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Abstract

Since the proposal of the first genetic algorithm (GA) many recombination operators have 

been proposed. Some are problem specific and require a great deal of knowledge about 

the problem being solved, resulting in good but highly speciahsed operators. Other 

recombination operators have been proposed for more general use. One advantage for 

such operators is the httle knowledge required about the problem being solved; however, 

the synergy of these operators, the problem being solved and other GA parameters does 

not always yield optimum performance fi-om the GA. More recently, adaptive 

recombination operators have been proposed to bridge the gap between general and 

speciahsed recombination operators.

This thesis presents a novel adaptive recombination operator, namely “Selective 

Crossover”, for use with a genetic algorithm. Selective crossover was designed with three 

properties that make it a viable strategy to use when Httle or no knowledge is available 

about the problem being optimised.

The first property is the identification of aUele changes made to the candidate 

solution during recombination. The second property is the use of correlations between 

parental and offspring fitnesses to discover beneficial alleles. The third property is the 

preservation of aUeles at each locus, during recombination, according to their previous 

contributions to beneficial changes in fitness.

This thesis makes six contributions. The first is the design and implementation of 

selective crossover. The second is a measurement and comparison of the performance of 

selective crossover and two traditional recombination operators on a number of different 

problems. The third is an empirical analysis of the adaptive properties in selective 

crossover. The fourth is an identification and analysis of four key biases inherent in 

selective crossover and a demonstration of the existence of these biases in two other 

similar operators. The fifth is an analysis and comparison of schema propagation in 

selective crossover and two traditional recombination operators. The final contribution is 

a construction of a schema survival probabihty for selective crossover.
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Chapter 1 

Introduction

The fundamental problem of optimisation is to arrive at the best possible decision in any 

given set of circumstances. There are many situations where the ‘best’ is unattainable for 

one reason or another; often we may not be sure what is meant by the ‘best’. The first 

step therefore in an optimisation problem is to choose some quantity, typically a function 

of several variables, to be maximised or minimised, subject possibly to one or more 

constraints. The commonest types of constraint are equahties and inequalities, which must 

be satisfied by the variables of the problem. The next step is to choose a method to solve 

the optimisation problem; such methods are usually called optimisation techniques, or 

optimisation algorithms. One such algorithm is the genetic algorithm.

First pioneered by John Holland in the 1960s (Holland 1992), genetic algorithms 

have been demonstrated to be a successful optimisation algorithm. They were inspired by, 

and mimic, some of the processes observed in natural evolution. Based on the Darwinian 

principle of ‘survival of the fittest’, genetic algorithms manipulate a population of 

candidate solutions using selection, recombination and mutation processes. These 

processes allow good solutions to survive in preference of weaker ones.

The genetic algorithms that have been proposed for optimisation problems in 

recent years have tended to become more and more elaborate (Goldberg 1989a; 

Michalewicz 1994, Back 1996; Mitchell 1996); the result being a large parameter space 

for a genetic algorithm. Thus, choosing the appropriate parameters for a genetic algorithm 

has become a more difficult task and is in itself an optimisation problem.

One such parameter is recombination, which is considered essential for the success
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of genetic algorithms and is thought to be responsible for the generation and propagation 

of solutions (Holland, 1992; Schaffer and Eshelman, 1991; Spears, 1993). Since the 

proposal of the first genetic algorithm many recombination operators have been 

developed. Some are problem specific and require a great deal of knowledge about the 

problem being solved, resulting in good but highly speciahsed operators. For example, on 

ordering problems a number of recombination operators have been proposed that respect 

the ordering of alleles (Goldberg and Lingle, 1985; Starkweather et al., 1991; Falkenauer, 

1994). Other recombination operators have been proposed for more general use 

(De Jong, 1975; Syswerda, 1989; Spears and De Jong, 1991b). One advantage for general 

operators is the httle knowledge required about the problem being solved; however, the 

synergy of these operators and the problem being solved and other parameters does not 

always yield best performance from the genetic algorithm. More recently, adaptive 

recombination operators have been proposed to bridge the gap between general and 

speciahsed recombination operators (Schaffer and Morishima, 1987; Louis and Rawhns, 

1991; White and Oppacher, 1994; Eshelman and Schaffer, 1995; Spears, 1995). The aim 

of these adaptive methods is to adapt dynamicaUy to problem characteristics in the hope 

of creating a more robust optimisation strategy. We know from “No Free Lunch” 

theorems (Wolpert, and Macready 1997) that an algorithm that is suited for ah problems 

cannot exist, since for fixed parameter/operator sets there wih be problems for which they 

are optimal and other problems for which their performance is poor. However, is it 

possible to devise an adaptive recombination operator that is a suitable strategy to use for 

a wide range of problems in which httle is known about the problem space being 

searched?

1.1 Motivation

This thesis presents a novel adaptive recombination operator, namely “Selective 

Crossover”, for use with a genetic algorithm. Its inspiration comes from natural evolution, 

specificaUy Dawkins’ model of evolution and dominance characteristics in nature. 

Dawkins’ (1989) model of evolution is based on the gene. In his theory the gene is 

considered to be the fundamental unit of natural selection. Since natural selection acts on 

the individual and the individual consists of unique chromosomes, these chromosomes 

actuahy have a hfe span of one generation. However, the chromosome consists of many
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genes and a subset of these genes last for many more generations because it is the genes 

that are passed onto the offspring not the entire chromosome. Thus natural selection 

favours the gene.

Dominance in nature is associated with genetic material within diploid 

chromosomes (two sets of chromosomes) where the alleles contained in one set can be 

regarded as a direct alternative to the alleles in the other set. When building the organism 

the alleles in one set compete with those in the other set. Alleles that are dominant are 

expressed in the phenotype of an organism and those that are less likely to be expressed 

are recessive. The relationship between a dominant and recessive gene is complex: some 

genes that have been known to be dominant have become more recessive in successive 

generations and vice versa. Merrell (1984) suggests that these shifts in dominance are in 

response to changes in the environment. Thus, those genes that increased an individual’s 

fitness have become more dominant by evolving over generations; however, a precise 

model to show this is not available.

Selective crossover, our new adaptive recombination operator, uses both the 

analogy of dominance, where alleles in one chromosome compete with those on the other 

chromosome, and the analogy of evolution of dominance. The purpose is to see if 

recombination at each allele in a haploid (single chromosome) genetic algorithm can be 

evolved such that alleles in one parent compete with those on the other parent chosen for 

crossover. Here the alleles are competing to be retained in a fitter individual and the use 

of correlations between parental and offspring fitnesses would allow the means of 

discovering beneficial alleles. This in turn allows recombination in the genetic algorithm to 

adapt to the problem space being searched.

Adaptive recombination operators that have been proposed by others (Schaffer 

and Morishima, 1987; Louis and Rawlins, 1991; White and Oppacher, 1994; Eshelman 

and Schaffer, 1995; Spears, 1995) provide an evaluation of their algorithm or strategy in 

terms of performance comparisons with other techniques. This is usually done using a test 

suite of problems or a real world apphcation. Little effort is given to analysing “how?” 

and “what?” provides this increased performance in the new strategy. This extra 

information would also allow us to understand the limitations of the new strategy and 

provide us with justifications for its use on other problems. For these reasons we have 

conducted four different evaluations of selective crossover in terms of performance, 

adaptive behaviour, biases and schema propagation.
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1.2 Thesis Objective

This thesis examines the following hypothesis:

Hypothesis:

When little or no knowledge is available about the problem being 

optimised by a genetic algorithm, a viable strategy is to use an adaptive 

recombination operator with the following three properties:

1. Detection - It detects alleles that were changed during 

recombination to identify modifications made to the candidate 

solution.

2. Correlation - It uses correlations between parental and 

offspring fitnesses as a means o f discovering beneficial 

alleles.

3. Preservation - It preferentially preserves alleles at each 

locus, during recombination, according to their previous 

contributions to beneficial changes in fitness.

There are two main aims of this thesis. First, to design and implement a new adaptive 

recombination operator, “selective crossover'' with the above three properties. Second, 

to undertake an extensive evaluation of selective crossover using four different criteria. 

As we shall see, both aims have been achieved.

Selective crossover was designed with three key properties. Firstly, selective 

crossover detects alleles that were changed during crossover to identify actual 

modifications made to the candidate solution during recombination. Secondly, this 

acquired knowledge is then combined with parental and offspring fitness correlations to 

discover potentially beneficial alleles. Finally, alleles are preferentially preserved, during 

recombination, according to their previous beneficial fitness contributions.

Selective crossover was first evaluated in terms of performance where 

performance is measured as the number of evaluations taken to solve a problem. The 

performance of selective crossover was compared with two traditional recombination
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operators, two-point and uniform crossover, on a set of five different and well-studied 

benchmark problems. Given our performance measure selective crossover was 

demonstrated to be better or comparable to two-point and uniform crossover on 

most problems.

The second evaluation in terms of adaptive features within selective crossover 

allowed us to observe empirically the dynamics of selective crossover on different 

problems. This confirmed the internal adaptive behaviour of selective crossover and also 

demonstrated that selective crossover adapts to each problem in a different manner.

The third evaluation was completed by a critical analysis of the biases that 

selective crossover imposes on search. This identified some limitations and possible 

enhancements to selective crossover.

The final evaluation, in terms of schema propagation, was undertaken using 

different encodings of a problem and tracking schema, in the population, before and after 

recombination. The alternative encodings positioned genes at different locations on the 

chromosome and were used to analyse the affect they have on the performance of 

selective crossover, two-point crossover and uniform crossover. The schema propagation 

of all three recombination operators was compared, allowing three conclusions to be 

drawn. Firstly, the performance of selective crossover is consistent regardless of the 

encoding used. Secondly, the survival rate of a schema in selective crossover is not 

affected by the encoding. Thirdly, selective crossover provides a better balance between 

exploration and exploitation than the two other traditional recombination operators.

1.3 Contributions

This thesis makes six main contributions.

1. The design and implementation of “selective crossover”, a new adaptive 

recombination operator that incorporates correlations between parents and 

offspring as a means of discovering and preserving beneficial alleles at each 

locus during recombination to produce fitter offspring.

2. A measurement and comparison of the performance of selective crossover and 

two traditional recombination operators on a number of different problems.
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3. An empirical analysis that demonstrates adaptive behaviour in selective 

crossover.

4. An identification of four key biases inherent in selective crossover, a 

demonstration of the existence of these biases in two other similar operators 

and an empirical analysis to study the effects of these biases on selective 

crossover.

5. An analysis and comparison of schema propagation in selective crossover and 

two traditional recombination operators.

6. A construction of a schema survival probabihty for selective crossover; this 

demonstrates that schema survival in selective crossover is problem dependent.

This thesis also makes a secondary contribution; a description of a new taxonomy to 

classify selective crossover and other adaptive strategies in evolutionary computation, 

which overcomes the limitations in the existing taxonomy provided by Eiben et al. 

(1999)(described in Chapter 3).

1.4 A Road Map for this Thesis

After this introduction Chapter 2 presents a traditional genetic algorithm. It highhghts 

both the vast parameter space associated with genetic algorithms and the issues 

surrounding the choice of parameters that have led to the development of adaptive 

strategies. Additionally, Chapter 2 presents the original theoretical explanation of genetic 

algorithms, due to Holland (1992) and discusses the concepts of epistasis and deception.

Chapter 3 focuses on the recombination operator and provides a survey of work 

on static recombination operators, adaptive recombination operators and strategies 

proposed to learn linkage. It also presents theoretical work on schema survival in static 

recombination operators. The increase in adaptive strategies has led to many 

classifications of adaptation that are also presented here.

Chapter 4 provides a detailed description of selective crossover and emphasises its 

three key properties. The next four chapters describe experiments.
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Chapter 5 provides an empirical evaluation in terms of performance. Selective 

crossover is compared with two static recombination operators, two-point and uniform 

crossover (described in Chapter 3), on a set of five different and well-studied benchmark 

problems. This evaluation shows that the performance of selective crossover is either 

superior or comparable to two-point and uniform crossover.

Chapter 6 identifies the limitations of the taxonomy to classify adaptive strategies 

provided by Eiben et a l (described in Chapter 3). A new taxonomy is presented which 

accommodates strategies that use one or more methods of change. This new taxonomy is 

also used to classify and identify the methods of change in selective crossover. An 

empirical analysis demonstrates that without the three key properties (see hypothesis), the 

performance of selective crossover is worse than two-point and uniform crossover. This 

chapter also provides an empirical analysis of the adaptive behaviour in selective 

crossover. The experiments to track the population dynamics conclude by demonstrating 

that selective crossover adapts recombination and also suggests that selective crossover 

adapts to the problems being optimised, in contrast to static behaviour.

Chapter 7 presents a critical analysis of selective crossover and two other similar 

adaptive recombination operators. Four key biases were identified to be inherent in 

selective crossover; directional, credit, hitchhiker and initialisation bias. Experiments show 

that some of these biases are detrimental to the performance of selective crossover; 

however they can be reduced and thus further enhance selective crossover.

Chapter 8 describes a series of experiments to investigate schema propagation in 

selective crossover. Two conclusions result from these experiments: firstly, selective 

crossover is insensitive to the encoding of gene positions in the chromosome, unlike other 

recombination operators. Selective crossover shows consistent behaviour even when the 

encoding is altered so that related genes are located at the extremes of the chromosome. 

Secondly, when the schema propagation of selective crossover is observed and compared 

with two-point and uniform crossover, selective crossover appears to provide more 

exploration in early generations and more exploitation in later generations in comparison 

to the other two operators.

Chapter 8 also constructs a schema survival probabihty for selective crossover, 

which demonstrates that schema survival is dependent on the current dominance values in 

the population. Since the dominance values are a function of the evaluation function, this 

suggests that schema survival in selective crossover is problem dependent.
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Chapter 9 concludes the main body of the thesis with a discussion of the adaptive 

recombination operator developed and results produced by the evaluations undertaken. 

Conclusions on the use of selective crossover are made and avenues of future work are 

also discussed.
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Chapter 2

Background Work

The aim of this chapter is to set the scene for this thesis by providing an introduction to 

the conventional genetic algorithm. We first provide (in Section 2.1) an introductory 

paragraph to set genetic algorithms in context with other evolutionary algorithms. This is 

followed by an introduction to the terminology drawn from natural genetics that is used in 

genetic algorithms. Section 2.3 then provides a description of each component in a 

conventional genetic algorithm and Section 2.4 highlights the many operators and 

parameters associated to the genetic algorithm and how difficult it is to choose 

appropriate settings that give best performance. A brief explanation of the schema 

theorem and building block hypothesis is provided in Section 2.5. Finally, Section 2.6 

introduces two concepts, epistasis and deception, which are used in GA research to 

characterise problems in terms of difficulty and are used in this thesis to choose problems 

that serve as a good test-bed to evaluate selective crossover.

2.1 What is a Genetic Algorithm?

Genetic algorithms (GAs) are a family of adaptive techniques, devised by John Holland 

(Holland, 1992), that may be used to solve search and optimisation problems. GAs were 

inspired by and mimic some of the processes observed in natural evolution (i.e. survival of 

the fittest) and are thus characterised as evolutionary algorithms. There are other 

evolutionary algorithms such as Evolution Strategies (Schwefel, 1981), Evolutionary 

Programming (Fogel et al., 1966) and more recently GAs have been extended to form
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Genetic Programming (Koza 1992), However, G As have four elements that together 

differentiate them from these other evolutionary algorithms:

1. A population of chromosomes.

2. Selection according to fitness.

3. Recombination to produce new offspring.

4. Random mutation of new offspring.

Many of the terms used in G As are drawn from biology hence we first introduce the 

terminology in the next section.

2.2 Terminology

All hving organisms consist of ceUs, and each cell contains the same set of one or more 

chromosomes. A chromosome is comprised of numerous genes that encode for a 

particular trait, such as eye colour. The set of possible values taken up by each trait are 

called alleles (e.g. blue, green, brown). The position of a gene is defined by its locus and 

is identified separately from the gene’s function.

Many organisms have multiple chromosomes in each cell. Those organisms with a 

pair of chromosomes are called diploid and organisms with a single set of chromosomes 

are called haploid. In nature, most sexually reproducing organisms are diploid.

Sexual reproduction in diploid and haploid organisms occurs in different ways. 

During diploid sexual reproduction, recombination (or crossover) takes place. In each 

parent a gamete (new single chromosome) is formed by combining genes between each 

pair of chromosomes. The gametes from the two parents combine to create a complete set 

of diploid chromosomes. In haploid sexual reproduction, genes are exchanged between 

two parents’ single-strand chromosomes to form the new haploid chromosome. Mutation 

takes place due to recombining errors and is usually an allele change in offspring. The 

fitness of an organism is defined as the probabihty that the organism will survive to 

reproduce.

Most GA appHcations use haploid (single-chromosome) individuals. The term 

chromosome refers to a candidate solution to a problem. Quite often these chromosomes 

are also called individuals. The genes are the single units or short blocks of adjacent units 

in the chromosome. Genes are located at certain places on the chromosome, which are

25



called loci. Each gene encodes to a particular element, trait, of the candidate solution. 

The values taken up by a gene are alleles and are defined by the alphabet used to make up 

the candidate solution. Given a bit string representation the alphabet is the set {0,1} and 

thus an allele is either 0 or 1. The set of parameters presented by a particular 

chromosome is referred to as a genotype. The genotype contains the information to 

construct the solution (as in genetic terms to construct the organism), which is referred to 

as the phenotype.

2.3 Components of the Genetic Algorithm

In this section we describe a conventional genetic algorithm (GA), which is just one of the 

many ways of implementing a GA. For an extensive review of current strategies and 

alternative implementations of the GA the reader is referred to Goldberg (1989a), 

Michalewicz (1994) and Mitchell (1996).

The conventional GA is comprised of five components: population, evaluation, 

selection, recombination and mutation. The use and issues surrounding each component 

are highhghted in the successive sub-sections. Each cycle of a GA is called a generation 

and is represented as shown in Figure 2.1 and Algorithm 2.1. In each generation the GA 

manipulates a population of chromosomes or individuals using evaluation, selection, 

recombination and mutation processes. The GA continues to run through many 

generations until either a solution is found or once a fixed number of generations have 

elapsed; this termination criterion is pre-determined by the GA practitioner.

2.3.1 Population

The GA maintains a population of chromosomes, candidate solutions, with associated 

fitness values. Therefore, before a GA can be run a suitable encoding or representation of 

the problem must be estabhshed. An encoding consists of a string of parameters related to 

the problem. For example, consider a parameter optimisation problem where a set of 

variables need to be optimised; to minimise or maximise some function F(xi, X 2 , . . . . , X n ) .  

Each parameter x  can be represented as a 10-bit binary number (suitably scaled). The 

chromosome would therefore comprise of 10« binary digits (genes) and its length is 

therefore 10%. Given a binary encoding the alleles will take up values of either 0 or 1.
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Population

Evaluation Mutation

population

Figure 2.1: Generational cycle of a conventional genetic algorithm.

Procedure Genetic_Algorithm;
T=0; /* starting generation */ 
Initialise_population(P); 
Evaluation(P);
WHILE NOT finished DO {

T=T+1; /* Next generation */ 
Selection(P);
Recombination(P );
Mutation(P );
Evaluation(P);

}
Algorithm 2.1: Pseudo code for a conventional genetic algorithm.

Encodings for a GA are not limited to binary encodings. For many applications it is most 

natural to use an alphabet of many characters such as a ^-ary alphabet {q > 2) or real 

numbers to form a chromosome. Moreover, there have been many extensions to the 

binary encoding such as Gray coding (Caruana and Schaffer 1988). The use of a binary 

encoding in preference to other encodings has been widely debated. Earher work by 

Holland (1992) and Goldberg (1989a) suggest the use of a binary encoding as it offers the 

maximum use of schemata (see Section 2.5). More recently Reeves (1993) has also
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suggested that there are more theoretical advantages in using a binary encoding. 

However, Antonisse (1989) and Radcliffe (1992) have questioned these arguments. 

Additionally, empirical comparisons between binary encodings and multiple character 

encodings have shown better performance for the latter Michalewicz (1994). At present 

there are no conclusive findings that suggest the use of a particular encoding.

Other issues related to the encoding is the loci at which genes should be placed on 

the chromosome. Goldberg (1989a) suggests that genes should be strategically placed on 

the chromosome so that their positions can be exploited by the recombination operator. 

This is further discussed in the next chapter (Section 3.4).

Having estabhshed the encoding for the problem a population of candidate 

solutions must be created and the question is how many (the population size)? In most 

G As a fixed sized population is used and is a fundamental decision faced by GA 

practitioners. If too smaU a population size is chosen, the GA wih converge too quickly 

with insufficient processing of possible solutions. On the other hand, a population with 

too many members consumes a great deal of processing power with very httle payoff in 

terms of better solutions. Several researchers have investigated the size of the population 

using binary encodings. Goldberg (1989b) suggests that the optimal population size 

grows exponentiaUy with the length of the chromosome, which in a practical sense are 

extremely large populations. Grefenstette (1986) suggests the use of a small population 

size of 30 individuals. More recently. Reeves (1993) provides a theoretical justification 

for the use of smaller population sizes. Most usually optimum population sizes are 

constrained by the available machine resources and thus a strong preference is for small 

populations.

Having decided the population size p, the starting population is initiahsed by 

randomly generating p  chromosomes. For the GA cycle to begin the chromosomes must 

first be evaluated and this is discussed in the next section.

2.3.2 Evaluation

An optimisation problem can be considered as a black box with a series of control dials 

representing the different parameters. The only output of the black box is a value returned 

by an evaluation or fitness function. The evaluation of each individual in the population is 

done using the fitness function, which assigns a figure of merit to a chromosome that is
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proportionate to the performance of the phenotype. The fitness function is usually given 

as part of the problem; in our previous example on function optimisation the fitness 

function is just the value returned by the function. However, it is not always so 

straightforward.

2.3.3 Selection

GA search is directed by selection with a bias towards areas in the search space that 

contain better solutions. The purpose of selection is to choose candidate parents for the 

process of recombination such that prominence is given to fitter individuals. There are 

many strategies to use for selection. Strong selection can lead to premature convergence, 

where a large proportion of the population consists of identical chromosomes that 

represent sub-optimal solutions. Weak selection on the other hand can make the search 

ineffective, where search makes very httle progress in comparison to the resources being 

used. Numerous selection schemes have been proposed and compared in GA hterature 

(Goldberg and Deb 1991; Thierens and Goldberg 1994; BHckle and Thiele 1995; Back 

1996). A description of the most popular methods is given below.

2.3.3.1 Fitness Proportionate Selection

In fitness proportionate selection the expected number of offspring of an individual is 

equal to the fitness of that individual divided by the average fitness of the population. The 

most common method to implement this is the ‘roulette wheel’: each individual in the 

population is assigned a slot sized in proportion to its fitness. The wheel is spun N times 

(where N is the population size). The individual pointed by the wheel marker is selected.

Given a large enough population, this roulette wheel selection method will 

theoretically result in the expected number of offspring for each individual. However, the 

actual number of offspring allocated is far from the expected values. Baker (1987) 

proposed a different sampling method namely ‘stochastic universal sampling’ (SUS). This 

algorithm is analogous to roulette wheel but in this case the wheel is not spun N times but 

once using N equally spaced pointers. The number of copies an individual receives is then 

given by the number of pointers that fall in its slot.

Fitness proportionate selection is the oldest and most widely known method in 

G As as it was first proposed by Holland. In all experiments in this thesis we use the SUS 

sampling method (Baker 1987).
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2.3.3.2 Tournament selection

Tournament selection chooses some number t (tournament size) of individuals randomly 

from the population and copies the best individual from this group into the intermediate 

population. This is repeated N times to make up the N individuals in the population. In 

most cases the tournament size is two, but larger tournament sizes can be used in order to 

increase the selection pressure.

2.3.3.3 Ranking Selection

Baker (1985) introduced ranking selection as a way of relaxing the selection pressure to 

prevent premature convergence. The population is first sorted from best to worst. The 

expected value of offspring for each individual is a function of its rank. This selection 

method avoids giving the largest share of offspring to a small group of highly fit 

individuals and thus reduces the selection pressure.

2.3.3A Elitism

Ehtism or an ehtist strategy, first introduced by De Jong (1975), is a form of selection that 

is used together with the other selection methods like those described above. This strategy 

ensures that highly fit individuals in the population are passed onto the next generation 

without being altered by the recombination or mutation operators. This guarantees that 

the maximum fitness of the population can never reduce from one generation to the next.

2.3.4 Recombination

Recombination or crossover takes two individuals, and combines their chromosomes to 

create two offspring. Associated with recombination is the crossover rate - the probabihty 

that any individual will experience crossover, and unless it is set to 1, there is a chance 

some members in the current generation do not undergo crossover. The three most 

popular types of crossover are one-point crossover, two-point crossover and uniform 

crossover; these are further discussed in Section 3.2.

2.3.5 Mutation

The mutation rate governs the probabihty, which is normahy low, that a gene or bit may 

experience mutation (some instantaneous change). For chromosomes encoded as bit 

strings, this would mean a bit change from one to zero or vice versa. Ho hand (1992) 

explained that the main purpose of mutation was as an “insurance pohcy” to avoid
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fixation on the search space. For example, without mutation, every string in the 

population may hold a one at the first bit position, and there would be no way of 

obtaining a zero at the first position. Therefore mutation is what helps provide diversity at 

a given bit position.

2.4 Choosing Operators and Parameters

In Section 2.3, a description of the components was provided and all but one component 

(evaluation) has associated with it a choice of operators and/or parameters. An example 

of possible choices that can be made is given in Table 2.1. There are many more GA 

operators and parameters; a comprehensive survey can be found in Michalewicz (1994) 

and Mitchell (1996).

Component Operator Parameter

Population Population size

Selection Selection Methods

Fitness proportionate selection

Tournament selection 

Ranking selection

Ehtism

Roulette wheel 

SUS

Tournament size

Recombination Recombination operators 

One-point crossover 

Two-point crossover 

Uniform crossover

Recombination probabihty

Mutation Mutation probabihty

Table 2.1: An example collection of operators and parameters associated with a genetic algorithm.

The choice of these operators and parameters greatly influences the search capabihties of 

the GA. They determine whether the algorithm can find a suitable solution and with what 

efficiency. However, choosing appropriate parameters for a GA is problematic and is in 

itself an optimisation problem
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Earlier work has been done on trying to find suitable choices of operators and 

parameters that will work well on a wide range of problems. De Jong (1975) put 

considerable effort into finding ideal parameter values, for a traditional GA, that were 

good for a suite of test problems also proposed in his work. He used an experimental 

approach and concluded that the following parameters gave reasonable performance:

Population size 50 -  100

One-point crossover rate 0.6

Mutation probability 0.001

Selection strategy ehtist + roulette wheel

In a further study, Grefenstette (1986) used a ‘meta-GA’ to optimise values for the 

parameters. He also used De Jong’s test suite and evolved a population of 50 GA 

parameter sets (the same set used by De Jong). His study found parameters:

Population size 30

One-point crossover rate 0.95

Mutation probabihty 0.01

Selection strategy ehtist + roulette wheel

Note how the parameter settings differ in both studies. An exhaustive study by Schaffer et 

al. (1989) on a smah set of numerical optimisation problems and on some functions from 

De Jong’s test suite also arrived at different conclusions.

In these studies, an attempt was made to find an optimal and general set of 

parameters. However, the current state of GA research utihses a large range of operators 

and parameters; this makes it additionaUy difficult to determine the appropriate 

combinations to use. Moreover, parameters are not independent, making it practicahy 

impossible to try ah combinations systematicahy. As stated by Eiben et a l (1999) 

. .finding good parameter values for an evolutionary algorithm is a poorly structured, 

ill-defined, complex problem”. A more contemporary view on G As acknowledges that 

general principles on parameter settings cannot be formulated a priori for general use 

(Back 1996; Mitcheh 1996; Eiben et a l 1999). Moreover, optimal settings are likely to
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differ over the course of a single run as was demonstrated by approaches that adapt 

recombination and mutation probabilities concurrently with ongoing search (Davis 1989; 

Back 1992a and 1992b; Tuson and Ross 1998). Other adaptive techniques such as 

adaptive recombination operators have been proposed and are further discussed in 

Section 3.3.

