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Abstract

Disturbance forces facilitate motor learning, but theoretical explanations for this counterintu-

itive phenomenon are lacking. Smooth arm movements require predictions (inference)

about the force-field associated with a workspace. The Free Energy Principle (FEP) sug-

gests that such ‘active inference’ is driven by ‘surprise’. We used these insights to create a

formal model that explains why disturbance might help learning. In two experiments, partici-

pants undertook a continuous tracking task where they learned how to move their arm in dif-

ferent directions through a novel 3D force field. We compared baseline performance before

and after exposure to the novel field to quantify learning. In Experiment 1, the exposure

phases (but not the baseline measures) were delivered under three different conditions: (i)

robot haptic assistance; (ii) no guidance; (iii) robot haptic disturbance. The disturbance

group showed the best learning as our model predicted. Experiment 2 further tested our

FEP inspired model. Assistive and/or disturbance forces were applied as a function of per-

formance (low surprise), and compared to a random error manipulation (high surprise). The

random group showed the most improvement as predicted by the model. Thus, motor learn-

ing can be conceptualised as a process of entropy reduction. Short term motor strategies

(e.g. global impedance) can mitigate unexpected perturbations, but continuous movements

require active inference about external force-fields in order to create accurate internal mod-

els of the external world (motor learning). Our findings reconcile research on the relationship

between noise, variability, and motor learning, and show that information is the currency of

motor learning.

Introduction

Neonates must determine the complex relationship between perceptual outcomes and

motor signals in order to learn how to move their arms effectively. This process is repeated

throughout life as humans calibrate to new environments, acquire new skills, experience
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neuromuscular fatigue or recover from injury. Technological advances have created robotic

systems designed to accelerate the acquisition of skilled arm movements in a variety of areas

including, amongst others, laparoscopic surgical training and stroke rehabilitation [1]. These

devices can provide assistive forces that guide an individual’s arm through a desired trajectory

or apply disturbance forces that make it more difficult for the individual to move their arm

along a given trajectory.

It is now well established that providing assistive forces to neurologically intact individuals

can actually impair subsequent learning [2, 3]. Meanwhile, there is growing empirical evidence

that providing disturbance forces to impair performance during training of a motor task can

have a net positive effect, and lead to improved learning—enhancing performance in the task

after the disturbance forces are removed [3–8]. However, formalised theoretical explanations

that can account for these counterintuitive phenomena have proven elusive [9]. This is disap-

pointing because it remains unclear how robotic devices might be optimised in order to

enhance learning (beyond this binary observation of differences between assisting and disturb-

ing forces). The lack of a theoretical framework also makes it difficult to explain formally why

assistive forces can be beneficial for individuals with neurological impairment [10], and the

absence of a framework is hindering the potential utility of robotic technology in motor train-

ing. For instance, a pragmatic, multicentre, randomised controlled trial conducted across four

UK centres found that therapy with the MIT Manus robot improved upper limb impairment

but not upper limb function (in contrast to an enhanced upper limb therapy programme) [11].

In principle, a robotic system should be able to replicate the intervention provided within a

traditional upper limb therapy programme (and thereby reduce the pressures placed on the

insufficient number of therapists within health services throughout the world). Nevertheless,

the efficacy of any robotic system will rest on its ability to provide the forces that accelerate the

learning process–and this requires an understanding of how robots can apply forces optimally

to enhance the learning process.

We propose that a ‘Shannon’ information theory perspective [12, 13] could provide a prin-

cipled approach to understanding why disturbing forces can be beneficial, and such an account

could ultimately inform the development of haptic interventions. The free energy minimiza-

tion principle is the leading theoretical explanation of brain and behaviour within the domain

of neuroscience, and it accounts for many empirical data within a unifying action, perception

and learning framework [14–16]. The free-energy principle suggests that biological systems act

to minimise free energy (an information theory measure that limits the surprise associated

with sampling data). In this conceptualisation, the brain behaves as an active inference

machine that formulates predictions about the environment [17]: the better the predictions

about the environment, the lower the amount of free energy. Thus, the process of effective

motor learning involves the system making increasingly accurate predictions about the percep-

tual outcome of motor commands given the current state of the system. In other words, the

system will minimise entropy (the average amount of surprise) through the development of

‘forward models’ that act as neural simulators regarding how the current state of the system

will respond to a given motor signal [18].

Viewed in this way, motor learning requires the system to sample information in order to

extract the invariant rules that govern a range of input–output mappings [19, 20]. The diffi-

culty faced by the system relates to the large number of internal parameters that connect the

sensory input to the motor output i.e. high levels of dimensionality [21]. The example of a neo-

nate learning the mapping between perceptual and motor output illustrates how this problem

can be framed from an information theory perspective. The newborn must use information

generated from her exchanges with the environment in order to learn the input–output map-

pings and subsequently refine her predictions, so that she can successfully interact with her
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new surroundings. The initial reaches will be associated with high levels of uncertainty and will

thus have high informational entropy (the average surprise of the outcomes sampled from the

probability density). The developmental trajectory, however, will be marked by a reduction in

entropy as the certainty of a predictable perceptual outcome following the generation of a

motor command will increase. Thus, motor learning can be viewed as a process where entropy

(i.e., uncertainty) is reduced through the development of forward models following exposure to

information regarding the relationship between perceptual output and motor signal input [17].

We propose that this information perspective can account for the previous finding of supe-

rior learning outcomes from disturbance haptic force application relative to assistive guidance.

