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Abstract

The main goal of this thesis is to construct explicitly, modulo smooth terms, propa-

gators for physically meaningful hyperbolic partial differential equations (PDEs) and

systems of PDEs on closed manifolds without boundary, and to do this in a global

(i.e. as a single oscillatory integral) and invariant (under changes of local coordinates

and any gauge transformations that may be present) fashion. The crucial element in

our approach is the use of complex-valued, as opposed to real-valued, phase functions

— an idea proposed in the nineties by Laptev, Safarov and Vassiliev. It is known that

one cannot achieve a construction global in time using a real-valued phase function

due to obstructions brought about by caustics; however the use of a complex-valued

one makes it possible to circumvent such obstructions. This is the subject of the

first part of the thesis, where we study the global propagator for the wave equation

on a closed Riemannian manifold of dimension d ≥ 2 and the global propagator

for the massless Dirac equation on a closed orientable Riemannian 3-manifold. Our

results allow us to compute, as an application, the third local Weyl coefficient for

the massless Dirac operator.

A natural way to obtain a system of PDEs on a manifold is to vary a suit-

ably defined sesquilinear form. In the second part of the thesis, we study first

order sesquilinear forms acting on sections of the trivial Cm-bundle over a smooth

d-manifold. Thanks to the interplay of techniques from analysis, geometry and topol-

ogy, we achieve a classification of these forms up to GL(m,C) gauge equivalence in

the special case of d = 4 and m = 2.

Finally, in the last chapter we develop a Lorentzian analogue of the theory of

elasticity. We analyse the resulting nonlinear field equations for general Lorentzian

4-manifolds, and provide explicit solutions for the Minkowski spacetime.
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Impact statement

The 2010 International Review of Mathematical Sciences expressed the following

concern:

“Despite progress since 2004, analysis in the UK is still under-represented com-

pared to the rest of the world, with a notable shortage of home-grown talent; efforts

to strengthen existing excellent groups in analysis of all sizes should accordingly be

continued.”

And it goes on saying:

“The part of geometry that needs most strengthening in the UK is the connection

between geometric analysis and partial differential equations.”

This thesis lies at the intersection between analysis, geometry and mathematical

physics, as it deals with advances of different nature in the analysis of physically

meaningful partial differential equations and systems of partial differential equations

on manifolds. For this reason, it fully addresses the above concerns and contributes

to what is identified as a research area that needs strengthening. The author hopes

to stimulate further research at the crossroads of analysis and geometry.

The results of our research have been communicated to the mathematical research

community by delivering numerous talks at national and international conferences

and research seminars, as well as by writing research papers for peer reviewed pub-

lication.

Additional cross-contamination of diverse research areas has been encouraged
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by establishing research collaborations across different departments, universities and

countries.
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Chapter 1

Introduction

In this first Chapter we give a general overview of the type of problems addressed

in this thesis and a preliminary description of the results obtained, postponing until

subsequent chapters precise mathematical formulations and rigorous proofs. For the

sake of keeping the Introduction light, we also postpone until subsequent chapters a

more detailed literature review.

Let (M, g) be a closed Riemannian manifold of dimension d ≥ 2. Let A be

a self-adjoint elliptic1 first-order linear (pseudo)differential operator acting on m-

columns u = (u1, u2, . . . , um)T of complex-valued scalar functions over M . Consider

the Cauchy problem

f |t=0 = f0 (1.0.1)

for the hyperbolic system

− i ∂f
∂t

+Af = 0. (1.0.2)

Here f0 is a column-function of the spatial variable x ∈ M , whereas f is a column-

function of x and time t.

The propagator of the problem (1.0.1), (1.0.2) is the unitary operator

U(t) : f0(x) 7→ f(t, x) (1.0.3)

1When m = 1, i.e. when we are dealing with a single PDE as opposed to a system, ‘A is elliptic’

means that the principal symbol Aprin(x, ξ) does not vanish on T ∗M \ {0}. When m ≥ 2, ‘A

is elliptic’ means that the determinant of the principal symbol detAprin(x, ξ) does not vanish on

T ∗M \{0}. Whenm ≥ 2 and the operator is differential (as opposed to pseudodifferential) ellipticity

is only possible when m is even. Further details will be provided in subsequent chapters.

15



16 Chapter 1. Introduction

solving (1.0.1)–(1.0.2), i.e. mapping initial data to solutions.

The propagator U(t) can be formally constructed by resorting to functional cal-

culus. In fact, by standard elliptic theory A has discrete spectrum accumulating to

infinity and its eigenfunctions form an orthonormal basis in L2(M). Denoting by

λk the eigenvalues of A and by vk the corresponding orthonormalised eigenfunctions

(counted with multiplicity), we have

U(t) = e−iAt =
∑
k

e−iλkt vk(x)

∫
M
vk(y)

T
( · ) ρ(y) dy. (1.0.4)

Here ρ(y) :=
√

det gαβ(y) is the Riemannian density.

In order to construct the propagator (1.0.4) precisely one needs to know all the

eigenvalues and eigenfunctions of the operator A, which is in general unrealistic to

expect. In fact, barring some highly symmetric cases, even the spectrum of the

Laplace–Beltrami operator on a generic closed manifold is not known explicitly.

An alternative approach to construct U(t) is offered by microlocal analysis. Mi-

crolocal analysis is a technique generalising the Fourier transform. Assume one is

working with a linear partial differential equation (PDE) (or a system of PDEs) with

constant coefficients in Euclidean space; then, such a PDE can be fully examined by

means of the Fourier transform. If one is, instead, working on manifolds and dealing

with a PDE (or a system of PDEs) with variable coefficients the standard Fourier

transform method does not work anymore. However, in the latter case one can still

look for a solution in terms of suitably defined oscillatory integrals — a ‘generalised

version’ of the Fourier transform — up to infinitely smooth contributions. The study

of PDEs with variable coefficients was the main motivation that led to the develop-

ment of microlocal analysis, whose foundations were laid by Lars Hörmander in his

celebrated four-volume monograph [67].

Microlocal techniques allow one to construct the propagator (1.0.4) approxi-

mately, modulo an integral operator with infinitely smooth integral kernel: here

U(t) is written locally, in time and in space, as a composition of oscillatory integrals

whose amplitudes and phase functions are obtained by solving certain ordinary (as

opposed to partial) differential equations. The adjective ‘microlocal’ refers to the

fact that one localises singularities of the Schwartz kernel of the operator U(t) not

only in the position variable (local coordinates xα, α = 1, . . . , d, on M) but also in
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the dual variable, momentum (coordinates ξα, α = 1, . . . , d, on T ∗xM). The latter

effectively shows how the singularity looks in different directions.

The microlocal construction of the propagator (1.0.4) has been the subject of

intensive research since the 1950s. In particular, a substantial part of Hörmander’s

monograph [67] is devoted to this matter.

There are, however, two fundamental problems with the classical construction.

(a) It is local in space: oscillatory integrals are written in local coordinates. As a

result, the objects appearing in the oscillatory integral are not invariant under

change of coordinates.

(b) It is local in time.

The latter issue, locality in time, is especially serious: it is to do with obstructions

associated with caustics. In practice, constructing a propagator locally in time means

that for large times one has to resort to compositions

U(t) = U(t− tj) ◦ U(tj − tj−1) ◦ · · · ◦ U(t2 − t1) ◦ U(t1). (1.0.5)

The propagator (1.0.4) is a special case of a Fourier integral operator (FIO): handling

compositions of FIOs is a challenging task [115, Vol. 2]. Obtaining an explicit formula

for the LHS of (1.0.5) by composing the operators on the RHS is impracticable.

The main goal of this thesis is to construct U(t) explicitly (i.e up to solving

ordinary differential equations) for a class of operators of physical interest, and to

do so in a global (i.e. as a single oscillatory integral) and invariant (under changes of

local coordinates and any gauge transformations that may be present) fashion, thus

overcoming (a) and (b).

The main idea is to resolve the above issues by using a complex-valued phase

function

ϕ(t, x; y, η), ϕ : R×M × (T ∗M \ {0})→ C, Imϕ ≥ 0,

as opposed to a real-valued one. Quite remarkably, the propagator U(t) can be

written as a finite sum of invariantly defined oscillatory integrals, global both in

space and in time, with complex-valued phase functions.
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Our work builds upon earlier results by A. Laptev, Yu. Safarov and D. Vassiliev

[77, 104] and advancements critically rely on the presence of a metric structure on

M , which provides a solid ‘skeleton’ upon which our invariant construction rests.