2.5 Schema Theorem and Building Block Hypothesis

The first theoretical foundation of genetic algorithms was presented by Holland (1992); 

this is known as the Schema Theorem and assumes a binary encoding of chromosomes. 

Holland (1992) introduced the concepts of schemata and building blocks, which have 

now dominated much of the theoretical analysis and thinking about G As.

A schema is built by introducing a "don’t care’ symbol (*) into the alphabet of 

genes. For example, in a binary encoding a schema is a string of characters from the 

alphabet {0, 1, *}. A schema represents all strings, or “hyperplanes” (subsets of the 

search space), which match it on all positions other than For example, a schema 

HI = “*0000” is a hyperplane defined by having zeros in its last four positions. All strings 

with zeros in their last four positions are examples or instances of this schema. Thus 

schema HI matches 2 strings and for example:

H2 = “1*1*0” matches 4 strings 

H3 = “0***0” matches 8 strings 

H4 = “***1*” matches 16 strings

H5 = “*****” matches 32 Q! where I is the length of the string) strings

There are two properties used to describe schemata, the order and defining length. The 

Schema Theorem is formulated using these two properties and this terminology is also 

used throughout this thesis. The order of a schema H, denoted by o(H) is the number of 

non-* symbols in the schema. For example, the following 3 schemata, each of length 5,

HI = “*01**”

H2 = “*0*01”

HI = “01011”
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have the following orders:

o(Hl) = 2, o(H2) = 3 and o(H3) = 5.

The defining length of a schema H, denoted by ^H ), is the distance between the first and 

last non-* symbol. For example,

Ô (HI) = 1,0  (H2) = 3 and (5 (H3) = 4.

Holland (1992) showed that the analysis of GA behaviour was far simpler if carried out in 

terms of schemata. He showed that a string of length I is an instance of 2̂  schemata. In 

theory a population of P individuals could contain P 2̂  schemata but in general not aU 

schemata will be represented, as there will be some overlap. Holland was able to 

demonstrate, using the Ar-armed bandit analogy, the result known as “implicit 

parallelism". This suggests that the main factor in the success of G As is their ability to 

test a large number of possibilities such that a population will usefully process O(P^) 

schemata. However the vahdity of this argument has attracted many criticisms. Firstly the 

notion of imphcit parallehsm assumes a uniformly distributed population and in a GA that 

is true only in the initial population. Grefenstette (1991) states that in order to accurately 

assess how many hyperplanes are processed it is necessary to consider the dynamic 

distribution of samples within the population which means taking into account the fitness 

function and selection algorithm as part of the analysis. Secondly, the assumption that 

hyperplane competitions can be isolated and solved independently is incorrect owing to 

high fitness variances (Grefenstette and Baker 1989) and gene interactions (Reeves and 

Wright 1999). Thus, the fitness of a hyperplane cannot be estimated independently of 

those with which it interacts. Macready and Wolpert (1996) have also argued, using the 

2-armed bandit analogy, that the strategy described by Holland is not an optimal one. 

Furthermore they also believe there is a fatal flaw in Holland’s analysis and its supposed 

justification for G As.

The Schema Theorem was formulated for a GA that uses fitness proportionate 

selection, one-point crossover and mutation. In summary (for a detailed explanation the 

reader is referred to Holland (1992 pp. 89-111) or Goldberg (1989a pp. 28-33)), the
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Schema Theorem provides a lower bound on the expected number of instances of schema 

H at time t + 1, denoted as E\m{H,t + l)\, as being a function of the number of instances 

of schema H at time t (denoted as w(H, t)), the probability of selecting schema H, and the 

probabihty of disrupting H via recombination and mutation (as given below):

E\m{H,t +1)] ^ m(H, t) * probabihty of selection * (1 -  probabihty of disruption)

The Schema Theorem provides a lower bound because recombination and mutation may 

also create instances of a schema H. E\m{H,t +1)] is given as:

Where:

f ( H , t )  represents the mean fitness of individuals that are instances of schema H 

at time t,

f ( t )  represents the mean fitness of the population at time t, 

is the recombination rate, 

is the mutation rate.

The Building Block Hypothesis (Goldberg 1989a) is related to the Schema Theorem. This 

states that G As work by discovering low-order schemata of high fitness {building blocks) 

and then combining them via recombination to form higher-order fitter schemata. 

However this still remains unproven and is an article of faith, which for some problems is 

easily violated. Consider the following a problem that has a global optimum (the fittest 

individual in the search space) HG = “11111” and a local optimum (a false peak) 

HL = “00000”. Now consider the following schemata that have above average fitness:

H I = “11***”

H2 = “***11”
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The combining of these schemata produces a schema H3 = which might be less

fit than HI and H2 and furthermore might be less fit than schemata:

H4 = “00***”

H5 = “***00”

H6 = “00*00”

In these cases the GA may have difficulty in converging to HG since it may tend to 

converge to strings leading to HL. This phenomenon is called deception and is described 

in more detail in the next section.

2.6 £pistasis and Deception

A central problem in the theory of G As is the characterisation of problems that are 

difficult for G As to optimise. Many attempts to characterise such problems have focused 

on the notion of epistasis and deception.

Epistasis is the interaction of genes in a chromosome. That is, the influence of a 

gene on the fitness of the chromosome may depend on the values (alleles) of other genes 

present on the chromosome. This interaction does not just apply to genes that are 

grouped together on the chromosome. Interaction can occur between genes at opposite 

ends of the chromosome or between adjacent genes. Moreover each gene can have 

different interactions with each other; some genes may not interact with others on the 

chromosome whilst some may interact with many. Most problems contain epistasis; 

however, it is difficult to know a priori exactly how much epistasis exists in a problem.

The phenomenon of deception is strongly connected with the concept of epistasis 

and has been widely studied by Goldberg (1989a, b, c), Whitley (1991), Grefenstette 

(1993) and Deb and Goldberg (1993). A problem is considered to be deceptive if a 

combination of alleles or schemata lead the GA away from the global optimum and 

towards the local optimum. A deceptive problem is not always difficult for the GA to 

solve (GA-hard). Whitley (1991) and Deb and Goldberg (1993) presented conditions, 

which class problems as not being deceptive and thus GA-easy to those that are fully 

deceptive and thus GA-hard. A fully deceptive problem of order k exists when the 

maximum order of any schema is k and all relevant lower-order hyperplanes lead toward a
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single schema that is not the global optimum. A partially deceptive problem of order k 

exists when the maximum order of any schema is greater than k  and all relevant 

hyperplanes of order less than k lead toward a single schema that is not the global 

optimum.

In our test-suite of benchmark problems (Section 5.3) we use L-MaxSAT 

problems (Mitchell, Sehnan and Levesque 1992; De Jong, Potter and Spears 1997) and 

NK landscapes (Kauf&nan, 1993) with tuneable epistasis and deceptive trap functions 

(Deb and Goldberg 1993) with tuneable deception which allows us to evaluate 

performance of recombination operators under a wide range of conditions.

2.7 Summary

The genetic algorithm is a type of evolutionary algorithm that uses a genetic/evolutionary 

metaphor. Implementations typically use fixed-length bit chromosomes to represent the 

genetic information, together with a population of individuals that undergo recombination 

and mutation in order to find optimal solutions.

The conventional GA has many components each associated with operators and 

parameters. The number of parameters available to use today are far greater than that of 

the original GA proposed by Holland (1992) and as the search capabilities of the GA are 

sensitive to the combination of the parameters chosen, the choice of parameters to use is 

difficult to decide a priori.

The Schema Theorem (Holland 1992) was the first explanation of how G As work, 

which was later supported by the Building Block Hypothesis (Goldberg 1989a). A brief 

explanation of the underlying concepts of the Schema Theorem and Building Block 

Hypothesis were provided in this chapter and concepts of epistasis and deception were 

also introduced.
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Chapter 3

Related Work

This chapter is focussed on recombination and begins with a survey of previous work on 

recombination operators by dividing these operators into two sets: static and adaptive. 

Early work on genetic algorithms has concentrated on static recombination operators, 

which are described in Section 3.2, and are widely accepted as a test bed for comparing 

other recombination operators. More recent work has concentrated on adaptive 

recombination operators, which are described in Section 3.3 in the hope of creating a 

more robust optimisation strategy. This survey of recombination operators is followed by 

a description of existing work that is used to understand the behaviour of static 

recombination operators in terms of (i) biases imposed on search and (ii) schema survival; 

these are provided in Sections 3.4 and 3.5 respectively. In Section 3.6 we introduce the 

linkage problem which is associated with static recombination operators and the encoding 

of the problem. This section also provides a survey of techniques that have been proposed 

to try to overcome this linkage problem. Finally, the increasing use of adaptive techniques 

has prompted the need to classify the different forms of adaptation presented by these 

techniques to allow future research to make a clear distinction between different adaptive 

techniques. We summarise all the classifications and their limitations in Section 3.7.
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3.1 Introduction to Recombination

Recombination, also known as crossover, has been considered as the primary operator of 

a GA (Holland 1992; Goldberg 1989a) and is thought to be responsible for the generation 

and propagation of good solutions. More recently, there have been many studies on the 

role played by traditional static recombination operators compared with the role of 

mutation in a GA (Schaffer and Eshelman 1991, Spears 1993 and Wu, Lindsay and Riolo 

1997). Recombination operators have also been classified by their usefiilness in terms of 

generating and propagating solutions (Eshelman and Schaffer 1995). There are now many 

different ways of implementing recombination (Spears 1997). Some recombination 

operators incorporate adaptive methods and are classed as adaptive recombination 

operators: those that do not incorporate adaptive methods are classed as static 

recombination operators.

3.2 Static Recombination Operators

In this section we describe static recombination operators that have been considered for 

use as general operators. The three most popular recombination operators are one-point, 

two-point and uniform crossover. The popularity of one-point crossover is due to the 

foundations of genetic algorithms constructed by Holland (1992). Two-point crossover 

(De Jong 1975) and uniform crossover (Syswerda 1989) are also popular, as they have 

been shown to perform better than one-point crossover (Syswerda 1989; Eshelman, 

Caruana and Schaffer 1989). These three operators have been generally accepted as the 

test bed for comparing other recombination operators. In this thesis we use two-point and 

uniform crossover as a comparison with selective crossover.

3.2.1 One-point Crossover

One-point crossover occurs when parts of two chromosomes are exchanged after a 

randomly selected point, creating two children. The point selected is the same for both 

parents; shown in Figure 3.1. One-point crossover was used to define the Schema 

Theorem and the Building Block Hypothesis as mentioned earher.
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Parent 1: 1 ; 1 '%w Childl:

Parent2: 0 0 0 0 0 0 0 Child2: 0 0 0 1 W\ % 1

Figure 3.1: One-point crossover.

3.2.2 N-point Crossover

N-point crossover (De Jong 1975) is similar to one-point crossover, except that n points 

(rt ^ / - 1) are randomly selected and the genetic material between the n points is 

exchanged. Figure 3.2 shows an example of two-point crossover. Two-point crossover is 

very commonly used because it has been shown to be less disruptive of schemata than 

one-point crossover and has shown to perform better than one-point crossover (Spears 

and De Jong 1991a; Eshelman, Caruana and Schaffer 1989).

Parent 1: 1 1 1 1 1 1 1 1 1 1 1 T  ;;

Parent2: 0 0 0 0 0 0 0 0 0 0 0 0

Childl:

Child2

T: : 1 0 0 0 0 Wr-, Ml T,:| Mr,
0 0 0 1 1 1 :a-- M r 0 0 0 0 0

Figure 3.2: Two-point crossover.

3.2.3 Uniform Crossover

Uniform crossover (Syswerda 1989) differs greatly from one-point and two-point 

crossover. In uniform crossover we decide, with probabihty ? o ,  for each gene, which 

parent contributes its aUele to which child as shown in Figure 3.3. A mask is generated for 

each child using Pq. In each mask (Maskl and Mask2) a ‘1’ indicates that the aUele is 

inherited from Parent 1 and a ‘2’ indicates that the ahele is inherited from Parent2. Note 

that Mask2 is a complement of Maskl and vice versa. Exchange can potentiahy occur at
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each allele and for this reason uniform crossover is considered as an “allele-based’’ 

recombination operator. This term is used throughout the thesis to differentiate between 

operators where crossover occurs at each allele and operators that exchange a block of 

sequential alleles as done in n-point recombination.

Parent 1: PI 1 , 1: % . i& M
Parent!: 0 0 0 0 0 0 0

Maskl: 1 ! 1 1 ! ! 1

Mask!: ! 1 ! ! 1 1 !

Childl 1 0 1 X 0 0 1 '

Child! 0 1 0 0 1 1 0

Figure 3.3: Uniform crossover.

When Syswerda originally proposed this crossover, Po was set to 0.5. Uniform crossover 

has since been extended to parameterised uniform crossover (Spears and De Jong 1991b) 

where ?o can take alternative values, such as 0.1. Once the value of ?o has been decided it 

remains unchanged throughout the algorithm. Spears and De Jong (1991b) showed that 

uniform crossover (when ?o is set to 0.5) is more disruptive of schemata and performed 

better than one-point and two-point crossover in some problems but worse on others 

(Syswerda 1989; Eshelman, Caruana and Schaffer 1989). The theoretical analysis by 

Spears and De Jong (1991b) showed that lowering values of ?o could reduce this 

disruptive quahty. However, these results were limited to a theoretical analysis and no 

empirical evidence was given to indicate the best setting for Pq.

3.2.4 Bit-Based Simulated Crossover

Syswerda (1993) identified that uniform crossover is very similar to an operator that uses 

two parents for recombination and whenever these parents have a bit in common, the bit 

is copied to the child. All remaining bits are then randomly generated. This is similar to
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uniform crossover because in uniform crossover both children are guaranteed to inherit 

the common bits and each remaining bit has a 50% chance of coming from one parent or 

the other. Since the bits in each parent are different, it is the same as randomly assigning a 

0 or 1 to the bit position.

From this idea Syswerda (1993) introduced bit-based simulated crossover (BSC), 

which produces a single child by using statistics of individual bits across the entire 

population. For example, a single bit position in a population (a bit column) will contain 

some ratio of ones and zeros. The individuals that contain these bits have some probabihty 

of being selected and these probabihties can be used to create a weighted average for the 

ones and zeros in each bit column. This produces a probabihty for each bit as to whether 

is should be a zero or a one in the offspring. These probabihties are then used to generate 

new individuals.

BSC was apphed to a set of test problems and compared with one-point, two- 

point, uniform crossover and mutation only. The results show that BSC was found to be 

competitive with other operators. A study by Eshehnan and Schaffer (1993) on BSC also 

confirmed these results.

3.3 Adaptive Recombination Operators

In this section we provide a survey of adaptive recombination operators that have been 

proposed for use as general operators. A thorough description of masked crossover 

(Louis and Rawlins 1991) and adaptive uniform crossover (White and Oppacher 1994) is 

provided in Chapter 7 which analyses the similarities and differences to selective 

crossover.

3.3.1 Schaffer and Morishima (1987)

Schaffer and Morishima (1987) proposed punctuated crossover that evolved the positions 

at which crossover was allowed to occur. They accomphshed this by appending a 

crossover bitmap to the end of the encoded solution. These appended bits represented the 

crossover positions using a binary alphabet. For example consider an encoded solution of 

length /; a 1 at locus / + i denotes a crossover position at locus i. The extra bitmap also 

underwent the same crossover as the corresponding alleles thereby evolving the crossover
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positions. Inferior children were discarded, through selection, along with their crossover 

bitmaps. Their evaluation of punctuated crossover was limited to a small set of problems 

and a comparison to one-point crossover, which showed that punctuated crossover 

performed better than or as well as one-point crossover. Their analysis of punctuated 

crossover was limited to observing the population distribution of number of crossover 

points, which demonstrated that the crossover points increased in line with the number of 

generations.

3.3.2 Louis and Rawlins (1991)

Louis and Rawlins (1991) proposed masked crossover, which is an allele-based 

recombination operator. It uses an extra binary mask that accompanies each chromosome 

to direct crossover. The parental binary masks are compared at each bit position; the 

differing bit values in the masks define the crossover positions. Using parental and fitness 

correlations, relative fitness information was translated into the binary mask to guide 

crossover towards local fitness increases. This operator is described in detail in Chapter 7 

owing to its close relation to selective crossover. Their evaluation of masked crossover 

was limited to two problems of circuit design, which are not well studied. A comparison 

of masked crossover was made with one-point crossover and performed better than one- 

point crossover on most problems except those that are deceptive.

3.3.3 White and Oppacher (1994)

White and Oppacher (1994) proposed adaptive uniform crossover (AUX), which is an 

allele-based operator. For AUX each bit string in the population is augmented at each bit 

position with an automaton. Each automaton state maps to a crossover probability for 

that bit string location. Their operator also uses fitness information to identify groups of 

bits to be kept together when crossover occurs. This operator is described in detail in 

Chapter 7 owing to its close relation to selective crossover. Their evaluation of AUX 

against uniform crossover on 23 unknown functions demonstrated that AUX performed 

better or equally on 19 functions and showed worse performance on the remaining 4 

functions.
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3.3.4 Eshelman and Schaffer (1995)

Eshelman and Schaffer use a switching mechanism to decide between two recombination 

operators based on how they perform. The two operators in question are half-uniform 

crossover (HUX) - a variant of uniform crossover which randomly swaps half of the 

differing bits) and shuffle crossover (SHX) - which is like one-point crossover without 

positional bias (see Section 3.4.1). The switching mechanism is incorporated before a GA 

is run, so if HUX was used initially and no global solution was found owing to premature 

convergence, the GA is re-started using SHX. The same process is then also apphed to 

SHX. One drawback to this mechanism is that a global solution is not always known in 

which case when should we switch to the other operator? Their analysis demonstrated 

that the switching mechanism was better than using HUX on its own however worse than 

using SHX on its own.

3.3.5 Spears (1995)

Spears (1995) proposed a 1-bit adaptation that aUowed the GA to choose between 

uniform and two-point crossover while solving the problem. A single bit is appended to 

each individual; this bit determines which operator should be used for crossover. If both 

parents sample a 1 then two-point crossover is used; if both sample a 0, uniform 

crossover is used; otherwise either is used with 50% probabihty. 1-bit adaptation was 

compared against the sole use of two-point and uniform crossover on a set of unimodal 

and multimodal problems. The results demonstrated that this mechanism worked better 

than two-point crossover but no better than uniform crossover. Spears analysed 1-bit 

adaptation by monitoring the number of I ’s in the operator column and the difference in 

the number of I ’s from generation to generation. This analysis demonstrated that the 

number of I ’s in the operator column changed more rapidly when using 1-bit adaptation 

as opposed to two-point or uniform crossover but did not provide any indication to 

suggest why 1-bit adaptation was demonstrated to be inferior to uniform crossover
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3.4 Biases in Static Recombination Operators

The search procedures of a GA make use of biases to help direct the search. A bias is a 

mechanism used to push search towards particular regions in the search space; the general 

bias of a GA is implemented by selection according to fitness. The study of biases in 

recombination operators allows us to understand the behaviour of recombination 

operators on problems with specific characteristics.

Eshelman, Caruana and Schaffer (1989) studied biases in static recombination 

operators (later refined in Eshelman and Schaffer, 1995). Their motivation was to 

understand the explorative and exploitative behaviour of different recombination 

operators, and categorise them in terms of their positional bias, distributional bias and 

explorative power. An explanation of each is given in the following sections.

A study of biases in adaptive recombination operators is provided in Chapter 7 to 

identify any deleterious biases in these operators and to understand the search behaviour 

of these operators.

3.4.1 Positional Bias

A recombination operator has a positional bias when the creation of a new individual is 

dependent upon the location of the alleles in the chromosome. In other words the 

recombination operator is more likely to propagate adjacent genes together rather than 

disjoint ones. Booker (1992) showed that, of the «-point recombination operators, one- 

point crossover has the highest positional bias. Booker showed that for « < / / 2 (where n 

is the number of crossover points and I is the length of the chromosome) the positional 

bias tends to decrease as n increases for «-point recombination. Uniform crossover or 

uniform parameterised crossover (Spears 1998) has no positional bias.

3.4.2 Distributional Bias

Distributional bias exists if the amount of material being exchanged, during 

recombination, is concentrated toward a mean value. If the distribution of the number of 

alleles being exchanged is uniform (ranging from 0 - (I - \ ) ) ,  there is no bias. The more 

the distribution differs fi"om the uniform distribution the higher the distributional bias. 

Booker (1992) found that the distributional bias of «-point recombination tends to 

increase as « increases, as the distribution becomes less and less uniform. Spears (1998)
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extended the work by Eshelman et al. to include population homogeneity (similarities 

between individuals in the population). Rana (1999) empirically analysed the distributional 

biases of static recombination operators using Hamming distance. Both Spears and Rana 

confirmed the results of Booker and Eshelman et al., that one-point and two-point 

crossover do not have distributional bias, whereas uniform crossover has high 

distributional bias. The bias increases as Pq decreases from 0.5 to 0.0.

Eshelman, Caruana and Schaffer (1989) showed that crossover operators that 

have high distributional bias (uniform crossover) outperformed those that had high 

positional bias (one-point crossover). However, their study was limited to a small set of 

problems.

3.4.3 Exploration and Exploitation

An issue that is of great concern in the GA community is the balance between exploration 

and exploitation. An efficient optimisation algorithm is one that uses two strategies: 

exploration to investigate new and unknown areas in a search space and exploitation to 

make use of knowledge acquired by exploration to reach better positions on the search 

space. Pure random search is good at exploration, but has no exploitation. Hill climbing is 

good at exploitation but has httle exploration. Genetic algorithms combine both strategies, 

but recombination operators have varying degrees of exploration and exploitation 

(Eshelman, Caruana and Schaffer, 1989).

Exploratory power is defined to be the number of different individuals that can be 

created by a single appHcation of the recombination operator. One-point crossover, for 

instance, can potentially create any one of 2(/ -  1) different individuals in a single event. 

Eshelman, Caruana and Schaffer (1989) assumed complete diversity when making the 

calculations, but population homogeneity also effects the exploratory power of a GA 

(Spears, 1998). The explorative power of any recombination operator increases as 

diversity increases. Therefore the exploratory power of one-point crossover at most is 

2(y - 1), where y  is the number of differing aUeles in the parents. One-point crossover has 

very low exploratory power and two-point crossover somewhat higher, therefore the 

exploratory power of n-point recombination increases as n increases. For uniform 

crossover there are up to 2  ̂ possible recombination events thus having the potential of 

reaching the maximum exploratory power.
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3.5 Theoretical Static Recombination Analysis

Spears (1998) constructed a schema survival probability for n-point and uniform 

crossover. In this section we provide an overview of the schema survival probability for 

uniform crossover, as this wül be used to construct a schema survival probability for 

selective crossover in Chapter 8. For the schema survival probability for n-point crossover 

the reader is referred to Spears and De Jong (1991a) and Spears (1998).

3.5.1 Framework

Spears (1998) constructed a schema survival probabihty for uniform crossover assuming 

that individuals are of a fixed length /. A schema or hyperplane of order k can be denoted 

by Hjt. Given a binary encoding, H/t represents 2̂ '̂  possible strings where the strings match 

on the k  defining positions. For example, H2 = “**00” is second-order hyperplane that 

represents the four strings that contain zeros in their two positions.

3.5.2 Schema Survival Probability for Uniform Crossover

In uniform crossover alleles are exchanged between two parents with probabihty Pq. 
Spears (1998) identified that a schema can survive in either offspring, under uniform 

crossover, if ah A: defining positions of are exchanged or if ah A: defining positions of Hit 

are not exchanged. This can be described in terms of a bit mask with k ones or k  zeros. 

Thus schema survival under uniform crossover can be represented as:

+ ( l - ^ J  (3.1)

Note for traditional uniform crossover (Syswerda 1989) where ?o = 0.5 the schema 

survival probabihty is simply (1/2)* ' \

Spears (1998) identified that a schema can also survive due to population 

homogeneity; where parents share identical aheles. Suppose that crossover results in x of 

the k  defining positions being exchanged, then a hyperplane survives if the parents’ aheles:
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1. Match at the x  positions being exchanged.

2. Match at i h & k- x  positions not being exchanged.

Locus: 1 2 3 4 5

Parentl: 1 1 1

Parent2:

Figure 3.4: An example of hyperplane survival - Parentl is a member of the third-order hyperplane 
H3 = * **111" and Parent! is an arbitrary string. Recombination is performed to produce two 
offspring.

For example consider a hyperplane H3 = in Figure 3.4 where parentl is a

member of the hyperplane and parent2 is some arbitrary string; recombination wih 

produce two offspring. Now suppose exchange takes place at locus 3 only. H3 would 

survive if the two parents have matching aheles at locus 3 or if they have matching aheles 

at loci 4 and 5. In either situation the hyperplane H3 survives on one offspring or the 

other. The probabihty that the aheles wih match depends on the population homogeneity 

and is given as fohows:

(3.2)

Where:

eq

k - x
eq

eq

represents the probabihty that the two parents wih match on x  aheles being 

exchanged.

represents the probabihty that the two parents wih match on the A: - % 

aheles not being exchanged.

is the joint probabihty that both parents match on ah k  aheles and is 

subtracted.
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Extending equation 3.1 to include population homogeneity would correspond to those bit 

masks which are not either all zeros or aU ones at the defining positions of the 

hyperplanes. Thus for all possible bit mask combinations the schema survival probabihty 

for uniform crossover is finaUy given as:

P, ( / / , ,  ) = g  n  -  Po T ‘ ( p ./  + p . / "  -  p . ;  ) (3.3)

Spears (1998) graphed this probabihty for different values of Peq against the defining 

length of schema and showed that:

a. The survival probabihty is not affected by the defining length of schema 

and thus confirmed that uniform crossover has no positional bias. 

However, schema survival is affected by the order of a schema. The 

probabihty of a schema surviving is directly proportional to the order of a 

schema.

b. As the population becomes more and more homogeneous the schema 

survival probabihty increases as is expected.

3.6 Encoding and Linkage in Genetic Algorithms

A set of genes is said to be ‘hnked’ if they are epistaticahy connected (see Section 2.6) 

and are not separated by recombination. This is known as genetic linkage and is related to 

the encoding of the problem.

The “Building Block Hypothesis” (Goldberg, 1989) suggests that genes that are 

situated relatively close to each other on the chromosome are less likely to be disrupted in 

a canonical genetic algorithm (one that uses one point crossover). Further studies on gene 

positions and crossover by Eshelman, Caruana and Schaffer (1989) showed that 

recombination operators with high positional bias (see Section 3.4.1), such as one-point 

and two-point crossover, are less disruptive against adjacent genes. Ho hand (1992), 

Goldberg (1989a) and Goldberg, Korb and Deb (1989) suggest that genes, which are
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thought to be epistatically connected, should be encoded into the chromosome so that 

they are positioned near each other to prevent them from being separated by 

recombination operators that have high positional bias.

To produce such an encoding is difficult without knowing ahead of time which 

genes are important and related to each other in forming useful schemata. This is known 

as the ‘linkage problem’ (Mitchell 1996). Choosing such fixed encodings without a priori 

knowledge of the problem can be difficult for the GA user; how is one to decide the best 

encoding for one’s problem and one’s GA?

Many techniques that adapt the encoding, as an alternative to the use of fixed 

encodings, have been proposed to try and overcome the linkage problem and are outlined 

in the following sections.

3.6.1 Holland (1992)

Holland (1992) proposed “inversion'', a reordering operator. Inversion works by giving 

each allele an index indicating its actual position in the chromosome (for evaluation 

purposes). Two points are then chosen in the string and the bits between them are 

reversed to produce a new ordering. Crossover then occurs on this new ordering, thereby 

producing more orderings. The purpose of reordering was to find orderings in which 

beneficial schemata are more likely to survive under one-point crossover. This technique 

has been apphed in early work but did not produce any improvements in performance 

(Goldberg 1989a).

