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Abstract

In long distance optical transmission systems, the coherent optical transceiver with

wavelength division multiplexing has become a mature technology. This work

investigates signal processing to further improve the data throughput of such systems.

Using information theory, we have designed coded modulation schemes for

the optical transmission system. We presented a modulation format for optical

transmission systems which reduces the nonlinear distortion during transmission,

increasing the achievable information rate. We designed machine learning tech-

niques to increase the throughput in nonlinear fibre transmission, and carried out the

first experimental demonstration of learned time-domain digital back-propagation.



Impact Statement

The world is relying on fibre optic transmission systems to form the backbone of the

internet. The optical fibre can support large datarates and can carry signals over large

distances, these properties making this the medium of choice for the vast majority

of data transfer around the world. The insatiable demand for more bandwidth is

rapidly filling the existing cables.

In this thesis we explore machine learning and information theory as concepts

which will allow us to make better use of the existing infrastructure. Due to

the increase in available compute power, techniques from information theory and

machine learning that were previously deemed infeasible are now in the realm of

possibilities.

We developed nonlinearity tolerant signal formats, in which the constellations

onto which bits are encoded are optimised to increase achievable data-rates for

the nonlinear fibre channel. The constellations were extensively tested, both in

simulations and experimentally, using an optical testbed.

We investigated the adaptation of the digital filters used in the algorithms for

fibre nonlinearity mitigation, using powerful machine learning techniques. As one

major outcome of this work, we carried out the first experimental demonstration of

learned time-domain digital back-propagation.
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Chapter 1

Introduction

The world has increasingly become reliant on the internet. 51 % of CEOs expect

that their companies will use more technology to meet their changing customer and

stakeholder expectations [1]. It is no wonder that Cisco expects the total IP traffic

to triple between 2017 and 2022, as shown in Fig. 1.1 from [2].
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Figure 1.1: Cisco forecast of total IP traffic from Cisco VNI, 2018

The increase in people and devices connected to internet has carried through

to increased demands on the backbone of the internet. However, major datacentre

providers do not use the internet for their inter-datacentre communication, but pass

the increased dataload through their own global network. This increase has lead

to Microsoft, Facebook and Telxius jointly laying a new subsea cable across the

Atlantic Ocean named MAREA [3]. This is an addition to their already global
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distribution network shown in Fig. 1.2 from [4].

Figure 1.2: Microsofts global backbone network.

The infrastructure is based on optical fibres, since TAT-8 the de-facto standard

of building long-haul communication infrastructure [5]. Where the TAT-8 was able

to transmit 280 Mbit/s per fibre pair, the MAREA cable has achieved 26.2 Tbit/s

per fibre pair, an almost 100, 000× increase. The first of the improvements came

from stepping away from regenerating every span and using optical amplification

to transport signals over larger distances. The TAT12/13 was the first transatlantic

system that made use of Erbium-doped fibre amplifiers (EDFAs) [6], which, in turn,

then easily allowed the use of more than one wavelength in the transmission system

[7].

Another advance comes from moving from on-off keying [8] to phase and

amplitude modulation [9], which, combined with polarisation multiplexing and

pulse shaping to allow Nyquist-spaced WDM channels [10] has led to a year on

year increase in capacity records [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] as shown in

Fig. 1.3.

However, we can see a saturation in the records obtained over the years. One

solution is to use space division multiplexing [21], a technique that allows scaling

of link capacities by many multiples. Although the technique is promising [22, 23],

there are yet to be systems deployed using these technologies.

This work is investigating novel signal processing techniques that make more
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Figure 1.3: Transatlantic transmission records set in the last 10 years.

efficient use of the current deployable and deployed transmission systems. This

is a promising approach. For example, it can be seen from [17] and [19] that

more advance modulation formats and coded modulation are starting to be used in

deployed systems.

Lately, machine learning has made its way into improving communication

systems [24], and more specifically optical communication systems [25, 26]. These

methods will allow us to go beyond the limits of linear systems [27], improve on the

current limitations [28] and even approach the limit for the current techniques [29].

1.1 Optical transmission system

At the heart of our optical transmission system is the optical coherent transceiver,

with which we can transmit and receive, for both polarisations, the phase and

amplitude of our signal, using a dual polarisation (DP) IQ modulator (IQM) and a

DP coherent receiver [30, 31].

1.1.1 Transmitter

Themodulator converts two electrical signals onto the inphase (I) and quadrature (Q)

components of the envelope of a continuous wave (CW) carrier. The two electrical

signals drive two separate Mach-Zehnder modulators [32, 33] which are nested in

another Mach-Zehnder structure, as shown in Fig. 1.4.



1.1. Optical transmission system 16

CW laser Signal

4 9
π
Eπ
E(C)

E � (C)

4 9
π
Eπ
E(C)

4 9
π
2

E& (C)

MZM�

MZM&

Figure 1.4: An IQ modulator as a nested structure of Mach-Zehnder modulators.

This has the effect of creating a signal

�B (C) = E � (C) cos(l2C + q2 (C)) + E& (C) sin(l2C + q2 (C)) (1.1)

with the carrier phase q2 and the carrier frequency l2 many times larger than the

modulated bandwidth of the envelope �B (C) = E � (C)+ 9E& (C). Two of these structures
can be nested again with a polarisation beam combiner to create a DP signal [34].

1.1.2 Receiver
The DP coherent receiver recovers both phase and amplitude. A single photodiode

outputs a current ��� proportional to the square of the electric field [35]

�DD ∝ �B�∗B =
1
2
|�B (C) |2 [1 + cos(2l2C + 2q2 (C))] (1.2)

where the carrier at 2lB is undetectable due to the limited bandwidth of the photodi-

ode. This will only detect the amplitude of our envelope, but when we add a second

laser we call the local oscillator (LO), we get

�LO = �LO cos(lLOC + qLO(C)) (1.3)

�coh ∝ 1
2
|�B |2 + |�LO |2 + <

{
�B�

∗
LO exp ( 9 (l2 − lLO)C + 9 (q2 (C) − qLO(C)))

}
(1.4)

Mixing the LO and signal in an optical hybrid [36] allows us to recover both the
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signal
�� (C)

�� (C)

�& (C)

�& (C)
LO

π/2

Figure 1.5: A coherent receiver will recover phase and amplitude information with the use
of an LO.

inphase and quadrature information of the signal. In Fig 1.5, a coherent receiver is

shown. Adding a polarisation beam splitter (PBS) cuts the signal into two orthogonal

slices in the polarisation space and allowing them to be received separately. A

digital linear transformation can then be used to retrieve the original two states of

polarisation. This is achieved using digital signal processing (DSP) where a 2 × 2

multiple-input, multiple output (MIMO) adaptive filter is used to recover the sample

phase and the polarisation rotation [37]. Then the frequency offset between the

carrier and the LO lΔ = l2 − lLO is removed and subsequently the laser phase

noise qΔ(C) = q2 (C) − qLO(C) is removed [38]. Optionally, pilot symbols can be

inserted to increase the transmission quality [39, 40].

1.1.3 Optical transmission medium

The optical signals are carried over a fibre with very low losses [41] [42]. The

electric field in the waveguide is described by solving the Maxwell equations

∇2� =
−1
22
m2�

mC2
+ `0

m2%

mC2
(1.5)
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with % the induced electric polarisation.

%(A, C) = n0

( ∞∫
−∞

χL(C − C′)� (A, C′)3C′

+
∞∫

−∞

∞∫
−∞

∞∫
−∞

χNL(C − C1, C − C2, C − C3)� (A, C1)� (A, C2)� (A, C3)3C13C23C3
)

(1.6)

with χL and χNL the components of the first and third order suseptibility respectively

[43]. When the third order part is neglected a solution can be found assuming our

signal is

� (A, C) = 1
2
[�(A, C) exp( 9l0C) + �∗(A, C) exp(− 9l0C)] (1.7)

which satisfies the Helmholtz equation in the frequency domain

∇2�̃ + n (l):2
0�̃ = 0 (1.8)

with ·̃ the Fourier transform, :0 = l/2 and

n (l) = 1 + χ̃L(l) + 3
4
χNL(l) |� (C) |2 (1.9)

After expanding the wavelength-dependent propagation constant in the direction of

the fibre V(l) in Taylor series, we arrive at the nonlinear Schrödinger equations

(NLSE)

V(l) = V0 + (l − l0)V1 + 1
2
(l − l0)2V2 + 1

6
(l − l0)3V3 (1.10)

m�

mI
+ V1

m�

mC
+ 9 V2

2
m2�

mC2
+ U

2
� = 9W(l0) |�|2� (1.11)

W(l0) = =2(l0)l0
2�eff

(1.12)
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with U the fibre attenuation, =2 the second-order nonlinear refractive index and �eff
the effective area. The equation can be rewritten with ) = C − I/E6 = C − V1I as

9
m�

mI
+ 9U

2
� − V2

2
m2�

m)2 + W |�|
2� = 0 (1.13)

If it is rewritten to separate the dispersion �̂ and nonlinearity #̂

m�

mI
= (�̂ + #̂)� (1.14)

�̂ =
V2
2
m2

m)2 −
9U

2
(1.15)

we can introduce the split-step Fourier method (SSFM) for the segment I to I + ℎ as
follows [43]

�(I + ℎ, )) = exp
(
ℎ

2
�̂

)
exp

(∫ I+ℎ

I
#̂ (I′)3I′

)
exp

(
ℎ

2
�̂

)
�(I, )) (1.16)

For a DP signal, we can use the Manakov equations [44] to obtain the nonlinear

phase shift #̂ .

1.1.4 Optical amplification

For optical communication systems, EDFAs can be used to amplify the optical

signal. These amplifiers have a broad gain and preserve the phase of the signals.

The amplification stems from the erbium ions doped into the fibre which have

their electrons raised to a higher energy level. Erbium is chosen because its gain

spectrum coincides with the ultra-low loss region of the optical fibre. The gain can

be calculated using a two-level model [45] with number of Erbium ions #: in the

:-th level

m#2
mC

=
(
f0?#1 − f4?#2

) %?

0?ℎa?
+ (
f0B #1 − f4B #2

) %B
0BℎaB

− #2
g

(1.17)

m#1
mC

= −(f0?#1 − f4?#2
) %?

0?ℎa?
− (
f0B #1 − f4B #2

) %B
0BℎaB

+ #2
g

(1.18)



1.1. Optical transmission system 20

with the f09 and f
4
9 the absorption and emission spectra respectively, % 9 the optical

power, 0 9 the cross section and a 9 the frequency and g the metastable lifetime. Now

our signal and pump powers can be calculated using the steady state population

inversion

#2(I) = − )2
ΓB0BℎaB

m%B
mI
− B)2
Γ?0?ℎa?

m%?

mI
(1.19)

with ΓB0B = Γ?0? the confinement factor and B = 1 or B = −1 for forward and

backward pumping respectively. We can define the gain for amplifier length ! with

loss U and 6(I) = (
f0?#1 − f4?#2

)

� = exp
(∫ !

