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Abstract 55 

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although 56 

genome-wide association studies (GWASs) have identified PAU risk genes, the genetic 57 

architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis 58 

of PAU combining alcohol use disorder and problematic drinking in 435,563 European-ancestry 59 

individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically 60 

correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide 61 

polygenic risk score analysis in an independent biobank sample (BioVU, n=67,589) confirmed 62 

the genetic correlations between PAU and substance use and psychiatric disorders. Genetic 63 

heritability of PAU was enriched in brain and in conserved and regulatory genomic regions. 64 

Mendelian randomization suggested causal effects on liability to PAU of substance use, 65 

psychiatric status, risk-taking behavior, and cognitive performance. In summary, this large PAU 66 

meta-analysis identified novel risk loci and revealed genetic relationships with numerous other 67 

traits.  68 
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Introduction 69 

 Alcohol use and alcohol use disorder (AUD) are leading causes of death and disability 70 

worldwide [1]. Genome-wide association studies (GWAS) of AUD and problematic drinking 71 

measured by different assessments have identified potential risk genes primarily in European 72 

populations [2-5]. Quantity-frequency measures of drinking, for example the Alcohol Use 73 

Disorders Identification Test–Consumption (AUDIT-C), which sometimes reflect alcohol 74 

consumption in the normal range, differ genetically from AUD and measures of problematic 75 

drinking (e.g., the Alcohol Use Disorders Identification Test–Problems [AUDIT-P]), and show a 76 

divergent set of genetic correlations [3, 4]. The estimated SNP-based heritability (h2) of AUD 77 

ranges from 5.6% to 10.0% [2-5]. To date, more than 10 risk variants have been significantly 78 

associated with AUD and AUDIT-P (p < 5 × 10-8). Variants that have been mapped to several 79 

risk genes in multiple studies include ADH1B (Alcohol Dehydrogenase 1B (class I), Beta 80 

Polypeptide), ADH1C (Alcohol Dehydrogenase 1C (class I), Gamma Polypeptide), ALDH2 81 

(Aldehyde Dehydrogenase 2 Family Member, only in some Asian samples), SLC39A8 (Solute 82 

Carrier Family 39 Member 8), GCKR (Glucokinase Regulator), and CRHR1 (Corticotropin 83 

Releasing Hormone Receptor 1). In the context of the known extensive polygenicity underlying 84 

AUD and AUDIT-P, we anticipate that additional significant risk loci can be identified by 85 

increasing sample size; this is the pattern for GWAS of heterogenous complex traits in general 86 

also. We characterize both AUD itself and AUDIT-P, as “problematic alcohol use” (PAU). To 87 

identify additional risk variants and enhance our understanding of the genetic architecture of 88 

PAU, we conducted genome-wide meta-analysis of AUD and AUDIT-P in 435,563 individuals of 89 

European ancestry. Our understanding of the genetic architecture of PAU in African populations 90 

lags far behind that in Europeans; the largest sample of African ancestry individuals published 91 

so far is 56,648 in the Million Veteran Program (MVP) [3] and results have not moved beyond a 92 

single genomic region that includes ADH1B. We limited the focus here to European samples 93 
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because we could not achieve a substantial increment in African-ancestry subjects over 94 

previous studies. 95 

 96 

 97 

Results 98 

Figure 1 provides an overview of the meta-analysis of the 4 major datasets. The first is 99 

the GWAS of AUD in European Americans (EA) from MVP [6] (herein designated “MVP 100 

phase1”), comprised of 202,004 individuals phenotyped for AUD (ncase = 34,658, ncontrol = 101 

167,346, neffective = 114,847) using International Classification of Diseases (ICD) codes [3]. The 102 

second, MVP Phase2, included an additional 65,387 EA individuals from MVP (ncase = 11,337, 103 

ncontrol = 54,050, neffective = 37,485) not previously analyzed. The third dataset is a GWAS of 104 

DSM-IV alcohol dependence (AD) from the Psychiatric Genomics Consortium (PGC), which 105 

included 46,568 European participants (ncase = 11,569, ncontrol = 34,999, neffective = 26,853) [2]. 106 

The fourth dataset is a GWAS of Alcohol Use Disorders Identification Test–Problems (AUDIT-P; 107 

a measure of problematic drinking) scores from a UK Biobank sample (UKB) [7] that included 108 

121,604 European participants [4]. 109 

The genetic correlation (rg) between MVP phase1 AUD and PGC AD was 0.965 (se = 110 

0.15, p = 1.21 × 10-10) [3]. The rg between the entire MVP (meta-analysis of phase1 and phase2) 111 

and PGC was 0.98 (se = 0.11, p = 1.99 × 10-19), justifying the meta-analysis of AUD across the 112 

three datasets (neffective = 179,185). We detected 24 risk variants in 23 loci in this intermediary 113 

meta-analysis (Figure 2a, Supplementary Table 1). The rg between UKB AUDIT-P and AUD 114 

(MVP+PGC) was 0.71 (se = 0.05, p = 8.15 × 10-52), and the polygenic risk score (PRS) of AUD 115 

was associated with AUDIT-P in UKB (best p-value threshold PTbest = 0.001, R2 = 0.25%, p = 116 

3.28 × 10-41, Supplementary Table 2, Supplementary Figure 1), justifying the proxy-phenotype 117 
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meta-analysis of problematic alcohol use (PAU) across all four datasets. (AUD and AUDIT-P, 118 

though highly correlated genetically, are not identical traits). The total sample size was 435,563 119 

in the discovery analysis (neffective = 300,789). 120 

 121 

Association results for PAU 122 

 Of 42 lead variants (mapping to 27 loci, Figure 2b, and Supplementary Table 3) that 123 

were genome-wide significant (GWS) for PAU, 29 were independently associated after 124 

conditioning on lead SNPs in the regions (see below and Table 1). Ten variants were previously 125 

identified through the same index SNPs or tagged SNPs, located in or near the following genes: 126 

GCKR, SIX3, KLB, ADH1B, ADH1C, SLC39A8, DRD2, and FTO [2-5]. Thus, 19 variants 127 

reported here are novel, of which 11 were located in gene regions, including PDE4B 128 

(Phosphodiesterase 4B), THSD7B (Thrombospondin Type 1 Domain Containing 7B), CADM2 129 

(Cell Adhesion Molecule 2), ADH1B (different from the locus identified previously), DPP6 130 

(Dipeptidyl Peptidase Like 6), SLC39A13 (Solute Carrier Family 39 Member 13), TMX2 131 

(Thioredoxin Related Transmembrane Protein 2), ARID4A (AT-Rich Interaction Domain 4A), 132 

C14orf2 (Chromosome 14 Open Reading Frame 2), TNRC6A (Trinucleotide Repeat Containing 133 

Adaptor 6A), and FUT2 (Fucosyltransferase 2). A novel rare ADH1B variant, rs75967634 (p = 134 

1.07 × 10-9, with a minor allele frequency of 0.003), which causes a substitution of histidine for 135 

arginine, is in the same codon as rs2066702 (a well-known variant associated with AUD in 136 

African populations [3, 8], but not polymorphic in European populations).This association is 137 

independent of rs1229984 in ADH1B and rs13125415 (a tag SNP of rs1612735 in MVP phase1 138 

[3]) in ADH1C. The identification of rs75967634 demonstrates the present study’s greater power 139 

to detect risk variants in this region, beyond the frequently reported ADH1B*rs1229984. 140 

 Moderate genetic correlation between AUD and alcohol consumption and pervasive 141 
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pleiotropic effects of SNPs were demonstrated previously [2-4]. Some of the novel variants (10 142 

of 19) identified in this study were also associated with other alcohol-related traits, including 143 

AUDIT-C score [3], total AUDIT score [4], and drinks per week (DrnkWk) from the GSCAN 144 

(GWAS & Sequencing Consortium of Alcohol and Nicotine use) study [9] (described below and 145 

in Supplementary Table 3). Rs1402398, close to VRK2, was associated with AUDIT-C score 146 

(tagged by rs2683616) [3]; rs492602 in FUT2 was associated with DrnkWk [9] and total AUDIT 147 

score [4]; and rs6421482, rs62250713, rs2533200, rs10717830, rs1783835, rs12296477, 148 

rs61974485, and rs72768626 were associated with DrnkWk directly or through tag SNPs in high 149 

linkage disequilibrium (LD) [9]. Analysis conditioned on DrnkWk shows that 11 of the 29 150 

independent variants were independently associated with PAU (i.e., not mediated by DrnkWk) 151 

