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Confidence drives a neural confirmation bias
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Stephen M. Fleming 1,2,3

A prominent source of polarised and entrenched beliefs is confirmation bias, where evidence

against one’s position is selectively disregarded. This effect is most starkly evident when

opposing parties are highly confident in their decisions. Here we combine human magne-

toencephalography (MEG) with behavioural and neural modelling to identify alterations in

post-decisional processing that contribute to the phenomenon of confirmation bias. We show

that holding high confidence in a decision leads to a striking modulation of post-decision

neural processing, such that integration of confirmatory evidence is amplified while dis-

confirmatory evidence processing is abolished. We conclude that confidence shapes a

selective neural gating for choice-consistent information, reducing the likelihood of changes

of mind on the basis of new information. A central role for confidence in shaping the fidelity

of evidence accumulation indicates that metacognitive interventions may help ameliorate this

pervasive cognitive bias.
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The philosopher Bertrand Russell opined “The most savage
controversies are about matters as to which there is no
good evidence either way”. While this view applies in some

situations, even more troubling are instances where polarization
and entrenchment of opinion persists in the face of contrary
evidence, exemplified by debates on climate change and vacci-
nations. This polarization is most evident when opposing parties
are highly confident in their positions1,2. A psychological-level
explanation for such entrenchment is the idea that people selec-
tively incorporate evidence in line with their beliefs, known as
confirmation bias3. Although an extensive literature has docu-
mented this bias in behaviour3,4, the underlying cognitive, com-
putational and neuronal mechanisms are not understood.

So far, an investigation of confirmation bias has been restricted
largely to scenarios involving complex real-world beliefs such as
political attitudes4–6. However, the complexity of such higher-
order beliefs makes it difficult to disentangle the various con-
tributors to biased information processing. For instance,
people may have a strong personal investment in their political
opinions, leading to a significant motivation to discount new
information that goes against their beliefs. Intriguingly, con-
firmation biases have recently been demonstrated in low-level
perceptual tasks7–9, that are unlikely to evoke such motivated
reasoning. These studies indicate a source of confirmation bias
may be a generic shift in the way the brain incorporates new
information. Here we adopt such a task to study the computa-
tional and neural basis of post-decisional shifts in sensitivity to
choice-consistent information.

Perceptual decision-making is well-described using sequential
sampling models which assume the brain accumulates noisy
evidence for each choice option to a decision bound10. This
accumulation process is thought to be supported by neuronal
populations in parietal and prefrontal cortex11,12. Importantly,
while perceptual tasks allow tight control over the processes
involved, they also permit generalisation to more complex deci-
sions13–15, and similar principles appear to underlie choice and
confidence formation in both simple and more complex
tasks16,17. However while the processes underlying perceptual
decision-making have been studied in detail, little is known about
the mechanisms governing accumulation of evidence after a
choice has been made, or how such processing is shaped by pre-
existing beliefs and confidence7,17–23.

Here we combine theoretical models and neural metrics to
identify alterations in post-decisional processing that may con-
tribute to the phenomenon of confirmation bias. Across all
experiments, participants were presented with a sample of mov-
ing dots (pre-decision evidence) before indicating their initial
decision (motion to the left or right) and confidence in their
choice (see Fig. 1a). They were then presented with a second
sample of moving dots (post-decision evidence) before making a
final choice and providing a confidence estimate. Importantly,
pre- and post-decision evidence always indicated the same
direction of motion such that post-decision evidence was helpful.
Accordingly, an ideal Bayesian observer should use post-decision
evidence to change its mind after initial mistakes (see Supple-
mentary Note 1 for analysis of the adaptive usage of post-decision
evidence), whereas a confirmation bias would blunt this belief
flexibility13,18.

Results
Effects of confidence on changes of mind. In a first experiment
we hypothesised that a confirmation bias would occur more often
when people are highly confident in their original choice24–26. In
order to dissociate subjective confidence from objective perfor-
mance we used a psychophysical manipulation (“positive

evidence”27, see Methods) to selectively boost participants’ con-
fidence (mean difference= 0.024, CI= [0.008, 0.04], Cohen’s d=
0.21, t(27)= 3.0, p= 0.005, Fig. 1c) while leaving performance
(mean difference= 0.006, CI= [−0.022, 0.034], Cohen’s d=
0.02; Bayesian t-test indicating equality: BF01= 4.61; Fig. 1b) and
reaction times (mean difference=−0.005, CI= [−0.029, 0.018],
Cohen’s d=−0.04; Bayesian t-test indicating equality: BF01=
4.51, Supplementary Fig. 5a) unaffected.

We next set out to test whether this boost in confidence
influenced changes of mind. There were notable individual
differences in the degree to which our manipulation boosted
participants’ confidence (see Fig. 1c, d). Importantly, subjects who
experienced a stronger confidence boost through the positive
evidence manipulation also showed a stronger reduction in
changes of mind (r=−0.69, p < 0.0001, see Fig. 1d), an effect not
explained by an impact of positive evidence on accuracy or
reaction time (p= 0.005 when controlling for these effects). This
supports a notion that confidence drives reductions in changes of
mind (see Supplementary Notes 5 and 6 for additional
behavioural and magnetoencephalography (MEG) analyses that
further confirm confidence as a critical driver of changes
of mind).