3.6.2 Goldberg, K erb and Deb (1989)

Goldberg, Korb and Deb (1989) proposed the “messy GA" that evolves the encoding. The 

messy GA (mGA) uses a variable length encoding where each allele has an index 

indicating its actual position in the chromosome, but all loci do not have to be specified in 

the chromosome and loci can be specified more than once. The mGA has two phases; a 

primordial phase -  where building blocks of a particular order are generated and a 

juxtapositional phase -  where building blocks are recombined using cut and spHce 

operators that mimic one-point crossover. To use mGAs we are faced with the same 

problem of not having a priori knowledge of the problem. What is a useful schema order 

for the primordial phase? Also when evaluating strings where all loci are not specified.
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how can you compute the true fitness? If the individual contains loci that are interacting, 

missing alleles are crucial in defining fitnesses for individuals.

3.6.3 Kargupta (1996)

Further extensions have been made to the mGA called the ''gene expression messy GA 

(GEMGA) (Kargupta 1996) where each gene has a position, value, weight and a linkage 

set. Kargupta demonstrated that GEMGA has better performance than the mGA but it 

also requires an optimal schema order in the initial population.

3.6.4 H ank (1997)

The "linkage learning GA” (LLGA) developed by Harik (1997) used alleles that were 

also tagged with their actual positions. An exchange operator similar to two-point was 

used for recombination. In his study he compared LLGA on problems constituted by a 

number of non-overlapping building blocks of a maximum size k and on uniformly-scaled 

problems (problems where all building blocks give the same contribution to the fitness e.g. 

the one-max problem). Unfortunately the LLGA did not work well for easy uniformly 

scaled problems and the study was limited to non-overlapping building blocks.

3.6.5 Smith (1998)

Smith (1998) proposed the "LEGO” operator that worked by considering the population 

of solutions as a gene pool comprised of ‘blocks’ of genes defined over certain loci. These 

blocks can vary in size fi*om a single gene to an entire chromosome. This was achieved by 

associating two boolean flags to each gene that determine whether it links to the genes to 

its left and right. Two adjacent genes are linked if the appropriate flags are set to true. A 

new individual is created by holding tournaments to fill its loci. The LEGO operator did 

not perform any better than static recombination operators on simple optimisation 

problems like the one-max problem.
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3.7 Classification of Parameter Adaptation in Genetic Algorithms

The run of a GA is intrinsically a dynamic and adaptive process but the use of constant 

parameters or static operators contradict the general evolutionary spirit and thus ehcits 

sub-optimal performance from the GA. To overcome this contemporary G As use adaptive 

strategies that modify parameters or manipulate operators during the run. The increased 

use of adaptive strategies has prompted the need for classifying different types of 

adaptation.

Angeline (1995) provided a classification based on levels of adaptation and types 

of update rules used. He defined three levels adaptation that can exist within the GA -  

population, individual and component level of adaptation. Population level adaptation 

occurs when parameters global to the population are adjusted dynamically. Individual 

level adaptation adjusts strategy parameters held within individuals and the values 

undertaken by these parameters affect only the corresponding individuals. Component 

level adaptation adjusts strategy parameters local to some component of an individual.

Angeline also defined two distinct types of update rules for parameters in an 

adaptive evolutionary algorithm -  absolute and empirical update rules. Absolute rules are 

predetermined and specify how modifications are made. In contrast empirical update rules 

allow the competitive process in evolutionary algorithms to determine if changes in 

parameters are advantageous. A self-adaptive evolutionary algorithm was defined as one 

that evolves the values of its adaptive parameters. Angeline’s classification considered 

evolutionary algorithms as a whole with httle attention given to the different components 

that exist and can be adapted, for example, in a genetic algorithm.

Hinterding et al. (1997) extended the classification provided by Angeline by 

defining types of adaptation that are possible from the update mechanism used and 

introduced an extra level of adaptation. They define two general types of adaptation, 

static and dynamic adaptation. A canonical GA is adaptive but exhibits static adaptation 

because the operators are controlled externally and are decided before a run. Dynamic 

adaptation occurs when some mechanism, other than an external source, modifies the 

functionahty of the operators. An example of dynamic adaptation is a self-adaptive GA, 

which has encoded on the chromosome the parameters that are to be adapted and these 

parameters will undergo recombination and mutation along with the chromosome.
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Dynamic adaptation was further sub-divided into three classes: deterministic, 

adaptive and self-adaptive. Deterministic dynamic adaptation was defined to take place if 

the value of the parameter is altered by some deterministic rule that does not use any 

feedback from the evolutionary algorithm e.g. changing the probability of mutation at 

specified generations. Adaptive dynamic adaptation exists if feedback from the 

evolutionary algorithm is used to determine the direction and/or magnitude of the change 

to the strategy. Self-adaptive adaptation is described as done by Angeline, where 

parameters evolve along with the evolutionary algorithm. The adaptive parameters are 

encoded into the chromosome of the individual and also undergo mutation and 

recombination; however, these encoded parameters do not effect the individual’s fitness. 

Hinterding et al. also introduced environment level adaptation in addition to population 

and individual level adaptation, where the response of the environment (in terms of the 

fitness function) to the individual is changed.

This classification provided by Hinterding et al. does not consider adaptation in 

different components of the evolutionary algorithm. Also this classification of different 

types of adaptation is not as clear-cut. For example, some of the adaptive recombination 

operators described earher fall in more than one category. Some features are adaptive e.g. 

the credit assignment mechanism used. On the other hand some are self-adaptive e.g. the 

encodings used that also evolve along with the chromosomes.

Smith (1998) provides a comprehensive classification based on three criteria: what 

is being adapted, the scope of adaptation and the basis for change. Smith’s classification 

captures the different components that exist in an evolutionary algorithm by analysing 

what is actually being changed (e.g. encoding, recombination operators, mutation or 

recombination rates, selection etc). This classification allows us to locate where a specific 

adaptive mechanism takes effect. The scope of adaptation was described using Angeline’s 

terminology on the three levels of adaptation: population, individual and component level. 

The third criterion, the basis of change, was sub-divided into two categories: the evidence 

on which the change is based (e.g. population statistics), and the rules that define how 

changes are affected.
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A recent study by Eiben et al. (1999) merges some elements of the classification 

provided by Hinterding et al. and Smith. Their classification is more general and allows 

more methods of adaptation to be classified. They identified two main criteria:

1. What is changed (Smith 1998) -  This captures the type of component or 

control in the evolutionary algorithm that is undergoing change.

2. How the change is made (Hinterding et al. 1997) - This is dictated by three 

categories: deterministic, adaptive and self-adaptive.

Their classification is more general and apphcable to all evolutionary algorithms. It does 

not include the scope or level of adaptation because it is not always intuitive to decide 

whether a parameter acts at the individual level or the population level; for example, in 

Spears’ (1995) adaptive operator, 1-bit adaptation, where an extra bit was used to 

determine which recombination operator to use. This technique can be characterised as 

adaptation at the individual level. However, considering the distribution of this bit over 

the entire population the adaptation is also at the population level. Therefore there is no 

precise distinction between the scope or level of adaptation.

Eiben et al. defines that the type of change (the how-aspect) can be classified into 

one of three categories: deterministic, adaptive and self-adaptive. However, the analysis 

of selective crossover in Chapter 6 demonstrates that adaptive strategies can employ more 

than one method of change and thus can not be uniquely classified into one category. 

Chapter 6 will provide a new taxonomy for the three categories of change, which allows 

many diverse adaptive strategies to be classified.

3.8 Summary

Recombination is a distinct operator associated with G As and one-point crossover was 

the first recombination operator proposed for use in G As. Since then many recombination 

operators have been proposed. Early work in G As concentrated on static recombination 

operators and analyses in terms of biases and schema survival have been done to 

understand the behaviour of these operators.
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More recently, adaptive recombination operators have been proposed in the hope 

of overcoming some limitations of static recombination operators and creating a more 

robust optimisation strategy. These adaptive operators have been evaluated in terms of 

performance in comparison with other techniques; this is usually done using a test suite of 

problems or a real world apphcation. However, httle effort has been given to analyse 

“how?” and “what?” provides this increased performance. This form of analysis has been 

limited to two studies: (i) punctuated crossover (Schaffer and Morishima 1987), which 

analysed the distribution of crossover locations in the population, (ii) 1-bit adaptation 

(Spears 1995) which monitored the operator choice encoded within individuals. The lack 

of analyses limits our understanding of these new adaptive operators, and provides us 

with httle justification for their use on other problems. For these reasons we have 

conducted four different evaluations of selective crossover; each evaluation is given in 

Chapters 5, 6, 7 and 8.

Many linkage learning G As have also been proposed to overcome the linkage 

problem associated with some static recombination operators. However these techniques 

either showed very httle improvement or required specific knowledge about the problem, 

which in some cases, as stated earher, is difficult to obtain.

Owing to a recent increase in adaptive strategies many classifications have been 

proposed to aUow fiiture research to make a clear distinction between different 

techniques. An overview of each classification and its limitations was provided. The 

classification provided by Eiben et a l (1999) is more general and aUows more methods to 

be classified than those provided by others. However their classification also has 

limitations, which are overcome in Chapter 6 by providing a new taxonomy to classify 

adaptive strategies.
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Chapter 4

Selective Crossover

There are now many different methods for recombination (Spears 1997) but for a given 

problem, two-point and uniform crossover are generally those that are commonly used. 

Even with just three crossover operators it has been difficult to decide a priori which form 

of recombination operator is more efficient to use as the synergy of these operators, other 

GA parameters and the problem be solved does not always yield optimum performance. 

We know from “No Free Lunch” theorems (Wolpert, and Macready 1997) that an 

algorithm that is suited for aU problems cannot exist, since for fixed parameter/operator 

sets there will be problems for which they are optimal and other problems for which their 

performance is poor. However, is it possible to devise an adaptive recombination operator 

that dynamically adapts to problem characteristics to use for a wide range of problems in 

which httle is known about the problem space being searched? This is our motivation for 

designing “selective crossover” an adaptive recombination operator.

This chapter is based on work in Vekaria and Clack (1998a, 1998b, 1999b, 2000). 

It provides a detailed description of selective crossover and emphasises its key properties. 

A description of how this operator is incorporated into the GA is also presented.

4.1 Inspiration

The inspiration for a new adaptive recombination operator (“selective crossover”) comes 

from nature, specificaUy Dawkins’ model of evolution and dominance characteristics in 

nature. Dawkins’ (1989) model of evolution is based on the gene. In his theory the gene is
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considered to be the fondamental unit of natural selection. Since natural selection acts on 

the individual and the individual consists of unique chromosomes, these chromosomes 

actually have a life span of one generation. However, the chromosome consists of many 

genes and a subset of these genes last for many more generations because it is the genes
I

that are passed onto the offspring not the entire chromosome. Thus, natural selection 

actually favours the gene.

Dominance in nature is associated with genetic material represented using diploid 

chromosomes. In the diploid form a genotype carries one or more pairs of chromosomes, 

each containing information for the same functions. The alleles contained in one 

chromosome can be regarded as a direct alternative to the alleles in the other 

chromosome. When building the organism the alleles in one set compete with those in the 

other set. Alleles that are dominant are expressed in the phenotype of an organism and 

those that are less likely to be expressed are recessive. The relationship between a 

dominant and recessive gene is complex: some genes that have been known to be 

dominant have become more recessive in successive generations and vice versa. These 

dominance characteristics have evolved over generations. Merrell (1984) suggests that 

these shifts in dominance are in response to changes in the environment. Thus, those 

genes that increased an individual’s fitness have become more dominant; however, a 

precise model to show this is not available.

Selective crossover was designed using both the analogy of dominance, where 

alleles in a chromosome compete with those on the other chromosome, and the analogy of 

evolution of dominance. The aim is to see if recombination of genes in a haploid GA can 

be evolved where alleles in one parent compete with those on the other parent chosen for 

crossover. Here the alleles are competing to be retained in a fitter individual and the use 

of correlations between parental and offspring fitnesses would allow the means of 

discovering beneficial alleles.

Selective crossover is very much like “dominance without diploidy”. It uses an 

extra vector that accompanies the chromosome to accumulate knowledge of what 

happened in previous generations and uses this memory to bias and combine successful 

alleles (individual bits) during recombination onto the next generation.
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4.2 Terminology

1. Genes are considered here as single bits with associated positions called loci.

2. An allele is the value taken up by the gene. A bit representation is used 

throughout this thesis thus the alphabet defined for an allele is given as the set 

{0,1}.

3. The chromosome is also referred to here as a gene vector.

4. The extra real valued vector used by selective crossover has been named a 

dominance vector and each locus has a dominance value. “Dominance” is not 

really an appropriate word to use because in natural genetics (as mentioned in 

the previous section) dominance is associated with diploid organisms and the 

research presented here is on a haploid genetic algorithm. However our use of 

dominance is to indicate that an allele x  ‘dominates' an allele y during 

recombination.

4.3 Key Properties

Selective crossover is designed with three interdependent key properties:

1. Detection - It detects alleles that were changed during recombination to 

identify modifications to the candidate solution.

2. Correlation - It uses correlations between parental and offspring fitnesses as 

a means o f discovering beneficial alleles.

3. Preservation - It preferentially preserves alleles at each locus, during 

recombination, according to their previous contributions to beneficial 

changes in fitness.

These three properties work together to form selective crossover. Correlations between 

parents and offspring together with the detection of alleles (inheritance of alleles) are used 

to update the dominance values. The dominance values in turn dictate the inheritance and 

preservation of allele combinations.

58



4.4 Implementation

Selective crossover (Vekaria and Clack, 1998a, 1998b) is an adaptive recombination 

operator that evolves better individuals by using a dominance vector to bias alleles during 

recombination. Each chromosome is accompanied by a dominance vector, which consists 

of continuous real values such that each allele in the chromosome has an associated 

dominance value. We assume that dominance in nature is not bounded by limits and 

therefore the dominance values here are also unbounded and can potentially take up any 

positive real number. A dominance value is used to accumulate the fitness contribution of 

an allele with respect to the fitness of the entire individual and parental fitnesses. Hence, 

the dominance vector accumulates knowledge of what happened in previous generations 

and uses that to bias successful or beneficial alleles during recombination, by preventing 

them from crossing-over.

To incorporate selective crossover into the genetic algorithm, the cycHc process of 

the genetic algorithm shown in Figure 2.1 changes to the one depicted in Figure 4.1.

^ — New
Population

Selection
Recombination 
using selective 

crossover

Update
Dominance

Values
Mutation

Evaluation

Initial random 
population with dominance 
values in range 0 to 1

Figure 4.1: A Generational Cycle of a Genetic Algorithm using Selective Crossover
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Population

As mentioned earlier each member of the population must have an associated 

dominance vector; an example of an individual is shown in Figure 4.2. This 

dominance vector will undergo the processes of recombination and selection along 

with the gene vector (chromosome) of the individual. When the population is 

initiahsed the dominance values are also randomly initiahsed with values that are 

initially constrained to he in the range [0,1] but eventually can take on any positive 

real number.

Dominance vector 0.4 0.3 0.01 0.9 0.1 0.2

Gene vector (chromosome) 1 0 0 1 0 0

Figure 4.2: An individual in selective crossover consists of an additional dominance vector.

Recombination

Recombination with selective crossover uses two parents to create two children 

and the recombination rate (see Section 2.3.4) decides how many individuals in 

the population wih be subjected to recombination. Having selected two parents, 

their fitness is recorded. The dominance value of each aUele in both parents is 

compared linearly across the chromosome. The allele that has a higher dominance 

value contributes to Child 1 along with the associated dominance value and 

Child 2 inherits the aUele with the lower dominance value. If both dominance 

values are equal then crossover does not occur at that position. The loci where 

exchange occurred, such that the alleles differ, are also recorded. Figure 4.3 gives 

an example of selective crossover: the shaded genes have a higher dominance 

value than its competing gene.

Mutation

Mutation acts on the gene vector as described in Section 2.3.5. If an allele is 

mutated no change is made to the corresponding dominance value.
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Parent 1 -  fitness = 0.36 Child 1 -  fitness = 0.46

Child 2

0.4 0.3 j 0.01 0.9 0.1 0.2

1;, 0 0 1 0 0

Parent 2 -  fitness = 0.30

0.01 0.2 0.4 0.2 0.9 W .  I

0 1 1 g

Child 1

0.4 0.3 0.4 0.9 0.9 0.3

1 0 1 1 1 0

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

0.4 0.3 0.4 0.9 0.9 0.3

1 0 1 1 1 0

Child 2 -  fitness = 0.20

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

Increase dominance values 

Child 1 -  fitness = 0.46

0.4 0.3 0.5 0.9 1.0 0.3

1 0 1 1 1 0

Child 2 -  fitness = 0.20

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

Figure 4.3: Recombination with Selective 
Crossover

Figure 4.4: Updating Dominance Values

Evaluation

After recombination the new individuals in the population are evaluated. The 

dominance vectors do not contribute to an individuals’ fitness and thus are not 

used to evaluate an individual. The fitness of each individual is calculated as 

described in Section 2.3.2.

Updating Dominance Values

Having assigned fitness values to the new individuals during evaluation, their 

dominance values now need to be updated. For each individual (child) that is now
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a result of recombination, we compare its fitness to both parents’ fitnesses. If the 

child’s fitness is greater than the fitness of either parent, the dominance values (of 

only those genes that were exchanged during crossover) are increased 

proportionately to the fitness increase. This is done to reflect the alleles’ 

contribution to the fitness increase (as shown in Equation 4.4 in the next section). 

Figure 4.4 gives an example using fitness values, which follows on from the 

selective crossover example given in Figure 4.3. In Figure 4.4, only Child 1 has an 

increase in fitness of 0.1 (compared with the fittest parent) hence its dominance 

values get updated. In Figure 4.3 the bit values of Parent 1 and Parent 2 at loci 1 

and 2 did not get exchanged during crossover and the bit values at loci 4 and 6 are 

the same. Thus, after selective crossover, the genes that caused a change in the 

chromosome are only those held at loci 3 and 5. Since the change of those genes 

at loci 3 and 5 resulted in an increase in fitness, only their dominance values get 

increased by 0.1 in Child 1 (shaded in Figure 4.4).

Selection

Selection is achieved as described in Section 2.3.3. When an individual is selected 

both the gene vector and associated dominance vector is copied to the new 

population. Those individuals that do not get selected are discarded along with 

their dominance vector.

4.5 Mathematical Representation

Let us consider an / bit representation and let Q = {o,l}^ be the search space. Each 

individual in selective crossover has a gene vector G and a dominance vector D.

G = ( & , w h e r e  g,. g{o ,i}

D = where é?,.
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Recombination occurs between two parents and and produces two children

and

^here gf* G{Od} 

where eSR*
Ae{p,c}and ke{l2}

P  indicates a parent vector and C indicates a child vector, k refers to the parent or child 

number (either 1 or 2).

Two parents are randomly chosen from the population for recombination, Parent 1 (Pi) 

and Parent 2 (P2), with gene vectors G^ and G^ respectively. Their corresponding 

dominance vectors are and . A crossover can be represented by inheritance

masks and M

M = (m*,...,  m f,.. .,  wf ) where m- G {o,l}aW k G {1,2}.

Crossover will produce two children Child 1 (Ci) and Child 2 (Ci), with gene vectors 

G*̂ ' and respectively. The inheritance mask for Child 1 is and is given in 

Equation (4.1). The inheritance mask is created by comparing the parent dominance 

vectors. In simple terms, each element in M Ms 1 if the element ^ in the

parent dominance vectors. The inheritance mask M  ̂of Child 2 is a complement of M  ̂  

and can also be given byM^ = (1,.. .,1) -

M ‘ = 5 ( 5 ( d '’' (4.1) 

Where 5 is a sign function operating component-wise as defined below:
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Sign Function

Given vectors M and N of length / where:

M = (wj, , w h e r e  

N  = where n. g{o,i}

1, if  W; > 0 
0, if  w. = 0 
-1, otherwise

Using the inheritance mask the resulting gene vector for Child k (where A: G {1,2}), after 

recombination, is therefore:

G*"* = M ‘ ( g' ’ (4.2) 

Where X  ' represents a transposition of vector X.

The dominance vectors of each new Child k are updated to reflect fitness increase 

3-3'' with respect to its parents. We only update the dominance values of those genes that 

were changed during crossover, so we take the Hamming distance of the parent and child 

to update the appropriate dominance values in the dominance vector . The Hamming 

distance is computed by the exclusive-OR operator ©. Therefore the resulting dominance 

vector for Child k  is:

= M* • (£»'■' -  )+  £»'■> + ■ (G^' @ G '’* j  (4.3)

Where:

, i f k ^ l

max(o,(0(G^*^)-0(G^))) , i f k  = 2

(4.4)
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The fitness function is 0(g) and is the fitness increase, which is computed by taking 

the difference between fitness values of Child k and its corresponding Parents. If there is 

no fitness increase, the dominance values are not updated (i.e. = 0 ). To obtain the

fitness increase the child is first compared with the fitness of its corresponding parent (i.e. 

Child 2 and Parent 2). If there is no fitness increase then the child is compared with the 

other parent. For example. Child 2 is first compared with Parent 2; if there is no fitness 

increase it is then compared with Parent 1 and the fitness increase (if any) is used to 

update the dominance values.

4.6 Review of Properties

In this section we provide a review of the properties of selective crossover stated earher 

(detection, correlation and preservation) and their presence in the representation given in 

the previous section.

The first property, detection, is fulfihed in Equation 4.3 where the Hamming 

distance is taken of the Child and its corresponding parent. This detects aUeles that were 

changed during recombination and thus identifies modifications made to the candidate 

solution.

The second property, correlation, is a combination of Equation 4.4 and 4.3. Using 

the fitness differences between the new offspring and the parents (Equation 4.4) the 

dominance values are updated to reflect fitness increase and thus potentially beneficial 

aUeles (Equation 4.3). Therefore correlations between parental and offspring fitnesses are 

used to discover beneficial aUeles.

The third property, preservation, where aUeles are preferentiaUy preserved at each 

locus according to their previous contributions to beneficial changes in fitness is fulfiUed 

in the construction of inheritance masks using the dominance values (Equation 4.1) and 

the construction of the new genotypes for the offspring (Equation 4.2). The dominance 

values hold knowledge about the previous contribution of aUeles, as explained above in 

the second property, it is this knowledge that dictates where crossover wiU occur. 

Therefore, high dominance values restrict crossover to occur at corresponding loci.
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4.7 Examples of Recombination

In this section a worked example is provided that examines the different combinations of 

parental fitnesses. This example shows how the dominance values are updated. We start 

with two parents chosen at random to undergo recombination;

D ' Dominance vector for Parent 1 

Gene vector for Parent 1

2.4 0.2 1.01 0.9 0.1 0.6

1 0 0 1 0 1

Dominance vector for Parent 2 

Gene vector for Parent 2

0.01 0.2 2.4 0.2 1.3 0.9

0 1 1 1 0 0

We get inheritance mask firom Equation 4.1 and is simply an inverse of M \ For 

example:

M ' = 5 ( s ( o '’’ - o ' ”")+
= 5(s(2.39 0 -1.39 0.7 -1 .2  -0 .3 )+ (l,...3 ))
= iS((l 0 —1 1 —1 —1)+(l,...,l))
= 5(2 1 0 2 0 0 )
=  (1 1 0 1 0 0 )

M  ̂  Inheritance mask for Child 1 1 1 0 1 0 0

Inheritance mask for Child 2 0 0 1 0 1 1

Using the inheritance masks the resulting gene vectors for the offspring are given using 

Equation 4.2. For example:

G^' = M ' •ip ’’' - G '“")+G''»

= M ‘ (l - 1 - 1 0  0 l)+ G '
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/1 \
1
0
1
0

\0y
1

- 1
0
0
0

\ 0

(l —1 —1 0 0 l)+G^

\ n \
1 0
1 1

+ =

1 1
0 0

/ w
The resulting dominance vector, after applying selective crossover, is given by using the 

first part of Equation 4.3. For example:

= M '

= M ^-(2.39 0 -1.39 0.7 -1 .2  -0 .3 )+ D '

/ n
1
0
1
0

\0 /

(2.39 0 -1.39 0.7 -1 .2  -0 .3 ) + Z)'

/2.39^ m.on /2.4\
0 0.2 0.2
0 2.4 2.4

+ =

0.7 0.2 0.9
0 1.3 1.3

. 0 . .0.9, .0.9,
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and are calculated similarly, giving two new individuals:

Dominance vector for Child 1 

Gene vector for Child 1

2.4 0.2 2.4 0.9 1.3 0.9

1 0 1 1 0 0

0^2 Dominance vector for Child 2 0.01 0.2 1.01 0.2 0.1 0.6

q Pi Gene vector for Child 2 0 1 0 1 0 1

After recombination the fitness of each offspring is calculated. If the offspring shows a 

fitness increase, the Hamming distance of the children and their parents is used to update 

the dominance values. For each child the Hamming distance is required to ensure the 

correct alleles’ (only alleles that were changed during recombination) dominance value 

gets updated. For example:

©G'’’ = ( 1 0 1 1 0  0)® (l 0 0 1 0 1 )
=  (0 0 1 0 0 1 )

The Hamming distances, in this example, are therefore:

@G^

G^2 @q P2

0 0 1 0 0 1

0 0 1 0 0 1

The updating of the dominance values is dependent on any fitness increase a child has 

with respect to the parents. For each child there are four possible fitness combinations 

that can occur. Using Child 1 (Ci) as an example, where Pi and P2 stands for Parent 1 and 

Parent 2 respectively, we have:

1. Fitness of C\ > Fitness of Pi and Fitness of Ci > Fitness of P2

2. Fitness of Ci > Fitness of Pi and Fitness of Ci < Fitness of P2

3. Fitness of Ci < Fitness of Pi and Fitness of Ci > Fitness of P 2

4. Fitness of Ci < Fitness of Pi and Fitness of Ci < Fitness of P 2
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Case 1: Fitness of C\ > Fitness of Pi and Fitness of Ci > Fitness of P2

Given that Child 1 has a higher fitness than Parent 1 by a difference of a and it also has a 

higher fitness than Parent 2. Child 1 differs from Parent 1 at loci 3 and 6. This indicates 

that the change at loci 3 and 6 increased the fitness of that individual. Therefore, from 

Equation 4.3 the dominance values at loci 3 and 6 are increased by a. In this case the 

dominance values of Child 1 are increased using Equation 4.3 as follows:

--D
(2A \
0.2 0
2.4 1
0.9

+ a •
0

1.3 0
0̂.9 ]

( 2.4 \
0.2 

2.4 + a 
0.9 
1.3

0.9 + a

The resulting individual is given below:

Dominance vector for Child 1 2.4 0.2 2.4+fl! 0.9 1.3 0.9+fl

Gene vector for Child 1 1 0 1 1 0 0

Case 2: Fitness of Ci > Fitness of Pi and Fitness of Ci < Fitness of P 2

In this case, Child 1 has a higher fitness than Parent 1 by a difference of a but its fitness is 

lower than Parent 2. This also indicates that the change at loci 3 and 6 was beneficial and 

therefore the dominance values of Child 1 are increased as in Case 1.

Case 3: Fitness of Ci < Fitness of Pi and Fitness of Ci > Fitness of P2

In this case. Child 1 has a lower or equal fitness than Parent 1 but it has a higher fitness
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than Parent 2 by a difference of b. Here the change that occurred at loci 3 and 6 reduced 

the fitness. However the individual is still fitter than Parent 2. This provides some 

indication that there may be epistasis (and possibly some deception) amongst the genes. 

To reflect this possibility of interaction, the dominance value at loci 3 and 6 belonging to 

Child 1 are updated by the fitness difference b (difference related to Parent 2). Therefore, 

fi*om Equation 4.4 the fitness increase that is used is b. In this case the dominance values 

of Child 1 are increased as follows:

Dominance vector for Chhd 1 2.4 0.2 2.4+6 0.9 1.3 0.9+6

q C, Gene vector for Chhd 1 1 0 1 1 0 0

Case 4: Fitness of Ci < Fitness of Pi and Fitness of Ci < Fitness of Pi

In case 4, Child 1 has a lower or equal fitness than Parent 1 and Parent 2, which indicates 

that the change at locus 3 was undesirable. Therefore the dominance values of Child 1 do 

not get updated and remain as follows:

D  ' Dominance vector for Parent 1 

Gene vector for Parent 1

2.4 0.2 2.4 0.9 1.3 0.9

1 0 1 1 0 0

4.8 Review of Strategies Used

This section explains the reasoning behind the strategies used: creation and retaining of 

Child 2, increasing but not decreasing dominance values, recombination at each gene 

rather than blocks of adjacent genes and not updating dominance values as a result of 

mutation.