We focus our analysis on two special cases:

(A) d ≥ 2, m = 1 and A =
√
−∆. In this case, the operator U(t) is the wave

propagator (sometimes called ‘wave group’).

(B) d = 3, m = 2 and A = W , W being the massless Dirac operator.

In the case (A), the invariant global formula for the propagator reads

U(t)
mod Ψ−∞

=
1

(2π)d

∫
T ∗M

eiϕ(t,x;y,η) a(t; y, η)χ(t, x; y, η)w(t, x; y, η) ( · ) ρ(y) dy dη,

(1.0.6)

where ϕ is a distinguished phase function determined by the geometry, χ(t, x; y, η)

is a cut-off,

w(t, x; y, η) := [ρ(x)ρ(y)]−1/2
(
det2ϕxαηβ

)1/4
and ρ is the Riemannian density.

The scalar function

a : R× T ∗M \ {0} → C

is the symbol of the operator (1.0.6). It admits an asymptotic expansion into com-

ponents a−k positively homogeneous in η of degree −k,

a(t; y, η) ∼
+∞∑
k=0

a−k(t; y, η)

and each homogeneous component is uniquely determined via an invariant algorithm.

We define the full, principal and subprincipal symbols of the wave propagator

U(t) to be the scalar functions a, a0 and a−1, respectively.

The concept of principal symbol of a Fourier integral operator is well established

in microlocal analysis [67, 115], and applies both to operators acting on scalar func-

tions and to operators acting on half-densities. The concept of subprincipal symbol,

instead, was introduced by J. J. Duistermaat and L. Hörmander [52, Eqn. (5.2.8)],

and it is defined only for pseudodifferential operators acting on half-densities. To

our knowledge, for Fourier integral operators the notion of subprincipal symbol has

never been defined.
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The fundamental difference between pseudodifferential operators and Fourier in-

tegral operators is that in the latter singularities propagate, i.e. they do not possess

the property of pseudolocality. It becomes possible to define, in an invariant fashion,

the full and subprincipal symbols of the propagator because a) the propagator is

a special case of a Fourier integral operator and b) we make use of the underlying

geometric structure — Riemannian metric and associated Levi-Civita connection.

In the case (B) of the massless Dirac operator, we have a similar result, where

now the propagator is written as the sum of two oscillatory integrals of type (1.0.6),

one for each eigenvalue of the principal symbol of W . We can, in fact, say more: the

two oscillatory integrals can be constructed in such a way that they approximate,

modulo operators with infinitely smooth Schwartz kernel, the operators

U+(t) :=
∑
λk>0

e−iλkt vk(x)

∫
M
vk(y)

T
( · ) ρ(y) dy (1.0.7)

and

U−(t) :=
∑
λk<0

e−iλkt vk(x)

∫
M
vk(y)

T
( · ) ρ(y) dy, (1.0.8)

respectively. That is, not only our construction is geometric and global, but it allows

one to maintain good control over the spectrum of the original operator W . As we

did for the wave propagator, we can give an invariant notion of full, principal and

subprincipal symbols of the massless Dirac propagator.

We will show in Section 3.3 that an analogous construction holds for general first

order pseudodifferential operators A acting on m-columns of scalar fields, under the

condition the eigenvalues of the principal symbol Aprin are simple. In this case, the

operator U(t) can be written, modulo an operator with infinitely smooth Schwartz

kernel, as the sum of m oscillatory integrals of the form (1.0.6), one for each eigen-

value of Aprin. The sum of the oscillatory integrals corresponding to positive eigen-

values of Aprin approximate (1.0.7), whereas the oscillatory integrals corresponding

to negative eigenvalues of Aprin approximate (1.0.8).

By setting t = 0, our definitions of principal and subprincipal symbols specialise

to pseudodifferential operators. A natural question to ask is whether they are related

to the standard ones when the latter are defined. The answer is affirmative, and a

detailed examination of this issue is provided in Section 3.4. Crucially, in drawing a
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comparison one has to translate our results for operators acting on scalar functions

into the more customary setting of operators acting on half-densities.

The construction of hyperbolic propagators — besides being of interest on its

own and having the potential of finding applications in natural sciences — is a very

powerful tool in the study of elliptic spectral problems. In fact, the hyperbolic

problem (1.0.1), (1.0.2) is closely related to the elliptic eigenvalue problem

Av = λv. (1.0.9)

More precisely, if one constructs the hyperbolic propagator with sufficiently high

accuracy (in terms of smoothness), then this allows one to write down asymptotic

formulae for the corresponding elliptic spectral problem. These ideas go under the

name of wave method and were first developed by B. Levitan [82] and V. G. Avaku-

movic [6] in the 1950s.

Define the spectral function to be

N(y, λ) :=
∑

0<λk<λ

vk(y)
T
vk(y). (1.0.10)

It is well-known that, given a suitable mollifier µ, the function2 (N ′ ∗µ)(y, λ) admits

a complete asymptotic expansion in integer powers of λ:

(N ′ ∗ µ)(y, λ) = cd−1(y)λd−1 + cd−2(y)λd−2 + cd−3(y)λd−3 + . . . as λ→ +∞.

(1.0.11)

In the above formulae ∗ stands for the convolution. The functions

cj : M → R

are called local Weyl coefficients and one can show that they are independent of the

choice of mollifier µ. As an application of our results on U(t) we compute the third

local Weyl coefficient for the massless Dirac operator, to our knowledge unknown to

date.

Note that in the scalar case, e.g. for the Laplace–Beltrami operator, there are

many alternative ways for dealing with spectral asymptotics, the simplest being the

heat kernel and resolvent approaches. However, if one moves on to first order systems,
2Here the prime denotes the derivative with respect to λ.
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whose spectrum is, in general, not semi-bounded, the heat method can no longer be

applied, at least in its original form. Furthermore, even resolvent techniques require

major modification [9]. For first order systems, the wave method provides a natural

and effective way to compute higher order Weyl coefficients.

Although our main goal is the global analysis of hyperbolic propagators, this is

not the only topic this thesis is concerned with. In the second part of this thesis

we will present the outcome of two of the research projects undertaken on the side

during the PhD: the problem of classifying sesquilinar forms generating first order

systems (Chapter 4) and the development of a theory of elasticity in the Lorentzian

setting (Chapter 5). If on the one hand the questions addressed in these Chapters

are related to the main topic and, to some extent, motivated by it, on the other hand

they can as well be considered as standalone units and read independently from the

rest of the thesis.

For the sake of time, space and overall homogeneity of the material, we decided

not to include in this thesis the results of two other research projects, dealing with

(i) the extension of the construction of global propagators to globally hyperbolic

Lorentzian spacetimes and

(ii) the construction of Lorentzian metrics on noncommutative 4-manifolds.

The outcome of (i) has recently appeared in [32] and the outcome of (ii) will be

provided in a forthcoming co-authored paper [15].

The main body of the thesis is structured into four Chapters, closely based upon

the three co-authored papers [33], [34], [36] and the forthcoming [35]. Naturally, the

thesis partially coincides both in content and in writing with [33], [34], [36] and [35].

In Chapter 2 we study the propagator of the wave equation on a closed Rie-

mannian manifold M . We propose a geometric approach for the construction of the

propagator as a single oscillatory integral global both in space and in time with a

distinguished complex-valued phase function. This enables us to provide a global

invariant definition of the full symbol of the propagator — a scalar function on the

cotangent bundle — and an algorithm for the explicit calculation of its homogeneous

components. The central part of the Chapter is devoted to the detailed analysis of
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the subprincipal symbol; in particular, we derive its explicit small time asymptotic

expansion. We present a general geometric construction that allows one to visualise

topological obstructions and describe their circumvention with the use of a complex-

valued phase function. The general framework is illustrated via explicit examples in

dimension two.

In Chapter 3 we study the propagator of the massless Dirac operator W on a

closed Riemannian 3-manifold. The propagator naturally decomposes into two op-

erators, the positive propagator and the negative propagator, associated with the

positive and negative eigenvalues of W . We show that positive and negative propa-

gators can be separately approximated by a single oscillatory integral, global in space

and in time, in an invariant fashion, and provide an algorithm for their construc-

tion, taking into account gauge degrees of freedom. The adoption of distinguished

complex-valued phase functions allows us to give a definition of full, principal and

subprincipal symbols of our propagators, scalar matrix-functions on the cotangent

bundle. In particular, we provide an explicit formula for the principal symbols and

a small time expansion of principal and subprincipal symbols, in terms of geometric

invariants (curvature of the Levi-Civita connection and torsion of the Weitzenböck

connection). As an application of our results, we compute the third (local) Weyl coef-

ficient of W . Along the way, we study invariant representations of pseudodifferential

operators acting on scalar functions and prove general results about propagators of

first order (pseudo)differential systems.

