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Quantum sensing and cooling in three-dimensional levitated cavity optomechanics
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Typical quantum cavity optomechanics allows cooling and detection of a single mechanical degree of freedom
with its motion along the cavity axis. However, a recent breakthrough using cavities populated solely by coherent
scattering (CS) allowing quantum ground-state cooling of levitated nanoparticles [U. Delić et al., Science 367,
892 (2020)], is uniquely three dimensional (3D) in character, with coupling along all three spatial axes. We
present a reanalysis of current experiments and show that the underlying behavior is far from the addition of
independent one dimensional spectral components and that cooling and sensing analysis must consider, to date
neglected, nontrivial 3D hybridization effects arising from interferences between the x, y, z modes as well as the
optical modes. These lead to new heating and sympathetic cooling channels and modify phonon occupancies.
Unique to these systems, we find a close relation between cavity-mediated and direct hybridization terms that
can completely suppress the 3D behavior.
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I. INTRODUCTION

The coupling of mechanical motion to the optical mode of
a cavity permits not only strong cooling, but also ultrasensitive
displacement detection, and has led to advances ranging from
quantum ground-state cooling of mechanical oscillators [1,2]
to detection of gravitational waves by LIGO [3]. Optomechan-
ics employing levitated dielectric particles has recently also
experienced rapid development [4,5]. The unique potential of
levitated cavity optomechanics in terms of decoupling from
environmental heating and decoherence, coupled with the
sensitivity of displacement sensing offered by optical cavities,
was already recognized in 2010 [6–8]. Actual experimental
realizations represent a formidable technical challenge: the
levitated nanoparticle must be cooled from room tempera-
tures, and is initially millions of quanta above the quantum
ground state.

Most initial proposals were for self-trapping setups
[7,9,10], with trapping and cooling both provided by the
cavity modes [11], but this failed to allow stable trapping at
high vacuum [10–12]. In order to overcome this roadblock,
hybrid setups combining, for instance, a tweezer and cavity
traps [6,13], or a hybrid electro-optical trap [14,15], or a
tweezer and near field of a photonic crystal [16], allowed some
progress toward the ultimate goal of quantum ground-state
cooling.

This year, an important breakthrough was the realization
that the tweezer trapping light coherently scattered (CS) into
an undriven cavity offers major advantages [17–21]: the re-
sulting optomechanical couplings along every axis can be
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comparatively large even for modest mean cavity photon num-
bers, minimizing the deleterious effects of photon scattering
[22–24]. As a result, quantum cooling of the center of mass of
a levitated nanoparticle to phonon occupancies nx < 1 along
the x axis (see Fig. 1 for definition of axes) was recently
reported [25].

However, although current experiments probe the full three
dimensional (3D) displacement PSD (power spectral density)
S3D

xx (ω) = 〈|x̂3D(ω)|2〉, via heterodyne optical detection, the
experimental analysis to date has not fully considered 3D
dynamics. We show here the 3D spectra can differ from the
one dimensional (1D) case both qualitatively and quantita-
tively. This has significant implications for thermometry and
also for sensing, so here we reanalyze the quantum-cooling
experiments in [25] with 3D spectra. We find we can correct
the 1D displacement spectra as follows:

x̂3D(ω) = x̂1D(ω) + Gxy(ω)ŷ3D(ω) + Gxz(ω)ẑ3D(ω) (1)

by introducing a hybridization function G jk (ω) with a simple
form. In particular, we obtain analytical PSDs in excellent
agreement with experiment as well as with the stochastic
numerics based on the full tweezer and cavity potentials. More
generally for any mechanical mode q̂ j (e.g., q̂ j ≡ x̂, ŷ, ẑ),
Eq. (1) becomes

q̂3D
j (ω) = q̂1D

j (ω) +
∑
k �= j

G jk (ω)q̂3D
k (ω). (2)

An interesting consequence of the multimode interference
is that the measured PSDs are nonadditive: for instance,
the weakly coupled y mode can experience strong sympa-
thetic cooling that lowers the phonon occupancy ny sig-
nificantly, due to optomechanical intermode correlations.
The G jk (ω) combines interference between indirect, cavity-
mediated coupling and direct intermode coupling terms that
have been overlooked in previous studies. A key finding is
that there is a close relation between the direct and indi-
rect channels that can lead to exact cancellation, eliminating
hybridization.
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FIG. 1. (a) Setup for coherent scattering (CS) levitated optomechanics experiments [25]: a nanoparticle is held by a tweezer trap within a
cavity. The cavity is undriven, but is populated by photons coherently scattered from the tweezer. The nanoparticle is placed at a point φ � kx(c)

0

from the antinode of the cavity field. In [25] φ = π/2, corresponding to a near “empty cavity” with near zero mean photon occupancy. The
pattern of coherent photon scattering [23] (right panel) into the cavity depends on the tilt θ of the tweezer polarization axis. (b) Analysis of
the experiments: in [25], measured heterodyne PSDs showed a broad feature (attributed to the strongly coupled, quantum-cooled x mode)
and a sharp narrow peak (attributed to the weakly coupled, weakly cooled y mode). Thus, the 1D thermometry considered only the broad
sideband features to infer nx = 0.8 at � = −380 kHz. The left panel shows calculated heterodyne PSDs (red sideband). However, comparison
with S3D

xx (ω) at experimental detuning values −380 and −580 kHz [25] (both blue and red sidebands are shown in the right panels) indicates
that in fact the narrow spike mostly corresponds to x motion, responding at the frequency of y. Thus, the spike must also be included in
thermometric calculations approximately doubling nx relative to the 1D analysis in [25]. We show that (due to the optical spring effect)
at these detunings the x mode has been pushed into a degeneracy with the y mode, enhancing hybridization, even for the “empty cavity.”
(c) Shows 1D vs 3D phonon occupancies for nx and ny. n3D

y can be almost an order of magnitude lower than n1D
y as a result of the sympathetic

cooling induced by 3D coupling. Dotted line plots results from the standard cooling formula of optomechanics that gives perfect agreement
for 1D analytics, particularly for the weakly coupled y mode. (b), (c) There is pure cavity-mediated coupling ∝gxgy as gxy � 0. We have
set gx

2π
� 80 kHz � gy

2π
� 7.7 kHz for θ = 0.47π . The nanoparticle radius is R0 = 71.5 nm, the finesse is F = 73 000, and the pressure is

P = 10−6 mbar.

II. TWEEZER-CAVITY SETUP

We consider the experimental CS setup in [22–25], shown
in Fig. 1(a), which involves levitating a dielectric nanoparticle
in a tweezer within a cavity. The tweezer and cavity symmetry
axis are orthogonal and the tweezer polarization and the cavity
axis are tilted at an angle θ . The cavity in these setups is
undriven but is populated entirely by light coherently scattered
from the tweezer field. The cavity decay rate is κ and the
particle moves under the combined effect of the tweezer
trapping field and the coherently scattered light. The tweezer
ωL is detuned by a frequency � = ωL − ωc < 0 from the
cavity resonance at ωc.

In [22–25], the CS system was found to yield the potential
(see also Appendix D)

V̂int

h̄
= −Ed cos[φ + k(x̂ sin θ + ŷ cos θ )]âe−iβ(ẑ) + H.c.,

(3)

where φ ∼ kx(c)
0 , x(c)

0 is the displacement between the tweezer
focus and an antinode of the cavity [see Fig. 1(a)], β(z) =
kz − arctan(z/zR), zR is the Rayleigh range, k = ωc/c, c is the
speed of light, and Ed is the coupling rate determined by the
particle polarizability and input power to the tweezer.