Specifically, we suggest that providing assistive forces limits the amount of surprise experi-

enced by the actor and thus constrains the amount of learning. Conversely, disturbance forces

expose the individual to more information which facilitates the learning process. Following

this logic, a control algorithm that provides an optimal level of surprise should lead to better

learning than those that minimise uncertainty. It will be noted that a certain level of motor

proficiency is required to sample information within a workspace–if an individual is unable to

move their arm through the space then they will be unable to experience the surprise necessary

to even start the learning process. This may explain why assistive forces have been found to

help individuals with severe neurological impairment [4, 22, 23] or lesser skilled individuals [3,

24]–as these systems allow the individual to sample the requisite information and thereby start

the learning process.

Our approach is based on the idea that skilful arm movements require accurate predictions

about the forces acting on the arm as it moves around the workspace. If these predictions are

inaccurate then the system must contend with unexpected perturbations that will force the

arm away from its desired trajectory. It has been shown that participants can learn to attenuate

the impact of an unexpected perturbation in the short term by developing a ‘global impedance’

strategy, where joint stiffness rapidly increases in response to the application of a sudden unex-

pected force[25, 26]. The development of a ‘global impedance’ strategy is a useful short term

response to environments which contain unpredictable forces. Nevertheless, skilled continu-

ous movements through a workspace require accurate forward models that allow low entropy,

suggesting that the system will seek to learn (and thus predict) the underlying force field in

which it is operating. On this basis, we predicted that exposure to a complex force field would,

over a sufficient period, drive the system to learn how to move skilfully through the workspace

(rather than adopting a short term global impedance strategy).

To test these ideas, we created a metric that quantified the information sampled as individu-

als learned to move their hand around an artificial environment containing a complex force

field (equivalent to moving the arm through a novel viscous solution). This allowed us to

examine novel motor learning in two experiments whilst providing distinct types of assistive

and disturbance forces using an admittance-controlled robotic device. In our second experi-

ment, we created a condition that would enhance learning if the Free Energy Principle inspired

model has merit but would not be expected to benefit learning if the system were simply adopt-

ing a short term global impedance strategy to cope with the force field.

In our experience, there are two points worth highlighting with regard to the reported

experiments. First, the experiments appear to have a similarity with a study run within Kawa-

to’s laboratories [25, 26]. The method section below should make it clear that the similarity is

superficial. In the Kawato study, participants moved their arm along a prescribed path through

a normal force field but were exposed to an unexpected perturbation when the arm diverged

from the desired spatial path (resulting in participants learning to stiffen their arm in response

to such perturbations). In our experiments, participants had to make continual movements

through a workspace comprising a completely novel force field. This arrangement meant that
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our participants had to learn the underlying structure of the force field–the experiments were

not about the participants moving normally and then suddenly experiencing a perturbation of

an unpredictable nature. Second, our experiments included baseline measurements of how

well the participants could move their arms in the novel force field. These measurements were

taken before and after the participants were given the opportunity to learn the task. The base-

line measures did not involve the experimental manipulations (where the robot provided assis-

tive or disruptive forces during the learning process). Thus, the baseline measures provided an

index of the motor learning that occurred throughout the experimental sessions. These mea-

sures provided the data that we needed to test the predictions of our model.

In Experiment 1, we tested the prediction that learning rates would be accelerated through

the increased information provided via disturbance forces. We examined training with par-

tially assistive (Assistance group), disturbance (Disturbance group) and no guidance (Active-

Control group) forces. In the training period, the ‘Disturbance group’ were presented with an

additional force vector, where the force was generated using a negative value of k in the mass-

spring-damper simulation. We predicted that the disturbance forces would lead to: (i) more

surprise (as indexed by our model of information); (ii) more errors at the outset of training–

indexed by a in a fitted function, y = aebx; (iii) an increased rate of error reduction over the

training period (indexed by b); and (iv) superior motor learning (pre- post- error improve-

ment) compared to the groups with lower information—a corollary of (i) to (iii).

The results from Experiment 1 showed that disturbance did indeed result in faster learning

—in a manner consistent with the hypothesised information-driven process. However, these

results did not rule out the possibility that it was the disturbance forces per se that facilitated

the learning. In Experiment 2, we therefore created algorithms that varied the amount of stiff-

ness between trials to facilitate or constrain workspace information acquisition and, impor-

tantly, made it improbable that the adoption of a global impedance strategy could yield better

performance. We created a Random training condition that exposed participants to an envi-

ronment with a large degree of uncertainty (i.e. larger magnitude of changes in stiffness, and

more frequent switches between positive and negative stiffness on a trial-by-trial basis), but

with an average level of overall stiffness that was close to zero. This meant development of a

global impedance strategy would hinder performance under the random condition (as 50% of

participants’ trials were assisted with the virtual spring on average). It follows that a global

impedance explanation would not account for improved performance, but the unpredictability

of the stiffness between trials would induce a greater range of workspace sampling and thereby

provide the most amount of information. Thus, we would be able to attribute improved perfor-

mance to the increased exposure to information rather than the adoption of global impedance.

In summary, if our hypothesis has merit then it would predict that the Random condition

should lead to the best learning, whilst the other conditions would impair learning (as they

constrained information sampling).

Materials and methods

Participants

In Experiment 1, forty-eight right-handed participants (26 male) (M = 29.4 years, SD = 9.34

years, range 20–59 years) were recruited and randomly allocated to one of three training

groups: Assistance (n = 15), Active-Control (n = 16) and Disruption (n = 17). One participant

from the Active-Control group voluntarily withdrew from the experiment and their data were

excluded from further analysis.

In Experiment 2, forty-six right-handed participants (25 male, aged 19–56 years, M = 24.93

years, SD = 6.36 years) were randomly allocated to the Adaptive Algorithm (n = 13), Adaptive
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Disruptive (n = 17) and Random (n = 16) conditions. One participant withdrew voluntarily

from the Random group after the first session and their data were not included for statistical

analysis. The Psychology Research Ethics Committee at the University of Leeds approved the

research.