A natural way of obtaining a system of partial differential equations on a manifold

is to vary a suitably defined sesquilinear form. In Chapter 4 we study a particular

family of sesquilinar forms: Hermitian forms acting on sections of the trivial Cm-

bundle over a smooth d-dimensional manifold without boundary. More specifically,

we are concerned with first order sesquilinear forms, namely, those generating first

order systems. Our goal is to classify such forms up to GL(m,C) gauge equivalence.

We achieve this classification in the special case of d = 4 and m = 2 by means of

geometric and topological invariants (e.g. Lorentzian metric, spin/spinc structure,

electromagnetic covector potential) naturally contained within the sesquilinear form

— a purely analytic object. Essential to our approach is the interplay of techniques

from analysis, geometry, and topology.
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Finally, in Chapter 5 we propose a new mathematical model for a class of field

theories in the Lorentzian setting – effectively, a (fully) Lorentzian theory of elas-

ticity. We work on a 4-manifold equipped with Lorentzian metric g and consider a

volume-preserving diffeomorphism which is the unknown quantity of our mathemati-

cal model. The diffeomorphism defines a second Lorentzian metric h, the pullback of

g. Motivated by elasticity theory, we introduce a Lagrangian expressed algebraically

(without differentiations) via our pair of metrics. The analysis of the resulting non-

linear field equations produces three main results. Firstly, we show that for Ricci-flat

manifolds our linearised field equations are Maxwell’s equations in the Lorenz gauge

with exact current. Secondly, for Minkowski space we construct explicit massless

solutions of our nonlinear field equations; these come in two distinct types, right-

handed and left-handed. Thirdly, for Minkowski space we construct explicit massive

solutions of our nonlinear field equations; these contain a positive parameter which

has the geometric meaning of quantum mechanical mass and a real parameter which

may be interpreted as electric charge. In constructing explicit solutions of nonlinear

field equations we resort to group-theoretic ideas: we identify special 4-dimensional

subgroups of the Poincaré group and seek diffeomorphisms compatible with their

action, in a suitable sense.
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Chapter 2

The wave propagator

2.1 Statement of the problem

Let (M, g) be a connected closed Riemannian manifold of dimension d ≥ 2. We

denote local coordinates on M by xα, α = 1, . . . , d. The L2 inner product on

complex-valued functions is defined as

(u, v) :=

∫
M
u(x) v(x) ρ(x) dx ,

where

ρ(x) :=
√

det gµν(x) (2.1.1)

and dx = dx1 . . . dxd . The Laplace–Beltrami operator on scalar functions is

∆ = ρ(x)−1 ∂

∂xµ
ρ(x) gµν(x)

∂

∂xν
. (2.1.2)

Here and further on we adopt Einstein’s summation convention over repeated indices.

It is well known [101] that the operator (2.1.2) is non-positive and has discrete

spectrum accumulating to −∞. We adopt the following notation for the eigenvalues

and normalised eigenfunctions of −∆,

−∆vk = λ2
k vk ,

where eigenvalues are enumerated with account of their multiplicity as

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . .→ +∞.

25
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Consider the Cauchy problem for the wave equation(
∂2

∂t2
−∆

)
f(t, x) = 0 , (2.1.3a)

f(0, x) = f0(x),
∂f

∂t
(0, x) = f1(x). (2.1.3b)

Functional calculus allows one to write the solution of (2.1.3a), (2.1.3b) as

f = cos
(
t
√
−∆

)
f0 + sin

(
t
√
−∆

)
(−∆)−1/2 f1 + t (v0 , f1) , (2.1.4)

where

(−∆)−1/2 :=
∞∑
k=1

1

λk
(vk , · )

is the pseudoinverse of the operator
√
−∆ [96, Chapter 2, Section 2].

The RHS of (2.1.4) contains three operators: cos
(
t
√
−∆

)
, sin

(
t
√
−∆

)
and

(−∆)−1/2. The first two are Fourier Integral Operators (FIOs), whereas the third

one is a pseudodifferential operator. Assuming one has a good description of the

operator (−∆)−1/2 — for which there is a well developed theory, see e.g. [67] —

solving the Cauchy problem (2.1.3a), (2.1.3b) reduces to constructing the FIO

U(t) := e−it
√
−∆ =

∫
u(t, x, y) ( · ) ρ(y) dy , (2.1.5)

whose Schwartz kernel reads

u(t, x, y) :=
∞∑
k=0

e−itλk vk(x) vk(y) . (2.1.6)

The operator U(t) is called the wave propagator (of the Laplacian) and is the (dis-

tributional) solution of (
−i ∂

∂t
+
√
−∆

)
U(t) = 0 , (2.1.7a)

U(0) = Id . (2.1.7b)

The goal of this Chapter is to provide an explicit formula for the operator U(t)

modulo an integral operator with infinitely smooth integral kernel, written as a single

invariantly defined oscillatory integral global in space and in time.

The study of solutions of hyperbolic partial differential equations on manifolds —

and of the wave propagator in particular — is a well established subject, both within
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and outside microlocal analysis. As far as microlocal methods are concerned, rigorous

descriptions of the singular structure of the propagator, as well as the construction

of parametrices, can be found, for example, in [62], [97, 98], [52], [67, Vol. 3 & 4],

[115], [106]. These publications rely on spectral-theoretic techniques, often combined

with tools from the theory of local oscillatory integrals.

In this thesis, we adopt a somewhat different global approach, which originates

from the works of Laptev, Safarov and Vassiliev [77] and Safarov and Vassiliev [104].

They showed that it is possible to write the propagator for a fairly wide class of

hyperbolic equations as one single Fourier integral operator, global both in space

and in time, provided one uses a complex-valued phase function. This idea is not

entirely new. For instance, constructions which look very similar at a formal level,

albeit lacking mathematical rigour, have been for a long time appearing in solid state

physics papers on electromagnetic wave propagation, obviously inspired by geometric

optics. The mathematical formalisation of these ideas often appears under the name

of ‘Gaussian beams’, see, e.g., [95]. In the realm of pure mathematics, FIOs with

complex phase functions were considered, for example, by Melin and Sjöstrand [89].

The fundamental difference between their approach and the one presented here lies

in the fact that not only they have complex-valued phase functions, but, unlike [77],

[104], they also work in a complexified phase space, which makes the analysis quite

dissimilar.

Melin and Sjöstrand’s techniques were later adopted by Zelditch in the construc-

tion of the wave group on real analytic manifolds, see, e.g., [118] and [121]. In his

works, focussed on the study of nodal domains and nodal lines of complex eigenfunc-

tions, the wave group appears as the composition of three Fourier integral operators.

The general idea of his construction — up to technical details — goes as follows.

Consider the complexification MC of M and let

Mτ := {ζ ∈MC |
√
r(ζ) ≤ τ}

be the Grauert tube of radius τ of M within MC,
√
r denoting the Grauert tube

function. Furthermore, let

∂Mτ := {ζ ∈MC |
√
r(ζ) = τ}.
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Then the wave propagator e−it
√
−∆ : L2(M) → L2(M) is given by the composition

of

(i) an operator P τ : L2(M)→ O
d−1
4 (∂Mτ ) ⊂ L2(∂Mτ ), the analytic extension of

the Poisson semigroup eτ
√
−∆;

(ii) an operator TΦt on O
d−1
4 (∂Mτ ),

TΦtf := f ◦ Φt,

realising the translation along the geodesic flow Φt;

(iii) the adjoint of P τ , (P τ )∗ : O
d−1
4 (∂Mτ )→ L2(M).

One needs, additionally, to incorporate a pseudodifferential operator St (multiplica-

tion by a symbol) in order to obtain, in the end, a unitary operator

(P τ )∗ ◦ St ◦ TΦt ◦ P τ : L2(M)→ L2(M).

Zelditch’s approach consists, effectively, in writing the wave group U(t) as the con-

jugation of the translation operator TΦt by the (analytic extension of the) Poisson

semigroup P τ . For further details on the operator P τ we refer the reader to [26],

[120], [80] and [109]. Despite some similarities in the idea of adopting a complex

phase to achieve a representation global in time, our construction is overall very

different from Zelditch’s one, as it will be clear later on.