(Supplementary Table 3). 152 

 153 

 Gene-based association analysis identified 66 genes that were associated with PAU 154 

at GWS (p < 2.64 × 10-6, Supplementary Table 4). DRD2, which has been extensively studied in 155 

many fields of neuroscience, was among these genes and was previously reported in both UKB 156 

[4] and MVP phase1 [3]. Among the 66 genes, 46 are novel, including ADH4 (Alcohol 157 

Dehydrogenase 4 (class II), Pi polypeptide), ADH5 (Alcohol Dehydrogenase 5 (class III), Chi 158 

Polypeptide), and ADH7 (Alcohol Dehydrogenase 7 (class IV), Mu or Sigma Polypeptide), 159 

extending alcohol metabolizing gene associations beyond the well-known ADH1B and ADH1C; 160 

SYNGAP1 (Synaptic Ras GTPase Activating Protein 1), BDNF (Brain-Derived Neurotrophic 161 

Factor), and others. Certain genes show associations with multiple traits including previous 162 

associations with AUDIT-C (4 genes in MVP phase1, 12 genes in UKB), total AUDIT score (19 163 

genes in UKB), and DrnkWk (46 genes in GSCAN, which includes results for DrnkWk after 164 

MTAG (multi-trait analysis of GWAS) [10] analysis). 165 

 Examination of the 66 associated genes for known drug-gene interactions through the 166 
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Drug Gene Interaction Database v3.0.2 [11] showed 327 interactions between 16 genes and 167 

325 drugs (Supplementary Table 5). Of these 16 genes with interactions, DRD2 had the most 168 

drug interactions (n = 177), followed by BDNF (n = 68) and PDE4B (n = 36).  169 

 170 

SNP-based h2 and partitioning heritability enrichment 171 

We used LD Score Regression (LDSC) [12] to estimate SNP-based h2 in the different datasests 172 

and the meta-analyses (Figure 3). Because of the unbalanced case/control ratio, we used 173 

effective sample size instead of actual sample size in MVP (following the PGC AD GWAS [2]). 174 

The h2 of PAU (the meta result) was 0.068 (se = 0.004). The h2 of AUD in the MVP meta-175 

analysis (phases 1 and 2) was 0.095 (se = 0.006) and 0.094 (se = 0.005) in the meta-analysis 176 

that combined MVP and PGC.  177 

Partitioning heritability enrichment analyses using LDSC [13, 14] showed the most 178 

significantly enriched cell type group to be central nervous system (CNS, p = 3.53 × 10-9), 179 

followed by adrenal and pancreas (p = 1.89 × 10-3), and immune and hematopoietic (p = 3.82 × 180 

10-3, Supplementary Figure 2). Significant enrichments were also observed in six baseline 181 

annotations, including conserved regions, conserved regions with 500bp extended (ext), fetal 182 

DHS (DNase I hypersensitive sites) ext, weak enhancers ext, histone mark H3K4me1 ext, and 183 

TSS (transcription start site) ext (Supplementary Figure 3). We also investigated heritability 184 

enrichments using Roadmap data, which contains six annotations (DHS, H3K27ac, H3K4me3, 185 

H3K4me1, H3K9ac, and H3K36me3) in a subset of 88 primary cell types and tissues [14, 15]. 186 

Significant enrichments were observed for H3K4me1 and DHS in fetal brain, and H3K4me3 in 187 

fetal brain and in brain germinal matrix (Supplementary Table 6). Although no heritability 188 

enrichment was observed in tissues using gene expression data from GTEx [16], the top 189 

nominally enriched tissues were all in brain (Supplementary Figure 4). 190 
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 191 

Functional enrichments  192 

MAGMA tissue expression analysis [17, 18] using GTEx showed significant enrichments in 193 

several brain tissues including cerebellum and cortex (Supplementary Figure 5). Although no 194 

enrichment was observed via MAGMA gene-set analysis using gene-based p-values of all 195 

protein-coding genes, the 152 genes prioritized by positional, expression quantitative trait loci 196 

(eQTL), and chromatin interaction mapping were enriched in several gene sets, including 197 

ethanol metabolic processes (Supplementary Table 7). 198 

 199 

Genetic correlations with other traits 200 

We estimated the genetic correlations between PAU and 715 publicly available sets of GWAS 201 

summary statistics, which included 228 published sets and 487 unpublished sets from the UK 202 

Biobank. After Bonferroni correction (p < 6.99 × 10-5), 138 traits were significantly correlated 203 

with PAU (Supplementary Table 8). Among the 26 published correlated traits, drinks per week 204 

showed the highest correlation with PAU (rg = 0.77, se = 0.02, p = 3.25 × 10-265), consistent with 205 

the overall quantity of alcohol consumed being a key domain of PAU [5, 19]. Several smoking 206 

traits and lifetime cannabis use were positively genetically correlated with PAU, consistent with 207 

the high comorbidity between alcohol and other substance use disorders in the general 208 

population [20]. Among psychiatric disorders, major depressive disorder (MDD, rg = 0.39, se = 209 

0.03, p = 1.43 × 10-40) showed the highest genetic correlation with PAU, extending the evidence 210 

for a shared genetic contribution to MDD and alcohol-related traits [21, 22]. PAU was positively 211 

correlated with risk-taking behavior, insomnia, CYP2A6 activity, and other traits, and negatively 212 

correlated with cognitive traits and parents’ age at death. These findings are in line with the 213 

known adverse medical, psychiatric, and social consequences of problem drinking (Figure 4). 214 
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 215 

Transcriptomic analyses 216 

We used S-PrediXcan [23] to predict gene expression and the mediating effects of variation on 217 

gene expression on PAU. Forty-eight tissues from GTEx [16] release v7 and whole blood 218 

samples from the Depression Genes and Networks study (DGN) [24] were analyzed as 219 

reference transcriptomes (Supplementary Table 9). After Bonferroni correction, 103 gene-tissue 220 

associations were significant, representing 39 different genes, some of which were identified in 221 

multiple tissues (Supplementary Table 10). For example, C1QTNF4 (C1q and TNF Related 4) 222 

was detected in 18 tissues, including brain, gastrointestinal, adipose, and liver. None of the four 223 

significant alcohol dehydrogenase genes (ADH1A, ADH1B, ADH4, and ADH5) was associated 224 

with expression in brain tissue, but they were associated with expression in other tissues -- 225 

adipose, thyroid, gastrointestinal and heart. These cross-tissue associations indicate that there 226 

are widespread functional consequences of PAU-risk-associated genetic variation at the 227 

expression level. 228 

 Although the sample size for tissues used for eQTL analysis limits our ability to detect 229 

associations, there are substantial common eQTLs across tissues [16]. Integrating evidence 230 

from multiple tissues can increase power to detect genes relative to the tissues tested 231 

individually, at least for shared eQTLs. We applied S-MultiXcan [25] to the summary data for 232 

PAU using all 48 GTEx tissues as reference transcriptomic data. The expression of 34 genes 233 

was significantly associated with PAU, including ADH1B, ADH4, ADH5, C1QTNF4, GCKR, and 234 

DRD2 (Supplementary Table 11). Among the 34 genes, 27 overlapped with genes detected by 235 

S-PrediXcan. 236 

 237 

PAU PRS for phenome-wide associations 238 
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We calculated PRS for PAU in 67,589 individuals of European descent from the Vanderbilt 239 

University Medical Center’s biobank, BioVU. We conducted a phenome-wide association study 240 

(PheWAS) of PRS for PAU adjusting for sex, age (calculated as the median age across an 241 

individual’s medical record), and the top 10 principal components of ancestry. We standardized 242 

the PRS so that the odds ratios correspond to a standard deviation increase in the PRS. After 243 

Bonferroni correction, 31 of the 1,372 phenotypes tested were significantly associated with PAU 244 

PRS, including alcohol-related disorders (OR = 1.46, se = 0.03, p = 3.34 × 10-40), alcoholism 245 

(OR = 1.33, se = 0.03, p = 3.85 × 10-28), tobacco use disorder (OR = 1.21, se = 0.01, p = 2.71 × 246 

10-38), 6 respiratory conditions, and 17 additional psychiatric conditions (Figure 5, 247 

Supplementary Table 12). 248 

 249 

PAU PRS with AD in independent samples 250 

We tested the association between PAU PRS and alcohol dependence in 3 independent 251 

samples: the iPSYCH group (ncase = 944, ncontrol = 11,408, neffective = 3,487); University College 252 

London (UCL) Psych Array (ncase = 1,698, ncontrol = 1,228, neffective = 2,851); and UCL Core 253 

Exome Array (ncase = 637, ncontrol = 9,189, neffective = 2,383). The PAU PRSs were significantly 254 

associated with AD in all three samples, with the most variance explained in the UCL Psych 255 