Procedure. In the two reported experiments using a task that required continuous track-

ing through a complex novel three dimensional force field, participants stood in front of a hap-

tic robot system (HapticMASTER, see Materials) and visual stimuli were displayed on a

monitor located behind the device, approximately at eye level (see Fig 1A). Two cursors were

used to visually represent the actual hand and the target position of the device end-effector

within the workspace on the visual display (see Fig 1D). Upon reaching the start position, the

cursor started moving immediately along the first component (sub-path) for that trajectory at

a constant speed of 0.1 m/s. Participants were instructed to use their preferred (right) hand to

Fig 1. Experiment design. (a) Plan view of the experimental setup showing the relative positions of the participant (bottom), haptic robot arm (middle) and monitor

(top); (b) The target trajectories across sessions. The pre- and post-training sessions comprised 3 blocks of 10 trials following a pentagram trajectory (with no error

manipulation forces). Training (across three sessions with 4 blocks of 10 trials) included error manipulation forces whilst participants navigated across a vertically

rotated pentagram trajectory. (c) Quiver plot of the novel workspace force field used across all training sessions and conditions (discretized for illustrative purposes).

Inset shows magnified section (approximate size 6cm x 6cm). Arrows indicate the direction and proportional magnitude of the force vector at discrete locations within

the workspace. Relative magnitude is shown from white (no force) through to red (high force). (d) Blue cursor indicates the cursor (hand) position during a trial, the red

circle indicates the target, the dotted black line shows the participant’s current positional error. A virtual spring sits between the cursor and the target and provides

assistance, disruption, or no intervention depending on the value of k. N.B. Trajectory path and workspace force field remained invisible to participants throughout the

experiment.

https://doi.org/10.1371/journal.pone.0224055.g001
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align the end-effector with a moving target as accurately as possible along pre-specified trajec-

tories. Movement was in the Y-Z plane of the HapticMASTER system (Z–vertically upwards,

Y–horizontally right relative to participant). The target cursor waited until the end of the com-

ponent was reached by the participant before the next component began.

Participants were required to attend five sessions (one per day for 5 consecutive days) of

approximately 15 minutes each. In sessions 1 and 5, participants followed a pentagram trajec-

tory for three blocks of ten trials. Participants moved within a workspace force field, but had

no error manipulation forces. This trajectory was based on 2D aiming tasks that have previ-

ously been used in the assessment of manual dexterity [27]. The pentagram contains five

straight line components of equal length (the five edges). In Experiment 1, sessions 2 to 4

(Training) each consisted of four blocks of ten trials, with either assistive (error reducing), no

or disruptive (error enhancing) forces (depending on the allocated group) superimposed over

the workspace force field, following an inverted pentagram trajectory.

The target cursor was a hollow red circle, and the ‘current position’ cursor was a filled blue

circle. A dotted black line was used to indicate the magnitude of the error between the current

position and target cursors. To minimize fatigue, self-paced breaks with a minimum of 30 sec-

onds rest (whilst standing or seated) were provided after each block of trials. Each session

lasted approximately fifteen minutes. Experiment 2 followed same trial structure as Experi-

ment 1, with the exception of the levels of assistance/disruption, which change trial by trial

using various algorithms depending on group.

Materials

The experiments reported here were designed to examine how error manipulation forces affect

the learning of a novel workspace force field. The HapticMASTER, an admittance-controlled

haptic device with a large workspace [28], was used to generate the forces and record kinemat-

ics at a rate of 1 kHz.

To simulate a novel environment, we created a workspace force field which was a function

of position and calculated from the following equations:

fy ¼ A sin
2p

0:1
z

� �

ð1Þ

fz ¼ A sin
2p

0:1
y

� �

ð2Þ

Here the amplitude A was set to a value of 1. The force from the workspace force field (new-

tons) was a function of position (y and z, measured in meters) only. From this emerged a rela-

tively novel environment (Fig 1C) where, in order to perform well in the task, participants

needed to learn to predict the consequences of motor commands sent to the arm. Error

manipulation forces (those that acted to reduce or augment execution error) were subse-

quently implemented using a mass-spring-damper model, as described in Eq (3):

F ¼ m€x þ c _x þ kx ð3Þ

where (x) is displacement between the end effector and target positions and force is computed

as a function of the distance between the actual and target positions of the end-effector. The

simulation was implemented in a virtual null-gravity environment, and the end-effector mass,

m, set to 3 kg and the damping, c, was set to 10 Ns/m to generate an inertial effect.

In Experiment 1, for the Active-Control condition, the stiffness k was set to 0 N/m and

therefore no forces directly related to the positional error. The assistance group were provided
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with an assistive force implemented using k = 100 N/m, thereby providing full assistance, and

minimizing workspace information sampling. The Disruption group had a disturbance force

generated using coefficients k = -100 N/m, thereby providing a large prediction error for initial

interactions in this condition and subsequently facilitation a larger range of movement around

the workspace and information sampling.

In Experiment 2, we varied workspace information acquisition whilst also manipulating the

possibility of developing a short term global impedance strategy. Specifically, we created three

new training algorithms. In the Adaptive Algorithm (AA)—the virtual spring stiffness (k) var-

ied as a function of task performance (i.e. participants had increased disturbance when perfor-

mance improved and increased assistance when performance declined). The first trial of the

Adaptive-Algorithm condition was always set to no intervention (k = 0 N/m and c = 0 Ns/m)

in order to obtain a common benchmark measure of performance at the start of each session.

