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Perceptual load is a well-established determinant of attentional
engagement in a task. So far, perceptual load has typically been
manipulated by increasing either the number of task-relevant
items or the perceptual processing demand (e.g. conjunction
versus feature tasks). The tasks used often involved rather
simple visual displays (e.g. letters or single objects). How can
perceptual load be operationalized for richer, real-world
images? A promising proxy is the visual complexity of an
image. However, current predictive models for visual
complexity have limited applicability to diverse real-world
images. Here we modelled visual complexity using a deep
convolutional neural network (CNN) trained to learn perceived
ratings of visual complexity. We presented 53 observers with
4000 images from the PASCAL VOC dataset, obtaining 75 020
2-alternative forced choice paired comparisons across observers.
Image visual complexity scores were obtained using the
TrueSkill algorithm. A CNN with weights pre-trained on an
object recognition task predicted complexity ratings with r =
0.83. By contrast, feature-based models used in the literature,
working on image statistics such as entropy, edge density and
JPEG compression ratio, only achieved r = 0.70. Thus, our model
offers a promising method to quantify the perceptual load of
real-world scenes through visual complexity.
1. Introduction
Research on the role of attention in perception has emphasized the
role of perceptual load in an attended task as a determinant of
the level of attentional engagement [1–4] and conversely of
inattentional blindness to unattended stimuli [5–7]. Specifically,
when compared to low load tasks, conditions of high perceptual
load have been shown to result in higher attentional engagement
in the task as well as reduced perception of, and brain response to,
unattended stimuli [8–12]. High load is usually operationalized
by using visual search tasks with a higher number of items or a
greater proportion of target-similar items, by using a more
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heterogenous distractor array, or by using more complex processing requirements (such as feature

conjunctions) which do not allow pop-out [1–10,12–15].
To date, most of the load manipulations used have typically involved rather simple stimuli, for

example letters, shapes, and a few objects; see [13–16] and for reviews [1–4]. It therefore remains
unclear how perceptual load can be operationalized in real-world stimuli such as images of natural
scenes. Accordingly, previous research on the role of attention in natural scenes has not as yet varied
the level of perceptual load of the image itself. In a divided attention paradigm, the load of an added
primary task in which perceptual load can be more easily manipulated (such as visual search for
letters or digits) has been varied while observers performed a secondary natural scene perception task
[17]. Studies have also compared attended and ignored images [18]. Thus, the question of how to
estimate and manipulate the perceptual load of diverse, real-world images is still open.

Here we aim to predict perceived image complexity in order to use it as a potential proxy for perceptual
load in natural scene perception.We collected 75 020 pairwise 2-alternative forced choice (2AFC) complexity
judgements (‘which image ismore complex?’) over a set of 4000 natural scene images from the PASCALVOC
dataset [19], widely used in computer vision research on object recognition. From these comparisons, we
generated a ranking over the images, assigning a complexity score to each one. We then applied a deep
learning approach, training a convolutional neural network (CNN) to predict the complexity scores of
these varied real-world scenes.

Previous work on prediction of perceived image complexity, which we review next, has used simple
trainable models (shallow neural networks or linear combinations) drawing on hard-coded (non-
learnable) low-level features, such as the edge density or orientation variance; this approach has
resulted in limited predictive power.

1.1. Complexity and visual clutter
The concept of visual complexity is related to that of visual clutter, which Rosenholtz et al. [20] define as ‘the
state in which excess items, or their representation or organization, lead to a degradation of performance at
some task.’ This work also introduced the influential feature congestion model, which computes local image
statistics such as colour variance. It is based on hand-crafted features rather than learned parameters.

This model has been frequently extended. Deza & Eckstein [21], for example, presented an adaptation
of the Rosenholtz feature congestion model to a foveated context, using increased resolution at the image
centre. This model was validated against visual search reaction time (RT) judgements.

Yu et al. [22] proposed a proto-objectmodel of visual clutter. They note that good progress has beenmade
at quantifyingclutter bycountingobjects, givinganestimate of set size, andobserve that image segmentations
are imperfect ground truths for clutter because they are subjective. The proto-object model, thus, provides a
middle ground between low-level features and high-level objects. Here, images were segmented into groups
of similar pixels using two methods: SLIC superpixels [23] and the entropy rate superpixel [24]. These were
then clustered (in colour space) into proto-objects, and clutter was predicted from proto-object count.

To validate this model, observers also ranked a set of 90 images in order of perceived clutter. The
model predicted the ranks quite well, achieving Spearman’s ρ = .81 (as ratings only made sense in
terms of rank, Pearson’s r was not given).

Is clutter the same concept as complexity? While the concept of ‘excess items’ appears related to that
of complexity, it is less clear that the disorderly organization that reflects higher clutter always indicates
higher complexity. One can imagine a scene of high complexity which, owing to an ordered arrangement
of objects, does not appear cluttered.

Visual clutter has been studied in close relationship with the psychophysics of visual search and with
examples of degradation in object recognition or visual search, such as crowding. Measures of visual
clutter are therefore based primarily on performance drops in visual search, usually with simple, well-
segmented targets and distractors.

By contrast, our image comparison task attempted tomeasure the perceived visual complexity of diverse
real-world images. Our complexity ratingswere not obtainedbyaccuracyorRTmeasurements of recognition
or search. They did not correlate well with visual search RTs on the same images (see §3.7). Our complexity
ratings, therefore, are informed primarily by observers’ idea of visual complexity as a descriptor.

We note that ‘clutter’ ismore generally used in natural language to denote objects (e.g. ‘a cluttered room’)
and is not as applicable to natural scenes. Object count (set size) is often used as a proxy for clutter. ‘Complex’
and ‘simple’, however, apply naturally to any visual stimulus without connoting a profusion of objects. Two
scenes with an equal number of objects could be rated very differently in complexity owing to differences in
the nature of the objects, their affordances, their textures, and the nature and texture of the background.
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If clutter cannot predict complexity, does this suggest that the two concepts differ? We address this

question by correlating our complexity ratings with statistics from the Rosenholtz feature congestion
model. We also investigate the relationship between complexity and object perception by correlating our
complexity ratingswith object counts and region counts obtained by image processing andmachine learning.

1.2. Feature-based models of complexity in natural scenes
Oliva et al. [25] were among the first to investigate the perceived complexity of real-world images (in this
case, of indoor scenes). They asked observers to split indoor scenes iteratively into groups of high and
low complexity, then applied multidimensional scaling (MDS) to embed the scenes into a two-
dimensional space. MDS often delivers axes of variance which track image properties such as
brightness or scene ‘openness’. In this case, apart from a first axis which appeared to correspond to
‘clutter’, the dimensions suggested did not match clearly to any image features. Although this is not a
predictive model, it highlights the difficulty of decomposing complexity into easily-describable features.

Cavalcante et al. [26], using photographs of streetscapes, asked participants to rate the complexity of
74 unaltered images. Applying a model using learned independent component filters, they achieved a
correlation of r = 0.72 with perceived ratings. However, accuracy was not evaluated on a held-back
validation set, so the model’s predictive power is unclear.

Machado et al. [27] developed a predictive machine learning model whose training data was obtained
by asking 30 participants to rate the complexity of 800 images using a Likert scale ranging from 1 to 5.
The majority of the images were art (abstract or representational art and clip art), but 200 photographs of
natural scenes were also included. For each image, 329 features were computed; a feed-forward neural
network with one hidden layer was then trained to predict perceived complexity ratings from these
features, achieving a Spearman’s ρ rank correlation of 0.83 on an unseen validation set.

