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Abstract
An open question in designing superconducting quantum circuits is how best to reduce the full
circuit Hamiltonian which describes their dynamics to an effective two-level qubit Hamiltonian
which is appropriate for manipulation of quantum information. Despite advances in numerical
methods to simulate the spectral properties of multi-element superconducting circuits (Yurke B
and Denker J S 1984 Phys. Rev. A 29 1419, Reiter F and Sørensen A S 2012 Phys. Rev. A 85 032111
and Amin M H et al 2012 Phys. Rev. A 86 052314), the literature lacks a consistent and effective
method of determining the effective qubit Hamiltonian. Here we address this problem by
introducing a novel local basis reduction method. This method does not require any ad hoc
assumption on the structure of the Hamiltonian such as its linear response to applied fields. We
numerically benchmark the local basis reduction method against other Hamiltonian reduction
methods in the literature and report specific examples of superconducting qubits, including the
capacitively-shunted flux qubit, where the standard reduction approaches fail. By combining the
local basis reduction method with the Schrieffer–Wolff transformation we further extend its
applicability to systems of interacting qubits and use it to extract both non-stoquastic two-qubit
Hamiltonians and three-local interaction terms in three-qubit Hamiltonians.

1. Introduction

Since their first appearance, superconducting (SC) circuits including Josephson junctions have proved to be
one of the most promising platforms for quantum information processing applications [4–8]. The
lithographic fabrication process allows fine tuning of the physical properties of each superconducting
circuit, thus resulting in qubits with different spectral properties. Individual qubits can be manufactured in
large arrays, with electrostatic and magnetic interactions coupling pairs of them. The strength of the local
fields on each qubit and of the two-qubit interactions can further be adjusted dynamically by applying
external electrostatic and magnetic fields, making for a flexible and scalable architecture for both gate-based
quantum computation (GBQC) and quantum annealing (QA) [4, 5, 9–11].

A two decades quest to improve the coherence metrics of superconducting qubits, by materials and
circuit engineering, has led to a number of SC qubit designs, such as capacitively-shunted flux qubits and
transmons, having T1 and T2 times in the 100 ms range [12, 13]. These circuits, as much as the earlier
designs, including rf-SQUID qubits [14], persistent-current qubits [9] and single-Cooper-pair boxes [15]
are, by construction, characterised by the fact that, under specific operation conditions, they can be
regarded as two-level systems (in the sense that any additional stationary state of the system has a
substantially higher energy and a small probability of being populated) [16].

The fundamental theory describing SC circuits, i.e. quantum network theory, is well established and can
be used, at least in some approximate form, to numerically determine the energy spectrum of an arbitrary
SC qubit circuit [1–3]. The literature seems, however, to be missing an agreed and consistent way of
connecting the electromagnetic Hamiltonian Ĥe.,m. of an arbitrary system of n SC qubits to the
corresponding effective qubit Hamiltonian Ĥq(Hq), or, equivalently, of numerically determining the
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parameters of an n-spin Hamiltonian which reproduces the low-energy spectrum of Ĥe.,m., as well as the
computational state probabilities and the expectation values of the system observables. As we will see below,
where such mapping methods do exist (see, for instance, supplementary materials of references [17, 18]),
they are not guaranteed to reproduce the correct low-energy spectrum of the circuit.

A general scheme for reducing the circuit Hamiltonian of an arbitrary SC qubit system to the correct
effective qubit Hamiltonian would serve several purposes. Firstly, the effective qubit Hamiltonian can be
used to model and interpret quantum state evolution experiments, since it contains all the necessary
information to describe the dynamical evolution of the qubit system, as long as this is not excited outside of
the computational space (leakage) [7, 18], while being much more compact than the full circuit
Hamiltonian. Secondly, specifically in the context of adiabatic quantum computing (AQC), identification of
non-stoquastic and multi-local terms in the qubit Hamiltonian could help the engineering of such terms,
which are fundamental to implement non-stoquastic AQC (which is thought to be more powerful than its
stoquastic counterpart [19]) and error suppression protocols based on stabiliser codes [20], respectively. In
experiments involving such non-stoquastic and multi-body interaction terms, the analysis of spectroscopic
data can also be made substantially easier by the availability of the reduced Hamiltonian [18]. Lastly, in the
case of single qubits, the calculation of the effective qubit Hamiltonian represents an improved way of
estimating the tunnelling amplitudes between semi-classical potential minima that is an alternative to
instanton-based approaches and therefore potentially more accurate, especially in the limit of large
tunnelling amplitudes [21, 22].

In this paper we propose a method of implementing Hamiltonian reduction based on a natural local
definition of the computational basis. Our method does not require any ad hoc assumption on the structure
of the Hamiltonian, such as its linear response to the applied electrostatic and magnetic fields, which is at
the core of standard perturbative reduction methods [17]. Additionally the scheme can be applied to
individual SC qubits of any kind, as well as to systems of qubits and coupler circuits, interacting
magnetically or electrostatically. In the interacting case the scheme makes use of the Schrieffer–Wolff
transformation to separate the low energy subspace from the rest of the Hilbert space [23].

The article is structured as follows: in the next section we revise how to write a general electromagnetic
Hamiltonian for isolated and coupled superconducting circuits. In section 3 we introduce some of the
state-of-the-art reduction methods in the literature and then present our novel approach to the problem, in
the context of both single and interacting qubits. In section 4 we present the numerical results of
Hamiltonian reduction applied to systems of superconducting qubits, with a specific reference to recent
publications. Finally we summarise our conclusions.

2. Circuit Hamiltonians from quantum circuit analysis

Since we want to establish a way to numerically derive an effective qubit Hamiltonian from the full
Hamiltonian describing the superconducting circuit, we begin this paper by revising how to write down the
circuit Hamiltonian for a generic non-dissipative circuit. We start with isolated circuits and later consider
the presence of interactions. The framework which we use is that of quantum network theory, which is the
quantum version of Lagrangian mechanics applied to electrical circuits [1, 24]. Following the standard
procedure we will first write the classical Hamiltonian and then quantise it by replacing the variables with
the corresponding operators. The reader who is familiar with these concepts may wish to skip to the next
section.

2.1. Isolated circuits
The first key assumption we make in order to apply quantum network theory is that the size of our qubit is
sufficiently small relative to microwave wavelengths, such that it is appropriate to use a lumped-element
description of the circuit [25]. Because the system is superconductive, this circuit will consist of nodes
connected by branches containing only non-dissipative elements, namely inductors, capacitors and
Josephson junctions. An example representing the equivalent circuit of an rf-SQUID flux qubit is shown in
figure 1. Then, without loss of generality, we can arbitrarily assign one of the circuit nodes to ground. (For a
floating qubit there will be a capacitor between the ground node and the rest of the circuit.)

At this point, in order to later take into account the effect of external magnetic fields, we need to choose
a spanning tree, i.e. a path of connected branches going from the ground node to every other node, without
generating loops. The specific choice of the spanning tree will not affect our final results [24]. A possible
choice of the spanning tree for the rf-SQUID flux qubit in figure 1 is highlighted in red. We will indicate the
set of branches in the spanning tree by T and the complementary set of closure branches by C. Every closure
branch is associated with an irreducible loop in the circuit, which is the smallest loop formed by that
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Figure 1. Equivalent lumped-element circuit of an rf-SQUID flux qubit [14]. One of the two possible choices of the spanning
tree is highlighted in red.

closure branch and by other branches in the spanning tree. For instance, in the flux qubit in figure 1 the
closure branch b01 is associated with the single loop in the circuit [24].

Every state of our circuit is defined by specifying the instantaneous voltages at each of the nodes.
Alternatively, we can define, for every node j (excluding ground), a node flux variable Φj, representing the
integral over time of its voltage, i.e.

Φj(t) =

∫ t

0
Vj(t′)dt′. (1)

The ground node acts as the voltage reference, so its associated voltage and flux are set to be identically
equal to 0 [24]. The node fluxes can be used, together with the voltages, to write down the circuit
Lagrangian Le.,m.({Φi}, {Φ̇i}), which in turn allows to define the variables canonically conjugate to the
node fluxes, i.e. the node charges [24]:

Qj =
∂

∂Φ̇j
Le.,m.({Φi}, {Φ̇i}). (2)

For brevity we omit here the derivation of the system Lagrangian (which can be found, for instance, in [24])
and we simply report the final form we obtain for the circuit Hamiltonian,

He.,m.({Φi}, {Qi}) :=
∑
i=1

QiΦ̇i|Φ̇i=Φ̇i({Qi}) − Le.,m.({Φi}, {Φ̇i}). (3)

If we take care to define the spanning tree so as not to leave any inductive branch in the closure set C, this
takes a particularly simple and general form:

He.,m. = HLC + HJ , (4)

where

HLC =
1

2

N∑
i,j=1

[(
C−1
)

ij
QiQj +

(
L−1
)

ij
ΦiΦj

]
(5)

is its linear part, with N the number of circuit nodes, C and L are the (N × N) capacitance and inductance
matrices of the circuit, respectively, (see appendix A.1 for their definition) and where

HJ =

N∑
i=0

N∑
j=i+1

EJ,bij ·
[

1 − cos

(
2π

Φ0
Φbij

)]
(6)

is the Josephson energy component. Here EJ,bij is the Josephson energy of the Josephson junction in the
branch bij connecting nodes i and j (the index 0 refers to the ground node here) and
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Φ0 = h/(2e) � 2.0678 · 10−15 Wb is the magnetic flux quantum. The branch fluxes {Φbij}j>i=0,..., N

appearing inside the expression are defined as

Φbij =

⎧⎨⎩Φi − Φj, if bij ∈ T ,

Φi − Φj +Φext
ij , if bij ∈ C,

(7)

where Φext
ij is the external magnetic flux threading the irreducible loop associated with bij.

Our definition of the branch fluxes includes the effect of external magnetic fields on the energy of the
system. Current and voltage biases, however, may also be applied to the circuit and each of them will
contribute with its own term to the Hamiltonian. In the case of current bias, this is applied through a
dangling inductive branch. Let a be the origin node of this branch, La its inductance and Iext the bias
current; the corresponding Hamiltonian term is [24]:

ΔHe.,m. =
(Φa − LaIext)2

2La
. (8)

In order to apply a voltage bias, a voltage source Vg is connected to the desired circuit node a through a gate
capacitor Cg . The resulting effect on the Hamiltonian is to change the capacitance matrix C → C̃ (to take
into account that the total capacitance attached to node a has increased by Cg) and to introduce the
additional term [24]:

ΔHe.,m. = Cg Vg ·
∑
i�=a

(C̃−1)aiQi +
1

2
(C̃−1)aa(CgVg )2. (9)

Now that we have put together all the necessary Hamiltonian terms, we can finally obtain the quantum
Hamiltonian of the circuit Ĥe.,m. by simply replacing the variables {Φj, Qj}i=1,..., N with the corresponding
Hermitian operators. These will obey the canonical commutation relations [1]:[

Φ̂j, Q̂k

]
= i�δjk. (10)

2.2. Interacting circuits
Let us now consider a system of N superconducting circuits of the kind just considered which are
interacting with each other. The total electromagnetic Hamiltonian of the system will have the general form
Ĥe.,m. = Ĥ0 + Ĥint, where:

Ĥ0 =

N∑
i=1

Ĥi (11)

is the unperturbed part, with Ĥi the Hamiltonian of the ith circuit, in the form of equation (4), and

Ĥint =

N∑
i=1

N∑
j=i+1

∑
k,l

αik ,jl Ôik Ôjl (12)

describes the interactions between pairs of different circuits. Here, {Ôik}k=1, 2,... is a set of operators (either
node or branch operators) acting on the ith circuit and the αik ,jl ’s are the interaction constants.