Confidence induces a selective gain for confirmatory evidence.
We next reasoned that confidence may reduce changes of mind
by promoting a bias towards processing of confirmatory post-
decision evidence. We sought to test this hypothesis by revealing
the process through which confidence affects accumulation of
post-decision evidence, applying a combination of drift-diffusion
modelling and recordings of post-decisional fluctuations in a
neural decision variable (DV) using MEG. We considered two
potential mechanisms through which confidence might reduce
changes of mind. First, confidence might reflect a shift in the
starting point of post-decision accumulation to be closer to the
bound associated with an initial decision, consistent with a con-
tinuation of pre-decisional evidence accumulation (influence on
starting point; Fig. 2a upper panel). Second, confidence may
induce selective accumulation of evidence in line with an initial
decision (influence on drift rate; Fig. 2a lower panel)—a clear
instance of confirmation bias.

Critically, these two mechanisms make different predictions in
terms of the distributions of response times for the final
decision8,9. We compared 10 drift-diffusion models (DDMs) that
embodied these different predictions (see Supplementary Note 2
for a full model comparison). We employed accuracy coding such
that the bounds correspond to a correct versus an incorrect
decision, such that a positive drift-rate represents stronger
integration of the presented (correct) motion direction. Note,
by design, confirmatory post-decision evidence was received
when an initial decision was correct, and disconfirmatory
evidence when an initial decision was incorrect (Fig. 2b–d). In
addition, in light of suggestions that confidence might also affect
the separation of decision bounds, and thus the trade-off between
speed and accuracy of subsequent decisions28,29 we allowed for a
dependency of boundary separation on initial confidence in all
models.

The models differed as to whether the starting point and/or
drift-rate were affected by confidence (models 2–4), accuracy of
the initial decision (models 5–7; i.e. correct= 1 and incorrect=
−1, capturing a general confirmation bias) and their interaction
(models 8–10; i.e. capturing a confirmation bias that depends on
confidence). The winning model (Model 10, as indicated by the
Deviance Information Criterion score; see Supplementary Fig. 2A)
incorporated dependencies of starting point and drift-rate on all
factors (confidence, initial decision and the interaction) and
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provided a good fit to the data (Fig. 2b, c):

Starting point � 1þ confidenceþ initial decision

þ confidence ´ initial decision
ð1Þ

Drift-rate � 1þ post-decision evidence strength

þ confidenceþ initial decision þ confidence

´ initial decision
ð2Þ

Boundary separation � 1þ confidence ð3Þ
After accounting for main effects, we observed a dependency of

the starting point on the interaction between confidence and
initial decision (95% equal-tailed interval= 0.08−0.18; Fig. 2d
right hand panel), indicating participants started the accumula-
tion process closer to the bound of the initial decision when
highly confident in their choice. Even more striking was the
discovery of a similar interaction effect on drift rate (95% equal-
tailed interval= 0.11−0.26; Fig. 2d right hand panel) indicating
participants selectively accumulated evidence supporting their
initial choice, and were more likely to do so when they were more
confident. While a confidence-related shift in starting point might
reflect normative usage of pre-decision evidence (because high
confidence in an initial decision might reflect greater pre-decision

evidence accumulation, and thus be closer to a post-decisional
bound), an influence of confidence on the drift rate is a clear
instance of confirmation bias. Indeed, effects of the initial
decision and confidence on the drift rate were more pronounced
than those on the starting point (see Fig. 2 and Supplementary
Note 3). Such a confirmation bias led to a boost in accumulation
of the veridical motion direction following high-confidence
correct decisions (as such information served to confirm the
original choice), whereas it led to a reduction in evidence
accumulation (manifest as a lowered drift rate) following high-
confidence errors (as new information served to disconfirm an
originally wrong decision).

Neural markers of post-decisional processing. While our DDM
fits support a distinct influence of initial choice and confidence on
post-decisional processing, they allow only indirect inference on
how confidence affects evidence accumulation. To quantify this
process more directly we used MEG to obtain a time-resolved
neural metric of post-decision accumulation. Specifically, we
trained a SVM classifier on brain activity (normalized amplitude
of all MEG channels) at each time point (10 ms timebins) in the
pre-decision time window (lasting 850 ms from stimulus onset to
the presentation of choice options; note that the trial timeline for
the MEG study differed slightly to the timeline presented in
Fig. 1a, see “Methods” for details) to predict which choice (left or
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Fig. 1 Task design and results of behavioural study 1 (n= 28 participants). a Trial timeline. Note that participants first had to indicate a binary left versus
right decision (i.e. a two alternative forced-choice), and then indicate their confidence in this decision by moving a cursor along the selected scale. b, c A
psychophysical manipulation of positive evidence selectively increased confidence of the first decision (c) while keeping accuracy constant (b). This
increase in confidence was replicated across all three studies. Data are presented as mean values ± SEM; grey dots represent individual participant data.
Paired t-test (two-tailed): **p= .005. LPE= low positive evidence condition; HPE= high positive evidence condition. d Between-subject relationship
between the degree to which positive evidence increased confidence (x-axis: confidence in the high positive evidence condition—confidence in the low
positive evidence condition) and its effect on changes of mind (y-axis: changes of mind in the high positive evidence condition—changes of mind in the low
positive evidence condition). This correlation was replicated in all three studies. Orange data points represent subjects showing the opposite of the
intended effect of the manipulation on confidence (higher confidence in the low positive evidence condition). Pearson correlation (two-tailed): ***p < .0001.
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right) was made on each trial. We then applied the trained clas-
sifier to brain activity at the corresponding time point in the post-
decision time window, enabling us to derive a probabilistic pre-
diction of neural evidence favouring a leftward versus rightward
decision (see Fig. 3a left panel). Positive values indicate prediction
of a rightward decision and negative values indicate prediction of a
leftward decision (see Fig. 3b). We next fitted a linear regression to
the time series of classifier predictions within each trial (see Fig. 3a
right panel) to obtain a trial-by-trial neural measure of the starting
point (intercept) and drift rate (slope). These measures of neural
evidence accumulation (slope) should be highly responsive to the
presented motion direction during the post-decision period, and
we show this was indeed the case (hierarchical regression: β=
0.07, t(8550)= 6.89, p < 10−11, Fig. 3b).