The techniques from [77], [104] are rather abstract and do not account for any

underlying geometry. This may be a reason why they have not been picked up by

the wider mathematical community. There are only few subsequent publications

using these methods as a fundamental tool. Laptev and Sigal [78] constructed the

propagator for the magnetic Schrödinger operator in flat Euclidean space for phase

functions with purely quadratic imaginary part. Jakobson et al, when studying

branching billiards on Riemannian manifolds with discontinuous metric in [71], rely

in their proofs on boundary layer oscillatory integrals with complex-valued phase

function, in the spirit of [104]. Furthermore, Safarov set his programme on global

calculi on manifolds [103, 85] in the framework of [77]. An extension of results from

[104] to first order systems of PDEs has been carried out by Chervova, Downes and

Vassiliev [41] in the process of computing two-term spectral asymptotics.
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Laptev and Sigal’s results mentioned above were improved and extended by

Robert in [99], where he constructs explicitly the Schwartz kernel of the quan-

tum propagator for the Schrödinger operator on Rd as a Fourier integral opera-

tor with quadratic complex-valued phase function and semiclassical subquadratic

symbol. Robert adopts a distinguished phase function adapted to the Hamiltonian

dynamics, which, though, does not coincide with a specialisation to the flat case of

the Levi-Civita phase function used in the current thesis.

Another approach to global FIOs is represented by Maslov’s canonical operators.

Maslov’s construction — the complex WKB method — is somewhat different from

ours in nature and purpose; we refer the reader to [84] for an expository overview.

The construction of [77, 104] works, strictly speaking, for closed manifolds or

compact manifolds with boundary. The compactness assumption, however, is not

essential and can be removed with some effort. Results in this direction, although

in a different setting and without the use of complex-valued phase functions, have

been recently obtained by Coriasco and collaborators [46, 45]. In our thesis, we will

refrain from carrying out such an extension and we will stick to the case of closed

manifolds.

The general properties and the singular structure of the integral kernel u of the

wave propagator, see (2.1.6), are well understood. At the same time very little is

known when it comes to explicit formulae. In particular, almost no information on

the symbol of U(t) can be found in the literature. With the exception of those cases

where all eigenvalues and eigenfunctions are known, the only general result available

to date is that the principal symbol is 1. In fact, we are unaware of any invariant

definition of full symbol — or subprincipal symbol — for Fourier integral operators

of the form (2.1.5). The goal of the current Chapter is to build upon [77], developing

further the construction therein for the case of Riemannian manifolds. The geometric

nature of our construction will allow us to provide invariant definitions of full and

subprincipal symbol of the wave propagator, analyse them, and give explicit formulae.

Our construction, although non-trivial, is quite natural and fully geometric in its

building blocks. Among other things, we aim to show the potential of the method,

which, due to the fact of being fully explicit, may find applications in pure and

applied mathematics, as well as in other applied sciences. With this in mind, we will
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not pursue the standard microlocal approach involving half-densities, but, rather, we

will adjust our theory to the case of operators acting on scalar functions.

One of the applications of our construction of the wave propagator is the calcu-

lation of higher Weyl coefficients, see Section 2.10. In Chapter 3 we will apply our

approach to (possibly non semi-bounded) first order systems of partial differential

equations on Riemannian manifolds: this will enable us to compute additional (com-

pared to what is known in the current literature) Weyl coefficients for the massless

Dirac operator.

This Chapter is structured as follows.

In Section 2.2 we give a brief overview of the theory of global Lagrangian distri-

butions and their relation to hyperbolic problems, as developed in [77]. Section 2.3

contains a concise summary of the main results of the Chapter. In Section 2.4 we in-

troduce a special phase function, the Levi-Civita phase function, which will later act

as the key ingredient of our geometric analysis, and analyse its properties in detail. A

global invariant definition of the full symbol of the wave propagator is formulated in

Section 2.5, and an algorithm for the calculation of all its homogeneous components

is provided. Some of the more technical material used in Section 2.5 has been post-

poned to Section 2.6. In order to implement the algorithm presented in Section 2.5

one also needs to study invariant representations of the identity operator in the form

of an oscillatory integral: this is the subject of Section 2.7. Section 2.8 is devoted

to a detailed study of the subprincipal symbol of the wave propagator, culminating

with Theorem 2.24 which gives an explicit formula for it. In Section 2.9 we provide

an explicit small time asymptotic expansion for the subprincipal symbol. This allows

us to recover, as a by-product, the third Weyl coefficient, see Section 2.10. In Sec-

tion 2.11 we apply our construction to two explicit examples in 2D: the sphere and

the hyperbolic plane. Finally, in Section 2.12 we discuss the issue of circumventing

topological obstructions.

2.2 Lagrangian manifolds and Hamiltonian flows

The theory of Fourier integral operators, beautifully set out in the seminal papers

by Hörmander and Duistermaat [66, 52], proved to be an extremely powerful tool
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in the analysis of partial differential equations and gave rise to several flourishing

lines of research still active nowadays. As it is unrealistic to give a concise account

of such a vast field of mathematical analysis, we refer the interested reader to the

aforementioned papers and to the monographs by Duistermaat [50], Trèves [115,

Vol. 2] and Hörmander [67, Vol. 4] for a detailed exposition.

In this section we will briefly summarise the theory of global Fourier integral

operators with complex-valued phase function as developed by Laptev, Safarov and

Vassiliev [77], in a formulation adapted to our purposes. Here and further on we

adopt the notation T ′M := T ∗M \ {0}.

We call Hamiltonian any smooth function h : T ′M → R positively homogeneous

in momentum of degree one, i.e. such that h(x, λ ξ) = λh(x, ξ) for every λ > 0. For

any such Hamiltonian, we denote by (x∗(t; y, η), ξ∗(t; y, η)) the Hamiltonian flow,

namely the (global) solution of Hamilton’s equations

ẋ∗(t; y, η) = hξ(x
∗(t; y, η), ξ∗(t; y, η)), ξ̇∗(t; y, η) = −hx(x∗(t; y, η), ξ∗(t; y, η)) ,

(2.2.1)

with initial condition (x∗(0; y, η), ξ∗(0; y, η)) = (y, η). Observe that, as a consequence

of (2.2.1), x∗ and ξ∗ are positively homogeneous in momentum of degree zero and

one respectively. Further on, whenever x∗ and ξ∗ come without argument, (t; y, η)

is to be understood. This will be done for the sake of readability when there is no

risk of confusion.

The Hamiltonian flow, in turn, defines a Lagrangian submanifold Λh of T ∗R ×

T ′M × T ′M given by

Λh := {(t,−h(y, η)), (x∗(t; y, η), ξ∗(t; y, η)), (y,−η) | t ∈ R, (y, η) ∈ T ′M}. (2.2.2)

Indeed, a straightforward calculation shows that the canonical symplectic form ω on

T ∗R× T ′M × T ′M satisfies ω|Λh = 0.

We call phase function an infinitely smooth function ϕ : R ×M × T ′M → C

which is non-degenerate and positively homogeneous in momentum of degree one.

We say that a phase function ϕ locally parameterises the submanifold Λh if, in local

coordinates x and y and in a neighbourhood of a given point of Λh, we have

Λh = {(t, ϕt(t, x; y, η)), (x, ϕx(t, x; y, η)), (y, ϕy(t, x; y, η)) | (t, x; y, η) ∈ Cϕ},
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where Cϕ := {(t, x; y, η) | ϕη(t, x; y, η) = 0}.

The above definitions allow us to say what it means for a distribution (in the sense

of distribution theory, see [67, Vol. 1]) to be associated with Λh. A distribution u is

called a Lagrangian distribution of order m associated with Λh if u can be represented

locally as the sum of oscillatory integrals of the form

Iϕ(a) =

∫
ei ϕ(t,x;y,η) a(t, x; y, η) d̄η

where ϕ is a phase function locally parameterising Λh and a ∈ Smph(R ×M × T ′M)

is a polyhomogeneous function of order m. Here and further on

d̄η = (2π)−ddη. (2.2.3)

We recall that a polyhomogeneous function of orderm is an infinitely smooth function

a : R×M × T ′M → C

admitting an asymptotic expansion in positively homogeneous components, i.e.

a(t, x; y, η) ∼
∞∑
k=0

am−k(t, x; y, η), (2.2.4)

where am−k is positively homogeneous in η of degreem−k. Here and in the following

it is understood that whenever we write Smph(E × T ′M) we mean polyhomogeneous

functions of order m on T ′M depending smoothly on the variables in E.

In the theory of Fourier integral operators the function a is usually referred to

as amplitude of the oscillatory integral. In this thesis, we will call it amplitude and

denote it by a Roman letter, e.g. a(t, x; y, η), when it depends on the variable x ∈M ,

whereas we will call it symbol and denote it by a fraktur letter, e.g. a(t; y, η), when

it is independent of the variable x ∈ M . In fact, as it will be explained in the

following, one can always assume to be in the latter situation, modulo an infinitely

smooth error in an appropriate sense.