In practice the interactions can be electrostatic, mediated by the charge operators, and magnetostatic,
involving the flux operators. (In principle, there could also be additional interactions mediated by
Josephson junctions shared between two circuits, but, for simplicity, we will not consider these here.) The
electrostatic interaction is achieved by connecting the kth node of circuit i with the lth node of circuit j �= i
with a coupling capacitor Cik ,jl . This has two effects on the system Hamiltonian: it rescales the inverse
capacitance matrices of the two circuits (known as capacitive loading),

C−1
i → C̃−1

i , C−1
j → C̃−1

j , (13)

as shown explicitly in appendix A.2, and introduces the interaction term

αik ,jl Ôik Ôjl = (C−1
m )ik ,jl Q̂ik Q̂jl , (14)

where C−1
m is a suitable inverse mutual capacitance matrix (see appendix A.2) [26].

The magnetostatic interactions are the result of the mutual inductive coupling between pairs of branches
belonging to two different circuits, say bik and bjl . The effect of this mutual inductance is again twofold: it
rescales the inverse inductance matrices of the circuits (inductive loading),
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L−1
i → L̃−1

i , L−1
j → L̃−1

j , (15)

and introduces in the Hamiltonian the interaction term

αik ,jl Ôik Ôjl = (M−1)ik ,jlΦ̂bik
Φ̂bjl

, (16)

where Φ̂bi is the branch-flux operator associated with the branch bi (see appendix A.2 for the definitions of

L̃−1
i , L̃−1

j and M−1) [26]. Notice that the uncoupled Hamiltonians {Ĥi} in equation (11) are intended to be
corrected for capacitive and inductive loading.

3. Hamiltonian reduction methods

In this section we review some of the state-of-the-art numerical Hamiltonian reduction approaches and
successively introduce two novel protocols, one for single qubits (subsection 3.1) and one for multiple
interacting qubits (subsection 3.2). We also point out the key differences between the standard methods and
our new method and demonstrate how the latter improves the range of applicability of the reduction. The
standard reduction protocols described here will be used in numerical simulations (section 4) for a
comparison against the new protocols.

3.1. Single qubits
Let us begin by introducing a formal definition of the reduction process. In the case of one isolated qubit,
this amounts to finding an effective single-spin Hamiltonian, that is:

Definition 3.1 (Effective single-Qubit Hamiltonian). A Hermitian operator Ĥq acting on a Hilbert space
with dimension 2, whose spectrum matches the two lowest energy eigenstates (E0 and E1) of the SC qubit
circuit Hamiltonian Ĥe.,m..

Assuming that the SC qubit is at thermal equilibrium with an environment at temperature T, then, if
kBT is small compared to the transition energy to the second excited state, E2 − E0, the probability that this
state, or any further excited state, is occupied at any given time is exponentially small. In fact, in the absence
of any resonant drive term in the Hamiltonian, the higher excited states of the qubit circuit can only be
occupied as a result of environment-induced relaxation. The stationary probability that the system occupies
a state with energy Ei at the end of this process is pi ∝ exp

[
(Ei − E0)/(kBT)

]
[27]. Under this hypothesis,

the dynamics of the qubit are effectively restricted to the eigenspace associated with the two lowest energy
eigenstates of the (potentially time-dependent) circuit Hamiltonian Ĥe.,m.(t) (i.e. the qubit subspace
Hq = Span{|E0(t)〉, |E1(t)〉}) and can be described in terms of an (instantaneous) effective single qubit
Hamiltonian [16].

Let us now consider the spectral decomposition of the circuit Hamiltonian,

Ĥe.,m. = E0|E0〉〈E0|+ E1|E1〉〈E1|+
+∞∑
i=2

Ei|Ei〉〈Ei|, (17)

where we have sorted the energy eigenvalues in increasing order. By considering the definition of the qubit
Hamiltonian, we see immediately that a good candidate for Ĥq is the restriction of Ĥe.,m. to the qubit
subspace, that is:

Ĥq = P̂0Ĥe.,m.P̂0 = E0|E0〉〈E0|+ E1|E1〉〈E1|, (18)

where P̂0 = |E0〉〈E0|+ |E1〉〈E1| is the projector on Hq.
This expression, however, is not particularly useful to describe the evolution of the qubit in a quantum

computation process. In fact, the computational basis used to encode the information on the quantum
computer does not correspond, in general, to the system energy eigenbasis. (Note that, in this basis, the
Hamiltonian is diagonal, and therefore classical [28].) It is therefore necessary to define the two
computational states and their relationship to the energy eigenstates [16].

The computational basis for a superconducting qubit is defined in terms of two eigenstates of an
observable which is used in practice to measure the qubit state. This operational definition distinguishes,
therefore, between the two main categories of SC qubit design. For circuits of the flux-qubit type (including
rf-SQUID qubits [29], three and four-Josephson-junction persistent current qubits [9, 30] and C-shunt flux
qubits [13]), the computational states are identified with two states with opposite and well-defined values of
persistent current in the qubit loop. For charge-qubit-type designs (including single Cooper-pair box qubits
[15] and transmons [12]), |0〉 and |1〉 are instead identified with states with a different number of Cooper
pairs on the superconducting island [4].
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3.1.1. Perturbative reduction (PR) method
The usual approach to identifying the computational basis states for theory and simulations, which is
extensively used in the literature (cf for example [13, 15, 17, 31]), is based on a series expansion of the
circuit Hamiltonian around a fixed value of one of its bias parameters (voltage or magnetic flux bias). For
clarity, let us consider the specific case of the rf-SQUID qubit, whose circuit is shown in figure 1. Following
the method introduced in section 2, we can write its circuit Hamiltonian (up to an additive constant)
as [14]:

Ĥe.,m.( fz) =
Q̂2

2CJ
+

Φ̂2

2L
− EJ cos

[
2π

(
Φ̂

Φ0
+ fz

)]
, (19)

where fz = Φz/Φ0 :=Φext
01 /Φ0 is the magnetic flux applied externally to the rf-SQUID loop, in units of Φ0.

When fz � 0.5, we can rewrite the previous equation as:

Ĥe.,m.( fz) � Ĥ0 + δĤ := = Ĥe.,m.(0.5) + δfz
∂Ĥe.,m.(fz)

∂fz
| fz=0.5, (20)

where δfz = fz − 0.5 and

∂Ĥe.,m.(fz)

∂fz
= EJ · sin

[
2π

Φo

(
Φ̂− Φz

)]
≡ −Φ0

Φ̂

L
:= − Φ0 Î, (21)

with Î the loop current operator, which will define our computational basis. Notice that we used Kirchhoff’s
current law to go from the second to the third term in the last chain of equations [1].

At this point, we can invoke stationary perturbation theory to write the nth eigenstate of Ĥe.,m.(fz), up to
first order in δfz as [32]:

|En〉 = |E(0)
n 〉+

∑
m �=n

〈E(0)
m |δĤ|E(0)

n 〉
E(0)

n − E(0)
m

|E(0)
m 〉, (22)

where |E(0)
n 〉 : Ĥ0|E(0)

n 〉 = E(0)
n |E(0)

n 〉 is the nth eigenstate of Ĥ0. As we can see, the various terms of the first
order correction |En〉 − |E(0)

n 〉 scale with the inverse of the differences between the unperturbed energies.
Then, since for the rf-SQUID the spectrum of Ĥ0 = Ĥe.,m.(fz = 0.5) is largely anharmonic, i.e. E(0)

2 � E(0)
1 ,

the two lowest-energy perturbed eigenstates are approximately linear combinations of their unperturbed
counterparts only.

Since we are only interested in the two lowest eigenstates of the system (the qubit subspace), we can now
project equation (20) on |E(0)

0 〉 and |E(0)
1 〉 and use the fact that 〈E(0)

0 |̂I|E(0)
0 〉 = 〈E(0)

1 |̂I|E(0)
1 〉 = 0 (due to the

symmetry of the Hamiltonian under magnetic field inversion about the point f = fz = 0.5) to get:

Hq(fz) � E(0)
0 + E(0)

1

2
σI + δfzΦ0Ipσx +−E(0)

0 − E(0)
1

2
σz, (23)

where σx and σz are two of the standard Pauli matrices, σI is the 2 × 2 identity matrix and
Ip := 〈E(0)

0 |̂I|E(0)
1 〉 = 〈E(0)

1 |̂I|E(0)
0 〉 > 0 (notice that we can always ensure these two conditions by multiplying

|E(0)
0 〉 and |E(0)

1 〉 by appropriate phase factors). At this point we can diagonalise the current operator part of
the Hamiltonian simply by introducing the two following computational states:

Definition 3.2 (Computational basis states (perturbative)).

|0〉 = |E(0)
0 〉+ |E(0)

1 〉√
2

,

|1〉 = |E(0)
0 〉 − |E(0)

1 〉√
2

(24)

Using the results above, it is trivial to show that these are actually eigenstates of Î with opposite eigenvalues:
〈0|̂I|0〉 = −〈1|̂I|1〉 = Ip [31]. In this basis, the effective Hamiltonian reads

Hq( fz) � E(0)
0 + E(0)

1

2
σI −

E(0)
0 − E(0)

1

2
σx + δfzΦ0Ipσz. (25)

Notice that every single-qubit Hamiltonian can be written in the general form

Hq =
∑

i=I,x,y,z

hiσi, (26)
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where σI ≡ I2, σi=x,y,z are the three standard Pauli matrices and the hi’s are real coefficients. In the
following we will call these Pauli coefficients, with specific reference to their values in the computational
basis.

Although equation (25) already contains the analytic expressions of the Pauli coefficients (which apply
to the rf-SQUID qubit), it is useful to consider the following equivalent derivation, which has a
straightforward extension to the interacting qubit case. Once we have found the computational states
according to (24), we can use the homomorphism between C2 and qubit subspace (Hq = Span{|0〉, |1〉}) to
introduce the following four operators, which represent the action of the Pauli matrices on Hq:

σ̂I = |0〉〈0|+ |1〉〈1|, σ̂x = |0〉〈1|+ |1〉〈0|,

σ̂y = −i|0〉〈1|+ i|1〉〈0|, σ̂z = |0〉〈0| − |1〉〈1|.
(27)

Then, using the following property of the Pauli matrices,

Tr
(
σi · σj

)
= 2δij, (28)

we find that:

hi =
1

2
Tr
(

Hq · σi

)
=

1

2
Tr
(

Ĥq · σ̂i

)
≡ 1

2
Tr
(
Ĥe.,m. · σ̂i

)
. (29)

Notice that here, both Ĥe.,m. and σ̂I,x,y,z are conveniently expressed in whatever basis we initially choose for
Ĥe.,m..

The perturbative reduction approach has a clear disadvantage: the effective Hamiltonian (25) reproduces
the two lowest energy levels of the full circuit Hamiltonian only in the limit in which the first order
perturbative expansion (22) holds. This entails two requirements. Firstly that the spectrum of the
unperturbed Hamiltonian (in other words, the circuit Hamiltonian at the point of the expansion) is highly
anharmonic, which is only true for some SC qubit designs and not for others (such as the
capacitively-shunted flux qubit and the transmon) [12, 13]. Secondly, the perturbation to the bias
parameter must be small, for instance |δfz| � 1 for the rf-SQUID qubit [17].