Optomechanical coupling strengths were derived in
[22–24] by the well-known procedure of linearizing Eq. (3)
about small displacements from the tweezer origin and
the mean cavity amplitude ᾱ. In particular, they have ob-
tained the interaction V̂int

h̄ � ∑
j ĥ(int)

j , where ĥ(int)
j = g j (â† +

â)q̂ j . Specifically, the optomechanical coupling strengths g j

were obtained in terms of the experimental parameters, i.e.,
gx

xzpf sin θ
= gy

yzpf cos θ
= −Ed k sin(φ), where q j,zpf = √

h̄/2mω j ,
and q j denotes the mechanical mode. An interesting finding
there was that the z mechanical mode is coupled to the
phase quadrature and the coupling is of the nonstandard
form for optomechanics, i.e., gzi(â† − â)ẑ, where gz = −Ed k
cos(φ)zzpf.
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III. DIRECT COUPLING TERMS AND
HYBRIDIZATION FUNCTION

In this work, we take the previous analysis of couplings a
step further: a full linearization (quadratic in the Hamiltonian)
of Eq. (3) should include additional terms directly
coupling the motions V̂int

h̄ = ∑
j ĥ(int)

j + ∑
j<k g jk q̂ j q̂k .

We find gxz

xzpf sin θ
= gyz

yzpf cos θ
= −P0Ed k2 sin(φ)zzpf while

gxy = −Y0Ed k2 cos(φ) cos θxzpfyzpf. Here, (Y0 + iP0)/2 =
ᾱ � −Ed cos(φ)[� − iκ/2]−1 are the components of the
mean intracavity field ᾱ. Thus, these (previously overlooked)
direct terms are light induced, but where the degrees
of freedom of the electromagnetic field do not play an
active role. They are thus quite distinct from nonlinear,
position-squared coupling terms g j (â† + â)q̂2

j which lead to
observed sidebands at 2ω j in optically trapped systems at
higher temperatures [15,23].

To obtain 3D spectra, we start from a generic quadratic
Hamiltonian including both cavity-mediated and direct
matter-matter couplings. By writing the equations of motion
in Fourier space we solve for the mechanical motions and
obtain the 3D couplings (see Appendix A)

G jk (ω) = iμ j (ω)

Mj (ω)
[iη jk (ω)g jgk + g jk], (4)

which were introduced in Eq. (1). The prefactor, where
Mj (ω) = 1 + g2

jμ j (ω)η0(ω), is peaked around one of the
mechanical frequencies, i.e., ω ≈ ±ω j . The μ j (ω) are me-
chanical susceptibilities, while η0, η jk are the optical suscep-
tibilities. However, it is the terms in the square brackets that
are of most physical interest. One can see they describe the
interference between a direct, ∝g jk , and a cavity-mediated,
indirect coupling, ∝g jgk , between any two displacements.
In other words, suppressing or conversely enhancing 3D
dynamics will involve either suppressing or correspondingly
enhancing the 3D coupling via destructive or constructive
interference of direct and indirect pathways near ω ≈ ω j .

We have the usual mechanical susceptibility
μ j (ω) = χ (ω,ω j, �) − χ∗(−ω,ω j, �) and optical
susceptibility η0(ω) = χ (ω,−�, κ ) − χ∗(−ω,−�, κ ),
where χ (ω, ◦,
) = [−i(ω − ◦) + 


2 ]−1. We also define
ηxy = η0 to be symmetric under exchange of indices,
i.e., ηyx = ηxy. However, because of the unusual coupling
of the z mode we have to introduce additional optical
susceptibilities. Specifically, we define ηxz(ω) = ηyz(ω) =
i[χ (ω,−�, κ ) + χ∗(−ω,−�, κ )], as well as ηzx = −ηxz and
ηyz = −ηzy, i.e., here the susceptibilities are antisymmetric
under the exchange of indices. In other words, from (4) we
find that the coupling of x and y to z is quite different than the
coupling of z to x and y.

With these susceptibilities, the G jk are fully specified and
Eq. (1) can be solved self-consistently to yield 3D PSDs of
all the mechanical and optical modes that can be used to
investigate experimental regimes. As all our PSDs are given
in terms of the G jk , the PSD expressions do not depend on
whether the coupling is direct (gk j � g jgk), indirect (gk j �
g jgk), or intermediate. There is no advantage in numerical
prediagonalizations to put the mechanical Hamiltonian in nor-
mal formal; such a procedure is parameter dependent as gk j

depends on �, thus complicating experimental comparison.
As we will see, Eqs. (1) and (4) give a full quantitative as well
as intuitive explanation of the physical mechanisms involved
in the quantum-cooled experiments [25].

IV. ANALYSIS OF GROUND-STATE COOLING
EXPERIMENTS

Although all calculations presented in the figures employ
the full 3D analysis, for physical understanding here we
discuss thermometry of the x-y motion, most relevant to the
experiments in [25]. The z motion is effectively decoupled
as its frequency is not close to the ones of the x and y
motions. Those experiments used φ = π/2 so were in the
regime of pure cavity-mediated coupling, i.e., “empty cavity,”
where θ � (0.47–0.49)π , and hence gx � gy. In Fig. 1(b) our
expressions reproduce key experimental features. However,
comparison between optical and x-motion PSDs shows that
the 1D analysis decomposing heterodyne sidebands into (i) a
broad “x-motion” plateau and (ii) a sharp “y-motion” peak,
does not yield reliable thermometry if there is hybridization
[Fig. 1(c)]. To establish how much of the heterodyne sideband
area belongs to the strongly cooled x mode, we need to
consider the full 3D spectra.

For understanding, we can simplify our 3D PSDs for both
x and y motion:

S3D
xx (ω) � S1D

xx (ω) + |Gxy(ω)|2S3D
yy (ω), (5)

S3D
yy (ω) � S1D

yy (ω)

|1 − Gyx(ω)Gxy(ω)|2 . (6)

For the x motion, the important difference between the S3D
xx

and S1D
xx arises from the second term in Eq. (5). This lat-

ter term is not an interference term, but an additive term,
which always results in additional heating, and it provides
the sharply peaked feature around ω � ωy. For the y motion,
on the other hand, the correction in Eq. (6) arises from
back-action-induced correlations between the modes: it is an
interference effect that can either heat or cool. In [25] it
opens a new sympathetic cooling channel for the y motion
as shown in Fig. 1(c). In Appendix E, we show these rescaled
1D sidebands in Eq. (5) [and (6)] accurately account for the
differences between the full 3D and 1D PSDs.

The heterodyne detection records the y motion with am-
plitude ∝g2

y|η0(ω)|2S3D
yy (ω) (where frequencies are shifted by

the appropriate reference oscillator). On the other hand, the y
hybridization component, i.e., the x motion responding at the
frequency of y motion in the second term in Eq. (5), scales as
∝g2

x|η0(ω)|2|Gxy(ω)|2S3D
yy (ω). The y : x component ratios may

be estimated 1 : R where

R = g2
x

g2
y

|Gxy(ω � ωy)|2. (7)

We have g2
x

g2
y

� 100 and considering the hybridization region

� = −380–420 kHz we find R ≈ 3–5; thus, ≈80%–90% of
the sharp peak is due to hybridization and hence contributes
to nx thermometry. However, for the strongest cooling data at
� = −300 kHz, we find R = 1.1, and thus in the strongest x
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cooling region only half the ω � ωy peak is due to hybridiza-
tion.