0
(6(I) − U)3I

)
(1.20)

In an EDFA the population inversion is achieved by pumping with another laser.

The alternative is creating the population inversion in a semiconductormaterial using

an electrical pump. The semiconductor optical amplifier (SOA) has shown to work

over greater bandwidth [46], but suffers from nonlinearity. A lossless time-domain

model of an SOA is described in [47], expressed as

g(
3ℎ(C)
3C
≈ �0 − ℎ(C) −

[
4ℎ(C) − 1

] |�in(C) |2
%sat

(1.21)

�out(C) = �in(C) exp
{(

1 − 9UH
2

)
ℎ(C)

}
(1.22)

Both amplifiers emit amplified spontaneous emissions (ASE) noise, where the

noise spectral density per polarisation of the EDFA is

(ASE = =B?ℎa(� − 1) (1.23)

the noise power of the SOA is

'ASE(ΔC) = =B?ℎa
∫ ∞

−∞
5 (C) 5 ∗(C − ΔC)3C (1.24)
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with =B? the spontaneous emission factor and 5 (·) the inverse Fourier transform of

the SOA gain spectrum.

The signal distortion, as described by the NLSE, and the noise added by the

amplifiers in the transmission system result in a limited achievable data rate. This

thesis will investigate how to quantify the limitations and to use the metrics to

increase the data rates through our transmission system.

1.2 Thesis outline
The continuation of this thesis is outlined as follows

• In chapter 2, we will introduce the fundamental information theoretical mea-

sures and use them to assess optical transmission systems.

• The same measures are used in chapter 3 to design constellations with a better

performance when being transmitted over the nonlinear fibre channel. We

will use the metrics explained in chapter 2.

• In chapter 4, machine learning is investigated. The relation between the

previous metrics andmachine learning costs are explained, and our knowledge

on the nonlinear fibre channel is used to apply learning to improve a nonlinear

mitigation technique.

• In chapter 5 this work draws conclusions on the information theoretical metrics

for the optical transmission system and when to use them.

• The appendix A derives the MI for a continuous uniform distribution and ends

at the 1.53 dB gap to capacity that constellation shaping closes.

1.3 Key contributions
i) In section 2.2.3 themutual information and generalisedmutual information are

investigated as predictors for nonbinary and bit-interleaved coded modulation

respectively.
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ii) In section 2.4 the so-called Gaussian noise model is used to predict per-

formance and then the generalised mutual information for an additive white

Gaussian noise channel with the same signal to noise ratio is calculated. In

section 3, this result is improved upon by including the modulation format

dependent change in channel response into the achievable rate calculation.

iii) In section 3.2, probabilistically shaped constellations for the optical fibre

channel are introduced. An heuristic expression describing the results of the

global optimisation process is proposed .

iv) In section 3.3 1D geometrically shaped constellations are designed and ex-

perimentally evaluated. In agreement with the model, the fibre transmission

system tailored constellations outperformed the constellations designed for

the additive white Gaussian noise channel.

v) We have carried out the first experimental demonstration of learned digi-

tal back-propagation for fibre nonlinearity and dispersion compensation. In

section 4.1 the process of training such a network is detailed.
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Chapter 2

Coded modulation for coherent
optical transmission systems

In this chapter, we investigate coded modulation with its implications and limits.

With coded modulation we refer to the mapping from bits to channel uses. For this

analysis, we need to abstract the transmission system. The transmission systems for

which we are designing the coded modulation scheme employ coherent reception.

In such systems, information can be transmitted using optical phase, as both the

in-phase and the quadrature components of the light source are modulated. Then,

using matched filters at the transmitter and receiver, the channel is set to transmit

time-discrete symbols. We wish to transmit the maximum number of bits, using a

sequence of symbols.

To put a quantitative measure on the amount of information we can reliably

transmit, we have to make use of information theory [48]. For this purpose, we use

bits as a measure of information, not to be confused with the information source

that can be zero or one. For the noiseless case, if we take a source - with different

events, in this case symbols {G1, G2, . . . , G"}, and their probabilities ?1, ?2, . . . , ?" ,

the entropy

H(-) = −
"∑
8=1

?8 log2(?8) (2.1)

measures the amount of information this source can describe per symbol.

For the binary case, where we only have two outputs with probabilities ? and
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1 − ?, the binary entropy is given by

H1 (?) = −(? log2(?) + (1 − ?) log2(1 − ?)) (2.2)

And if both outputs are equiprobable (? = 1/2), the source has an entropy of 1 bit

per symbol, as shown in Fig. 2.1.
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Figure 2.1: Binary entropy as function of output probability. Where no information is
needed to describe a variable that is always the same, i.e. ? = 1 or ? = 0.
Maximum information is in a variable that has both outputs equiprobable.

If the source does not produce ones and zeros with equal probability, less

information is needed to describe the outputs. For example, if the source only

produces ones, then, just guessing ones perfectly describes the outputs and no

information is transmitted. And in Fig. 2.1, we can see that H1 (1) = 0.

G0
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H0
?4

G1
1 − ?4

H1

?4

Figure 2.2: Binary symmetric channel

The same measure can be used to describe the channel. If we use the binary
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symmetric channel, shown in Fig. 2.2, as an example, the events in this case are;

making an error with ?4 and not making an error with 1 − ?4. We can use Eq. (2.1)

to calculate how much information is necessary to describe the errors, i.e., the

conditional entropy of G given H, H(- |. ) = H1 (?4). Therefore, the amount of

information ' we can transmit per symbol is 1 [49]

H(-,. ) = H(-) + H(. |-) (2.3)

' = H(-) − H(- |. )
= H(. ) − H(. |-)

(2.4)

the information that is transmitted information H(-) minus the information loss

from the channel H(- |. ). The average of this rate is the maximum rate a binary

code can achieve.

In our case, we have a channelwith continuous probability functions. Therefore,

we will use the continuous version of Eq. (2.1);

H(-) = −
∫ ∞

−∞
?- (G) log2(?- (G))3G (2.5)

H(-,. ) = −
∫ ∫ ∞

−∞
?-,. (G, H) log2(?-,. (G, H))3H3G (2.6)

andwith a one-dimensional Gaussian distributionwith variancef2, we can calculate

the entropy as;

?- (G) = 1√
2πf2

e−(G
2/2f2) (2.7)

H(-) = log2

√
2π ef2 (2.8)

if the channel is additive . = - + # and both - and # are independent Gaussian
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distributions, the capacity can be calculated using

� = H(. ) − H(. |-) = H(. ) − H(#) (2.9)

=
1
2

log2

(
2π e(f2

- + f2
# )

)
− 1

2
log2

(
2π ef2

#

)
(2.10)

=
1
2

log2

(
1 + f

2
-

f2
#

)
(2.11)

commonly referred to as the Shannon capacity. Defining signal-to-noise ratio (SNR)

as SNR = � [|- |2]
� [|# |2] =

f2
-

f2
#

, we obtain the � = 1
2 log2(1 + SNR) per real dimension.

When we are using both the inphase and the quadrature to transmit data, the capacity

is doubled to log2(1 + SNR). This is the maximum information rate we can achieve

for the additive white Gaussian noise (AWGN) channel. However, in practice we

are transmitting a non-Gaussian signal.

2.1 Coded modulation
From Eq. (2.4), we can expect that there is a dependency of transmitted distribution

- on the achievable information rate (AIR), where, for the actual data we want to

transmit, we cannot put any restriction on it and therefore have to assume the worst,

i.e, maximum entropy. The approach used to map the data to channel uses, which

we refer to as coded modulation (CM) [50], has a great impact on the AIR.

CM generally consists of two parts, a forward error correction (FEC) and a

modulation format, where both aspects together determine the throughput and the

performance of the channel. There are two main strategies for designing the CM

for a channel. In the first one, the FEC and modulation format are designed as one

block. Here, the FEC has full knowledge of the channel and uses this to correct the

errors and decode the message. The other strategy is to split up the FEC and the

modulation format. This can be achieved by designing a FEC that maps from bits to

bits and thenmaps those bits to symbols separately, and subsequently, at the receiver,

converts the received symbols back to bit likelihoods for the FEC to decode. The

second strategy is also known as bit interleaved coded modulation (BICM) [51, 52].

For both strategies, we canmeasure an upper bound for performance in the form
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of an AIR, where for the nonbinary case, the AIR is measured between symbols in

and symbols out, the BICM strategy has to take the bit mapping into account.

Both AIRs measure an achievable rate in bits, where the mutual information

(MI)measures the rate for nonbinary FEC, the generalisedmutual information (GMI)

measures the rate for BICM. These rates can be calculated as follows [53]. For this,

we are using a discrete set transmitted symbols, i.e., - produces symbols from the

set X = {G1, G2, . . . , G"} with probabilities ?1, ?2, . . . , ?" and received symbols

. ∈ R. Similarly to [53] we will combine Eq. (2.4) and (2.6) to calculate the MI

� (-;. ) , EX,Y
[
log2

?-,. (G, H)
?- (G)?. (H)

]

=
∑
X

∫ ∞

−∞
?-,. (G, H) log2

(
?-,. (G, H)
?- (G)?. (H)

)
3H

(2.12)

and the GMI from [51, 52] as follows;

� =
<∑
:=1

� (�: ;. ) (2.13)

where �: denotes the : th bit.

A Monte-Carlo integration of the metric is detailed in [53, Eq. (34)]. This

integral can be calculated with samples generated with a normal distribution or

samples that have been experimentally obtained. The simplified equation is

_: [C] = log

(∑
X1:=1 ?- |. (G |H[C])∑
X1:=0 ?- |. (G |H[C])

)
(2.14)

� ≈ 1
#B

#B∑
C=1

<∑
:=1

log2

(
1 + e(1−2∗1: [C])_: [C]

)
(2.15)

where 1: [C] and _: [C] are the bit and the log-likelihood ratio (LLR) for the t-th

sample of . respectively and X1:={1,0} = {G ∈ X|1: = {1, 0}}.
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2.2 Comparison
We have carried out an investigation comparing binary FEC and nonbinary FEC in

[54] for the optical channel, where we found that the implementation of the scheme

has a bigger impact than the difference in performance bound.

ChannelNB-FEC
Encoder

c x
NB-FEC
Decoder

y ĉ

Nonbinary FEC with symbol-wise decoder structure

ChannelΦ
FEC

Encoder
c

11

1<

...
x Φ−1 FEC

Decoder
y ...

;1

;<

ĉ

Binary FEC with bit-wise decoder structure

Figure 2.3: The two CM strategies considered in this work. One is the nonbinary FEC
where the error correction and symbol mapping are applied as a single block.
The other is BICM where a separate bitwise error correcting code is combined
with a bit-to-symbol mapper.

The two strategies are shown in Fig. 2.3, where for the nonbinary FEC, turbo

trellis-coded modulation (TTCM) [55] was implemented, while the binary FEC was

implemented as low-density parity check (LDPC) [56] codes. Both strategies were

using 8-phase-shift keying (PSK) for the modulation format.