3.1.2. Instanton approach
A second common approach to the numerical calculation of the Pauli coefficients is the use of semi-classical
theory. In this case the quantum state of the system is approximated by one that minimises its semi-classical
potential, which is the part of the classical Hamiltonian depending on the coordinate variable (i.e. the flux
in a flux qubit and the charge in a charge qubit). At the operational point the semi-classical potential of
qubit circuits assumes a general double-well shape (or, more generally, that of a system of wells in more
than one dimension), with two local minima very close in energy, such that quantum tunnelling can occur
between them.

In this picture, the longitudinal Pauli coefficient hz is identified with the difference in energy between the
two potential minima, whereas the effective transverse field hx corresponds to the tunnelling energy. This is
calculated using the semi-classical instanton method (or equivalently the WKB approximation) [33]. These
calculations are only accurate in the limit in which the tunnelling action across the potential barrier is very
large, which implies that the tunnelling energy has to be exponentially small [34]. The instanton calculation
of the transverse field for the rf-SQUID qubit is described in detail in appendix A.4.

3.1.3. Local basis reduction (LR) method
In order to overcome the difficulties of the standard reduction approaches outlined above, we propose an
alternative reduction method which relies on a local definition of the computational basis, i.e. one that
explicitly depends on all of the circuit bias parameters. In other words, in this case the computational basis
states are built as a linear combination of the two local circuit low-energy states:

|0〉 = u00|E0〉+ u01|E1〉,

|1〉 = u10|E0〉+ u11|E1〉,
(30)

where Ĥe.,m.|Ei〉 = Ei|Ei〉 and Ĥe.,m. is the local circuit Hamiltonian. In order for these two states to be
appropriately orthonormal, the uij’s have to be the elements of a unitary matrix,

7



New J. Phys. 22 (2020) 053040 G Consani and P A Warburton

U =

(
u00 u10

u01 u11

)
, (31)

which we will have to find. The unitarity condition ensures that when we transform from the energy
eigenbasis {|E0〉, |E1〉} to the local computational basis {|0〉, |1〉} the spectrum of the effective qubit
Hamiltonian (18) is unchanged and the two lowest-energy levels of the circuit Hamiltonian are preserved.

Owing to the orthonormality of U columns, we can always rewrite U, up to an irrelevant global phase
multiplication factor, as:

U =

(
eiϕ1 cos θ eiϕ2 sin θ

−e−iϕ2 sin θ e−iϕ1 cos θ

)
, (32)

where

θ = acos|u00| = acos|u11|, (33)

ϕ1 =
1

2
acos

(
u00u∗

11 + u∗
00u11

2 cos2θ

)
, (34)

ϕ2 =
1

2

[
π − acos

(
u01u∗

10 + u∗
01u10

2 sin2θ

)]
. (35)

so that θ ∈ [0,π] and ϕ1,ϕ2 ∈ [0,π/2].
Now we consider again the operational definition of the computational states. This specifies that these

should be eigenstates of a certain observable Ô. For a flux qubit Ô = Î, the current operator associated with
the qubit SC loop, whereas for a charge qubit Ô = Q̂ represents the charge on the qubit SC island. One can
easily see that imposing this condition on the states (30) is equivalent to finding the two eigenstates of the
operator

Ôp = P̂0ÔP̂0 = 〈E0|Ô|E0〉|E0〉〈E0|+ 〈E0|Ô|E1〉|E0〉〈E1|+ 〈E1|Ô|E0〉|E1〉〈E0|+ 〈E1|Ô|E1〉|E1〉〈E1|, (36)

associated with a non-zero eigenvalue1, that is

Definition 3.3 (Computational basis states (local)). |0〉 and |1〉 such that

Ôp|0〉 = u0|0〉,

Ôp|1〉 = u1|1〉,
(37)

with u0 �= u1 and |u0|, |u1| > 0.

Notice that this definition coincides with the one used in the perturbative method at the specific bias
point at which the Hamiltonian expansion is performed (for instance at fz = 0.5 in the the rf-SQUID qubit
case).

By identifying |E0〉 with the vector (1, 0) and |E1〉 with (0, 1), we can rewrite Ôp in the matrix form

Op =

(
〈E0|Ô|E0〉 〈E0|Ô|E1〉

〈E1|Ô|E0〉 〈E1|Ô|E1〉

)
. (38)

Finding the eigenvalues and the eigenvectors of this 2 × 2 matrix is straightforward. In particular, for the
eigenvalues, we have:

u0,1 =
t ±

√
t2 − 4d

2
, (39)

where t = Tr(Op) and d = det(Op). In accordance with the operational definitions given above, we need to
enforce one condition on these eigenvalues. For a flux-qubit type circuit, we need to have u1 < 0 < u0,
which implies det(Ip) < 0, or, more explicitly

〈E0 |̂I|E0〉〈E1 |̂I|E1〉 < |〈E0 |̂I|E1〉|2. (40)

1 One can easily show that Ôp achieves its maximum rank of two as long as Ô|E0〉 and Ô|E1〉 are linearly independent.
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For a qubit of the charge type, instead, we will require u1 = u0 ± 2e (up to some suitably small numerical
error). If this condition is not satisfied, then the circuit cannot be operated as a qubit with the desired
computational states and the reduction protocol fails. Note, however, that since we are not making use of a
perturbative expansion or a semi-classical approximation here, the range of applicability of this local
reduction method should be wider than that of the standard methods presented before.

If we now write the eigenvectors of Op as 	u0 = (u00, u01) and 	u1 = (u10, u11), then equation (30) returns
our desired computational basis states, which make Ôp diagonal. Armed with 	u0 and 	u1, we can easily
calculate the general expression of the effective qubit Hamiltonian in the computational basis. If we keep
working with 2 × 2 matrices, the qubit Hamiltonian in the energy eigenbasis (18) takes the obvious
diagonal form

H′
q =

(
E0 0

0 E1

)
. (41)

Going from this basis to the computational basis amounts to applying the unitary transformation U defined
above; this gives the effective qubit Hamiltonian in the computational basis as:

Hq = U†H′
qU =

E0 + E1

2
I2 +

E0 − E1

2

(
|u00|2 − |u01|2 u∗

00u10 − u∗
01u11

u∗
10u00 − u∗

11u01 |u10|2 − |u11|2
)

=
E0 + E1

2
I2 +

E0 − E1

2

(
cos 2 θ e−iϕ sin 2 θ

eiϕ sin 2 θ − cos 2 θ

)
=

E0 + E1

2
I2 +

E0 − E1

2

[
sin 2 θ · (cos ϕσx + sin ϕσy) + cos 2 θσz

]
, (42)

where I2 is the 2 × 2 identity matrix and ϕ = ϕ1 − ϕ2 ∈ [−π/2,π/2].
We observe that, by rescaling the computational states 	u0 and 	u1 by two phase factors, say eiφ0 and eiφ1 ,

i.e. by applying some local gauge transformation in the qubit subspace, we can always remove the imaginary
component hyσy of Hq. In fact such a gauge transformation G(φ0,φ1) corresponds to a spin rotation
around the z axis, multiplied by a global phase:

G(φ0,φ1) =

(
eiφ0 0

0 eiφ1

)
= ei

φ0+φ1
2

(
ei

φ0−φ1
2 0

0 e−i
φ0−φ1

2

)
= ei

φ0+φ1
2 · ei

φ0−φ1
2 σz . (43)

Hence G(−ϕ1,−ϕ2), which represents a rotation around z by the angle ϕ2 − ϕ1 = −ϕ (followed by a
rescaling by e−i(ϕ1+ϕ2)/2), transforms cos ϕσx + sin ϕσy into σx, and makes the effective qubit
Hamiltonian real, that is:

Hq =
E0 + E1

2
I2 −

Δ

2
σx −

ε

2
σz, (44)

where Δ = (E1 − E0) sin 2 θ and ε = (E1 − E0) cos 2 θ. Notice that this gauge transformation can
equivalently be written as:

	u0 →
|u00|
u00

· 	u0,

	u1 →
|u10|
u10

· 	u1.

(45)

Expression (44) for the effective qubit Hamiltonian, is the one adopted by most of the literature on SC
qubits [17, 25, 35]. (Note that the coefficient Δ is usually further assumed to be positive, a condition which
can also always be achieved with a π rotation about z.)

An equivalent and more convenient way of calculating the four Pauli coefficients hi, i = I, x, y, z than
using equations (33), (42) and (26) together is again to use the computational states to build the Pauli
operators and then to apply equation (29).

In section 4 we will present numerical simulations which benchmark the performance of the local
reduction method against the standard methods and demonstrate the increased accuracy of the former
relative to the latter ones.

3.2. Multiple qubits
Let us now consider the Hamiltonian reduction process in the case of multiple interacting superconducting
qubits. Given a system of N qubits and M additional coupling circuits, coupled inductively and/or
capacitively, its effective qubit Hamiltonian is one that reproduces the lowest 2N energy levels of the total

9



New J. Phys. 22 (2020) 053040 G Consani and P A Warburton

system Hamiltonian, as well as the expectation values of the qubit operators. Notice that any such
Hamiltonian can be written in the general form

Hq =
∑
	η

h	ησ	η , (46)

where 	η = (η1, . . . , ηN ), ηi ∈ {I, x, y, z} and σ	η = ση1 ⊗ · · · ⊗ σηN is a 2N × 2N matrix in the Pauli group
GN . Recalling the equality (28) and using the following property of the trace

Tr(A1 ⊗ · · · ⊗ AN ) = Tr(A1) × · · · × Tr(AN ), (47)

we can see that the real Pauli coefficients h	η obey the equation

h	η =
1

2N
Tr
(

Hq · σ	η

)
. (48)

According to section 2.2, the circuit Hamiltonian of the system can be written as

Ĥe.,m. = Ĥ0 + Ĥint =

N∑
i=1

Ĥi +

M∑
i=1

Ĥc,i + Ĥint, (49)

with Ĥi (Ĥc,i) the unperturbed Hamiltonian of the ith qubit (coupler) circuit and where Ĥint includes all the
interaction terms. Notice that the unperturbed Hamiltonians are assumed to be corrected for capacitive and
inductive loading (cf section 2.2). Now we can define the qubit subspace, in analogy with the single-qubit
case, to be the one spanned by the lowest two eigenstates the unperturbed Hamiltonian of each qubit. Since
the couplers are designed to be classical elements which always remain in their ground state, while
adiabatically following the qubits, the qubit subspace will at the same time be the one spanned by the
ground state of each coupler circuit Hamiltonian [36]. We therefore have, in symbolic form:

Hq =
N
⊗

i=1
Span{|Ei,0〉, |Ei,1〉} ⊗

M
⊗

j=1
Span{|Ecj,0〉}, (50)

where |Ei,j〉 (|Eci,j〉) is the jth eigenstate of Ĥi (Ĥc,i).
One could then think of defining the qubit Hamiltonian for this N-qubit system simply as in

equation (18): Ĥq = P̂0 · Ĥe.,m. · P̂0, where again P̂0 is the projector on Hq. This operator Ĥq, however, does
not have the correct spectrum, matching the lowest 2N energy levels of Ĥe.,m., and therefore does not satisfy
our initial definition of qubit Hamiltonian. The reason for this is that the interaction described by Ĥint

mixes the states in Hq with those outside it, i.e. the higher excited states of the individual circuits. Such
mixed states become the new low-energy eigenstates of Ĥe.,m. [18, 23].