In [25], a spectrum at −380 kHz was analyzed in detail
to yield nx � 0.8. Revisiting with the 3D analysis, we esti-
mate a near doubling of the area, thus, nx � 1.5. A further
experimental data point was reported (without spectral details)
for −315 kHz that yielded nx = 0.4 from 1D analysis. In
the Supplemental Material of [25] the full sideband area
including the peak was given at nx = 0.9. This sideband
is completely dominated by the “y” peak. However, for
R = 1.1 only half the peak is x motion and one can thus
estimate nx ≈ 0.6–0.7.

From the above analysis, we can see that the sharp peak to
a good approximation carries the asymmetry of the y motion.
If one eliminates the asymmetry introduced by the cavity
susceptibility function |η0(ω)|2, the underlying asymmetry of
the sharp ω � ωy peak is ny(3D) + 1 : ny(3D). In contrast,
the asymmetry of the broad feature is closer to nx(1D) + 1 :
nx(1D). This is in sharp contrast to the usual scenario in
optomechanics where the red and blue sidebands have exactly
the same shape but are simply rescaled by a factor n/(n + 1)
where n is the appropriate occupancy.

V. SUPPRESSION OF HYBRIDIZATION

The direct coupling gxy has not previously been considered
in the experimental analysis [22–24] but we find they can be
of great importance. In particular, one can show that gxy �
−gxgy

2 Re(ᾱ) cos φ

Ed sin2 φ
, and since ᾱ � −iEd cos(φ)[� + iκ/2]−1,

we then readily find

gxy � gxgy

[
2� cot2 φ

�2 + κ2

4

]
. (8)

Thus depending on the positioning � or κ , the direct cou-
plings’ contribution can be similar or exceed the cavity-
mediated coupling.

In Fig. 2 we compare analytical, closed-form PSDs we
obtained with 3D QLT and Eq. (1), with direct solutions of
the nonlinear Langevin equations of motion, using the tweezer
and cavity potential functions. In the latter, the gj and g jk

are not parameters but rather simply emergent properties in
the limit of low-amplitude displacements. The symmetrized
analytical quantum spectra show excellent agreement with
numerics in both quantum regimes as well as thermal (higher-
pressure regimes) provided the latter are cooled enough so
that nonlinearities do not generate additional peaks in the
optical spectra [15]. Furthermore, Fig. 2 also demonstrates the
importance of the previously neglected gk j terms: in partic-
ular, leading to double-peaked structures (x-y hybridization)
for φ � 0 where cavity-mediated coupling gxgy � 0 terms
are negligible, as well as φ → π/2, where gxy → 0, but the
cavity-mediated coupling from gxgy are strong.

However, the φ = π/4 case is the most interesting and
represents a key finding: here, the x-y hybridization almost
fully vanishes. Although both direct and indirect contribu-
tions are strong, they interfere destructively. We can show
that iη(0)(ω) → −2�

(κ/2)2+�2 if −� � ω (and we are interested
primarily in the region ω ∼ ω j). Thus, for large −�, using

FIG. 2. Comparison with full numerics and demonstration of 3D
→ 1D transitions. Compares displacement PSDs using analytical
expressions for the 3D theory (dashed lines) with stochastic numerics
using the tweezer and cavity potentials (solid lines). The stochastic
numerics do not assume any values for the optomechanical cou-
pling strengths, mechanical frequencies, or equilibrium positions,
and include nonlinearities. Agreement is excellent and validates the
analytical model for x (black), y (red), and z (blue). The figure
also illustrates the transition from (i) 3D dynamics at low φ (top
panel; direct coupling ∝gxy) to (ii) 1D uncoupled dynamics at φ ≈
π/4 (middle panel) back to (iii) 3D dynamics at large φ ∼ 0.4π

(bottom panel; indirect cavity mediated coupling ∝gxgy). Regimes
of 3D dynamics have a high degree of hybridization of x, y modes
resulting in a prominent double-peaked structure. 1D dynamics
results from suppression of hybridization as seen at φ ≈ π/4 (mid-
dle panel), where destructive interference between the direct and
indirect pathways decouples the modes for −� � ω j . Parameters
similar to the experiment in [23]: input power Pin = 0.17 W, � =
−300 kHz; however, nanoparticle radius R0 = 100 nm and finesse
F = 150 000 are slightly larger, with gas pressure P = 10−6 mbar,
and θ = 0.2π .

Eqs. (4) and (8), we can readily show

Gxy(ω) � gxgy

[ −2�

�2 + (κ/2)2

]
[1 − cot2 φ], (9)

and the x, y coupling G3D
xy (ω) thus vanishes. The transition

from 3D to a near decoupled 1D regime seen above is further
illustrated in Fig. 2 (middle panel). The previously overlooked
coupling gxy can thus lead to nontrivial consequences. For
example, a calculation in [24] [Fig. 6(a) there] at φ = π/4,
−� > κ , but without direct coupling terms, shows a x-y
hybridization feature in a regime where it should be strongly
suppressed.

VI. CONCLUSIONS

We have shown that 3D optomechanical displacement
sensing can be far from a trivial sum of PSDs associated
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to the x̂, ŷ, and ẑ degrees of freedom. CS systems have
provided the breakthrough that enabled ground-state cooling
in levitated nanoparticles: for reliable thermometry one should
either avoid or suppress hybridization regimes or do a full 3D
analysis. Although our work focuses specifically on recent
experiments on 3D cooling of levitated nanospheres, some
of the conclusions are generic. We show one may be able
to switch on or switch off some of the additional 3D effects
and that these can give advantages in terms of exceeding the
usual quantum back-action-limited occupancies for a given
coordinate. 3D optomechanics opens the way to new forms
of force and displacement sensing, including sensing the
direction as well as magnitude.
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APPENDIX A: QUANTUM LINEAR THEORY (QLT)

In this Appendix we review 1D QLT and provide details
of the derivation of our 3D QLT (quantum linear theory) of
optomechanics expressions.

1. Standard optomechanics QLT

In this Appendix we briefly review the framework of
quantum linear theory (QLT) of optomechanics. Optically
levitated systems [26,27] generally involve multiple optical
and mechanical modes. Such multimode systems (N optical
and M mechanical degrees of freedom) are typically described
by the well-studied linearized Hamiltonian [1]

Ĥ =
l=N∑
l=1

−�l â
†
l âl +

k=M∑
k=1

ωkb̂†kb̂k−
∑
k,l

g(l )
k (â†

l +âl )(b̂
†
k + b̂k ),

(A1)
where âl (â†

l ) is the annihilation (creation) operator for optical
mode l , and b̂k (b̂†k ) for mechanical mode k. �l is the detuning
between the input laser and the cavity mode l , while ωk is
the natural frequency of the mechanical oscillator, and g(l )

k
is the light-enhanced coupling strength between an optical
mode and a mechanical mode. For simplicity, dissipation
is characterized by a single optical damping rate κ and a
single mechanical damping rate � (though more complex
scenarios, for example with multiple mirror losses, can be
easily incorporated).