2.2.1 TTCM
The TTCM was implemented according to [55, 54], as shown in Fig. 2.4. Two

identical recursive systematic convolutional (RSC) encoders were used, where one

RSC encoderworks on the bitstreams directly and the other encoderworks on symbol

by symbol interleaved bitstreams and directly deinterleaved after encoding, since the

RSC code is systematic, meaning it will pass the data bits through unaltered , as

can be seen in Fig 2.4(b). The puncturer will select alternating symbols from both

RSC encoders, discarding the other. Now we have for every symbol the unaltered

two input bits and a third parity bit. The RSC encoder is designed for 8-PSK with

natural mapping, meaning the first two bits will add a π and π/2 radian phase shift

respectively and the parity bit an additional π/4.
At the receiver, Fig. 2.4(c), the received noisy symbol will be converted into
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Figure 2.4: The encoder a) consists of twoR=2/3 RSC encoders b), where one is interleaved.
Alternating symbols from both encoders are transmitted, the others discarded
in the puncturer. The decoder c) has two BCJR decoders that operate using
symbol observations, one for each RSC encoder at the transmitter.

8 symbol log likelihoods (LLs) and symbols split according to what encoder has

generated them and padding with zeros for the other symbols. Two Balh, Cocke,

Jelinek and Raviv (BCJR) [57] decoders were used to obtain symbol-wise a-priori

information on the message bits, which is then shared with the other decoder. For

consecutive passes, the a-priori information the decoder has used is subtracted from

the information passed to the other receiver. After 10 iteration between the two

decoders, the two message-bits per symbol are extracted and after hard decision

compared to the transmitted bits.
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2.2.2 LDPC
For the bit-wise binary coded modulation, an LDPC [56] was selected. We used

the ' = 2/3 LDPC code from the DVB-S2 standard [58, 59]. The encoder is

shown in Fig. 2.5 and the decoder has the same structure reversed. The incoming

bit stream is divided into three equal streams, each being encoded with the LDPC

code, and consecutively combined together. A large bit-wise interleaver will spread

the bits from all encoders through the frame, after which the bits are passed to

the bit-to-symbol mapper. The same modulation format was used as in the TTCM

implementation, but binary reflected Gray code (BRGC) [60] was used to map bits

to symbols as it is the optimal for BICM [61].
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Figure 2.5: LDPC encoder implementation where three off-the-shelf LDPC encoders are
interleaved and mapped to symbols using a BRGC. The receiver has the same
structure in reverse.

The choice of interleaving three LDPC codewords was made to make both

strategies more comparable. In Fig. 2.6, we compared the bit-error rate (BER) of a

single LDPC codeword with an equal length TTCM codeword and three interleaved

LDPC codewords with a three times longer TTCM codeword. We can see that

increasing the TTCM codeword length has little impact on its performance, meaning

it is sufficiently long for a good performance comparison. Interleaving three LDPC

codewords has a different effect, whilst it does not change the SNR at which it falls

off by much, the error floor is decreased to be more in line with the performance of

the TTCM. Now for both schemes a hard-decision low-overhead outer FEC can be

assumed to clear the remaining errors.

2.2.3 Theoretical comparison
For the comparison, we started by looking at the achievable information rates for the

two strategies. In Fig. 2.7, the MI and GMI for 8-PSK are shown versus SNR. The
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Figure 2.6: Impact of codeword length on the performance, where for the TTCM a three
times longer interleaver was implemented. The LDPC length was increased by
creating three codewords and interleaving them.

MI is obtain by numerically evaluating Eq. (2.12) for 8-PSK and the GMI is obtained

by evaluating Eq. (2.13) for 8-PSK with BRGC. We see a very small difference in

performance for both the strategies. This difference can be better seen in terms of

BER. After decoding, the 8-PSK with ' = 2/3 rate will output 2 message bits. The

amount of information loss for these bits with a given error rate can be measured

with Eq. (2.2). This gives a minimum BER for a given AIR, where

AIR ≥ ' ∗ log 2(") ∗ (1 − H1 (?)) (2.16)

which can be solved numerically. This bound is called the distortion bound [62].

In Fig. 2.8, BER of the two strategies are compared versus SNR. First the min-

imum BER and the BER for the AWGN are shown. While, for the minimum BER,

the two strategies only have a performance difference of 0.1 dB, the two implemen-

tations differ by approximately 0.4 dB SNR. Therefore, the implementations have a

theoretically different implementation penalty which makes them hard to compare.

The experimentally obtained waveforms from a 1000 km recirculating loop

are also shown in Fig. 2.8. Additional noise loading was needed to increase the

BER to where the FEC breaks down. We explored two different methods of noise
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Figure 2.7: The achievable information rate for 8-PSK for nonbinary and binary FEC, i.e.,
MI and GMI respectively.
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Figure 2.8: The BER of the TTCM and BICM LDPC compared to the theoretical perfor-
mance.

loading the experimental data. In the first, we added the noise optically after the

transmitter, resulting in the noise co-propagating through the optical fibre for the

whole of the transmission distance. The second is where we add the noise digitally
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Figure 2.9: Performance of the codedmodulation schemes, the theoretical curves forAWGN
and the markers showing the realisations using experimentally obtained data.

after equalisation. Here, adding noise can be done repeatedly with great accuracy in

the resulting noise variance. Both methods perform approximately equally, but the

receiver noise loading gives us a finer control, allowing to show the fall of the BER

curve with more detail. It also allows to show the error floor of the experiment.

The same information is also shown in the form of AIR versus SNR in Fig. 2.9.

The reverse of what was at the distortion bound from Eq. (2.16), the binary entropy

can also by used to show the post-FEC BER as an AIR. The result for AIR after hard

decision (HD) are indicated with HD in the legend.

Since both the algorithms that decode the codewords also provide the soft

information on the message bits in the form of LLRs, we can use Eq. (2.15) to

calculate the post-FEC AIR as well. These results are indicated with soft decision

(SD) in the legend.

In Fig. 2.9, these results are shown together with theMI andGMI for 8-PSK and
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the AWGN capacity, log2(1+SNR). We observe the same 0.4 dB SNR performance

difference between the two strategies as we have seen earlier. In this figure, we can

also see the gap to the AWGN channel capacity, which has a greater SNR difference

than the two strategies compared, a conclusion we could only make with the metrics

introduced in this chapter.

2.3 Modulation format comparison
The same metrics can also be used to predict the performance across multiple

constellation formats and different rates. Where Fig. 2.9 shows only a single con-

stellation format for a single code rate, Fig. 2.10 shows the same plot for multiple

code rates and another constellation format.
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Figure 2.10: The DVB-S2X LDPC codes on 16-QAM, the AIR calculated from the post-
FEC BER is shown.

In Fig. 2.10, we show the post-FEC AIR, from Eq. (2.16) for all DVB-S2X [59]

LDPC codeswith a 16-quadrature amplitudemodulation (QAM)BRGCmodulation.

Alongside the AWGN capacity, the MI and the GMI, the lines show the upper bound

for the assumed outer HD-FEC. The different LDPC codes with varying rates

converge for a high SNR to their rate, e.g., ' = 2/3, multiplied by the number of

coded bits, i.e., log2(16) = 4. However, if we are not close to the AWGN capacity,

there is most likely a code rate that will achieve a higher net rate. Therefore, these
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Figure 2.11: Gap to AWGN capacity for the DVB-S2X rates on 16-QAM

codes can be more accurately compared if they are shown as gap to the AWGN

capacity. This is shown in Fig. 2.11, here all codes from the DVB-S2X standard

[59], are evaluated on BRGC 16-QAM.
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Figure 2.12: Gap to AWGN capacity for the DVB-S2 and DVB-S2X rates on 64-QAM

The same analysis is also carried out for 64 and 256-QAMand shown in Fig 2.12

and Fig 2.13 respectively. Now all LDPC codes from both the DVB-S2 [58] and

its extension DVB-S2X [59] are evaluated. Both the MI and GMI are shown here



2.3. Modulation format comparison 41

as well. From theory [52], the LDPC should be bounded by the GMI and not the

MI. This can be seen for the lower SNRs, where the gap to AWGN capacity is

increased and follows the GMI curve. Even in this comparison, the difference in

implementation has a significant effect as well, because every LDPC is a different

implementation from the same family.
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Figure 2.13: Gap to AWGN capacity for the DVB-S2 and DVB-S2X rates on 256-QAM

The gap to AWGN capacity can be used to compare constellation formats and

select the format that has the best performance. In Fig. 2.14, the gap to the AWGN

capacity is shown for the square QAM varying from 16 to 1,048,875 points. Both

the MI and GMI are calculated and the gap to log2(1 + SNR) is shown. Because all
integrals are evaluated for the AWGN channel, the Shannon capacity is the upper

bound in performance. Therefore none of the results are negative. Note that the MI

and GMI shown in Fig. 2.11, 2.12 and 2.13 are the same results as shown in this

figure.

Furthermore, in Fig. 2.14, the MI is shown for continuous uniform distribution.

Because we did not assign bits to the continuous distribution, we can only calculate

the MI. The calculation is shown in Appendix. A. We can see that the MI for all

the modulation formats follow the MI for a continuous uniform distribution until the

discrete constellation format is limited by the number of points in the constellation.
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Figure 2.14: Gap to capacity for multiple constellation formats, where the curves for MI
follow the MI curve for a continuous uniform distribution, and the GMI gets
closer to capacity for a range of SNRs.

2.4 Nonlinear channel with the GN model
Until now, we have analysed the AIR for the AWGN channel. If we approximate

the optical fibre transmission system as an AWGN channel, the performance can be

predicted with the expression [63, 64]:

SNR8 ≈ %8

%ASE + [( 58)%3
8

(2.17)

where %8 is the launched power, %ASE the ASE power and [( 58) the nonlinear

coefficient and 58 the centre frequency for channel 8.

This expression can be extended to include effects such as Raman scattering
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and modulation format dependency. If we follow the solution proposed in [65], we

start a heuristic model of the fibre attenuation from [66, Ch. 3],

U(_) ≈ UIR(_) + URS(_) + Uim (2.18)

UIR(_) = 7.81 · 1011 exp
(−48.48 · 10−6

_

)
dB (2.19)

URS(_) = 0.148
(
1550nm

_

)
dB (2.20)

Uim = 0.024 dB (2.21)

where UIR(_) is the infrared absorption, URS(_) is the Rayleigh scattering and Uim
the imperfection losses. The result is shown in Fig. 2.15.
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Figure 2.15: Fibre loss from the model, the highlighted area is the bandwidth used in this
evaluation.