However, given the mixed classes of images, it is possible that the model learned inter-class
differences in complexity ratings rather than the features which underlie complexity in natural scenes
across different classes. This is especially possible given that only a quarter of the training set was
made up of natural scene images; it thus remains unclear whether this model could successfully
predict complexity on a wide range of unseen natural scene images.

Corchs et al. [28] trained a machine learning model on a dataset consisting exclusively of outdoor
photographs. They asked 26 observers to judge the complexity of 49 real-world scenes using a slider
ranging from 0 to 100. Eleven image statistics were extracted, including a measure of ‘visual clutter’
using the Rosenholtz feature congestion model [20]; a linear combination of these features was fit to
the mean complexity ratings using particle swarm optimization (PSO) [29].

Validation was performed by using the same linear combination of features to predict the complexity
scores from a second unseen set of 49 high-quality professional photographs of real-world scenes from
the LIVE and IVL databases, on which its correlation with perceived scores reached r = 0.81. The features
with most influence on the final score were the number of regions according to segmentation by the mean
shift algorithm, the frequency factor (the ratio between the spatial frequency under which lies 99% of the
image’s energy, and the Nyquist frequency), and an estimate of the number of colours in CIELAB space.
The small size of the the training set (49 images) raises the possibility that the model’s applicability to
diverse real-world scenes could be low. The validation data, consisting also of 49 images, showed a drop
in rof 0.05 (5.8 percentage points), whichmay be an indication that themodelwas overfit to the training data.

1.3. Our approach
For data collection, most of the studies just described used Likert scales. Here we evaluated perceived
complexity using 2AFC paired comparisons; observers were presented with pairs of images and asked
to indicate which one was more complex. The 2AFC approach has several advantages over Likert-like
ratings. Firstly, it is less subject to response bias. For example, a conservative observer may rank all
images lower than a non-conservative observer, but this would not affect their 2AFC choice, which is
based on a relative within-pair complexity judgement. Secondly, the method of 2AFC paired
comparisons is more resistant to changes in criterion over the course of exposure to more images in
the experiment, because observers are forced to choose one image from each pair rather than relating
each image to the increasing number of previously rated images.

We therefore generated complexity ratings for 4000 images by presenting pairs of images and
requesting observers to make a 2AFC judgement on each pair. In this way, we collected 75 020
comparisons which we then converted into a complexity score for each image.
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The studies just described all used the approach of extracting a large number of different features,

then using a learning algorithm (simple neural network, support vector machine or other optimizer)
to predict complexity ratings. Can these results be improved by using a CNN approach with learned
features, and can complexity ratings be predicted across a more diverse set of real-world images?
Here we trained a deep learning network to predict the perceptual complexity of 4000 images of a
variety of real-world scenes, aiming to achieve a higher level of prediction while avoiding overfitting.

2. Experiment 1: complexity of whole images
Using a CNN, we aimed to predict the complexity of each image, rather than the outcomes of individual
2AFC comparisons or the full 4000-by-4000 distance matrix.

There are many approaches to generating a ranking from paired comparisons, going back to
Thurstone [30]. Game theoretic techniques, which model comparisons as competitions between
images, are commonly used to assign a score to each competitor; examples are the Elo rating system
[31] and its extension the Glicko system [32]. We used TrueSkill, a state-of-the-art method which also
generalizes the Elo method and is newer than the Glicko method.

2.1. Material and methods

2.1.1. Participants

Sixty-two observers (11 male) with a mean age of 24.9 (s.d. 9.0) were recruited from the University
College London (UCL) Institute of Cognitive Neuroscience subject pool. They all had normal or
corrected-to-normal vision and were asked to have a good night’s sleep before attending the experiment.

2.1.2. Dataset

We used the PASCALVOC object recognition dataset [19], which consists of real-world scenes containing
one or more objects with at least one from the following 20 classes: person, bird, cat, cow, dog, horse,
sheep (animals); aeroplane, bicycle, boat, bus, car, motorbike, train (vehicles); bottle, chair, dining
table, potted plant, sofa, TV/monitor (indoor objects). The dataset contains images with various
aspect ratios taken by different cameras. We used a randomly selected subset of 4000 images.

2.1.3. Procedure

We asked observers to choose, from each pair, the image that they thought was most visually complex.
Written instructions indicated that ‘an image which is more visually complex will take up more of your
attention as you look at it.’ All observers were given the same instructions at the beginning of the session.

On each trial, observers were shown a green dot to indicate that the trial was ready. They could then
hold down the A key to view the first image, or the K key to view the second image. Each image was only
displayed when the corresponding key was held down, and only one image was displayed at a time. The
number of times each image was viewed was not constrained; nor was the total duration of the trial. We
collected the pattern of image viewings, with timings, for each trial. Participants then pressed the Z key if
they wished to indicate that the first image was more complex, or the M key to select the second image.

The experiment was deployed using an interactive website built with the Flask server [33] and hosted
using Amazon Web Services Elastic Beanstalk. Data collection took place in a UCL computer room and
was performed in 90 min sessions each hosting 20–30 observers, who completed varying numbers of
comparisons. We presented 12 practice trials at the beginning of the experiment. Data collection was
not divided into blocks, and we allowed free breaks. Pairwise comparisons were randomly distributed
across participants, so that image presentation counts were approximately equal and no participant
was more or less likely to see any particular image. Owing to the croudsourced nature of this
experiment, counts were approximately rather than perfectly balanced.

2.1.4. Post-processing

The web interface provided us with a list of comparisons, each one effectively a competition in
complexity between two images. Each image participated in approximately 37 comparisons. These
comparisons were used as input to the TrueSkill algorithm [34], which uses a Bayesian framework to
assign a score distribution to each image based on its performance in each competition. We used the
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Figure 1. Sample images from the PASCAL VOC dataset, shown in order of complexity rating, including the images of lowest and
highest complexity. Observers performed 75 020 pairwise comparisons; during each one, we asked ‘which image is most visually
complex?’ Images were then ordered using the TrueSkill algorithm, which assigned a unique complexity score to each image.
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mean of this distribution as that image’s complexity rating. Individual observer results were not
modelled and no competitions between observers were set up. Example images are shown in figure 1.

2.2. Results
We collected 75 020 pairwise comparisons of 4000 images. Each of the 62 participants judged on average
1210 comparisons. TrueSkill ratings formed an approximately normal distribution with mean 25.0 and
standard deviation 5.5 (figure 2).

2.2.1. Consistency of results

We examined each of the comparisons to check whether its result (image A or B) matched the TrueSkill
ratings (rating A > rating B if the observer chose A as most complex, and rating B > rating A if B
was chosen).