Contrary to the single-qubit case, the literature concerning Hamiltonian reduction for multiple
interacting SC qubits is relatively scarce. In the following subsections we present two protocols adopted in
recent publications and later present a new alternative reduction method, which overcomes some of their
limitations and explicitly addresses the problem of the mixing of the qubit subspace with the rest of the
Hilbert space by using the Schrieffer–Wolff transformation theory [23].

3.2.1. Approximate rotation method
In this subsection we briefly review the reduction method outlined in a recent work by Ozfidan et al [18].
This method starts by writing the low-energy part of the total circuit Hamiltonian Ĥe.,m., i.e. the component
associated with its lowest 2N eigenvalues, in its diagonal form: H′

q = diag(E0, . . . , E2N−1). Then a sequence
of two rotations, say R1, R2 ∈ SO(2N), is applied to it, producing the effective qubit Hamiltonian
Hq = RT

2 RT
1 H′

qR1R2. Since orthogonal operations do not change the spectrum of an operator, this protocol
guarantees by construction that the spectrum of Hq matches the low-energy spectrum of the circuit
Hamiltonian.

The first rotation applied in this protocol, R1, maps from the low-energy eigenbasis of the total
Hamiltonian Ĥe.,m., {|E0〉, . . . , |E2N−1〉} to that of the unperturbed Hamiltonian Ĥ0, i.e.
{|E(0)

0 〉, . . . , |E(0)
2N−1

〉}, and is initially calculated as

(R1)ij = 〈Ei|E(0)
j 〉. (51)

However, as we pointed out before, |Ei〉 also has components outside of the subspace
Span{E(0)

0 〉, . . . , |E(0)
2N−1

〉}, which implies that this matrix is not orthogonal. R1 must therefore be explicitly
orthonormalised, for instance using the Gram–Schmidt procedure. This step is only justified if the columns
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of R1 are already approximately orthonormal [18]. Since in our case orthogonality follows from
normalisation, it suffices to check that

2N−1∑
i=0

(R1)2
ij ≈ 1, ∀j = 0, . . . , 2N − 1, (52)

before we apply the Gram–Schmidt procedure.
To obtain the qubit Hamiltonian we now need the second rotation R2 to map from the basis of the

energy eigenstates |E(0)
0 〉, . . . to the computational basis. We then take

(R2)ij = 〈i|E(0)
j 〉, (53)

where |i〉 = |i2N−1〉 ⊗ · · · ⊗ |i0〉 is an outer product of single qubit computational states, with
i2N−1i2N−2 · · · i1i0 the N-digit binary representation of the integer i ∈ {0, 1, . . . , 2N − 1}. These
computational states are found from the reduction of the unperturbed single-qubit Hamiltonians. If the
local reduction method is used for this, the rotation matrix R2 is guaranteed to be orthogonal.

Note that, although the effective Hamiltonian calculated with this method has the correct spectrum, the
procedure is based on the approximate equality (52), which is not often satisfied, particularly in the case of
relatively large interactions. (This can be seen by considering, once again, the perturbative expansion (22).)
Additionally, the previous derivation implicitly assumes that the circuit Hamiltonian is real, so that all the
eigenstates and computational states can be chosen to have only real components. This ensures that
R1, R2 ∈ SO(2N). Some circuits, however, may have an efficient matrix representation of the Hamiltonian
which is complex. In this case the definition of the two rotations would lead to the presence of arbitrary
complex phases in their elements, which would need to be somehow taken care of. (Notice that even in the
real case the scalar products defining the elements of R1 and R2 are only defined up to an arbitrary
sign.)

3.2.2. Diagonal Hamiltonian method
A second method of determining the effective Hamiltonian of a multi-qubit system is presented in a recent
work by Melanson et al [37]. This method works under the more restrictive assumption that the effective
Hamiltonian is diagonal in the computational basis. In this case the lowest 2N eigenstates of the circuit are
also eigenstates of the single-qubit operators Ôi specifying the computational basis and the corresponding
eigenvalues can be calculated numerically as the expectation values 〈En|Ôi|En〉. Additionally the 2N

non-zero Pauli coefficients of the system can be expressed as a linear combination of its low-energy
eigenvalues [37]. For instance, in the two-qubit case one has:

⎛⎜⎜⎝
E00

E01

E10

E11

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
hII

hzI

hIz

hzz

⎞⎟⎟⎠ :=M ·

⎛⎜⎜⎝
hII

hzI

hIz

hzz

⎞⎟⎟⎠ , (54)

where Eij, i, j ∈ {0, 1} is the eigenvalue of the circuit Hamiltonian corresponding to the computational state
|i〉|j〉. We can therefore determine the Pauli coefficients of the two-qubit system by finding the lowest four
energy eigenvalues of its circuit Hamiltonian, calculating the expectation value of the operators Ô1,2 on the
each eigenstate to identify its corresponding computational state and by inverting the previous equation to
get ⎛⎜⎜⎝

hII

hzI

hIz

hzz

⎞⎟⎟⎠ = M−1 ·

⎛⎜⎜⎝
E00

E01

E10

E11

⎞⎟⎟⎠ . (55)

The same procedure can be applied to systems with three or more qubits (plus eventual additional
couplers).

In practice, an effective Hamiltonian diagonal in the computational basis is verified when the qubit
tunnelling barriers are high (negligible transverse field hx) and the qubits are coupled only through their z
degree of freedom (that is when the coupling is inductive between flux qubits or capacitive between charge
qubits). A Hamiltonian of this form is however classical and cannot be sufficient for universal quantum
computation [28]. This method can nevertheless still be useful when it is reasonable to assume that the
different non-commuting terms of the qubit Hamiltonian can be turned on and off independently.
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3.2.3. Schrieffer–Wolff transformation method
In this final subsection we introduce a new reduction protocol for multi-qubit systems which overcomes
some of the limitations of the methods described above. In particular, this method does not require the
mixing between the qubit subspace (equation (50)) and its complement, resulting from the interactions, to
be negligible, which is a crucial assumption of the approximate rotation reduction. Secondly, unlike the
approximate rotation reduction, it can be applied directly to circuit Hamiltonians with complex elements,
since the arbitrary phase choices made when numerically evaluating the Hamiltonian eigenvectors cancel
out in all the necessary expressions. Thirdly, the reduction method introduced here can be applied to find
arbitrary non-diagonal effective Hamiltonians. This is all made possible by the Schrieffer–Wolff
transformation (SWT), which by construction maps the total circuit Hamiltonian Ĥe.,m. to a new Hermitian
operator acting on the qubit subspace Hq and whose spectrum matches the low-energy spectrum of Ĥe.,m.,
which is precisely what we expect from the effective qubit Hamiltonian [23].

The SWT relies on a single assumption regarding the form of the full system Hamiltonian, namely that
the spectrum of the unperturbed part of the Hamiltonian (excluding the interactions) has a sufficiently
large gap, as we will see below. For the purpose of this reduction method, we will replace this assumption
with an equivalent pair of two distinct conditions. In order to state the first one, let us rewrite the
unperturbed part of the N-qubit M-coupler system Hamiltonian (49) as

Ĥ0 = P̂0Ĥ0P̂0 + Q̂0Ĥ0Q̂0, (56)

where

P̂0 =

2N−1∑
i=0

|E(0)
i 〉〈E(0)

i | (57)

is the projector on the low-energy eigenspace H(0)
low, spanned by the eigenstates corresponding to the lowest

2N eigenvalues of Ĥ0, and Q̂0 = Î− P̂0 projects on the complementary subspace H\H(0)
low. Notice that, given

E(0)
i , the ith eigenvalue of Ĥ0, the spectrum of P̂0Ĥ0P̂0 is by definition S(0)

low = {E(0)
0 , E(0)

1 , . . . , E(0)
2N−1

},

whereas Q̂0Ĥ0Q̂0 has the set of eigenvalues S(0)
high = {E(0)

2N , . . . }. The first assumption of our reduction is that

Hq ≡ H(0)
low, i.e. that no additional excited state of the independent circuits is mixed in the low energy

subspace of Ĥ0, and that the two sets S(0)
low and S(0)

high are separated by at least Δ > 0, that is

|E(0)
2N − E(0)

2N−1
| � Δ. This composite condition can be written, more explicitly, in the following form:∣∣∣∣∣∣ΔEi,2 −

N∑
j=1

ΔEj,1

∣∣∣∣∣∣ � Δ, ∀i = 1, . . . , N

∣∣∣∣∣∣ΔEci,1 −
N∑

j=1

ΔEj,1

∣∣∣∣∣∣ � Δ, ∀i = 1, . . . , M,

(58)

where we have introduced the notation ΔEi,j = Ei,j − Ei,0 and ΔEci,j = Eci,j − Eci,0 (with Ei,j (Eci,j) again the
jth eigenstate of the ith qubit (coupler) unperturbed Hamiltonian). Since the summations above grow
linearly with the number of qubits in the system, this condition limits the size of the systems to which we
can apply our reduction method. Intuitively this limit reflects the impossibility of finding any coherent
description of the low-energy spectrum of a composite system in terms of interacting two-level subsystems,
whenever the second excited state of one of these subsystems appears in the spectrum. Therefore if we are
interested in characterising a very large circuit, we should first subdivide it into smaller connected
subsystems for which the inequalities (58) hold.

The second requirement is simply that the strength of the interaction Hamiltonian should be small
compared to the spectral gap of Ĥ0, Δ. Namely:

‖Ĥint‖op <
Δ

2
, (59)

where ‖ · ‖op is the operator norm:

‖Ô‖op = sup{‖Ô|Ψ〉‖ : ‖|Ψ〉‖ = 1}, (60)

with ‖ · ‖ the two-norm
√
〈 · | · 〉.

Since the addition of the interaction term Ĥint can shift the eigenvalues of Ĥ0 by at most ‖Ĥint‖op, this
second inequality implies that the spectrum of Ĥe.,m. remains gapped. This in turn allows us to rewrite the

12



New J. Phys. 22 (2020) 053040 G Consani and P A Warburton

total Hamiltonian in the block-diagonal form Ĥe.,m. = P̂Ĥe.,m.P̂ + Q̂Ĥe.,m.Q̂, where P̂ is the projector on the
2N-dimensional low-energy eigenspace of Ĥe.,m., Hlow, and Q̂ = Î− P̂ [23].

Additionally, according to [23], since Hlow and Hq have the same dimension, they are connected by a
direct rotation Û such that

ÛP̂Û† = P̂0,
ÛQ̂Û† = Q̂0.