We present an example where we investigate the AIR for a 40-Gbd 300-channel

transmission system, transmitted over ten 100-km spans of single mode fibre with

a launch power of 0 dBm per channel. The system occupies 12 THz of bandwidth,

which will have inter-channel stimulated Raman scattering (ISRS). This launched

power is above the optimum launched power and shows a significant amount of

nonlinear interference (NLI) and ISRS [67]. Using the fibre loss from (2.18), we

can calculate the apparent loss, i.e., the loss of optical power from attenuation

and Raman scattering combined, with the Raman gain by solving the differential
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equation;

m%8
mI

= −
"∑

:=8+1

5:
58
6r(Δ 5 )%:%8

︸                   ︷︷                   ︸
ISRS loss

+
8−1∑
:=1

6r(Δ 5 )%:%8
︸              ︷︷              ︸

ISRS gain

−U ( 58) %8, (2.22)

where %8 and %: are the powers of channels 8 and : , the latter being at frequency 5: ,

M is the total number of channels Δ 5 is the frequency spacing between the channel

8 and : , 6r(Δ 5 ) is the ISRS gain coefficient which is dependent on the frequency

spacing between the channels and U( 58) is the fibre attenuation in the absence of

ISRS. The result is plotted in Fig. 2.16.
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Figure 2.16: Apparent loss and nonlinear coefficient for a 300 channel transmission versus
the centre frequency of every channel 58 . The apparent loss without ISRS is the
fibre attenuation, while with ISRS, a differential equation is used to calculated
the apparent loss for every channel, which in turn is used to calculate the
nonlinear coefficient.

In Fig. 2.16, the nonlinear coefficient [( 58) used in (2.17) is shown as calculated
from [65]:

[= ( 58) ≈
=∑
9=1

[
%8, 9

%8

]2
· [[SPM,j ( 58) =n + [XPM,j ( 58)

]
, (2.23)

where [SPM is the contribution to the nonlinear interference coefficient from self-

phase modulation (SPM) and [XPM is the contribution from cross-phase modulation
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from all the other wavelength division multiplexing (WDM) channels. %8 is the

power of channel 8 launched into the first span, and %8, 9 is the power of channel

8 launched into the 9 th span. The contributions from the SPM are assumed to

contribute coherently with coherence factor n . Now we can use the closed form ex-

pressions from [65], [SPM( 58) and [XPM( 58) for a link with fibre attenuation U, group
velocity dispersion V2, group velocity dispersion slope V3, nonlinear coefficient W,

and SRS gain slope �r:

[SPM ( 58) ≈ 4
9
W2

�2
8

π
q8Ū (2U + Ū)

·
[
)8 − U2

U
asinh

(
q8�

2
8

π0

)
+ �

2 − )8
�

asinh

(
q8�

2
8

π�

)]
,

(2.24)

with q8 = 3
2π

2 (V2 + 2πV3 58), � = U + Ū and )8 = (U + Ū − %tot�r 58)2, in which

[XPM ( 58) ≈ 32
27

#ch∑
:=1,:≠8

(
%:
%8

)2
W2

�:q8,: Ū (2U + Ū)

·
[
): − U2

U
atan

(
q8,:�8
U

)
+ �

2 − ):
�

atan
(
q8,:�8
�

)]
,

(2.25)

with q8,: = 2π2 ( 5: − 58) [V2 + πV3 ( 58 + 5: )] and tuning parameter Ū = U set to the

attenuation.

Using the results shown in Fig. 2.16, we are one step further to calculating

(2.17). We calculate %ASE by assuming a gain-flattened EDFA with a noise figure,

of 4.5 dB. We can calculated the ASE power per span as;

%ASE,8 = 2=sp(!app − 1)ℎa�8 (2.26)

with =sp =
1
2

10
4.5
10 and !app =

%8 (I = 0)
%8 (I = ;) from (2.22) with ; the fibre length, ℎa the

photon energy and �8 the channel bandwidth.

The SNR we can now calculate is shown in Fig. 2.17. This includes the ISRS

for the apparent loss and the nonlinear phase modulation. The result is an SNR
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Figure 2.17: The calculated SNR per channel using the ISRS GN model. The higher
frequencies have a higher apparent loss due to Raman pumping and therefore
a lower SNR.

where we treat the resulting interference as noise.
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Figure 2.18: The calculated AIR per channel for the AWGN assumption.

The SNR is shown as AIR in Fig. 2.18. To convert the predicted SNR into

an AIR, there a few options. One of them is to look at the AWGN capacity

log2(1 + SNR). And since we treat the channel as if it was a AWGN channel, the

resulting SNR is the upper bound of the AIR [68]. Another method is to use (2.13)
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to calculate the performance of a modulation format for a given SNR. The results

for this calculation are also shown in Fig. 2.18 for 16, 64, 256 and 1024-QAM and

we can see that for this system 64-QAM performs the best for most of the channels.

This analysis is valid for the log2(1 + SNR) case, because it assumes a trans-

mitted Gaussian distribution and the Gaussian noise (GN) model has the same

assumption. However, when we change the modulation format, we also change the

nonlinear response of the channel [69, 70]. This is something we will exploit in the

next chapter.

2.5 Summary
This chapter has explored methods of measuring the achievable information rate of

an AWGN channel. We implemented a variety of CM methods and demonstrated

accurate prediction of their performance. The results of this workwill be exploited in

the next chapter to design signal constellation which are optimised for the nonlinear

channel, increasing achievable information rates.



Chapter 3

Constellation shaping for the optical
transmission system

From the last chapter, we carry a few concepts over to the next chapter, SNR, MI

and GMI. We ended the last chapter by concluding that the channel response is

affected by the transmitted signal itself. The excess kurtosis of the modulation

formats has an impact on the amount of nonlinear interference introduced by the

channel. The excess kurtosis is defined as the 4-th order moment normalised for a

Gaussian distribution being zero;

Φ(-) = E[|- |4]
(E[|- |2])2 − 2 (3.1)

which we can use to expand Eq. (2.23) to take the effect of the constellation into

account. Then, following [71], the correction will be

[corr.,= ( 58) ≈ 80
81
Φ

#ch∑
:=1,:≠8

(
%:
%8

)2
W2

�:

{
1

q8,: Ū (2U + Ū)

·
[
): − U2

U
atan

(
q8,:�8
U

)
+ �

2 − ):
�

atan
(
q8,:�8
�

)]

+ 2π=̃):
|q | �2

:U
2�2

[
(2 |Δ 5 | − �: ) log

(
2 |Δ 5 | − �:
2 |Δ 5 | + �:

)
+ 2�:

]}
,

(3.2)

with Φ the excess kurtosis of the constellation format used in all channels. Typ-

ical values for this metric range between −1 and 0. The excess kurtosis for
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uniform QAM modulation is shown in table. 3.1. %8 and %: are the launched

power of the 8-th and :-th channel with frequencies 58 and 5: respectively,

Δ 5 = 5: − 58, fibre attenuation U, group velocity dispersion V2, group velocity

slope V3, nonlinear coefficient W, channel bandwidth �8 and q8 = 3
2π

2 (V2 + 2πV3 58),
q8,: = 2π2 ( 5: − 58) [V2 + πV3 ( 58 + 5: )], � = U + Ū, )8 = (U + Ū − %tot�r 58)2.

Table 3.1: Excess kurtosis of selected modulation formats.

Modulation format Excess kurtosis Φ
QPSK -1
16-QAM -0.6800
64-QAM -0.6190
256-QAM -0.6050
1024-QAM -0.6012
uniform distribution -0.6000
Gaussian distribution 0

Use of the model with the modulation format correction allows us to predict

the performance for difference modulation formats. In Fig. 3.1, we have used the

same parameters as used in Fig. 2.17 and applied the correction for a number of

constellation formats. We can see that switching to quadrature phase shift keying

(QPSK) results in the greatest performance increase and the other formats have a

lower but still significant impact compared to Gaussian modulation, for which the

correction is 0 and leading therefore to the same result as without the correction.

With this knowledge we show the difference in AIR for the different modulation

formats in Fig. 3.2. The results from Fig. 2.18 are shown as dotted results. It

is clear that the model without the modulation format correction underestimates

the performance of the nonlinear fibre channel. Because QPSK is limited by the

cardinality for every channel, it always achieves about 2 bit/symbol. The AIR for

16-QAM is also severely limited by the cardinality, therefore despite having a SNR

gain, shows little improvement with the better model.

The 1024-QAM channel is too far from capacity for this SNR range to be the

best performing constellation format, both with and without considering the effect

of the constellation format on the nonlinear fibre channel. Both 64-QAM and 256-
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Figure 3.1: SNR for with the modulation format correction incorporated into the ISRS GN
model.

QAM perform similarly. The greatest performance increase is seen at the lower

frequencies, where the nonlinear interference is the dominating noise source.
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Figure 3.2: AIRwith the modulation format correction, using the SNR from themodulation
format corrected ISRSGN model.

The system performance is still worse than that achieved with the Gaussian

signal. To address this, first, we will make our signal more Gaussian-like to close

the gap for the linear channel. Then we are going to achieve a better result for the
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nonlinear channel by taking the difference in performance from fibre nonlinearity

into account.

3.1 Constellation shaping for the linear channel
Previously we have observed that there is a fixed gap between the performance of

square modulation formats and the performance in MI of a Gaussian signal for the

AWGN channel. We have seen that the practical square uniform modulation formats

approach the performance of a uniform distribution. So, intuitively, a more Gaussian

shaped constellation should approach the AWGN capacity.

In this work, we will use two methods to achieve a more Gaussian shaped

constellation whilst still being able to transmit any bit message. The first is proba-

bilistic shaping and the other geometric shaping. The probabilistic shaping still uses

a square QAM, but changes the probabilities of the individual points [72], whereas

the geometric shaping keeps the probabilities uniform, but changes the geometric

positions of the constellation points [73].

3.1.1 1D constellation shaping

Probabilistic shaping

For the probabilistic constellation shaping, it is easiest to stick to the one-dimensional

constellation diagrams. If we follow [72, Eq. (12)], we find the optimal constellation

for the AWGN channel to be

?- (G8) = exp(−_ | |G8 | |2)∑"
9=1 exp(−_ | |G 9 | |2)

(3.3)

this distribution can be applied to the uniform square QAM constellation. This is

also known as the Maxwell-Boltzmann (MB) distribution.

One method to achieve an arbitrary distribution is using constant composition

distribution matching (CCDM) from [74], such that, by using arithmetic codes [75,

76], with decoder at the transmitter and the encoder at the receiver, the equiprobable

bits are transformed into symbols with the desired distribution. When the symbols

only describe the amplitude information of the 1 dimensional constellation, the sign
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information can be used to transmit arbitrary bits. This will also ensure a zero mean

realised constellation. To ensure the distribution of the symbols does not change at

the receiver, a FEC code is implemented between the channel and the CCDM. For

the FEC to not change the distribution, a systematic code has to be chosen. The

symbols are passed through the systematic part of the code and therefore remain

unchanged. The parity bits are then used for the sign bits [77]. With an "-QAM

constellation, < = log2(") bits can be assigned to the 2-dimensional constellation.

