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Abstract—This study investigates the use of a synergistic edge-
preserving prior for a maximum-likelihood reconstruction of
PET activity and attenuation images. The effect of the prior
was tested on different reconstruction methods: MLAA and
our algorithm MLAA-EB-S. Simple simulations on cylindrical
phantoms with an insert showed that the presence of a synergistic
prior enforces cross-talk related edges when the images are
reconstructed with non-TOF MLAA and increases the bias in
both the reconstructed activity and attenuation images. However,
benefits appear when the joint problem is less ill-posed, as in
the case of our method MLAA-EB-S, which exploits scatter
information to improve conditioning. Overall, MLAA-EB-S with
synergistic prior achieved the lowest bias and variance in both
the activity and the attenuation images amongst the compared
methods. Therefore, the proposed synergistic prior could be
a useful way for improving the performance of MLAA-EB-S
without the need of relying on anatomical images.

I. INTRODUCTION

ET attenuation correction (AC) can be challenging in both
PET/MR and PET/CT. In the case of PET/CT scanners,
errors can be present because of misregistration between the
PET and CT, as a result of a non-simultaneous acquisition
between the two modalities [1]. In clinical PET/MR scan-
ners, synthetic CT images are created from MR images with
methods such as segmentation, atlas/mapping techniques or
MR/CT learning. These approaches can be problematic in the
thorax and the upper abdomen, because of the large variability
of lung attenuation values and the presence of motion [2].
Joint reconstruction of activity and attenuation represents
a promising method to overcome these limitations. One ap-
proach is to iteratively solve the inverse problem using like-
lihood optimisation (MLAA) [3]. However, without time-of-
flight the problem is very ill-conditioned, especially in low-
dose acquisitions. A prior encouraging mu-values around bone,
soft-tissue and lung-tissue is often used in joint reconstruction
problems [3]. However, a population-based lung-tissue prior
might not be appropriate given the considerable variation in
lung-density, especially in patients with lung diseases such as
Idiopathic Pulmonary Fibrosis.
In this work, we explore a different approach that relies on
the expectation that the reconstructed attenuation and activity
images are likely to share image structures. We exploit this
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by incorporating a synergistic prior into the joint reconstruc-
tion framework, similar to previous synergistic PET and MR
reconstructions [4]-[7] and Spectral CT (see [8] for some
references).

II. METHODS
A. Synergistic Prior

Here we investigate the incorporation of a synergistic edge-
preserving regulariser, the Joint Total Variation (JTV). It
favours sparsity in the gradient domain and therefore encour-
ages common edges between the two unknown distributions.
This prior is defined as:
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where A(z) and p(z) denote the activity and attenuation
images respectively, x € R , 3 is the global strength of the
prior and « is a smoothing parameter introduced to avoid non-
differentiability.

B. Reconstruction Algorithms

We tested the effect of the proposed prior with two different
reconstruction methods: MLAA [3] and our algorithm MLAA-
EB-S [9], which uses data from two energy windows and ac-
counts for the photon energy information. Our implementation
of both algorithms relies on L-BFGS-B [10] to simultaneously
update A and p to optimise the cost-function.

III. EXPERIMENTS AND RESULTS

A. Simulated Phantom Data

Experiments were conducted on a 3D cylindrical phantom
with an insert (Fig. 1). Activity and attenuation image values
were in the same scale, although with different contrast. We
present results for the case when the attenuation and activity
distributions have matching edges (Fig. 1, a-d) and when they
do not (Fig. 1, e-h). The initial activity image estimates (Fig.
1, d,h) were obtained by iterating 3 times between OSEM
and SSS [11]. Data were simulated by forward projecting the
ground truth activity image into sinograms corresponding to
those obtained from the Siemens mMR. We used an energy
resolution of 2 % to assess the performance of the algorithms
in ideal conditions. Poisson noise was added to the simulated
data.
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Fig. 1: From left to right: true attenuation (a,e), true activity
(b,f), initial attenuation (c,g), initial activity (e,h). First row:
matching edges. Second row: unmatching edges.
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Fig. 2: First and second rows: bias images. Third and fourth
rows: variance images. Fifth row: covariance images. Each
column refers to a different reconstruction algorithm.