The value of the stiffness coefficient at each trial was adjusted as a function of performance in

previous trials, as described by Eq (4). This algorithm has been used previously as a computa-

tional model of motor adaptation to predict the force required to minimize adaptation time to

a viscous environment during treadmill walking tasks [7]. In our experiment, we used the

model to adjust the value of the stiffness coefficient in the current trial as a function of perfor-

mance in previous trials. This allowed us to consistently keep the amount of error experienced

by a participant within a small window:

kiþ1 ¼ f :ki � gðxi � xdÞ ð4Þ

The stiffness, k, of the force field for the next trial is a function of the stiffness in the current

trial, i, multiplied by a ‘forgetting factor’, f, and the difference between the demand error and

actual error (xd and xi, respectively), multiplied by a gain value, g. The values of f and g dictate

the relative sensitivity of the algorithm to previous performance (captured by ki) and error.

The sensitivity of the controller to performances obtained in previous trials is controlled by

adjusting f: A larger forgetting factor weights the previous trials more heavily, whereas a

smaller forgetting factor results in more influence from the current trial’s force field magni-

tude. Pilot testing informed the values of f and g to be used in the experiment and these were

subsequently set at 0.5 each.

This approach allowed us to constrain the amount of information, as the level of stiffness

was tuned to individual performance, constraining information by means of reducing work-

space exploration since forces were always at a manageable level. The Adaptive Disturbance
(AD) condition was identical to the AA condition, but stiffness could only decrease or stay the

same between trials (i.e., the change in stiffness’ upper limit was 0). This similarly constrained

information, but provided increasingly disruptive forces and therefore facilitated development

of a global impedance strategy. Finally, performances in these conditions were compared

against a Random (RAN) group—where an unpredictable stiffness value was provided (distur-

bance or assistance) across trials. The range of the value of k was clamped in the range -100

and 100 N/m in all 3 algorithms.

Metrics

Motor learning. Assessment (pre- and post-training) was performed without a spring

stiffness (k = 0), but with the same workspace force field shown in Fig 1(C). Thus, ‘learning’

can conceptually be defined as the participant’s ability to predict, and counteract, the forces

arising from the workspace force field in order to minimize error. To capture how much learn-

ing occurred following training in each condition, we calculated the difference in performance

in the pre- and post-training training trials. Specifically, we calculated the mean average path
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error scores for the three pre-test blocks and subtracted this value from the mean average path

error scores from the post-test trials. Path error (EP) was computed as the mean Euclidian

straight line distance between the end effector and the current component (sub-path) of the

target trajectory. The position of the end effector was subject to a low-pass Butterworth filter

(cut-off 250Hz) to remove noise in analysis of movements.

Analysis of training data. To study changes in performance as a function of training trial,

we fitted a first order exponential equation to the training data using the 1st order exponential

fit function in the Curve Fitting Toolbox implemented in MATLAB (MathWorks Inc., Natick,

MA). Training block number was used as the x value (x = 1 being the first block in the first

training session), and average path error during training was used as the y value. The function

uses the method of least squares to produce the most probable values of a and b in the func-

tion. The values derived from this model for each individual were subjected to group-level

analysis to examine differences during training. In other words, we used the parameters of the

learning function as summary statistics for random effects analysis using classical inference

(i.e. ANOVA).

Quantifying information

To obtain a metric of information, we first parsed the workspace into discrete, independent

voxels of 1 cm x 1 cm (see Fig 2; total size 40 cm x 40 cm). For the purposes of analysis, we cre-

ated a model that assumed participants acquire information about the force output of discrete

voxels, and any information acquired when the cursor was located inside a particular voxel

was ‘assigned’ to that voxel. As information is accumulated for a particular voxel, newly

acquired information for that voxel is discounted in value according to a weighting function.

Weighting the information in this way ensures that initial “inaccurate” estimates about the

expected change in force results in high amounts of surprise, and as more information is

acquired, lower amounts of surprise. Effectively, the system logarithmically scales (“weights”)

information in each voxel. The result of this is a metric which captures information acquired

through exploration of a workspace–a higher value will result from visiting a large number of

independent voxels across the workspace. The voxel size of 1cm x 1cm was a largely arbitrary

Fig 2. Information quantification. (a) Example simulated cursor movement across a sub-section of the workspace (10cm x 10cm). Workspace force field shown as a

quiver plot, where higher force magnitude is represented by darker red shading and arrow size, and force direction indicated by arrow orientation. Workspace separated

into 1cm x 1cm voxels. (b) Magnitude of change in force measured when moving along the path shown in (a) at a constant velocity over 1 second. Vertical black lines

indicate the voxel boundary. Shaded regions under the curve separated by the vertical lines represent the information presented which is attributed to the current voxel.

(c) Graphical representation of the weighting function for different values of lambda. Note that at higher values of information (in a voxel), the weighted information

becomes relatively lower.

https://doi.org/10.1371/journal.pone.0224055.g002
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selection; modelling with different voxel sizes in the range 0.25cm– 4cm shows the same pat-

tern of results. Total weighted information gained during training can be conceptualised of as

a measure of entropy.

Participants were not informed about the underlying workspace force field and it remained

invisible throughout the experiment. Thus, without the presence of visual information, we

assumed that the sensorimotor system would have no reason to predict a change in force as a

function of cursor position (at least at the outset of training). This heuristic leads to a context

where the magnitude of the change in force due to the workspace force field at that point in

time corresponds to a force prediction error (i.e. the difference between the experienced and

predicted force). Thus, new information presented about an individual voxel was approxi-

mated as the change in force at a point in time for the voxel at the cursor position (Fig 2B).

That is, the magnitude of change of the force vector as calculated by the workspace force field

equations, Eqs (1) and (2).