The slopes extracted from this analysis are signed, such that
positive values indicate evidence for a rightward choice and
negative values evidence for a leftward choice. In order to obtain
an unsigned metric of evidence accumulation strength, we flipped
the sign of slopes extracted from trials in which leftward motion
was presented (we conducted the same flip for the intercept to
obtain an unsigned metric of the starting point). This unsigned
metric quantifies a propensity to correctly integrate the presented

information, analogous to a drift rate in the accuracy coded DDM
employed in Fig. 2.

A neural analogue of the drift-rate (or change in internal DV)
should be related to characteristic features of the observer’s
decision. Specifically, stronger internal evidence accumulation
should be related to a higher likelihood of having made a correct
decision12, faster response times10 and higher confidence11. In
order to check whether our classifier predictions satisfied these
criteria for metrics of internal evidence accumulation, we entered
both the trial-by-trial slope and intercept of the post-decision
accumulation process as simultaneous predictors in a hierarchical
regression model to predict (a) reaction times, (b) choice accuracy
and (c) confidence of the final decision (see Supplementary
Note 4 for a similar analysis of the pre-decision period). Steeper
slopes predicted faster reaction times (β=−0.007, t(8549)=
−2.83, p= 0.005, see Fig. 3d), a higher likelihood of a correct
decision (β= 0.16, t(8549)= 3.05, p= 0.002, see Fig. 3e) and
higher confidence (β= 0.14, t(8549)=3.53, p= 0.0004, see Fig. 3f).
We also observed significant effects of the intercept on accuracy
(β= 0.1, t(8549)=2.0, p= 0.045, see Fig. 3e) and confidence
(β= 0.12, t(8549)= 3.07, p= 0.002, see Fig. 3f) which is to be
expected if participants maintain a representation of the evidence
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obtained in the pre-decision phase, and if the strength of this pre-
decisional accumulation predicts the likelihood of being both
correct and confident.

We next asked whether specific sensor clusters drive the
classifier performance. Previous studies using EEG have identified
a centro-parietal event-related potential (the centroparietal
positivity or CPP) as a neural marker of internal evidence
accumulation12,30,31. Accordingly, when identifying the features
that contributed most strongly to classifier decoding accuracy
(Fig. 3c) we also found that centro-parietal sensors make a

disproportionate contribution to an ability to differentiate
between left and right decisions.

Having identified a neural metric of evidence accumulation, we
next turned to our central question of whether confidence induces
a selective accumulation for choice-consistent information as
measured using MEG. As hypothesized, we found that after high
confidence (vs. low confidence) decisions, accumulation of neural
evidence was facilitated if it was confirmatory, but largely
abolished if it was disconfirmatory (Fig. 4a, b). In other words,
our MEG analysis reveals that high confidence leads to post-
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decision accumulation becoming “blind” to disconfirmatory
evidence. To formally quantify this effect, we entered the
slope and starting point of neural evidence accumulation on
each trial into hierarchical regression models with initial decision,
high vs. low initial confidence and their interaction as predictors.
We obtained a significant effect of initial decision (β= 0.042,
t(8547)= 2.96, p= 0.003) and its interaction with confidence
(β= 0.038, t(8547)= 2.64, p= 0.008, see Fig. 4c) on slope in the
absence of effects on starting point (p > 0.05). Consistent with our
DDM fits, these results indicate that a confidence-induced
confirmation bias is predominantly driven by a selective
accumulation of choice-consistent information.

We further reasoned that this approach may remain blind to
changes in the starting point of post-decision evidence accumula-
tion because of an asymmetry in evidence availability at the start
of the pre- and post-decision phases. In other words, simply
reapplying the (non-predictive) classifier weights obtained at the
beginning of the pre-decision phase to the same time point in the
post-decision phase could render the analysis pipeline blind to