1. Child 2 inherits the alleles that have a lower dominance value. Child 2 is 

needed to keep diversity in the population so that genetic diversity is not lost 

in early generations when more exploration is required than exploitation. That 

way if Child 2 was to produce an increase in fitness to that of its parents, then 

its genes wih get preserved during recombination. Selection wih bias the fitter 

individuals by retaining them in the population and losing the least fit and their 

dominance vectors.
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2. The dominance values get increased when the fitness increases, so it follows 

that one should decrease the dominance values when fitness decreases. We 

chose not to do this because we prefer not to introduce a strong negative bias 

during the early (highly explorative) generations. If we were to decrease the 

dominance values the corresponding alleles may never get positively biased 

during recombination, hence introducing a negative bias in early generations; 

this form of bias is left for selection. By not decreasing the dominance values 

we still allow the alleles to compete with other alleles (at the same locus in the 

population). This is further justified in Chapter 7 by the analysis of biases in 

selective crossover.

3. Unlike one-point or two-point crossover, selective crossover is not biased 

against schemata with high defining length, which is later demonstrated in 

Chapter 8. Selective crossover propagates good schemata regardless of their 

defining length -  for example, if a schema consists of interacting genes at the 

two extremes of the chromosome, it can be propagated as easily as a schema 

which consists of interacting genes located adjacent to each other. Selective 

crossover can be considered as an extension of uniform crossover. With 

selective crossover the probability of crossing over at a position is dependent 

on what happened in previous generations whilst in uniform crossover the 

probability it fixed throughout (traditionally at 0.5). For this reason selective 

crossover is classed as an allele-based adaptive recombination operator 

(crossover positions are determined at each allele).

4. When an allele is mutated no change is made to the corresponding dominance 

value because this study is limited to investigating the effects of updating 

dominance values due to recombination.

4.9 Summary and Conclusions

This chapter described a new adaptive crossover operator, selective crossover, for use 

with genetic search. Its design was motivated by intuition abstracted from Dawkins’ 

theory of natural evolution to exploit and express good characteristics. In retrospect we
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found that this strategy is simüar to one that exists in natural genetics and is termed as 

“assortative segregation” (Altenberg 1998). In assortative segregation, recombination 

shufQes together the genetic material by separating and then combining advantageous 

genetic material (Bergman, Otto and Feldman, 1995a; Bergman, Otto and Feldman, 

1995b).

Selective crossover is an allele-based adaptive recombination operator, which is 

similar to uniform crossover in that crossover occurs at each gene position, rather than at 

blocks of genes adjacent to each other. However, selective crossover has three distinctive 

features that make it different from uniform crossover: detection of aUeles that were 

changed during recombination, use of correlations to discover and preserve beneficial 

aUeles during recombination.

Selective crossover evolves better individuals by using a dominance vector to bias 

(prevent aUeles from crossing-over) aUeles that have increased an individual’s fitness in 

previous generations. It uses this vector as a means of storing knowledge about what 

happened in previous generations and exploiting this knowledge during recombination. A 

dominance vector accompanies each chromosome such that each aUele in the 

chromosome has an associated dominance value. It is these dominance values that dictate 

where crossover should occur.

The next chapter evaluates selective crossover in terms of performance and 

compares it with two-point and uniform crossover.
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Chapter 5

Performance Evaluation of Selective Crossover

In the previous chapter we provided a detailed description of selective crossover; in this 

chapter we conduct the first evaluation of selective crossover (part of this work is 

pubhshed in Vekaria and Clack, 1998b). As a first step in verifying the hypothesis of this 

thesis, we empirically evaluate selective crossover by comparing its performance with that 

of two-point and uniform crossover on five well-studied benchmark problems: One Max, 

Royal Road, L-MaxSAT, NK Landscapes and Deceptive Trap problems. Each of these 

problems have unique characteristics of epistasis, deception and fitness landscapes that 

together provide a good variation of features present in real-world problems to evaluate 

selective crossover. The One Max problem represents simple optimisation problems, the 

Royal Road represents problems containing tightly coupled schemata, the L-MaxSAT 

represents problems with variable epistasis, the NK landscapes represent problems with 

variable epistasis and rugged fitness landscapes and the Deceptive Trap represents 

problems with variable deception.

5.1 Experimental Method

In this section we describe the experimental conditions used to evaluate selective 

crossover. These conditions have been apphed to ah experiments conducted in this thesis 

and are described below:

• The performance measure is the number of evaluations taken to find the global 

solution or the number of evaluations taken to find the best solution after x
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generations. The choice of this performance is because the vast majority of 

computation involved in a GA is during the evaluation of individuals. All 

individuals in the population are evaluated in the initial generation. However, 

in subsequent generations some individuals may not be subjected to 

recombination or mutation owing to the recombination rate (the probability 

that individuals are recombined) and the mutation rate (probabihty that a gene 

will be mutated), as mentioned in Sections 2.3.4 and 2.3.5 respectively. Thus, 

the GA only re-evaluates individuals that underwent crossover or mutation.

Selective crossover is compared against two-point and uniform crossover 

because these two operators have been generally accepted as a test bed for 

comparing other recombination operators (Syswerda 1993; White and 

Oppacher 1994; Spears 1995). Moreover, two-point crossover and uniform 

crossover have been shown to perform better than one-point crossover 

(Syswerda 1989; Eshelman, Caruana and Schaffer 1989). To make this a strict 

comparison of recombination operators all other GA operators and parameters 

are kept constant.

All three recombination operators are applied to the same problems. Since it is 

impossible to make a comparison on aU problems we have selected five well 

studied and different benchmark problems that have been previously used to 

study GA behaviour and which also have characteristics present in practical 

problems.

The comparison of the recombination operators is done across 50 independent 

runs, which is our sample size. A larger sample size (more runs) would 

provide us with shghtly more precision in our comparisons, but the trade off 

would be the extensive use of computational resources. A small sample size on 

the other hand, would provide us with less precision. Hence the choice of 50 

was made because it provides a reasonable sample size from which a fair 

comparison can be made (Rice 1995) and also saves computational resources.

For aU 50 independent runs the same set of seeds (for the random number 

generator) are used for each of the recombination operators being tested under
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the assumption that the initial population of each GA run will have a 

significant effect on the population.

• Statistical hypothesis testing is used to compare the performance of selective 

crossover with two-point and uniform crossover. Statistical hypothesis testing 

is done using a r-test. Given our choice of the sample size, we do not know the 

variance of the population and it has to be estimated. The r-test allows for 

uncertainty introduced by estimating the variance of the population means and 

can be used with our sample size. A r-test is carried out at a 5% significance 

level. The significance level reflects residual uncertainty in our conclusions 

(Cohen 1995). The null hypothesis Ho and an alternative hypothesis Hi are 

used to compare selective crossover with two-point and uniform crossover 

and are defined below:

Ho". Ps = (of equal performance)

Hi : p^< p^ (selective crossover shows better performance)

Where Ps is the population mean (mean performance) of selective crossover 

and p^ is the population mean of the alternative recombination operator (the 

operator it is being tested against).

Given our assumption that the initial population for each GA run will have a significant 

effect on the performance (the assumption of dependence of results), the appropriate test 

of the hypothesis of no difference is the use of the ‘paired r-test’. Using the paired r-test 

initial conclusions were drawn; however, a test of the correlations between the operators 

on the One Max problem demonstrated that the results are actually independent. Thus, the 

appropriate test of hypothesis is the ‘two sample Mest’̂ . It is the results of this test that is 

reported in Section 5.4; however, in these experiments the use of either the paired or two 

sample r-test did not alter the significance of the conclusions.

 ̂ In each experiment the F-test was used to test the equivalence of the two sample variances; where 

appropriate Welch’s r-test was used.
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5.2 GA Parameters

To make this a strict comparison of recombination operators all other GA operators and 

parameters were kept constant and a generational GA was used throughout this study. To 

be consistent all experiments and analyses in this thesis were conducted using these 

conditions, which represent one variation of the many different forms of genetic 

algorithms. As mentioned in Section 2.4, the optimal setting for each parameter differs 

from problem to problem and is also influenced by the other operators and parameters 

used in the GA. Hence, the optimal settings for our benchmark problems are not known. 

However, using suggestions by De Jong (1975), Grefenstette (1986) and Schaffer et a l 

(1991) we use the parameters hsted below:

Crossover rate: 0.6

Mutation rate: 0.01

Selection: SUS algorithm (Baker 1987)

5.3 Test Suite of Benchmark Problems

In our experiments we use a set of well-studied benchmark problems that provide a good 

variation of features present in real-world problems. The features considered in this study 

are epistasis, deception and fitness landscapes. The problems used are:

• One Max problem - a linear fitness landscape with no epistasis and no deception.

• Royal Road function - a staircase fitness landscape with epistasis and no 

deception.

• L-MaxSAT problems - many flat regions in the fitness landscape with tuneable 

epistasis.

• NK landscapes - tuneable ruggedness of fitness landscape with tuneable epistasis.

• Deceptive Trap functions - a two-peak fitness landscape with tuneable deception.

76



The following sub-sections describe the properties of each test problem used and 

summarise the features of epistasis, deception and fitness landscapes in each problem.

5.3.1 One Max Problem

The One Max problem is a simple bit counting problem (Ackley 1987), where each bit 

that is set to ‘1’ in the chromosome contributes an equal amount to the fitness, thus aU 

combinations of 1 bits are good schemata which makes the function linear with no 

epistasis or deception.. The fitness function is given below:

f(chrom) = Y  (5.1)

where / is the length of the chromosome. This problem is used to test how selective 

crossover handles simple fitness landscapes where a hill-climber will tend to outperform a 

traditional GA. The chromosome length is 50 and the population size is 100. The results 

are shown in Section 5.4.1.

The properties of the One Max problem are summarised below:

• It represents simple optimisation problems.

• It has a linear fitness landscape (in terms of Hamming distance).

• There is no epistasis and no deception.

• The maximum fitness of an individual is the length of the chromosome.

5.3.2 Royal Road Function

Royal Road problems are a class of functions that were designed for studying GA 

behaviour on landscapes that contain tightly coupled ‘building blocks’ (Mitchell, Forrest 

and Holland 1991). A building block in the context of Royal Road fixnctions refers to a 

low order, low defining length group of bits on an individual that together contribute to 

that individual’s fitness. The Royal Road functions were specifically designed to be ‘GA- 

easy’; however empirical studies demonstrated that standard G As find them difficult to
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solve in comparison with other heuristic methods such as ‘random mutation hill-climbing’ 

(Forrest and Mitchell, 1993).

The Royal Road function considered in this study consists of partially specified 

schemata, Si. These schemata are hierarchically structured and are predefined with 

corresponding fitness values as depicted in Figure 5.1. The shape of the fitness landscape 

is very much like a staircase consisting of four levels^. The lowest level (level 0) schemata 

are the shortest in order and in defining length. Level 1 schemata comprise a combination 

of adjacent level 0 schemata. Level 2 schemata comprise a combination of adjacent level 1 

schemata and so on.

The fitness is calculated as the sum of aU schema fitnesses that exist in the 

individual (by considering the instances of each schema in the individual). A chromosome 

X  is said to be an instance of a schema s ,x  E s , if % matches’ s in the defined positions. For

example chromosome (1111.... 1) is an instance of all schemata in Figure 5.1. The fitness

f{x )  of a chromosome x  is given below:

f (x )  = p , ( x ) o ( s , ) ,  where = (5.2)

where o(Si) is the number of defined bits in 5,. For example if % is an instance of exactly 

two level 0 (order-8) schemata, then /(jc) = 16. The Royal Road function is not deceptive 

but does contain epistasis, which is defined by the specific collection of bits (schemata) 

that contribute to the fitness; all other schema combinations that are not defined do not 

contribute to the fitness of an individual.

In our experiments we used the same parameters as Mitchell and Forrest (1996). 

The chromosome length is 64 and the population size is 128. The results are shown in 

Section 5.4.2.

 ̂The number of levels can be altered by either removing or adding levels and by changing the steepness 

of the steps (by increasing or decreasing the fitness difference between levels).
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Si Schema Instance 0 ( S i )

S i 111 11111******************************************************** 8
S2 ********^  ̂ 2 ************************************************ 8
S3 ****************22% %%%%%**************************************** 8
S4 ************************222%%%%%******************************** 8
Ss

********************************%%%%%%%%************************ 8
S6 ****************************************2%%%%%%%**************** 8
S? ************************************************22%%%%%%******** 8
S s

********************************************************2%%%%%%% 8
S9 1111111111111111************************************************ 16
S io ****************22%%%%%%%%%%%%%%******************************** 16
S i i

********************************2%%%%%%%%%%%%%%%**************** 16
S l2 ************************************************22%%%%%%%%%%%%%% 16
S is 11111111111111111111111111111111******************************** 32
S l4 ********************************2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 32

Figure 5.1: Simple Royal Road Function

The properties of the Royal Road function are summarised below:

• It represents problems that contain tightly coupled building blocks.

• It has a structured (‘staircase’) fitness landscape.

• It contains epistasis but no deception.

• All the desired schemata of the problem are known in advance as they are

explicitly buüt into the fitness function.

• The maximum fitness of an individual is 192.

5.3.3 Random L-MaxSAT Problems

The Boolean satisfiabihty (SAT) problem is a well-known constrained satisfaction 

problem, which consists of variables or negated variables that are combined together to 

form clauses using and (a ) and or (v). Typically SAT problems are presented in 

conjunctive normal form. The goal is to find an assignment of 0 and 1 values to the 

variables such that the boolean expression is true. The random L-MaxSAT problem 

generator (Mitchell, Sehnan and Levesque 1992; De Jong, Potter and Spears 1997) is a 

boolean expression generator. It creates random problems in conjunctive normal form 

subject to three parameters V (number of variables), C (number of clauses) and L (the
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length of the clauses). Each clause is generated by randomly selecting L of the V variables 

and negating each variable with probabihty 0.5. Hence, each variable occurs (on average) 

in CL/V clauses. By increasing the number of clauses, the number of instances of a 

variable in each clause also increases. As a result epistasis increases and creates more 

constraints in finding an assignment of 0 and 1 values to the variables such that the 

boolean expression is true. By using this problem generator we can see how the 

recombination operators react to the change in epistasis when the fitness landscape 

contains many flat regions (Rana and Whitley, 1998).

The L-MaxSAT problems are encoded as binary bit chromosomes, where each bit 

represents a boolean variable. The fitness function for the L-MaxSAT Problem is given 

below:

1 c
/  (chrom) = ~ \ f  (clausei) (5-̂ )

where chrom consists of C clauses, f(clause^ is the fitness contribution of each clause and 

is 1 if the clause is satisfied or 0 otherwise. Since the problem generator randomly 

generates problems on demand, there is no guarantee that such an assignment to the 

expression exists. The difficulty of a SAT problem increases as a function of the number 

of boolean variables and the complexity of the boolean expression.

In our experiments we used the same parameters as De Jong, Potter and Spears 

(1997). We keep V and L fixed and we change the number of clauses C to vary the 

amount of epistasis. The number of variables V is set to 100 and the clause length L is set 

to 3. The number of clauses C is varied from 200 (low epistasis) to 1200 (medium 

epistasis) to 2400 (high epistasis). The chromosome length is 100 (the number of 

variables) and the population size is 100. The GA was allowed to run for 600 generations 

and the number of evaluations administered was recorded at the end of each run or when 

a global solution was found. The results are shown in Section 5.4.3.

The properties of the L-MaxSAT problem are summarised below:

• It represents problems that contain epistasis.

• It allows tuning of epistasis.

• It allows tuning of problem difficulty.
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There are many flat regions in the search landscape (Rana and Whitley, 1998). 

The maximum potential fltness of an individual is 1, although there is no 

guarantee that such an individual exists.

5.3.4 NK Landscape Problems

Kauffman’s NK landscapes are a class of problems used in theoretical biology to study 

rugged fitness landscapes (Kauffman, 1993). The NK landscape models epistatic 

couplings and the effects of these couplings between genes. N is the number of genes (in 

our case the number of bits) and K is the number of epistatic interactions each gene has to 

the other genes. When K is increased the number of peaks in the Hamming landscape also 

increases and thus the landscape becomes more rugged and uncorrelated. By increasing 

K, we are increasing the number of epistatic interactions and as a result more conflicting 

combinations of alleles arise (an allele’s value may increase the fitness contribution of its 

corresponding gene, but also reduce the fitness contribution of other genes). It is these 

conflicts that make the landscape rugged and therefore there will be low correlation 

between the fitness of individuals and the similarity of their genotypes (Kauffman, 1993).

The fitness of the entire individual is computed by the average of the fitness 

contributions from each locus as shown in Equation 5.4. The fitness contribution of each 

gene to the whole individual depends on its own allele plus the alleles of the K other genes 

(allele combinations). Thus, the fitness depends on the alleles present in K+1 genes and 

for a bit encoding the total number of allele combinations is To ensure epistatic 

interactions, each gene in each of the possible individuals is randomly assigned a fitness 

contribution between 0.0 and 1.0. The fitness function for the NK landscape problem is 

given below:

 ̂ N
f  (chrom ) = — V  /  {j,ocuŝ  ) (5.4)

N  n

where f  (locus^ ) is the fitness contribution of locus i. These fitness contributions can be

stored in a look-up table, Figure 5.2 and Table 5.1 shows an example of a NK landscape 

where N=4 and K=2. In Figure 5.2, A, B, C and D represent the genes in the
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chromosome, which is of length N. Each gene interacts with its adjacent genes; those 

genes at the ends of the chromosome interact with each other. Table 5.1 shows the fitness 

contribution of each locus, which is determined by the corresponding allele and the alleles 

of the two genes that are linked to it (the allele combinations, which are given as a sub

string in the first column). To evaluate the fitness of the whole chromosome an average is 

taken on the fitness contribution for each allele. For example,

/(0110)= i(0 .3  + 0.9 + 0.7 + 0.5) = 0.6. The fitness contribution of gene A is 0.3

because (i) its allele value is 0, (ii) the allele of the gene linked to its left is 0 and (iii) the 

allele of the gene linked to its right is 1. These alleles concatenated in this order formulate 

the sub-string 001. Therefore, looking at sub-string 001 and the entry at A  its fitness 

contribution is 0.3. The fitness contribution of gene B is 0.9 because (i) its allele value is 

1, (ii) the allele of the gene linked to its left is 0 and (iii) the allele of the gene linked to its 

right is 1. These alleles concatenated in this order formulate the sub-string 101. Therefore, 

looking at sub-string 101 and the entry at B, its fitness contribution is 0.9. The others are 

obtained in the same way.

A B C D

Figure 5.2: An example of epistatic interactions for an NK landscape where N=4 and K=2.

Sub-string A B C D
000 0.6 0.3 0.5 0.7
001 0.3 0.9 0.6 0.5
010 0.7 0.6 0.4 0.5
100 0.2 0.4 0.7 0.8
Oil 0.4 0.8 0.1 0.9
101 0.8 0.9 0.1 0.6
110 0.1 0.5 0.7 0.9
111 0.4 0.7 0.9 0.1

Table 5.1: A table of fitness contributions for the NK landscape given in Figure 5.2.
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A practical constraint, in using this problem, is the amount of computational space 

required to store the tables used to compute the fitness. The amount of storage required 

grows exponentially as K increases. Therefore in our implementation the landscape is 

generated on the fly. In our experiments 50 landscapes are generated randomly and thus 

the global optimum is unknown. We keep N fixed to 32, which also is the length of the 

chromosome. We vary the number of interactions K from 4 (with httle epistasis and a

landscape with few peaks) to 20 (with medium epistasis and a rugged landscape) to 31

(high epistasis with an uncorrelated rugged landscape). The GA was allowed to run for 

150 generations and the number of evaluations administered was recorded at the end of 

each run. The results are shown in Section 5.4.4.

The properties of the NK landscape problem are summarised below:

• It represents problems that contain epistasis at adjacent genes.

• It allows tuning of epistasis.

• It allows tuning of problem difficulty.

• Increasing K makes the fitness landscape more rugged.

• The maximum fitness of an individual is not always known.

5.3.5 Deceptive Trap Functions

Unitation u is the number of Is in a bit string and Deceptive Trap functions (Ackley 1987) 

are linear functions of unitation. They depend only on the number of Is in an individual 

and not on the positions of the Is. A Trap function divides the search space into two 

peaks; one peak is the global optimum and the other peak is a local optimum. An example 

of a trap function is given in Figure 5.3.
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a

f  (chrom)

0 Iz
unitation, u

Figure 5.3: A Deceptive Trap function where a bit string of all Is is the global optimum and a bit 
string of all Os is the local optimum.

The fitness function for a Deceptive Trap problem is:

f  (chrom) =
if M ^ z;

17̂  (m -  z ), otherwise;
(5.5)

where a and b are constants, / is the length of the chromosome, u is the number of Is in 

the string and z is the slope change location.

A Deceptive Trap function is an example of a deceptive problem that G As find 

difficult to solve because the GA converges to the local optimum and is unable to find the 

global optimum; however, some Trap functions are more deceptive than others. Deb and 

Goldberg (1993) analysed the deception in trap functions; they define a parameter r to be 

the ratio of the local and global optimal function values (r = a/b) and used r to define 

boundaries between trap functions that are not deceptive, partially deceptive and fully 

deceptive (see Section 2.6). They define an order k deceptive trap function as one where k 

of the I bits in the chromosome (not necessarily situated together) are deceptive and lead 

the GA away from the global optimum.

In our experiments we use these boundaries to vary the amount of deception in a 

trap function. This would allow us to determine the levels of deception at which a 

recombination operator can successfully find the global optimum.
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For this study we have used a partially Deceptive Trap problem where no tight 

ordering exists and a single trap function, rather than sub-functions, is represented in the 

chromosome (Deb and Goldberg 1993). The fitness value is scaled so that the maximum 

fitness is 1.0, thus 6 = 1. The parameters a and z are varied to increase or decrease 

deception. Experiments are carried out on partially deceptive trap functions of order 10, 

15 and 20, which show the typical behaviour as deception is increased. For order 10, 

r = a = 0.21 and z  = 30. For order 15, r = a = 0.35 and z  = 30. For order 20, 

r = a = 0.6 and z = 29. The chromosome length / is 50 and the population size is 1000. 

The results are shown in Section 5.4.5.

The properties of the Deceptive Trap problem are summarised below;

• It represents deceptive problems.

• It allows tuning of deception.

• Its has a two peak fitness landscape.

• The maximum fitness of an individual is b, which is set to 1 in our 

experiments.

5.4 Experimental Results

For all problems the performance evaluation is presented in graphical and tabular form. As 

mentioned in Section 5.1 the performance measure is the number of evaluations taken to 

find the global solution or the number of evaluations taken to find the best solution after x  

generations. The results were taken from 50 independent runs.

5.4.1 One Max Problem

Table 5.2 shows the mean number of evaluations taken to find the global solution for the 

One Max problem. The standard deviation is shown in parentheses. Figure 5.4 shows a 

comparison of the mean performances presented by selective, two-point and uniform 

crossover.
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One Max - the global solution is 50

Mean evaluations Mean solution

Selective crossover 3557(1118) 50

Two-point crossover 3733 (484) 50

Uniform crossover 3686(449) 50

Table 5.2: Results for the One Max problem. Mean number of evaluations taken to solve the One 
Max problem. The standard deviation is shown in brackets.

3750

3700
(0c
o 3650
CD
3

5 3600
0>
c
(00) 3550
S

3500

3450

m Selective 

^T w o-poin t 

□  Uniform

O ne Max

Figure 5.4: Results for the One Max problem - performance comparison of selective, two-point and 
uniform crossover.

In Table 5.2 the number of evaluations taken to find the global solution in the One Max 

problem show that selective crossover took the least number of evaluation on average at 

3557, followed by uniform crossover at 3686 and two-point at 3733.

From Figure 5.4 it seems that selective crossover shows a great deal of 

improvement in mean performance. However, tests for significance at the 5% level show 

that there was no significant difference in the mean performances of the three operators. 

Hence, selective, two-point and uniform crossover show equal performance on the One 

Max problem.
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5.4.2 Royal Road Function

Table 5.3 shows the mean number of evaluations taken by selective, two-point and 

uniform crossover to find the global solution for the Royal Road function (with 

intermediate steps at four levels). The standard deviation is shown in parentheses. Figure

5.5 shows a comparison of the mean performances presented by selective, two-point and 

uniform crossover.

Royal Road - the global solution is 192

Mean evaluations Mean solution

Selective crossover 64598(34192) 192

Two-point crossover 38287(16894) 192

Uniform crossover 74128(27469) 192

Table 5.3: Results for the Royal Road function. Mean number of evaluations taken to solve the 
Royal Road function. The standard deviation is shown in brackets.
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Figure 5.5: Results for the Royal Road function - performance comparison of selective, two-point 
and uniform crossover.

The Royal Road function was designed for one-point crossover, which has a high 

positional bias hence it was expected that two-point crossover, which also has a high
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positional bias will work well with this function. From Table 5.3 and Figure 5.5 we can 

see that two-point crossover out-performed selective and uniform crossover, where 

uniform crossover took the most number of evaluations. Tests for significance were 

carried out and showed that two-point crossover is significantly better than selective 

crossover when solving the Royal Road problem.

5.4.3 Random L-MaxSAT Problems

Table 5.4 shows the mean number of evaluations taken and the mean solution found by 

selective, two-point and uniform crossover on the Random L-MaxSAT problems with 

low, medium and high epistasis. Recall from Section 5.3.1 that there is no guarantee that 

an assignment to the boolean expression exists; thus, there is no guarantee that a global 

solution (with a fitness value of 1.0) exists. The standard deviation is shown in 

parentheses. Figure 5.6 shows a comparison of the mean performances presented by the 

three operators.

Low epistasis Medium epistasis High epistasis

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Selective

crossover

24098

(6430)

0.997

(0.002)

28214

(509)

0.937

(0.002)

27573

(484)

0.916

(0.002)

Two-point

crossover

29206

(1064)

0.999

(0.005)

37188

(69)

0.932

(0.002)

37275

(61)

0.911

(0.002)

Uniform

crossover

29621

(5782)

0.999

(0.003)

38306

(42)

0.931

(0.003)

38310

(43)

0.911

(0.002)

Table 5.4: Results for the Random L-MaxSAT problems. Mean number of evaluations to find the 
best solution for low, medium and high epistasis. The standard deviation is shown in brackets.
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Figure 5.6: Results for the Random L-MaxSAT problems - performance comparison of selective, 
two-point and uniform crossover.

At all levels of epistasis, the comparison of performance in Figure 5.6 indicates that 

selective crossover performed better than two-point and uniform crossover with the least 

number of evaluations taken. Moreover, the results in Table 5.4 indicate that as epistasis 

increased selective crossover is able to find a better solution than two-point and uniform 

crossover. When epistasis is low, the standard deviation of the mean evaluations is larger 

than those shown in medium and high epistasis because when epistasis was low the GA 

was able to find the global solution (1.0) on some occasions and as a result the GA 

terminated earlier than 600 generations, which is when all the other runs terminated.

Tests for significance, using the t-test with a 5% significance level, were carried 

out, to compare the difference between the means. This showed that with low, medium 

and high epistasis the performance of selective crossover is significantly better than two- 

point and uniform crossover; on low, medium and high epistasis selective crossover 

shows an improvement of 19%, 26% and 28% respectively. This demonstrates that 

selective crossover works well with epistatic problems.
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5.4.4 NK Landscape Problems

Table 5.5 shows the mean number of evaluations taken and the mean solution found after 

150 generations by selective, two-point and uniform crossover on the NK landscape 

problems, where N was fixed at 32 and K was modified with values 4, 20 and 31. Recall 

from Section 5.3.4 that all landscapes were generated randomly and as a result the global 

optimum for each landscape was unknown. Figure 5.7 shows a comparison of the mean 

performances presented by selective, two-point and uniform crossover.