With <
2 − 1 bit per dimension used by the output of the CCDM, the last bit is for

the output of the FEC. When a higher rate FEC is desired, additional bits can be

generated, passed through the systematic part of the FEC and transmitted as sign

bits.

Geometric shaping

Another method of closing this gap to capacity is to move equiprobable constellation

points, such that their density appears more Gaussian shaped. This is known as

geometric constellation shaping and has been shown to approach capacity [73].

In this work, we have numerically optimised the locations of the constellation

points for a given channel. In the case of the AWGN channel, this channel is

described by its SNR. Using a fast calculation of GMI, employing the Gauss-

Hermite quadrature integration of the integral [53, Eq. (42)-(43)], the calculation

is fast enough to approximate the gradient with exploratory steps. Then a gradient

descent or a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is used to obtain

an optimised constellation [78, 79, 80, 81].

Comparison between probabilistic and geometric constellation shap-

ing

In Fig. 3.3 and Fig. 3.4, a comparison is made between uniform square QAM, a 1D

geometrically shaped constellation and a probabilistically shaped constellation. For

all three cases the same rate was achieved, the square QAM and the geometrically

shaped constellation were both corrected using the same LDPC code and because the

two constellations had the same number of points, with each point having a unique
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bit label, the same rate was achieved. For the probabilistically shaped constellation,

a higher rate FEC was needed, as the CCDM uses part of the overhead to achieve

the shaped distribution.

For the 64-QAM comparison in Fig. 3.3, a net rate of 2/3 was chosen. For

the square and the geometrically shaped (GS) constellations, the ' = 2/3 LDPC

code from [58] was used, resulting in 4 bit per symbol. For the probabilistically

shaped (PS) constellation, the CCDM, using 1.75 bit per 1D symbol and a bypass rate

of 0.25 bit per 1D symbol, resulted in the same 4 bit per symbol using the ' = 3/4
LDPC from [58]. The minimum SNR required is given by 4 = log2(1 + (#'),
which is 24 − 1 ≈ 11.76 dB.
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Figure 3.3: Gap to capacity comparing probabilistic and geometric shaping with uniform
square QAM. For all formats, 8 points per dimension and a net rate 2/3 was
chosen. This is equivalent to 64-QAM.

For the 1024-QAM comparison in Fig. 3.4, a net rate 4/5 was chosen. The

square and GS constellations were coded with the ' = 4/5 LDPC code from [58].

The PS constellation has a CCDM with 35
6 bit per 1D constellation and the bypass

rate 1/6 for the ' = 5/6 LDPC from [58]. Both schemes now achieve a rate of 8 bit

per symbol, with the required SNR of 28 − 1 ≈ 24.1 dB.

In Fig. 3.6, Fig. 3.7 and Fig. 3.8, the 1D constellations are shown with the

noise for the given SNR. For every pixel, the probability density function (PDF)
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Figure 3.4: Gap to capacity comparing probabilistic and geometric shaping with uniform
square QAM. For all formats, 32 points per dimension and a net rate 4/5 was
chosen. This is equivalent to 1024-QAM.

of the received signal was integrated and normalised to the maximum, 1/" at the

maximum SNR. This has the consequence that the lower cardinality constellations

have a lower intensity.

For the uniform square QAM in Fig. 3.6, we can see that if the SNR is low

enough, the PDF of the received signal resembles a uniform distribution with a

roll-off at the extrema.

For the geometrically-shaped QAM in Fig. 3.7, the constellations were op-

timised for every SNR. The resulting constellations sometimes have the points

collapsed onto a single coordinate, leaving the decoder unable to predict the differ-

ing bit between the bit labels, trading it for more certainty on the other bits.

For the probabilistically shaped QAM in Fig. 3.8, the _ parameters in equa-

tion (3.3) have been numerically optimised with respect to MI for every SNR. The

resulting constellation was then normalised taking the new distribution into account.

We can see that the uniform QAM has more uniform-like received distribution,

whereas both the shaped QAM have a more Gaussian-like distribution. Where the

MI optimised PS has a smoother appearance, theGMI optimisedGS shows structures

to increase the distance between bits. This allows for efficient bit demapping. Note



3.1. Constellation shaping for the linear channel 55

that the GS constellation can be demapped with a single symbol, the PS CCDM

spreads the information over as many symbols as the size of the CCDM.

In Fig. 3.5, the results of both PS and GS are shown in the same format as

Fig. 2.14. The MI of the PS is always lower than the GMI of the GS, this gap is

partially from the bit to symbol mapping that is included in the GS as it is designed

to find a trade-off that includes this mapping.
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Figure 3.5: Gap to capacity for 1D optimised constellations. For the PS constellations the
MI gap is shown, for GS constellations the GMI gap.
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3.2 Probabilistic shaping for the nonlinear optical

channel

The shaping strategies investigated in this chapter were, until now, tailored to the

AWGN channel. In this section we will investigate how to apply these methods for

the nonlinear optical transmission system. We have proposed a simple distribution

that outperforms the optimum for the AWGN channel in [82].

We used an analytical model similar to equation (2.17), but with a simpler

modulation format correction than equation (3.2). Similar to [83], we assume that

the nonlinear interference noise can be written as

[tot%
3 ≈ ([1 + [2Φ(-)) %3 (3.4)

with real numbers [1 and [2, the launch power % and the excess kurtosis Φ(-) ,
E[ |- |4]
E[ |- |2]2 − 2 of the complex constellation.

If we consider the SNR at optimum launch power;

SNR =
%

%ASE + [tot%3 (3.5)

d
d%

SNR =
%ASE − 2[tot%3(
%ASE + [tot%3)2 = 0 (3.6)

%ASE = 2[tot%3
opt (3.7)

%opt =

(
%ASE
2[tot

) 1
3

=

(
%ASE

2[1(1 + [2
[1
Φ(-))

) 1
3

(3.8)

SNRopt =

( 1
2[1

%ASE

(1+ [2
[1
Φ(-))

) 1
3

%ASE + %ASE
2

(3.9)

we can obtain the following relationship between the SNR at optimum launch power

between an input distribution A and an input distribution B:

SNRopt,A

SNRopt,B
=

(
1 + 2Φ(-B)
1 + 2Φ(-A)

) 1
3

(3.10)
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where 2 , [2
[1

is a measure for the relative impact of the modulation format on the

nonlinear interference. Note that the %ASE is assumed independent of modulation

format and both distributions have the same parameters [1 and [2. This investigation

uses a Gaussian constellation as a reference distribution as its excess kurtosis is given

by Φ(-Gaussian) = 0.

Using fast Gauss-Hermite quadratures to calculate the MI, similar to [84]

described in appendix B, numerical optimisation was used to generate probabilities

for constellation points based on their power, i.e., |G8 |2, finding a probability for

every ring in the constellation. The trade off between the SNR gain from excess

kurtosis and the MI loss from suboptimal shaping for AWGN will yield a net MI

gain. Heuristically, we found that the independent ring optimizations did not find

any improvements over

?- (G8) = exp(−a1 |G8 |2 − a2 |G8 |4)∑"
9=1 exp(−a1 |G 9 |2 − a2 |G 9 |4)

(3.11)

where the optimization parameters a1 and a2 significantly reduce the computational

complexity compared to the unconstrained problem.

We first evaluated the MI for different square QAM modulation formats and

optimized the shaped formats for 2 = 0.69, a value obtained using equation (3.10)

from simulation (see Section 3.2.1). We assume an AWGN channel with the noise

variance corrected by the constellation format excess kurtosis. The results of the

optimization process are plotted as MI versus the optimum SNR for a Gaussian-

modulated signal as shown in Fig 3.9. The plotted MI values are calculated for

an AWGN with the SNR deviation according to equation (3.10). The results for

DP 64QAM, 256QAM and 1024QAM are shown for uniform distribution, the MB

distribution and the proposed optimized distribution. For both the MB and the

proposed optimized distributions, the ring powers are numerically optimized for

each value of Gaussian-modulated SNR. The MI difference is lower than zero for

the cases where the gain from the nonlinear channel response, compared to Gaussian

signal transmission, is more than the gap to the AWGN capacity for the auxiliary

channel.
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Figure 3.10: The shaping parameters obtained by numerical optimisation. The prob-
ability mass function of the optimized and MB distribution tailored to
SNRopt,Gaussian=18 dB.

In Fig. 3.10, the shaping parameters used to obtain the results in Fig. 3.9 are

shown. In this figure, the parameters _ from equation (3.3) and a1, a2 from equa-

tion (3.11) are shown. These parameters are obtained using numerical optimisation.

The values for 64, 256 and 1024 QAM are similar for the low SNR regime and they

converge all to zero for the high SNR regime, where they are limited by their cardi-

nality and equiprobable has the highest entropy. The lower cardinality constellations

are affected at a lower SNR by this limitation.

In Fig. 3.11, the distribution comparing the MB and nonlinear fibre channel

optimised shaped constellations are shown. For both 64 and 256 QAM we can see

that high probabilities around the origin, |G8 | = 0 are reduced and spread out, as

well as the tail of the distribution being moved towards the origin. This results in

a flatter distribution and contributes to a lower excess kurtosis Φ(-), which will

yield a more favourable response of the channel. However the overall shape is still

applied, also benefiting from the effects of shaping the constellation.

3.2.1 Numerical simulation demonstration

We simulated a single span transmission link based on 200 km ultra-low-loss

single-mode fibre with an attenuation of 0.165 dB/km, a dispersion coefficient
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Figure 3.11: comparing the distributions for MB and nonlinear fibre channel optimised
shaped constellations.

of 16.3 ps/nm/km and a nonlinear parameter of 1.2 /W/km, followed by an Erbium-

doped fibre amplifier with a noise figure of 5 dB. The transmitter generates a

dual-polarization 33 GHz-spaced 5×33 GBd WDM signal, yielding 5×400 Gbit/s.

The optimum transmission performance is achieved by sweeping the optical launch

power per channel. For Gaussian modulation the simulated transmission system

achieves an SNR of 18 dB at optimal launch power.

The simulation results are shown in Fig. 3.12. The shift in optimal launched

power can be observed. Both shaping strategies have shaping gain over uniform

QAM, however the trade-off between shaping gain and nonlinear channel response

has the additional MI gain as observed in Fig. 3.9. The observed SNR is shown in

Fig. 3.13. The uniform QAM shows the best SNR performance and Gaussian signal

the worst. Both shaping strategies show a response between the two cases, showing

there is trade-off with potential observable benefits if an experiment is conducted.
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3.3 Experimental demonstration of 1D geometric

shaping
In the previous section, we have seen that shaping for nonlinear fibre channel has a

benefit that is measurable in simulation. In his section we demonstrate the effects of

constellation shaping experimentally.

In [85], we used 1D GS for the experimental demonstration, because this

shaping method preserves the corners of the 2D constellation. These features allow

the conventional blind DSP to recover the signal after optical fibre transmission.

When using PS, the insertion of pilots is needed [86].