Array sample, which includes the most alcohol dependence cases (PTbest = 0.001, R2 = 2.12%, 256 

p = 8.64 × 10-14). In the iPSYCH group and UCL Core Exome Array samples, the maximal 257 

variance explained was 1.61% (PTbest = 0.3, p = 1.87 × 10-22), and 0.77% (PTbest = 5 × 10-8, p = 258 

1.65 × 10-7), respectively (Supplementary Table 13). 259 

 260 

Mendelian Randomization 261 

We tested the bi-directional causal effects between other traits and AUD (MVP+PGC), rather 262 
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than PAU; the UKB AUDIT-P GWAS sample was excluded to minimize overlap with other 263 

GWAS for putative exposures. (When we refer to exposure having causal effect on outcome, 264 

this should be understood to mean susceptibility or liability to exposure having causal effect on 265 

susceptibility or liability to outcome.) We limited the exposures to those genetically correlated 266 

with PAU, and which yielded >10 available instruments to have a robust causal estimate. 267 

Among the 15 tested exposures on AUD, seven showed evidence of a causal effect on liability 268 

to AUD (Table 2). DrnkWk and ever smoked regularly have a positive causal effect on AUD risk 269 

by all four methods, without violating MR assumptions through horizontal pleiotropy (MR-Egger 270 

intercept p > 0.05). General risk tolerance was causally related to AUD risk, and the estimate 271 

was robust after correction for horizontal pleiotropy. The “worry” sub-cluster of neuroticism and 272 

number of sexual partners show evidence of positive causal effects on liability to AUD with at 273 

least one method, while cognitive performance and educational attainment show evidence of 274 

negative causal effects. As an exposure, AUD has a positive causal effect on DrnkWk, and a 275 

negative causal effect on educational attainment, indicating bi-directional causality. There is no 276 

evidence of a causal effect of AUD on other traits (Table 3). 277 

 278 

Joint Analysis of PAU and DrnkWk Using MTAG 279 

We conducted a joint analysis of PAU and DrnkWk using MTAG, which can increase the power 280 

for each trait without introducing bias from sample overlap [10]. MTAG analysis increased the 281 

GWAS-equivalent sample size (nEq) for PAU to 514,790, i.e., a 71.1% increase from the original 282 

effective sample size (nE = 300,789, n = 435,563). In this analysis, we observed an increase in 283 

the number of independent variants for PAU to 119, 76 of which were conditionally independent 284 

(Supplementary Figure 6a, Supplementary Table 14). For DrnkWk, the MTAG analysis 285 

increased the nEq to 612,968 from 537,352, which yielded 141 independent variants, 86 of which 286 

were conditionally independent (Supplementary Figure 6b, Supplementary Table 15).  287 
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 The MTAG analysis also increased the power for the functional enrichment analysis. 288 

MAGMA gene set analysis for PAU after MTAG analysis detected 10 enriched Gene Ontology 289 

terms, including ‘regulation of nervous system development’ (pBonferroni = 8.80 × 10-4), 290 

‘neurogenesis’ (pBonferroni = 0.010), and ‘synapse’ (pBonferroni = 0.046) (Supplementary Table 16). 291 

 292 

 293 

 294 

Discussion 295 

We report here a genome-wide meta-analysis of PAU in 435,563 individuals of European 296 

ancestry from the MVP, PGC, and UKB datasets. MVP is a mega-biobank that has 297 

enrolled >750,000 subjects (for whom genotype data on 313,977 subjects were used in this 298 

study), with rich phenotype data assessed by questionnaires and from the EHR. Currently, MVP 299 

is the largest single cohort available with diagnostic information on AUD [3, 6]. PGC is a 300 

collaborative consortium that has led the effort to collect smaller cohorts with DSM-IV AD [2]. 301 

UKB is a population-level cohort with the largest available sample with AUDIT-P data [4]. 302 

Our discovery meta-analysis of PAU yielded 29 independent variants, of which 19 were 303 

novel, with 0.059 to 0.113 of the phenotypic variance explained in different cohorts or meta-304 

analyses. The h2 in the Phase1-Phase2 MVP meta-analysis was 0.095 (se = 0.006), which was 305 

higher than MVP phase1: 0.056 (se = 0.004, in MVP phase1 where only the actual (as opposed 306 

to effective) sample size was used) [3] . The h2 of AD in PGC was 0.098 (se = 0.018), 307 

comparable to the reported liability-scale h2 (0.090, se = 0.019) [2]. Functional and heritability 308 

analyses consistently showed enrichments in brain regions and gene expression regulatory 309 

regions, providing biological insights into the etiology of PAU. Variation associated with gene 310 

expression in the brain is central to PAU risk, a conclusion that is also consistent with our 311 
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previous GWASs in MVP of both alcohol consumption and AUD diagnosis [3]. The enrichments 312 

in regulatory regions point to specific brain tissues relevant to the causative genes; the specific 313 

interactions between 16 genes and 325 drugs may provide targets for the development of 314 

medications to manage PAU. Potential targets identified include the D2 dopamine receptor 315 

(encoded by DRD2) and phosphodiesterase 4B (encoded by PDE4B). The presence of risk 316 

variation at these loci also suggests that they may be “precision medicine” targets as well. 317 

 We also found that PAU was significantly genetically correlated with 138 other traits. The 318 

top correlations were with substance use and substance-related disorders, MDD, schizophrenia, 319 

and several other neuropsychiatric traits. In a conceptually similar analysis, we performed a 320 

PheWAS of PAU PRS in BioVU, which confirmed in an independent sample the genetic 321 

correlations between PAU and multiple substance use disorders, mood disorders, and other 322 

psychiatric traits. We also used MR to infer causal effects of the above traits on liability to AUD 323 

(we tested AUD excluding UKB samples to avoid sample overlap) using selected genetic 324 

instruments. We found evidence of positive causal relationships from DrnkWk (bi-directional), 325 

ever smoked regularly, worry sub-cluster, and number of sexual partners, while cognitive 326 

performance and educational attainment (bi-directional) showed protective effects on liability to 327 

AUD. In comparison, we detected few causal effects from AUD to other traits, possibly because 328 

of lack of power since there are fewer instrumental variants for AUD available in our study than 329 

for many comparison GWAS. 330 

The study has other limitations. First, only European populations were included; 331 

therefore, the genetic architecture of PAU in other populations remains largely unknown. To 332 

date, the largest non-European sample to undergo GWAS for alcohol-related traits is African 333 

American (AA), which was reported in the MVP phase1 sample (17,267 cases; 39,381 controls, 334 

an effective sample size of 48,015), with the only associations detected on chromosome 4 in the 335 

ADH gene locus (where several ADH genes map) [3]. The collection of substantial numbers of 336 
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non-European subjects will require a concerted effort by investigators in our field. Second, 337 

despite the high genetic correlation between AUD and AUDIT-P, they are not identical traits. We 338 

conducted a meta-analysis of the two traits to increase the power for the association study of 339 

PAU, consequently, associations specific to AUD or AUDIT-P could have been attenuated. 340 

Third, there was no opportunity for replication of the individual novel variants. Because the 341 

variants were detected in more than 430,000 subjects and have small effect sizes, a replication 342 

sample with adequate power would also have to be very large, and no such sample is currently 343 

available. To validate the findings, we conducted PRS analyses in three independent cohorts, 344 

which showed strong association with AUD. Although this indicates that our study had adequate 345 

power for variant detection, it does not address the validity of the individual variants discovered.  346 

This is the largest GWAS study of PAU so far. Previous work has shown that the genetic 347 

architecture of AUD (and PAU) differs substantially from that of alcohol consumption [2-4]. 348 

There have been larger studies of alcohol quantity-frequency measures [9, 26]; alcohol 349 

consumption data are available in many EHRs, thus they were included in many studies of other 350 

primary traits, like cardiac disease. AUD diagnoses are collected much less commonly. The 3-351 

item AUDIT-C is a widely used measure of alcohol consumption that is often available in EHRs, 352 

but the full 10-item AUDIT, which allows the assessment of AUDIT-P, is not as widely available. 353 

Despite the high genetic correlation between, for example, PAU and DrnkWk (rg=0.77), very 354 

different patterns of genetic correlation and pleiotropy have been observed via LDSC and other 355 

methods for these different kinds of indices of alcohol use [2-5]. PAU captures pathological 356 

alcohol use: physiological dependence and/or significant psychological, social or medical 357 

consequences. Quantity/frequency measures may capture alcohol use that is in the normal, or 358 

anyway nonpathological, range. As such, we argue that although quantity/frequency measures 359 

are important for understanding the biology of habitual alcohol use, PAU is the more clinically 360 

important trait. Thus, we did not meta-analyze PAU with DrnkWk directly, but used MTAG 361 
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analysis instead, recognizing that they are different traits. These circumstances underscore the 362 

need to assemble a large GWAS sample of PAU to inform its biology, and our study moves 363 

towards this goal via the identification of numerous previously-unidentified risk loci – we 364 

increased known PAU loci from 10 to 29, nearly tripling our knowledge of specific risk regions. 365 