It is a well known fact that with a real-valued phase function one can achieve the

above mentioned parameterisation for a generic Lagrangian manifold only locally.

Indeed, classical constructions involving global Fourier integral operators, see, for

instance, [66], [115, Vol. 2], always resort to (the sum of) local oscillatory integrals.

This is due to obstructions of topological nature represented on the one hand by the
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non-triviality of a certain cohomology class in H1(Λh,Z) [81], known as the Maslov

class, and on the other hand by the presence of caustics. In the case of a Lagrangian

manifold generated by a homogeneous Hamiltonian flow the former obstruction is not

present. The adoption of a complex-valued phase functions allows one to circumvent

the latter and perform a construction which is inherently global.

To explain why this is the case, we first need to impose a restriction on the

class of admissible phase functions. In particular, since our goal is to parameterise

Lagrangian manifolds generated by a Hamiltonian, we need to impose compatibility

conditions between our phase function and the Hamiltonian flow.

Definition 2.1 (Phase function of class Lh). We say that a phase function ϕ =

ϕ(t, x; y, η) defined on R×M × T ′M is of class Lh if it satisfies the conditions

(i) ϕ|x=x∗ = 0,

(ii) ϕxα |x=x∗ = ξ∗α,

(iii) detϕxαηβ
∣∣
x=x∗

6= 0,

(iv) Imϕ ≥ 0.

The space of phase functions of class Lh is non-empty and path-connected [77, Lem-

mata 1.4 and 1.7].

We are now able to state the main result contained in [77].

Theorem 2.2. The Lagrangian submanifold Λh can be globally parameterised by a

single phase function of class Lh.

Theorem 2.2 is crucial for the problem we want to study. In fact, take h to be

the principal symbol of the pseudodifferential operator
√
−∆, namely

h(x, ξ) :=
(
gαβ(x) ξα ξβ

)1/2
. (2.2.5)

Then the flow (2.2.1) is (co)geodesic and the propagator for our hyperbolic PDE

(2.1.7a) is a Fourier integral operator whose Schwartz kernel (2.1.6) is a Lagrangian

distribution of order zero associated with the Lagrangian manifold Λh. As already

noticed by Laptev, Safarov and Vassiliev in [77], being able to globally parameterise
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Λh by a phase function of class Lh amounts to being able to write u(t, x, y) as a

single oscillatory integral, global both in space and in time.

This is not the only simplification brought about by this framework. Since the

Maslov class of Λh is trivial [77], and so is the reduced Maslov class, one can canon-

ically identify sections of the Keller–Maslov bundle with smooth functions on T ′M .

In particular, the principal symbol of the Fourier integral operator defined by our

Lagrangian distribution is simply the component of the highest degree of homogene-

ity am in the asymptotic expansion of the symbol. We stress the fact that am is a

smooth scalar function on T ′M — possibly depending on additional parameters —

which is independent of the choice of the phase function ϕ. Components of lower

degree of homogeneity will generally depend on the choice of the phase function.

The crucial condition that allows us to pass through caustics is (iii) in Definition

2.1. The degeneracy of

ϕxαηβ
∣∣
x=x∗

(2.2.6)

for real-valued phase functions in the presence of conjugate points is what causes

the analytic machinery to break down. The introduction of an imaginary part in ϕ

serves the purpose of ensuring that detϕxαηβ
∣∣
x=x∗

6= 0 for all times. This is more

than just a technical requirement, though; the object (2.2.6) is actually capable of

detecting information of topological nature about paths in Λh. This is reflected in

the fact that, as it was firstly observed by Safarov and later formalised in [77, 104],

(2.2.6) is the core of a purely analytic definition of the Maslov index.

Consider the differential 1-form

ϑϕ = − 1

2π
d

[
arg
(

detϕxαηβ
∣∣
x=x∗

)2
]
. (2.2.7)

Let γ := {(x∗(t; y, η), ξ∗(t; y, η)) | 0 ≤ t ≤ T} be a T -periodic Hamiltonian trajectory

such that x∗η(T ; y, η) = 0. Then the Maslov index of γ is defined by

ind(γ) :=

∫
γ
ϑϕ . (2.2.8)

It is easy to see that ind(γ) does not depend on the choice of the phase function ϕ.

In fact, the index ind(γ) is determined by the de Rham cohomology class of ϑϕ and

(2.2.8) is the differential counterpart under the standard isomorphism between Čech
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and de Rham cohomologies of the approach in terms of cocycles adopted in [66]. See

[104, Section 1.5] for additional details.

2.3 Main results

We seek the Schwartz kernel (2.1.6) of the propagator (2.1.5) in the form

u(t, x, y) = Iϕ(a) +K(t, x, y), (2.3.1)

where K is an infinitely smooth kernel and

Iϕ(a) =

∫
T ∗yM

eiϕ(t,x;y,η;ε) a(t; y, η; ε)χ(t, x; y, η)w(t, x; y, η; ε) d̄η (2.3.2)

is a global oscillatory integral. Here ϕ is a particular phase function of class Lh, with

h given by (2.2.5), which will be introduced in Section 2.4. This phase function is

completely determined by the metric and a positive parameter ε and will be called

the Levi-Civita phase function. Rigorous definitions of the symbol a, cut-off χ and

weight w appearing on the RHS of (2.3.2) will be provided in Section 2.5. Let us

emphasise that the representation (2.3.2) will be global in time t ∈ R and in space

x, y ∈M .

The main results of Chapter 2 are as follows.

1. We provide an invariant definition of the full symbol of the wave propagator as a

scalar function a(t; y, η; ε),

a : R× T ′M × R+ → C,

along with an explicit algorithm for the calculation of all its homogeneous com-

ponents, see Section 2.5.

2. We determine the symbol of the identity operator written as an invariant oscilla-

tory integral, see Section 2.7.

3. We perform a detailed study of the subprincipal symbol of the propagator and

provide a simplified algorithm for its calculation, see Section 2.8 and Theorem 2.24

therein.
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4. We write down a small time asymptotic formula for the subprincipal symbol of

the propagator, see Theorem 2.25.

5. We apply our construction to maximally symmetric spaces of constant curvature

in 2D, the standard 2-sphere and the hyperbolic plane, see Section 2.11.

6. Using our complex-valued phase function, we provide a geometric construction

which allows us to visualise the analytical circumvention of topological obstruc-

tions, see Theorem 2.31.

2.4 The Levi-Civita phase function

In this Section we will introduce a distinguished phase function, the Levi-Civita

phase function, providing motivation and basic properties.

Definition 2.3 (Levi-Civita phase function). We call the Levi-Civita phase function

the infinitely smooth function

ϕ : R×M × T ′M × R+ → C

defined by

ϕ(t, x; y, η; ε) :=

∫
γ
ζ dz +

i ε

2
h(y, η) dist2(x, x∗(t; y, η)) (2.4.1)

when x lies in a geodesic neighbourhood1 of x∗(t; y, η) and continued smoothly else-

where in such a way that Imϕ ≥ 0. The function dist is the Riemannian geodesic dis-

tance, the path of integration γ is the (unique) shortest geodesic connecting x∗(t; y, η)

to x, and ζ is the result of the parallel transport of ξ∗(t; y, η) along γ.

The imaginary part of ϕ is pre-multiplied by a positive parameter ε in order to

keep track of the effects of making ϕ complex-valued. The real-valued case can be

recovered by setting ε = 0.

It is straightforward to check that the Levi-Civita phase function ϕ is of class

Lh. Note that in geodesic normal coordinates x centred at x∗(t; y, η) the function ϕ
1Here and further on ‘geodesic neighbourhood of z’ means the image under the exponential

map expz : TzM → M of a star-shaped neighbourhood V of 0 ∈ TzM such that expz|V is a

diffeomorphism.
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·y
· x∗

M

reads locally

ϕ(t, x; y, η; ε) = (x− x∗(t; y, η))α ξ∗α(t; y, η)

+
i ε

2
h(y, η) δµν (x− x∗(t; y, η))µ(x− x∗(t; y, η))ν . (2.4.2)

Our phase function is invariantly defined and naturally dictated by the geometry of

(M, g). Its construction relies on the use of the Levi-Civita connection associated

with the Riemannian metric g, which justifies its name. From the analytic point

of view, the adoption of the Levi-Civita phase function is particularly convenient

in that it turns the Laplace-Beltrami operator into a partial differential operator

with almost constant coefficients, up to curvature terms. In a sense, ϕ ‘straightens

out’ the geometry of (M, g), thus bringing about considerable simplifications in the

analysis. More precisely, the Levi-Civita phase function with ε = 0 has the following

properties which a general phase function compatible with the geodesic flow does

not possess:

(i) (∆ϕ)|x=x∗ = 0;

(ii) (ϕtt)|x=x∗ = 0;

(iii) the full symbol of the identity operator is 1, see Theorem 2.18.