A set of 2(N + M ) quantum Langevin equations of motion
are obtained from Eq. (A1) by adding input noises. For exam-
ple, for the single-mode N = M = 1 case, where all g(l )

k ≡ g,
we have

⎛
⎜⎜⎝

˙̂a(t )
˙̂a†(t )
˙̂b(t )
˙̂b†(t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

i� − κ
2 0 ig ig

0 −i� − κ
2 −ig −ig

ig ig −iω − �
2 0

−ig −ig 0 iω − �
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

â(t )
â†(t )
b̂(t )
b̂†(t )

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

√
κ âin(t )√
κ â†

in(t )√
�b̂in(t )√
�b̂†in(t )

⎞
⎟⎟⎠, (A2)

where âin (b̂in) is the optical (mechanical) input noise. The
above equation even for arbitrary numbers of modes can be
cast in matrix form

ċ(t ) = Ac(t ) + cin(t ), (A3)

where the vector c = (â1â†
1 . . . âN â†

N b̂1b̂†1 . . . b̂Mb̂†M )
T
, the

matrix A contains the frequencies of the problem, and cin

are Gaussian input noises (incoming quantum shot noise in
the ideal case in the optical modes and thermal noise for the
mechanical noises).

Multimode theoretical PSDs are efficiently computed using
a the linear amplifier model (LAM) [28]. For the LAM, the
first step involves transforming the equations of motion into
frequency space. The coupled equations are then manipulated
analytically (or even numerically if unavoidable) to recast the
matrix equation of the equations of motion in the form

c(ω) = Tcin(ω), (A4)

where T(ω) = (−iωI − A)−1 and I is the identity. T is a
transformation matrix that characterizes the transduction of
the input noises into the mechanical and optical field fluctua-
tions, somewhat analogous to the effect of a linear amplifier.
The linear amplifier model is very powerful as one may in

principle obtain the vector of all PSDs of all modes in one go:

Scc† (ω) = T(ω)NT†(ω), (A5)

where

〈cin(ω)[cin(ω)]†〉 = N, (A6)

and N is a diagonal matrix of elements:

N = diag(γ1(n̄1 + 1) γ1n̄1 . . . γn(n̄n + 1) γnn̄n). (A7)

The nk represent the occupancy of the respective baths, thus
nk = 0 for quantum shot noise in the optical modes but nk �
kT/h̄ωk for thermally occupied phonon modes. Typically, one
can set γk ≡ κ for optical modes and γk ≡ � for the mechani-
cal modes. For levitated systems, there is no cryogenic cooling
and T = 300 K.

The solutions âl (ω) of the optical field denote here the
intracavity field, while the actual detected cavity output field
is then obtained using the input-output relation âout

l (ω) =
âin

l (ω) − √
κ âl (ω) for the respective optical mode.

2. 1D QLT with amplitude or phase optical coupling

In this section we consider one mechanical mode b̂ j and
one optical mode â with two types of couplings: (i) gj (b̂

†
j +

b̂ j )(â† + â) and (ii) g j (b̂
†
j + b̂ j )i(â† − â). The former case (i)
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is the usual optomechanical coupling between the mechanical
mode and the amplitude quadrature of light which has been
reviewed in Appendix A 1. To obtain the PSD one can restrict
the general multimode result in Eq. (A5) to the case of one
optical and one mechanical degree of freedom by setting
N = M = 1. Alternatively, an explicit calculation of the PSD
can be performed by following the steps from Eqs. (A4)–
(A7). Specifically, from Eq. (A2) one first moves to the fre-
quency space and solves for the displacement operator q̂(ω) =
b̂(ω) + b̂†(ω), i.e., the displacement operator is expressed in
terms of noises âin(ω) and b̂in(ω). The PSD can then be
readily obtained by evaluating the expectation value using
Eqs. (A6) and (A7). The latter case (ii), where the mechanical
mode is now coupled to the phase quadrature of light, can be
analyzed using analogous steps. Specifically, one first obtains
the quantum Langevin equations with the modified coupling
and then follows the steps in Eqs. (A4)–(A7).

For both cases (i) and (ii) we can write the 1D displacement
operators using the standard notation of optomechanical QLT
by expressing them as a sum of thermal and optical back-
action noises:

q̂1D
j (ω) = M−1

j

[√
�Q̃therm

j + i
√

κg jμ j Q̃
BA
�

]
, (A8)

where we have the normalization factor

Mj (ω) = 1 + g2
jμ j (ω)η(0)(ω), (A9)

the mechanical susceptibilities

μ j (ω) = χ (ω,ω j, �) − χ∗(−ω,ω j, �), (A10)

the mechanical noise

Q̃therm
j (ω) = χ (ω,ω j, �)b̂in

j (ω) + χ∗(−ω,ω j, �)b̂in
j
†(ω),

(A11)
the optical susceptibilities, defined in the text as η jk (ω) may
be given in a more general form so as to treat the optical,
homodyne spectra

η(�)(ω) = e−i�χ (ω,−�, κ ) − ei�χ∗(−ω,−�, κ ), (A12)

so we see that η0 in the main text is ≡ η(�=0)(ω). The optical
noise

Q̃in
�(ω) = e−i�χ (ω,−�, κ )âin(ω)

+ei�χ∗(−ω,−�, κ )â†
in(ω), (A13)

and we have defined

χ (ω,ω j, �) =
[
−i(ω − ω j ) + �

2

]−1

. (A14)

The above are (almost) the standard expressions for the 1D
quantum linear theory (QLT) of optomechanics. The only
difference is that we specify an angle � for the optical noise,
such that � = 0 for standard optomechanical coupling, i.e.,
coordinates coupled to the amplitude quadrature of light, but
� = π/2 for the coordinates coupled to the phase quadrature
of light (such as the z coordinate in the experiments in [23]).

For a cavity mode â, homodyne optomechanical displace-
ment sensing in 1D would involve a measurement of some
quadrature of the optical field Q̂� = e−i�â + ei�â†, with cou-
pling to a mechanical displacement q̂:

Q̂�(ω) = igη�(ω)q̂(ω) + √
κQ̃in

�, (A15)

where Q̃in
� represent measurement imprecision, typically from

incoming quantum photon shot-noise fluctuations, while κ

is the cavity linewidth. Understanding the standard quantum
limit of displacement sensing in 1D optomechanics requires
analysis of errors in Eq. (A15).

In the 3D case, the measured optical quadrature in general
now couples to displacements q̂ j along all directions j =
x, y, z:

Q̂�(ω) = i
∑

j

η(� j )g jq̂ j (ω) + √
κQ̃in

�. (A16)

With a simple adjustment to relate the intracavity field to
the cavity output field via input-output relations, the corre-
sponding PSD of the measured signal is used to estimate a
displacement spectrum SQ̂�Q̂�

/|η(�)|2 � gS1D
qq in the 1D case.

A key question is whether one might straightforwardly ex-
tend to the 3D displacement spectra by simply considering the
sum of the independent contributions, i.e., SQ̂�Q̂�

/|η(� j )|2 �∑
j=x,y,z g jS1D

q j q j
. In 3D we find this is not the case. We find

that the most significant differences are new 3D back-action
terms that redistribute energy between mechanical modes and
add additional optical back-action thus attaining the 3D SQL
requires suppressing these terms. Nevertheless, even if the
q̂ j were independent, the separate optical back-action con-
tributions are correlated and interfere for the case of single-
quadrature homodyne detection leading to differences in pon-
deromotive squeezing. For the experiments using heterodyne
detection (rotating quadrature), ponderomotive squeezing is
not relevant.