Similarly, we identified 66 gene-based associations, of which 46 were novel – again roughly 366 

tripling current knowledge. MTAG analysis increased locus discovery to 119, representing 76 367 

independent loci, by leveraging information from DrnkWk [9]. By the same token, we provide a 368 

major increment in information about the biology of PAU, providing considerable fodder for 369 

future studies that will be required to delineate the biology and function associated with each 370 

risk variant. We anticipate that knowledge of the functional effects of the variants will contribute 371 

eventually to personalized treatment of PAU, facilitating identification of individuals with PAU 372 

who may be most treatment responsive or for whom a specific medication may be most 373 

efficacious.  374 

 375 

 376 
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 529 

 530 

Figure legend 531 

Figure 1. Overview of the analysis. The four datasets that were meta-analyzed as the 532 
discovery sample for problematic alcohol use (PAU) included MVP phase1, MVP phase2, PGC, 533 
and UK Biobank (UKB). MVP phase1 and phase2 were meta-analyzed, and the result was used 534 
to test the genetic correlation with PGC alcohol dependence. An intermediary meta-analysis 535 
(AUD meta) combining MVP phase1, phase2, and PGC was then conducted to measure the 536 
genetic correlation with UKB AUDIT-P. Due to the sample overlap between UKB and GSCAN, 537 
we used the AUD (intermediary) meta-analysis for Mendelian Randomization (MR) analysis 538 
rather than the PAU (i.e., from the final) meta-analysis. MTAG, which used the summary data 539 
from PAU and DrnkWk (drinks per week) in GSCAN (without 23andMe samples, as those data 540 
were not available) as input to increase the power for each trait without introducing bias from 541 
sample overlap, returned summary results for PAU and DrnkWk separately. 542 

 543 

Figure 2. Association results for AUD and PAU meta-analyses. a. Manhattan and QQ plots 544 
for AUD (MVP+PGC), ncase=57,564, ncontrol=256,395, neffective=179,185; b. Manhattan and QQ 545 
plots for PAU, n=435,563, neffective=300,789. Effective sample size weighted meta-analyses were 546 
performed using METAL. Red lines indicate GWS after correction for multiple testing (p < 5×10–547 
8). 548 

 549 

Figure 3. Estimated SNP-based h2. h2 results for single datasets or meta-analysis between 550 
datasets, from published studies or analyzed here. MVP is the phase1-phase2 MVP meta-551 
analysis,  PAU is the discovery meta-analysis. Effective sample sizes (nE) were used in LDSC. 552 
Center values are the estimated h2 and error bars indicate 95% confidence intervals. 553 

 554 

Figure 4. Genetic correlations with published traits. LDSC was applied to test genetic 555 
correlation between PAU and 715 traits. Of 228 published traits, 26 were genetically correlated 556 
with PAU after Bonferroni correction (p < 6.99×10-5). MDD, major depressive disorder; ADHD, 557 
attention deficit hyperactivity disorder. Center values are the estimated genetic correlation and 558 
error bars indicate 95% confidence intervals. 559 

 560 

Figure 5. Phenome-Wide associations with PAU PRS in BioVU. Polygenic score for PAU 561 
was calculated in 67,588 participants in BioVU (Vanderbilt University Medical Center’s biobank) 562 
using PRS-CS. 1,372 phenotypes were tested and Bonferroni correction (p < 3.64×10-5) was 563 
applied. 564 

 565 
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Table 1. Genome-wide significant associations for PAU. The total sample size is 435,563, 566 

effective sample size from each cohort was used for sample size weighted meta-analyses 567 

(neffective=300,789) using METAL.  568 

Chr Pos (hg19) rsID Gene A1 A2 EAF Z P Direction 
1 66419905 rs6421482 PDE4Ba A G 0.4363 -6.315 2.7×10-10 ---- 
1 73848610 rs61767420 [] A G 0.3999 5.714 1.11×10-8 ++++ 
2 27730940 rs1260326 GCKRa T C 0.4033 -9.296 1.45×10-20 --+- 
2 45141180 rs494904 SIX3b T C 0.5961 -7.926 2.26×10-15 ---- 
2 58042241 rs1402398 VRK2b A G 0.6274 7.098 1.27×10-12 ++++ 
2 104134432 rs9679319 [] T G 0.4797 -6.01 1.86×10-9 ---- 
2 138264231 rs13382553 THSD7Ba A G 0.766 -6.001 1.97×10-9 ---- 
2 227164653 rs2673136 IRS1b A G 0.6387 -5.872 4.31×10-9 ---- 
3 85513793 rs62250713 CADM2a A G 0.368 6.049 1.46×10-9 ++++ 
4 39404872 rs13129401 KLBb A G 0.4532 -8.906 5.29×10-19 ---- 
4 100229016 rs75967634 ADH1Ba T C 0.003 -6.098 1.07×10-9 --?- 
4 100239319 rs1229984 ADH1Ba T C 0.0302 -22 2.9×10-107 ---? 
4 100270452 rs13125415 ADH1Ca A G 0.5849 -9.073 1.16×10-19 ---- 
4 103198082 rs13135092 SLC39A8a A G 0.9192 11.673 1.75×10-31 ++++ 
7 153489074 rs2533200 DPP6a C G 0.5163 -5.631 1.79×10-8 ---- 
8 57424874 rs2582405 PENKb T C 0.237 5.751 8.86×10-9 ++++ 
10 72907951 rs7900002 UNC5Bb T G 0.6012 -5.503 3.74×10-8 --+- 
10 110537834 rs56722963 [] T C 0.2551 -6.374 1.85×10-10 ---- 
11 47423920 rs10717830 SLC39A13a G GT 0.674 6.422 1.34×10-10 ++++ 
11 57480623 rs576859 TMX2a A C 0.3272 5.67 1.43×10-8 +++? 
11 113357710 rs138084129 DRD2b A AATAT 0.6274 7.824 5.13×10-15 ++++ 
11 113443753 rs6589386 DRD2b T C 0.4323 -7.511 5.88×10-14 ---- 
11 121542923 rs1783835 SORL1b A G 0.4569 -5.979 2.24×10-9 ---- 
12 51903860 rs12296477 SLC4A8b C G 0.5469 5.484 4.15×10-8 ++++ 
14 58765903 rs61974485 ARID4Aa T C 0.2646 5.506 3.67×10-8 ++++ 
14 104355883 rs8008020 C14orf2a T C 0.4175 6.062 1.35×10-9 ++++ 
16 24693048 rs72768626 TNRC6Aa A G 0.9448 5.591 2.26×10-8 ++++ 
16 53820813 rs9937709 FTOa A G 0.585 6.602 4.06×10-11 ++++ 
19 49206417 rs492602 FUT2a A G 0.5076 -6.143 8.08×10-10 ---- 
Listed are the 29 independent variants that were genome-wide significant. Variants labeled in 569 
bold are novel associations with PAU. A1, effect allele; A2, other allele; EAF, effective allele 570 
frequency. Directions are for the A1 allele in MVP phase1, MVP phase2, PGC, and UKB 571 
datasets.  572 
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aProtein-coding gene contains the lead SNP,  573 
bProtein-coding gene nearest to the lead SNP.574 
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Table 2. Causal effects on AUD (MVP+PGC) by MR. 575 

Exposure (#instruments) Ref IVW [27] Weighted median [28] MR-Egger [29] MR-Egger 

intercept p

MR-PRESSO [30] GSMR [31] 

β (se) p β (se) p β (se) p #outlier β (se) p #HEIDI-

outlier 

β (se) p 

DrnkWk (58) [9] 0.89 (0.06) 1.80×10-46 0.89 (0.08) 2.89×10-26 0.91 (0.20) 3.80×10-6 0.898 0 0.89 (0.06) 1.58×10-20 2 0.92 (0.05) 6.37×10-79 

Ever smoked regularly (199) [9] 0.32 (0.02) 8.72×10-51 0.33 (0.02) 4.20×10-43 0.26 (0.08) 1.21×10-3 0.471 3 0.33 (0.02) 1.34×10-37 6 0.34 (0.01) 1.84×10-115 

Current vs former smoker (12) [9] 0.04 (0.09) 0.678 0.00 (0.06) 0.978 -0.33 (0.22) 0.140 0.078 5 0.02 (0.04) 0.692 0 0.04 (0.03) 0.292 