The information (I) related to a particular voxel (i,j) acquired throughout training up to a

time T (total time cursor was positioned inside the voxel) was therefore:

Iij ¼
Z T

0

Df ðtÞdt ð5Þ

Here, information is ‘binned’ into the voxel where the end effector position is currently

located (i,j). A value of I was computed for every voxel in the workspace under the assumption

that information presented for a particular voxel is the magnitude of the change in force,

numerically integrated over time for all points in time where the cursor position was inside

that voxel (Fig 2B). We assumed that new information becomes less valuable as a function of

the amount of information already acquired about an individual voxel as learning occurs

(where models about the expected force arising from a particular voxel are updated to mini-

mize free energy). This means that observations of changes in force have a higher probability,

and therefore less surprise. Instead of using probability of sensory input estimates for each

observed change in force, we opted for a more parsimonious solution by approximating sur-

prise with a weighting function—scaling the amount of information presented to an associated

information ‘value’.

The weighting method used has the desired effect for scaling information–the gradient of

the weighting function = 1 when information = 0 and gradually decreases. Weighting the

information in this way ensures that initial inaccurate estimates about the expected change in

force results in high amounts of surprise and, as more information is acquired, the surprise is

lower. The weighting formula, as a function of information presented, was:

w Iij
� �

¼
1

l
� logðl Iij þ 1Þ ð6Þ

where log is the natural logarithm and λ corresponds to a weighting parameter. Higher values

of λ lead to lower values of information relative to the amount of cumulative information pre-

sented, and thus faster learning about a voxel. The reported results have the value λ = 0.05, but

we tested the model under different assumptions of λ (through values ranging from 0.01 to

1.00) and the pattern remained consistent.

We also assumed that the total weighted information (TWI) acquired was equal to the sum

of the value weighted information received from each voxel of the workspace. If the workspace

consists of Nx cells horizontally, and Ny cells vertically, the information value for the whole
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workspace at time T can be calculated as:

TWI ¼
XNx

i¼0

XNy

j¼0

wðIijÞ ð7Þ

In this case the total weighted information assumes that information sampling starts at the

beginning of the first training session (Session = 2) and completes at the end of the last training

session (Session = 4). The total weighted information was computed per participant and is

used in subsequent analyses.

It is worth noting that we could have quantified information in alternative ways to the

approach described above. For example, one could model information acquisition and param-

eter estimation as a Kalman filter, or using Bayesian inference. However, unlike the partici-

pants in our experiments, such models would rapidly converge to the true force in a given area

in only a limited number of observations. To circumvent this, we would need to make assump-

tions that involve including parameters estimating sensory and processing noise to slow the

rate of learning. This would provide comparable results to our information scaling method if

these approaches were implemented in a discrete voxel based manner (as calculated here—

with exploration being rewarded as a means of sampling information and exposure to new

areas of the workspace providing more information). More sophisticated models could capture

the idea that repeated exposure to forces in a workspace is not sufficient for learning per se-

but these also require additional assumptions e.g. an understanding (and model) of how an

action (set of muscle contractions) is executed to deal with the force to maintain low positional

error. Given that our aim was restricted to capturing the relationship between workspace

exploration and information acquisition, we settled on a solution that provided the most parsi-

monious model of behavior in this task.

Statistical analysis

One-way between subject ANOVAs were performed to examine differences between the

groups for each of the metrics described above, and Tukey’s post-hoc comparison corrected p

values are reported where relevant. Partial eta squared (η2
p) values are reported for effect size.

We provide descriptive statistics (means and standard deviations), and Bayes Factors as com-

puted using the BayesFactor package version 0.9.12–4.2 in R version 3.6.2. We tested for, but

did not find any, violations of the assumption of homogeneity of variance using Levene’s test

[29]. Error bars on all Figures represent +/- 1 SEM.

Experiment 1 –disturbance leads to increased information

sampling

In the training period, the ‘Disturbance group’ were presented with an additional force vector,

whose force was generated using a negative value of k in the mass-spring-damper simulation.

We predicted that disturbance forces would lead to (i) more surprise (as indexed by our model

of information); (ii) more errors across training–indexed by a in the fitted function y = aebx

and (iii) increased rate of error reduction over the training period (indexed by b); and finally,

as a corollary of the above, (iv) superior motor learning compared (pre- post- error improve-

ment) to the groups with lower information.

The differences in information at the early and late stages for each condition can be seen in

Fig 3. Formal analysis of the cumulative amount of information for each group at the end of

the training block revealed statistically significant differences (F (2, 44) = 34.21, p< .0001,

η2
p = .609; BF = 1.76×107; Active-Control: mean = 6118, sd = 658, Assistance: mean = 5742,
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sd = 772, Disturbance: mean = 10466, sd = 2823). This effect was driven by the Disturbance

group gathering more information about the workspace relative to the Active-Control (p<

.0001) and Assistance (p< .0001) groups, but there was no difference between the Assistance

and Active-Control groups (p = .876).

We next performed an ANOVA on the values for the exponential fit to examine differences

across training (a parameter). The ANOVA revealed group differences (F (2, 44) = 7.623, p =

.0014, η2
p = .257; BF = 1.96×101; Active-Control: mean = 10.1, sd = 5.18, Assistance:

mean = 5.98, sd = 1.94, Disturbance: mean = 14.8, sd = 9.72), with the Disturbance group

performing worse than the Assistance group (p = .0009), although following correction for

multiple comparisons, this was not significantly different to the Active-Control group (p =

.1162). When comparing performance change over training (b parameter) (F (2, 44) = 26.37,

p< .0001, η2
p = .545; BF = 3.60×105; Active-Control: mean = -0.022, sd = 0.012, Assistance:

mean = -0.0172, sd = 0.014, Disturbance: mean = -0.0447, sd = 0.013), we found that the dis-

turbance group showed a steeper decay in error in comparison to the Active-Control (p<

.0001) and Assistance Groups (p< .0001). There was no difference between learning for the

Assistance and Active-Control conditions (p = .2589).