The 2AFC judgements matched the TrueSkill ratings in 76.1% of comparisons, showing that there is
sufficient consistency in human ratings for TrueSkill to form an effective model and indicating that it is
appropriate to represent perceived complexity as a one-dimensional space.
3. Modelling
To model perceived complexity, we trained a CNN to predict complexity ratings directly from pixel-level
image data. We examined two CNN architectures and investigated the effects of pre-training. We then
measured the predictive power of individual image statistics and pixel-level regression, before
comparing to the model of Corchs et al.
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Figure 2. (a) Final distribution of complexity ratings for all 4000 images. (b) Convergence of the TrueSkill algorithm after rating of
the first 2000 images (iterations 1–5) and after the addition of the second 2000 images (iterations 6–9). Decreasing slopes show the
algorithm’s convergence in each case.

network r
VGG-16 (pre-trained) 0.65
VGG-16 (random weights) 0.60
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InceptionV3 (random weights) 0.73
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Figure 3. The networks used to model perceived complexity directly from image data. (a) Modified VGG-16 architecture.
(b) Modified Inception V3 architecture. (c) Correlations between perceived complexity ratings and the predictions of four models
(evaluated on a 10% validation set unseen during training).
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3.1. Correlation metrics
We used the TrueSkill algorithm [34], designed for assessing skill in competitive games. An individual’s
skill is represented as a normal distribution; each individual is tagged with a μ coefficient, representing
skill (distribution mean), and a σ coefficient, representing the algorithm’s confidence (distribution
variance). In our application, μ represents perceived complexity. TrueSkill converged on a stable
ranking, indicating that we had collected enough comparisons.

We estimate our models’ predictive power by correlating their complexity estimations with images’
TrueSkill ratings. Much of the literature on complexity compares model predictions to perceived
ratings using Spearman’s rank correlation coefficient (ρ), which does not take into account direct
values but only their ranks. Because Trueskill’s output is a computation generating each image’s
probability of succeeding in paired comparisons, rather than a Likert scale, we instead used Pearson’s
r correlation coefficient as it is sensitive to value as well as rank.

3.2. Deep learning
We used modified versions of two architectures, VGG-16 and Inception V3 (figure 3) to model
complexity. Both networks were originally trained on the ILSVRC object recognition dataset [35],
which contains approximately 1.2 million images in 100 labelled classes. Images were sampled from
the larger ImageNet dataset [36], which contains approximately 50 million images. Here, both
networks were evaluated using the pre-trained weights from ILSVRC data, as well as being trained
from scratch with randomly initialized weights.

For the VGG-16 architecture, we removed the final softmax (discrete classification) layer, replacing it
with six fully-connected layers with {512, 256, 128, 64, 32, 1} units and terminating in a rectified linear
unit (ReLU) outputting a scalar complexity estimate. Neither inputs nor outputs were scaled; as is
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standard practice, mean input pixel values were shifted closer to zero by subtracting the means of the

ILSVRC colour channels (103.939, 116.779 and 123.680 for red, blue and green respectively). For the
Inception V3 network [37], we removed the final classification layers and replaced them with five fully-
connected layers with {1024, 512, 64, 32, 1} units, the final layer outputting a scalar complexity estimate.

Accuracies were calculated on a randomly selected held-back validation set consisting of 10% of the
dataset (400 images), which was unseen by the network during training. Results are shown in figure 3.
The pre-trained Inception V3 network achieved the highest correlation with perceived complexity
ratings, r = 0.83. In both cases, there was an accuracy drop when pre-trained weights were replaced by
randomly initialized weights.

3.2.1. Linear regression on raw pixel vectors

To provide a baseline for pixel-level learning, we performed linear regression on raw pixel vectors. Each
colour image was converted into a vector whose length was height ×width × 3, corresponding to the red,
green and blue (RGB) intensities of each pixel. We used 10-fold cross-validation, holding back 10% of the
images as a validation set on each iteration and submitting the rest for training. This linear regression
model achieved a correlation of r = 0.62 with perceived complexity ratings.

3.3. Correlations between complexity and image features
To assess the contribution of image features (from low-level properties such as entropy or edge count, to
higher-level features such as estimated salience), we evaluated the correlation between 38 basic visual
features (including 12 used by Corchs et al.) and perceived complexity ratings. These were all scalar
features, with each one assigning a single number to each image.

Several features were used in the model of Corchs et al. Four of these features were calculated from the
grey-level co-occurrence matrix using MATLAB’s graycoprops function. Colourfulness is a linear
combination of an image’s mean and standard deviation in CIELAB space [38]. Colour count and
colour harmony are calculated by software described in [39].

Other features aredue to establishedmodels.Weobtained thevarianceof eachof theRGBchannels, aswell
as the variance of the flattened imagematrix.We calculated the entropy of the RGB and hue, saturation, value
channels, as well as that of thewhole image. Colour clutter (and its mean and variance) were calculated using
the feature congestion model due to Rosenholtz et al. [20]. We calculated mean luminance by transforming
images to monochrome and averaging pixel values. Image size was taken as the number of pixels in an
image. Edge density was calculated using the Canny method [40] with threshold [0.11, 0.27] and σ = 1.
JPEG compression ratio was obtained by dividing the number of bytes in an image’s uncompressed
representation by the size in bytes of its compressed version. The mean shift region count was found using
the Matlab wrapper [41] to the EDISON implementation [42] of the mean shift algorithm [43].

To investigate the effect of mid-level features, we extracted local keypoints from each image using the
scale-invariant feature transform (SIFT) [44] and speeded-up robust features (SURF) [45] algorithms. We
foundbetween 7 and 4217 SIFTkeypoints (mean 807) andbetween 12 and 4355 SURFkeypoints (mean 1472).

We estimated segment counts using the maximally stable extremal regions (MSER) [46] algorithm,
which found between 0 and 3382 regions (mean 360). We also used the deep Mask R-CNN model
[47] to detect and thus count objects in images.

We generated saliencemaps using theMLNet [48] and SalGAN [49] deepmodels, then calculated their
mean and their entropy. Finally, visual search RTs come from human data obtained from Ionescu et al. [50];
observers were asked to search for one of the objects tagged in the PASCAL VOC dataset.

None of the measures showed r > 0.5 when correlated individually with complexity ratings; the most
informative was the Mask R-CNN object count (r = 0.49). Results are shown in table 1.

3.4. Predicting complexity from scalar image features
We tested the usefulness of the feature combination approach by using these 38 features to train three
models: a linear regression, a support vector machine, and a 3-layer feed-forward neural network. To
deal with nonhomogeneity of variance, inputs were all rescaled to zero mean and unit variance.
Complexity ratings were not rescaled.

Straightforward linear regressions, evaluated on an unseen, randomly selected 10% validation set,
achieved on average r = 0.65. Because the validation set was always unseen during training, this
model’s accuracy was not inflated by overfitting. We also conducted a full leave-one-out cross-



Table 1. The 38 image statistics and features which we evaluated as predictors of complexity ratings. (This table shows their
correlations (r) with perceived complexity ratings as well as their mean linear regression coefficients (b), averaged over 4000 runs
of leave-one-out cross-validation.)

category statistic r b

features from the grey-level co-occurrence matrix contrast 0.30 0.32

correlation −0.11 0.01

energy −0.35 −0.14
homogeneity −0.28 0.78

colour-related features colourfulness 0.13 −0.18
colour count 0.47 0.82

colour harmony −0.26 −0.12
colour channel entropy R 0.36 0.45

G 0.34 −0.1
B 0.30 −0.23
H 0.27 0.1

S 0.26 −0.13
V 0.39 0.02

variance all 0.16 0.54

R 0.18 −0.17
G 0.17 −0.43
B 0.17 −0.03

feature congestion model contrast clutter: mean 0.38 0.27

contrast clutter: variance 0.31 0.25

colour clutter 0.35 −0.52
sub-band entropy 0.05 −0.13

salience models mean ML-net salience 0.17 −0.02
ML-net salience map entropy 0.22 −0.11
mean SalGAN salience 0.27 0.14

SalGAN salience map entropy 0.30 0.22

mid-level features SIFT count 0.33 0.25

SURF count 0.40 0.32

proto-object features mean shift region count 0.36 −0.22
MSER count 0.45 0.32

object features Mask R-CNN object count 0.49 0.77

other visual search reaction time 0.37 0.46

mean luminance −0.01 −0.02
image size (pixel count) 0.00 0.01

whole-image entropy 0.43 −0.26
frequency factor 0.18 0.22

edge density 0.42 −0.24
JPEG compression ratio −0.27 −0.08
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validation, obtaining r = 0.70 over 4000 iterations. The observed accuracy gain of 5 percentage points
shows that a larger training set led to more accurate predictions.