3. 3D QLT with amplitude and phase optical coupling

In this section we consider three mechanical degrees of
freedom that are coupled to both the amplitude and phase
quadratures of the optical degree of freedom. Specifically, we
consider the interaction Hamiltonian given by

V̂int

h̄
= −

∑
j

g jY q̂ jŶ −
∑

j

g jPq̂ j P̂ −
∑
j<k

g jk q̂ j q̂k, (A17)

where Ŷ = â† + â and P̂ = i(â† − â), and q̂ j = b̂†j + b̂ j de-
notes the mechanical degrees of freedom x̂, ŷ, ẑ. The starting
points of the analysis are again the equations of motion written
in frequency domain:

q̂ j (ω) = JjY (ω)Ŷ (ω) + JjP(ω)P̂(ω) +
∑
k �= j

J jk (ω)q̂k (ω)

+
√

�Q̃therm
j (ω), (A18)

Ŷ (ω) =
∑

j

JY j (ω)q̂ j (ω) + √
κỸin(ω), (A19)

P̂(ω) =
∑

j

JP j (ω)q̂ j (ω) + √
κP̃in(ω), (A20)

where Jjk (ω) = ig jkμ j (ω) (for j = x, y, z, and k = x, y,
z,Y, P), JY j (ω) = i(g̃ jχ (ω,−�, κ ) − g̃∗

jχ
∗(−ω,−�, κ )),

JP j (ω) = (g̃ jχ (ω,−�, κ ) + g̃∗
jχ

∗(−ω,−�, κ )), and we
have defined the complex-valued couplings g̃ j = g jY + ig jP.
Note that in the main text, where we discuss a special case,
we use the more common notation of real-valued couplings:
gx ≡ gxY , and gy ≡ gyY , and gz ≡ gzP. The input noises are
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given by

Q̃therm
j (ω) =χ∗(−ω,ω j, �)bin†

j (ω) + χ (ω,ω j, �)bin
j (ω),

(A21)

Ỹin(ω) =χ∗(−ω,−�, κ )a†
in(ω) + χ (ω,−�, κ )ain(ω),

(A22)

P̃in(ω) =i(χ∗(−ω,−�, κ )a†
in(ω) − χ (ω,−�, κ )ain(ω)),

(A23)

where Q̃therm
j (ω) denotes the mechanical noises X̃ therm(ω),

Ỹ therm(ω), Z̃ therm(ω).
It is instructive to separate the contributions to the spectra

of q̂ j (ω) into two categories: one that contains the terms of a
1D approximation and one that contains additional terms aris-
ing in a realistic 3D problem. Specifically, using Eqs. (A19)
and (A20) we can rewrite Eq. (A18) as

q̂3D
j = q̂1D

j +
∑
k �= j

G jk (ω)q̂1D
k , (A24)

where we made the low-order approximation q̂3D
j → q̂1D

j to
allow a simplified analysis.

For example, for the 3D coherent scattering discussed in
the main text we find (see Appendix C for more details)

G jk (ω) = iμ j (ω)

Mj (ω)
[iη(0)(ω)g jgk + g jk] (A25)

for j, k �= z, thus, for Gxy(ω) and Gyx(ω), while

G jz(ω) = iμ j (ω)

Mj (ω)
[−iη(π/2)(ω)g jgz + g jz], (A26)

Gz j (ω) = iμz(ω)

Mz(ω)
[iη(π/2)(ω)gzg j + g jz], (A27)

where the indices j, k denote x or y.
We now continue with the general analysis. For numer-

ical accuracy, we here give the exact expressions for the
displacements in terms of noises. Specifically, starting from
Eqs. (A18)–(A20) we eventually find

q̂ j (ω) = Aj (ω)Ỹin(ω) + Bj (ω)P̃in(ω) + Cj (ω)X̂ therm(ω)

+ Dj (ω)Ỹ therm(ω) + Dj (ω)Z̃ therm(ω), (A28)

where j denotes one of the mechanical motions

Aj = N (ξ jxβxY + ξ jyβyY + ξ jzβzY ), (A29)

Bj = N (ξ jxβxP + ξ jyβyP + ξ jzβzP ), (A30)

Cj = Nξ jxβxx, (A31)

Dj = Nξ jyβyy, (A32)

Ej = Nξ jzβzz, (A33)

where β jY = NjJjY , β jP = NjJjP, β j j = Nj , Nj = (1 −
JjY JY j − JjPJP j )−1. We have defined the coefficients ξ j j =
1 − 1

2 Rkl Rlk (with l, k �= j and k �= l), ξ jk = Rjk + Rjl Rlk

(with j �= k, l �= k, and l �= j), and Rjk = Nj (JjY JY k +
JjPJPk + Jjk ). The overall normalization is given by N =
(1 − 1

2

∑
Rkl Rlk − 1

3

∑
RklRl jR jk )−1 (with l �= k, j �= k, and

l �= j). The PSDs can be readily obtained from Eq. (A28)
using the methods discussed in Appendix A 1.

4. Self-energy, optical spring, and damping

In this section we obtain the analytical expressions for the
self-energy, relevant to the experiments of [25] that couple x
and y (but not significantly z). We obtain also the resulting op-
tical spring and damping formulas. We start from the coupled
equations

x̂ = JxyŶ + Q̃therm
x , (A34)

ŷ = JyxŶ + Q̃therm
y , (A35)

Ŷ = JY xx̂ + JY yŷ + Ỹin. (A36)

We now focus on the x motion, while the formulas for the y
motion can be obtained by formally exchanging x ←→ y in
the formulas. Specifically, we solve for x̂ to find

x̂ = JxY
[
1 − JY yJyY

]−1(
JY xx̂ + JY yQ̃therm

y + Ỹin
) + Q̃therm

x .

(A37)
One can then extract the self-energy �x, which is given by

μx�x ≡ − JxY JY x

1 − JY yJyY
. (A38)

We note that the numerator is the usual term ∝g2
x which arises

already in the 1D analysis, while the denominator term ∝g2
y

is a new effect which arises in the 3D analysis. In particular,
considering the expressions for JxY and JY x we find from
Eq. (A38)

�x ≡ g2
xη

(0)

1 + g2
yμyη(0)

. (A39)

Finally, we can find the change of the damping δ� and the
shift of frequency δω using the following expressions [29]:

δ� j = Im[� j (ωj )]

ω j
, δω j = Re[� j (ωj )]

2ωj
, (A40)

where ωj denotes the mechanical frequency.

APPENDIX B: SUPPRESSION OF z HYBRIDIZATION

In this Appendix we discuss suppression of hybridization
with the z motion. In the main text we found that a remarkable
transition from 3D to a near decoupled 1D regime occurs for
−� � ωx,y and φ = π/4, in-between the 3D (direct coupled,
φ � 0) and 3D (indirect, cavity-mediated φ � π/2) regimes.
This results from the cancellation between the direct gxy cou-
pling and the cavity-mediated gxgyη

(0) terms; an underlying
reason for this surprising near exact cancellation is that gxy ∝
Re(ᾱ) where ᾱ is the mean cavity field, which follows the
cavity resonance, that in turn determines the form of η(0).

However, the situation for the G jz(ω) couplings is sim-
ilar but more involved ( j �= z) so the destructive cancella-
tion is less complete. A peculiarity of the system is that
the z coupling is of the form gzi(â† − â)ẑ, i.e., the dis-
placement couples to the momentum quadrature of the cav-
ity. In this case, G jz(ω) = iμ j (ω)

Mj (ω) [−iη(π/2)(ω)g jgz + g jz], but
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Gz j (ω) = iμz (ω)
Mz (ω) [iη(π/2)(ω)gzg j + g jz )]. In other words, G jz �=

Gz j and both couplings cannot be suppressed simultaneously.
In any case, using the equation from the main text

gxy � gxgy

[
2� cot2 φ

�2 + κ2

4

]
, g jz � g jgz

[
κ

�2 + κ2

4

]
(B1)

and for large values of −� where iη(π/2) → κ−2iω
�2+(κ/2)2 , we find

that G jz(ω) ∝ 2g j gziω
�2+(κ/2)2 and Gz j (ω) ∝ 2g j gz[κ+iω]

�2+(κ/2)2 .
Thus, even where there is destructive interference, only

the real part of G jz(ω) is fully canceled. Nevertheless, all
3D couplings are attenuated for −� � ω j, κ . Further, since
fortunately since ωz � ωx,y, hybridization between z and the
other two modes is generally weaker than between x and y
which are close in frequency. Thus, it is possible to tune quite
strongly into the decoupled 1D regime.