Fig. 3 Outline of MEG analysis for quantifying accumulation of post-decision evidence at a neural level (MEG study 3, n= 25 participants). a We
trained a machine-learning classification algorithm on the pre-decision phase using MEG activity to predict left vs. right choices, and reapplied this classifier
to the corresponding time point during the post-decision phase. The distance of each trial to the separating hyperplane provides a graded measure of
neural evidence for a left or right decision, with changes in the classifier prediction within each trial providing a neural metric of evidence accumulation (see
right hand panel). The inset shows the temporal generalization of decoding accuracy from the pre- to post-decision phases, indicating that the pre-decision
classifier generalises to the post-decision phase along the major diagonal (i.e. corresponding time-points). AUC= area under the curve, DV= decision
variable. b Grand average of the left/right classifier prediction in response to post-decision evidence. The light grey line shows the change in neural
representation when rightward motion is presented and the black line shows the change in neural representation when leftward motion is presented.
Regression lines show fits to the group-averaged data for visualisation purposes. Note that positive classifier values indicate evidence for a rightward
decision and negative values evidence for a leftward decision. c Contributions of sensors to decoding left versus right decisions. The group average of
contributions for each sensor is presented. In line with previous research on the neural correlates of evidence accumulation, sensors in centro-parietal
regions made the highest contributions to decodability of (abstract) left versus right decisions. d–f Validation of neural metrics of post-decision evidence
accumulation. Neural measures of the slope and starting point (intercept) of evidence accumulation extracted from the post-decision phase were entered
as simultaneous predictors of (d) reaction times (e) accuracy and (f) confidence of the final decision. Fixed effects from a hierarchical regression model are
presented ± SEM. Hierarchical regression (two-tailed): d **p= 0.005; e *p= 0.045, **p= 0.002; f **p= 0.002, ***p= 0.0004.
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averaged data. c Effects of initial decision and confidence on the slope of
neural evidence accumulation in response to post-decision evidence
(slope). The righthand panel shows weighted mean values ± SEM for the
strength of neural evidence integration (slope) within each condition. Grey
dots represent individual participants’ data. The lefthand bar shows the
fixed effect ± SEM for the initial decision × confidence interaction effect
from a hierarchical regression (two-tailed): **p= 0.008. d Effect of
confidence on temporal generalization of decoding accuracy from the pre-
to the post-decision phase. Higher confidence is associated with higher
decodability of the initial decision (i.e. stronger representation of the initial
decision, yellow colours). A stronger representation of the initial decision
was seen at the beginning of the post-decision period when confidence was
high, consistent with confidence shifting a starting point towards the bound
of the initial decision. The contoured area represents a cluster of timepoints
with a significant main effect of confidence (permutation test, p < 0.05
corrected for multiple comparisons). The time window starts with stimulus
presentation (0ms) and ends when the response options are presented
(850ms). Dotted lines indicate the offset of the stimulus (pre- or post-
decision stimulus respectively).
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starting point offsets. To address this concern, we evaluated the
extent to which the entire timecourse of classifier predictions
obtained in the pre-decision phase generalised to the post-
decision phase, without making assumptions about their relative
timing32. This analysis provides insight into how putative
processing stages identified in the pre-decision phase are
reinstated in the post-decision phase, and crucially how this
timecourse is affected by confidence. We found a cluster of time
points in which a representation of the initial decision was
activated earlier in the post- compared with the pre-decision
phase when confidence was high (p= 0.01, corrected for multiple
comparisons; Fig. 4d). Such early reinstatement of a later
processing stage is consistent with confidence enhancing a
representation of the initial decision (i.e. shifting a starting point
towards the bound of the initial decision) or inducing an
expectation for evidence supporting an initial decision at the
beginning of the post-decision period. Together these results
indicate that confidence changes both the neural representation of
evidence for an initial decision at the beginning of the post-
decision phase (analogous to a change in starting point) as well as
enhancing the processing of evidence supporting an initial
decision (analogous to a change in drift rate).

Discussion
By combining behavioural and neural modelling we provide
experimental evidence that holding high confidence in a decision
leads to a striking modulation of post-decision processing and the
emergence of a behavioural confirmation bias. These findings are
consistent with a neural representation of confidence acting as a
top-down controller25 (see Supplementary Note 7 for further
analysis) that selectively amplifies processing of choice-consistent
information.

A confirmation bias in the current experiment was observed in
low-level perceptual decisions with limited emotional or cognitive
content, suggesting that choice-induced biases in evidence accu-
mulation represent a core principle of neural information
processing8,33. In most real-world decisions, additional motiva-
tional34 and social35 influences (e.g. not revising a decision in
order to appear self-consistent) are presumably also in play.
These additional influences may amplify, or add to, effects of
confidence on post-decisional processing in complex ways. An
advantage of starting with an investigation of confirmation biases
within lower-level tasks is that the potential for such interactions
can be minimized, allowing a focused investigation of the pro-
cesses that drive post-decisional shifts in evidence accumulation.

Computational modelling of the evidence accumulation pro-
cess enabled further arbitration between apparently optimal
information usage and a confirmation bias, by separating the
influence of confidence on post-decisional starting point and drift
rate. A shift in starting point is potentially normative as it may
reflect the contribution of stronger pre-decision evidence to
higher confidence, indicating that participants incorporate both
pre- and post-decision evidence when reaching a final decision. In
contrast, the influence confidence on drift-rate represents a dis-
tortion in the integration of new evidence and thus a classic
instance of confirmation bias.

In turn, our usage of MEG recordings in combination with
machine learning classification revealed a neural marker of these
shifts in post-decision evidence accumulation. This measure
complemented our behavioural modelling results and yielded
direct support for a hypothesis that confidence alters the way in
which the brain accumulates new information, consistent with a
selective gating of choice-consistent information.

In the current task, where new evidence is always helpful, this
bias against incorporating conflicting post-decision evidence is

normatively maladaptive. In other scenarios, however, where new
evidence may be distracting and/or actively misleading, a con-
firmation bias might prove helpful. For instance, previous
attempts to explain the value of selective evidence accumulation
focused on its role in directing attention towards aspects of
the environment with the highest potential for information
gain36,37, or in increasing the robustness of decisions against
the influence of noise26,38. However, the fact that confidence
increases choice-consistent information processing goes against
the idea that confirmation bias is itself driven by a need for
certainty3,39. Instead, we observed the strongest confirmation bias
when people were already confident in their decisions.