To further rule out overfitting effects, we trained models with lasso (L1) and ridge (L2) regularization.
In each case, we trained the model on 90% of the data, performing a grid search across 10 values of α



Table 2. Correlations with perceived complexity given by models fit to vectors of image statistics and features.

model r

linear regression (4000 runs, leave-one-out cross-validation) 0.70

lasso regression (10 runs) 0.69

ridge regression (10 runs) 0.69

support vector regression (10 runs) 0.60

neural net (100 runs) 0.68
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from 10− 15 to 20 and converging on α = 0.0001 (lasso regression) and α = 0.01 (ridge regression). This
process was repeated 10 times. Mean accuracy on the held-back validation sets was r = 0.693 for lasso
regression and r = 0.694 for ridge regression.

A support vector regression (SVR) achieved r = 0.60 on unseen validation sets using 10-fold cross-
validation. We also trained a 4-layer feed-forward neural network with 38 inputs and {128, 64, 32, 1}
units. ReLU activation was used throughout. We performed 10-fold cross-validation; the mean
correlation with complexity ratings was r = 0.68.

These results (table 2) show convincingly that it is possible to predict real-world scene complexity
from basic and mid-level image features at approximately r = 0.70. All accuracies were evaluated
on unseen training data and a full leave-one-out cross-validation showed the highest correlation
with human complexity ratings. The regression coefficients for each image feature, averaged over
4000 runs of leave-one-out cross-validation, are reported in table 1. Predictions were thus
improved by incorporating multiple features, but were still of low accuracy compared to the CNN
model.

3.5. Predicting complexity by characterizing mid-level features
Mid-level features such as SIFT and SURF aim to characterize the local neighbourhoods of keypoints in
an image. We have shown that counting extracted keypoints gives some information about an image’s
complexity. Are the values of these descriptors also useful?

To investigate, we generated SIFT and SURF descriptions of constant length by sampling 500 keypoints
from each image, with replacement. This allowed us to analyse the character of the keypoints while
controlling for their number (which is treated by the feature-based models). We assembled each image’s
keypoints into a vector of length 500 × 128 = 64 000 (SIFT) or 500 × 64 = 32 000 (SURF).

Image vectors were then used to train an SVR on a randomly selected 90% training set. We were not
able to find parameters enabling the SVR to make effective predictions, so we do not report these results.

However, a neural network was able to predict complexity values from sampled SIFT and SURF
descriptors. We trained a 4-layer feed-forward neural network with 38 inputs and {128, 64, 32, 1}
units. ReLU activation was used throughout. We performed 10-fold cross-validation. The mean
correlation with complexity ratings was r = 0.45, showing that SIFT and SURF descriptors can inform
on perceived complexity, but are not the best predictors. Further work could use an recurrent neural
network instead of a feed-forward neural network, allowing all keypoints from images with different
numbers of keypoints to be taken into account.

3.5.1. Comparison to the model of Corchs et al.

We replicated the model of Corchs et al. [28] by using the same features and regression coefficients. We
then applied it to our images and correlated its predictions with perceived ratings; Pearson’s r was 0.47,
showing that learning did not transfer well to our dataset from the 49 images on which this model was
trained. This drop in performance shows that this model is not applicable to a wide range of natural and
artificial scenes.

3.6. Object recognition and complexity
Here we investigated the influence of approximate object counts and object class information on
complexity perception.
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Figure 4. Object classes and their effect on complexity ratings. (a) Object classes ordered by mean complexity score. The top line
(green) shows the mean score of images containing this class as objects which are not the largest. The bottom line (blue) shows the
mean score of images containing this class as the largest object. The middle line (red) shows the mean score of images containing
this class anywhere in the image. (b) The number of images containing each object, which is relatively constant with the exceptions
of cars, chairs and people. Colours are as in (a).
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3.6.1. Number of objects

How does the amount of objects present in an image influence its complexity perception? To investigate,
we estimated the number of objects in each image. Because human observers do not always agree on this,
we used the Mask R-CNN architecture [47] to detect and count multiple objects. Images were processed
with an implementation trained on the MS COCO dataset [51] containing 98 object types. While this
network does not detect all objects, it allowed us to generate an unsupervised estimate of object count.

Object count and complexity rating were correlated at r = 0.49. The next most highly correlated visual
feature was the colour count, at r = 0.47; object count is thus the most useful individual predictor
of complexity.

3.6.2. Object categories

Here we asked whether the presence of particular object categories can be predictive of an image’s
complexity rating. Such an effect could occur owing to a form of cueing based on inherent
associations between some object categories and the nature of the scene; for example, an image
containing a sheep is likely to be set in a less busy environment than one containing a taxi.

To investigate, we looked at the mean complexity ratings of images containing each category.
PASCAL VOC images contain multiple annotated objects (min: 1, max: 56, mean: 2.8), each with a
bounding box. We first calculated the mean complexity ratings of all images containing an object
belonging to a particular category.

Many of the objects present are very small, and images often contain one object which is much larger
than the others. To investigate the influence of these larger objects, we isolated in each image the object
with the largest bounding box, referring to it as the ‘central object’ and to the rest as ‘background
objects’. We then re-calculated the mean complexity scores, considering an image to contain a
particular category only if that object was present as a central object. Finally, we looked at the mean
complexity scores for groups of images containing a particular category, but not as the central object
(i.e. in the background).



Table 3. Correlations with perceived complexity ratings of predictions from the PASCAL VOC object taggings. (We predict
complexity as the mean rating of images containing the biggest object; the sum of the mean complexities for image sets
containing each object class in the current image; the mean of the same; the sum of the mean complexities for image sets
containing each object class in the background of the current image; the mean of the same; the number of tagged objects in
the image; a support vector regression (SVR) on the object presence vectors (0 for absent, 1 for present); and an SVR on the
object count vectors. SVR accuracy was evaluated on a 10% held-back validation set.)

model r

biggest object 0.42

all objects (sum) 0.42

all objects (mean) 0.45

background objects only (sum) 0.38

background objects only (mean) 0.43

number of tagged objects 0.40

SVR output from object presence vectors 0.49

SVR output from object count vectors 0.56

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:191487
11
Figure 4 shows the mean complexity scores by object class, along with counts for the images in each
set. For each object class, the set of images with that class in the background had higher mean complexity
than the set of images with that class as a central object; the set of images with that class present
anywhere has a mean complexity score between those two values (because it is their mean). Object
classes thus appear in slightly higher-complexity images when they are in the background. This may
be owing to an object in the background having a greater likelihood of appearing in conjunction with
other objects, increasing scene complexity.