APPENDIX C: 3D LEVITATED OPTOMECHANICS IN A
CAVITY DRIVEN BY COHERENTLY SCATTERED

TWEEZER LIGHT

We consider the 3D optomechanical system such as the
coherent scattering cavity levitation introduced in [22–24]. As
discussed below, some of the optomechanical coupling terms
are of the form igk (â† − â)(b̂†k + b̂k ), i.e., the mechanical mo-
tion can couple to the phase quadrature of the light, in addition
to the more typical coupling to the amplitude quadrature, i.e.,
gk (â† + â)(b̂†k + b̂k ). Specifically, we will consider the case
when the z motion has the former type, while x and y motions
have the latter one.

In addition, for a truly 3D system, one allows also di-
rect couplings between the mechanical modes, i.e., gkk′ q̂k q̂k′ ,
where k, k′ ≡ x, y, z. Direct couplings are not usually con-
sidered in optomechanics: although multimode systems are
commonly studied (such as multiple vibration modes of mem-
branes), coupling between mechanical modes is not usually of
interest. However, for the considered 3D optical levitation this
is not only important, but the gkk′ are closely correlated with
the couplings gk . Specifically, we will find gkk′ ∝ gkgk′ , which
has important consequences for sensing.

In particular, in a cavity populated only by scattered light
as in the recent 3D setups in levitated optomechanics, we need
consider only a single light mode, but three mechanical modes
including direct coupling terms:

Ĥ = Ĥ0 − (â† + â)[gx(b̂†x + b̂x ) + gy(b̂†y + b̂y)]

− i(â† − â)gz(b̂†z + b̂z )

−
∑

k

∑
j �=k

g jk (b̂†k + b̂k )(b̂†j + b̂ j ), (C1)

where Ĥ0 = −�â†â + ∑
k=x,y,z ωkb̂†kb̂k (see Appendix A 3

where we have developed a generic framework to solve such
Hamiltonians within QLT). In order to extract the dynamical
parameters, i.e., the frequencies ωk , the optomechanical cou-
plings gk , and the direct couplings gk j , we must first consider
the physical tweezer and cavity potentials (Appendix D), and
then expand to quadratic order around an equilibrium position
(Appendix D).

APPENDIX D: 3D COHERENT SCATTERING
HAMILTONIAN

In this Appendix we review details of the potentials in the
coherent scattering setup and derive the optomechanical cou-
plings g j as well as direct couplings g jk for j, k = x, y, z. We
consider the hybrid tweezer-cavity experiments introduced in
[23], which employed setups very similar to those in [22,24].
A nanoparticle is trapped at the focus of a tweezer field and
interacts with light coherently scattered from the tweezer field
into the (undriven) cavity.

The Hamiltonian describing the interaction between the
nanoparticle and the combined fields of the tweezer and cavity
is given by

Ĥ = −α

2
|Êcav + Êtw|2, (D1)

where Êcav (Êtw) denotes the cavity (tweezer) field, α =
3ε0Vs

εR−1
εR+2 is the polarizability of the nanosphere, Vs is the

volume of the nanosphere, ε0 is the permittivity of free space,
and εR is the relative dielectric permittivity.

We assume a coherent Gaussian tweezer field and replace
the modes with c numbers to find

Êtw = εtw

2

1√
1 + ( z

zR
)2

e
− x̂2

w2
x e

− ŷ2

w2
y eikẑ+i�(ẑ)e−iωtwt ey + c.c.,

(D2)
where �(z) = − arctan z

zR
is the Gouy phase, zR = πwxwy

λ
is

the Rayleigh range, wx (wy) are the beam waist along the

x (y) axis, εtw =
√

4Ptw
wxwyπε0c is the amplitude of the electric

field, c is the speed of light, Ptw is the laser power, ωtw is
the tweezer angular frequency, t is the time, and r̂ = (x̂, ŷ, ẑ)
is the position of the nanoparticle. e j are the unit vectors:
ez is aligned with the symmetry axis of the tweezer field and
ey is aligned with the polarization of the tweezer field.

The cavity field is given by

Êcav = εccos
[
k
(
x(c)

0 + x̂(c)
)]

ec
y[â + â†], (D3)

where εc =
√

h̄ωc
2ε0Vc

is the amplitude at the center of the cavity,

Vc is the cavity volume, ωc is the cavity frequency, â (â† )is the
annihilation (creation) operator, x(c)

0 is an offset of the cavity
coordinate system (centered at a cavity antinode) with respect
to the tweezer coordinate system. The cavity xc-yx plane is
rotated by an angle θ with respect to the tweezer x-y plane:

[
x(c)

y(c)

]
=

[
sin(θ ) cos(θ )

−cos(θ ) sin(θ )

][
x
y

]
. (D4)

Note that for θ = 0 the tweezer polarization (y axis) becomes
aligned with the cavity symmetry axis (xc axis). In particular,
we have x̂(c) = sin(θ )x̂ + cos(θ )ŷ. Furthermore, we then have
the following relation between the cavity and tweezer unit
vectors

ec
y = [−excos(θ ) + eysin(θ )]. (D5)
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We expand the Hamiltonian in Eq. (D1) exploiting Eqs. (D2),
(D3), and (D5) to obtain three terms

Ĥ = −α

2
|Êtw|2 − α

2
|Êcav|2 − α sin(θ )

2
(Ê†

cavÊtw + ÊcavÊ†
tw),

(D6)
where the terms on the right-hand side are the tweezer term,
the cavity term, and the tweezer-cavity interaction term (from
left to right). The first (tweezer field) term dominates the
trapping and primarily sets the three mechanical frequencies
ωx, ωy, and ωz. The second term provides a (typically) small
correction to the frequencies and is included only for nu-
merical precision. The third term, which we will denote as
V̂int, is the most interesting and novel form of optomechanical
interaction. As discussed in [23,24], time dependencies in this
term are eliminated through rotating frame approximations
leaving an effective optomechanical Hamiltonian

V̂int

h̄
= −Ed cos[φ + k(x̂ sin θ + ŷ cos θ )]

× [âe−i[kẑ+�(ẑ)] + â†e+i[kẑ+�(ẑ)]], (D7)

where Ed = αεcεtw sin θ
2h̄ , φ = kx(c)

0 represents the effect of the
shift between the origin of the cavity and tweezer. The ex-
periments allow positioning of x(c)

0 with an accuracy of ∼8
nm for λ = 1064 nm. In first approximation one can neglect
the Gouy phase �. Linearization of the above Hamiltonian to
quadratic order yields the 3D optomechanical couplings.