K = 4 K = 20 K = 31

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Selective

crossover

11658

(832)

0.747

(0.015)

7931

(1312)

0.687

(0.017)

10631

(1526)

0.729

(0.010)

Two-point

crossover

14158

(549)

0.749

(0.009)

16642

(92)

0.701

(0.013)

15690

(110)

0.748

(0.014)

Uniform

crossover

17516

(383)

0.736

(0.010)

18430

(18)

0.703

(0.013)

18295

(43)

0.743

(0.010)

Table 5.5: Results for the NK Landscape problems. Mean number of evaluations to find the best 
solution for K=4, 20 and 31. The standard deviation is shown in brackets.
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Figure 5.7: Results for the NK Landscape problems - performance comparison of selective, two- 
point and uniform crossover.
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On all values of K, selective crossover showed superior performance, with the 

least number of evaluations, by a statistically significant amount and uniform crossover 

showed the worst performance with the most evaluations. The quality of the solution 

found by the three recombination operator did not differ significantly.

From Figure 5.7 as K increases and epistasis increases, the performance of two- 

point and uniform crossover decreased, whereas the performance of selective crossover is 

consistent (approximately around 10000 evaluations) on all three values of K. Compared 

to two-point crossover, selective crossover shows an improvement of 52% when K=20 

and an improvement of 14% when K=4. This demonstrates that selective crossover works 

well with epistatic problems that also have rugged fitness landscapes.

5.4.5 Deceptive Trap Functions

Table 5.6 shows the mean number of evaluations taken by selective, two-point and 

uniform crossover to find the global solution for order 10 and 15 trap functions. AU three 

operators were unable to find the global solution on an order 20 trap function, thus the 

G A was terminated at 600 generations. Figure 5.8 shows a comparison of the mean 

performances presented by selective, two-point and uniform crossover.

Deceptive Trap (the global solution is 1.0)

Order 10 Order 15 Order 20

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Selective

crossover

10856

(2058)

1.0 15033

(2909)

1.0 131519

(3070)

0.6

Two-point

crossover

12735

(1372)

1.0 15168

(3286)

1.0 167100

(1855)

0.6

Uniform

crossover

11313

(1059)

1.0 15833

(5317)

0.93

(0.01)

221950

(1402)

0.6

Table 5.6: Results for the Deceptive Trap problems. Mean number of evaluations completed for 
order 10,15 and 20 partially deceptive trap functions. The standard deviation is shown in brackets. 
The solution quality is given in square brackets.
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Figure 5.8: Results for the Deceptive Trap problems - performance comparison of selective, two- 
point and uniform crossover.

Our initial expectation was that selective crossover was too exploitative (exploration is 

achieved solely through the generation of Child 2 and, of course, mutation) and would 

always be misled by the local optimum in all experiments. In Table 5.6, the number of 

evaluations taken to reach the solution on an order 10 trap function indicates that 

selective crossover took the least number of evaluations on average at 10856, but this is 

not a significant amount compared with uniform crossover. In an order 15 trap function 

selective crossover again took the least number of evaluations as well as finding a solution 

in early generations. Uniform crossover did not always find the solution: misleading 

schemata of order 15 deceived it. Selective crossover, like two-point and uniform 

crossover, was unable to solve an order 20 trap function.

Tests for significance were carried out at the 5% level show that selective 

crossover performs better than two-point crossover but the same as uniform crossover on 

the order 10 deceptive trap function. Selective crossover did not show a significant 

difference on the mean number of evaluations for order 15 deceptive trap functions. We 

can conclude that selective crossover was unable to solve the order 20 Deceptive Trap 

function; however, it performed as well as two-point and uniform crossover on the order 

10 and 15 Deceptive Trap Functions .
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5.5 Analysis and Discussion of Results

Table 5.7 gives a summary of the results by ranking the three different operators. A 1* 

indicates that the operator showed a statistically significant improvement and 3 indicates 

the operator showed worst performance.

Selective crossover Two-point crossover Uniform crossover

One Max ---------  E q u a l  p e r f o r m a n c e  ............

Royal Road 2 1* 3

Random L-MaxSAT 1* 2 2

NK Landscapes 1* 2 3

Deceptive Trap ---------  E q u a l  p e r f o r m a n c e  ---------

Table 5.7: A summary of relative performance of selective, two-point and uniform crossover. A 1* 
represents best performance.

As shown in Table 5.7 selective crossover generally did well on aU problems. Although 

the experiments were limited to a small set we can still see how the traditional crossover 

operators differ in performance on different problems.

The empirical results in the previous section demonstrated that selective crossover 

can efficiently solve problems that contain epistasis. It does this successfully on a search 

landscape that has many flat regions (L-MaxSAT problems) and on rugged landscapes 

(NK landscapes). Selective crossover successfully allows exploitation of genes, which are 

not necessarily situated together in the chromosome.

On the deceptive trap problems, like two-point and uniform, selective crossover 

cannot overcome the problem of being misled to the local optimum. This is due to the 

correlation property used to bias alleles (this is further discussed in Chapter 7). The 

correlation used is fitness increase, and in these problems the fitness increase does not 

always lead to the global optimum, thus selective crossover may end up following a rapid 

ascent to the local optimum. In conclusion, all three operators are able to solve problems 

with some deception but unfortunately the operators are unable to solve deceptive 

problems of order 20.
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For the Royal Road problem, two-point crossover outperformed selective 

crossover; we suspect this is due to two reasons (both of which are further analysed in 

Chapter 8). The first is the positional bias inherent in two-point crossover; it has a better 

chance of propagating blocks of genes adjacent to each other. The second possibihty is 

that selective crossover finds it difficult to construct and exploit schemata. In the Royal 

Road problem, selective crossover first has to construct a desired schema before it can 

bias the alleles during recombination, but as crossover occurs at each gene it may find it 

more difficult to construct the schemata than two-point crossover. In conclusion, if a 

problem is known to be similar to the Royal Road problem then the best recombination 

operator to use is two-point crossover. However, such detailed information about the 

problem is not usually known.

From these experiments we can conclude that selective crossover can give 

practitioners more confidence than two-point and uniform crossover as it performs well 

on aU but one problem - the Royal Road, where selective crossover was out-performed by 

two-point crossover. However, further investigation is required to understand the 

mechanisms that make selective crossover a beneficial strategy to use.

5.6 Summary and Conclusions

This chapter evaluated selective crossover in terms of performance, which was measured 

as the number of evaluations taken to find a solution. Selective crossover was compared 

with two static recombination operators: two-point and uniform crossover. Our test suite 

was a set of well studied benchmark problems that display varying degrees of epistasis 

and deception. This test suite of benchmark problems ranged fi"om simple to difficult 

problems and are hsted below:

1. One Max problem - a linear fitness landscape with no epistasis and no 

deception.

2. Royal Road function - a staircase fitness landscape with epistasis and no 

deception.

3. L-MaxSAT problems - many flat regions in the fitness landscape with tuneable 

epistasis.
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4. NK landscapes - tuneable ruggedness of fitness landscape with tuneable 

epistasis.

5. Deceptive Trap functions - a two-peak fitness landscape with tuneable 

deception.

The results demonstrated that selective crossover can efficiently solve problems that 

contain epistasis as well as simple problems. The performance of selective crossover is 

significantly better than two-point and uniform crossover on L-MaxSAT and NK 

landscapes and worked as well as two-point and uniform crossover on the Deceptive Trap 

and One Max problem. Selective crossover was outperformed by two-point crossover on 

one occasion, the Royal Road problem, however it still performed better than uniform 

crossover. Two-point crossover succeeds because it is highly biased towards adjacent 

genes and thus can exploit the tightly coupled schemata inherent in the encoding of the 

Royal Road. This is further investigated in Chapter 8, which demonstrates that selective 

crossover out-performs two-point crossover when the encoding of the Royal Road 

function does not contain tightly coupled schemata.

We conclude that the results suggest that selective crossover may be a viable 

strategy as an adaptive recombination operator in which GA practitioners can have more 

confidence in using for best overall performance than two-point and uniform crossover. 

The evaluation provided in this chapter produced positive results that provide a 

justification to further investigate selective crossover. The first study is provided in the 

next chapter with an evaluation of the adaptive properties in selective crossover, which 

analyses the dominance values during a GA run.
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Chapter 6

Features of Adaptation in Selective Crossover

The first evaluation of selective crossover in Chapter 5 demonstrated that selective 

crossover works better than two-point and uniform crossover on most problems used in 

that study. The aim of this chapter is to analyse the adaptive nature of selective crossover.

This chapter identifies, in Section 6.1, that the taxonomy used by Eiben et al. 

(previously described in Chapter 3) to classify the type of change adopted by a strategy is 

too rigid and does not allow selective crossover to be classified. Eiben et a l’s taxonomy 

assumes that a strategy may only contain one feature of change and we show that 

selective crossover adopts two different features of change; both adaptive and self- 

adaptive. Section 6.1.4 presents a new taxonomy to classify the type of change, which is 

more flexible and allows selective crossover to be classified as well as other strategies that 

may adopt one or more features of change.

The remainder of this chapter analyses the adaptive behaviour in selective 

crossover. The adaptive and self-adaptive features are empirically analysed, in 

Section 6.2, to understand the contributing features behind the performance of selective 

crossover. Section 6.3 empirically analyses the adaptive behaviour of selective crossover 

in terms of the distribution of dominance values in the population.

6.1 Classification of Selective Crossover

Eiben et at. (1999) provided a general classification of adaptive techniques used in 

evolutionary computation (outlined in Section 3.7). To classify a technique, they
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concluded that the two main criteria are “what is being changed?” and “how the change is 

made? To classify selective crossover we begin by identifying which component of the 

GA is being changed. It is clear that selective crossover is changing the way 

recombination occurs. All other parameters of the GA remain fixed throughout a run.

Identifying and classifying how the change is made (Eiben et al's second criterion) 

is not so trivial. Eiben et al. define that the type of change can only be classified into one 

of three categories: deterministic, adaptive and self-adaptive; as shown in Figure 6.1. 

These categories are relevant in classifying selective crossover and are discussed in the 

following three sub-sections.

Parameter Control

Deterministic Adaptive Self-Adaptive 

Figure 6.1: Taxonomy of parameter control by Eiben et al. (1999)

6.1.1 Deterministic Features

Eiben et at. define deterministic parameter control as:

“This takes place when the value o f a strategy parameter is altered by 

some deterministic rule. This rule modifies the strategy parameter 

deterministically without using feedback from the search. Usually, a 

time-varying schedule is used, i.e., the rule will be used when a set 

number of generations have elapsed since the last time the rule was 

activated. ”

From this definition selective crossover has no deterministic features because it uses 

feedback from the search to modify the dominance values and does not use any time- 

varying schedule.
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6.1.2 Adaptive Features

Eiben et al. define adaptive parameter control as:

“This takes place when there is some form o f feedback from the search 

that is used to determine the direction andlor magnitude of the change 

to the strategy parameter. The assignment o f the value of the strategy 

parameter may involve credit assignment, and the action o f the 

evolutionary algorithm may determine whether or not the new value 

persists or propagates throughout the population. ”

From this definition selective crossover is adaptive as the fitness correlation between 

parents and offspring is used as the feedback from the search and this is used to update 

the dominance values. The updating of the dominance values is very much like credit 

assignment; an allele’s dominance value is increased by the fitness increase. However the 

methods used by selective crossover are also self-adaptive as shown in the next section.

6.1.3 Self-Adaptive Features

Self-adaptive parameter control according to the following definition provided by Eiben et 

al. (which was refined from earher definitions by Angeline 1995 and Hinterding et al. 

1997) is:

“The idea o f the evolution o f evolution can be used to implement the 

self-adaptation of parameters. Here the parameters to be adapted are 

encoded into the chromosomes and undergo mutation and 

recombination. The better values o f these encoded parameters lead to 

better individuals, which in turn are more likely to survive and produce 

offspring and hence propagate these better values. ”

In selective crossover the dominance values are encoded into the chromosome as a 

dominance vector, which also undergoes recombination. A higher dominance value 

indicates a potentially beneficial allele and the recombination of these alleles with high 

dominance values may lead to better individuals. Additionally, both the chromosome and

98



dominance vector of an individual are subjected to selection. The individuals that survive 

retain their dominance values to propagate onto the next generation. Those individuals 

that do not survive are discarded along with their associated dominance values. Thus, the 

dominance vector is used to evolve the crossover positions during recombination. This 

indicates that selective crossover, by Eiben et aVs definition, also contains a self-adaptive 

feature.

Selective crossover uses a combination of two types of change: adaptive and self- 

adaptive and thus cannot be classified in the taxonomy proposed by Eiben et al. The need 

for classification is still necessary for future research to understand what methods have 

been employed for a particular strategy. Hence, a more flexible taxonomy is required for 

the three types of change. In the next section we refine the classification provided by 

Eiben et al.

6.1.4 A New Taxonomy for Type of Change

Analysis of selective crossover in the previous sections indicated that the methods 

adopted by an adaptive strategy could not always be uniquely identified into Eiben et al’s 

taxonomy. A strategy can take on many different methods that make it adaptive. To 

overcome the rigid boundaries used in their classification, a better taxonomy for the type 

of change is the use of a Venn diagram where each category (deterministic, adaptive and 

self-adaptive) represents a mathematical set as depicted in Figure 6.2. This allows 

methods adopted by adaptive strategies to be classified into one or more categories if 

necessary. The definition of deterministic, adaptive and self-adaptive remain the same as 

originally in Eiben et al. (1999).

Given this new taxonomy selective crossover is classified in the intersection of the 

adaptive and self-adaptive types of change. The adaptive feature is the use of fitness 

correlations to update dominance values and the self-adaptive feature is the use of a 

dominance vector associated with each individual to evolve crossover positions. The 

adaptive feature holds the key properties of selective crossover: detection, correlation and 

preservation (see Section 4.3). Although preservation actually occurs during 

recombination this property is based on preserving alleles according to previous 

contributions to fitness. Thus, it is part of the adaptive feature because that is where 

correlation is used to store knowledge about previous fitness contributions.
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Deterministic

Self-AdaptiveAdaptive

Selective Crossover

Figure 6.2: New taxonomy for type of parameter control.

This new taxonomy suggests that a strategy may consist of all three features, but is it 

possible for a strategy to be deterministic, adaptive and also self-adaptive? Let us first 

consider an example of a deterministic feature; a method that alters the probabihty of 

mutation so that it changes with the number of generations is a deterministic feature 

(Hinterding et al. 1997). Similarly the probabihty of recombination can be altered with the 

number of generations or an entirely different crossover operator can be apphed at fixed 

time intervals. For example consider selective crossover which currently has an adaptive 

and self-adaptive feature. If we were to include an additional method into selective 

crossover which apphed uniform crossover at fixed intervals, say every 100 generations 

then this whl be a deterministic feature. Hence with this additional method selective 

crossover would now have an adaptive, self-adaptive and a deterministic feature. This 

example is used to illustrate that it is possible for a strategy to have these three features; 

whether the additional deterministic feature is beneficial to selective crossover or not is 

left for future work.

Given this new taxonomy we can classify the adaptive recombination operators 

outlined in Section 3.3 as shown in Figure 6.3.
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Eshelman & Schaffer (1995)

Deterministic
Schaffer & Morishtma (1987) 
Spears (1995)Louis & Rawlins (1991)

Self-Adaptive
Adaptive

White & Oppacher (1994)
Vekaria & Clack (1998a,b)

Figure 6.3: Classification of other adaptive recombination operators using this new taxonomy.

The adaptive strategy used by Eshelman and Schaffer (1995) (see Section 3.3.4) is 

deterministic because they switch between two recombination operators at a pre-defined 

time interval. The strategies used by Schaffer and Morishima (1987) and Spears (1995) 

(see Section 3.3.1 and 3.3.5 respectively) are self-adaptive because their strategy 

parameter, crossover positions and choice of recombination operator respectively, are 

encoded within the individual and are allowed to evolve. White and Oppacher (1994), like 

selective crossover use an adaptive and self-adaptive method similar to selective 

crossover. The strategy used by Louis and Rawlins (1991) (see Section 3.3.2) is also 

similar to selective crossover in that it uses feedback from the search and the use of an 

extra vector to determine where crossover should occur. However, its uses pre-defined 

rules to dictate how this extra vector is inherited by the children and thus this extra vector 

is not allowed to evolve through recombination.

In summary this new taxonomy allows adaptive techniques to be classified more 

precisely than the originally taxonomy provided by Eiben et al., by accommodating for 

strategies that adopt one or more methods of change.
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6.2 Analysis of the Adaptive and Self-Adaptive Features

Section 6.1 identified a combination of two types of change in selective crossover: 

adaptive and self-adaptive. The adaptive feature uses parental and offspring fitness 

correlations to update dominance values and thus bias alleles; the self-adaptive feature 

uses a dominance vector associated with an individual to dictate where crossover should 

occur.

In Chapter 5 selective crossover was evaluated in terms of performance on 

different problems and demonstrated to work better than two-point and uniform 

crossover on most problems. However it is not clear whether this increase in performance 

is due solely to the adaptive feature or the self-adaptive feature or the combination of 

both. This section empirically analyses the adaptive and self-adaptive features in selective 

crossover.

6.2.1 Experiments

The adaptive and self-adaptive features (identified in Section 6.1.4) in selective crossover 

are interconnected. The adaptive feature updates the dominance values that belong to the 

dominance vector (associated with each individual) and this dominance vector constitutes 

the self-adaptive feature. The adaptive feature cannot be analysed on its own because it 

updates the dominance values, which are part of the self-adaptive feature. By removing 

the self-adaptive feature there is no strategy parameter for the adaptive feature to update. 

On the other hand, the adaptive feature can be removed because the dominance values do 

not need to be updated for the self-adaptive mechanism to work. By removing the 

adaptive feature we would also be removing the three key properties of selective 

crossover: detection, correlation and preservation.

To understand which feature caused the increased performance the adaptive 

feature is removed from selective crossover. In this case the dominance values are 

assigned randomly as usual (see Section 4.4) and are never changed to reflect fitness 

increase; they remain fixed. This method is very similar to Punctuated Crossover (Schaffer 

and Morishima, 1987) described in Section 3.3.1, where the crossover positions were 

initiahsed randomly and were allowed to evolve through recombination. The GA cycle 

depicted in Figure 4.1 is thus updated to Figure 6.4. In this GA cycle the component that 

updates the dominance values is omitted.
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Figure 6.4: GA Cycle of selective crossover that does not change the dominance values.

In this strategy the dominance values accompany the chromosome and recombination is 

conducted as usual (see Figure 4.3). The dominance values still dictate where crossover 

should occur, such that Child 1 inherits the higher dominance value at each locus along 

with its associated allele value and Child2 inherits all other dominance and allele values. 

As usual both the dominance and gene vectors are subjected to crossover and selection.

This strategy was apphed to One Max, Royal Road and NK landscapes (K = 4, 

20, and 31) which served to illustrate the phenomenon. The same GA parameters were 

used as described in Chapter 5 and the results were taken for 50 independent runs.

6.2.2 Results and Analysis

For 50 independent runs. Table 6.1 shows the results of applying selective crossover with 

only the self-adaptive feature to One Max, Royal Road and NK landscapes 

(K = 4, 20,31).
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Without Adaptive Feature With Adaptive Feature

Mean

solution

Standard

deviation

Mean

solution

Standard

deviation

One Max 37 1 50 0

Royal Road 56 16 192 0

NK Landscapes K = 4 0.606 0.018 0.747 0.015

K = 2 0 0.659 0.019 0.687 0.017

K = 31 0.612 0.017 0.729 0.010

Table 6.1: Results of applying selective crossover without its adaptive feature to the One Max, Royal 
Road and NK landscapes. Previous results with adaptive feature are also recalled in this table.

The results show that on all 50 runs of the One Max and Royal Road problems selective 

crossover without the adaptive feature was never able to find the global solution. The 

mean solution found for the One Max and Royal Road was 37 and 56 respectively (the 

global solution was 192; see Section 5.3.2). For the NK landscape the average solution 

found was 0.63 for all values of K. In comparison the results in Chapter 5 (also recalled 

in Table 6.1) showed that the original selective crossover i.e. with both the adaptive and 

self-adaptive features was able to find the global solution for the One Max and Royal 

Road on all 50 runs. It was also able to find better solutions for all values of K on the NK 

landscapes.

These results indicate that the performance of selective crossover deteriorates 

when the adaptive feature is removed, i.e. when the three key properties (detection 

correlation and preservation) are removed. This suggests that it is these three properties 

that are beneficial to selective crossover.

In conclusion, the adaptive and self-adaptive features in selective crossover are 

interconnected. The adaptive feature rehes on the presence of the self-adaptive feature; 

however, this relationship is not reflexive. The results in this section indicate that the 

performance of selective crossover is due to the combination of the adaptive and self- 

adaptive features and not solely due of the self-adaptive feature. For this reason we term 

selective crossover as an “adaptive” recombination operator. All future experiments using 

selective crossover make use of both its adaptive and self-adaptive features.
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6.3 Analysis of the Dominance Values in the Population

This section analyses the fluctuation of dominance values in the population to determine 

whether selective crossover is analogous to uniform crossover.

We identified in Chapter 4 that selective crossover is very much like uniform 

crossover, where the difference is that in uniform crossover there is a 50% chance of 

crossover occurring at each locus whilst, in selective crossover the dominance values 

dictate where crossover should take place. These dominance values undergo change using 

feedback from the search; however, if these dominance values were uniformly distributed 

across the population then selective crossover would be analogous to uniform crossover 

and the use of correlations would not actually be preserving alleles during recombination. 

We empirically observed the dominance values in the population to determine if this was 

true.

6.3.1 Experiments

To test if selective crossover is analogous to uniform crossover we tracked the 

distribution of dominance values at each generation on the One Max, Royal Road and NK 

landscape (N = 32 and K = 8), which served to illustrate the results. The fitness function 

of the One Max problem was normahsed so that the maximum fitness is 1. This was done 

to limit the range of the distribution. All other GA parameters remained unchanged and 

were those used as in Chapter 5. For the One Max and Royal Road the GA was 

terminated when the global solution was found. For the NK landscapes the GA was 

terminated after 150 generations.

The distribution of dominance values were recorded at four intervals The intervals 

were chosen as the first generation and then at 33% (a third) of the run, 66% (two thirds) 

of the run and the final generation when the solution was found. For each interval the 

mean, mode, standard deviation and skewness of the distribution was recorded.
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6.3.2 Results and Analysis

Figure 6.5, Figure 6.6 and Figure 6.7 show the distribution of dominance values for the 

One Max, Royal Road and NK landscape (N = 32 and K = 8) respectively.

Figure 6.5 shows the distribution of dominance values for the One Max problem at 

intervals of 1, 18, 36 and 53 generations on a single run. In the first generation the 

distribution of dominance values is uniform because the dominance values are randomly 

initiahsed to be in the range 0 to 1. However in subsequent generations the distribution of 

dominance values is constantly changing between generations and is far from uniform. At 

generation 18, in Figure 6.5, the distribution is completely different with a mean of 0.70 

and the mode is a plateau between 0.45 and 1.0. As the GA run continues the distribution 

tends towards a normal distribution. By the final generation (generation 53) the 

distribution is symmetrical and approximately normal where the mean and mode are 

approximately the same. The standard deviation is 0.24.

For the Royal Road function in Figure 6.6, the distribution starts off uniformly but 

by generation 484 the distribution is positively skewed (skewed to the right), the mode is 

28, the mean is 76 and the standard deviation is 57. The skewness of the distribution tends 

to increase as the generations increase; moreover, the distribution becomes very rugged 

by the final (1454*’’) generation. On the final generation the mode is still 28, the mean is 

now 118 and the standard deviation is 104.42.

For the NK Landscape, the distribution starts off uniformly but by generation 50 

the distribution is negatively skewed (skewed to the left). The mean is 0.82, standard 

deviation is 0.33 and the mode is 0.9. On successive generations the distribution tends to 

be positively skewed and the positive skewness continues to increase. At the final 

generation the mean is equivalent to the mode at 0.9 and the standard deviation is 0.19.

The analysis of dominance values on aU three problems shows that the dominance 

values are initially uniformly distributed, due to the random initialisation; however in 

subsequent generations the distribution of dominance values is constantly changing 

between generations and is not uniformly distributed. This demonstrates that selective 

crossover is not analogous to uniform crossover and shows dynamic behaviour.
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Figure 6.5: The évolution of the distribution of dominance values in the population, for the One Max 
problem.
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Road function.
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Figure 6.7: The evolution of the distribution of dominance values in the population, for the NK 
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From this analysis it is interesting to note that the distribution of dominance values 

is different for each problem. Moreover, in the Royal Road function the mode does not 

change on successive generations, whilst it does for the One Max and NK Landscape. 

This may be an indication that selective crossover behaves differently for each problem. 

Also the rugged distribution in the Royal Road may possibly reflect the structured search 

landscape inherent in the problem. However the results are not conclusive enough to 

generahse that the distribution of the dominance values reflects the structure of the 

landscape. A further quantitative analysis of these dominance values is required that 

would observe many runs across different problems and perform a cross-correlation of the 

distributions to find any re-occurring patterns. This additional analysis is beyond the scope 

of this thesis and is thus left for future work.

Another interesting point in the Royal Road function is that the Jfraction of alleles 

with dominance values less than 1 in the population remains constant after generation 

484. As the minimum fitness increase is 8 one would expect these dominance values to 

increase by at least a factor of 8, but they remain unchanged with the value that was 

assigned to them during initiahsation. Note that these values range from 0.8 to 1 and are 

located near or at the higher boundary of the initiahsation range (at 1). This could be due 

to the bias selective crossover has towards higher dominance values. Selective crossover 

biases alleles with higher dominance values as the higher dominance values are intended 

to reflect beneficial aUeles; however, in the initial generation such information about 

aUeles is not known and the dominance values assigned wül not reflect the true fitness 

contribution of the allele. Thus initiahsing dominance values can possibly have a negative 

effect on the recombination mechanism adopted by selective crossover; this is further 

investigated in the next chapter.

6.4 Summary and Conclusions

This chapter has identified two different features of change in selective crossover: 

adaptive and self-adaptive. The adaptive feature holds the three key properties of selective 

crossover: detection, correlation and preservation by use of parental and offspring fitness 

correlations to update the dominance values. The self-adaptive feature, in selective 

crossover, is the use of a dominance vector associated with each individual to evolve 

crossover positions.
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Owing to these two features, selective crossover could not be classified using the 

taxonomy provided by Eiben et al. The taxonomy they use assumes that a strategy can 

only adopt a single method of change. Using selective crossover as an example we prove 

that an adaptive strategy can adopt more than one method of change. The taxonomy 

provided by Eiben et al. was refined, in this Chapter, to form a new taxonomy represented 

as a Venn diagram where each category (deterministic, adaptive and self-adaptive) is a 

mathematical set. This new taxonomy accommodates strategies that adopt one or more 

methods of change.

An analysis of the adaptive and self-adaptive features was done by removing the 

adaptive feature from selective crossover. This was done to see whether the performance 

of selective crossover was due solely to the self-adaptive feature. This strategy was 

apphed to the One Max, Royal Road and NK Landscapes and demonstrated that selective 

crossover with only the self-adaptive feature performs poorly. On ah problems it was 

unable to find the global solution. This indicates that the performance of selective 

crossover is due to the combination of the adaptive and self-adaptive methods employed 

in selective crossover.

Empirical analysis on the adaptive behaviour was conducted by observing the 

distribution of dominance values at regular generational intervals. This was done for 

different problems. The results indicated that the distribution of dominance values in 

selective crossover are not uniformly distributed and thus it is not analogous to uniform 

crossover. This analysis also provides initial indications that selective crossover adapts to 

different problems by exhibiting different distributions and thus behaviour that 

corresponds to the problems. However, for more conclusive results, a further quantitative 

analysis of these dominance values is required, which would observe many runs across 

different problems and perform a cross-correlation of the distributions to find any re- 

occurring patterns. This additional analysis is beyond the scope of this thesis and is left for 

future work.

This analysis also identified that initiahsing dominance values may have a negative 

effect on the recombination mechanism in selective crossover. This is further addressed in 

the next chapter by analysing the biases inherent in selective crossover.
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Chapter 7

Biases in Adaptive Recombination Operators

The previous chapter studied the adaptive properties in selective crossover: this chapter 

provides a novel study of biases on alleles present in allele-based adaptive recombination 

operators - selective crossover, masked crossover (Louis and Rawlins, 1991) and 

adaptive uniform crossover (White and Oppacher, 1994). This work is published in 

Vekaria and Clack, (1999a and 1999c).