The study of cognitive biases has remained largely distinct
from parallel efforts to understand the processes governing evi-
dence accumulation in simple decisions. We suggest that
extending models of evidence accumulation to post-decisional
processing enables a unique window onto biases in higher-order
cognition7. Intriguingly, recent evidence suggests that alterations
in post-decision processing are predictive of higher-level attitudes
such as beliefs about political issues13, suggesting that insights
gained from the study of confirmation bias in simple decisions
can be applied to understand the drivers of polarization and
entrenchment across a range of societal issues. For instance, a
central role for confidence in shaping the fidelity of evidence
accumulation indicates that metacognitive interventions may be
one route towards ameliorating this pervasive cognitive bias.

Methods
Participants. Each study contained a different group of participants. We analysed
data from 28 participants in study 1 (Mage= 23.8; SDage= 6.3; 16 female) and 23
participants in study 2 (Mage= 25.7; SDage= 7; 12 female). Participants were
excluded based on the following set of pre-defined criteria: using the same initial
confidence rating more than 90% of time (N= 3 in study 1; N= 2 in study 2),
performance below 55% or above 87.5% correct decisions in one of the pre-
decision evidence conditions (see explanation of the experimental conditions
below) indicating non-convergence of the staircase procedure (N= 3 in study 1;
N= 2 in study 2).

For the MEG study 3, participants conducted an initial behavioural training
session before being screened according to the same criteria reported above. MEG
data of a final sample of 25 subjects was analysed (Mage= 24.6; SDage= 4.1; 16
female). Data of four subjects could not be analysed due to technical problems with
recording triggers. As we applied machine learning classification algorithms to the
neural data in order to decode decisions (left versus right) and confidence (high
versus low) it was important that participants showed relatively balanced responses
for these two categories. 2 subjects were excluded because they chose one response
more than 80% of the time for either the decision or confidence.

In addition to a basic payment (£10 for behaviour and £20 for MEG)
participants received a performance-based bonus (up to £5 for behaviour and £8
for MEG). All studies were approved by the Research Ethics Committee of
University College London (#1260-003) and all subjects gave written informed
consent.

Stimuli and experimental design. The psychophysical task was an adaptation of
the task used by Fleming and colleagues18, and programmed in MATLAB 2012a
(Mathworks Inc., USA) using Psychtoolbox- 3.0.14. Stimuli were random dot
motion kinetograms (RDKs), viewed at a distance of approximately 45 cm. The
RDKs were clouds of white dots (0.12° diameter) within a white circular aperture
with a radius of 7° on a grey background that lasted for 350 ms. The direction of
motion was rightward or leftward along the horizontal meridian. The speed of
movement was 5° per second and the density of dots in the whole experiment was
set to 60 dots per degree. Each set was replotted three apertures later in which a
subset of dots, determined by the percent coherence, was offset from their previous
location towards the target movement direction, and another subset was offset in
the opposite direction, whereas the rest was replotted randomly.

Unlike in a classical RDK stimulus, dots moved coherently in both the target
direction and the opposite direction. The remaining dots moved randomly
(percentages described below). We used a psychophysical manipulation of positive
evidence to dissociate subjective confidence from objective task performance27. In
the high positive evidence (HPE) the proportion of dots moving in the incorrect
direction was set to 15% and the proportion moving in the correct direction was a
higher percentage, staircased to ensure the targeted performance level (see below).
In the low positive evidence (LPE) condition the motion coherence of dots moving
in the incorrect direction was set to 5%, whereas the dots moving in the correct
direction was also staircased to ensure the same performance as in the HPE
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condition. The rationale for this manipulation was that accuracy and confidence
are usually highly correlated, hindering specific claims about the unique role of
confidence. The positive evidence manipulation enabled us to selectively increase
confidence while keeping performance constant, thus making it possible to
determine a direct effects of changes in confidence on post-decision processing.

All experiments adapted a full 2 (pre-decision positive evidence level) by 2
(post-decision evidence strength) factorial design yielding a total of 4 experimental
conditions each corresponding to 90 trials. HPE and LPE stimuli were each
followed by one of two post-decision evidence conditions (weak or strong). For the
post-decision evidence a constant level of evidence in the incorrect direction was
employed (i.e. we did not manipulate the overall amount of positive evidence in the
post-decision phase). The post-decision coherence level in the incorrect direction
was derived from the averaged staircased pre-decision values as [incorrect
coherence LPE+ incorrect coherence HPE]/2. Weak post-decision evidence
stimuli were created by specifying correct-direction coherence as [staircased correct
coherence LPE+ staircased correct coherence HPE]/2. Strong post-decision
evidence stimuli were then derived by multiplying this coherence level by a factor
of 1.3.

Task procedure. In every study, participants first performed 180 trials of a cali-
bration phase before performing the main task which consisted of 360 trials
(behavioural studies) or 352 trials (MEG study).

In the calibration phase subjects judged whether the dots were moving to the
left or to the right side of the screen, without rating their confidence or seeing
additional post-decision evidence. The response had to be given within 1.5 s after
stimulus offset. LPE and HPE stimuli were randomly interleaved. As described
above, the coherence of the target direction was adapted with a staircase procedure
to obtain a performance of 60% correct in study 1 and 71% correct in studies 2
and 340.