Remark 2.4. The real-valued Levi–Civita phase function appears, in various forms,

in [77], [104] and [85]. Note, however, that the geometric phase function used in the

parametrix construction in [119] and [31] is not the same as (2.4.1) for ε = 0: the

phase function appearing in [119] and [31] is linear in t, whereas ours is not. This is

essentially due to the fact that the Levi-Civita phase function is constructed out of

the cogeodesic flow.
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Lemma 2.5. We have ∫
γ
ζ dz = 〈ξ∗(t; y, η), exp−1

x∗ (x)〉,

where exp denotes the exponential map and 〈 · , · 〉 is the (pointwise) canonical pairing

between cotangent and tangent bundles.

Proof. Denoting by Pγ(s) : T ∗x∗(t;y,η)M → T ∗γ(s)M the one-parameter family of op-

erators realising the parallel transport of covectors from x∗(t; y, η) to γ(s) along

γ : [0, 1]→M , we have∫
γ
ζ dz =

∫ 1

0
〈Pγ(s)(ξ

∗(t; y, η)), γ̇(s)〉 ds

=

∫ 1

0
〈ξ∗(t; y, η), γ̇(0)〉ds

= 〈ξ∗(t; y, η), exp−1
x∗ (x)〉,

where the dot stands for the derivative with respect to the parameter s. At the

second step we used the fact that

d

ds
〈Pγ(s)(ξ

∗(t; y, η)), γ̇(s)〉

= 〈∇γ̇(s) Pγ(s)(ξ
∗(t; y, η)), γ̇(s)〉+ 〈Pγ(s)(ξ

∗(t; y, η)),∇γ̇(s)γ̇(s)〉 = 0.

In view of Lemma 2.5, we can recast the Levi-Civita phase function (2.4.1) in

the more explicit form

ϕ(t, x; y, η; ε) := −1

2
〈ξ∗, gradz[dist2(x, z)]

∣∣
z=x∗
〉+

i ε

2
h(y, η) dist2(x∗, x) , (2.4.3)

where the initial velocity exp−1
x∗ (x) is expressed in terms of the geodesic distance

squared.

As briefly discussed in Section 2.2, the phase function is capable of detecting

information of topological nature. In particular, a crucial role is played by the two-

point tensor ϕxαηβ and its determinant.

Theorem 2.6. In any coordinate systems x and y, ϕxαηβ along the flow is given by

ϕxαηβ
∣∣
x=x∗

=
∂ξ∗α
∂ηβ
− Γµαν(x∗) ξ∗µ

∂x∗ν

∂ηβ
− i ε h(y, η) gαν(x∗)

∂x∗ν

∂ηβ
, (2.4.4)

where Γµαν are the Christoffel symbols.
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Proof. Let us seek an expansion for the phase function ϕ in powers of (x − x∗) up

to second order. To this end, we need to obtain an analogous expansion for γ̇(0)

first. Recall that γ : [0, 1] → M is the shortest geodesic connecting x∗ to x, hence

satisfying

γ(0) = x∗, γ(1) = x.

Put

γ(s) = x∗ + (x− x∗) s+ z(s;x, x∗),

where z is a correction of order O(‖x − x∗‖2) such that z(0) = 0 and z(1) = 0. By

requiring γ to satisfy the geodesic equation, we obtain

z̈(s) + Γαµν(γ(s)) (x− x∗)µ (x− x∗)ν = 0 +O(‖x− x∗‖3),

from which we get

z(s) =
s(1− s)

2
Γαµν(x∗) (x− x∗)µ (x− x∗)ν +O(‖x− x∗‖3)

and, in turn,

γ̇α(0) = (x− x∗)α +
1

2
Γαµν(x∗) (x− x∗)µ (x− x∗)ν +O(‖x− x∗‖3).

It ensues that the Levi-Civita phase function admits the expansion

ϕ(t, x; y, η; ε) =(x− x∗)α ξ∗α +
1

2
Γαµν(x∗) ξ∗α (x− x∗)µ (x− x∗)ν

+
i ε h(y, η)

2
gµν(x∗) (x− x∗)µ (x− x∗)ν +O(‖x− x∗‖3).

Formula (2.4.4) now follows by direct differentiation.

The explicit formula established in Theorem 2.6 is quite useful. In fact, it offers

a direct way of investigating the topology of Λh and computing the Maslov index.

We will come back to this later on.

2.5 The global invariant symbol of the propagator

In this Section we will present an algorithm for the construction of a global invariant

full symbol a for the wave propagator.
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In view of formulae (2.3.1) and (2.3.2), let us consider the Lagrangian distribution

Iϕ(a) =

∫
T ∗yM

eiϕ(t,x;y,η;ε) a(t; y, η; ε)χ(t, x; y, η)w(t, x; y, η; ε) d̄η , (2.5.1)

where the quantities on the RHS are defined as follows.

• ϕ is the Levi-Civita phase function (2.4.3).

• a ∈ S0
ph(R×T ′M ×R+) is a polyhomogeneous symbol with asymptotic expan-

sion

a(t; y, η; ε) ∼
∞∑
k=0

a−k(t; y, η; ε), (2.5.2)

where the a−k ∈ S−k(R×T ′M×R+) are positively homogeneous in momentum

of degree −k. They represent the unknowns of our construction.

• χ ∈ C∞(R×M × T ′M) is a cut-off satisfying the requirements

(i) χ(t, x; y, η) = 0 on {(t, x; y, η) | |h(y, η)| ≤ 1/2};

(ii) χ(t, x; y, η) = 1 on the intersection of {(t, x; y, η) | |h(y, η)| ≥ 1} with some

conical neighbourhood of {(t, x∗(t; y, η); y, η)};

(iii) χ(t, x; y, α η) = χ(t, x; y, η) for α ≥ 1 on {(t, x; y, η) | |h(y, η)| ≥ 1}.

The function χ serves the purpose of localising the domain of integration to

a neighbourhood of the geodesic flow and away from the origin η = 0. Recall

that the Hamiltonian h is positively homogeneous in η of degree 1. Further on,

we will set χ ≡ 1 while carrying out calculations. This will not affect the final

result, as stationary phase arguments show that contributions to the oscillatory

integral (2.5.1) only come from a neighbourhood of the set

{(t, x; y, η) | x = x∗(t; y, η)}

on which ϕη = 0. Different choices of χ result in oscillatory integrals differing

by infinitely smooth contributions.

• w(t, x; y, η; ε) is defined by

w(t, x; y, η; ε) := [ρ(x)]−1/2 [ρ(y)]−1/2
[
det2

(
ϕxαηβ (t, x; y, η; ε)

)]1/4 (2.5.3)
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with ρ from (2.1.1). The branch of the complex root is chosen in such a way

that

arg
[
det2

(
ϕxαηβ (t, x; y, η; ε)

)]1/4∣∣∣
t=0

= 0.

The existence of a smooth global branch whose argument turns to zero at t = 0

was established by [77, Lemma 3.2]. The weight w is a (−1)-density in y and a

scalar function in all other arguments. It ensures that the oscillatory integral

(2.5.1) is a scalar and that the principal symbol a0 of the wave propagator does

not depend on the choice of the phase function [104, Theorem 2.7.11]. Thanks

to condition (iii) in Definition 2.1 we can assume, without loss of generality,

that w is non-zero whenever χ is non-zero.

Remark 2.7. The reason we write
[
det2

(
ϕxαηβ

)]1/4 in formula (2.5.3) rather than√
detϕxαηβ is that the coordinate systems x and y may be different: inversion of a

single coordinate xα changes the sign of detϕxαηβ and so does inversion of a single

coordinate yβ .

The general idea is to choose the phase function to be the Levi-Civita phase

function, fixing it once and for all, and to seek a formula for the corresponding scalar

symbol a. This is achieved by means of the following algorithm, which reduces

the problem of solving partial differential equations to the much simpler problem of

solving ordinary differential equations.

Step one. Set χ(t, x; y, η; ε) = 1 and apply the wave operator

P := ∂2
t −∆x (2.5.4)

to (2.5.1). The result is an oscillatory integral

Iϕ(a) = P Iϕ(a) (2.5.5)

of the same form but with a different amplitude

a(t, x; y, η; ε) =
e−iϕ(t,x;y,η;ε)

w(t, x; y, η; ε)
P
(
eiϕ(t,x;y,η;ε) a(t; y, η; ε)w(t, x; y, η; ε)

)
.