The aim of this study is to understand how each of these three adaptive operators 

influences GA search and thereby identify any limitations and possible ways of enhancing 

these operators. Moreover, this would allow us to determine their suitability for specific 

problems.

This chapter begins by providing a detailed description of masked crossover and 

adaptive uniform crossover in Section 7.1, which also highlights the similarities and 

differences between these two operators and selective crossover. This is followed by 

Section 7.2, which performs three functions: first it identifies and describes four key 

biases on alleles (directional bias, credit bias, initialisation bias, and hitchhiker bias), which 

are present in the three adaptive recombination operators; secondly, it analyses the 

relationship between these biases; thirdly it characterises the three adaptive recombination 

operators in terms of these biases by analysing the specific methods used, in each 

operator, to guide recombination. Section 7.3 then introduces a known phenomenon in 

G As called hitchhiking, which is a consequence of selection. We show that selective 

crossover is susceptible to this form of hitchhiking as well as its own hitchhiker bias, and 

thus the hitchhiker bias maybe a hindrance to GA search using selective crossover. The
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remaining sections empirically analyse, in terms of performance, the effects of the 

initiahsation and credit biases, which were identified as the cause of the hitchhiker bias in 

selective crossover.

7.1 Existing Allele-Based Adaptive Recombination Operators

Besides selective crossover there are two other aUele-based adaptive recombination 

operators: masked crossover (Louis and Rawlins, 1991) and adaptive uniform crossover 

(White and Oppacher, 1994). This section provides detailed descriptions of these 

operators, so that their similarities and differences to selective crossover can be analysed.

7.1.1 Masked Crossover

Masked crossover (Louis and Rawlins, 1991) uses relative fitness information to guide 

recombination. To do this each chromosome has an associated bit vector (a binary mask) 

such that each locus has an associated bit value. On initiahsation the binary masks are set 

randomly and are the primary element that dictates crossover. To describe how 

recombination occurs, let us consider two parents Parent 1 and Parent! and their 

associative binary mask vector M l and M2. A recombination event whl create two 

children Child 1 and Child!, which are initiahy direct copies of Parent 1 and Parent! 

respectively. The binary masks are then compared linearly across the chromosome and the 

solution vectors are updated as shown in Figure 7.1 and as defined below:

for 2=1 to ChromosomeLength 
if Mli == 1 and M2i == 0 

copy i bit from Parentl to Childl and Child2
else if Mli == 0 and M2i = 

copy i bit from Parent2
= 1 
to Childl and Child2

else
copy i bit from Parentl 
copy 2 bit from Parent2

to
to

Childl
Child2

The inheritance of the mask is not done in the same way, instead they use rules for mask 

propagation that are separate from those used for recombination. Figure 1.2 and Figure

7.3 depict examples of binary mask inheritance given parents shown in Figure 7.1. 

Children are categorised into three types; Good (fitter than best parent). Average (fitness
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within range of parents) and Bad (less than or equally fit as worst parent). With two 

children produced by recombination and three types of children, six rules were devised for 

the corresponding six ways of pairing the children: both good, both bad, both average, 

average/bad, average/good, or good/bad. The rules may modify both the masks of the 

children and the masks of the parents. For example, if both children are good (see Figure 

7.2) then the parents’ masks are left unchanged and the masks of the children are given by 

(i) ORing the masks of the parents; (ii) for any O’s left in the children’s masks randomly 

decide their value. In contrast, if both children are bad then the children’s masks are set to 

zero in those positions where a bit has been inherited from the other parent and the 

parents’ masks are also changed (see Figure 7.3). Louis and Rawlins (1991) do not use 

generational replacement; instead they use a steady state population. This means that 

parents will still remain in the population after crossover and if their masks produced 

inferior children then they are likely to do so again; therefore the binary masks of both 

parents also undergo a change to reflect detrimental effects.

Parentl Parentl
1 0 1 1 0 1 Binary Masks 0 0 1 0 1 0
0 1 1 1 1 1 Alleles 0 0 0 0 0 0

Childl

Childl

Create children
Childl

0 1 1 1 0 1 Alleles 0 0 0 1 0 1

Figure 7.1: Recombination using masked crossover.

Childl
1 ? 1 1 1 1 Binary Masks 1 ? 1 1 1 1
0 1 1 1 0 1 Alleles 0 0 1 0 1

Figure 7.2: Masked crossover -  creation of new binary masks if both children are ‘good’. (? Denotes 
randomly generated).

Childl Childl
1 0 ? 1 0 1 Binary Masks 0 0 1 0 1 0
0 1 1 1 m 1 Alleles 0 i m 1 # : 1 M. 1

Figure 7.3: Masked crossover -  creation of new binary masks if both children are ‘bad’. Assume 
fitness of ParentZ > Parentl. (? Denotes randomly generated).
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The similarities between masked crossover and selective crossover are outlined below:

• Both operators use parental and offspring fitness information to bias alleles 

during recombination.

• Both operators are allele-based recombination operators because 

recombination is decided at each allele in the chromosome.

The differences between masked crossover and selective crossover are outlined below:

• Masked crossover uses a binary mask; thus, there is only a binary relationship 

between an aUele that is considered fit and one that is not. This means that an 

allele that contributes httle to the fitness increase is considered equal to an 

allele that contributes more to the fitness increase.

• In masked crossover the updating of the binary mask does not take into 

account population homogeneity (when both parents have matching alleles at 

locus /). The binary mask is updated on the basis of which parent contributed 

to create a good or bad child and not on the differing bits that were exchanged 

to form the new child (Hamming distances between parents and offspring). For 

example, in Figure 7.1 an exchange occurring at locus 1 does not change the 

bit value at that locus; hence if there was a fitness increase or decrease it 

would not be the result of the exchange at locus 1.

• The changes in the binary mask do not reflect the magnitude of the fitness 

increase. The binary mask is updated in the same manner whether there is a 

small or large increase or decrease in fitness, thus allowing very little 

competition amongst the alleles in the population.

• The binary mask does not undergo recombination; the masks are inherited or 

changed independently using pre-defined external rules.

• Masked crossover penahses aUeles when there is a fitness decrease but due to 

interactions amongst genes it is difficult to determine exactly which aUele was 

the cause of the fitness decrease; hence, aUeles that are not directly related to 

the fitness decrease get penaUsed too.
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7.1.2 Adaptive Uniform Crossover

Adaptive uniform crossover (AUX) (White and Oppacher, 1994) also uses relative fitness 

information to guide recombination. In AUX each locus in the chromosome has an 

associated linear automaton with an odd number of states (the set of states S = {so, 

s i , . . . . , S n}  ), where #  is fixed by the user. Hence, for each individual of length / there are / 

automata associated with it, see Figure 7.4. The * in each automaton indicates the current 

state of the automaton and each state maps to the probabihty of crossover (bit exchange) 

at that location.

When bits are exchanged their associated automata are also passed onto the child. 

States are changed using pre-defined rules that have been invoked as a result of the fitness 

differences between parents and offspring. Examples of rules that can be invoked are 

given in Table 7.1.

Offspring fitness Reward bits from Parentl 

with probabihty

Reward bits from Parent2 

with probabihty

>Parentl ■I" P  superiorReward 0

>Parent2 0 ■I" P  superiorReward

<Parentl ”P inferiorPenalty 0

<Parent2 0 "P inferiorPenalty

Table 7.1: Updating rules for adaptive uniform crossover (AUX). +PsuperiorReward is the probability 
with which an automaton will he rewarded -  moved to the next state. -PinfenorPenaity is the probability 
with which an automaton will he penalised -  moved to the previous state.

White and Oppacher (1994) set PsuperiorReward to 1.0 and PinferiorPenaity to 1.0. Hence, a reward 

imphes that the automaton moves from state i to i+1 and a penalty imphes that the 

automaton moves from state i to i-1. If the automaton was in state N  (the last state) prior 

to a reward then no change is apphed to the automaton. This similarly apphes when the 

automaton is in state 0 (the first state) prior to a penalty. The initial states of the automata 

are set randomly.

The rules in Table 7.1 are used to update the automata in both children created 

under recombination. For example, assume that in Figure 7.4 the fitness of Childl is
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greater than both its parents’ fitnesses; therefore, according to the rules in Table 7.1 the 

states of all automata get updated by moving to i+1, if the current state is i. For Childl, 

assume that its fitness is less than both parents; therefore, the states of all automata will 

get updated by moving to state i-1, if the current state is i.

Parentl
1 1 1 1 1 1 1 1

Parentl
::;i ' 0: 0 0 iOl: 0 0

*

*

* *

* *

*

*

SlO

Sg

S8

S7

S6

S5

S4

S3

S2

S]

So

*

■ .

*
*

*
*

Childl Childl
1 0 0 1 0 1 1 1

* *

* *

* *

*

SlO

Sg

S8

S y

S6

Ss
S4

S3

S2

S i

So

1 1 1 0 1 0 0 0

*

* * *
- *

*

*

Figure 7.4: Recombination using adaptive uniform crossover (AUX). The automata belonging to the 
offspring are updated here given that the fitness of Childl > Parentl, Parent! and fitness of Child! 
< Parentl, Parent!.
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The similarities between AUX and selective crossover are outlined below:

• Both operators use parental and offspring fitness information to bias alleles 

during recombination.

• Both operators are allele-based recombination operators because 

recombination is decided at each allele in the chromosome.

• In both operators the inheritance of the strategy parameter (the automata in 

AUX and the dominance vector in selective crossover) is determined by 

recombination and not external rules (as done in masked crossover).

The differences between AUX and selective crossover are outlined below:

• AUX uses a finite automaton; therefore the automaton cannot move to 

another state if the final state is reached; if there is then a fitness increase, 

stagnation ensues.

• In AUX, each automaton state maps to a probability, thus recombination is 

still probabilistic whereas in selective crossover recombination is deterministic.

• The change in states of the automaton, like masked crossover, does not reflect 

the magnitude of the fitness increase. Hence the automaton changes state if 

there is a small or large increase in fitness.

• AUX does not take into account population homogeneity (when both parents 

have matching alleles at loci i). The algorithm only rewards or penahses 

automata on the basis of which parent contributed to which child and not on 

the differing bits that were exchanged to form the new child. For example, in 

Figure 7.4 an exchange occurring at locus 1 does not change the bit value at 

that locus; hence if there was a fitness increase or decrease it would not be the 

result of the exchange at locus 1.

• AUX penahses aUeles when there is a fitness decrease but owing to 

interactions amongst genes it is difficult to determine exactly which aUele was 

the cause of the fitness decrease; hence, aUeles that are not directly related to 

the fitness decrease also get penahsed.
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7.2 Analysis of Biases in Allele-Based Adaptive Recombination
Operators

This section provides a novel study of biases in aUele-based adaptive recombination 

operators. It identifies and describes four key biases on aUeles, which are inherent in 

masked crossover, adaptive uniform crossover and selective crossover: directional, credit, 

initiahsation and hitchhiker biases. These biases are an inherent part of the above three 

operators and are additional to the general bias of the GA (implemented by selection 

according to fitness).

7.2.1 Directional Bias

Directional bias exists if aUeles are favoured (or not favoured) for their fitness 

contribution. This bias determines the direction the GA is Ukely to foUow and benefits GA 

search as it pushes the GA towards particular regions in the search space to aid 

convergence.

AU three operators have directional bias as they favour aUeles exchanged during 

recombination that show a fitness increase in the individual relative to its parents. This 

form of bias means that the operators foUow regions of the search space where fitness is 

likely to increase; therefore, the GA can potentiaUy be misled and is unable to solve highly 

deceptive problems.

Masked crossover and AUX consider fitness increase and decrease when biasing 

an aUele whUst selective crossover only considers fitness increase. Therefore selective 

crossover has a higher directional bias towards fitness increase than masked crossover or 

AUX. The results in Chapter 5 demonstrated that selective crossover, Uke two-point and 

uniform crossover, was unable to solve trap functions that are partiaUy deceptive at order 

20 and above. Thus selective crossover is not ideal for highly deceptive problems due to 

its directional bias.

7.2.2 Credit Bias

The credit bias is the degree with which an aUele gets favoured with respect to its fitness 

contribution. Credit bias is used as a means for accumulating fitness information in each
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generation and using the knowledge, during recombination, to exploit alleles. The amount 

of credit bias decides the amount of allele exploitation. Too much exploitation will limit 

the exploration and too httle exploitation can slow convergence. A high credit bias means 

more exploitation and hence reduced exploration. A recombination operator has high 

credit bias if aUeles are given high credit for any degree of fitness increase.

Masked crossover has high credit bias as it makes use of a binary mask to 

accumulate fitness information. This means that there is only a binary relationship between 

an allele that is considered ‘good’ and one that does not contribute to the fitness and is 

considered ‘bad’ (Section 7.1.1). This allows very httle competition amongst the aUeles to 

be retained in a fitter individual during recombination.

Masked crossover and AUX change the binary mask and automaton state 

respectively when there is a fitness increase, but the changes incorporated do not reflect 

the magnitude of the fitness increase. For example, the same changes occur to the binary 

mask and automaton whether there is a fitness increase of 5 or 10. AUX uses a finite 

automaton with probabihties; this means that once the automaton reaches the final state it 

cannot move to another state if there is a fitness increase and hence causes stagnation 

(reduced directional bias). For these reasons, AUX also has high credit bias.

In the case of selective crossover, different variations in the fitness increase are 

captured as the fitness increase determines the degree to which the dominance values get 

increased (see Figure 4.4, page 61). Selective crossover uses real values; there is no 

restriction on how big these values can get, other than computational restrictions. These 

unbounded continuous values aUow more competition amongst the aUeles (as identified in 

Chapter 6). Hence, selective crossover has less credit bias than masked crossover and 

AUX.

7.2.3 Initialisation Bias

A recombination operator has an initiahsation bias if aUeles are favoured during 

initiahsation. This means that aUeles are exploited without any knowledge of their 

contribution to fitness. This form of exploitation occurs prior to any exploration and 

therefore restricts the explorative power of the GA.

The effect of the initiahsation bias is greatly influenced by the population size. For 

example, in selective crossover the population size governs the distribution of the
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dominance values at each locus in the population. In Chapter 6 a distribution of the initial 

dominance values was plotted, which depicted a uniform distribution because it 

considered all dominance values in the population. However, the distribution of the 

dominance values at each locus or '‘column ” of the population is not always uniform due 

to the stochastic noise in a small population size. For example, consider a population of 4 

individuals of length 4 represented in Figure 7.5; the distribution of dominance values at 

each locus or each column does not show that these values are uniformly distributed 

because the population size is too small and therefore causes an initiahsation bias. Given a 

“large enough” population this bias wiU not exist because the distribution will be evenly 

spread and therefore averaged out. As ideal population sizes are unknown for different 

problems (previously mentioned in Section 2.3.1), this bias can potentially have a negative 

affect on GA performance.

1
0.59 0.18 0.33 0.20

1 0 0 0

2
0.77 0.98 0.14 0.16

0 1 1 1

3
0.4 0.83 0.21 0.85

1 0 0 1

4
0.85 0.65 0.5 0.82

0 1 0 1

Figure 7.5: Population of 4 individuals, which demonstrates that the dominance values are not 
uniformly distributed at each locus due to the small population size. As the population size increases 
the distribution of the dominance values at each locus is more likely to be uniform.

In selective crossover the dominance vector is randomly assigned with real values and 

with a constraint that they must be in the range [0,1]. This imphes that in the first few 

generations the GA has a potential of being misled. For example, consider the One Max 

problem where the aim is to have ah I ’s in the chromosome. Now during initiahsation 

50% of the population is highly likely to contain O’s, as the population is randomly
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generated. Since the dominance values are randomly assigned it is likely that a proportion 

of the population contains O’s that are more favourable than the I ’s. The distribution of 

dominance values can be skewed towards a desirable start or an undesirable start: the 

distribution is desirable when the population contains a large percentage of I ’s with 

dominance values > 0.5; the distribution is undesirable when the population contains a 

large percentage of O’s with dominance values > 0.5. Therefore on the first recombination 

process of the GA, this uncertainty of whether a 0 gets favoured more than the 1 during 

initiahsation gives us less confidence in GA behaviour and in the case of adaptive 

operators we hope for guarantees in behaviour.

Masked crossover and AUX also have initiahsation bias: in masked crossover, the 

binary mask vector is randomly assigned with bit values and a 1 favours an ahele whilst a 

0 does not: similarly, the states of the AUX automaton are set randomly.

7.2.4 Hitchhiker Bias

Hitchhiker bias exists if aheles get favoured when they are not the cause of a fitness 

increase.

The hitchhiker bias is inherent in selective crossover because the dominance values 

of aheles are increased if they were exchanged during recombination and as a result there 

is a fitness increase in the child. The increase of the dominance values is determined by the 

fitness increase relative to the parents. In the case of the One Max problem where 

schemata containing I ’s are fitter than those containing O’s, if a 0 is introduced in a child 

as weh as three I ’s the fitness wih increase and so wih the dominance values. The 

dominance values of the three I ’s and the 0 wih get increased by the same amount (the 

fitness increase). Hence in fohowing generations the 0 wih have a high dominance value 

and may get passed down to future generations. For the One Max problem such an event 

is not desirable. For example, in Figure 7.6 the shaded dominance values show four aheles 

that were exchanged to create Chhdl. Given the One Max problem, if Chhdl has a fitness 

increase of 3, the 0 that was also exchanged at locus 2 wih get biased. The dominance 

values of ah four aheles (shaded) whl increase by 3. This means that the 0 at locus 2 is 

hitchhiking; it did not contribute to the fitness increase. For this reason, we view the 

hitchhiker bias as being detrimental to the evolutionary process.
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Childl -  fitness = 4

1.2 0.8 3.0 1.0 0.3

1 0 1 1 1 0

Figure 7.6: Example of hitchhiker bias in selective crossover when applied to the One Max problem.

Both masked crossover and AUX have more hitchhiker bias than selective crossover 

because neither check for population homogeneity, hence favouring alleles which are not 

the result of a fitness increase relative to the parents, see Figure 7.2 and Figure 7.4. Also 

both operators penahse alleles that were exchanged and caused a fitness decrease but this 

has a potential for error as those alleles that are not the cause of the fitness decrease get 

penahsed too.

Due to the continuous nature of the dominance values in selective crossover, 

compared with masked crossover and AUX, there is increased competition amongst the 

aheles thereby reducing the effect of the hitchhiker bias. For example. Figure 7.6 shows 

only a single recombination event whereas other individuals may contain a ‘1’ at locus 2 

with a higher dominance value; thus it is suspected that selective crossover has a better 

chance of discarding hitchhikers in the population.

7.2.5 Interdependencies Between Biases

The directional, credit and hitchhiker biases are not independent biases and each one is a 

direct result of another. Figure 7.7 shows the relationship amongst the four biases. The 

directional bias is a high level bias and can be considered as the general direction required 

by the GA. The credit bias is at a level below the directional bias and is a direct result of 

it; having decided the direction, the credit bias represents “how” to follow the direction by 

means of assigning credit to alleles. The credit bias can be assigned in many ways as 

shown by selective crossover, masked crossover and adaptive uniform crossover. The 

hitchhiker bias is a direct result of the credit bias; without a credit bias on the alleles there 

is no hitchhiker bias on alleles. From Figure 7.7 we can see how the directional, credit and 

hitchhiker bias can be grouped together. The initiahsation bias does not faU within this 

group as it is introduced independently into the adaptive technique. The initiahsation bias
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is also a cause of the hitchhiker bias because alleles are being assigned a credit when they 

may not be fit alleles; therefore the initialisation bias may be harmful to GA search.

Directional Bias

Credit Bias

Hitchhiker BiasInitiahsation Bias

Figure 7.7: Interdependencies amongst biases in allele-based adaptive recombination operators.

Initiahsation

Bias

Directional

Bias

Credit Bias Hitchhiker Bias

Masked

crossover

High Medium High High

Adaptive uniform 

crossover (AUX)

High Medium High High

Selective

crossover

High High Low Medium

Table 7.2: Relative strength of biases present in masked crossover, adaptive uniform crossover and 
selective crossover.

Table 7.2 provides a summary of the biases imposed by masked crossover, adaptive 

uniform crossover and selective crossover. AU three operators have high initiahsation bias 

because the strategy parameters (binary masks, automata and dominance vectors) are
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initialised without knowing the fitness contributions of the corresponding alleles. Both 

masked crossover and AUX have a medium amount of directional bias because they 

consider the fitness increase and decrease when updating their strategy parameter, whilst 

selective crossover has a high amount of directional bias because it only considers fitness 

increase. Both masked crossover and AUX have a high credit bias because the magnitude 

of the fitness increase is not considered when updating their strategy parameter, whilst it 

is considered in selective crossover, which has low credit bias. Selective crossover has 

medium hitchhiker bias because it updates dominance values using Hamming distances 

between parent and offspring; thus, alleles that were identical in both parents are not 

biased as they are not considered to contribute to the fitness increase. Masked crossover 

and AUX have a high hitchhiker bias because alleles that were identical in both parents 

are still biased even though they did not contribute to the fitness increase. Moreover, as 

seen in Figure 7.7, a high hitchhiker bias is also the result of a high credit bias and high 

initiahsation bias.

7.3 More Hitchhiking and Selective Crossover

The previous section identified the presence of a hitchhiker bias in selective crossover. 

Earher studies by Schaffer, Eshelman and Offnut (1991) and Forrest and Mitchell (1993) 

show that G As (that use one-point crossover) can also be susceptible to another form of 

hitchhiking due to over-sampling in selection. In this case schemata are sampled, by 

selection of individuals, at rates that are not justified by their fitnesses. Hence, undesirable 

schemata have been coupled along with desirable schemata in an above average 

individual, during recombination, which then gets sampled at a higher rate during 

selection. This produces more instances of the undesirable schemata together with the 

desirable schemata in the newly selected population. This phenomenon is known as 

“spurious correlations” or “hitchhiking” (Schaffer, Eshelman and Offnut (1991) and 

Forrest and Mitchell (1993)) where the undesirable (less fit) schemata hitchhike along 

with the more fit schemata. The reader should note that hitchhiking and the hitchhiker bias 

(described in Section 7.2.4) are two different entities; hitchhiking occurs at the individual 

level and is a consequence of selection whilst the hitchhiker bias occurs at the allele level 

and is a consequence of the adaptive recombination operator.
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Schaffer, Eshelman and Offnut (1991) first discovered hitchhiking as a 

consequence of selection in GAs. In their work they define hitchhiking as spurious 

correlations that are inherent in GAs and can lead to premature convergence. They 

explored the effects of two-point and uniform crossover on synthetic problems that are 

susceptible to hitchhiking. Two-point crossover is known to possess considerable 

positional bias meaning that schemata are less likely to get disrupted if they are situated 

together on the chromosome, therefore two-point crossover is not sufficiently vigorous to 

suppress hitchhikers. However, uniform crossover possesses no positional bias and 

therefore wül tend to disrupt highly fit schemata as well as the hitchhikers. Schaffer et al. 

concluded that hitchhiking could not be eliminated and suggested that using a population- 

ehtist strategy, in which individuals are introduced into the population only by replacing 

the worst of the population, can compensate for the disruptive behaviour of uniform 

crossover. This allows good solutions to be retained and reduces the high sampling rate of 

hitchhikers.

A further study on Royal Road functions (Forrest and Mitchell, 1993) showed that 

the convergence of the G A was slowed down by the presence of intermediate schemata 

(R2) (Forrest and Mitchell, 1993). To understand the slow convergence they traced 

specific schemata during evolution; the results showed that the slow convergence was due 

to hitchhiking. Their study used one-point crossover, which has a high positional bias and 

therefore is very unlikely to disrupt hitchhikers.

The above studies indicate that all recombination operators are susceptible to 

hitchhiking due to over-sampling in selection. Thus selective crossover, AUX and masked 

crossover are susceptible to hitchhiking and the hitchhiker bias on alleles as described in 

Section 7.2.4. Furthermore the hitchhiker bias at the allele level can also get over

sampled during selection and thus affect both future recombination and convergence. For 

example, in selective crossover consider an allele whose dominance value is increased 

when it did not contribute to the fitness increase of the individual (see Figure 7.6). This 

individual containing this allele now has a hitchhiker bias, which may be over-sampled 

during selection. Thus the newly selected population will have many instances of this 

individual and as a result more instances of this hitchhiker bias. This may affect future 

recombination and convergence, as recombination is dictated by the dominance values and 

is used to guide the GA towards fitter individuals. For this reason, we suspect that the 

hitchhiker bias inherent in selective crossover, AUX and masked crossover can hinder
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the performance o f the GA. The effect of this bias is empirically investigated for selective 

crossover in the next section. A similar study for AUX and masked crossover is left for 

future work.

7.4 Analysis of the Effect of Biases on Selective Crossover

The previous section identified that selective crossover is susceptible to hitchhiking as a 

consequence of selection and its own hitchhiker bias. Furthermore, from the relationship 

in Figure 7.7 it is clear that selective crossover is exposed to two doses of the hitchhiker 

bias; one from the credit bias and the other from the initiahsation bias. In this section we 

show, using selective crossover as an example, how the credit bias and the initiahsation 

bias affect GA search. This is done by reducing the credit bias and eliminating the 

initiahsation bias. Therefore three variations of selective crossover are compared: ‘original 

selective crossover’ (Algorithm 7.1), ‘selective crossover with less credit bias’ (Algorithm 

7.2) and ‘selective crossover without the initiahsation bias, (Algorithm 7.3).

Genetic_Algorithm;
T=0
Initialise population(P)
Initialise dominance values with range 0 to 1(P) 
Evaluate(P)
WHILE NOT finish DO {

T=T+1;
Selection(P)
Recombination(P ) /*selective crossover*/ 
Mutation(P)
Evaluate(P)
Update dominance values(P)

}

Algorithm 7.1: Pseudo code for original selective crossover.
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Genetic_Algorithm;
T=0
Initialise population(P)
Initialise dominance values with range 0 to 1(P)
Evaluate(P)
WHILE NOT finish DO {

T=T+1;
Selection(P)
Recombination(P ) /*selective crossover*/
Mutation(P)
Evaluate(P)
Update dominance values by fraction of increase(?)

}

Algorithm 7.2: Pseudo code for selective crossover with less credit bias. The main difference to the 
''original selective crossover” is the way in which dominance values are updated which has been 
stressed in bold.

Genetic_Algorithm:
T=0
Initialise population(P)
Initialise dominance values to 0(P)
Evaluate(P)
WHILE NOT finish DO {

T=T+1;
Selection(P) 
if T == 1 {

Recombination(?) /*uniform crossover*/
}
else Recombination (?) /*selective crossover*/
Mutation(P)
Evaluate(P)
Update dominance values(P)

}

Algorithm 7.3: Pseudo code for selective crossover without the initialisation bias. The main 
difference to the "original selective crossover” are stressed in bold.
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Since our study is on the biases in selective crossover and how they affect GA 

performance we use two test problems which serve to illustrate the effects. We use NK 

landscape problems (N=32 and K= {4,20,31}) because they allow us to alter both the 

fitness landscape and difficulty of the problems, which our other test problems could not. 

We also use the Royal Road function because Chapter 6 identified that the dominance 

values for this problem retained some original initiahsation values throughout the run and 

the initiahsation bias expressed in these original values may affect the performance of 

selective crossover on the Royal Road problem.

Two sets of experiments were carried out using the NK landscapes and the Royal 

Road function; one without mutation and the other with mutation. Ah other GA 

parameters including the population sizes and chromosome lengths were the same as used 

in Chapter 5 (page 76). The results were taken for 50 independent runs

The first set of experiments were carried out with no mutation to analyse selective 

crossover on its own merits. In this case a comparison of the three different algorithms 

was done using the mean best solution found over 50 runs; the GA was ahowed to run 

until the population had converged (when 95% of the individuals in the population were 

identical).

In the second set of experiments mutation was included into the GA and the 

mutation rate was 0.01. The three algorithms were compared in terms of performance 

(the number of evaluations taken).