It is possible that there are also some effects reflecting photographers’ framing tendencies. For
example, images containing cats may often be less complex owing to a tendency to depict cats alone
and centrally in the frame, and dining tables are perhaps more likely to appear in conjunction with
multiple other objects. However, the large distributions of complexity scores within object classes
show that object class does not fully determine complexity.

To further assess whether the object class information in the PASCAL VOC taggings is informative
for complexity prediction, we predicted each image’s complexity in various ways from the object
taggings, then correlated the results with perceived complexity ratings. For each object class,
we calculated the mean complexity of images containing that class and used it directly to
predict individual image complexities. Results are shown in table 3; mean class complexities were
better correlated with perceived ratings than summed class complexities, suggesting an integrative
rather than an additive process. The best-performing model was an SVR trained on object count
vectors.

3.7. Complexity and visual search reaction time
We compared complexity ratings to human visual search RTs obtained by Ionescu et al. [50]; there was a
fairly low correlation between the two sets of scores (r = 0.37). This is not surprising because the two tasks
( judgements of complexity and search for a particular object) were very different. Correlations of this size
are typically found among different tasks which share a common cognitive factor, specifically one that
relates to the perceptual processing demands of the task [52,53].

Moreover, in busy real-world scenes, visual search RT is expected to depend not only on image
complexity but also on other factors that are specific to the relationship between the search target and
the scene characteristics: salience, for example. It is easy to imagine a highly complex image with a
very short visual search time (searching for a bright red balloon in a busy grey cityscape), as well as
an image of low complexity with a long visual search time (searching for a snowy owl against a
snowy background). Semantic contextual factors can play a role too: for example, the RT to detect that
a sofa is absent should be lower in an image of an outdoor scene than in an image of an indoors
scene irrespective of their level of complexity.



(a)

(b)

(d)

(c)

7.2

22.7

26.4

37.7

(e) ( f )30

28

26

24

22

20

18

16
10 20 30 40

image rating
20 30 40

image rating

1200

1100

1000

900

800

su
m

m
ed

 d
is

c 
ra

tin
g

m
ea

n 
di

sc
 r

at
in

g

r = 0.72 r = 0.76
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4. Experiment 2: complexity of image parts
In experiment 2 we investigate how the overall percept of an image’s complexity relates to locally
processed complexity estimates of smaller parts of an image. We split images into small discs of
radius 50 pixels, a size which prevents most objects from appearing entirely within one disc.
Observers were asked to compare pairs of discs (depicting image fragments) and choose the most
complex. We computed complexity scores as in experiment 1. In this way, the ratings of an image’s
fragments could be compared to that of an entire image. We then evaluated the use of the mean disc
complexity and the summed disc complexity as predictors of the entire image’s rating.

4.1. Material and methods

4.1.1. Data generation

From our 4000-image dataset, we sampled 100 images, distributed uniformly according to their
complexity rating. Each image was then split into a number of overlapping discs of radius 50 pixels
(figure 5 shows an example). The images, which were of different sizes, were broken into between 30
and 50 discs (mean: 38). We obtained 3803 discs in total.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:191487
13
4.1.2. Participants

Twenty-three observers (11 male) with a mean age of 28.5 (s.d. 7.9) were recruited from a mailing list run
by the UCL Institute of Cognitive Neuroscience. Observers all had normal or corrected-to-normal vision
and were asked to have a good night’s sleep before attending the experiment.

4.1.3. Procedure

Data collection was performed using an online experiment run in a computer laboratory; all participants
performed the experiment at the same time. As in our first experiment, disc complexity was judged by
2AFC trials, except that in this case both discs were visible on the screen at the same time. Participants
then pressed the Z key to indicate that the first disc was more complex or the M key to select the second
disc . We presented 12 practice trials at the beginning of the experiment. Data collection was not divided
into blocks, and we allowed free breaks. We collected 51 403 pairwise comparisons of the 3803 discs. Each
participant judged on average 2234 comparisons.

4.1.4. Post-processing

As in the first experiment, disc comparisons were submitted to TrueSkill, which produced a complexity
ranking.

4.2. Results
We compared whole-image ratings to each image’s mean disc rating and summed disc rating (the
summed complexity ratings of all discs making up that image). To prevent image size (which
determines disc count) acting as a confound for summed ratings, we calculated summed ratings only
for the 41 images of size 375 × 500. Results are shown in figure 5. Summed disc ratings were
correlated with whole-image complexity ratings with r = 0.43. Mean disc ratings were more highly
correlated with complexity, with r = 0.72. The individual disc ratings were collected by a different set
of observers than the whole-image ratings, and the disc observers had never seen the whole images.
This suggests that a fair level of prediction of perceived complexity can be obtained from image parts,
and that complexity perception thus does not necessarily require whole-image perception or the
detection of long-range correlations.

4.3. Modelling
Can deep learning models predict individual disc complexity ratings as effectively as they can predict
whole-image complexity? To investigate, we used the 3803 rated discs (extracted from 100 images) to
train and validate a CNN based on Inception V3 (the model with the best predictive power for the
complexity of whole images). We again replaced the final classification layers with five fully-
connected layers with {1024, 512, 64, 32, 1} units.

In this case, a validation set was generated by holding back 10% of the 100 images (not of the 3803
discs) for validation. If 10% of discs had been selected, most images would have discs present in both the
training and validation sets, allowing the model to exploit similarities in discs taken from the same
image. This method ensured that no discs from images featuring in the validation set had been seen
during training. The validation set showed a correlation of r = 0.78 with perceived complexity ratings.
5. Conclusion
We now summarize our results and evaluate the use of predictive models of complexity and of the deep
learning approach.

5.1. Summary
We present a predictive model demonstrating a high level of correlation (r = 0.83) with human-derived
complexity ratings on an unseen test set consisting of 400 diverse real-world images. Both our training
set and test sets, containing 3600 and 400 images respectively, are larger and more varied than those
used to train previous models [26–28].
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We show that complexity can be estimated from basic and mid-level features (linear regression gives

r = 0.69 with human ratings), but can be predicted much more rapidly and effectively using a deep
convolutional network (r = 0.83). The perceived complexity of 50-pixel-radius discs can also be
predicted by a CNN (r = 0.78) and mean ground truth disc ratings were a reasonable predictor of
whole-image ratings (r = 0.72). We used unseen validation sets throughout.

The number and type of objects present in the image influence complexity ratings, and object
taggings and counts are among the most informative predictors. PASCAL VOC taggings, via an SVR,
predict complexity ratings at r = 0.49. These results suggest that object perception plays a role in visual
complexity, but does not fully explain it. The higher correlations obtained by our CNN model suggest
that it may also be learning texture [54].

Visual complexity is a promising proxy for perceptual load in real-world images and could allow an
extension of perceptual load theory [55] to the processing of real-world images. For example, previous
research has established a greater likelihood of inattentional blindness and deafness in conditions of
high perceptual load [5–7,16,56–58]. Images of higher perceived complexity are likely to place a
greater demand on perceptual processing, imposing higher perceptual load.