Using a quasi-Newton algorithm, the constellations are optimised for GMI, this

being the measure that predicts an ideal BICM [53] and optimising the constellation

for GMI will therefore increase the throughput of our system. At every step, the

SNR was changed according to Eq. (3.10) for the excess kurtosis of the constellation

at that optimisation step.

a) b) c)

d) e) f)

Figure 3.14: Geometrically-shaped constellation diagrams for 256-QAM, normalised to
unit power: a) uniform, b) tailored to the AWGN channel, and c) tailored
to the nonlinear fibre channel. Their respective received constellations after
transmission over 160 km are shown in d), e) and f).

The constellations in Fig. 3.14 were designed with Fig. 3.14.a) as a reference
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format. Uniform square QAM was used to obtain the system parameters of the

experimental single-span 160 km long link for the central of three 35.2 GHz-spaced

35 GBd channels. The noise figure of the amplifiers was extracted from a low

launch powermeasurement. The nonlinear coefficient of the fibre was 1.2W−1km−1.

The optimum SNR for Gaussian modulation was approximately 18 dB and for the

nonlinearity-tailored constellation the ratio 2 = [1
[2
= 0.55 was used.

In Fig. 3.15, the constellations are optimised for different SNRs at optimum

launched power. Similar to section 3.1.1, we can see that the biggest gain is achieved

by shaping, however a greater gain can be achievedwhen the nonlinear fibre response

is taken into account. At 18 dB SNR, a 0.2 bit/symbol throughput increase can be

expected for the AWGN-tailored constellation, and an additional 0.02 bit/symbol

increase for the nonlinearity-tailored constellation.
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Figure 3.15: GMI performance of the GS constellation. In the inset, the relative SNR for the
different constellations is shown. For the Gaussian distribution, the theoretical
performance is shown.

Experimental setup

The experimental setup is shown in Fig. 3.16. The 3×35 GBd superchannel was

transmitted over a single span of 160 km of standard single mode fibre (SSMF) to

focus on the impact of NLI. The launch power into the fibre span was swept to
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investigate the nonlinear tolerance of the constellations designed.

The transmitter consisted of the channel under test in which a single 100 kHz-

linewidth external cavity laser (ECL) was modulated using a DP IQ modulator. Two

additional ECLs were modulated by a separate modulator to form the aggressor

channels. Eight 8-bit digital-to-analogue converter (DAC) channels operating at

87.5 GS/s, with effective number of bits (ENOB) of ∼4 bits at 17.5 GHz were used

to generate independent channels. Both signal paths are amplified using an EDFA

and combined by a 50/50 coupler.

Before the span, an EDFA and variable optical attenuator (VOA) followed by

a 5% power tap with an optical power meter (OPM) were used to control the launch

power into the span. The 160 km span of SSMF was followed by an EDFA, the

output of which was passed to the receiver.

The receiver had a band-pass filter and EDFA followed by a DP coherent

receiver with a separate ECL as local oscillator. After 160 GS/s analogue-to-digital

converters (ADCs), offlineDSPwas used. After electronic dispersion compensation,

a radially directed equaliser and a decision directed carrier phase estimator were

used to recover the symbols. The SNR and GMI were extracted from the received

symbols.

ECL

ECL
ECL

×4
DAC

×4
DAC

EDFA

EDFA

EDFA EDFA

160 km

5% OPM
BPF

EDFA

DP
Corehent
Receiver

Single span

Figure 3.16: Experimental setup used to show shaping for the nonlinear fibre channel. A
three channel superchannel was created, by surrounding a channel under test
by two channels generated by a second DAC and modulator.

Experimental Results
The received constellations at optimum launch powers are shown in Fig. 3.14 d),

e) and f). In contrast to the uniform QAM scatter plot, the constellations tailored

for the AWGN channel, shown in Fig. 3.14 e), and for the nonlinear fibre channel,
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shown in Fig. 3.14 f), set the lower energy points closer together, making these points

more pronounced. The denser points should not be mistaken for probabilistically

shaped constellations; all constellation points are equiprobable, the overlapping

noise distributions around these points resulting in increased density of samples

within the central area. Furthermore, it can be clearly seen that, as a result of fibre

nonlinearity, the relative phase rotation between the central and outer points is higher

in the AWGN tailored constellation than in the nonlinearity tailored constellation.

The experimentally-measured GMIs and SNR are shown in Fig. 3.17 and

Fig. 3.18, respectively. The markers are experimentally obtained and the lines are

from the model. The back-to-back (BtB) SNR and [tot derived from the model are

shown in Tab. 3.2.

Table 3.2: Back-to-back SNR and [tot for the constellations.

BtB SNR [dB] [tot [dB]
Uniform 22.78 27.61
AWGN tailored 21.63 28.23
Nonlinearity tailored 22.01 28.08

The uniform QAM exhibited the highest BtB SNR and the lowest [tot, resulting

in the highest SNR at optimal launch power. However, this modulation format has

no shaping gain and consequently has the lowest GMI of the three constellation

formats evaluated, with an optimum value of 11.6 bit/symbol.

The AWGN tailored format has the lowest SNR across all launch powers, but

outperforms uniformQAM(i.e. higherGMI) at launch powers below the optimal. At

higher launch powers the model does not predict any gains, while the experimentally

observed performance was marginally higher.

Due to lower excess kurtosis, the nonlinearity tailored constellation has a [tot
lower than the AWGN tailored constellation as predicted by Eq. (3.4). Additionally,

the lower excess kurtosis results in a higher BtB SNR because of the lighter tailed

distributions of the constellation and resulting reduced quantisation noise. The

nonlinearity tailored constellation offers a trade-off between shaping gain and the

impact of the nonlinear interference. It achieved a GMI of 11.7 bit/symbol after

transmission over the 160 km link, a > 0.1 bit/symbol increase over the other two
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Figure 3.17: The GMI versus the launch power for all constellations. The model is shown
with the lines and markers are experimental results.
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Figure 3.18: The SNR versus the launch power for all constellations. The model is shown
with the lines and markers are experimental results.

constellations.

3.4 Summary
Combining our knowledge of information theory with the response of the nonlin-

ear fibre channel, we investigated the impact of constellation formats on nonlinear
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interference and proposed a method to design constellation diagrams for the non-

linear fibre channel. We have proposed an heuristic expression that describes the

best-performing probabilistically shaped constellation we have found for the non-

linear fibre channel that reduces the optimisation space to two variables. We have

experimentally demonstrated 1D geometric shaping and predicted the achievable

information rate using the metrics introduced earlier. In the next chapter, we use the

same metrics for machine learning.



Chapter 4

Machine learning for the optical
transmission system

In this chapter we use the same performance metrics, SNR, MI and GMI, to train

supervised learning algorithms. These metrics are related to the three main cost

functions in machine learning, so optimising for one is equivalent to optimising for

the other.

For explaining the concepts, we can introduce a universal function approximator

U(H, F) = Ĝ, which can replicate any function mapping input H to output G if the

weights F are tuned correctly [87]. The tuning can be done by minimising a cost

or a loss function, which we can defined for approximated outputs Ĝ and desired

outputs G.

The cost which is related to SNR is the mean squared error (MSE). When

our universal functionU(H) = Ĝ has to reproduce the transmitted signal G from the

received signal H, an intuitive choice for the error function would be the MSE [88].

�MSE = |H − G |2 (4.1)

SNR =
�

[|G |2]
�

[|H − G |2] (4.2)

SNR =
�

[ |G |2]
� [�MSE] (4.3)

It can be seen that the SNR is inversely proportional to the expected value of theMSE.
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Our aim is to maximise the SNR using the weights F in our functionU(H, F) = Ĝ.

arg max
F

SNR = arg min
F

� [�MSE] (4.4)

This results in a simplified gradient for the gradient descent

m

mF
�MSE =

m

mF
|U(H, F) − G |2 (4.5)

= 2 (U(H, F) − G) U′(H, F) (4.6)

With this, we can train the algorithms to approximate our desired waveform.

Sometimes, the exact waveform is not important. When we wish to commu-

nicate, we are sending and receiving messages. These messages are made up of

bits, which we can model as Bernoulli distributed random variables with proba-

bility q ∈ [0, 1]. Usually, the probability parameter that describes the Bernoulli

distribution for the message is q = 0.50, i.e., both 0 and 1 are equally likely.

?� (1 = 0) = q (4.7)

?� (1 = 1) = 1 − q (4.8)

Now after observing the output of our algorithm, I = U(H, F), we can update

the probability we know of our received bits. We define an unnormalised probability

?̃- |. (G |H) analogous to [89, Ch. 6].

log
(
?̃� |. (1 |H)

)
= 1I (4.9)

?̃� |. (1 |H) = exp(1I) =



exp(0) if 1 = 0

exp(I) if 1 = 1
(4.10)

?� |. (1 |H) =
?̃�|. (1 |H)∑

1∈{0,1} ?̃� |. (1 |H)
(4.11)

Because we are using a Bernoulli distribution, the common choice is to then use a
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logit as the link function. This function converts the probability into an LLR

logit(?) = log
(

?

1 − ?

)
(4.12)

with its inverse also known as the sigmoid function f(·);

logit
(
?� |. (1 |H)

)
= f−1(I) = log

(
?� |. (1 |H)

1 − ?� |. (1 |H)

)
(4.13)

f(I) = exp(I)
exp(I) + exp(0) =

1
1 + exp(−I) (4.14)

We can see that equation (4.13) calculates the same metric as equation (2.14) and

we could use the output of the network directly in our FEC. These functions are

typically used to separate the linear layers, which then allows neural networks to be

universal function approximators [87]. These functions to separate layers are also

referred to as activation functions.

Now, if we combine equation (4.11) and (4.14) we get

?� |. (1 |H) =


f(−I) if 1 = 0

f(I) = 1 − f(−I) if 1 = 1
(4.15)

= f((21 − 1)I) (4.16)

Then we can define the binary cross-entropy cost function �BCE as

�BCE = − log(?� |. (1 |H)) (4.17)

= − log (f((21 − 1)I)) (4.18)

= log
(

1
f((21 − 1)I)

)
= log(1 + exp(−(21 − 1)I)) (4.19)
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with the gradient

m

mF
�BCE =

−1
f((21 − 1)I) · f((21 − 1)I)f(−(21 − 1)I) (4.20)

m

mF
�BCE =




f(−I)f(I)
f(−I) if 1 = 0

f(−I)f(I)
f(I) if 1 = 1

(4.21)

Also note that equation (4.19) is similar to equation (2.15) to the point that minimis-

ing the binary cross entropy is equivalent to maximising the GMI if the outputs I

are treated as log-likelihood ratios.

If we want to make symbol decision to optimise the MI, we can use a similar

set of equations, but for a multinoulli distribution [90]. The softmax is the activation

function and the categorical cross entropy is the loss function for the set of outputs

z = [I1, I2, . . . , I"], where I8 = U8 (H, F8).