B. Prior Parameter and Metrics

We chose a smoothing factor corresponding to 2 % of the
background value in the attenuation image. The global penalty
strength (8 = 0.1) was deliberately chosen quite high, to
emphasise the effects of the prior. Fine-tuning of the prior was
not the purpose of this study. 30 noise realisations were used to
compute the (voxel-wise) mean bias, variance and covariance
images. For a numerical assessment, we computed the ROI-
means in the insert for each metric, reported in Table I for the
case of matching edges.

C. Results

Cross-talk appears, as expected, in both the case of matching
and unmatching edges when images are reconstructed with
MLAA (Fig. 2 and Fig. 3, a, e). The presence of the synergistic
prior dramatically increases the bias in the reconstructed
images (Fig. 2 and Fig. 3 b, f), however reducing both the
variance and covariance (Fig. 2 j, n, f).

The MLAA-EB-S algorithm is able on its own to reconstruct
the images with lower bias with respect to MLAA (Fig. 2
and Fig. 3, ¢, g). Here the presence of a synergistic prior
benefits the reconstruction, further improving the stability of
the algorithm, by reducing the variance (see Table I). For
both the case of MLAA+JTV and MLAA-EB-S+JTV a global
reduction of the covariance in the background comes at the
cost of a higher covariance in the insert. For MLAA-EB-S,
we observed a slightly increased bias in the case of matching
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Fig. 3: First and second rows: bias images for the four
reconstruction algorithms.

edges (Fig. 2 d, h), probably due to an excessive weight of
the prior. Variance and covariance have a similar trend in both
the case of matching and unmatching edges - they are shown
for one case only for reason of space.

TABLE I: ROI-means in the insert (unmatching edges). Back-
ground values: p”8 = 0.032 cm ™', AP& = 0.0084 a.u. Insert:
w® = 0.042 cm—1, A = 0.042 a.u.

MLAA MLAA + JTV | MLAA-EB-S | MLAA-EB-S + JTV
BIAS(p) - 15.01 % - 34.36 % -1 % - 0.80 %
BIAS(A) -10.33 % - 20.86 % -0.15 % -0.12 %
VAR(p) 2.45 e-06 3.90 e-07 4.17 e-07 8.88 e-08
VAR()) 4.15 e-07 2.08 e-07 3.71 e-07 9.42 e-08
COV(\, ) | 149 e-07 4.22 e-07 4.43 e-09 6.41 e-08

IV. DISCUSSION AND CONCLUSION

We investigated the benefits of incorporating a synergistic
prior into MLAA and our algorithm MLAA-EB-S.

The main finding of this study is that presence of the
prior interacts with cross-talk during reconstruction, differently
to synergistic PET/MR reconstruction where the two images
are reconstructed from different data-sets. For MLAA, the
presence of the prior enforces cross-talk related edges in
the reconstructed images. The bias in the estimated activity
increases from -10.33 % (MLAA) to -20.86 % (MLAA +
JTV). In contrast, when multiple energy window information
is used, the presence of the synergistic prior seems to provide
benefit, possibly because to the cross-talk between the two
estimated images is weaker: MLAA-EB-S + JTV achieved a
final error in the activity image of - 0.12 %, with the lowest
variance amongst all the four methods.

The matching edges experiments follow the same trend.
However, we observed a higher bias in MLAA-EB-S + JTV
compared to the case of unmatching edges. We hypothesise
that this might be due to effects of initialisation and it will be
the object of further investigation.

Overall, the incorporation of a synergistic prior seems
promising for MLAA-EB-S but it is discouraged for a MLAA-
type reconstruction (for non-TOF data), as it increases cross-
talk.
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