudo-arclength continuation.

C.4 Summary

In this chapter, numerical techniques utilised in AUTO are briefly discussed. 

The pseudo-arclength as a fundamental tool in the AUTO was addressed. The 

details for the numerical method in bifurcation problems and implementation 

in AUTO can be seen in the lecture notes of Keller (1987) and the papers of
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Doedel et al. (1991a, b). The codes of AUTO are available from the web site: 

h t tp  : / / in d y . c s . co n co rd ia . ca /au to /m a in .h tm l.