Cigarettes per day (33) [9] 0.04 (0.06) 0.475 -0.10 (0.04) 0.010 -0.18 (0.09) 0.034 1.27×10-3 5 0.09 (0.06) 0.151 4 0.01 (0.03) 0.643 

MDD (78) [32] 0.14 (0.03) 8.42×10-6 0.14 (0.03) 2.79×10-6 -0.17 (0.20) 0.390 0.113 5 0.14 (0.03) 3.73×10-6 1 0.15 (0.02) 1.65×10-18 

Schizophrenia (110) [33] 0.04 (0.01) 2.47×10-6 0.04 (0.01) 4.96×10-6 -0.05 (0.04) 0.202 0.016 4 0.04 (0.01) 6.03×10-8 5 0.06 (0.01) 4.65×10-26 

Bipolar disorder (23) [34] 0.03 (0.01) 0.012 0.03 (0.02) 0.049 -0.05 (0.07) 0.423 0.120 0 0.03 (0.01) 0.020 0 0.03 (0.01) 6.56×10-3 

Depressed affect sub-cluster (56) [35] 0.19 (0.06) 1.75×10-3 0.24 (0.05) 5.44×10-6 -0.20 (0.28) 0.462 0.147 7 0.23 (0.04) 1.12×10-6 5 0.26 (0.04) 6.80×10-13 

Neuroticism (131) [35] 0.20 (0.04) 1.10×10-7 0.20 (0.04) 1.10×10-7 -0.26 (0.16) 0.097 2.64×10-3 6 0.19 (0.03) 5.83×10-8 4 0.17 (0.02) 3.44×10-12 

Worry sub-cluster (61) [35] 0.13 (0.06) 0.020 0.17 (0.05) 8.06×10-4 0.04 (0.26) 0.890 0.702 7 0.19 (0.04) 8.64×10-5 5 0.21 (0.03) 7.40×10-11 

Number of sexual partners (64) [36] 0.31 (0.04) 3.27×10-12 0.36 (0.05) 9.00×10-16 0.51 (0.20) 0.011 0.309 4 0.33 (0.04) 1.14×10-12 3 0.34 (0.03) 6.13×10-28 

General risk tolerance (64) [36] 0.26 (0.06) 7.37×10-6 0.28 (0.07) 5.93×10-5 0.88 (0.25) 3.69×10-4 9.62×10-3 0 0.26 (0.06) 3.18×10-5 0 0.28 (0.05) 1.91×10-9 

Insomnia (159) [37] 0.05 (0.01) 1.90×10-5 0.03 (0.01) 5.31×10-3 -0.00 (0.05) 0.993 0.288 7 0.04 (0.01) 3.89×10-4 8 0.04 (0.01) 3.51×10-6 

Cognitive performance (134) [38] -0.08 (0.02) 1.03×10-3 -0.05 (0.03) 0.044 -0.21 (0.12) 0.086 0.282 4 -0.08 (0.02) 4.21×10-3 3 -0.09 (0.02) 6.20×10-8 

Educational attainment (570) [38] -0.22 (0.02) 1.32×10-25 -0.21 (0.02) 1.45×10-17 -0.24 (0.08) 2.21×10-3 0.781 4 -0.21 (0.02) 1.37×10-23 16 -0.23 (0.02) 1.69×10-51 

 576 
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P-values labeled in bold are significant after multiple testing correction (p < 1.32×10-3). Traits labeled in bold are those having a 577 
causal effect on AUD by at least one method and consistent for the direction of effect by all 5 methods. IVW: inverse-variance 578 
weighted (IVW) linear regression. #outlier: number of pleiotropic variants which are removed from the MR estimate. #HEIDI-outlier: 579 
number of pleiotropic variants which are removed from the MR estimate. DrnkWk: drinks per week. MDD: major depressive disorder. 580 
Depressed affect sub-cluster: depressed affect sub-cluster of neuroticism. Worry sub-cluster: worry sub-cluster of neuroticism. 581 
Outliers are variants showing evidence of horizontal pleiotropy, which were removed before the causal estimate was made. 582 
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Table 3. Causal effects of AUD (MVP+PGC) on other traits by MR. 583 

Outcome (#instruments) Ref IVW [27] Weighted median [28] MR-Egger [29] MR-Egger 

intercept p

MR-PRESSO [30] GSMR [31] 

β (se) p β (se) p β (se) p #outlier β (se) p #HEIDI-

outlier 

β (se) p 

DrnkWk (17) [9] 0.34 (0.05) 3.16×10-10 0.31 (0.04) 1.62×10-12 0.61 (0.39) 0.117 0.479 2 0.30 (0.04) 1.31×10-6 1 0.28 (0.03) 1.72×10-25

Ever smoked regularly (20) [9] 0.08 (0.04) 0.021 0.04 (0.03) 0.186 -0.04 (0.06) 0.544 0.032 4 0.07 (0.03) 0.028 2 0.08 (0.02) 6.94×10-6 

Lifetime cannabis use (21) [39] 0.05 (0.17) 0.763 -0.32 (0.13) 0.013 -0.44 (0.27) 0.100 0.027 3 0.17 (0.17) 0.320 2 -0.07 (0.08) 0.345 

Current vs former smoker (24) [9] 0.05 (0.03) 0.113 0.03 (0.03) 0.374 0.01 (0.07) 0.917 0.482 1 0.04 (0.03) 0.197 1 0.04 (0.02) 0.061 

Cigarettes per day (23) [9] 0.06 (0.04) 0.125 0.05 (0.04) 0.185 -0.06 (0.08) 0.431 0.073 0 0.06 (0.04) 0.139 0 0.06 (0.02) 0.011 

Age of initiation of smoking (24) [9] -0.05 (0.03) 0.065 -0.06 (0.04) 0.109 0.07 (0.05) 0.147 0.004 1 -0.11 (0.03) 0.001 0 -0.05 (0.02) 0.027 

MDD (23) [32] 0.11 (0.11) 0.320 0.04 (0.09) 0.646 -0.81 (0.51) 0.112 0.064 10 0.14 (0.08) 0.118 5 0.00 (0.05) 0.914 

Depressive symptom (23) [40] 0.01 (0.05) 0.794 -0.04 (0.05) 0.402 -0.26 (0.21) 0.207 0.177 1 -0.02 (0.04) 0.673 0 0.01 (0.04) 0.736 

PGC Cross-disorder (22) [41] 0.31 (0.18) 0.086 0.16 (0.19) 0.382 -2.28 (1.10) 0.038 0.017 0 0.31 0.18 0.100 0 0.31 (0.12) 0.010 

ADHD (24) [42] 0.25 (0.17) 0.132 -0.14 (0.16) 0.405 -0.44 (0.29) 0.122 0.005 1 0.18 (0.14) 0.220 1 0.18 (0.11) 0.101 

Schizophrenia (21) [33] 0.45 (0.20) 0.026 0.21 (0.10) 0.045 0.00 (0.29) 0.999 0.047 6 0.24 (0.08) 0.009 6 0.24 (0.08) 0.004 

Bipolar disorder (22) [34] -0.06 (0.18) 0.732 -0.03 (0.14) 0.812 -0.20 (0.31) 0.511 0.569 2 -0.02 (0.14) 0.893 2 -0.01 (0.11) 0.931 

Depressed affect sub-cluster (22) [35] 0.02 (0.04) 0.650 -0.02 (0.03) 0.594 -0.08 (0.08) 0.313 0.131 4 0.02 (0.03) 0.508 1 0.00 (0.02) 0.845 

Neuroticism (22) [35] 0.01 (0.04) 0.840 -0.01 (0.03) 0.641 -0.06 (0.07) 0.388 0.234 4 -0.02 (0.03) 0.591 3 -0.03 (0.02) 0.112 

Worry sub-cluster (24) [35] 0.03 (0.04) 0.393 0.01 (0.03) 0.754 -0.04 (0.07) 0.591 0.239 4 0.01 (0.03) 0.820 3 -0.01 (0.02) 0.777 

Subjective well-being (22) [40] -0.02 (0.05) 0.70 -0.05 (0.05) 0.264 0.03 (0.27) 0.921 0.860 3 -0.06 (0.04) 0.132 1 -0.05 (0.03) 0.092 

Number of sexual partners (23) [36] 0.09 (0.05) 0.058 -0.00 (0.03) 0.941 -0.00 (0.09) 0.966 0.219 7 0.05 (0.04) 0.225 4 0.02 (0.02) 0.266 

General risk tolerance (24) [36] 0.05 (0.03) 0.096 -0.03 (0.03) 0.323 -0.06 (0.06) 0.251 0.015 3 0.07 (0.03) 0.053 0 0.05 (0.02) 0.002 