Quadratic Hamiltonian: Unified form

We expand the Hamiltonian in Eq. (D7) around an
equilibrium point (x0, y0, z0, ᾱ)� by making the substi-
tution (x, y, z, a)� → (x0, y0, z0, ᾱ)� + (x, y, z, a)�, where
(x, y, z, a)� on the right-hand side denotes small fluctuations.
To a first approximation, x0, y0, z0 represents the origin of the
strong tweezer trap. However, there are nontrivial corrections
when we have further small offsets δx0, δy0, δz0, for example,
when the cavity is strongly populated [24]. These emerge
naturally from numerical simulations and can also be well
estimated through the linearization analysis. Similarly, the
mean cavity photon occupancy number n = |ᾱ|2 may also
need to be corrected from the approximate form [23] ᾱ =
(Y0 + iP0)/2 = −iEd cos(φ)/(i� + κ/2) to allow for the fact
that φ � kx(c)

0 + δx0 cos θ + δy0 sin θ . We further note that
also δz0 displacements give rise to nontrivial changes for the
couplings and the mean values, yet the results for the x-y
motions in the main text and in Appendix E remain unaltered
as δz0 � zR.

A unique feature of these new levitated setups is that the
optomechanical coupling can be via the momentum quadra-
ture. In the calculation in [22–24], this affected only the z
coordinate. However, we note that if there are significant
offsets in the fields or misalignment of the cavity and tweezer
axes, in general, one might wish to consider both amplitude
and momentum couplings to all mechanical modes, so here
we introduce a unified notation.

It is convenient to introduce the notation Ŷ = â† + â, and
P̂ = i(â† − â) for the optical field. We also similarly use
x̂ = xzpf(b̂†x + b̂x ), y = yzpf(b̂†y + b̂y), z = zzpf(b̂†z + b̂z ), where

zero-point fluctuation lengths are given by xzpf =
√

h̄
2mωx

,

yzpf =
√

h̄
2mωy

, and zzpf =
√

h̄
2mωz

, and m is the mass of the lev-

itated nanoparticle. Redefining x̂/xzpf → x̂, ŷ/yzpf → ŷ, and
ẑ/zzpf → ẑ we write

Ĥ

h̄
= −[gxyx̂ŷ + gxzx̂ẑ + gyzŷẑ + (gxY x̂ + gyY ŷ

+ gzY ẑ)Ŷ + (gxPx + gyPy + gzPz)P̂], (D8)

where we have omitted the harmonic oscillator terms. We
can also rewrite the optical quadratures in terms of the mode
operator â:

Ĥ

h̄
= −[gxyxy + gxzz + gyzyz + (g̃xx + g̃yy + g̃zz)a†

+ (g̃∗
xx + g̃∗

yy + g̃∗
zz)a], (D9)

where we have introduced the complex-valued couplings g̃ j =
g jY + ig jP (see Appendix A 3 for the resolution of this general
Hamiltonian within 3D QLT). However in the following we
opt to use the more conventional notation introduced for the
special case in Eq. (C1) where all the coupling constants are
defined as real valued. Specifically, from Eq. (D7) we find the
following nonzero light-matter couplings:

gx ≡ gxY = −Ed k sin(θ ) sin(φ)xzpf, (D10)

gy ≡ gyY = −Ed k cos(θ ) sin(φ)yzpf, (D11)

gz ≡ gzP = Ed k cos(φ)zzpf. (D12)

In addition, we also have matter-matter couplings

gxy = −Ed k2Y0 sin(θ ) cos(θ ) cos(φ)xzpfyzpf, (D13)

gxz = −Ed k2P0 sin(θ ) sin(φ)xzp f zzp f , (D14)

gyz = −Ed k2P0 cos(θ ) sin(φ)yzp f zzp f . (D15)

The harmonic frequencies are given by

ω j =
√

1

m
(Tj + Cj + T c

j ), (D16)

where Tx = αε2
tw

w2
x

, Ty = αε2
tw

w2
y

, and Tz = αε2
tw

2z2
R

are the typically

dominant contributions arising from the tweezer trap. The
corrections from the cavity are Cx = 2αε2

c k2n sin2(θ )cos(2φ)
and Cy = 2αε2

c k2n cos2(θ )cos(2φ), and Cz = 0. The
contributions arising from the coupling between the
cavity and tweezer are T c

x = h̄Ed
w2

x
[2 + k2w2

x sin2(θ )]Y0cos(φ),

T c
y = h̄Ed

w2
y

[2 + k2w2
y cos2(θ )]Y0cos(φ), and T c

z = h̄Ed

z2
R

(1 +
k2z2

R)Y0cos(φ). We remark that corrections from Cj and
T c

j can in certain cases become important, e.g., when the
cavity has a high photon occupancy, potentially even leading
to nanoparticle loss. The cavity-tweezer interaction also
changes the cavity detuning from � to � + �0, where

�0 = αε2
c

h̄ cos2(φ).
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APPENDIX E: ANALYSIS OF GROUND-STATE COOLING
EXPERIMENTS

In this Appendix we give further details of our analysis
(based on the 3D QLT presented in Appendix A) of the
recent experiments reporting ground-state cooling of levitated
nanoparticles.

We employ a simplified analysis to aid understanding of
the recent experiment reported in [25] which employs the 3D
coherent scattering setup discussed in the main text. The ex-
periment places the particle at the node (φ = π/2) and is thus
in regime of pure indirect, cavity-mediated coupling, which
differs significantly from the regimes where direct/indirect
pathways compete and cancel. Nonetheless, there are other
novel and important features. The analysis confirms that the x̂
motion is close to the ground state and identifies new effects in
the x̂ and ŷ displacement spectra stemming from hybridization
between the x̂ to the ŷ motions. In particular, we find non-
negligible corrections to phonon occupancies in both modes.

We have the following x-y hybridization coupling strengths
(see also Appendix A here)

Gxy(ω) = iμx(ω)

Mx(ω)
[iη0(ω)gxgy + gxy]

and Gyx(ω) = iμy(ω)

My(ω)
[iη0(ω)gxgy + gxy]. (E1)

However, as the nanoparticle is located at a cavity node φ =
π/2, they involve only the indirect cavity-field-mediated cou-
pling terms ∝η0(ω)gxgy since the direct coupling coefficients
vanish, i.e., gxy = 0. Hence, the x-y hybridization couplings in
the case of pure cavity-mediated interactions reduce to

G jk = − μ jη0g jgk

1 + g2
jμ jη0

, (E2)

where j, k denote the indices x and y. Interestingly, although
in this configuration the cavity contains very few photons
(the so-called “empty cavity” with only components at the
Stokes/anti-Stokes frequencies), the indirect couplings still
play a very important role.

In addition, the tweezer tilt angle is set to values θ ≈
π/2, thus gy � gx, so one expects strong cooling exclusively
along the x direction. However, the heterodyne detected PSDs
showed prominent peaks at ω � ωy (shifted by the reference
oscillator), thus, one infers that gy �= 0 so θ �= π/2. Allowing
for an uncertainty in the tweezer tilt of a few degrees, we
have thus assumed θ = (0.47–0.49)π to be consistent with
the observations. For θ = 0.47 × π , we obtain gx ≈ 2π ×
80 kHz and gy ≈ 2π × 8 kHz, thus gx ≈ 10gy.

A further detail of the observed data motivates a very
small (10%) adjustment of the tweezer waist dimensions.
Figure 3 shows an optical-spring-induced frequency degen-
eracy between the x and y modes at � ≈ −400 kHz, which
is a feature of the experiments. In order to get agreement
in the x, y frequencies as well as the frequency degeneracy,
the tweezer waist values wx = 0.66 μm and wy = 0.77 μm
in [25] were reduced slightly to wx = 0.600 μm and wy =
0.705 μm, which is consistent with inherent experimental
uncertainties in the tweezer geometry.