7.4.1 Selective Crossover with Less Credit Bias

In Section 7.2.5 we stated that the credit bias causes a hitchhiker bias, which may be 

harmful for GA search. To determine whether the credit bias affects GA search we reduce 

the magnitude of the bias by increasing the dominance values by only a fraction of the 

fitness increase. For example, if five alleles were exchanged during crossover and the 

fitness increase was 3 then each dominance value belonging to these alleles will get 

increased by 0.6 and not 3 (as is done in the original selective crossover). The fitness 

increase is shared between the changed alleles because it is difficult to tell which allele 

actually contributed to the fitness increase (Figure 7.8). By using this method of reducing 

the credit bias we may be able to reduce the hitchhiker bias. In this method if a single 

allele gets exchanged it wül get complete recognition for its fitness contribution. On the
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other hand if two alleles were exchanged it is difficult to know which allele is hitchhiking; 

therefore, by reducing the credit bias we increase competition amongst the alleles.

In the example shown in Figure 7.8 the fitness increase of Child 1 with respect to 

its parents is 0.1. As two alleles were changed we do not know which allele influenced the 

fitness, therefore we share the fitness increase amongst all the alleles that were changed. 

In this example, the dominance values get increased by 0.05. By doing this, if a single 

allele was exchanged and fitness increased then that allele will get full recognition; its 

dominance value will get increased by the complete fitness increase. In this method we are 

decreasing the magnitude of the credit bias we give to the alleles (the amount the 

dominance values get increased by). Therefore, we alter the way the dominance values are 

updated; the method is implemented as shown in Algorithm 7.2.

Parent 1 -  fitness = 0.36

0.4 0.3 0.01 0.9 0.1 0.2

1 0 0 1 0 0

Child 1 -  fitness -  0.46

0.4 0.3 0.4 0.9 0.9 0.3

1 0 1 1 1 0

Parent 2 -  fitness = 0.30 Child 2 -  fitness = 0.20

0.01 0.2 0.4 0.2 0.9 0.3

0 1 1 1

Child 1

0.4 0.3 0.4 0.9 0.9

1 0 1 1

Child 2

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

Increase dominance values

Child 1 -  fitness -  0.46

Child 2 -  fitness = 0.20

0.4 0.3 0.45 0.9 0.95 0.3

1 0 1 1 1 0

0.01 0.2 0.01 0.2 0.1 0.2

0 1 0 1 0 0

Figure 7.8: Reducing the magnitude of the credit bias by sharing the fitness increase amongst alleles 
that were exchanged. Child 1 produced a fitness increase of 0.1. Since two alleles were exchanged 
their dominance values get increased by 0.05 (0.1/2).
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7.4.2 Selective Crossover without the Initialisation Bias

To see the effect of the initiahsation bias we removed it from selective crossover so that 

the only biases present were those shown in Figure 7.9. To remove the initiahsation bias a 

new method where dominance values are initiahsed at zero (Algorithm 7.3) is compared 

with the ‘original selective crossover’.

Directional Bias

Credit Bias

Hitchhiker Bias

Figure 7.9: Selective crossover without the initialisation bias.

Selective crossover requires different dominance values for crossover to occur (See 

Figure 4.3.); if two parents have an equal dominance value at the same loci the bits do not 

get exchanged. Since ‘selective crossover without the initiahsation bias’ initiahses ah 

dominance values to zero the first recombination process using selective crossover cannot 

be carried out. Therefore in the first generation we use uniform crossover and then after 

evaluation the dominance values are increased according to the fitness increase presented 

by the new offspring. This then generates variation amongst the dominance values, which 

in subsequent generations ahows selective crossover to be used. The use of uniform 

crossover in the first generation makes no difference in the way recombination occurs 

because it is exactly the same as initiahsing dominance values randomly; however this 

method does not cause an initiahsation bias. The pseudo code for selective crossover 

without the initiahsation bias is shown in Algorithm 7.3.
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7.4.3 Results

For 50 independent runs on each problem, Table 7.3 shows the mean solution found by 

eliminating and reducing the initiahsation and credit biases respectively when there was no 

mutation in the GA. When mutation is included in the GA, Table 7.4 and Table 7.5 show 

the mean fitness of the best solutions found and the mean evaluations taken to find the 

solution. In ah tables the standard deviation is shown in parentheses.

------ G A  w i t h o u t  m u t a t i o n ---------

Royal Road NK Landscapes

K=4 K=20 K=31

Original selective 

crossover

14.93

(7.65)

0.7447

(0.0122)

0.6811

(0.0149)

0.7214

(0.0141)

Selective crossover 

without the 

initiahsation bias

19.20

(8.42)

0.7430

(0.0189)

0.6798

(0.0165)

0.7218

(0.0160)

Less credit bias 12.35

(6.4)

0.7114

(0.0179)

0.6545

(0.0102)

0.7060

(0.0127)

Table 7.3: Mean fitness of best solution found when analysing the biases in selective crossover 
without mutation in the G A  Results are from 50 independent runs for the Royal Road and NK 
Landscape problems. The standard deviation is shown in brackets.

Without mutation ah runs on the Royal Road problem were unable to find the global 

solution; the mean solution found by the original selective crossover was 14.93, by 

selective crossover without the initiahsation bias was 19.20 and by selective crossover 

with less credit bias was 12.35. These initial results, without mutation, show that 

‘selective crossover with less credit bias’ found poorer solutions for the Royal Road and 

NK Landscapes; ‘selective crossover without the initiahsation bias’ found better solutions 

than ‘original selective crossover’ on the Royal Road. However there was no significant 

difference, in the solutions found, between the two algorithms on the NK Landscapes. 

When mutation is used, selective crossover is able to find the global solution for the Royal 

Road and better solutions for the NK Landscapes as demonstrated in Chapter 5 and Table
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7.4 and Table 7.5 below. This indicates that selective crossover needs mutation, to 

introduce diversity into the population, to allow it to explore and exploit other regions in 

the search space.

------ G A  w i t h  m u t a t i o n ---------

Royal Road

Mean solution Mean number o f 

evaluations

Original selective crossover 192.00 64598 (34192)

Selective crossover without the 

initiahsation bias

192.00 55857 (25749)

Less credit bias 192.00 65146 (40199)

Table 7.4: Mean solution found and mean evaluations taken when analysing the biases in selective 
crossover with mutation in the GA. These are results from 50 independent runs for the Royal Road 
function. On all runs the global solution was found. The standard deviation is shown in parentheses.

------ G A  w i t h  m u t a t i o n ---------

NK Landscapes

K=4 K=20 K=31

Mean

solution

Mean

evaluations

Mean

solution

Mean

evaluations

Mean

solution

Mean

evaluations

Original selective 

crossover

0.7466

(0.0147)

11658

(832)

0.6866

(0.0171)

7931

(1312)

0.7285

(0.0100)

10631

(1525)

Selective crossover 

without the 

initiahsation bias

0.7236

(0.0153)

11330

(722)

0.6903

(0.0160)

7766

(1064)

0.7317

(0.0177)

10333

(1692)

Less credit bias 0.7469

(0.0110)

11943

(827)

0.6911

(0.0202)

7687

(1414)

0.7191

(0.0106)

11066

(1376)

Table 7.5: Mean solution found and mean evaluations taken when analysing the biases in selective 
crossover with mutation in the GA. Results from 50 independent runs for NK landscapes N=32 
K={4,20,31}. The standard deviation is shown in parentheses.
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The results in Table 7.3 (GA without mutation) suggested that reducing the credit 

bias has an adverse affect on the GA but without mutation the optimal solution was not 

found in both the NK Landscapes and the Royal Road function. Thus it was not clear 

whether this was a result of the credit bias or the lack of mutation. The results shown in 

Table 7.4 and Table 7.5 show that when mutation is re-introduced in the GA, reducing the 

credit bias in selective crossover has no significant impact on the performance. Thus 

‘selective crossover with less credit bias’ has no change in performance.

In Table 7.4, the ‘original selective crossover’, which contained all the biases 

depicted in Figure 7.7, found the optimal solution with 64598 evaluations on average. In 

comparison, when the initiahsation bias was removed which thus reduced the hitchhiker 

bias (‘selective crossover without the initiahsation bias’) the GA found the optimal 

solution in fewer evaluations than the original selective crossover; 55857 was the mean 

number of evaluations. A r-test for significance at the 5% level shows that the ‘selective 

crossover without the initiahsation bias’ is significantly better than the ‘original selective 

crossover’; the ‘selective crossover without the initiahsation bias’ shows an improvement 

of 14%. A r-test also showed that there is no significant difference between the ‘original 

selective crossover’ and ‘selective crossover with less credit bias’.

The results in Table 7.5 shows that for ah values of K on the NK landscape 

problems the evaluations taken and the solutions found by ‘original selective crossover’, 

‘selective crossover without the initiahsation bias’ and ‘selective crossover with less credit 

bias’ were comparable with no statistical difference.

7.5 Analysis

Selective crossover is exposed to two forms of hitchhiking: (i) hitchhiking due to 

pejorative sampling rates by selection; (h) a hitchhiker bias on aheles due to the 

initiahsation bias and credit bias inherent in selective crossover.

Evidence of the deleterious effect of the hitchhiker bias was found when the 

performance of the ‘original selective crossover’ was compared with ‘selective crossover 

without initiahsation bias’. By eliminating the initiahsation bias (Figure 7.9) we have 

reduced the hitchhiker bias and thereby increased the performance of selective crossover
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in problems known to suffer from hitchhiking. For the Royal Road problem the GA 

without the initiahsation bias was able to find the global solution with fewer evaluations 

than the original selective crossover. However for the NK landscape problems there was 

no real statistical difference in performance between the two algorithms. On one hand, 

eliminating the initiahsation bias reduced the hitchhiker bias. On the other hand, selective 

crossover is stih exposed to the hitchhiker bias (as mentioned in Section 7.2.5) due to the 

mechanism adopted by selective crossover where the correlation between parental 

fitnesses and offspring fitnesses is used to increase an ahele’s dominance value. The 

results suggest that the hitchhiker bias restricts search in selective crossover and should be 

eliminated. However, the hitchhiker bias in selective crossover can not be eliminated 

completely since the hitchhiker bias is an unavoidable consequence of the credit bias. 

Section 7.4.3 has shown that reducing the credit bias made no difference to the 

performance of the GA compared to the original selective crossover.

Selective crossover is susceptible to hitchhiking due to over-sampling in selection 

as well as its own hitchhiker bias. However, selective crossover is better than uniform 

crossover, which does not possess the hitchhiker bias and is considered to be more 

disruptive against hitchhiking (Schaffer, Eshelman and Offnut, 1991). Since neither 

operator is biased against schemata of high defining length, our intuition is that selective 

crossover does better than uniform crossover because of its adaptive schema preservation 

characteristics given by the directional and credit biases. Selective crossover imphcitly 

stores knowledge in the dominance values by using correlations between parental fitnesses 

and offspring fitnesses, which allows selective crossover to suppress the adverse effects of 

hitchhiking.

The hitchhiker bias is suppressed in selective crossover because the dominance 

values are not bounded to predefined limits and are allowed to increase indefinitely with 

respect to fitness increase unlike masked and adaptive uniform crossover. Moreover, the 

dominance value of an allele a at position i in one individual is not necessarily the same 

for allele a at the same position in another individual. Each dominance value is a result of 

correlations in previous generations. This suggests that there is a great deal of 

competition amongst alleles, for a position on a chromosome, during recombination. For 

example in Figure 7.6 for the One Max problem, allele ‘1’ is more superior than allele ‘O’, 

however the dominance value of ‘0’ at locus 2 was increased because of a fitness increase 

caused by the three ‘I ’s introduced in the chromosome along with the ‘O’. This is an
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example of one recombination event in the entire population. Other recombination events 

may have combined a superior ‘1’ at locus 2 thereby, in the next generation the 

hitchhiking 'O' is suppressed by the higher dominance values of other superior alleles 

present at the same loci. The distribution of dominance values in Chapter 6 pictured the 

range of possible dominance values in the population.

These results suggest that the hitchhiker bias will also suppress the performance of 

masked and adaptive uniform crossover as both operators have more hitchhiker bias than 

selective crossover (see Section 7.2.5). Thus, using an alternative method of initiahsation 

and a method of applying credit wiU increase the performance of these operators. This 

also suggests that selective crossover will outperform both masked and adaptive uniform 

crossover. A quantitative analysis of the biases in masked and adaptive uniform crossover 

is left for future work (see Section 9.4).

7.6 Summary and Conclusions

This chapter has completed three analyses. Firstly it has studied the biases on alleles 

introduced by aUele-based adaptive recombination operators that use fitness information 

to direct the GA. We have identified four key biases: directional bias, credit bias, 

initiahsation bias and hitchhiker bias. The directional bias exists if aheles are either 

favoured or not favoured for their fitness contribution. The credit bias is the degree at 

which an ahele gets favoured with respect to its fitness contribution. The initiahsation bias 

exists if aheles get favoured during initiahsation without knowing their fitness 

contribution. The hitchhiker bias exists if aheles get favoured when they do not contribute 

to the fitness increase.

Secondly, this chapter has analysed the relationship between these biases and has 

shown that they are not independent: the credit bias is a direct result of the directional 

bias, and both the credit and initiahsation biases contribute to the hitchhiker bias. We have 

used these four biases to characterise three adaptive recombination operators (masked, 

adaptive uniform, and selective crossover) and to compare analyticahy the degree to 

which they exhibit these biases; selective crossover has higher directional bias yet lower 

credit bias and lower hitchhiker bias than the other two operators. The directional bias in 

selective crossover makes it unsuitable to use when solving highly deceptive problems.

Thirdly, this chapter has used selective crossover to study the effects of the
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hitchhiker bias. Selective crossover possesses two doses of the hitchhiker bias; one from 

the initiahsation method used and the other from the credit bias, which uses correlations 

between parent and offspring fitnesses. We propose two methods to reduce the hitchhiker 

bias; (1) by reducing the credit bias and (2) by removing the initiahsation bias. We 

compare the performance of three variations of selective crossover: ‘original selective 

crossover’, ‘selective crossover with less credit bias’ and ‘selective crossover without the 

initiahsation bias’. These three algorithms were apphed to the Royal Road and NK 

Landscape problems. The results demonstrate that selective crossover is exposed to the 

hitchhiker bias and this bias hinders the performance of selective crossover. The results 

indicate that eliminating the initiahsation bias reduces the hitchhiker bias and thus 

improves the performance of selective crossover. However as the hitchhiker bias is an 

unavoidable consequence of the credit bias it cannot be eliminated completely without a 

trade-off in performance (as was demonstrated in Section 6.2). A smah reduction in the 

credit bias (‘selective crossover with less credit bias’) had no impact on the performance.

In conclusion, whilst some bias is essential for the operation of an adaptive 

mechanism, these biases are not always beneficial. Furthermore, introducing biases to aid 

a GA can also unintentionahy introduce other biases, to which the GA may be sensitive. 

The hitchhiker bias is a problem for selective crossover, and it cannot be eliminated 

completely without a trade-off in performance. However the adaptive nature of selective 

crossover, and the exploitative biases it imposes on search using the dominance vector 

provides selective crossover with the abihty to suppress hitchhiking due to selection and 

to yield better performance.
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Chapter 8

Schema Propagation in Selective Crossover

To fulfil our aim in verifying the hypothesis of this thesis we previously, in Chapters 5, 6 

and 7, evaluated selective crossover in terms of the performance, adaptive behaviour and 

biases respectively. In this chapter we conduct an analysis of schema propagation to 

provide us with more insight into the underlying behaviour of selective crossover; part of 

this work is pubhshed in Vekaria and Clack (1999b, 2000).

The aim of this study is to evaluate selective crossover, two-point and uniform 

crossover using different encodings of the Royal Road problem to determine if there is 

any relationship between the performance of these recombination operators and the way a 

problem is encoded. We use schema propagation to understand this relationship and to 

provide us with increased confidence that this relationship is apphcable to other problems.

This chapter begins in Section 8.1 by describing three alternative encodings for the 

Royal Road problems. We then empirically observe, in Section 8.2, how the performance 

(the mean number of evaluations taken to find the global solution) is affected by the 

encoding and how the schemata that define these Royal Road encodings are propagated 

under selective, two-point and uniform crossover. This analysis identifies some similarities 

between selective crossover and uniform crossover and prompts us, in Section 8.3, to 

construct a schema survival probability for selective crossover using the schema survival 

probabihty constructed by Spears (1998) for uniform crossover.
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8.1 Alternative Royal Road Encodings

It is often stated that the encoding is very important in the success of the G A; however, as 

clearly stated by Mitchell (1996, page 158):

“Choosing a fixed encoding ahead o f time presents a paradox to the 

potential GA user: for any problem that is hard enough that one would 

want to use a GA, one doesn 't know enough about the problem ahead of 

time to come up with the best encoding for the GA. In fact, coming up 

with the best encoding is almost tantamount to solving the problem 

itself!”

To compare how the performance of two-point, uniform and selective crossover is 

affected by the encoding of a problem we make use of the Royal Road functions, which 

are synthetic problems invented by Mitchell, Forrest, and Holland (1991). These functions 

were specifically created to understand the behaviour of a canonical GA that uses one- 

point crossover. Their simple predefined structure makes them a prime candidate for 

experiments to help us understand behaviours of other recombination operators. For our 

study we use the original encoding of the Royal Road function as was described in 

Section 5.3.2 (Mitchell, Forrest, and Holland 1991; Forrest, and Mitchell, 1993). We 

construct three new encodings of this Royal Road function so that schema fitnesses and 

schema orders, that define the Royal Road, remain the same and only the schema defining 

lengths differ in each encoding. In aU encodings, the original encoding (in Figure 8.1) and 

the three new encodings (in Figure 8.2, Figure 8.3 and Figure 8.4), the schemata are 

defined as follows:

• SI to S8 are level 0 schemata that have a fitness value of 8.

• S9 to S12 are level 1 schemata that have a fitness value of 16 and are defined 

by concatenating (from left to right) two adjacent level 0 schemata.

• S13 to S14 are level 2 schemata that have a fitness value of 32 and are defined 

by concatenating (from left to right) two adjacent level 1 schemata.
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The original encoding consists of a structure of schemata made up of tightly 

coupled alleles. This tight coupling or linkage is gradually broken in the three new 

encodings so that the defining length of the level 0 schemata (denoted as ô(level 0)) 

increases and (by necessity) on other levels too. For example:

• In the second encoding, shown in Figure 8.2, the defining length of level 0

schemata is 14.

• In the third encoding, shown in Figure 8.3, the defining lengths of level 0 and 

level 1 schemata are 28 and 29 respectively.

• In the fourth encoding, shown in Figure 8.4, the defining lengths of level 0,

level 1 and level 2 schemata are 56, 57 and 59 respectively.

Encoding (A) -  Original encoding ô(level 0)=7 Fitness
81 miiiii******************************************************** 8
82 8

o
'ÔJ

83 ****************22222111**************************************** 8
84 ************************222%%2%%******************************** 8
85 ********************************222]^%%%%************************ 8
86 ****************************************22222]^%%**************** 8
87 ************************************************22%%222%******** 8
88 ********************************************************222X1111 8
89 1111111111111111************************************************ 16
810 ****************222X111111111111******************************** 16
811 ********************************2X11111111111111**************** 16
812 ************************************************22XX1111111111H 16

(N 813 11111111111111111111111111111111******************************** 32
814 ********************************2X111111111111111111111111111111 32

Solution 1111111111111111111111111111111111111111111111111111111111111111 192

Figure 8.1: Encoding A -the original encoding of a Royal Road function. In this encoding the 
defining length of level 0 schemata, 5(level 0), is 7.
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Encoding (B) -  Second encoding 0(level 0)=14 Fitness
81 8
82 8
83 8
84 8
85 8
86 8
87 8
88 8
89 1111111111111111************************************************ 16
810 16s 811 ********************************%%%%%%2%%%%%%%%%**************** 16
812 ************************************************2%%%%%%%%%%%%%%% 16

CM 813 11111111111111111111111111111111******************************** 32
814 ********************************22%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 32

Solution 1111111111111111111111111111111111111111111111111111111111111111 192

Figure 8.2: Encoding B -  A new encoding of a Royal Road function. In this encoding the defining 
length of level 0 schemata, 0(level 0), is 14.

Encoding (C) - Third encoding 0(level 0)=28 Fitness
81 2***2***%***%***%***%***%***%*********************************** 8
82 *2***%***%***%***%***%***%***%********************************** 8
83 **2***2***%***%***%***%***%***%********************************* 8

73 84 ***%***%***%***%***%***%***2***%******************************** 8
85 ********************************%***%***%***2***%***%***%***%*** 8
86 *********************************%***%***%***%***%***%***%***%** 8
87 **********************************2***%***%***%***%***%***%***%* 8
88 ***********************************2***%***%***%***%***%***%***% 8
89 22**%%**%2**%%**%%**%%**%%**%%********************************** 16
810 **2%**%%**%%**%%**%%**%%**%%**%%******************************** 16
811 ********************************22**%%**%%**%%**%%**%%**%%**%%** 16
812 **********************************2%**%%**%%**%%**%%**%%**%%**%% 16

(N 813 11111111111111111111111111111111******************************** 32
814 ********************************22%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 32

Solution 1111111111111111111111111111111111111111111111111111111111111111 192

Figure 8.3: Encoding C - A new encoding of a Royal Road function. In this encoding the defîning 
length of level 0  schemata, 5(level 0 ), is 28.
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Encoding (D) - Fourth encoding ô(level 0)=56 Fitness

0

1

SI 8
S2 8
S3 8
S4 8
S5 8
S6 8
S7 8
S8 8
S9 16
SIO 16
S ll 16
S12 16

cs SIS 1111****1111****1111****1111****1111****1111****1111****1111**** 32
S14 ****22j]^****2222****2222****2]^22****2111****llll****llll****llll 32

Solution 1111111111111111111111111111111111111111111111111111111111111111 192

Figure 8.4: Encoding D -  A new encoding of a Royal Road function. In this encoding the defining 
length of level 0 schemata, 0(level 0), is 56.

8.2 Analysis of Schema Propagation

This section provides empirical observations on the behaviour of two-point, uniform and 

selective crossover in terms of performance and schema propagation for different 

encodings of the Royal Road function. This study looks at the effects of recombination on 

schema propagation and thus only considers individuals that were subjected to 

recombination.

8.2.1 Experiments

To determine whether the performance of selective crossover is sensitive to the encoding 

of the problem we apply it to the four different encodings (the original and three new 

encodings) of the Royal Road function, presented in Section 8.1. On each encoding we 

measure:

1. Performance (the number of evaluations taken to find the global solution). The 

measurement of performance will allow us to estabhsh any relationship 

between the encoding of the Royal Road and the performance of the 

recombination operators.

2. Propagation of level 0 schemata. The measurement of schema propagation will 

provide us with a better understanding of the relationship between the
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encoding and performance. It will also provide more insight into the 

underlying behaviour of the recombination operators.

We define schema propagation as the number of schemata that are transmitted from a 

parent to any offspring by recombination. Therefore, a schema present in a parent prior to 

recombination is considered to be propagated if the same schema exists in either child 

after recombination.

In these experiments the schema propagation of the level 0 schemata is observed; 

for any Royal Road encoding there are eight level 0 schemata (SI -  S8), thus the 

maximum number of level 0 schemata that can be propagated from any one individual is 

also eight. To calculate the mean number of level 0 schemata propagated by any 

individual during recombination, the schemata present in each parent are observed and 

compared with the schemata present in the offspring. For example, in Figure 8.5 Parent 1 

contains three level 0 schemata: SI, S3 and S7, and Parent2 also contains 3 level 0 

schemata SI, S4 and S5. After recombination:

• Child 1 contains 3 level 0 schemata: SI, S3 and S4; SI is inherited from either 

Parent 1 or Parent2, S3 is inherited jfrom Parent 1 and S4 is inherited from 

Parent2.

• Child2 also contains three level 0 schemata SI, S5 and S8; again SI is 

inherited from either Parent 1 or Parent2 and S5 is inherited from Parent2. 

Schema S8 in Child2 was not propagated but constructed and schema S7 in 

Parent 1 was not propagated to the offspring.

SI S2 S3 S4 S5 S6 S7 S8

Parent 1‘

Parent2" 11111111****************1111111111111111************************

Childl' 11111111********1111111111111111********************************

Child2’ 11111111************************11111111****************11111111

Figure 8.5: Example of schema propagation in a single recombination event. Parentl contains 
schemata SI, S3 and S7. Parent2 contains schemata SI, S4, SB. Schemata SI and S3 were 
propagated from Parentl and schemata SI, S4 and S5 were propagated from Parent2.
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Thus, the total number of schemata that were propagated by both parents is 5; 2 

from Parentl and 3 from Parent2. In this example, of a single recombination, the mean 

number of schemata propagated from any one parent is therefore 2.5. When considering 

aU recombinations in the population the mean number of schemata propagated S by any 

individual in the population is given as:

S = total number of schemata propagated / total number of parents

For both measures, performance and schema propagation, the GA parameters were the 

same as those used in Chapter 5 (page 76). The results were taken for 50 independent 

runs. In these experiments we used selective crossover without random initiahsation 

(Algorithm 7.3, page 128) because Chapter 7 demonstrated that initiahsing the dominance 

values to zero and using uniform crossover in generation 1 and selective crossover in 

subsequent generations increased the performance of selective crossover.

8.2.2 Results on Performance

For 50 independent runs on each problem. Table 8.1 shows the performance of selective, 

uniform and two-point crossover in terms of the number of evaluations taken to find the 

global solution. The standard deviation is shown in parentheses. In the original encoding 

(A) of the Royal Road function where ô(level 0) = 7 (Figure 8.1) two-point crossover is 

superior; taking on average 38000 evaluations whilst selective and uniform crossover take 

56000 and 74000 respectively. However, as the defining length of the level 0 schema 

increases, the performance of two-point crossover diminishes to 72000 evaluations. In 

contrast the performance of selective and uniform crossover remain the same. Selective 

crossover takes approximately 57000 evaluations to find a solution with any encoding. 

Uniform crossover takes approximately 72000 evaluations to find a solution with any 

encoding. Tests for significance show that selective crossover is consistently better than 

uniform crossover by a performance increase of approximately 21%. Selective and two- 

point crossover demonstrate equal performance on encoding (C); however selective 

crossover is significantly better than two-point on encoding (D).
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(Encoding) 

ô(level 0)

Selective crossover Uniform crossover Two-point crossover

Mean

evaluations

Standard

deviation

Mean

evaluations

Standard

deviation

Mean

evaluations

Standard

deviation

(A )-7 55857 (25749) 74128 (27469) 38287 (16894)

(B) - 14 61007 (39576) 69525 (37003) 42671 (22462)

(C) - 28 57320 (34162) 69376 (35672) 51351 (22172)

(D) - 56 57807 (28367) 75834 (47465) 72077 (35568)

Table 8.1: Mean number of evaluations taken to find the solution for different Royal Road 
encodings. The standard deviation is shown in parentheses.

8.2.3 Results on Schema Propagation

The graphs in Figure 8.6, Figure 8.7 and Figure 8.8 shows the behaviour, in terms of 

schema propagation, of two-point, uniform and selective crossover with the four different 

encodings described in Figure 8.1, Figure 8.2, Figure 8.3 and Figure 8.4.

In Figure 8.6 two-point crossover is less able to propagate schemata effectively as 

the defining length is increased (as expected from previous studies by Holland (1992), and 

Spears (1998)). Without genetic linkage embedded within the encoding, two-point 

crossover is not a rehable recombination operator. Uniform crossover is more consistent 

in propagating schema with or without genetic linkage (see Figure 8.7), but the payoff is 

performance; uniform crossover requires more evaluations. Selective crossover is also 

consistent in propagating schema with the different encodings but its performance is 

better than uniform crossover for aU encodings (see Figure 8.8) and better than two-point 

crossover on encoding D, where the defining length of level 0 schema is 56.
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DL7
DL14
DL28
DL56

Q.

Q.

1000 2000 2500 3000500 1500
Generation

Figure 8 .8 : Schema propagation in selective crossover with différent Royal Road encodings. DL# is 
the defining length of level 0 schemata. The results show the number of level 0 schemata propagated 
per individual at each generation.