Observe that a ∈ S2
ph(R ×M × T ′M × R+). The use of the full wave operator P

as opposed to the half-wave operator (−i ∂t +
√
−∆) is justified by [104, Theorem

3.2.1].
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Step two. Construct a new oscillatory integral with x-independent amplitude

b = b(t; y, η; ε), coinciding with (2.5.5) up to an infinitely smooth term:

Iϕ(b)
mod C∞

= Iϕ(a). (2.5.6)

Such a procedure is called reduction of the amplitude. This can be done by means of

special operators, as described below.

Put

Lα :=
[
(ϕxη)

−1
]
α
β ∂

∂xβ
(2.5.7)

and define

S0 := ( · )|x=x∗ , (2.5.8a)

S−k := S0

i w−1 ∂

∂ηβ
w

1 +
∑

1≤|α|≤2k−1

(−ϕη)α

α! (|α|+ 1)
Lα

Lβ

k . (2.5.8b)

Bold Greek letters in (2.5.8b) denote multi-indices in Nd0, α = (α1, . . . , αd), |α| =∑d
j=1 αj and (−ϕη)α := (−1)|α| (ϕη1)α1 . . . (ϕηd)

αd . All differentiations are applied

to the whole expression to the right of them. The operator (2.5.8b) is well defined

because the differential operators Lα commute, see Lemma 2.14 in Section 2.6.

When applied to a homogeneous function, the operator S−k decreases the de-

gree of homogeneity in η by k. Hence, denoting by a ∼
∑∞

j=0 a2−j the asymptotic

polyhomogeneous expansion of a, the homogeneous components of the symbol b are

bl :=
∑

2−j−k=l

S−k a2−j , l = 2, 1, 0,−1, . . . . (2.5.9)

We call the operator S ∼
∑∞

k=0 S−k the amplitude-to-symbol operator. It maps the

x-dependent amplitude a to the x-independent symbol b. The construction of S and

the proof of the equality (2.5.6) are postponed to Section 2.6.

Step three. Impose the condition that our oscillatory integral (2.5.1) satisfies

the wave equation, namely

PIϕ(a)
mod C∞

= Iϕ(b) = 0.
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This is achieved by solving transport equations obtained by equating to zero the

homogeneous components of the reduced amplitude b:

bl = 0, l = 2, 1, 0,−1, . . . . (2.5.10)

Formula (2.5.10) describes a hierarchy of ordinary differential equations in the vari-

able t whose unknowns are the homogeneous components of the original amplitude

a. Solving such equations iteratively produces an explicit formula for the symbol of

the wave kernel. Initial conditions a−k(0; y, η; ε) are established in such a way that

at t = 0 our oscillatory integral (2.5.1) is, modulo C∞, the integral kernel of the

identity operator — see Section 2.7 for details.

Remark 2.8. One knows a priori that the leading homogeneous term in the expansion

(2.5.2) is

a0(t; y, η; ε) = 1. (2.5.11)

This is a consequence of the fact that the subprincipal symbol of the Laplace–

Beltrami operator is zero, see [77, Theorem 4.1] or [104, Theorem 3.3.2]. Formula

(2.5.11) holds for any choice of phase function due to the way (2.5.1) is designed.

Let us explain more precisely what we mean by saying that our construction is

global in time.The issue with the standard construction is that, in the presence of

caustics, one cannot parameterise globally the Lagrangian manifold generated by

the Hamiltonian flow of the principal symbol by means of a single real-valued phase

function. In our analytic framework, this means that the phase function becomes

degenerate when x = x∗(t; y, η) and x∗(t; y, η) is in the cut locus or conjugate locus

of y. In turn, the weight w vanishes and the Fourier integral operator with integral

kernel (2.5.1) ceases to be well-defined. The adoption of a complex-valued phase

function allows us to circumvent these problems and construct a Fourier integral

operator which is always well defined.

Note that the issue of ‘local vs global’ is not related to the use of the geodesic

distance in the definition of our phase function. In fact, what appears in our construc-

tion is the geodesic distance between x and x∗. Now, non-smoothing contributions

come from points x close to x∗, as these are the only stationary points for the phase

in the support of the amplitude. As the injectivity radius is strictly positive, one can
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always choose a cut-off χ in such a way that x is not in the cut locus or conjugate

locus of y. What happens outside a small open neighbourhood of the geodesic flow

gives an infinitely smoothing contribution.

We are now in a position to give the following definition.

Definition 2.9. We define the symbol of the wave propagator as the scalar function

a : R× T ′M × R+ → C

a(t; y, η; ε) = 1 + a−1(t; y, η; ε) + a−2(t; y, η; ε) + . . .

obtained through the above algorithm with the choice of the Levi-Civita phase func-

tion.

The above definition is invariant: a depends only on ϕ which, in turn, arises from

the geometry of (M, g) in a coordinate-free, covariant manner.

The algorithm provided in this section allows us to construct the wave propa-

gator as a Fourier integral operator whose Schwartz kernel is a global Lagrangian

distribution, namely, a single oscillatory integral global in space and in time, with

invariantly defined symbol. In particular, it allows one to circumvent at an analytic

level topological obstructions arising from caustics.

In Section 2.8 we will see the algorithm in action and perform a detailed analysis

of the subprincipal symbol. In Section 2.11 we will apply our algorithm to two

explicit examples.

Remark 2.10. The remainder terms in the asymptotic formulae provided in this

Chapter are not uniform in time: they are only uniform over finite time intervals.

This is to be expected when working with Fourier integral operators.

Remark 2.11 (Scalar functions vs half-densities). In microlocal analysis and spectral

theory it is often convenient to work with operators acting on half-densities, as

opposed to scalar functions. Our construction is easily adaptable to half-densities as

follows.

• Replace the Laplacian on functions ∆ with the corresponding operator on half-

densities

∆̃ = ρ(x)1/2 ∆ ρ(x)−1/2.
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• Replace the weight w with

w̃ =
[
det2

(
ϕxαηβ

)]1/4
.

Note that w̃ is now a 1
2 -density in x and a −1

2 -density in y.

• Seek the integral kernel of the propagator as an oscillatory integral of the form

Ĩϕ(a) =

∫
ei ϕ a w̃ d̄η .

Note that Ĩϕ(a) is a half-density both in x and in y.

• Carry out the above algorithm.

It can be shown that we end up with the same full symbol of the wave propagator

as when working with scalar functions.

Remark 2.12. By carrying out the integration in η in (2.5.1) for x sufficiently close

to y one obtains the well-known Hadamard expansion, see, e.g., [19] and [13, Re-

mark 2.5.5]. Our construction provides an explicit global version of the known local

expansion.

2.6 The amplitude-to-symbol operator

In this Section we will provide proofs and rigorous justification to the amplitude

reduction algorithm described in Section 2.5, developing ideas outlined in [104].

With the notation established earlier in the thesis, let a ∈ Smph(R ×M × T ′M)

be a polyhomogeneous function of order m,

a ∼
∞∑
k=0

am−k .

Consider the oscillatory integral

Iϕ(a) =

∫
T ∗yM

eiϕ(t,x;y,η) a(t, x; y, η)w(t, x; y, η) d̄η , (2.6.1)

where ϕ is any phase function of class Lh. For the sake of clarity, we drop here the

dependence of functions on extra parameters (e.g. ε).

It is a well known fact that, modulo an infinitely smooth contribution,

Iϕ(a)
modC∞

=

∫
T ∗yM

eiϕ(t,x;y,η) a(t; y, η)w(t, x; y, η) d̄η, (2.6.2)
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for some a = a(t; y, η). We call the a in (2.6.1) amplitude and the a in (2.6.2) symbol.

In this framework, one can construct an amplitude-to-symbol operator

S : a 7→ a.

The aim of this Section is to write down the operator S explicitly.

Theorem 2.13. The amplitude-to-symbol operator S reads

S ∼
∞∑
k=0

S−k, (2.6.3)

where

S0 = ( · )|x=x∗ , (2.6.4)

S−k = S0

i w−1 ∂

∂ηβ
w

1 +
∑

1≤|α|≤2k−1

(−ϕη)α

α! (|α|+ 1)
Lα

Lβ

k (2.6.5)

with Lα := [(ϕxη)
−1]α

β ∂

∂xβ
.

We begin with two general comments regarding our phase function, which follow

from the properties in Definition 2.1. Firstly, as already observed, ϕη(t, x∗; y, η) = 0.