The main task had the same core structure for all studies with slight variations,
explained below, to optimize each study for the specific research question and
planned analysis. Participants were first presented with a moving dot stimulus
before they indicated their initial decision (left or right) together with a confidence
rating. In behavioural studies 1 and 2 the decision was indicated by pressing the left
or right arrow key on the keyboard and was directly combined with a graded
confidence rating (7-point sliding scale between 50% and 100%), where pressing
the (same) arrow key again moved a slider along the confidence scale. In the MEG
study, subjects first made a left versus right decision, before giving a binary high/
low confidence rating. After this initial decision, participants received a second
sample of moving dots (i.e. post-decision evidence) which was always in the same
(correct) direction as the pre-decision evidence presentation, but of variable
strength. Subjects were instructed that this evidence was bonus information that
could be used to inform their final decision and confidence. After the post-decision
evidence, participants were again asked to judge the motion direction and indicate
their confidence.

Design alterations in behavioural study 2. In study 2 we optimized the
experimental design to allow drift-diffusion modelling of the second/final decision.
While in study 1 subjects had to withhold their final response for 300 ms after the
offset of the post-decision evidence (i.e. responding was only possible after this
delay), in study 2 participants were able to make their final response freely as soon
as they had decided. This allowed us to use response times as a proxy for crossing a
decision threshold, which would not have been possible if the response was
delayed.

Design alterations in MEG study 3. In the MEG study, participants indicated
their responses by pressing and up or down button on a keypad with their right
thumb. We disentangled the participant’s decision (left/right and high/low con-
fidence) from the motor response they had to perform (pressing the up or down
key on a key pad), by randomising the mapping between decision options and key
presses. Specifically, on any given trial leftward motion could be indicated by
pressing the up key and on another trial by pressing the down key. Similarly, high
confidence could be indicated in one trial by pressing the up key and in a different
trial by pressing the down key. The mapping between decisions and motor
responses was revealed once responding was possible, by presenting the letters L or
R (and H or L for confidence ratings) above/below the horizontal plane. This
approach ensured that decoding of motion direction was not trivially confounded
by motor preparation signals. Additionally, we introduced delays of 500 ms after
the presentation of each stimulus but before participants were informed about the
response mappings to allow decoding analysis to be applied in a time window when
subjects could form an abstract decision about motion direction but were not yet
able to prepare a response.

Scoring and bonus payment. Participants were instructed to rate their confidence
as a subjective probability of being correct and were rewarded according to the
correspondence between their confidence and task accuracy. An incentive-
compatible Quadratic Scoring Rule41 was applied equally to both the initial and

final decisions:

Points ¼ 100 � 1� correcti � confidenceið Þ2� � ð4Þ
where correcti is equal to 1 on trial i if the choice was correct and 0 otherwise, and
confi is the subject’s confidence rating on trial i. The Quadratic Scoring Rule is a
proper scoring rule in that maximum earnings are obtained by jointly maximizing
the accuracy of both choices and confidence ratings. This scoring rule also ensures
that confidence is orthogonal to the reward the subject expects to receive for each
trial: maximal reward is obtained both when one is maximally confident and right,
and minimally confident and wrong. The points gained on each trial were summed
and participants were given a £1 bonus payment for every 15,000 points earned.
After each block participants were informed of their current total number of
points. This was the only performance feedback that was given and subjects did not
receive specific information regarding the correctness of their motion direction
decisions.

Multilevel meditation analysis. A mediation analysis was carried out to examine
whether the effect of positive evidence on changes of mind was mediated by a shift
in confidence (see Supplementary Notes 5 and 6). We implemented a multilevel
mediation model with subjects as random effects, using the Multilevel Mediation
and Moderation (M3) Toolbox42. Mediation analysis assesses whether covariance
between two variables (predictor and dependent variable) is explained by a third
mediator variable. Significant mediation is obtained when inclusion of the mediator
in the model significantly alters the slope of the predictor-dependent variable
relationship (evaluated as the product of the predictor-mediator and mediator-
dependent variable path coefficients). In a logistic regression model the two
positive evidence conditions (i.e. coded as HPE= 2, LPE= 1) were entered as the
predictor variable, changes of mind as the dependent variable (coded as change of
mind= 1, no change of mind= 0) with confidence ratings as the mediator variable.
We controlled for covariates that potentially could have had a confounding
influence on these linkages such as accuracy, reaction time, post-decision evidence
strength and the interaction between accuracy × post-decision evidence strength.
The following effects of interest were simultaneously tested: the impact of positive
evidence on confidence ratings (path a); the impact of confidence ratings on
changes of mind, controlling for positive evidence (path b); and the formal med-
iation of positive evidence on changes of mind by confidence (path a × b). The
direct effect of positive evidence on changes of mind before and after controlling
for confidence was also estimated (paths c and c’, respectively). Parameter estimates
for each path (a, b, c, a × b, c’) were obtained by bootstrapping 200,000 times with
replacement, producing two-tailed p-values and 95% confidence intervals. In a
control model in which the predictor and mediator variables were swapped, no
mediation effect was found.

Drift-diffusion modelling. Drift-diffusion modelling was conducted in Python 2
using Jupyter Notebook (5.50). The model was fit using accuracy coding such that
decision boundaries and reaction time distributions corresponded to those for
correct and incorrect responses. However, by design, initially correct decisions led
to confirming post-decision evidence (because the motion direction was always the
same in the pre and post-decision periods) and initially incorrect decisions always
led to disconfirming post-decision evidence.

Within the DDM there are two natural ways to account for biases in a decision
process: by shifting the starting point towards one of the decision boundaries, or by
altering the drift rate to induce a bias in the processing of information. We also
considered the possibility that other factors (e.g. decision bound) could be altered,
but in initial simulations such changes were unable to explain the observed
behavioural patterns. Since it has been reported that confidence might affect
boundary separation29, we included a dependency of the boundary separation on
confidence in each of the models (note however that a symmetrical influence on
boundary separation cannot explain any choice-dependent effects on changes
of mind).