Figure 3 illustrates key features of the experimental regime
in [25], including the optical-spring-induced degeneracy, the

FIG. 3. Shows PSDs corresponding to x̂ and ŷ motions depicted
using blue and green lines, respectively. The red (black) line corre-
spond to the detuning � = −2π × 580 kHz (� = −2π × 380 kHz)
reported in [25]. The PSDs are in units of Hz−1 but scaled as
indicated for visibility. (Left panel) PSDs for x̂ motion at different
detunings � showing two notable features: (i) as the detuning
approaches −� ∼ ωx , the x motion is optomechanically cooled to
occupancies close to the ground state; (ii) as � is lowered, since
gx � gy, the optical spring effect reduces ωx , but leaves ωy unper-
turbed, resulting in a frequency degeneracy ωx ∼ ωy that enhances
hybridization effects and 3D heating/cooling channels. In particular,
we note that Sxx , the x̂ PSD, contains a sharp peak at ω � ωy due
to the hybridization. (Middle panel) ŷ-motion PSD Syy(ω). The new
3D hybridization results in significant cooling when the mechanical
frequencies are nearly degenerate (black line). (Right panel) Phonon
occupancies nx and ny as a function of detuning, where 1D (3D)
indicates a simplified one dimensional (full three dimensional) anal-
ysis. We note that the phonon occupancy for the x̂ motion indicates
nx (3D) > nx (1D). The ŷ motion is cooled most effectively at the
hybridization point, ωy ∼ ωx . This latter effect is in contrast with the
behavior expected from a simplified 1D analysis, where cooling is
most effective at −� = ωy. Black dashed lines denote results from
standard optomechanics cooling formula [see Eq. (E11)]. We take
θ = 0.47π .

cooling dynamics, and the hybridization. This is the scenario
we now analyze. The z motion has a frequency ωz � ωx, ωy,
and can thus be neglected in the simplified analysis below
(but is included in the numerics). In this regime the x and
y mechanical motions form a system of coupled equations,
which in frequency space take the form

x̂3D(ω) = x̂1D(ω) + Gxy(ω)ŷ3D(ω), (E3)

ŷ3D(ω) = ŷ1D(ω) + Gyx(ω)x̂3D(ω). (E4)

The terms x̂1D(ω) and ŷ1D(ω) denote the optical and me-
chanical noises which would be present already in a one
dimensional analysis, and the hybridization couplings G jk (ω)
are given in Eq. (E2).

1. Simplified analysis of the y motion

Substituting Eq. (E3) into Eq. (E4) we approximate

ŷ3D � ŷ1D + Gyx[x̂1D + Gxyŷ1D], (E5)

where we have for brevity omitted the frequency dependence
ω. In other words, we directly used the 1D forms on the right-
hand side for the simplified thermometry analysis (although
we emphasize all calculations for the main text figures used
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FIG. 4. Phonon occupancies nx and ny as a function of detuning
showing that the 3D PSDs may be accurately estimated by a simple
model that rescales the 1D PSDs [Eq. (E7) for y and Eq. (E9)]. Re-
sults showing the rescaled PSDs (in red) are in excellent agreement
with the full 3D expressions (solid green and blue lines).

the full self-consistent 3D solutions without approximation as
discussed in Appendix A 3).

The above show that the optomechanics introduces correla-
tions between the x and y motions although the corresponding
thermal noise fields are uncorrelated. As we are operating
relatively far from the back-action limit, we neglect in the first
instance the optical noises and hence the optically induced
correlations between x̂1D and ŷ1D. We note, however, that
the above optomechanically induced correlations between the
x and y modes are somewhat analogous to the well-studied
correlations between optical and mechanical modes induced
by optomechanical back-action.

As x is strongly cooled, we can in this case neglect the x̂1D

term. Hence,

ŷ3D � (1 − GyxGxy)−1ŷ1D = N−1(ω)ŷ1D, (E6)

and thus we arrive at an an approximate expression for the
PSD of ŷ:

S3D
yy � S1D

yy

|N (ω)|2 . (E7)

Figure 4 compares the above N -rescaled PSD with the full
analytical expressions, showing that the rescaling of the 1D
sideband accurately accounts for the differences between the
3D and 1D PSDs including the relative heating and cooling.

In summary, around the frequency degeneracy, there is
strong (about factor 7) cooling of the y motion due to the

x-y correlations and the back-action of y on x, i.e. the y
mode is, via the cavity, coupled to x, and in turn the x
mode, because of this cavity-mediated coupling, acquires a
component correlated with the y thermal noises. We identify
this as a new mechanism for “sympathetic cooling” of the
y mode, due entirely to the strongly coupled (and strongly
cooled) x mode.

2. Simplified analysis of the x motion

The x motion can be analyzed in similar manner, by
substituting Eq. (E4) into Eq. (E3) which readily gives

x̂3D = N−1(ω)[x̂1D + Gxyŷ1D], (E8)

where we have for brevity omitted the frequency dependence
ω. Analogously, we find the PSD

S3D
xx � S1D

xx + |Gxy|2
|N |2 S1D

yy � S1D
xx + |Gxy|2S3D

yy , (E9)

where we have made the further approximation, based on in-
spection of the form of N (ω), that S1D

xx � S1D
xx |N |−2; in other

words, the back-action of highly cooled x motion on the PSD
of x, arising from its coupling to y, is relatively unimportant.
The important difference between the S3D

xx and S1D
xx arises from

the second term in Eq. (E9). This latter term is not an inter-
ference term, but an additive term, which always results in
additional heating, and it provides the sharply peaked feature
around ω � ωy. This feature has previously been neglected,
but its contribution to the sideband area should be included
for accurate thermometry.

We note that the x sideband is strongly affected by the
optomechanical spring effect. It is straightforward to adapt the
usual analysis for this x-y coupled case. One obtains the usual
self-energy [29] (see Sec. S3 for more details)

�x ≡ g2
xη

(0)

1 + g2
yμyη(0)

(E10)

from whence we find the change of the damping δ� and the
shift of frequency that represents the optical spring effect δω.
Specifically, we find [29]

δ� j = Im[� j (ωj )]

ω j
, δω j = Re[� j (ωj )]

2ωj
, (E11)

where ωj denotes the mechanical frequency. Note the g2
y

correction in the denominator of the self-energy; setting this to
zero yields the standard 1D optomechanical cooling formula.

In Fig. 3 we compared phonon occupancies (black dashed
lines, right panel) obtained in this way nx � nBγg/�x where
the thermal bath occupancy nB = kT/(h̄ωx ) for T = 300 K.
We note that the effect of this g2

y correction is small and
the significant effects in heating of x arise rather from the
hybridization correction [the last term in Eq. (E9)].
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Cavity Cooling of Many Atoms, Phys. Rev. Lett. 118, 183601
(2017).

[20] P. Domokos and H. Ritsch, Collective Cooling and Self-
Organization of Atoms in a Cavity, Phys. Rev. Lett. 89, 253003
(2002).
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M. Aspelmeyer, Cavity Cooling of a Levitated Nanosphere by
Coherent Scattering, Phys. Rev. Lett. 122, 123602 (2019).

[24] C. Gonzalez-Ballestero, P. Maurer, D. Windey, L. Novotny, R.
Reimann, and O. Romero-Isart, Theory for cavity cooling of
levitated nanoparticles via coherent scattering: Master equation
approach, Phys. Rev. A 100, 013805 (2019).
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