(61)

Û is called the Schrieffer–Wolff transformation and can be written, in terms of the projectors, as [23]:

Û =

√
(2P̂0 − Î)(2P̂ − Î). (62)

The principal square root
√
· above is well-defined as long as

‖P̂ − P̂0‖op < 1, (63)

which in our case can be shown to be equivalent to (59) [23].
Now the action of the SWT on Ĥe.,m. is given by

ÛĤe.,m.Û
† = ÛP̂Ĥe.,m.P̂Û† + ÛQ̂Ĥe.,m.Q̂Û†

= P̂0ÛĤe.,m.Û
†P̂0 + Q̂0ÛĤe.,m.Û

†Q̂0,
(64)

where we used the identities ÛP̂ = P̂0Û and ÛQ̂ = Q̂0Û . According to equation (64), ÛĤe.,m.Û† is
block-diagonal with respect to P̂0 and Q̂0. This finally leads us to the conclusion that

Ĥq := P̂0ÛĤe.,m.Û
†P̂0 (65)

is an Hermitian operator, acting on Hq, whose 2N non-zero eigenvalues are the same as the lowest
eigenvalues of the original interacting Hamiltonian Ĥe.,m. (because the unitary Û leaves the spectrum of
P̂Ĥe.,m.P̂ unchanged) [23]. Ĥq therefore represents our effective qubit Hamiltonian, from which we can
directly extract the Pauli coefficients by rewriting equation (48) as

h	η =
1

2N
Tr
(
Ĥq · σ̂	η

)
. (66)

In this case, the Pauli operator σ̂	η = σ̂η1 ⊗ · · · ⊗ σ̂ηN ⊗ P̂c is built from the single-qubit Pauli operators
{σ̂ηi}, which, in turn, are obtained as in the single-qubit case, starting from the unperturbed Hamiltonian
Ĥi of each qubit and the appropriate operator Ôp,i. The operator

P̂c =
M
⊗

i=1
|Eci,0〉〈Eci,0| (67)

represents the required identities acting on each of the ground-state energy subspaces of the coupler
circuits.

Finally note that since both the approximate rotation reduction and the SWT reduction method
determine an effective qubit Hamiltonian with the correct spectrum, the two results must be equivalent up
to a unitary transformation. However, as mentioned before, the SWT reduction extends the range of
applicability of the method to Hamiltonians with complex elements and does not involve the restrictive
assumption (52).

4. Numerical results

In this section we present some numerical examples of Hamiltonian reduction for different SC qubit
designs and interacting systems. For concreteness, we will focus on qubits of the flux-type ([9, 13, 29, 30])
and we will consider circuits and physical parameters from works in the recent literature.

For these simulations the circuit Hamiltonians and all other circuit operators were represented in matrix
form by projection on a truncated orthonormal basis. The approximate Krylov–Schur method,
implemented by the MATLAB © function eigs [38], was used to determine the relevant subsets of the
operator eigenvalue–eigenvector pairs. This approach can be much faster than the complete diagonalisation
of the operator, especially when it is very large and sparse, as is usually true for SC qubit Hamiltonians [39].
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Figure 2. Low energy spectrum of the rf-SQUID flux qubit, as a function of the normalised magnetic flux fz applied to the
superconducting loop.

4.1. Single qubits
4.1.1. rf-SQUID flux qubit
We start by considering the simplest example of a flux qubit, i.e. the rf-SQUID circuit. As shown in figure 1,
this consists of a Josephson junction, with tunnelling energy EJ , shunted by a superconducting inductive
loop with self-inductance L and in parallel with its intrinsic capacitance CJ [4].

Figure 2 shows the lowest five energy eigenvalues of the circuit, calculated as a function of the
dimensionless external magnetic flux fz = Φz/Φ0 ≡ Φext

01 /Φ0. (Note that the constant offset E0(fz = 0.49)
has been subtracted from all the energies.) The parameters used for the simulations are EJ = 125 GHz,
CJ = 5 fF and L = 2.5 nH, which are typical for this type of device [14]. In this case, the Hamiltonian was
represented in a basis of harmonic oscillator occupation number states, truncated at a maximum
occupation number of 40, which ensured the convergence of the low energy spectrum (cf appendix A.3)
[40].

As we can see from the graph in figure 2, the lowest two energy levels of the system (i.e. the qubit states),
vary approximately linearly with the flux fz, except around the symmetry point fz = 0.5, where they show a
characteristic avoided crossing. In fact, as we saw previously, for small values of |δfz| = |fz − 0.5| the
rf-SQUID Hamiltonian is well approximated by its first order expansion in δfz. This maps to an effective
qubit Hamiltonian of the form (see equation (25))

Hq( fz) =
Δ

2
σx +

ε( fz)

2
σx, (68)

where we have neglected the term proportional to the identity, Δ = (E1( fz) − E0( fz))fz=0.5 and
ε( fz) = 2Φ0Ipδfz . The lowest two energy levels of the circuit are therefore approximately

E0,1 = const. ∓
√
Δ2/4 (Δ2/4) +Φ2

0I2
p |δfz|2, which become linear in fz for larger values of |δfz|.

Figure 3(a) shows the values of the system Pauli coefficients as a function of fz, calculated using
equation (29). The solid lines correspond to values obtained by defining the Pauli operators according to
the local reduction (LR) method introduced here (subsection 3.1.3). These are compared with the result of
the perturbative (PR, empty circles) and instanton (crosses) methods. As we can see, the three reduction
methods produce largely compatible results for this circuit. In particular, away from the symmetry point the
LR method finds a 10% increase in the transverse field hx at the boundary of the flux interval considered,
compared to its centre. The result of PR is instead independent of fz , in agreement with equation (25). The
values of hz and hI calculated with the LR and PR methods are compatible to 1% over the whole flux bias
range. This implies that the definition of the computational basis in the LR method coincides, as it should,
with that of the standard PR method in the limit in which the series expansion (20) and perturbation
theory apply. As for the semi-classical calculations, these appear to over-estimate both the longitudinal field
(by � 40%) and the transverse field (by up to 6%), compared to the other two reduction methods.

Since the semi-classical approximation applies in the limit where � is much smaller than the actions at
play in the system, i.e. S � �, and since the tunnelling energy hx decreases exponentially with the tunnelling
action, hx ∝ e−S/� (see appendix A.4), we expect the result of the instanton calculations to be more accurate
in the limit where hx is small [33, 34]. To verify this, we determined the qubit transverse field in the case of
biasing at the symmetry point fz = 0.5 for increasing values of the loop inductance L. As we can see in
figure 3(b), increasing L causes the barrier between the two semi-classical potential wells (blue line) to rise,
therefore suppressing the tunnelling hx (data in red). Since fz = 0.5, the perturbative and local reduction
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Figure 3. Numerical results for the rf-SQUID circuit of figure 1. (a) Pauli coefficients as a function of the reduced magnetic flux
bias fz . Lines: local reduction, empty dots: perturbative reduction, crosses: instanton method. (b) Tunnelling energies (left y-axis)
at the symmetric bias point fz = 0.5 and the corresponding semi-classical potential barrier height (right y-axis), as a function of
the qubit loop inductance. (c) Comparison of the two lowest circuit levels, as a function of fz, with the result of different reduced
two-level system models. At this scale the LR and PR results overlap. (d) Pauli coefficients calculated with LR over a broader
range of fz (left y-axis). Also shown are the lowest three eigenenergies of the system (dashed lines, values on the right y-axis).

methods coincide, and they both determine the correct value of the tunnelling energy: hx = −ΔE/2, where
ΔE is the energy separation between the ground and first excited state of the circuit (cf dots and solid line
in figure 2). As expected, the instanton method result (crosses in figure 2) closely approaches that of the
Hamiltonian reduction only as L increases and |hx| becomes smaller.

At this point, as a consistency check, we can calculate the spectrum of the reduced qubit Hamiltonian

simply as E0,1 = hI ∓
√

h2
x + h2

y + h2
z and compare it with that obtained from the full circuit model. PR and

LR do a good job in reproducing the low-energy spectrum of the rf-SQUID qubit, as we can see from the
plot in figure 3(c). This also shows the spectrum derived from the semi-classical model (crosses), which
does not agree with the correct circuit spectrum as well.

Notice that LR is guaranteed to exactly reproduce the circuit levels as long as fz � 0.5. As mentioned in
the previous section, the LR protocol only fails when, as | fz − 0.5| increases, the two eigenvalues of
Îp( fz) = P̂0( fz )̂IP̂0( fz) begin to have the same sign, meaning that no measurement distinguishing two qubit
states with opposite persistent current is possible at the given bias. For the particular rf-SQUID circuit
considered here, the local reduction method breaks down for | fz − 0.5| � 0.035, as shown in figure 3(d)
(region shaded in red). As we can see in this plot, as we approach this region the behaviour of the Pauli
coefficients starts changing. In particular the transverse field increases considerably in magnitude, while the
longitudinal field saturates. The green dotted lines in figure 3(d) show the circuit energy levels. We see that
at the boundary of the unshaded region the second excited state starts mixing with the first, leading to an
avoided crossing. This mixing means that, at this point, the two-level approximation does not hold any
more, which leads to the failure of the LR.

Finally we might want to consider how well the reduced Hamiltonians are able to reproduce the correct
expectation values of some circuit operator Ô, i.e. whether the following relationship holds

〈Ei|Ô|Ej〉 = 〈Ei|Ôp|Ej〉, ∀i, j ∈ {0, 1}, (69)

where {|Ei〉}i=0,1 are energy eigenstates of Ĥe.,m. and {|Ei〉}i=0,1 are the eigenstates of the corresponding
effective qubit Hamiltonian. Ôp is defined locally as P̂0( fz)ÔP̂0( fz) (where P̂0( fz) is the projector on the
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Figure 4. Expectation values of the current operator between the two rf-SQUID qubit eigenstates, as a function of fz. Lines:
circuit model, filled dots: LR, empty dots: PR.

Figure 5. Equivalent lumped-element circuit of a capacitively-shunted flux qubit (as described in reference [13]). A possible
choice of the spanning tree is highlighted in red.

two-dimensional low-energy subspace of Ĥe.,m.(fz)) in the LR method case, and is defined globally as
P̂0(0.5)ÔP̂0(0.5) in the PR case. Figure 4 shows the matrix elements of the loop current operator Î between
qubit states, calculated with both the full and the reduced operators. We observe that LR is ensured to give
the exact result, while PR produces a reasonable result.

We have shown here that the approximations inherent in the perturbative reduction method are valid
and sufficient for for determining the reduced Hamiltonian in the case of the simple rf-SQUID qubit of
figure 1. We will see in the next subsection, however, that this is not true in the general case and that the
local reduction method has a wider range of validity.

4.1.2. C-shunt flux qubit
The accuracy of the perturbative reduction method deteriorates when we consider other flux qubit designs,
particularly those with reduced anharmonicity like the capacitively-shunted flux qubit shown in figure 5.
This consists of a superconducting loop interrupted by three Josephson junctions. The area of one junction
is a factor α < 1 smaller than that of the other two and is shunted by a relatively large capacitor Csh � CJT .
The capacitive shunt reduces the qubit sensitivity to charge noise, while improving the device
reproducibility (by compensating for the fabrication variability of the junction size, which affects CJT). At
the same time, the effect of flux noise is mitigated by choosing small values of α (typically
0.125 < α < 0.5), which reduce the magnitude of the persistent current and therefore the magnetic dipole
moment of the circuit [13]. The result is superconducting qubits with typical measured relaxation times T1

in excess of 40 ms (three orders of magnitude longer than the standard rf-SQUID T1) and decoherence
times approaching the relaxation limit T2 = 2T1 [13].

This substantial coherence enhancement comes at the cost of a decrease in the spectrum anharmonicity.
We can see this by looking at figure 6(a), which shows the calculated low energy spectrum of a C-shunt
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Figure 6. Numerical results for the C-shunt flux circuit. (a) Low energy spectrum of the circuit as a function of the reduced
magnetic flux bias fz . (b) Pauli coefficients as a function of fz. Lines: local reduction, empty dots: perturbative reduction. (c)
Comparison of the two lowest circuit levels, as a function of fz , with those of the PR and LR qubit Hamiltonians. (d) Expectation
values of the current operator between the two qubit energy eigenstates as a function of fz . Lines: circuit model, filled dots: LR,
empty dots: PR.