Our predictive model of complexity could potentially be used to operationalize and quantify
perceptual load in the processing of real-world images. Importantly, a method of estimating the level
of perceptual load also allows the prediction of the occurrence of inattentional blindness and deafness
in tasks involving real-world images [59]. The use of a fast machine learning model also allows
complexity prediction in real time; our CNN model can run compactly and efficiently on the central
processing unit or graphics processing unit in under 100 ms and, unlike feature-based models, does
not require the computation of multiple image statistics using different programs.

In addition, a predictive model of complexity allows investigation of prominent issues in natural
scene perception research. For example, the question of whether image complexity impacts gist
perception in natural scenes could be approached by varying image complexity and assessing the
effect on gist perception.

5.2. Utility of a predictive model of complexity
It can be argued that operationalizing visual complexity using a deep network does not bring
explanatory value, as one unknown process (complexity judgement in the brain) is replaced by
another unknown process (complexity computation in a CNN). We argue that this model has value in
showing that a relatively simple feed-forward network can effectively predict image complexity. We
provide evidence that complexity can be predicted by a series of stacks of convolutional filters and
does not critically depend on recurrent processing or semantic judgements (although these may
further improve predictions, and this is an interesting direction for future research).

Importantly, this result demonstrates that it is possible tomodel the perceived complexity of a diverse set
of real-world scenes, achieving a good level of prediction on an unseen validation set. Thus, while ourmodel
cannot clarify how the human brain judges complexity, it offers a neural networkmodel which is, if not more
biologically plausible, at least more structurally and functionally homogeneous than the sets of feature
extractors (using different programming languages and architectures) presented in previous work.

Our model is also useful for generating rapid estimates of the visual complexity of real-world images.
Predicting visual complexity has numerous image processing applications in the context of human–
machine interfaces HMI. For example, in automated driving, the complexity of visual displays in any
non-driving task (such as Internet browsing) could be evaluated in order to estimate the driver’s
ability to respond to a take-over request signal and reassume control of the vehicle—or instead to
experience inattentional blindness or deafness.

5.3. Utility of the deep learning approach
Wehave shown that a CNN is able to estimate complexity directly frompixel valueswithout requiring hand-
coded low- or mid-level features. Previous predictive models of visual complexity have drawn upon hard-
coded features, assembled into vectors and passed into learning algorithms with small numbers of
parameters (regressions, PSO or support vector machines). A CNN, which has access to the value of each
pixel in the input, can learn any computable function of pixel-level data providing it is equipped with
enough layers and cells. This approach surpasses learning from hard-coded image statistics, where the
early features, which cannot be trained, only pass a restricted and fixed subset of pixel-level information
to the next level. Our model also has a large number of parameters (16 million) compared to previously
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used PSO (12 parameters), regression (hundreds) or SVMs (thousands); it therefore has greater ability to

learn complex patterns.
Deep learning also has advantages in the engineering domain; it is fast and energy-efficient, and does

not require extensive work to hand-tune input features. We use the same architecture to perform the
network’s entire prediction process; feature-based approaches require chunks of code, often written in
heterogenous languages and having different running times, whereas our model can be
homogenously implemented using a deep learning toolkit such as TensorFlow [60] or Torch [61].

5.4. Complexity and object recognition
The fact that both our predictive models (whether based on VGG-16 or Inception V3) showed improved
performance when their weights were pre-trained on an object recognition task shows that complexity
prediction can benefit from transfer learning from object recognition. The PASCAL VOC object taggings
are predictive of complexity with r between 0.42 and 0.56, a higher level of correlation than that shown by
most image statistics. We also showed that object count, obtained from the Mask R-CNN network, was a
better predictor of complexity than any individual image feature. Together, these findings suggest that the
nature or number of the objects present in an image contribute to the perception of its complexity.

5.5. Future work
There are still unanswered questions concerning the relationship between complexity and clutter. Here
we focused on perceived complexity, with our decision task asking the observer which of two images
was more complex. Clutter has more usually been defined by direct ratings (which are problematic in
terms of bias), rankings (which are less ecologically valid) or proxies such as visual search time.
Further work could compare and potentially unify these two ideas.

Ethics. Data collection was ethically approved by University College London (application 9751/002). Informed consent
was received from all participants.
Data accessibility. The code and data used to generate the results described in this article is available on Dryad at
doi:10.5061/dryad.3fs556j [62] and on Github at https://github.com/fusionlove/image-complexity.
Authors’ contributions. F.N. and N.L. conceived and designed the study and wrote the manuscript. F.N. collected the data
and carried out modelling and analysis. Both authors gave final approval for publication.
Competing interests. The authors declare that they have no competing interests.
Funding. This research was supported by Jaguar Land Rover and the EPSRC grant no. EP/N012089/1 as part of the
jointly funded Towards Autonomy: Smart and Connected Control (TASCC) programme.
References

1. Lavie N. 1995 Perceptual load as a necessary

condition for selective attention. J. Exp. Psychol.
Hum. Percept. Perform. 21, 451–468. (doi:10.
1037/0096-1523.21.3.451)

2. Lavie N. 2005 Distracted and confused? Selective
attention under load. Trends Cogn. Sci. 9,
75–82. (doi:10.1016/j.tics.2004.12.004)

3. Lavie N. 2010 Attention, distraction, and
cognitive control under load. Curr. Dir. Psychol.
Sci. 19, 143–148. (doi:10.1177/0963721
410370295)

4. Lavie N, Beck DM, Konstantinou N. 2014
Blinded by the load: attention, awareness and
the role of perceptual load. Phil. Trans. R. Soc. B
369, 20130205. (doi:10.1098/rstb.2013.0205)

5. Cartwright-Finch U, Lavie N. 2007 The role of
perceptual load in inattentional blindness.
Cognition 102, 321–340. (doi:10.1016/j.
cognition.2006.01.002)

6. Macdonald JS, Lavie N. 2008 Load-induced
blindness. J. Exp. Psychol. Hum. Percept.
Perform. 34, 1078. (doi:10.1037/0096-1523.
34.5.1078)
7. Carmel D, Saker P, Rees G, Lavie N. 2007
Perceptual load modulates conscious flicker
perception. J. Vis. 7, 14–14. (doi:10.1167/
7.14.14)

8. Torralbo A, Kelley TA, Rees G, Lavie N. 2016
Attention induced neural response trade-off in
retinotopic cortex under load. Sci. Rep. 6, 33041.
(doi:10.1038/srep33041)

9. Pinsk MA, Doniger GM, Kastner S. 2004 Push-
pull mechanism of selective attention in human
extrastriate cortex. J. Neurophysiol. 92,
622–629. (doi:10.1152/jn.00974.2003)

10. Schwartz S, Vuilleumier P, Hutton C, Maravita A,
Dolan RJ, Driver J. 2004 Attentional load and
sensory competition in human vision:
modulation of fMRI responses by load at
fixation during task-irrelevant stimulation
in the peripheral visual field. Cereb.
Cortex 15, 770–786. (doi:10.1093/cercor/
bhh178)

11. Yi DJ, Woodman GF, Widders D, Marois R, Chun
MM. 2004 Neural fate of ignored stimuli:
dissociable effects of perceptual and working
memory load. Nat. Neurosci. 7, 992–996.
(doi:10.1038/nn1294)

12. Bahrami B, Lavie N, Rees G. 2007 Attentional
load modulates responses of human primary
visual cortex to invisible stimuli. Curr. Biol. 17,
509–513. (doi:10.1016/j.cub.2007.01.070)