?- |. (G8 |H) = softmax8 (z)

=
exp(I8)∑"
9=1 exp(I 9 )

(4.22)

�CCE = −
"∑
9=1
C 9 log

(
softmax 9 (z)

)
(4.23)

C8 =




1 if 8 = 9

0 otherwise
(4.24)

where t = [C1, C2, . . . , C"] is the one-hot vector of the transmitted symbols. The

softmax function normalises the symbol log likelihoods such that their likelihoods

sum to one.

This means that, provided our whole signal processing chain is differentiable,

we can use a gradient descent method to adapt the digital signal processing to our

simulation or experimental data. The classical machine learning approach is to add

an artificial neural network (ANN) [91, 92, 93] or a deep nerual network (DNN)

[94, 95]. In this work, we focus on a single processing block at the receiver,

though end-to-end optimisation is also a promising technique [96]. We also focus
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on differentiable DSP algorithms, though other techniques fall under the machine

learning (ML) umbrella as well [25].

4.1 Learned digital back-propagation

Oneof the problems towhichwe can applyML techniques is digital back-propagation

(DBP) [97, 98, 99]. This is a technique derived from the SSFM to compensate fibre

nonlinearity [100] applied in the time domain [101], known as time-domain digital

back-propagation (TD-DBP). The motivation for compensating both dispersion and

nonlinearity in the time domain is to avoid the need for repeated Fourier transforms,

thus reducing complexity. In this section, we investigate the learning of finite

impulse response (FIR) filter responses to compensate chromatic dispersion in the

time-domain as the linear step in a neural network and applying the phase shifts to

compensate the Kerr nonlinearity as activation functions between them to achieve

DBP [98].

In Fig. 4.1, the building block of the TD-DBP is shown. It consists of a linear

step, in which the chromatic dispersion for the step is applied, following which a

power-dependent phase shift is applied to compensate for the Kerr effect. Both

effects can be described by their respective transformations [35, Ch. 8];

� (l, I + ΔI) = 4UΔI4 9 (l))2� (l, I) (4.25)

� (C, I + ΔI) = 4− 9WΔI |�I (C) |2� (C, I) (4.26)

where U is fibre loss, ΔI is fibre step length,  = V2ΔI
2)2 , l angular frequency,

) sampling period, and V2 group velocity dispersion, W the nonlinearity coefficient

and |�I (C) |2 the normalised, step-averaged, instantaneous optical power. In the fibre,

these effects manifest themselves simultaneously, however in the compensation they

need to be applied separately. The solution is to split the link into many shorter

steps, where the error from separating the two effects is small enough.

The convolutional step to apply the chromatic dispersion compensation is sep-
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Figure 4.1: The building block of the TD-DBP algorithm. The chromatic dispersion is
compensated with a complex FIR filter where the real and the imaginary com-
ponents are applied separately. The second part is applying the phase shift to
compensate the Kerr nonlinearity.

arated into its real and imaginary components

(-I + 9 -Q) ∗ (,I + 9,Q) =
(-I ∗,I − -Q ∗,Q)

+ 9 (-I ∗,I + -Q ∗,I)
(4.27)

Because both polarisations incur the same chromatic dispersion, the same filter

response can be used for both polarisations. To reduce training time and prevent the

algorithms from getting stuck in local minima, the chromatic dispersion filters are

initialised with analytical filters.

If we start with the chromatic dispersion as described in equation (4.25) the

obvious solution is to sample # taps for the transformation in the time domain as

electronic dispersion compensation (EDC) [37],

�EDC(4 9l) ) = 4 9 (l))2 (4.28)

ℎ[=] =
√

9

4 π
4− 9

=2
4 , −

⌊
#

2

⌋
≤ = ≤

⌊
#

2

⌋
(4.29)

# = 2 b2 πc + 1 (4.30)
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Figure 4.2: The amplitude response and group delay of directly sampled chromatic disper-
sion compensation filters, for symbol rate 51 56 GBd, sample rate 5B = 2 51,
17 ps/nm/km dispersion at 1550 nm.

However, because chromatic dispersion is inherently a frequency domain effect,

the direct sampling approach is not very accurate, especially when dealing with very

short filters as can be seen in Fig. 4.2. An alternative method is to integrate in the

frequency domain at specific time delays [102]

� [=] = 1
2π

∫ π

−π
�EDC(4 9l) )4 9=l)3 (l))

=
1

2π

∫ π

−π
4 9l) ( l)+=)3 (l)) (4.31)

� [=] = 4
− 9

(
=2
4 + 3π

4

)

4
√
π 

(
erf

(
4 9

3π
4 (2 π − =)

2
√
 

)
+ erf

(
4 9

3π
4 (2 π + =)

2
√
 

))
(4.32)

where the erf function is defined as

erf (U) = 2√
π

∫ U

0
4−C

2
3C (4.33)

This can be further improved upon by limiting the bandwidth over which the

chromatic dispersion is compensated [103], where filters are designed that minimise

the errorwithin a bandwidth, whilst limiting the out-of-band gain to improve stability.

The step lengths were chosen such that every step had an equal power drop in the

fibre; the first compensation steps were very long and the last steps, corresponding

to the start of the span with the highest power, had very short steps. The shorter
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the step, the fewer the number of taps are required, as given by equation (4.30). For

every span, the same set of steps, with their filter weights, were used.

In this work, deep learning of the filter weights (equivalent to a neural network’s

layer parameters) is implemented in Tensorflow using the RAdam optimiser [104].

Identical complex FIR filter weights are applied to both polarisations in each step,

reducing the overall number of weights to be optimized. Initialisation of the time-

domain filter taps was carried out via numerical simulation of the fibre transmission

link for a single channel. The forward propagation was modelled using a small

NLSE fibre step size (100 m) at a launch power of 5 dBm. This is beyond optimum

launch power for linear compensation and was chosen to demonstrate the nonlinear

compensation abilities.

4.1.1 Experimental setup

a)

AWG

DP-IQM

DP-IQM

PS

63 GHz
Coherent
Receiver

101.4 km

b)

FOE
2x2 MIMO

65 taps
10 span
×10 steps

2x2 MIMO
65 taps CPE SNR

SGD optimisation

Figure 4.3: a) Experimental configuration with 4×64 GBd channels and 101.4 km recircu-
lating loop. b)Function diagram of the receiver DSP for the L-TDDBP.

The experimental setup is shown in Fig. 4.3(a). A fibre transmission distance

of 1014 km was emulated using a recirculating loop. The waveform of the 64-QAM

64-GBd channel under test (CUT) was generated offline and sent to two channels

of a 33-GHz 92-GSa/s arbitrary waveform generator (AWG) and, using a dual-

polarization IQM), modulated the outputs of two <100 kHz ECLs. Two additional

64-QAM 64-GBd aggressor channels were modulated using an additional AWG

with a dual polarization IQM onto two ECLs and interleaved with the other channels

to achieve uncorrelated sequences between neighbouring WDM channels. The
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recirculating loop with a 101.4 km span, a polarisation scrambler (PS) and three

EDFAs and an optical band-pass filter had the signal circulating 10 times, totalling

a 1014 km transmission. At the receiver an optical band pass filter followed by an

EDFA extracts the CUT for detection with a coherent receiver employing 63-GHz

bandwidth 160-GS/s analogue-to-digital converters.

For this experimental demonstration, 10 steps per span were chosen for the

learned TD-DBP. To take fibre loss into account, non-uniform FIR filter lengths

were employed, implementing steps with equal power differences between their in-

puts and outputs. The resulting logarithmic step size distribution is better tailored

to the exponentially decaying signal power and requires fewer steps per span [105].

Additionally, the nonuniform step size will give each filter a different starting po-

sition. For the fibre nonlinearity compensation of 10 spans of 101.4 km each, the

parameters were U of 0.16 dB/km, V2 of -20.18 ps2/km and WDBP of 0.8 W−1km−1.

The 10 FIR filters used in the TD-DBP employed a total of 270 complex-valued tap

weights at a sampling rate of 128 GSa/s. For the FD-DBP, 50 equidistant steps/span

were used. This requires 2 × 10 × 50 FFT operations per polarisation, while in

the TD-DBP scheme the use of FFT operations is circumvented, with the aim of

lowering the computational complexity.

Next, for the processing of experimental data, the filter weights from simulation

were used for initialisation. To prevent the dispersion filters from learning the

response of the transceiver impairments, an additional 2x2 MIMO filter was added

before applying digital back propagation, as shown in Fig. 4.3(b). Thus, the resulting

structure has two linear MIMO equalisers, compensating for polarisation mode

dispersion (PMD) and transmitter and receiver impairments. Note that in this

way, using the automatic differentiation in Tensorflow, the filter that is applied

prior to the link compensation is also optimized through gradient descent. A root-

raised cosine (RRC) filter was applied before the MIMO blocks. The carrier phase

estimation was achieved by inserting pilot symbols. One in 32 symbols was a known

QPSK symbol. Interpolation of the phase between the pilot symbols was performed

using a Wiener filter [106, Eq. (32)], following which a mean-squared-error cost is
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calculated.

During the training procedure, first the linear filters at both sides of the link

compensationwere optimised. Subsequently, all filters were updated on each optimi-

sation step. For the FD-DBP, the U, W and launch power were swept for optimisation,

after which pilot-aided DSP was applied. For the experimental waveform, a sin-

gle randomly generated 216-symbol waveform was used. We split the bit sequence

and corresponding received waveforms into two datasets. The first 52224 symbols

(80%) were used as training data for updating the filter weights. The remaining

13312 symbols (20%) were used as testing data, to obtain results reported in the

figures presented.

4.1.2 Results
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FD-DBP 50-steps/span
EDC

Figure 4.4: SNR vs. launched power for learned TD-DBP compared to conventional FD-
DBP and linear EDC only methods.

The launched power was increased with 1 dB increments from -6 to +8 dBm

per channel. The resulting SNR is here defined as E[|- |2]
E[|-−. |2] , where - and . are

the transmitted and received signal respectively. Fig. 4.4 shows a comparison of

achieved SNR for TD-DBP, FD-DBP and EDC. The TD-DBP and FD-DBP are

implemented using 10 and 50 steps per span respectively. Both schemes provide

similar performance improvements from non-linearity compensation, with slightly
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higher accuracy in the high power regime for the conventional FD-DBP scheme, due

to the larger number of steps used. However, the TD-DBP achieves a higher SNR

in the low power regime, suggesting a better linear compensation.

Fig. 4.5 compares TD-DBP with two learned linear compensation strategies.

The figure shows the learned DBP performance for two cases, the proposed non-

linear mitigation scheme, and the same scheme with WDBP = 0, i.e., providing

only linear compensation and a scheme where the whole chromatic dispersion is

compensated in a single filter. For a low launch power into the fibre, the first

two schemes show comparable performance, while a nonlinearity mitigation gain

of 0.3 dB was achieved at optimal launch powers. Using a single filter achieves

better linear gain, but converges to the WDBP = 0 method in the high launched power

regime.