Table 1. Physical parameters of the
capacitively-shunted flux qubit used for the
simulations in figure 6.

Parameter Value

EJT 45 GHz
CJT 1.8 fF
α 0.43
Csh 50 fF
L 100 pH

qubit circuit as a function of fz = Φz/Φ0 = Φext
23 /Φ0, and comparing it with figure 2. The physical

parameters used for the simulation are shown in table 1 (cf figure 5 for the meaning of the symbols). For
the two lower junctions we used EJL = EJR = EJT/α and CJL = CJR = CJT/α. These parameters are
compatible with those reported in the experiments in reference [13].In this case, the Hamiltonian was
represented numerically by projecting on a finite basis consisting of harmonic oscillator states for the mode
associated with the circuit node 1 and charge number states for the modes associated with nodes 2 and 3 (cf
appendix A.3) [35, 40, 41].

As we can see from figure 6(a), the two dispersion relations E0,1(fz) have first derivatives with the same
sign everywhere. Since

〈̂I〉0,1 := − 〈∂Ĥe.,m.

∂Φz
〉 � ∂E0,1

∂Φz
, (70)

this means that the average persistent currents in the two energy eigenstates have equal sign (cf figure 6(d)).
This is in contrast with the rf-SQUID flux qubit [13], but does not preclude the possibility to find two
current eigenstates with opposite sign in the qubit subspace.

Figure 6(b) shows the Pauli coefficients obtained by the perturbative (circles) and local (lines) reduction
methods. As anticipated, there is a clear discrepancy between the two results. In fact, owing to the much
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Figure 7. Circuit diagram of the system of two interacting qubits studied in [18]. Highlighted in different colours are the
coupling elements and the magnetic bias fluxes.

smaller anharmonicity of this circuit compared to the rf-SQUID, the two low-energy eigenstates of the
circuit Hamiltonian at fz = 0.5 are not a good approximation for those away from fz = 0.5. This implies
that projecting Ĥe.,m.( fz) on the states (24) does not preserve its low-energy spectrum and does not lead to
the correct reduction. From the numerical results we see that the slope of hz( fz) in the local reduction case
is smaller than in the perturbative reduction and further decreases away from fz = 0.5. Additionally, the
transverse field hx( fz) shows a clear negative curvature in the LR results, whereas it is roughly constant in fz

in the PR case (as in the rf-SQUID). The strong dependence of the transverse field on fz is a known
distinguishing feature of the C-shunt flux qubit design when compared to more standard flux qubit circuits
like the rf-SQUID [9, 13].

Calculating the spectra of the two reduced Hamiltonians leads to the result shown in figure 6(c). The
local reduction result (filled dots) again reproduces the circuit ground and first excited states (lines) exactly,
while the perturbative reduction fails to accurately predict the first excited state. Finally figure 6(d) shows
the matrix elements of the current operator between the qubit energy eigenstates, calculated using the full
circuit model (lines) and the two reduced two-level models (circles). The PR (empty circles) gives incorrect
expectation values, which are opposite in sign for the two states.

4.2. Multiple qubits
4.2.1. ZZ plus XX coupling

We begin this subsection on coupled SC qubit systems by considering a simple two-qubit system, without
any non-linear coupling element. As one such example we consider the system which Ozfidan et al
characterised experimentally in [18]. This is composed of two compound-Josephson-junction rf-SQUID
qubits (where the single Josephson junction is replaced by two junctions in parallel, forming a dc-SQUID)
coupled both inductively and capacitively, as shown in figure 7. Assuming that the dc-SQUID loop is very
small (such that its inductance is much smaller than both the main loop inductance and the Josephson
inductance (Φ0/2π)2/EJ), we can effectively describe it as a single junction whose Josephson energy
depends on the flux Φx threading the dc-SQUID [42]:

EJ(Φx) = EJ0 cos

(
π
Φx

Φ0

)
. (71)

EJ0 = EJ0,1 + EJ0,2 here is the sum of the energies of the two junctions in parallel, which we are assuming to
be equal.

Within this approximation, the Hamiltonian describing our circuit is:

Ĥe.,m. =

2∑
i=1

Ĥi + ÛC + ÛM =

2∑
i=1

[
Q̂2

i

2C̃i

+
Φ̂2

i

2L̃i
− EJ,i(Φx,i) cos

(
2π

Φ̂i − Φz,i

Φ0

)]

+
C12Q̂1Q̂2

C1C2 + (C1 + C2)C12
+

M12Φ̂1Φ̂2

L1L2 − M2
12

, (72)

where C̃1(2) = C1(2) + C12C2(1)/(C2(1) + C12) and L̃1(2) = L1(2) − M2
12/L2(1) [18].

Using the physical parameters given in reference [18], i.e. C12 = 132 fF and those in table 2, and
calculating the lowest four eigenvalues of our Hamiltonian for different values of mutual inductance in the
range −2pH < M12 < 2pH, we obtained the graph shown in figure 8(a). This graph matches well with the
corresponding one present in figure 3(c) of reference [18]. The avoided level-crossing at M12 � 0.7 pH is
proportional to the capacitive coupling C12 and only occurs at finite longitudinal fields, i.e. Φz,i �= 0 [18].
(Notice that when −1 < Φx,i/Φ0 < 0, the effective Josephson energy EJ,i(Φx,i) is negative and the symmetry
point where hz = 0 is displaced from Φz,i = Φ0/2 to Φz,i = 0 [42]).
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Table 2. Physical parameters of the two-coupled-qubit system
used for the simulations in figures 8 and 9.

Qubit EJ0,i (GHz) Ci (fF) Li (pH) Φx,i/Φ0 Φz,i/Φ0

Q1 1.603 · 103 119.5 231.9 −0.6538 1 · 10−4

Q2 1.568 · 103 116.4 239 −0.6526 1 · 10−4

Figure 8. (a) Low energy circuit spectrum, relative to the ground state, of the circuit in figure 7, as a function of the mutual
inductance M12 . (b) One-local Pauli coefficients calculated, as a function of M12, by applying the Schrieffer–Wolff
transformation reduction method to the full (solid lines) and the unperturbed Hamiltonian (dashed lines) of the circuit in
figure 7 (notice that the solid and dashed lines for hzI and hIz all overlap at this scale). Circles: same coefficients, calculated using
the approximate rotation reduction of [18].

It is worth noting that, in order to efficiently represent a composite circuit Hamiltonian like (72) we
cannot retain the representation of the circuit operators that we used for single circuits. In that case, the size
of the total Hamiltonian matrix would equal the product of the sizes of all the individual circuit
Hamiltonians, and would rapidly become unmanageable. Since we are, once again, only interested in the
low-energy properties of the system, a good alternative basis choice is that of the outer products of some
small number Ni of low-energy eigenstates of each unperturbed (i.e. non-interacting) circuit Hamiltonian
Ĥi/Ĥc,i. In this case, for example, we can write:

Ĥe.,m. �
N1−1∑
i,j=0

N2−1∑
k,l=0

〈E1,iE2,k|Ĥe.,m.|E1,jE2,l〉|E1,iE2,k〉〈E1,jE2,l|, (73)

with the meanings of the symbols introduced before. To ensure the convergence of our results, we first used
40 harmonic oscillator number states to represent the single qubit Hamiltonians and then projected onto
their N1 = N2 = 10 lowest-energy eigenstates.

Now that we have determined the low energy spectrum of the system, we can apply some reduction
method to calculate the effective qubit Hamiltonian. We begin with the Schrieffer–Wolff transformation
method, introduced in section 3.2.3. After verifying that the hypotheses of its construction are satisfied, in
particular observing that ‖P̂ − P̂0‖op � 0.5 in the whole range of M12, we extracted the Pauli coefficients.
These were calculated by defining the computational states and the Pauli operators locally for each qubit
and then projecting the effective qubit Hamiltonian on them, as shown in section 3.2.3. The six one-local
coefficients are shown in figure 8(b) by solid lines. (We do not consider the coefficient hII = Tr(Ĥq) here
since we are focussing on relative energies.) The dashed lines represent the same coefficients obtained by
applying the SWT reduction to the non-interacting part of the circuit Hamiltonian, i.e. to the sum of the
Hamiltonians of the isolated qubits (corrected for the static inductive and capacitive loading). Since for hzI

and hIz the solid and the dashed lines overlap, the values of the longitudinal fields of the coupled system are
completely determined by the static loading of the unperturbed Hamiltonians. This effect appears
approximately linear in M12. The values of the transverse fields for the coupled system, instead, are ∼ 25%
lower in magnitude than those resulting from the loaded single-qubit Hamiltonians. The interaction with
the other qubit, then, has an additional effect, which we call dynamic loading. The change in transverse field
appears approximately quadratic in M12 and is not centred around M12 = 0 due to the presence of the
capacitive coupling (as we verified by comparing against the case C12 = 0). As usual, the components of the
local field along the y direction have been removed by making the appropriate local gauge transformation.
(Actually, the circuit Hamiltonian in this case is completely real, so that no imaginary terms can appear in

19



New J. Phys. 22 (2020) 053040 G Consani and P A Warburton

Figure 9. (a) Two-local Pauli coefficients calculated, as a function of M12, using the SWT method (lines) and approximate
rotation method (circles). Note that the purple line lies at at zero and overlaps with the green one. (b) One and two-local Pauli
coefficients determined with the approximate rotation method, after the application of the local rotation removing XZ and ZX
terms (circles), compared against the ones calculated with the SWT method (solid lines). Note that the local Pauli coefficients for
the two qubits overlap almost completely at this scale.

the reduced Hamiltonian; the gauge transformation only ensures that the signs of different coefficients are
consistent across the range of M12.)

The empty circles in figure 8(b) are the one-local Pauli coefficients determined with the approximate
rotation method, introduced in [18] and reviewed in section 3.2.1. Comparing with the previous results, we
can see that we obtain qualitatively similar, but quantitatively different results. In particular the values for
the transverse fields are close to those obtained with the SWT reduction, while the new longitudinal fields
are everywhere smaller in magnitude, and, in this case, do not agree with their unperturbed values (dashed
lines).

Figure 9(a) shows the coefficients of the nine effective qubit Hamiltonian two-local terms. According to
the reduction based on the SWT (lines), the only non-negligible terms in the Hamiltonian are those
proportional to σz,1σz,2, σx,1σx,2 and σy,1σy,2. The first term represents the inductive interaction,

ÛM ∝ M12Φ̂1Φ̂2, the flux being our z degree of freedom, and it indeed scales linearly with M12. Since we
have chosen to identify a flux degree of freedom with the real operator σz, the canonically conjugate charge
operator must be complex (since [Φ̂, Q̂] = i�), and therefore must be identified with σy. The YY term,
then, describes the capacitive interaction and, in fact, appears to be largely independent of M12. Finally the
XX term is a result of the presence of the higher excited states of the system [18]. It is related to both the
inductive and the capacitive Hamiltonian terms and appears to scale linearly with M12.