13. Lavie N, Cox S. 1997 On the efficiency of visual
selective attention: efficient visual search leads
to inefficient distractor rejection. Psychol. Sci. 8,
395–396. (doi:10.1111/j.1467-9280.1997.
tb00432.x)

14. Lavie N, Fox E. 2000 The role of perceptual load
in negative priming. J. Exp. Psychol. Hum.
Percept. Perform. 26, 1038–1052. (doi:10.1037/
0096-1523.26.3.1038)

15. Lavie N, Lin Z, Zokaei N, Thoma V. 2009 The
role of perceptual load in object recognition.
J. Exp. Psychol. Hum. Percept. Perform. 35, 1346.
(doi:10.1037/a0016454)

16. Carmel D, Thorne JD, Rees G, Lavie N. 2011
Perceptual load alters visual excitability. J. Exp.
Psychol. Hum. Percept. Perform. 37, 1350–1358.
(doi:10.1037/a0024320)

https://github.com/fusionlove/image-complexity
https://github.com/fusionlove/image-complexity
http://dx.doi.org/10.1037/0096-1523.21.3.451
http://dx.doi.org/10.1037/0096-1523.21.3.451
http://dx.doi.org/10.1016/j.tics.2004.12.004
http://dx.doi.org/10.1177/0963721410370295
http://dx.doi.org/10.1177/0963721410370295
http://dx.doi.org/10.1098/rstb.2013.0205
http://dx.doi.org/10.1016/j.cognition.2006.01.002
http://dx.doi.org/10.1016/j.cognition.2006.01.002
http://dx.doi.org/10.1037/0096-1523.34.5.1078
http://dx.doi.org/10.1037/0096-1523.34.5.1078
http://dx.doi.org/10.1167/7.14.14
http://dx.doi.org/10.1167/7.14.14
http://dx.doi.org/10.1038/srep33041
http://dx.doi.org/10.1152/jn.00974.2003
http://dx.doi.org/10.1093/cercor/bhh178
http://dx.doi.org/10.1093/cercor/bhh178
http://dx.doi.org/10.1038/nn1294
http://dx.doi.org/10.1016/j.cub.2007.01.070
http://dx.doi.org/10.1111/j.1467-9280.1997.tb00432.x
http://dx.doi.org/10.1111/j.1467-9280.1997.tb00432.x
http://dx.doi.org/10.1037/0096-1523.26.3.1038
http://dx.doi.org/10.1037/0096-1523.26.3.1038
http://dx.doi.org/10.1037/a0016454
http://dx.doi.org/10.1037/a0024320


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:191487
16
17. Walker S, Stafford P, Davis G. 2008 Ultra-rapid

categorization requires visual attention: scenes
with multiple foreground objects. J. Vis. 8,
21–21. (doi:10.1167/8.4.21)

18. Peelen MV, Fei-Fei L, Kastner S. 2009 Neural
mechanisms of rapid natural scene
categorization in human visual cortex. Nature
460, 94–97. (doi:10.1038/nature08103)

19. Everingham M, Van Gool L, Williams CK, Winn J,
Zisserman A. 2010 The PASCAL visual object
classes (VOC) challenge. Int. J. Comput. Vis. 88,
303–338. (doi:10.1007/s11263-009-0275-4)

20. Rosenholtz R, Li Y, Mansfield J, Jin Z. 2005
Feature congestion: a measure of display clutter.
In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems,
pp. 761–770. New York, NY: ACM.

21. Deza A, Eckstein M. 2016 Can peripheral
representations improve clutter metrics on
complex scenes?. In Advances in Neural
Information Processing Systems, pp. 2847–2855.

22. Yu CP, Samaras D, Zelinsky GJ. 2014 Modeling
visual clutter perception using proto-object
segmentation. J. Vis. 14, 4–4.

23. Achanta R, Shaji A, Smith K, Lucchi A, Fua P,
Süsstrunk S. 2010 SLIC superpixels. Technical
report. École Polytechnique Fédérale de Lausanne.

24. Liu MY, Tuzel O, Ramalingam S, Chellappa R.
2011 Entropy rate superpixel segmentation. In
CVPR 2011, pp. 2097–2104. Washington, DC:
IEEE.

25. Oliva A, Mack ML, Shrestha M, Peeper A. 2004
Identifying the perceptual dimensions of visual
complexity of scenes. In Proceedings of the
Annual Meeting of the Cognitive Science Society,
vol. 26.

26. Cavalcante A, Mansouri A, Kacha L, Barros AK,
Takeuchi Y, Matsumoto N, Ohnishi N. 2014
Measuring streetscape complexity based on the
statistics of local contrast and spatial frequency.
PLoS ONE 9, e87097. (doi:10.1371/journal.pone.
0087097)

27. Machado P, Romero J, Nadal M, Santos A,
Correia J, Carballal A. 2015 Computerized
measures of visual complexity. Acta Psychol.
160, 43–57. (doi:10.1016/j.actpsy.2015.06.005)

28. Corchs SE, Ciocca G, Bricolo E, Gasparini F. 2016
Predicting complexity perception of real world
images. PLoS ONE 11, e0157986. (doi:10.1371/
journal.pone.0157986)

29. Jordehi AR, Jasni J. 2015 Particle swarm
optimisation for discrete optimisation problems:
a review. Artif. Intell. Rev. 43, 243–258. (doi:10.
1007/s10462-012-9373-8)

30. Thurstone LL. 1927 A law of comparative
judgment. Psychol. Rev. 34, 273. (doi:10.1037/
h0070288)

31. Glickman ME, Jones AC. 1999 Rating the chess
rating system. Chance 12, 21–28.

32. Glickman ME. 1995 The Glicko system. Boston
University, 16. See http://www.glicko.net/
glicko/glicko.pdf.
33. Grinberg M. 2018 Flask web development:
developing web applications with Python.
Boston, MA: O’Reilly Media, Inc.

34. Herbrich R, Minka T, Graepel T. 2007 TrueSkill: a
Bayesian skill rating system. In Advances in Neural
Information Processing Systems, pp. 569–576.

35. Berg A, Deng J, Fei-Fei L. 2010 Large scale
visual recognition challenge (ILSVRC), 2010. See
www.image-net.org/challenges/LSVRC 3.

36. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L.
2009 Imagenet: a large-scale hierarchical image
database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255.
Washington, DC: IEEE.

37. Szegedy C, Vanhoucke V, Ioffe S, Shlens J,
Wojna Z. 2016 Rethinking the inception
architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826.

38. Hasler D, Suesstrunk SE. 2003 Measuring
colorfulness in natural images. In Human Vision
and Electronic Imaging VIII, vol. 5007,
pp. 87–96. Bellingham, WA: International
Society for Optics and Photonics.

39. Artese MT, Ciocca G, Gagliardi I. 2014 Good
50x70 project: a portal for cultural and social
campaigns. In Archiving Conference, vol. 2014,
pp. 213–218. Springfield, VA: Society for
Imaging Science and Technology.

40. Ding L, Goshtasby A. 2001 On the Canny edge
detector. Pattern Recognit. 34, 721–725.
(doi:10.1016/S0031-3203(00)00023-6)

41. Matlab interface to Edison libraries. See https://
github.com/mpizenberg/meanshift_edison_
matlab_interface (accessed 28 May 2019).