Insomnia (24) [37] 0.08 (0.06) 0.157 0.06 (0.06) 0.367 -0.04 (0.11) 0.744 0.196 1 0.12 (0.06) 0.050 2 0.10 (0.04) 0.020 

Cognitive performance (22) [38] -0.03 (0.0) 0.460 -0.08 (0.03) 0.021 -0.09 (0.09) 0.295 0.440 3 -0.08 (0.04) 0.054 1 -0.05 (0.02) 0.030 
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Educational attainment (20) [38] -0.06 (0.03) 0.055 -0.10 (0.02) 7.38×10-6 -0.12 (0.06) 0.024 0.152 3 -0.07 (0.02) 6.04×10-3 5 -0.08 (0.02) 3.12×10-7 

Mothers age at death (24) [43] -0.03 (0.04) 0.424 -0.02 (0.06) 0.692 -0.01 (0.08) 0.886 0.764 0 -0.03 0.03 0.342 0 -0.03 (0.04) 0.424 

Fathers age at death (24) [43] -0.05 (0.05) 0.352 -0.09 (0.06) 0.113 -0.08 (0.10) 0.408 0.671 1 -0.03 (0.05) 0.523 0 -0.05 (0.04) 0.206 

P-values labeled in bold are significant after multiple testing correction (p < 1.32×10-3). Traits labeled in bold are those having a 584 
causal effect from AUD by at least one method and consistent for the directions of effect by all 5 methods. 585 
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Methods 586 

MVP datasets. The MVP is a mega-biobank supported by the U.S. Department of Veterans 587 

Affairs (VA), enrollment for which began in 2011 and is ongoing. Phenotypic data were collected 588 

using questionnaires and the VA electronic health records (EHR), and a blood sample was 589 

obtained from each participant for genetic studies. Two phases of genotypic data have been 590 

released and were included in this study. MVP phase1 contains 353,948 subjects, of whom 591 

202,004 European Americans (EA) with AUD diagnoses were included in a previous GWAS and 592 

the summary statistics were used in this study [3]. MVP phase2 released data on another 593 

108,416 subjects, of whom 65,387 EAs with AUD diagnosis information were included in this 594 

study. Following the same procedures as for MVP phase1, participants with at least one 595 

inpatient or two outpatient alcohol-related ICD-9/10 codes from 2000 to 2018 were assigned a 596 

diagnosis of AUD.  597 

Ethics statement: The Central VA Institutional Review Board (IRB) and site-specific IRBs 598 

approved the MVP study. All relevant ethical regulations for work with human subjects were 599 

followed in the conduct of the study and informed consent was obtained from all participants. 600 

Genotyping for both phases of MVP was performed using a customized Affymetrix 601 

Biobank Array. Imputation and quality control methods for MVP phase1 were described in detail 602 

in Kranzler et al. [3]. Similar methods were used for MVP phase2. Before imputation, phase2 603 

subjects or SNPs with genotype call rate < 0.9 or high heterozygosity were removed, leaving 604 

108,416 subjects and 668,324 SNPs. Imputation for MVP phase2 was done separately from 605 

phase1; both were performed with EAGLE2 [44] and Minimac3 [45] using 1000 Genomes 606 

Project phase 3 data [46] as the reference panel. Imputed genotypes with posterior probability ≥ 607 

0.9 were transferred to best-guess genotypes (the rest were treated as missing genotype calls). 608 

A total of 6,635,093 SNPs with INFO scores > 0.7, genotype call rates or best guess rates > 609 

0.95, Hardy-Weinberg Equilibrium (HWE) p value > 1 × 10−6, minor allele frequency (MAF) > 610 
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0.001 were remained for GWAS. 611 

We removed subjects with mismatched genotypic and phenotypic sex and one subject 612 

randomly from each pair of related individuals (kinship coefficient [47] threshold = 0.0884), 613 

leaving 107,438 phase2 subjects for subsequent analyses. We used the same processes as 614 

MVP phase1 to define EAs. First, we ran principal components analysis (PCA) on 74,827 615 

common SNPs (MAF > 0.05) shared by MVP and the 1000 Genomes phase 3 reference panels 616 

using FastPCA [48]. Then we clustered each participant into the nearest reference population 617 

according to the Euclidean distances between the participant and the centers of the 5 reference 618 

populations using the first 10 PCs. A second PCA was performed for participants who were 619 

clustered to the reference European population (EUR), and outliers were removed if any of the 620 

first 10 PCs were > 3 standard deviations from the mean, leaving 67,268 EA subjects.  621 

Individuals < 22 or > 90 years of age and those with a missing AUD diagnosis were 622 

removed from the analyses, leaving 65,387 phase2 EAs (11,337 cases; 54,050 controls). 623 

GWAS was then performed on the MVP phase2 dataset. We used logistic regression 624 

implemented in PLINK v1.90b4.4 [49] for the AUD GWAS correcting for age, sex, and the first 625 

10 PCs. The mean age is 63.2 (SD=13.4) in the entire MVP sample and 92.5% are males. Data 626 

collection and analysis were not performed blind to the conditions of the experiments. 627 

 628 

PGC summary statistics. We used the 46,568 European ancestry subjects (11,569 cases and 629 

34,999 controls) from 27 cohorts that were analyzed by the Psychiatric Genomics Consortium 630 

(PGC). The phenotype was lifetime DSM-IV diagnosis of alcohol dependence (AD). The 631 

summary data were downloaded from the PGC website (https://www.med.unc.edu/pgc/) with full 632 

agreement to the PGC conditions. Allele frequencies were not reported in the summary data. 633 

We used allele frequencies from the 1000 Genome European sample as proxy measures in 634 
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PGC for some downstream analyses. 635 

 636 

UK Biobank summary statistics. The UK Biobank (UKB) included 121,604 White-British 637 

unrelated subjects with available AUDIT-P scores. Past-year AUDIT-P was assessed by 7 638 

questions: 1). Frequency of inability to cease drinking; 2). Frequency of failure to fulfil normal 639 

expectations due to drinking alcohol; 3). Frequency of needing a morning drink of alcohol after a 640 

heavy drinking session; 4). Frequency of feeling guilt or remorse after drinking alcohol; 5). 641 

Frequency of memory loss due to drinking alcohol; 6). Been injured or injured someone else 642 

through drinking alcohol; 7). Had a relative, friend, or health worker who was concerned about 643 

or suggested a reduction in alcohol consumption. The AUDIT-P was log10-transformed for 644 

GWAS (see ref [4] for details). We removed SNPs with INFO < 0.7 or call rate < 0.95. 645 

 646 

Meta-analyses. Meta-analyses were performed using METAL [50]. The meta-analysis within 647 

MVP (for the purpose of genetic correlation analysis with PGC AD) was conducted using an 648 

inverse variance weighted method because the two subsets were from the same cohort. The 649 

meta-analyses for AUD (MVP+PGC) and PAU (MVP+PGC+UKB) were performed using the 650 

sample size weighted method. Given the unbalanced ratios of cases to controls in MVP 651 

samples, we calculated effective sample sizes for meta-analysis following the approach used by 652 

the PGC: 653 

4
1 1effective

case control

n

n n

=
+

 654 

The calculated effective sample sizes in MVP and reported effective sample sizes in PGC were 655 

used in meta-analyses and all downstream analyses. AUDIT-P in UKB is a continuous trait, so 656 
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we used actual sample sizes for that trait. For the AUD meta-analysis, variants present in only 657 

one sample (except MVP phase1 which is much larger than the others) or with heterogeneity 658 

test p-value < 5 × 10-8 were removed, leaving 7,003,540 variants. For the PAU meta-analysis, 659 

variants present in only one sample (except MVP phase1 or UKB) or with heterogeneity test p-660 

value < 5 × 10-8 and variants with effective sample size < 45,118 (15% of the total effective 661 

sample size) were removed, leaving 14,069,427 variants. 662 

 663 

AUD polygenic risk score in UKB. We calculated AUD polygenic risk scores (PRS) for each of 664 

the 82,930 unrelated subjects in UKB (application number 41910) who had non-missing AUDIT-665 

P information [7]. A PRS was calculated as the sum of the number of effective alleles with p-666 

values less than a given threshold, weighted by the effect sizes from AUD meta-analysis 667 

(MVP+PGC). We analyzed 10 p-value thresholds: 5 × 10-8, 1 × 10-7, 1 × 10-6, 1 × 10-5, 1 × 10-4, 668 