A hierarchical Bayesian variant of the DDM (hDDM) enabled us to investigate
the dependencies of the model parameters on the initial decision and confidence on
a trial-by-trial basis43. The hDDM simultaneously estimates individual parameters
drawn from a group distribution using Markov-Chain Monte-Carlo methods. This
procedure not only estimates the most likely value of the model parameters but also
uncertainty in the estimate. The hDDM toolbox43 was used to compare 10 hDDMs.
The best-fitting model was identified by comparing Deviance Information
Criterion scores and ensuring that the wining model adequately fitted the
qualitative data patterns (see Supplementary Note 2). A regression analysis was
used to investigate the dependency of the starting point and drift-rate parameters
on the initial decision (1= correct decision leading to confirmatory post-decision
evidence, −1= incorrect decision leading to disconfirmatory post-decision
evidence), initial confidence (parametrically ranging from −1 to 1) or their
interaction.

In all models the drift rate, starting point, non-decision time and boundary
separation were fitted hierarchically with individual parameter estimates for each
participant, whereas dependencies of starting point and drift-rate on experimental
factors were estimated as fixed group-level effects. In all model fits we incorporated
an influence of post-decision evidence strength on the drift-rate. First a baseline
model was estimated where none of the parameters depended on confidence or an
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initial decision. Subsequently, we created three model families that had
dependencies of starting point and/or drift-rate on (i) initial confidence, (ii) initial
decision or (iii) the interaction of initial confidence × initial decision (i.e.
confidence was allowed to amplify or attenuate the influence of the initial decision
on the starting point and/or drift-rate). Within each model family we created three
different models with dependencies of these variables on starting point, drift-rate
or both.

Baseline model (Model 1):

Starting point � 1 ð5Þ

Drift-rate � 1þ post-decision evidence strength ð6Þ

Boundary separation � 1þ confidence ð7Þ
Confidence dependency (Model 4):

Starting point � 1þ confidence ð8Þ

Drift-rate � 1þ post-decision evidence strengthþ confidence ð9Þ

Boundary separation � 1þ confidence ð10Þ
Initial decision dependency (Model 7):

Starting point � 1þ initial decision ð11Þ

Drift-rate � 1þ post-decision evidence strengthþ initial decision ð12Þ

Boundary separation � 1þ confidence ð13Þ
Full model (Model 10):

Starting point � 1þ confidenceþ initial decisionþ confidence ´ initial decision

ð14Þ

Drift-rate � 1þ post-decision evidence strengthþ confidence

þ initial decisionþ confidence ´ initial decision
ð15Þ

Boundary separation � 1þ confidence ð16Þ
RTs faster than 200ms were discarded from the model fits and the outlier

probability was set to 0.05, as recommended in previous literature43,44. The models
were estimated with a Markov chain of 100,000 samples with 50,000 burn-in
samples (i.e. discarding the first 50,000 iterations), and a thinning factor of 25,
resulting in 2500 posterior samples. To ensure convergence, the posterior traces and
their autocorrelation were inspected and the Gelman–Rubin statistic was calculated
for each parameter (see Supplementary Table 1). The posterior distributions of the
best-fitting model were interrogated to retrieve parameter estimates.

The winning model was characterized by a regression equation that
incorporates effects of confidence, the initial decision and their interaction (i.e. the
full model) on the starting point and drift-rate. The Deviance Information
Criterion scores of all models are shown in Supplementary Fig. 3A. The model
parameters of the best-fitting model are shown in Fig. 2d.

MEG pre-processing. MEG was recorded continuously at 600 samples/second
using a whole-head 273-channel axial gradiometer system (CTF Omega, VSM
MedTech), while participants sat upright inside the scanner. Data was segmented
into 8200 ms segments from −200 ms to +8000 ms relative to trial onset, where
each segment encompassed one trial. Each epoch was aligned to the onset of the
trial or, for analysis of the post-decisional phase, was realigned to the onset of post-
decision evidence (to minimize any presentation delays that may have occurred
during the trial). The data were resampled from 600 to 100 Hz to conserve pro-
cessing time and improve signal to noise ratio, resulting in data samples spaced
every 10 ms. All data were then high-pass filtered at 0.5 Hz to remove slow drift. All
analyses were performed directly on the filtered, cleaned MEG signal, consisting of
a 273 channel × 821 sample matrix for each trial, in units of femtotesla.

Generalising a pre-decision classifier to the post-decision phase. We built a
machine-learning classification algorithm to predict participants’ decisions on each
trial (leftward vs. rightward motion) at each timepoint during the decision phase.
Having trained such an algorithm we could then apply it to a distinct set of trials
and use the probabilistic prediction of the classifier as a neural DV for leftward
versus rightward motion45,46. Specifically, we used a support-vector machine
(SVM) classifier trained on sensor-level whole-brain activity (normalized ampli-
tude of all MEG channels). The classifier labels were the trial-by-trial choices made
by participants (left or right) while the features encompassed a matrix of activity at
each MEG sensor (z-scored for each time point) at a given time point (average
activity over 100 ms window, shifted in steps of 10 ms). The classifier was trained
on MEG activity in the pre-decision time phase (e.g. 250 ms after the onset of pre-
decision evidence) and then reapplied to the corresponding time point in the post-
decision phase (e.g. 250 ms after the onset of post-decision evidence). We

computed the predictions of the classifier across an 850 ms time window, starting
with post-decision stimulus onset and ending with the presentation of response
options (i.e. when the mapping between choices and motor responses was
revealed).