The amount of motor learning was quantified as the error improvement between the

mean pre- and post- path error score (both of which were performed without any stiffness

intervention [k = 0] and with the upright pentagram shape). The difference between these

scores provides a measure of learning (without the confounds associated with measurements

of performance taken during the training phase). We found significant differences in the

amount of motor learning between groups (F (2, 44) = 5.655, p = .0065, η2
p = .204; BF = 9.14;

Active-Control: mean = 0.744, sd = 1.58, Assistance: mean = 0.595, sd = 1.74, Disturbance:

mean = 2.00, sd = 1.02). Specifically, the group exposed to Disturbance forces during training

on the inverted pentagram trajectory had improved significantly more than the Assistance

(p = .0136) and the Active-Control (p = .0202) groups (Fig 4). These results are consistent with

our model.

Fig 3. Information as a by-product of disruption. (a) The Disturbance group had more information over time at a group level; (b) Example heat maps showing the

amount of information gathered across the workspace at the outset and end of training for randomly selected individual participants.

https://doi.org/10.1371/journal.pone.0224055.g003
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Experiment 2 –manipulating information sampling without

facilitating a short term impedance strategy

The adoption of a short term global impedance strategy (e.g. stiffening arm in all directions

when an unexpected force was encountered) in response to disturbance forces (see [26]) could

not be ruled out.in Experiment 1. In Experiment 2, we created algorithms that made it improb-

able the adoption of a global impedance strategy would not yield better performance (Fig 5A–

5C and Fig 7A and 7B).

In line with our experimental aims, the algorithms produced significantly different mean

values of stiffness throughout training (F (2, 41) = 12.40, p< .0001, η2
p = .377; Fig 5C;

BF = 3.88×102; Adaptive: mean = -11.6, sd = 19.9, Adaptive-Disturbance: mean = 17.5,

sd = 18.3, Random: mean = 0.55, sd = 5.59), mean trial-on-trial stiffness change (F (2, 41) =

931.9, p< .0001, η2
p = .986; Fig 5A; BF = 1.63×1031; Adaptive: mean = 3.13, sd = 0.624, Adap-

tive-Disturbance: mean = 23.5, sd = 4.24, Random: mean = 68.1, sd = 5.83), and number of

times the task switched from assistive to disruptive stiffness values (or vice versa) across train-

ing (F (2, 41) = 67.25, p< .0001, η2
p = .7664; Fig 5B; BF = 4.63×1010; Adaptive: mean = 5.27,

sd = 1.16, Adaptive-Disturbance: mean = 39.1, sd = 22.4, Random: mean = 62.6, sd = 5.14).

Our predictions regarding information differences were borne out with statistically reliable

group differences in the cumulative amount of workspace information at the end of training

(F (2, 42) = 20.06, p< .0001, η2
p = .489; Fig 6D; BF = 2.26×105; Adaptive: mean = 5758,

sd = 459, Adaptive-Disturbance: mean = 5642, sd = 665, Random: mean = 6873, sd = 741).

The Random group experienced more information relative to the Adaptive-Algorithm (p<

.0001) and Adaptive- Disturbance (p< .0001) conditions, but there was no difference between

the latter two groups (p = .806).

Fig 4. Disturbance accelerates skill acquisition. (a) Disturbance force training produced a steeper exponential performance curve during the training blocks. (b) The

Disturbance training group were able to generalize their learning better than Assistance and Active Control groups, as measured by reduction in mean path error

between pre- and post-tests. Note that this is the operationalised measure of learning used within these experiments.

https://doi.org/10.1371/journal.pone.0224055.g004
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From the curve fitting results, there were no reliable differences in task difficulty level (a
parameter) as indexed by individual values (F (2, 42) = 1.491, p = 0.2368, η2

p = .066; BF =

1.701; Adaptive: mean = 7.93, sd = 1.37, Adaptive-Disturbance: mean = 9.51, sd = 0.93, Ran-

dom: mean = 8.86, sd = 2.16), but the groups did show differences in performance improve-

ment across training (b parameter) (F (2, 42) = 5.058, p = .0108, η2
p = .194; BF = 10.6;

Adaptive: mean = -0.0084, sd = 0.0198, Adaptive-Disturbance: mean = -0.0065, sd = 0.0276,

Random: mean = -0.0231, sd = 0.0205). This effect was driven by the Random group showing

a steeper curve in training performance compared to the Adaptive Algorithm (p = .0112),

though it did not reach the statistical significance threshold when compared against the Adap-

tive Disturbance Algorithm (p = .0624). There were no differences between the Adaptive Algo-

rithm and the Adaptive Disturbance conditions (p = .8613).

We also found group differences in the amount of motor learning from pre- to post-train-

ing with no stiffness intervention (F (2, 42) = 4.541, p = .0164, η2
p = .178; Fig 7B; BF = 3.59;

Adaptive: mean = 0.672, sd = 1.64, Adaptive-Disturbance: mean = 0.726, sd = 1.20, Random:

mean = 1.97, sd = 1.03). There was no statistically reliable difference in learning between the

Adaptive Algorithm and Adaptive-Disturbance Algorithm (p = .914). Instead, this effect was

driven by improvements following exposure to Random levels of assistance/disruption relative

to the Adaptive (p = .018) and Adaptive- Disturbance algorithms (p = .009).

Finally, given our hypothesis that the amount of information predicts learning, we reasoned

that there should be a positive correlation between the amount of information that participants

are exposed to during training and the amount of learning (i.e. difference in performance

between pre- and post-training sessions). Conducting correlation analyses at a condition-level

would have been confounded by our manipulations of information across training groups and

would have relatively weak statistical power to detect an underlying relationship (sample sizes

varying from 13 to 17 per group). Thus, we pooled data across both experiments (n = 86) and

performed a simple linear regression to predict learning based on cumulative information

exposure during training. Consistent with our hypothesis, we found a statistically significant

relationship (F (1, 82) = 10.45, p = .0011, BF = 26.98), with the information metric explaining

11.2% in variation in learning across all conditions (R2 = 0.112; Table 1; Fig 8).