According to reference [43], a two-local two-qubit Hamiltonian of the form

H = hxIσx,1 + hIxσx,2 + hzIσz,1 + hIzσz,2 + hxxσx,1σx,2 + hyyσy,1σy,2 + hzzσz,1σz,2 (74)

is non-stoquastic, and remains such after arbitrary local rotations, as long as hxI , hIx, hzI , hIz �= 0 and
|hyy| > |hxx|, |hzz|. The region where this condition is satisfied is highlighted in green in figure 9(a).
Non-stoquastic two-local catalyst Hamiltonians are know to provide an exponential speed-up to the
convergence of quantum adiabatic optimisation, at least with specific problem classes, including the
ferromagnetic p-spin model [44]. For this reason, they might be key to establish a quantum advantage over
classical optimisation routines such as quantum Monte Carlo [18, 45].

Again, our implementation of the approximate rotation reduction produces qualitatively similar results
to the SWT reduction for the two-local Pauli coefficients (see hollow circles in figure 9(a)), except for
hxz � hzx (purple circles), which are now of the same order of magnitude as the other coefficients. As we
mentioned in section 3.2.3, the approximate rotation and the SWT reduction methods actually find
equivalent effective qubit Hamiltonians, modulo a unitary. This was in fact verified by showing that both
sets of coefficients lead to qubit Hamiltonians with the same spectrum.

Notice that reference [18] actually reports the two hxz � hzx coefficients to be negligible, which we
ascribe to the fact that the authors used a different form for the circuit Hamiltonian, and potentially a
different definition of the computational basis, and hence of R2, as defined in section 3.2.1 [18]. (In our
case the computational basis was defined locally as shown in section 3.1.3.) In fact, any mixed two-local
term, involving different Pauli operators acting on the two qubits, can be eliminated from a two-qubit
Hamiltonian by performing a local change of basis [43]. Applying this transformation produces a new set of
coefficients which are within 5% of those found by the SWT reduction method (see figure 9(b)). In this
case, then, the unitary mapping between the two is a local transformation.
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Table 3. Probabilities of measuring different computational
states on the two-coupled-qubit system determined from the
effective qubit model and the full circuit model.

Probabilities

Model p00/p++ p01/p+− p10/p−+ p11/p−−

Qubit 2 · 10−5 0.50 0.50 1.3 · 10−6

Circuit 0.06 0.44 0.45 0.05

We conclude the subsection on this two-qubit system by briefly considering how, in analogy to what we
had in the single-qubit case, the reduced Hamiltonian not only contains information about the system
low-energy spectrum, but also about state probabilities (as well as operator matrix elements). For instance,
when we set M12 = 2 pH, the SWT reduction produces the following effective qubit Hamiltonian:

Hq =− 0.125σz,1 − 0.121σz,2 − 0.516σx,1 − 0.509σx,2

− 0.459σx,1σx,2 + 0.500σy,1σy,2 + 1.079σz,1σz,2. (75)

One can easily find that the first excited state of this Hamiltonian is
|E1〉 = −0.0046|00〉+ 0.7041|01〉 − 0.7101|10〉 − 0.0012|11〉, i.e. an entangled state where the two qubits
are in opposite computational states with probability approximately one (i.e. p(q1 = 0|q2 = 1) = · · · � 1).
This should translate to the fact that, at the circuit level, there is a high probability of measuring currents of
opposite sign on the two qubits, when the system is in its first excited state. In other words, if the persistent
current of one of the qubits is measured to be positive, the other qubit is projected on its negative persistent
current state, and vice versa. We can verify that this is actually the case by using the projectors on the
positive and negative subspaces of the qubit current operators and calculating their expectation value on the
first excited state |E1〉 of the circuit Hamiltonian. Table 3 gives the probabilities of measuring the different
computational states on |E1〉 and different current sign combinations on |E1〉. The two results are in good
agreement.

4.2.2. ZZZ coupling
As the final example we consider a proposed circuit implementing a three-local ZZZ interaction between
three flux qubits, presented in [37]. The circuit diagram is shown in figure 10(a) and consists of the three
flux qubits (in this case rf-SQUID qubits) and two compound-Josephson-junction rf-SQUID couplers. The
main loops of the two couplers, one of which contains a twist, mediate a magnetic interaction between the
superconducting loops of qubits q1 and q2 (see figure 10(a)). If the flux applied to the coupler main loop,
Φz,ci is kept constant, the flux applied to its dc-SQUID loop, Φx,ci, controls the effective mutual inductance
between the qubits and therefore the magnitude and sign of the effective ZZ interaction [42]. By
magnetically coupling the current loop of qubit q3 to the coupler dc-SQUID loop, one can control the two
local interaction between q1 and q2 with the current state of q3, therefore obtaining a three-local
hzzzσ̂z1σ̂z2σ̂z3 interaction [37].

The solid lines in figure 10(b) show the effective Hamiltonian coefficients for the system consisting of
the three flux qubits and the single coupler c1, extracted using the SWT reduction method. The main loop
of the coupler and those of the three qubits are all biased at Φz,c1 = Φz,i = Φ0/2, such that the qubit
longitudinal fields are all zero. The transverse fields are also zero with the physical parameters considered
(which are given below). As expected, we find a three-local interaction term ∝ hzzz, in addition to a residual
two-local interaction between qubits q1 and q2, ∝ hzzI and a large longitudinal field hIIz on qubit q3.

The parameters used in the simulations are as follows: all qubits (i = 1, 2, 3) have EJ,i = 99.3 GHz,
Lq,i = 4.5 nH and a large shunting capacitance Csh,i = 45 fF; the two coupler junction Josephson energies
are EJ1,c1 = EJ2,c1 = 233.4 GHz, the coupler main loop inductance is Lz,c1 = 550 pH, while the small loop
has an inductance of Lx,c1 = 170 pH and is shunted by a capacitance Csh,c1 = 10 fF; all mutual inductances
are 50 pH. As in the previous simulations, the rf-SQUID qubit Hamiltonians have been expressed in a basis
of 40 occupation number states. The three degrees of freedom of the coupler are expressed using 20
occupation number states for the small plasma frequency mode and 7 for the higher plasma frequency
modes. The total Hamiltonian is projected on the lowest 8 unperturbed eigenstates of each qubit and on the
lowest 5 unperturbed coupler eigenstates. Since the effective Hamiltonian here is diagonal in the
computational basis, its coefficients can also be calculated with the method used in [37] and reviewed in
section 3.2.2. The result of this reduction is represented by the filled dots in figure 10b and matches very
well with the result of the SWT reduction.
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Figure 10. (a) Circuit diagram of three flux qubits and the three-local ZZZ interaction circuit, described in [37], consisting of
two compound-Josephson-junction rf-SQUID tunable magnetic couplers, one of which, c2, has a twist in the main loop. (b)
Solid lines: Pauli coefficients extracted, using the SWT-based reduction method, for the system of three qubits and coupler c1, as
a function of f x,c1. (Note that c2 is absent here.) Filled circles: same coefficients, extracted using the diagonal Hamiltonian
reduction method. (c) Pauli coefficients numerically extracted for the circuit in (a). Solid lines: SWT-based reduction method.
Filled circles: diagonal Hamiltonian reduction method. (d) Energy spectrum, relative to the ground state, of the circuit in (a).
Solid lines: circuit Hamiltonian. Filled circles: effective qubit Hamiltonian.

Introducing a twist in the coupler, for instance changing the mutual inductance between the coupler and
qubit q2 from 50pH to −50 pH (as in coupler c2), and changing the sign of the coupler x-bias, reverses the
sign not only of the two-local coefficient hzzI , but also of hIIz. The three-local interaction coefficient,
however, remains of the same sign. Therefore attaching both couplers c1 and c2 to the qubits leaves us with a
purely three-local Hamiltonian. The numerical simulation of the full system agrees with this picture. The
Pauli coefficients extracted, as a function of fx,c1 = −fx,c2, are shown in figure 10(c), with the solid lines and
the dots being the result of the SWT and the diagonal Hamiltonian reduction method, respectively. Coupler
c2 shares the same physical parameters as c1 and is also biased at fz,c2 = 0.5. Its lowest 5 unperturbed
eigenstates are kept for representing the full system Hamiltonian. As we can see, the size of the three-local
ZZZ interaction can be changed from zero to as much as 700 MHz in the range of fluxes considered. Its sign
can also be changed to negative by biasing at f ′x,c1 = −f ′x,c2 = 2 − fx,c1 [37].

Finally we can check that the reduced Hamiltonian has the correct spectrum. This is shown in
figure 10(d), where the filled dots represent the effective qubit Hamiltonian transition energies and the solid
lines those of the circuit Hamiltonian. The levels are grouped in two manifolds each of four degenerate
levels, separated by an energy of 2|hzzz|. In the ground state manifold the expectation value of the product of
the qubit currents, 〈̂I1 Î2 Î3〉, and therefore 〈σ̂z1σ̂z2σ̂z3〉 in the reduced model, is negative, while it is positive
in the excited manifold states. At energies above 8 GHz we see the additional states of the system,
specifically the first excited states of the couplers. As we can see, the interaction does not close the spectral
gap of the Hamiltonian, which allows us to use the Schrieffer–Wolff transformation reduction method.

5. Conclusions

We have developed a systematic numerical method for determining the effective spin Hamiltonian, written
in the appropriate computational basis, describing a system of interacting superconducting circuits. Our
starting point was a numerical representation of the circuit Hamiltonian, in which each component is
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described as a lumped-element circuit, with potential magnetic and electrostatic biases, and interacts with
the other components through mutual inductive or electrostatic interactions.

Comparison with other reduction approaches in the literature and self-consistency checks on the system
spectrum allowed us to demonstrate the validity of our reduced model. At the same time, our approach is
based on more general assumptions than other reduction methods in the literature. Therefore, in the case of
isolated superconducting qubits we have seen that choosing the local computational basis with explicit
reference to the measurement operator improves the accuracy of the reduced Hamiltonian, in terms of both
the spectrum and expectation values of circuit operators. This is especially true for qubit designs with
reduced anharmonicity, such as the capacitively-shunted flux qubit. In the multiple-qubit case, the
Schrieffer–Wolff transformation theory provided the basis for calculating the effective spin Hamiltonian,
the only requirement for its application being that the size of the spectral gap of the unperturbed
Hamiltonian should be larger than the size of the interaction. In principle this limitation can be
circumvented, as long as one is able to partition the system in smaller units, and as long as the qubits in
each unit display sufficient anharmonicity. Numerical calculations of the effective multiple-qubit
Hamiltonians provided results in good agreement with the existing reduction methods, when these were
used within their range of applicability.

This reduction method should prove useful in different areas of applied quantum computation, where
complex systems of continuous variable circuits are described in terms of interacting two-level systems. In
practice one could start by fitting the parameters in the circuit model to some preliminary data, then extract
the effective qubit Hamiltonian as a function of the control biases. The reduced model could then be
verified with additional experiments, for instance spectroscopic or state population oscillation
measurements, and successively be employed as the reference model for the operation of the system [18]. In
the context of circuit design this method can be used to model the interplay between different qubit
Hamiltonian terms, for instance the effect of the coupler bias on the qubit transverse fields [14] (i.e.
dynamic inductive loading), or to predict the size of non-Ising terms like non-stoquastic or many-body
interactions (as well as of Ising terms like the transverse fields, beyond the instanton
approximation).
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Appendix A

A.1. Capacitance and inverse inductance matrices
In this appendix we give the definition of the capacitance and inverse inductance matrices used to specify
the linear part of the circuit Hamiltonian ĤLC.