8.2.4 Analysis

The results in Sections 8.2.2 and 8.2.3 demonstrate that the performance of two-point 

crossover is affected by the encoding of the problem. As the defining length of level 0 

schemata is increased the performance of two-point crossover deteriorates -  we believe 

this is because it is less able to propagate the level 0 schemata. This is a result of its 

positional bias as described by Eshelman, Caruana and Schaffer (1989). The performances 

of both uniform and selective crossover are not affected by the encoding, but selective 

crossover has an advantage over uniform crossover by demonstrating better performance. 

From the graph in Figure 8.8 we can clearly state that selective crossover has no 

positional bias (because the rate at which schemata are propagated is approximately the 

same for each encoding). The results suggest that selective crossover will perform equally 

well on any encoding of the problem. No a priori knowledge is required to ‘tune’ the 

encoding in the hope of further increasing performance. Selective crossover consistently 

shows a steady growth in schema propagation. Clearly two-point crossover has an 

advantage when genetic linkage is embedded in the encodings; however, as mentioned 

before, it is difficult to know a priori which loci are important in useful schemata, so that 

they can be placed together in the encoding.
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To understand further the differences in schema propagation for two-point, 

uniform and selective crossover we compared the schema propagation of each 

recombination operator on each different Royal Road encoding. The comparisons for 

each different encoding are shown in Figure 8.9, Figure 8.10, Figure 8.11 and Figure 

8.12. In all figures the errors bars are omitted as they are small.

Q.

S e le c tiv e  c r o s s o v e r  

T w o -p o in t c r o s s o v e r  

U niform  c r o s s o v e r

250 500 750 1000 1250 1500
Generation

Figure 8.9: Encoding A -  the original Royal Road encoding where the defining length of level-0 
schemata Ô(level-O) =7. A comparison of schema propagation between two-point, uniform and 
selective crossover.

For the original encoding (see Figure 8.9), two-point crossover is clearly able to 

propagate more schemata than uniform and selective crossover. The number of schemata 

propagated by selective crossover exceeds uniform crossover at generation 600 and 

approaches that of two-point at generation 1500.

For the second encoding (see Figure 8.10), the number of schemata propagated by 

two-point crossover has reduced but still shows better than uniform and selective 

crossover in early generations. The number of schemata propagated by selective crossover 

rises slowly in early generations but exceeds uniform and two-point crossover at 

generation 700 and 1250 respectively.
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Figure 8.10: Encoding B - a Royal Road encoding where the defining length of level-0 schemata 
Ô(level-O) =14. A comparison of schema propagation between two-point, uniform and selective 
crossover.

&
%

&
2Q.
(0

E
È
œ

8

7

6

5

4

3
 S e le c tiv e  c r o s s o v e r

 T w o -p o in t c r o s s o v e r

Uniform c r o s s o v e r

2

1

0
0 250 500 1000 1250750 1500

Generation

Figure 8.11: Encoding C -  a Royal Road encoding where the defining length of level-0 schemata 
Ô(level-O) =28. A comparison of schema propagation between two-point, uniform and selective 
crossover.
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For the third encoding (see Figure 8.11), schema propagation by two-point 

crossover has further reduced. Again selective crossover shows low propagation in early 

generations however it exceeds uniform and two-point crossover at generation 500 and 

900 respectively.

For the fourth encoding (see Figure 8.12), until generation 400, uniform crossover 

is able to propagate more schemata than selective crossover, which in turn propagates 

more than two-point crossover. Between generation 400 and 1000 all three operators 

show equal propagation. After generation 1000, the schemata propagated by selective 

crossover exceed two-point and uniform crossover, both of which continue to show equal 

schema propagation.

Q.
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Figure 8.12: Encoding D -  a Royal Road encoding where the defining length of level-0 schemata 
Ô(level-O) =56. A comparison of schema propagation between two-point, uniform and selective 
crossover.

It is interesting to see that the growth in schema propagation for selective erossover is 

slow in early generations. However, in later generations more sehemata are propagated 

than two-point and uniform erossover. This is true for all eneodings. This behaviour may 

be a result of large amounts of exploration in early generations, which is necessary whilst
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the population is still diverse and helps to reduce the chances of premature convergence. 

This exploration is a result of the preservation characteristic of selective crossover. For 

selective crossover to preserve schemata during recombination, the dominance values 

must reflect the fitness contribution of the alleles in the schema. For the Royal Road, the 

dominance values can only do this when at least a single level 0 schema is created. 

Considering there are 8 defining positions in a level 0 schema there are 2®-l alternative bit 

combinations that can be taken up by the 8 positions. These alternative bit combinations 

aU have no fitness contribution i.e. their fitness is zero. For example, consider schema SO:

11111111**........**, which is a schema defined for the first eight loci out of 64. The

arbitrary schemata 11110111**........** and 00101100**....... ** are alternative schemata

for the first eight loci. There are 255 alternative schemata such as these which all have a 

zero fitness contribution. Thus these alternative schemata do not update the dominance 

values although they may contain a large proportion of I ’s. Selective crossover has to rely 

on randomly finding a level 0 schema before it can begin to exploit the fit schemata. 

Hence, this requires a great deal of exploration.

8.3 Schema Survival Probability for Selective Crossover

Selective crossover and uniform crossover have two common characteristics. The first is 

that crossover occurs at each locus and the second is that they have no positional bias. 

Several studies (Syswerda, 1989; Eshehnan, Caruana, Schaffer, 1989; Booker, 1992; 

Spears, 1998) have confirmed that uniform crossover has no positional bias and the 

results in the previous section confirmed our original expectation that selective crossover 

has no positional bias.

Given these two characteristics, Spears (1998) constructed a schema survival 

theory for uniform crossover, which was outlined in Section 3.5. Since selective crossover 

also shares these two characteristics the question is ‘Can the schema survival theory, 

presented by Spears, be extended for selective crossover?'

To answer this question we begin by identifying the differences between uniform 

and selective crossover. Let us consider two individuals. Parent 1 and Parent2, chosen for 

recombination using uniform crossover. For the moment let us ignore the allele values 

taken up by both parents. The two individuals can be given as:
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Locus A B C D

Parentl

Parent!

In uniform crossover the probability of exchange at any locus A, B, C or D is Pq (0.5). 

Now let us consider two individuals, Parent 1 and Parent!, chosen for recombination using 

selective crossover. Again let us ignore the allele values taken up by both parents. These 

two individuals can be given as:

Locus A B C D

Parentl IN» d',';

liiiiiilHilig:

Parent! d'} ds' 4 ' d',}

In selective crossover the exchange at any locus is deterministic and occurs when the 

dominance value of a locus in Parent 1 is less than the dominance value of the same locus 

in Parent!. For example, exchange can only occur at locus B when d'} < d (using the 

same notation as in Section 4.4), where d̂  ̂ is the dominance value at locus B belonging 

to Parent 1 and 6/p is the dominance value at locus B belonging to Parent!. Thus in 

selective crossover, exchange at any loci depends on the dominance values held in Parent 1 

and Parent!.

The exchange of an allele in uniform crossover is independent of any values held in 

the parents or more generally the population, whereas the exchange of an allele in 

selective crossover is entirely dependent on the current dominance values held in the 

parents or more generally the population. Selective crossover is dependent on the current 

dominance values in the population because the dominance values are changed in each
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generation to reflect correlations between parental and offspring fitnesses. Thus, the 

distribution of dominance values in the population is constantly changing with respect to 

the generations, as was demonstrated in Chapter 6.

To construct a schema survival probabihty for the current generation, let us 

assume that individuals are fixed length strings whose characters are from a finite- 

cardinality alphabet. Let the length be / and the cardinahty be G. Therefore if the alphabet 

is the set of bits in a binary string, then 0  = 2 and two possible strings of length / = 4 are 

“1100” and “0000”. This gives us possible strings.

Let Hk denote a schema, or hyperplane, of order k. Hk represents C / p o s s i b l e  

strings, where the strings must match on the k defining positions of Hk. (see Section 2.5). 

For example, H2 = *11* is a second-order hyperplane that represents the 4 strings of 

length four that contain “11” in the middle of the strings, viz. “1111”, “1110”, “0111” and 

“0110”. These four strings are instances of / /2.

To construct a survival probabihty for a hyperplane Hk let us suppose that an 

individual containing Hk is chosen to be Parentl from a population of n individuals. For 

exchange to occur a second parent, ParentZ, must be chosen from the remaining n-\ 

individuals, which is done randomly. Given that the second parent, ParentZ, is chosen; 

there are at least two cases when Hk survives:

1. When ah k  defining positions in Hk are exchanged. This takes place when 

Parentl has lower dominance values at ah k  defining positions than ParentZ.

Z. When ah k defining positions in Hk are not exchanged. This takes place when 

Parentl has higher or equal dominance values at ah k  defining positions than 

ParentZ.

Since recombination using selective crossover is deterministic and ah dominance values 

are known in the population, we can determine the number of individuals that match the 

above two cases. For example, consider the mating pool below. To find the survival 

probabihty for a second order hyperplane H2 “*11*”, suppose that an individual 

containing hyperplane H2 is chosen to be Parentl from a mating pool of 5 individuals. The 

individual chosen to be Parentl is shaded in the mating pool below. As we are only
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interested in the hyperplane “* n * ” we do not need to know what the other dominance 

values or allele values at loci A and D are; hence they are depicted with the ‘don’t care’ 

symbol ‘*’ in the example mating pool.

Individual Locus

A B c D

ggg- ;

*

2 * 2.0 2.3 *

* 1 0 *

3 * 0.1 0.7 *

* 0 1 *

4 * 1.9 0.6 *

* 0 0 *

5 * 1.7 0.7 *

* 1 0 *

The second parent, ParentZ, is chosen randomly and can potentially be any one of the four 

remaining individuals i.e. 2, 3, 4 or 5. Thus to compute the probabihty of the survival of 

H2 we compare the dominance values of Parentl with all other individuals in the mating 

pool and count the number of occasions when Case 1 or Case 2 takes place.

From our example mating pool Case 1 takes place when individual 2 is chosen to 

be ParentZ. Case 2 takes place when individual 3 is chosen to be ParentZ. Thus the 

probability of Case 1 taking place is % and Case 2 taking place is also %. Considering 

these two cases the probability of H2 surviving selective crossover is V2 . However

H2 also survives when individual 5 is chosen to be the second parent because they share 

common alleles at those positions where exchange occurs, as demonstrated below:
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Applying recombination to individual 1 and 5.

Individual Locus

A B c D

Parentl

IÊÊëÊÊÊÊÊWÊÊÊÊÊÿM »

Parentl 5 * 1.7 0.7 *

* 1 0 *

Offspring after crossover:

Individual Locus

A B C D

OuWl 1 * 1.7 0.9 *

* 1 1

Child! 5 * 1.4 0.7 *

* 1 0 *

Exchange occurred at locus B but H2 survived in Child 1 as individual 5 also contained a 1 

at locus B. hence, the survival probability also depends on the common alleles found in 

the parents -  known as homogeneity (Spears 1998). Taking this into consideration the 

final probability of H2 surviving Ps(fi2) is

In general suppose that crossover results in x of the k defining positions being exchanged, 

then a hyperplane Hk survives if any of the following are true:

1. All A: defining positions in Hk are exchanged i.e. x = k.

2. All k defining positions in Hk are not exchanged i.e. x = 0.

3. The parents’ alleles match at the % positions being exchanged.

4. The parents’ alleles match at the A - x positions not being exchanged.
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The exact survival probability of Hk, Ps(Hk) can be computed for a mating pool of 

n individuals, by applying selective crossover to the instance of Hk, individual i, and aU 

other («-!) individuals in the current mating pool and counting the number of survivals. 

This gives us a survival probability for Hk as:

(8.1)

j* i

Where SC(i, j , k )  is a function that apphes selective crossover to individuals i and j  at aU 

k defining positions and returns Sil if Hk survives and 0 otherwise, as given below:

1, if  m] =1 Vi I \  ^
1, if  m] = 0  Vi I ^

if gf' = gf" Vi I ^ AmJ =1
1, i f  gP = gP Vi I Amj  =0
0, otherwise

Where:

Hk={)ik^,...,K^,...hk^) where g {* ,0 ,i}

refers to an individual with a gene vector and a dominance vector 

(see Section 4.5 for notation).

m] is an element at the ith position of the inheritance mask (see Section 4.5). A 1

in the inheritance mask indicates a crossover position. As the inheritance mask is 

generated using the dominance values schema survival is dependent on the current 

dominance values in the population.

Since schema survival for selective crossover is dependent on the dominance values in the 

population it will vary from problem to problem because they are updated using the 

problem’s fitness function. It is therefore not possible to produce a schema survival 

probabihty that is apphcable to all problems as presented by Spears (1998) for uniform 

crossover.
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In summary, the survival probability of a schema, which is chosen to be a parent, 

is the probability of choosing another parent from the population that allows it to survive. 

This other parent must either have lower, higher or equal dominance values at aU defining 

positions of a schema or it has common alleles where exchange would take place. Since 

exchange of an allele under selective crossover depends on the dominance values and 

these are updated using the fitness function (Equation 4.4 in Chapter 4); the survival 

probabihty of a schema is problem dependent. For example, the survival probabihty of 

schema for the One Max problem wih not be the same for the Royal Road

function.

8.4 Summary and Conclusions

This chapter described three alternative encodings for the Royal Road function. The 

original encoding consists of tightly coupled level 0 schemata, which have a defining 

length of 7. Increasing the defining length of the level 0 schemata to 14, 28 and 56 

systematicahy reduced this tight coupling or genetic linkage.

These alternative encodings were used to demonstrate the effect an encoding has 

on the performance of two-point, uniform and selective crossover. The results 

demonstrated that two-point crossover is very sensitive to the encoding, whilst uniform 

and selective crossover are not. The performance of two-point deteriorated as the 

defining length of the level 0 schemata increased. The performance of uniform and 

selective crossover remained consistent regardless of the defining length of level 0 

schemata. Both operators guarantee behaviour on any encoding of the Royal Road 

function; however, the performance of selective crossover is better than uniform 

crossover.

The Royal Road encodings were also used to study schema propagation under 

two-point, uniform and selective crossover to:

1. Provide us with a better understanding of the relationship between the 

encoding and performance;

2. Provide more insight into the underlying behaviour of the recombination 

operators.

At each generation, of a run, the mean number of level 0 schemata successfully 

transmitted to the offspring fi*om a parent by recombination was observed. This showed
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that two-point crossover was more successful at propagating schemata which had smaller 

defining lengths; thus confirming that two-point crossover has high positional bias. 

Uniform crossover has no positional bias and was able to propagate schemata at equal 

rates independent of the defining length. Selective crossover was also able to propagate 

schemata at equal rates independent of the defining length, which indicates that selective 

crossover also has no positional bias.

The rate of schema propagation was compared with two-point and uniform 

crossover. This demonstrated that selective crossover propagates less schemata in early 

generations than two-point or uniform crossover. This gives some indication that selective 

crossover is more explorative in early generations, showing a lower schema survival rate, 

which is ideal whilst diversity still exists in the population. However in subsequent 

generations it is more exploitative with more schemata propagated than two-point and 

uniform crossover. Thus selective crossover seems to provide a better balance between 

exploration and exploitation than two-point and uniform crossover.

Section 8.3 constructed a schema survival probability for selective crossover and 

identified that schema survival under selective crossover is dependent on the current 

dominance values in the population. The probabihty of a schema surviving can be 

computed by applying selective crossover to an instance of the schema and ah other 

individuals in the population and counting the number of survivals. This schema survival 

probabihty is the probabihty of choosing an individual from the population, to be a parent, 

which permits survival of the schema given its dominance values and common ahele 

values.

In conclusion, recombination operators with high positional bias are less disruptive 

against adjacent genes; therefore, to exploit this behaviour epistatic genes must be placed 

close to each other on the chromosome when encoding the problem. The performance of 

selective crossover is not affected by the encoding of the problem and has no positional 

bias. Although two-point crossover outperformed selective crossover on the Royal Road 

function in Chapter 5, its performance is affected by the encoding of the problem as was 

demonstrated in this chapter. When the defining length of the schema was increased in the 

encoding the performance of two-point crossover decreased and the rate at which it 

propagated schemata also decreased. Selective crossover allows exploitation of good 

schemata regardless of their defining length; hence if a schema consists of interacting 

genes at the two extremes of the chromosome, it can be propagated as easily as a schema
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with interacting genes located adjacent to each other. Selective crossover is very much 

like uniform crossover in that it has no positional bias but to its advantage it does not 

have the high disruptive qualities of uniform crossover and is able to provide a better 

balance between exploration and exploitation.
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Chapter 9

Conclusions

The goal of this thesis was to design, implement and evaluate selective crossover, an 

adaptive recombination operator for use in genetic algorithms. Selective crossover was 

designed with motivation from natural evolution and as a general recombination operator 

for use with a wide range of problems as opposed to a speciahsed recombination operator 

for use with a small set of problems.

This chapter first provides a summary and discussion of the results obtained in this 

thesis followed by a restatement of the contributions made and a statement of the 

limitations of this thesis. Finally several directions for future research are detailed.

9.1 Discussion of Results

In this section we tie together the results and the thesis hypothesis re-stated below:

When little or no knowledge is available about the problem being 

optimised by a genetic algorithm, a viable strategy is to use an adaptive 

recombination operator with the following three properties:

1. Detection - It detects alleles that were changed during 

recombination to identify modifications to the candidate 

solution.

2. Correlation - It uses correlations between parental and 

offspring fitnesses as a means of discovering beneficial 

alleles.
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3. Preservation - It preferentially preserves alleles at each 

locus, during recombination, according to their previous 

contributions to beneficial changes in fitness.

Selective crossover was designed with these three properties and evaluated in terms of 

performance, adaptation, biases and schema propagation. To summarise, selective 

crossover is an aUele-based adaptive recombination operator that uses a dominance vector 

to bias alleles, during recombination, that have increased an individual’s fitness in previous 

generations. A dominance vector accompanies each chromosome such that each allele in 

the chromosome has an associated dominance value. It is these dominance values that 

dictate where crossover should occur and act as a means of storing knowledge about 

parental and offspring fitness correlations in previous generations which is later exploited 

during recombination to prevent alleles from crossing over.

The performance of selective crossover was evaluated and compared with two 

static recombination operators, two-point and uniform crossover, that do not possess the 

above three properties. The results in Chapter 5 demonstrated that selective crossover 

shows superior or equal performance on nearly aU the test problems used. On simple 

problems, such as the One Max problem, selective crossover worked equally well as two- 

point and uniform crossover. However, on the Deceptive Trap functions (with tuneable 

deception), selective crossover, like two-point and uniform crossover, was unable to solve 

problems with deception of order 20 or above.

Two-point crossover outperformed selective crossover on the Royal Road 

problem; however, the study on schema propagation in Chapter 8 confirmed that two- 

point crossover has a positional bias and is thus sensitive to the encoding of the problem. 

For two-point crossover to exhibit superior performance and to propagate schemata 

successfully the interacting genes must be situated together on the chromosome. To do 

this a priori knowledge is required about the problem being solved; the interacting genes 

must first be identified and then encoded so that it can be exploited by two-point 

crossover. In contrast selective crossover has no positional bias. The performance and 

schema propagation of selective crossover remained consistent with any encoding of the 

Royal Road function; there is no need to tune the encoding for selective crossover as its 

behaviour is consistent. A comparison of schema propagation also suggests that selective
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crossover provides a better balance between exploration and exploitation than two-point 

and uniform crossover. Selective crossover exhibits more exploration in early generations 

showing a lower schema survival rate, which is ideal whilst diversity still exists in the 

population. Moreover, it is more exploitative in later generations with more schemata 

propagated than two-point and uniform crossover.

All three operators were compared in Chapter 5 using problems with tuneable 

epistasis, namely NK landscapes and L-MaxSAT problems. The NK landscapes are a 

well-studied family of landscapes where the tuneable epistasis also allows control over the 

ruggedness of the search landscape. On the tested levels of epistasis selective crossover 

outperformed two-point and uniform crossover.

An analysis of the adaptive properties in Chapter 6 identified that selective 

crossover contains two features of adaptation: adaptive and self-adaptive (using the 

terminology of Eiben et ah, 1999). It is the adaptive feature that holds the three key 

properties: detection, correlation and preservation. By omitting the adaptive feature in 

selective crossover, the performance of selective crossover deteriorated and was worse 

than two-point and uniform crossover. These results suggested that the three key 

properties are essential to the performance of selective crossover. Chapter 6 also 

examined the behaviour of the dominance values in the population and suggested that 

selective crossover behaves differently to reflect the problem being solved; thus 

demonstrating dynamic behaviour as opposed to the static behaviour of two-point and 

uniform crossover.

The study of biases in Chapter 7 identified four key biases in selective crossover: 

directional, credit, hitchhiker and initiahsation bias. Directional bias exists if alleles are 

either favoured or not favoured for their fitness contribution. Credit bias is the degree at 

which an allele gets favoured with respect to its fitness contribution. Initiahsation bias 

exists if aUeles get favoured during initiahsation without knowing their fitness 

contribution. Hitchhiker bias exists if aheles get favoured when they do not contribute to 

the fitness increase. Ah four biases are interdependent; the credit bias is a direct result of 

the directional bias, and the hitchhiker bias is a consequence of the credit and initiahsation 

biases. We demonstrated that eliminating the initiahsation bias further increased the 

performance of selective crossover; thus identifying that the hitchhiker bias is detrimental 

to the performance of selective crossover. However the hitchhiker bias is an unavoidable 

consequence of the credit bias and cannot be eliminated completely without a trade-off in
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performance (as was demonstrated in Section 6.2); a small reduction in the credit bias had 

no effect on performance. This study also suggested that selective crossover is unable to 

solve highly deceptive problems due to the directional bias.

A schema survival probability for selective crossover was constructed in 

Chapter 8. This demonstrated that the schema survival probability is dependent on the 

dominance and allele values of the parents chosen for crossover. Since the exchange at 

any locus is deterministic the exact probability of survival can be calculated given the 

current population of individuals.

The results of this thesis jointly suggest that selective crossover is a viable strategy 

to use when httle or no knowledge is known about the problem being solved and thus 

verifies our hypothesis. However, owing to the limitations of this study (outlined in 

Section 9.3), we do not claim that selective crossover or any other strategy that may 

possess the three properties is the best one to use when no knowledge is available about 

the problem being solved. In conclusion it is hoped that this work will aid designers of 

genetic algorithms for the ‘real world’ in their choice of recombination operators.

9.2 Contributions of this Thesis

This thesis makes six primary contributions:

1. The design and implementation of ‘'Selective Crossover”, a new adaptive 

recombination operator that incorporates correlations between parents and 

offspring as a means of discovering and preserving beneficial alleles at each 

locus during recombination to produce fitter offspring. This was described in 

Chapter 4.

2. A measurement and comparison of the performance of selective crossover and 

two traditional recombination operators on a number of different problems. 

This was provided in Chapter 5.

3. An empirical analysis that demonstrates adaptive behaviour in selective 

crossover. This was provided in Chapter 6.

163



4. An identification of four key biases inherent in selective crossover, a 

demonstration of the existence of these biases in two other similar operators 

and an empirical analysis to study the effects of these biases on selective 

crossover. This was described in Chapter 7.

5. An empirical analysis and comparison of the effects an encoding has on the 

performance and schema propagation in selective crossover and two 

traditional recombination operators. This was provided in Chapter 8.

6. A construction of a schema survival probability for selective crossover; this 

unavoidably rehes on the dominance values, which in turn rely on the problem 

and demonstrates that schema survival in selective crossover is problem 

dependent. This was provided in Chapter 8.

This thesis also makes a secondary contribution which was described in Chapter 6; a 

description of a new taxonomy to classify selective crossover and other adaptive 

strategies in evolutionary computation, which overcomes the limitations in the existing 

taxonomy provided by Eiben et a l (described in Chapter 3).

9.3 Limitations of this Thesis

There are three major limitations to this work:

• The set of benchmark problems used; although benchmark problems serve as 

good problems to test new strategies they can only capture limited 

characteristics that may exist in ‘real world’ problems. In our experiments we 

used a set of well-studied benchmark problems that provide a good variation 

of features in real world problems; these were epistasis, deception and fitness 

landscapes. However, these problems were limited to binary encodings and for 

some problems it is most natural to use a non-binary alphabet for their 

encoding (Davis 1991). Thus, our set of benchmark problems has allowed us 

to examine a small sample of real-world problems and further studies would 

allow us to examine the effects of epistasis, deception and fitness landscapes 

on problems that require non-binary alphabets.
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Selective crossover was only compared against two static recombination 

operators and was not compared against masked crossover (Louis and 

Rawlins, 1991) and adaptive uniform crossover (White and Oppacher, 1994). 

We identified in Chapter 7 the similarities and differences between masked and 

adaptive uniform crossover; the similarities being (i) all three operators use 

parental and offspring fitness correlations to bias alleles during recombination 

and (ii) all three operators are allele-based adaptive recombination operators. 

The differences between the operators he in the way they administer the fitness 

correlations (update their strategy parameter) to bias alleles. An analytical 

comparison in terms of biases was made between the three operators; however 

quantitative measures on performances were not made and would provide 

more insight into the relationship between these operators and their biases. 

Hence, we do not know if selective crossover is better than masked or 

adaptive uniform crossover.

Selective crossover was only compared against two static recombination 

operators that do not possess the three key properties stated in the hypothesis: 

detection, correlation and preservation. In Chapter 6 we apphed a version of 

selective crossover that does not possess the three properties and 

demonstrated that selective crossover needs the three properties to stop it 

from converging to sub-optimal solutions. However selective crossover was 

not compared against other adaptive recombination operators that do not 

possess the three properties such as punctuated crossover (Schaffer and 

Morishima 1987). Thus we cannot conclusively state that the use of the three 

properties makes selective crossover better than any other adaptive strategy.

9.4 Future Work

The development of a new operator opens many doors for research, some of which have 

been tackled in this thesis. However, there still remain multiple directions for future work. 

This proposed work is aimed at overcoming limitations of the original research and 

enhancing the understanding of selective crossover through additional analyses. There are
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three main areas of extension to this work: application, comparative analyses and 

quantitative analyses.

Application

Extending the apphcation of selective crossover to other problems exposes it to other 

characteristics found in problems that were not covered by the test problems used in this 

thesis. Apphcation to problems includes those that require non-binary encodings (such as 

ordering problems) and a real-world problem. This would allow us to determine if the 

results in this thesis are widely apphcable.

Comparative analyses

Extending the comparative analyses ahows us to analyse quahtatively the performance of 

selective crossover in relation to alternative strategies other than static recombination 

operators. The comparative analyses include comparing performances of selective 

crossover with:

• Other adaptive recombination operators (such as masked crossover, adaptive 

uniform crossover and punctuated crossover).

• Other techniques and operators such as those that adapt mutation or 

recombination probabihties.

• Landscape neighbourhood operators such as steepest ascent hih climbing.

• Other search methods such as simulated annealing.

Quantitative analyses

The use of quantitative analyses would ahow us to extend our understanding of the 

behaviour exhibited by selective crossover. This would include quantitative analyses of:

• The behaviour displayed by the dominance values; this would entail observing 

the distribution of dominance values across many runs and different problems 

and performing a cross-correlation between the distributions to identify any re- 

occurring patterns of behaviour from selective crossover
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The resilience of selective crossover to other parameters of the genetic 

algorithm such as the recombination rate, mutation rate, selection scheme and 

population size. As mentioned in Section 2.4, choosing appropriate parameter 

settings is difficult and greatly influences the search capabilities of the G A. 

Systematically varying these parameters and applying selective crossover will 

allow us to understand how the behaviour of selective crossover is affected by 

other parameter settings.

The biases in masked and adaptive uniform crossover and their relationship 

with selective crossover. This would entail: (i) comparing the performances of 

masked, adaptive uniform and selective crossover, (ii) analysing the effect of 

applying an alternative credit mechanism (described in Section 7.4.1) to 

masked and adaptive uniform crossover and (iii) analysing the effect of 

applying an alternative initiahsation method (described in Section 7.4.2) to 

masked and adaptive uniform crossover.
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