Fig 5. Emergent properties of the training algorithms. The level of assistance (positive stiffness) or error enhancement (negative stiffness) during training was varied

on a trial-by-trial basis per the participant’s allocated group. We reasoned that the increased changes in stiffness (panel a shows magnitude of mean stiffness change

between trials plotted) and switching between positive to negative stiffness values (panel b shows group average number of switches throughout training plotted)

afforded to the random group would result in increased workspace information sampling and therefore greater surprise, through means other than the provision of a

high negative stiffness (panel c shows average stiffness per condition).

https://doi.org/10.1371/journal.pone.0224055.g005
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Recent evidence from Wu and colleagues [30] demonstrates that the intrinsic movement

variability associated with motor commands (from Zn to Zn+1 to Zn+2 . . .) predicts individual

rates of motor learning. Indeed, it is possible that increased error variability may be the mecha-

nism by which information about the workspace is acquired. To contextualise and compare

the predictive value of the information metric against a more parsimonious model of move-

ment variability, we ran a second regression analysis where we included the standard deviation

of path error (per component/sub-path; and averaged across training trials; Table 1 Model 2).

Interestingly, we found that this measure of variability was unable to predict learning in these

data (p = .292, R2 = 0.01) and a direct comparison between a two-parameter model (Model 3;

R2 = 0.116) and Model 1 showed no statistically significant reliable differences (p = .529).

Discussion

To date, there have been no principled explanations as to why motor learning can be impaired

by haptic assistance and facilitated by disturbance force application [9]. The current results

Fig 6. Workspace information and surprise. The stiffness coefficient K (N/m) demonstrates the degree of assistance (positive values/error reduction) and disturbance

(negative values/error amplification) on a trial-by-trial basis for example subjects in the (a) Adaptive Algorithm; (b) Adaptive Disturbance Algorithm and (c) Random

conditions; (d) The manipulation led to the Random group having more information over time; and (e) Heat maps of the amount of information across the workspace

provide a visualization of difference effect for example participants, after the first and last training session.

https://doi.org/10.1371/journal.pone.0224055.g006
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support the hypothesis that the underlying mechanism relates to the availability of informa-

tion, and show that haptic forces that provide more ‘surprise’ will lead to better learning in

novel environments.

We created a model (inspired by the Free Energy Principle) to quantify the amount of

information available to learners during a task. Experiment 1 showed that disturbance forces

led to the accumulation of significantly more information across the training period. These

results aligned with our analysis of the amount of motor learning following training, whereby

the group that sampled more information showed superior performance relative to a group

provided with assistance and to an active-control group. In Experiment 2, we demonstrated

that the manipulation of information (created by training individuals on a series of random

assistive and disturbance forces) yielded better learning compared to providing predictable

levels of assistance/ disturbance tuned to individual performance. It should be noted that the

results from Experiment 2 cannot be explained by the adoption of a short term global imped-

ance strategy (without much special pleading).

Our findings are consistent with previous results suggesting that disturbance forces might

be beneficial for motor learning [4–7]. Importantly, the current work advances these reports

by providing, and testing, a theoretical account of why disturbance might accelerate learning.

Specifically, we show that these results are predicted by the free energy principle—which pro-

poses that human learning can be conceptualised as a process of free-energy minimization

[15]. Here, motor learning is seen as a process of entropy reduction where the average surprise

of perceptual outcomes sampled from a probability distribution relating to a motor command

is decreased through the development of forward models. The decrease in surprise relates to

improved inferences created by the system through exposure to information that relates per-

ceptual output to motor signal input. In line with this, through pooling the data across both

Fig 7. Performance on training and learning generalization. (a) Error reduction rates during training. Abscissa represents block number; (b): Random levels of

assistance/disturbance demonstrated better learning, as indexed by the amount of error reduction post training relative to pre-training in a novel workspace. Pre- and

post- training assessments are always performed without any stiffness intervention (k = 0).

https://doi.org/10.1371/journal.pone.0224055.g007
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experiments, we found that the amount of workspace information participants were exposed

to during training could predict a statistically significant amount of variance in learning.

Given the plethora of variables that could also have influenced learning across these different

manipulations (six experimental conditions in two experiments), it is notable that this rela-

tionship between information and learning could be detected.

Moreover, we provide evidence that the improved information sampling created by distur-

bance enables generalisation rather than simple performance facilitation [1, 31]. Our work

thus complements and advances previous observations about the potential benefits of distur-

bance. For example, an earlier study showed that performance on a tracking task could be

Table 1. Information exposure predicts learning.

Model t p β F df p mult. R2 adj. R2

Model 1 10.45 83 0.002 0.112 0.101

Cumulative information 3.232 0.002 2.31×10−4

Model 2 1.125 83 0.292 0.014 0.001

Path Error Mean SD 1.061 0.292 6.45×10−2

Model 3 5.34 82 0.006 0.116 0.094

Cumulative information 3.087 0.003 2.59×10−4

Path Error Mean SD -0.633 0.529 -4.27×10−2

https://doi.org/10.1371/journal.pone.0224055.t001

Fig 8. Information exposure predicts learning. Learning (mean path error reduction between pre- and post-

training) as a function of cumulative information acquired during training (total entropy), for all participants in both

experiments (R2 = 0.122).

https://doi.org/10.1371/journal.pone.0224055.g008
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improved through delivery of haptic disturbance [5]. This finding could be explained, how-

ever, by the participants being trained to become more proficient in deploying feedback con-

trol and, indeed, the authors of the study explained their results in terms of a general training

improvement in the ‘attentional’ capabilities of their participants. The problem with such

explanations relates to the difficulty in defining and quantifying the term ‘attention’ when

used in this manner. It is therefore interesting to note that the improved tracking performance

is predicted within the FEP framework. The presence of haptic disturbance when tracking will

generate surprise and thus force the system to act to reduce the entropy (i.e. learn to make

effective feedback corrections). Indeed, the Random training condition in our experiment

exploited this mechanism in a principled manner by exposing participants to frequent move-

ment-by-movement switches between positive and negative stiffness. Together, these results

illustrate the fundamental links between attention and uncertainty (see [32, 33]), and suggest

that the effects of haptic disturbance can be quantified in a range of different settings through

information theory.