0.001, 0.05, 0.3, 0.5, and 1, and clumped the AUD summary data by LD with r2 < 0.3 in a 500-kb 669 

window. Then we tested the association between AUD PRS and AUDIT-P, corrected for age, 670 

sex, and 10 PCs. The analysis was performed using PRSice-2 [51]. 671 

 672 

Independent variants and conditional analyses. We identified the independent variant (p < 5 673 

× 10−8) in each locus (1 Mb genomic window) based on the smallest p value and r2 < 0.1 with 674 

other independent variants and assigned these variants to the independent variant’s clump. Any 675 

two independent variants less than 1 Mb apart whose clumped regions overlapped were 676 

merged into one locus. Given the known long-range LD for the ADH gene cluster on 677 

chromosome 4, we defined chr4q23–q24 (~97.2 Mb – 102.6 Mb) as one locus. When multiple 678 

independent variants were present in a locus, we ran conditional analyses using GCTA-COJO 679 

[52] to define conditionally independent variants. For each variant other than the most significant 680 
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one (index), we tested the marginal associations conditioning on the index variant using 681 

Europeans (n = 503) from the 1000 Genomes as the LD reference sample. Variants with 682 

significant marginal associations (p < 5 × 10−8) were defined as conditionally independent 683 

variants (i.e., independent when conditioned on other variants in the region) and subject to 684 

another round of conditional analyses for each significant association. 685 

 For the conditionally independent variants for AUD or PAU, we also conducted a multi-686 

trait analysis conditioning on GSCAN drinks per week [9] using GCTA-mtCOJO [31] to identify 687 

variants associated with AUD or PAU, but not drinks per week, i.e., not alcohol consumption 688 

alone. Europeans from the 1000 Genomes were used as the LD reference. For variants missing 689 

in GSCAN, we used proxy variants (p < 5 × 10−8) in high LD with the locus for analyses. 690 

Whereas conditional analyses require the beta (effect size) and standard error, we calculated 691 

these using Z-scores (z), allele frequency (p) and sample size (n) from the meta-analyses [53]: 692 

2

2

2 (1 )( )
1
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zbeta
p p n z

SE
p p n z

=
− +

=
− +

 693 

 694 

Gene-based association analysis. Gene-based association analysis for PAU was performed 695 

using MAGMA implemented in FUMA [17, 18], which uses a multiple regression approach to 696 

detect multi-marker effects that account for SNP p-values and LD between markers. We used 697 

default settings to analyze 18,952 autosomal genes, with p < 2.64 × 10−6 (0.05/18,952) 698 

considered GWS.  699 

 700 

Drug-gene interaction. For the genes identified as significant by MAGMA, we examined drug-701 

gene interaction through Drug Gene Interaction Database (DGIdb) v3.0.2 [11] 702 
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(http://www.dgidb.org/), a database of integrated drug–gene interaction information based on 30 703 

sources. 704 

 705 

SNP-based h2 and partitioning heritability enrichment. We used LDSC [12] to estimate the 706 

SNP-based h2 for common SNPs mapped to HapMap3 [54], with Europeans from the 1000 707 

Genomes Project [46] as the LD reference panel. We excluded the major histocompatibility 708 

complex (MHC) region (chr6: 26–34Mb).  709 

We conducted portioning h2 enrichment analyses for PAU using LDSC in different 710 

models [13, 14]. First, we analyzed a baseline model consisting of 52 functional categories that 711 

included genomic features (coding, intron, UTR etc), regulatory annotations (promoter, 712 

enhancer etc), epigenomic annotations (H3K27ac, H3K4me1, H3K3me3 etc) and others (see 713 

ref [13] for details, Supplementary Figure 3). We then analyzed cell type group h2 enrichments 714 

with 10 cell types: central nervous system (CNS), adrenal and pancreas, immune and 715 

hematopoietic, skeletal muscle, gastrointestinal, liver, cardiovascular, connective tissue and 716 

bone, kidney, and other (see ref [13] for details, Supplementary Figure 2). Third, we used LDSC 717 

to test for enriched heritability in regions surrounding genes with the highest tissue-specific 718 

expression using 53 human tissue or cell type RNA-seq data from the Genotype-Tissue 719 

Expression Project (GTEx) [16], or enriched heritability in epigenetic markers from 396 human 720 

epigenetic annotations (six features in a subset of 88 primary cell types or tissues) from the 721 

Roadmap Epigenomics Consortium [15] (see ref [14] for details, Supplementary Figure 4, 722 

Supplementary Table 6). For each model, the number of tested annotations was used to 723 

calculate a Bonferroni corrected p-value < 0.05 as a significance threshold. 724 

 725 

Gene-set and functional enrichment. We performed gene-set analysis for PAU for curated 726 
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gene sets and Gene Ontology (GO) terms using MAGMA [17, 18]. We then used MAGMA for 727 

gene-property analyses to test the relationships between tissue-specific gene expression 728 

profiles and PAU-gene associations. We analyzed gene expression data from 53 GTEx (v7) 729 

tissues. We also performed gene-set analysis on the 152 prioritized genes using MAGMA. Gene 730 

sets with adjusted p-value < 0.05 were considered as significant. 731 

 732 

Genetic correlation. We estimated the genetic correlation (rg) between traits using LDSC [55]. 733 

For PAU, we estimated the rg with 218 published traits in LD Hub [56], 487 unpublished traits 734 

from the UK Biobank (integrated in LD Hub), and recently published psychiatric and behavioral 735 

traits [9, 32, 34-39, 42, 57, 58], bringing the total number of tested traits to 715 (Supplementary 736 

Table 8). For traits reported in multiple studies or in UKB, we selected the published version of 737 

the phenotype or used the largest sample size. Bonferroni correction was applied and 738 

correlation was considered significant at a p-value threshold of 6.99 × 10-5. 739 

 740 

S-PrediXcan and S-MultiXcan. To perform transcriptome-wide association analysis, we used 741 

S-PrediXcan [23] (a version of PrediXcan that uses GWAS summary statistics [59]) to integrate 742 

transcriptomic data from GTEx [16] and the Depression Genes and Networks study (DGN) [24] 743 

to analyze the summary data from the PAU meta-analysis. Forty-eight tissues with sample size > 744 

70 from GTEx release v7 were analyzed, totaling 10,294 samples. DGN contains RNA 745 

sequencing data from whole blood of 992 genotyped individuals. The transcriptome prediction 746 

model database and the covariance matrices of the SNPs within each gene model were 747 

downloaded from the PredictDB repository (http://predictdb.org/, 2018-01-08 release). Only 748 

individuals of European ancestry in GTEx were analyzed. S-PrediXcan was performed for each 749 

of the 49 tissues (48 from GTEx and 1 from DGN), for a total of 254,345 gene-tissue pairs. 750 
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Significant association was determined by Bonferroni correction (p < 1.97 × 10-7).  751 

 Considering the limited eQTL sample size for any single tissue and the substantial 752 

sharing of eQTLs across tissues, we applied S-MultiXcan [25], which integrates evidence across 753 

multiple tissues using multivariate regression to improve association detection. Forty-eight 754 

tissues from GTEx were analyzed jointly. The threshold for condition number of eigenvalues 755 

was set to 30 when truncating singular value decomposition (SVD) components. In total, 25,626 756 

genes were tested in S-MultiXcan, leading to a significant p-value threshold of 1.95 × 10-6 757 

(0.05/25,626). 758 

PAU PRS for phenome-wide associations. Polygenic scores were generated using PRS-CS 759 

[60] on all genotyped individuals of European descent (n = 67,588) in Vanderbilt University 760 

Medical Center’s EHR-linked biobank, BioVU. PRS-CS uses a Bayesian framework to model 761 

linkage disequilibrium from an external reference set and a continuous shrinkage prior on SNP 762 

effect sizes. We used 1000 Genomes Project Phase 3 European sample [46] as the LD 763 

reference. Additionally, we used the PRS-CS-auto option, which allows the software to learn the 764 

continuous shrinkage prior from the data. Polygenic scores were constructed from PRS-CS-auto 765 

adjusted summary statistics containing 811,292 SNPs. All individuals used for polygenic scoring 766 

were genotyped on the Illumina Multi-Ethnic Global Array (MEGA). Genotypes were filtered for 767 

SNP (95%) and individual (98%) call rates, sex discrepancies, and excessive heterozygosity. 768 

For related individuals, one of each pair was randomly removed (pi_hat > 0.2). SNPs showing 769 

significant associations with genotyping batch were removed. Genetic ancestry was determined 770 

by principal component analysis performed using EIGENSTRAT [61]. Imputation was completed 771 

using the Michigan Imputation Server [45] and the Haplotype Reference Consortium [62] as the 772 

reference panel. Genotypes were then converted to hard calls, and filtered for SNP imputation 773 

quality (R2 < 0.3), individual missingness (>2%), SNP missingness (>2%), MAF (<1%) and HWE 774 