We used linear kernels and a default regularization parameter of C= 1 within the
svmtrain/svmpredict routines of libsvm47. A leave-one-out procedure was used,
training the classifier on all trials except one (using pre-decision data only) and testing
it on the left-out trial (using post-decision data). Training the SVM results in a
hyperplane that best separates the two classes of trials (see Fig. 3a) in a high-
dimensional space. If a trial is far away from this hyperplane it is unlikely to be a
misclassification, while trials that are close to the hyperplane might easily be
misclassified. Thus, the distance to the hyperplane represents the decodable evidence
for a decision and can thus be used as a graded measure of the neural DV45,46.

After reapplying the classifier to every trial and time point during the post-
decision phase, we obtained a timeseries of neural evidence accumulation within
each trial (see Fig. 3a, right panel). We focussed on the time from the onset of the
post-decision stimulus to the timepoint of peak decodability at which the pre-
decision classifier best generalized to the post-decision phase. The accumulation
process can be summarized by fitting a linear regression to the time series (see
Fig. 3a, right panel) on each trial, where the slope is analogous to the drift rate in a
DDM, and the intercept analogous to the starting point. A positive slope
corresponds to a change of the neural DV towards predicting rightward motion
decisions while a negative slope corresponds to a change towards leftward motion
(see Fig. 3b). By taking the absolute value of these slope values (i.e. reversing the
sign on trials in which leftward motion was presented), we could derive a general
index for the sensitivity of the neural DV to the motion direction presented on the
screen (see Fig. 4a, b).

Based on our behavioural findings we expected that both the slope and the
intercept would be influenced by the interaction of initial decision (confirmatory
post-decision evidence= 1; disconfirmatory post-decision evidence=−1) ×
confidence (low confidence=−1; high confidence= 1). Thus, we entered the
initial decision, confidence and their interaction as simultaneous predictors in a
hierarchical regression model.

MEG topography contributing to classification accuracy. To explore which
brain areas carried the information about evidence for a left versus a right decision
(or high versus low confidence as reported in the Supplementary Note 6), we
trained a SVM classifier for each participant at the time point of highest decod-
ability (see Supplementary Fig. 6 for the whole timeline) using subsets of 30 ran-
domly selected sensors and repeated this procedure 2500 times. The contribution
of each sensor s was taken to be the mean of all prediction accuracies achieved
using an ensemble of 30 sensors that included s48,49.

MEG temporal generalization. The extent to which a classifier trained on neural
data obtained from one time point generalizes to other time points can provide
insight how mental representations change over time32. We utilized this temporal
generalization method to formally test whether the same processing steps (leading
up to a decision) occur at similar times in the pre- and post-decision phases (see
Supplementary Fig. 9 for temporal generalization restricted to the pre-decision
phase). Most critically, we also investigated whether this processing cascade was
altered by participants’ confidence in their choice.

For the temporal generalization analysis we trained our classifier on every
timepoint in the pre-decision phase and tested it on every timepoint in the post-
decision phase yielding a 2D matrix of decoding accuracy (see Fig. 3a top-left
panel). A fourfold stratified cross-validation was implemented for each subject and
repeated 100 times to account for potential random biases in assigning trials to
folds. Through this stratification we obtained a balanced number of trials within
each condition in each fold (left/right decision, high/low confidence, change/no
change of mind, and all combinations of these factors). Classifiers were trained on
three out of four folds and tested on the left-out fold. Decoding accuracy was
determined by the area under a Receiver Operator Curve (AUC) that sought to
predict the decision based on the continuous DV outputted by the classifier.
Decoding accuracy was calculated separately for the four different conditions (low
confidence and change of mind; high confidence and change of mind; low
confidence and no change of mind; high confidence and no change of mind).
Importantly, classification accuracy was based on how well the initial decision
(rather than the final decision) could be predicted based on neural data. Since we
are dealing with a two-class decoding problem one can directly infer the decoding
accuracy of the alternative decision from the classification accuracy of the initial
decision.

We estimated the main effect of confidence on decoding accuracy to isolate
confidence-induced changes in temporal generalisation from the pre- to post-
decision phase. We used a cluster-based permutation test50,51 to determine
statistical significance (p < 0.05, corrected for multiple comparisons). We calculated
the contrast of high > low confidence averaging over change/no change of mind
trials [[high confidence and no change of mind − low confidence and no change of
mind] + [high confidence and change of mind − low confidence and change of
mind]]. We identified adjacent timepoints all individually exceeding t-values
corresponding to p < 0.05 uncorrected, and stored the sum of t-values for each
cluster. We then applied a sign-flip permutation test (randomly switching the
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contrast direction for a subset of subjects of the sample, i.e. low-high instead of
high-low) and repeated this procedure 1000 times. The distribution of summed t-
values over all permutations built the null distribution for our statistical test. If the
observed sum of t-values within a cluster exceeded the 5% quantile of this
distribution (separately calculated for negative and positive values) we labelled this
cluster as showing a significant main effect of confidence in this portion of the
temporal generalisation matrix.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Anonymised data and code are available at a dedicated Github repository [https://github.
com/MaxRollwage/NatureCommunications]. The source data underlying Figs. 1b–d,
2b–d, 3b, d–f, and 4a–d are provided as part of this repository. A reporting summary for
this Article is available as a Supplementary Information file.

Code availability
Code supporting this study are available at a dedicated Github repository [https://github.
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