For a circuit with N nodes (ground node excluded), these are two symmetric N × N matrices. In the
capacitance matrix, each diagonal element (C)ii represents the sum of the capacitances connected to the ith
node, while, for every pair of nodes i �= j, the off-diagonal element (C)ij equals minus the total capacitance
between i and j. For the circuit in figure 5, for instance, the capacitance matrix is

C =

⎛⎝ CJR 0 −CJR

0 CJL + CJT + Csh −CJT − Csh

−CJR −CJT − Csh CJR + CJT + Csh

⎞⎠ , (76)

whose inverse is

23



New J. Phys. 22 (2020) 053040 G Consani and P A Warburton

C−1 =

⎛⎜⎜⎜⎜⎜⎝
CJL + CJR + C‖

CJLCJRC‖

1

CJL

CJL + C‖
CJLC‖

1

CJL

1

CJL

1

CJL
CJL + C‖

CJLC‖

1

CJL

CJL + C‖
CJLC‖

⎞⎟⎟⎟⎟⎟⎠ , (77)

where C‖ = CJT + Csh. Notice that 1/(C−1)ii corresponds to the effective capacitance between node i and
ground.

In analogy with C, the inverse inductance matrix L−1 has, along the diagonal, the sums of the inverse
inductances connected to each node and, in the off-diagonal elements, the total inverse inductance between
pairs of nodes. The inverse inductance matrix for the circuit in figure 5 is, for instance,

L−1 =

⎛⎜⎝
1

L
0 0

0 0 0
0 0 0

⎞⎟⎠ . (78)

A.2. Capacitance and inverse inductance matrices: interacting circuits case
In this appendix we show how to modify the capacitance and inverse inductance matrices of two circuits in
order to take into account their interactions. The following definitions can easily be extended to the case of
more than two interacting circuits.

Let C1 and C2 be the two original capacitance matrices of the two circuits (as defined in appendix A.1),
and let their sizes be N × N and M × M, respectively. Let C12 be the N × M matrix whose elements are the
capacitances between pairs of nodes belonging to different circuits. Consider then the following
(N + M) × (N + M) matrix:

C =

(
C′

1 −C12

−CT
12 C′

2

)
, (79)

where the primed matrices include the additional capacitance attached to each node, i.e.:

(C′
1)kk = (C1)kk +

M∑
k′=1

(C12)kk′ , ∀k = 1, . . . , N

(C′
2)kk = (C2)kk +

N∑
k′=1

(C12)k′k, ∀k = 1, . . . , M.

(80)

Notice that C is nothing but the capacitance matrix defined for the extended circuit including all the nodes
of the two interacting circuits. By inverting it, we get:

C−1 =

(
C̃−1

1 C−1
m

(C−1
m )T C̃−1

2

)
, (81)

where C̃−1
1 and C̃−1

2 are the new inverse capacitance matrices of the two circuits (cf equation (13)) which
include the effect of the external capacitive loading, and C−1

m is the inverse mutual capacitance matrix,
describing the interaction between the two circuits, which appears in equation (14).

For the inductive interactions, these involve pairs of inductive branches belonging to different circuits,
coupled by their mutual inductance. Let N ′ and M′ be the number of branches in the two circuits and
consider the following (N ′ + M′) × (N ′ + M′) matrix:

Lb =

(
L̃b1 −M

−MT L̃b2

)
, (82)

where L̃bi is the inductance matrix of circuit i in the branch representation, having along the diagonal the
self-inductance of each branch (L̃bi)kk = Lbik

and zeros everywhere else, and M̃ is the N ′ × M′ matrix whose
elements are the mutual inductances between pairs of inductive branches. Inverting Lb, we obtain

L−1
b =

(
L−1

b1 M−1

(M−1)T L−1
b2

)
, (83)
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Figure A1. Lowest 20 energy eigenvalues of a C-shunt flux qubit, as a function of the linear size N of its truncated circuit
Hamiltonian. The pink line shows the time (indicated on the right vertical scale) required to numerically compute each set of 20
eigenvalues.

where M−1 is the matrix appearing in equation (16). L−1
b1 and L−1

b2 can be used to rescale the inverse
inductance matrices of the two circuits (see equation (15)). This is accomplished by replacing each branch
inductance Lbik

appearing in the expression of L−1
i with 1/(L−1

bi )kk.

A.3. Spectrum convergence
In this section we consider the convergence of the numerical spectrum of a qubit circuit as a function of the
number of states included in the basis used to describe each of its modes. We refer to this number as the
(mode) truncation.

The circuit examined here is that of the capacitively-shunted flux qubit shown in figure 5. By inspecting
its circuit Hamiltonian, we find that the mode associated with node 1 (O1) is conveniently expressed in a
basis of harmonic oscillator states below a certain occupation number Nmax

O , while those associated with
nodes 2 (C1) and 3 (C2) are better expressed in the charge number basis, keeping only integer charges lower
in absolute value than Nmax

C1 (Nmax
C2 ) [35, 40, 41].

Figure A1 shows the lowest 20 eigenvalues of the approximate circuit Hamiltonian H(N)
e.,m., as a function

of its linear size N = (Nmax
O1 + 1) · (2Nmax

C1 + 1) · (2Nmax
C2 + 1), as well as the time required to evaluate them

(shown by the pink line and indicated on the right vertical axis). The qubit is taken to be biased at the
optimal point fz = Φext

23 /Φ0 = 0.5 and its other physical parameters are given in section 4.1.1 of the main
text. In the graph the values of the truncations Nmax

O1 , Nmax
C1 and Nmax

C2 are increased sequentially going from
left to right, starting from the values (Nmax

O1 , Nmax
C1 , Nmax

C2 ) = (2, 3, 3). As we can see, all of the 20 lowest
eigenvalues have converged for the set of truncations (9, 10, 10), corresponding to a Hamiltonian of linear
size N = 4410. As it turns out, the convergence is mainly determined by the Josephson modes, and the set
(3, 10, 10) (N = 1323) is already sufficient to obtain the same eigenvalues. Also notice that the lowest three
eigenvalues already converge for the set of truncations (3, 5, 5) and N = 363.

The eigenvalue evaluation times refer to the use of MATLAB © eigs algorithm [38], run on a quad-core
laptop CPU. As the pink line in the graph shows, the run time scales as a power law of the linear matrix size
(notice the log–log scale), namely trun � (1.1 · 10−5 s) · N1.4, as results from a non-linear fit.

A.4. Tunnelling rates in the rf-SQUID qubit with the instanton method
The semi-classical description of tunnelling through a potential barrier is a very well-known subject in
quantum mechanics and is routinely used in many applications of chemistry and quantum physics [33, 46,
47]. In order to describe the tunnelling between the two opposite persistent current states of the rf-SQUID
qubit, we are going to use the formalism developed in [48], which applies to a generic, potentially
asymmetric double-well potential. Let us first write the semi-classical potential of the circuit [4]:

V(ϕ) = UL ·
[

(ϕ− ϕext)2

2
+ βL(1 − cos ϕ)

]
, (84)

where ϕ = 2πΦ/Φ0 is the dimensionless total flux, ϕext is the externally applied flux, UL = (Φ0/2π)2/L is
the characteristic inductive energy and βL = EJL(2π/Φ0)2 is called the screening parameter. When βL � 1
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Figure A2. rf-SQUID semi-classical potential (black line) for ϕext/2π = 0.49, and its two symmetrised versions (dashed lines).
Also shown are the energies of the lowest bound states in the two wells.

and ϕext/2π � 0.5, this potential has three stationary points, given by the solutions of the transcendental
equation

βL sin ϕ = ϕext − ϕ. (85)

Two of the solutions, say ϕL and ϕR, correspond to the minima of the left and right potential wells,
respectively, while the third, ϕM , is the maximum of the barrier between them (ϕL < ϕM < ϕR). For
instance, when UL = 65 GHz, βL = 1.9 and ϕext/2π = 0.49, we obtain the potential profile shown in
figure A2 (solid black line, sitting below the dashed lines).

According to the semi-classical theory, the low energy behaviour of the rf-SQUID system can be
described in terms of the tunnelling between the lowest bound states in its two potential wells, ΨL(ϕ) and
ΨR(ϕ) [33]. These represent the local solutions to the stationary Schrödinger equation, in the limit where
the two wells are completely isolated from each other (eg. ϕL � ϕR). One way to approximately identify
these solutions is by considering the second-order series expansion of the potential around its minima:

V(ϕ) � V(ϕi) +
V ′′(ϕi)

2
(ϕ− ϕi)

2, i = L, R. (86)

Then ΨL(ϕ) and ΨR(ϕ) approximately correspond to the vacuum states of two displaced harmonic
oscillators, such that [

− (2e)2

2C

∂2

∂ϕ2
+

V ′′(ϕi)

2
(ϕ− ϕi)

2

]
Ψi(ϕ) = EiΨi(ϕ), (87)

with C the total capacitance across the Josephson junction, and

Ei = V(ϕi) +
�ωi

2
. (88)

The oscillator frequency here is

ωi =
2π

Φ0

√
V ′′(ϕi)

C
=

√
1 + βL cosϕi

LC
. (89)

Notice that these states have a phase expectation value of 〈ϕ̂〉i = ϕi and an average persistent current of

〈̂I〉i := − 〈∂Ĥe.,m.

∂Φext
〉 i =

2πUL

Φ0
〈ϕ̂ − ϕext〉 i =

Φ0

2π

ϕi − ϕext

L
. (90)

Therefore, since ϕL < ϕext < ϕR, the bound states also correspond to persistent current states of opposite
sign, as expected.

Quantum tunnelling across the potential barrier couples the two bound states, leading to the repulsion
between their energy levels. The resulting eigenstates of the system are determined by the following
two-level Hamiltonian, expressed in the persistent current basis {|ΨR〉, |ΨL〉}:

Hq =

(
ER −Δ

−Δ EL

)
=

ER + EL

2
σI −Δσx +

ER − EL

2
σz, (91)
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where Δ is the tunnelling energy. This represents the effective qubit Hamiltonian of the circuit, and is again
in the standard form of equation (26).

Finally, following reference [48], we can write the tunnelling energy explicitly as:

Δ = A ·
√
ΔLΔR, (92)

where

A =
1

2

[(
V0 − EL

V0 − ER

)1/4

+

(
V0 − ER

V0 − EL

)1/4
]

, (93)

with V0 = V(ϕM), and where ΔL,R is the tunnelling energy relative to the symmetric double-wells VL(ϕ)
and VR(ϕ), obtained by reflecting V(ϕ) about the local maximum ϕM (cf dashed lines in figure A2):

VL(ϕ) = V(min(ϕ, 2ϕM − ϕ)),
VR(ϕ) = V(max(ϕ, 2ϕM − ϕ)).

(94)

The instanton result for the symmetric double-well tunnelling energies reads:

Δi = �ωie
− Si

� , i = L, R (95)

with Si the tunnelling action, given by:

Si =
Φ0

2π

∫ ϕi,2

ϕi,1

√
2C(Vi(ϕ′) − Ei)dϕ′, (96)

where ϕi,1 = 2ϕM − ϕi,2 are the two points at which the potential barrier intersects the energy level:
Vi(ϕi,1) = Vi(ϕi,2) = Ei. This semi-classical formula holds when Si � � and therefore in the limit of small
tunnelling energies [34].
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