35 
 

(p < 1 × 10-10). The resulting dataset contained 9,330,483 SNPs on 67,588 individuals of 775 

European ancestry. 776 

We conducted a phenome-wide association study (PheWAS) [63] of the PAU PRS by 777 

fitting a logistic regression model to 1,372 case/control phenotypes to estimate the odds of each 778 

diagnosis given the PAU polygenic score, controlling for sex, median age across the medical 779 

record, top 10 principal components of ancestry, and genotyping batch. We required the 780 

presence of at least two International Classification of Disease (ICD) codes that mapped to a 781 

PheWAS disease category (Phecode Map 1.2) to assign “case” status. A phenotype was 782 

required to have at least 100 cases to be included in the analysis. PheWAS analyses were run 783 

using the PheWAS R package [64]. Bonferroni correction was applied to test for significance (p 784 

< 0.05/1,372). 785 

 786 

PAU PRS in independent samples. We calculated PAU PRS in three independent samples, 787 

where we tested the association between PAU PRS and AD, corrected for age, sex, and 10 788 

PCs. Ten p-value thresholds were applied in all samples. 789 

iPSYCH Group. DNA samples for cases and controls were obtained from newborn bloodspots 790 

linked to population registry data [65]. Cases were identified with the ICD-10 code F10.2 (AD; n 791 

= 944); controls were from the iPSYCH group (n = 11,408; neffective = 3,487)). The iPSYCH 792 

sample was genotyped on the Psych Array (Illumina, San Diego, CA, US). GWAS QC, 793 

imputation against the 1,000 Genomes Project panel [46] and association analysis using the 794 

Ricopili pipeline [66] were performed. The current study is part of a general study in iPSYCH 795 

investigating the comorbidity of alcohol misuse and psychiatric disorders. 796 

UCL Psych Array. Cases were identified with ICD-10 code F10.2 (n = 1,698) and comprised 492 797 

individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH (Steroids 798 
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or Pentoxifylline for Alcoholic Hepatitis) trial (ISRCTN88782125; EudraCT Number: 2009-799 

013897-42) and 1,206 subjects recruited from the AD arm of the DNA Polymorphisms in Mental 800 

Health (DPIM) study; controls were UK subjects who had either been screened for an absence 801 

of mental illness and harmful substance use (n = 776), or were random blood donors (n-452; 802 

total n = 1,228; neffective = 2,851). The sample was genotyped on the Psych Array (Illumina, San 803 

Diego, CA, US). GWAS QC was performed using standard methods and imputation was done 804 

using the haplotype reference consortium (HRC) panel [67] on the Sanger Imputation server 805 

(https://imputation.sanger.ac.uk/). Association testing was performed using Plink1.9 [49]. 806 

UCL Core Exome Array. Cases had an ICD-10 diagnosis of F10.2 (n = 637), including 324 807 

individuals with a diagnosis of alcoholic hepatitis who had participated in the STOPAH trial and 808 

313 subjects recruited from the AD arm of the DPIM study; controls were unrelated UK subjects 809 

from the UK Household Longitudinal Study (UKHLS; n = 9,189; neffective = 2,383). The sample 810 

was genotyped on the Illumina Human Core Exome Array (Illumina, San Diego, CA, US). 811 

GWAS QC was performed using standard methods and imputation was done using the HRC 812 

panel [67] on the Sanger Imputation server (https://imputation.sanger.ac.uk/). Association 813 

testing was performed with Plink1.9 [49]. 814 

 815 

Mendelian Randomization. We used Mendelian Randomization (MR) to investigate the bi-816 

directional causal relationships between PAU liability and traits that were significantly genetically 817 

correlated (p < 6.99 × 10-5). However, all or most of the published traits in recent large GWAS 818 

include UKB data. To avoid biases caused by overlapping samples in MR analysis, we only 819 

tested the relationship between published traits and AUD (MVP+PGC). For robust causal effect 820 

inference, we limited the traits studied to those with more than 10 available instruments 821 

(association p < 5 × 10-8). For causality on AUD, 15 exposures were analyzed (Table 2), and for 822 

causality from AUD on others, 23 traits were tested. We applied Bonferroni correction for the 38 823 
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hypotheses, interpreting p-values < 1.32×10-3 (0.05/38) as significant. 824 

Four methods, weighted median [28], inverse-variance weighted (IVW, random-effects 825 

model) [27], and MR-Egger [29], implemented in the R package “MendelianRandomization 826 

v0.3.0” [68], MR-PRESSO [30], and GSMR [31] were used for MR inference. Evidence of 827 

average pleiotropic effects was examined by the MR-Egger intercept test, where a non-zero 828 

intercept indicates horizontal pleiotropy [29]. Individual variants with horizontal pleiotropy were 829 

detected by MR-PRESSO, and an outlier test was applied to correct horizontal pleiotropy via 830 

outlier removal. Pleiotropic variants were also detected by the HEIDI test in GSMR, and 831 

removed from causal inference. Instrumental variants that are associated with outcome (p < 5 × 832 

10-8) were removed. For instrumental variants missing in the outcome summary data, we used 833 

the results of the best-proxy variant with the highest LD (r2 > 0.8) with the missing variant. If the 834 

MAF of the missing variant was < 0.01, or none of the variants within 200 kb had LD r2 > 0.8, we 835 

removed the instrumental variant from the analysis. Palindromic SNPs (A/T or G/C alleles) with 836 

MAF [0.4, 0.5], which can introduce ambiguity into the identity of the effect allele, were also 837 

removed.  838 

 839 

MTAG between PAU and drinks per week. Multiple trait analysis between PAU and drinks per 840 

week (DrnkWk) from GSCAN was performed on summary statistics with multi-trait analysis of 841 

GWAS (MTAG) v1.0.7 [10]. The summary data of DrnkWk were generated from 537,352 842 

subjects, excluding the 23andMe samples that were not available to us for inclusion. We 843 

analyzed variants with a minimum effective sample size of 80,603 (15%) in DrnkWk and a 844 

minimum effective sample size of 45,118 (15%) in PAU, which left 10,613,246 overlapping 845 

variants. 846 

 847 
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Data Availability: The full summary-level association data from the meta-analysis are available 848 

through dbGaP: [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-849 

bin/study.cgi?study_id=phs001672.v3.p1] (accession number phs001672.v3.p1). 850 

 851 

 852 

Reporting Summary. Further information on research design is available in the Nature 853 

Research Reporting Summary linked to this article. 854 

 855 

Code availability: Kinship analysis was performed using KING 856 

(http://people.virginia.edu/~wc9c/KING/); principal component analyses were performed using 857 

EIGENSOFT (https://data.broadinstitute.org/alkesgroup/EIGENSOFT/); imputation was 858 

performed using EAGLE2 (https://data.broadinstitute.org/alkesgroup/Eagle/), Minimac3 859 

(https://genome.sph.umich.edu/wiki/Minimac3), Sanger imputation server 860 

(https://imputation.sanger.ac.uk/), or RICOPILI (https://data.broadinstitute.org/mpg/ricopili/), 861 

depends on the sample; GWAS was performed using PLINK (https://www.cog-862 

genomics.org/plink2); meta-analyses was performed using METAL 863 

(https://genome.sph.umich.edu/wiki/METAL_Documentation); polygenic risk score analyses 864 

were performed using PRSice-2 (https://www.prsice.info/) or PRS-CS 865 

(https://github.com/getian107/PRScs); GCTA 866 

(https://cnsgenomics.com/software/gcta/#Overview) was used for identifying independent loci 867 

(GCTA-COJO), multi-trait conditional analysis (GCTA-mtCOJO), and Mendelian Randomization 868 

(GCTA-GSMR); LDSC (https://github.com/bulik/ldsc) was used for heritability estimate, genetic 869 

correlation analysis (also used LD-Hub, http://ldsc.broadinstitute.org/), and heritability 870 

enrichment analyses; FUMA (https://fuma.ctglab.nl/) was used for gene association, functional 871 
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enrichment, and gene-set enrichment analyses; transcriptomic analyses were performed using 872 

S-PrediXcan and S-MultiXcan (https://github.com/hakyimlab/MetaXcan); PheWAS analyses 873 

were run using the PheWAS R package (https://github.com/PheWAS/PheWAS); Mendelian 874 

Randomization R Package (https://cran.r-875 

project.org/web/packages/MendelianRandomization/index.html) and MR-PRESSO 876 

(https://github.com/rondolab/MR-PRESSO) were used for MR analyses; MTAG 877 

(https://github.com/omeed-maghzian/mtag) was used for Multiple trait analysis. 878 
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