−6 −4 −2 0 2 4 6 8
12

13

14

15

16 0.3 dB

Launched Power [dBm]

SN
R

[d
B]

learned TD-DBP 10 steps/span
learned (WDBP = 0) 10 steps/span
learned (WDBP = 0) 1 step/link

Figure 4.5: TD-DBP compared to the same structure with WDBP = 0 with the same number
of steps and a single step for the whole link.

To confirm that the algorithm is performing digital back-propagation, i.e.,

approximating the SSFM model, the amplitude response and group delay of the 10

individual filter used each span are plotted in Fig. 4.6. The expected response is

an all-pass filter (H) with a linear group delay (Δg), compensating for chromatic

dispersion. It can be seen that, while the individual filters have significant ripples,

the combined filter, in Fig. 4.7, has an almost perfect response within the signal
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latter filters.

bandwidth, with a flat amplitude response and a smooth group delay.
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Figure 4.7: Combined response of all 10 cascaded filters, showing a flat amplitude re-
sponse and smooth linear group delay. Showing a bandpass filter with accurate
chromatic dispersion compensation.

We have also trained a single convolutional layer for the whole link to apply the

chromatic dispersion compensation and shown the results in Fig. 4.5. This method

outperforms all other methods over launch powers up to the optimal power. However

for higher launch powers, its performance converges to the linear compensation

results. When looking at the auto-correlation of the single learned filter in Fig. 4.8,

we can see spikes where the filter has compensated a reflection. This suggests that
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not all the linear effects are compensated for in our demonstration of the TD-DBP

approach, and combining this result with nonlinear compensation will increase the

performance even further.
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Figure 4.8: The auto-correlation of the learned single filter used to compensate chromatic
dispersion.

We suspect the difference in performance between the single layer and the

deep network to partially be attributable to gradient propagation through the many

layers, in this work over 100. A method to combat this is proposed in [107], where

residual links are bypassing the layer. The results are equivalent due to the universal

function approximators the work is based on. Trying to learn G:+1 = U{G: } will be
equivalent to learning G:+1 = G: + V{G: } ifV{G} , U{G} − G. These layers have
the gradient

mG:+1
mG:

= U′{G: } (4.34)

mG:+1
mG:

= 1 + V′{G: } (4.35)
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but if two layers are applied sequentially, the gradient becomes

G:+2 = U{U{G: }} (4.36)
mG:+2
mG:

= U′{G:+1}U′{G: } (4.37)

mG:+2
mG:

= 1 + V′{G:+1} (1 + V′{G: }) (4.38)

We can see the direct function will have a multiplicative term for every layer, but the

residual link will propagate the constant through all the layers and therefore have a

more direct link with the error function.

For the DBP, we can treat the effects of chromatic dispersion and nonlinear

phase shift as perturbations to our signal. This is a different approach than the

perturbation DBP [108, 109], although it shares some concepts.
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Figure 4.9: The proposed digital back-propagation block. a) a single dispersion block b)
add the residual link c) split the block into to half steps.

In Fig. 4.9, the proposed block with the residual link is shown (d). The block

is designed initially with a dispersion block in the frequency domain G:+1 = � (G) =
Ge− 9 (l))2 , which can either be applied directly (a) or with a residual link (b). Next,
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in (c) we have split the dispersion step such that we have

G:+1 = G: − G:
(
1 − e

− 9 (l) )2
2

) (
1 + e

− 9 (l) )2
2

)

= G: − G:
(
1 −

(
e
− 9 (l) )2

2

)2
)

= G:e− 9 (l))
2

(4.39)

Nowwe have split the step, we can apply the nonlinear phase shift in the middle

of the block, effectively recreating a split step method with a residual link. This

block is shown in Fig. 4.10. The nonlinear phase shift as function 6(·) is applied in
the middle of the step and two half inverse phase shifts 6− 1

2 (·) are applied to cancel
out the signal in the residual link as

GI+ℎ = GI − 6−
1
2

(
6

(
6−

1
2 (GI) + �

1
2 GI

))
− � 1

26
(
6−

1
2 (GI) + �

1
2 GI

) (4.40)

= GI − 6−
1
2

(
6

(
6−

1
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1
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) (4.41)
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1
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1
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1
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)
(4.42)

= �
1
26

(
�

1
2 GI

)
(4.43)

This method has shown the potential for lowering DBP complexity and whilst

there still is a challenge to scale the problem, we have conjectured a method to

alleviate this limitation.

4.2 Summary
We have linked the metrics introduced earlier to the cost functions associated with

machine learning. Using these, we experimentally demonstrated, for the first time,

learned time-domain digital back-propagation and showed its capability to perform

nonlinearity compensation.
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Figure 4.10: The proposed digital back-propagation block.



Chapter 5

Conclusions

This thesis has described the research on improving the achievable information rates

of the optical transmission system using information theory and machine learning.

Information theory allows us to put precise metrics on communication systems.

The concepts of uncertainty and reliability in optical communication systems were

described, which allow us to predict the performance of different coded modulation

schemes and evaluate where the system can be improved to increase datarates.

Although the two coded modulation strategies considered in this study were

predicted to have similar performance, one of them outperformed the other more

than expected. This indicated that it had a lower implementation penalty, and this

was precisely measured with the metrics proposed in chapter 2.

Efficient methods to calculate the achievable information rate for optical trans-

mission systems have been used to optimise the transmitted constellations. In

chapter 3, the constellations tailored for the nonlinear fibre channel outperformed

the optimum constellations for the additive white Gaussian noise (AWGN) chan-

nel, demonstrating that we can increase achievable data throughput by tailoring our

algorithms for the nonlinear fibre channel.

A simple heuristic expression for probabilistic shaping was introduced. The

constellations adhering to this expression were straightforward to obtain and were

the amongst the best-performing of all those found in the numerical optimisation.

In the case of transmission over nonlinear fibre, these constellations were found

to outperform the constellations optimised for the additive white Gaussian noise
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(AWGN) channel.

For the experimental demonstration of the shaped constellations, geometrically

shaped constellations were designed. 1D geometrical shaping was chosen for the

demonstration because it preserves properties of uniform square quadrature ampli-

tude modulation (QAM) that aid the conventional digital signal processing (DSP) to

recover the signal. The shaped constellations performed as predicted by the metrics

introduced in chapter 2.

The same information theoretical metrics were aligned with cost functions

for machine learning, which we next investigated for the compensation of fibre

nonlinearity and dispersion. These metrics give a clear insight when choosing a cost

function for the machine learning problem at hand.

We experimentally demonstrated learned digital back-propagation for the first

time. After the similarities between time-domain digital back-propagation and a

convolutional neural network were noticed, machine learning was used to optimise

the filters used in the back-propagation algorithms. An advantage of implement-

ing the back-propagation in the time domain is that it avoids the need for multiple

Fourier transforms, which are required in the case of the conventional split-step

Fourier method. We have implemented the proposed algorithms to work in an ex-

perimental testbed and demonstrated that it was effective in performing nonlinearity

compensation. The compensation technique not only compensated for fibre non-

linearity, it also compensated transceiver impairments, resulting in a bigger overall

gain.

The results indicated that the deep learning structure can be improved upon

when compared to shallow learning. We have conjectured a method that addresses

this problem and should give us a further improvement on the results achieved.

Future work could also be carried out assessing the complexity of the learned

time domain digital back-propagation, and comparing it with that of the conventional

frequency-domain digital back-propagation (DBP).

The extension of the digital back-propagation using machine learning to wider

bandwidth signals, including inter-channel nonlinearity compensation, will be a
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future direction of the research.



Appendix A

MI for continuous uniform
distribution

The channel law of AWGN channel is given by

?. |- (H |G) =
1√

2πf2
I

exp
(
− |H − G |

2

2f2
I

)
(A.1)

The input distribution is assumed to be

?- (G) = 1
1 − 0 , G ∈ [0, 1] (A.2)

Thus, the output of distribution ?. (H) of channel in (A.1) is defined as

?. (H) ,
∫

supp [?- (G)]
?-,. (G, H) 3G (A.3)

=
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(A.6)
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with

erf (G) = 2√
π

∫ G

0
exp(−C2)3C (A.7)

we then have

?. (H) = 1
2 (1 − 0)

[
erf

(
1 − H√

2fI

)
− erf

(
0 − H√

2fI

)]
(A.8)

Applying 0 = −fG
√
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√
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Now the mutual information can be found,

� (-;. ) = ℎ(. ) − ℎ(- |. ) (A.10)
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And

ℎ(. ) = −
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Y
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which we integrate using Monte-Carlo integration, i.e., via

∫
Y
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with samples of . H (=) with = = 1, . . . , #B and real values function
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which differs from the Gaussian case � (-;. ) ∼ 1
2 log
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)
by

6
π e
≈ −1.5329 dB (A.18)



Appendix B

Efficient MI and GMI estimations

For the MI and GMI estimations on the AWGN channel a Gauss quadrature in-

tegration is an efficient method. If we transmit using the "-ary constellation

X = {G1, G2, . . . , G"} and a channel with noise variance f2
I . This is the AWGN

channel with an SNR of EX [|G |
2]

f2 .

For themutual information, we assume all constellation points are equally likely

and we introduce 38 9 = G8 − G 9 , < = log2("), I (8)1: the constellation points where the

:-th bit is the same as the :-th bit of the 8-th constellation point and I is zero mean

Gaussian distributed.

� = < − 1
"

"∑
8=1
EZ


log2

©­«
"∑
9=1

exp

(
|38 9 |2 + 2<{I38 9 }

−f2
I

)ª®¬


(B.1)

� = < − 1
"

"∑
8=1

<∑
:=1

�Z

[
log2

©­«
"∑
9=1

exp

(
|38 9 |2 + 2<{I38 9 }

−f2
I

)ª®¬
− log2

©­­«
∑
?∈I (8)

1

exp

(
|38? |2 + 2<{I38?}

−f2
I

)ª®®¬
]

(B.2)

Now the expected value for I = I8 + 9 I@ can be evaluated using the Gauss-

Hermite quadrature

∫ +∞

−∞

∫ +∞

−∞
4−(I

2
8 +I2

@) 5 (I8 + 9 I@) 3I83I@ ≈
=∑
8=1

=∑
@=1

U;8U;@ 5 (Z;8 + 9 Z;@ ) (B.3)



94

with the weights U and sample points Z . The MI can be estimated as

� = <− 1
"π
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and the GMI as
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For the PS shaping, an efficient estimation for a single real dimension is
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where ?G (G8) = ?8 and the SNR is 2E[|G |2]
f2 . Note that the fist part is a scaled subsection

of the MI calculation. And the weights with the sample points used in this work can

be found in table B.1.

Z U

0.3429 6.1086 × 10−1

1.0366 2.4014 × 10−1

1.7567 3.3874 × 10−2

2.5327 1.3436 × 10−3

3.4362 7.6404 × 10−6

Table B.1: Gauss-Hermite sampling points and weights of order 10. Half of the points are
shown, the other half is identical but with Z = −Z .
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