Our results also build on previous work showing a relationship between variability and

motor learning. For example, Van Beers [34] showed that the random effects of planning noise

accumulate, in contrast to task-relevant errors which show close to zero accumulation

(explained by effective trial-by-trial corrections), whilst Wu et al’s experiments [30] (results

described earlier), have shown that task-relevant motor variability facilitates faster learning

rates. On these grounds, it has been argued that intrinsic movement variability leads to motor

exploration, which sub-serves motor learning and performance optimization. Indeed, the idea

that action exploration can drive learning has long been mooted in theories of operant behav-

iour [35] and human development [36–38]. Recent experiments have shown that: (a) artifi-

cially manipulating the relationship between movements and visuomotor noise can be used to

teach people specific control policies [39] and (b) the variability in task-redundant parameters

can predict motor adaptation rates [40]. The current findings demonstrate that extrinsic vari-

ability delivered through haptic disturbance can, in the same vein, augment learning by

increasing the amount of information sampled by the learner. The general notion that

increased exposure to information can lead to faster learning is well explained by theories of

structural learning and has good support from a range of empirical studies [19, 20, 41–44]

including investigations of laparoscopic surgical training [45]. Our extension to these ideas is

that learning of the structure can be directly related to the amount of information available to

the learner. Indeed, regression analyses for our data show that the amount of information

accumulated over training (as indexed by our model) provided greater explanatory power

compared to a measure of motor variability alone in this task.

These findings raise the issue of which neural substrates underpin these learning processes

but the neural processes that implement the computational algorithms exploited by the human

nervous system remain to be discovered [46, 47]. Likewise, the underlying control mechanisms

supporting skilled arm movements are poorly understood and, as such, it is difficult to specu-

late on how the individuals learned to compensate for the complex force field, but we suggest

that the learning was likely to involve processes related to optimal feedback control as well as

predictive control mechanisms [48–50].

Our findings suggest that the participants developed forward or inverse models that allowed

them to predict (and thus compensate for) the novel force field through which they needed to

move. It has been shown previously that participants can learn a short term strategy of stiffen-

ing their arm to resist the effects of sudden unexpected force perturbations [25, 26]. This work

has demonstrated that humans learn to use selective control of impedance geometry in order

to stabilise unstable dynamics in a skilful and energy efficient manner. It is probable that par-

ticipants in the current experiments adopted such a strategy when they were first exposed to
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the novel workspace (as they were unable to predict the forces that were applied as they moved

through the space). Importantly, there was a regular (lawful) structure to the novel workspace,

in the same way that the world provides a lawful force field through which the neonate must

learn to move their arm. We hypothesised that our participants would learn the underlying

force field so that the arm could move skilfully through the workspace rather than repeatedly

contend with unexpected displacement. This hypothesis was based on the free energy minimi-

zation principle which suggests human behaviour is marked by continual attempts to reduce

entropy (i.e. minimise surprise). Experiment 2 allowed us to test whether participants were

learning the force field or adopting a global impedance strategy, by which the arm is stiffened

in all directions to counteract external force interventions. As outlined above and demon-

strated in previous research, participants are likely to adopt a global impedance strategy when

the force intervention is largely disruptive and increases error (k < 0). However, in Experi-

ment 2, the random condition consisted of (on average) 50% assistive trials, whereby the force

intervention assisted movement, thus rendering such a strategy sub-optimal. We reasoned

that, in contrast to the random forces, the adaptive disturbance algorithm (where participants

were provided with a more consistent presentation of disturbance forces) would be more likely

to bias participants to adopt an impedance control strategy. Given that we observed improved

learning in the random condition, impedance control is unlikely to provide a full account of

these data. Instead, these results indicate that participants were learning to skilfully counteract

the underlying workspace force field and we propose that this learning was promoted, in part,

through the increased information acquired during training.

Finally, it is important to note that this study used neurologically intact adults as partici-

pants and whilst the force field in the two experiments allowed us to examine novel skill learn-

ing, the difficulty was tuned to a level such that all participants could complete the task. We

speculate that disturbing the movements of individuals with neurological deficits (e.g. cerebral

palsy) might not be beneficial, and constraining errors in these populations could speed up

learning by helping the individuals sample the necessary information [22]. Consistent with

this, there is work with stroke survivors that has shown that error amplification is useful in

rehabilitation for mild impairment, but error guidance is necessary for patients with more

severe damage [51]. Likewise, haptic guidance has been found to be beneficial for people with

relatively low skill levels, but error enhancement is better for highly skilled individuals [3, 52].

The current work builds on these observations and provides a theoretical framework for the

development of optimized robotic training devices in skill training and rehabilitation. There is

an urgent need for the development of such theoretical frameworks if the immense potential

of robotic therapy is to be realised. There has been great enthusiasm for the use of robotic sys-

tems in providing therapeutic intervention in conditions such as stroke. Nevertheless, a large

pragmatic, multicentre, randomised controlled trial has shown that robotic therapy per se is

not a panacea [11]. The potential of these robotic systems will only be realised when the sys-

tems deliver therapeutic interventions based on the scientific principles of human motor

learning.
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