42. Edge Detection and Image SegmentatiON
(EDISON) System. See www.crcv.ucf.edu/source/
mean-shift (accessed 28 May 2019).

43. Comaniciu D, Meer P. 2002 Mean shift: a robust
approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24, 603–619.
(doi:10.1109/34.1000236)

44. Lowe DG. 1999 Object recognition from local
scale-invariant features. In Proceedings of the
Seventh IEEE International Conference on
Computer Vision, vol. 2, pp. 1150–1157.
Washington, DC: IEEE.

45. Bay H, Tuytelaars T, Van Gool L. 2006 Surf:
Speeded up robust features. In European
conference on computer vision, pp. 404–417.
New York, NY: Springer.

46. Extremal MS, Matas J, Chum O, Urban M,
Pajdla T. 2002 Robust wide baseline stereo
from. In British Machine Vision Conference.
Durham, UK: BMVA.

47. He K, Gkioxari G, Dollár P, Girshick R. 2017 Mask
R-CNN. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2961–2969.

48. Cornia M, Baraldi L, Serra G, Cucchiara R. 2016 A
deep multi-level network for saliency
prediction. In International Conference on
Pattern Recognition (ICPR).
49. Pan J, Ferrer CC, McGuinness K, O’Connor NE,
Torres J, Sayrol E, Giro-i Nieto X. 2017 SalGAN:
Visual saliency prediction with generative
adversarial networks. See http://arxiv.org/abs/
1701.01081.

50. Tudor Ionescu R, Alexe B, Leordeanu M,
Popescu M, Papadopoulos DP, Ferrari V. 2016
How hard can it be? Estimating the difficulty of
visual search in an image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2157–2166.

51. Lin TY, Maire M, Belongie S, Hays J, Perona P,
Ramanan D, Dollár P, Zitnick CL. 2014 Microsoft
COCO: common objects in context. In European
Conference on Computer Vision, pp. 740–755.
New York, NY: Springer.

52. Eayrs J, Lavie N. 2018 Establishing individual
differences in perceptual capacity. J. Exp.
Psychol. Hum. Percept. Perform. 44, 1240–1257.
(doi:10.1037/xhp0000530)

53. Moosbrugger H, Goldhammer F, Schweizer K.
2006 Latent factors underlying individual
differences in attention measures.
Eur. J. Psychol. Assess. 22, 177–188. (doi:10.
1027/1015-5759.22.3.177)

54. Geirhos R, Rubisch P, Michaelis C, Bethge M,
Wichmann FA, Brendel W. 2018 ImageNet-
trained CNNs are biased towards texture;
increasing shape bias improves accuracy and
robustness. See http://arxiv.org/abs/1811.12231.

55. Lavie N, Hirst A, De Fockert JW, Viding E. 2004
Load theory of selective attention and cognitive
control. J. Exp. Psychol. Gen. 133, 339. (doi:10.
1037/0096-3445.133.3.339)

56. Raveh D, Lavie N. 2015 Load-induced inattentional
deafness. Atten. Percept. Psychophys. 77, 483–492.
(doi:10.3758/s13414-014-0776-2)

57. Molloy K, Griffiths TD, Chait M, Lavie N. 2015
Inattentional deafness: visual load leads to
time-specific suppression of auditory evoked
responses. J. Neurosci. 35, 16046–16054.
(doi:10.1523/JNEUROSCI.2931-15.2015)

58. Macdonald JS, Lavie N. 2011 Visual perceptual
load induces inattentional deafness. Atten.
Percept. Psychophys. 73, 1780–1789. (doi:10.
3758/s13414-011-0144-4)

59. Chech L, Lavie N. 2019 Perceptual load and
inattentional deafness during natural scene
perception. Perception 48(2S), 203. (doi:10.
1177/0301006619863862)

60. Abadi M et al. 2016 Tensorflow: a system for
large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 265–283.
Berkeley, CA: USENIX Association.

61. Collobert R, Bengio S, Mariéthoz J. 2002 Torch:
a modular machine learning software library.
Technical report. Martigny, Switzerland: Idiap.

62. Nagle F, Lavie N. 2020 Data from: Predicting
human complexity perception of real-world
scenes. Dryad Digital Repository. (https://doi.
org/10.5061/dryad.3fs556j)

http://dx.doi.org/10.1167/8.4.21
http://dx.doi.org/10.1038/nature08103
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1371/journal.pone.0087097
http://dx.doi.org/10.1371/journal.pone.0087097
http://dx.doi.org/10.1016/j.actpsy.2015.06.005
http://dx.doi.org/10.1371/journal.pone.0157986
http://dx.doi.org/10.1371/journal.pone.0157986
http://dx.doi.org/10.1007/s10462-012-9373-8
http://dx.doi.org/10.1007/s10462-012-9373-8
http://dx.doi.org/10.1037/h0070288
http://dx.doi.org/10.1037/h0070288
http://www.glicko.net/glicko/glicko.pdf
http://www.glicko.net/glicko/glicko.pdf
http://www.image-net.org/challenges/LSVRC
http://dx.doi.org/10.1016/S0031-3203(00)00023-6
https://github.com/mpizenberg/meanshift_edison_matlab_interface
https://github.com/mpizenberg/meanshift_edison_matlab_interface
https://github.com/mpizenberg/meanshift_edison_matlab_interface
https://github.com/mpizenberg/meanshift_edison_matlab_interface
https://www.crcv.ucf.edu/source/mean-shift
https://www.crcv.ucf.edu/source/mean-shift
http://dx.doi.org/10.1109/34.1000236
http://arxiv.org/abs/1701.01081
http://arxiv.org/abs/1701.01081
http://arxiv.org/abs/1701.01081
http://dx.doi.org/10.1037/xhp0000530
http://dx.doi.org/10.1027/1015-5759.22.3.177
http://dx.doi.org/10.1027/1015-5759.22.3.177
http://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
http://dx.doi.org/10.1037/0096-3445.133.3.339
http://dx.doi.org/10.1037/0096-3445.133.3.339
http://dx.doi.org/10.3758/s13414-014-0776-2
http://dx.doi.org/10.1523/JNEUROSCI.2931-15.2015
http://dx.doi.org/10.3758/s13414-011-0144-4
http://dx.doi.org/10.3758/s13414-011-0144-4
http://dx.doi.org/10.1177/0301006619863862
http://dx.doi.org/10.1177/0301006619863862
https://doi.org/10.5061/dryad.3fs556j
https://doi.org/10.5061/dryad.3fs556j

	Predicting human complexity perception of real-world scenes
	Introduction
	Complexity and visual clutter
	Feature-based models of complexity in natural scenes
	Our approach

	Experiment 1: complexity of whole images
	Material and methods
	Participants
	Dataset
	Procedure
	Post-processing

	Results
	Consistency of results


	Modelling
	Correlation metrics
	Deep learning
	Linear regression on raw pixel vectors

	Correlations between complexity and image features
	Predicting complexity from scalar image features
	Predicting complexity by characterizing mid-level features
	Comparison to the model of Corchs et al.

	Object recognition and complexity
	Number of objects
	Object categories

	Complexity and visual search reaction time

	Experiment 2: complexity of image parts
	Material and methods
	Data generation
	Participants
	Procedure
	Post-processing

	Results
	Modelling

	Conclusion
	Summary
	Utility of a predictive model of complexity
	Utility of the deep learning approach
	Complexity and object recognition
	Future work
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	References