Secondly, one can always assume that det(ϕxαηβ ) 6= 0 on supp a. If this is not the

case, it is enough to multiply a by a smooth cut-off χ supported in a neighbourhood

of

C = {(t, x; y, η) | x = x∗(t; y, η)} ⊂ R×M × T ′M

small enough. The oscillatory integrals Iϕ(a) and Iϕ(χa) differ by infinitely smooth

contributions.

The idea of the proof, at times quite technical, goes as follows. Expand the

amplitude a in power series in x about x = x∗. With the notation a∗ = a|x=x∗ , we

have

a = a∗ + (x− x∗)α bα (2.6.6)



2.6. The amplitude-to-symbol operator 47

for some covector b = b(t, x; y, η). Plugging (2.6.6) into (2.6.1), we obtain

Iϕ(a) =

∫
T ′yM

eiϕ a∗w d̄η +

∫
T ′yM

eiϕ (x− x∗)α bαw d̄η

=

∫
T ′yM

eiϕ a∗w d̄η +

∫
T ′yM

eiϕ ϕηα b̃αw d̄η

=

∫
T ′yM

eiϕ a∗w d̄η +

∫
T ′yM

1

i

(
∂

∂ηα
eiϕ
)
b̃αw d̄η

=

∫
T ′yM

eiϕ a∗w d̄η +

∫
T ′yM

eiϕ i w−1

(
∂

∂ηα
b̃αw

)
w d̄η ,

(2.6.7)

where the covector b̃ can be written down explicitly in terms of b and ϕ. It is easy

to see that

i w−1

(
∂

∂ηα
b̃αw

)
∈ Sm−1

ph (R×M × T ′M).

The first integral on the RHS of (2.6.7) has amplitude independent of x, whereas

the second one has amplitude whose order is decreased by one. Repeating the above

argument, we can recursively reduce the order and eventually obtain an oscillatory

integral with x-independent amplitude

a ∼
∞∑
k=0

am−k, am−k ∈ Sm−kph (R× T ′M),

plus an oscillatory integral with amplitude in S−∞(R×M × T ′M).

Note that the b and b̃ in the above argument are both covectors but in a different

sense: bα behaves as a covector under changes of local coordinates x, whereas b̃α

behaves as a covector under changes of local coordinates y.

The actual proof relies on a more sophisticated argument, which allows one to

explicitly and constructively compute a. The whole idea, rooted in a version of the

Malgrange preparation theorem, is to factor out ϕηα rather than simply (x − x∗)α

in equation (2.6.6). A crucial point worth stressing is that the whole construction is

global and covariant.

Before addressing the proof of Theorem 2.13 we need to state and prove a prepara-

tory lemma.

Lemma 2.14. The operators

Lα = (ϕ−1
xη )α

β ∂

∂xβ
(2.6.8)
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commute. Namely, for all α, β = 1, . . . , d we have

[Lα, Lβ] = 0. (2.6.9)

Proof. We have

LαLβ − LβLα = (ϕ−1
xη )α

µ ∂

∂xµ
(ϕ−1

xη )β
ν ∂

∂xν
− (ϕ−1

xη )β
ν ∂

∂xν
(ϕ−1

xη )α
µ ∂

∂xµ

=
(
(ϕ−1

xη )α
µ[(ϕ−1

xη )β
ν ]xµ

) ∂

∂xν
−
(
(ϕ−1

xη )β
ν [(ϕ−1

xη )α
µ]xν

) ∂

∂xµ

=
(
(ϕ−1

xη )α
ν [(ϕ−1

xη )β
µ]xν − (ϕ−1

xη )β
ν [(ϕ−1

xη )α
µ]xν

) ∂

∂xµ
.

Contracting with (ϕxη)γ
α (ϕxη)ρ

β , we get

(ϕxη)γ
α (ϕxη)ρ

β [Lα, Lβ] =
(

(ϕxη)ρ
β[(ϕ−1

xη )β
µ]xγ − (ϕxη)γ

α [(ϕ−1
xη )α

µ]xρ
) ∂

∂xµ

=
(
−[(ϕxη)ρ

β]xγ (ϕ−1
xη )β

µ + [(ϕxη)γ
α]xρ (ϕ−1

xη )α
µ
) ∂

∂xµ

=
(
−ϕxρxγηβ (ϕ−1

xη )β
µ + ϕxγxρηα (ϕ−1

xη )α
µ
) ∂

∂xµ

=
(
−ϕxρxγηα (ϕ−1

xη )α
µ + ϕxγxρηα (ϕ−1

xη )α
µ
) ∂

∂xµ

= 0.

(2.6.10)

Since ϕxη is non-degenerate, (2.6.10) is equivalent to (2.6.9).

We are now in a position to prove Theorem 2.13.

Proof of Theorem 2.13. The first step is to show that it is possible to write, modulo

O(‖x− x∗‖∞), the amplitude a as

a(t, x; y, η) = a(t, x∗(t; y, η); y, η) + ϕηα(t, x; y, η) b̃α(t, x; y, η) (2.6.11)

for some b̃.

In order to write down explicitly the b̃ appearing in formula (2.6.11), let us

introduce the operators

F0 := 1, (2.6.12)

Fk :=
∑
|α|=k

(ϕη)
α

α!
Lα , (2.6.13)

whereα = (α1, α2, . . . , αd) ∈ Nd0 is a multi-index, (ϕη)
α = (ϕη1)α1(ϕη2)α2 · · · (ϕηd)αd ,

α! = α1!α2! · · ·αd! , Lα = (L1)α1(L2)α2 · · · (Ld)αd . In view of Lemma 2.14, Fk is well
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defined and the order of the Lα’s is irrelevant. Note also that the coefficients 1
α! ap-

pearing in (2.6.13) are the ones from the algebraic multinomial expansion

(z1 + . . .+ zd)
k = k!

∑
|α|=k

1

α!
zα, (2.6.14)

a generalisation of the binomial expansion.

Formulae (2.6.13) and (2.6.14) imply

(k + 1)Fk+1 =

d∑
γ=1

ϕηγFk Lγ . (2.6.15)

Furthermore, we have

F1 Fk − k Fk =

 d∑
γ=1

ϕηγ Lγ

Fk − k Fk

=
d∑

γ,µ=1

ϕηγ (ϕ−1
xη )γ

µ
∑
|α|=k

[(ϕη)
α]xµ

α!
Lα

+

d∑
γ=1

ϕηγ
∑
|α|=k

(ϕη)
α

α!
LγLα − k Fk

= k Fk +
d∑

γ=1

ϕηγ
∑
|α|=k

(ϕη)
α

α!
LαLγ − k Fk

=

d∑
γ=1

ϕηγFk Lγ .

(2.6.16)

Combining formulae (2.6.15) and (2.6.16), we arrive at a recurrent formula for our

operators Fk :

(k + 1)Fk+1 = F1 Fk − k Fk . (2.6.17)

It turns out that the functions (ϕη)
α with |α| ≥ k are eigenfunctions of the

operators Fk. Namely, we have

Fk(ϕη)
α =


0, |α| < k,(|α|

k

)
(ϕη)

α, |α| ≥ k.
(2.6.18)

Formula (2.6.18) can be proved by induction. It is clearly true for k = 0. Let us

assume it is true for k = n. Let us prove it for k = n+1. If |α| < n, then the required

result immediately follows from formula (2.6.17) and the inductive assumption. If
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|α| ≥ n, then formula (2.6.17) and the inductive assumption give us

Fn+1(ϕη)
α =

1

n+ 1

(
|α|
n

)
[F1(ϕη)

α − n(ϕη)
α] =

1

n+ 1

(
|α|
n

)
[|α|(ϕη)α − n(ϕη)

α]

=
|α| − n
n+ 1

(
|α|
n

)
(ϕη)

α =


0, |α| = n,( |α|

n+1

)
(ϕη)

α, |α| > n,

as required.

Formula (2.6.18) is, effectively, a generalised version of Euler’s formula for homo-

geneous functions.

Given a multi-index α 6= 0, we have the elementary identity

0 = (1− 1)|α| =

|α|∑
k=0

(−1)k
(
|α|
k

)
= 1 +

|α|∑
k=1

(−1)k
(
|α|
k

)
.

The above identity and formula (2.6.18) imply

(ϕη)
α = −

 |α|∑
k=1

(−1)kFk

 (ϕη)
α = −

( ∞∑
k=1

(−1)kFk

)
(ϕη)

α, ∀α 6= 0. (2.6.19)

Consider now a function a(t, x; y, η). It can be expanded into an asymptotic

series in powers of x−x∗. Observe that ϕη can also be expanded into an asymptotic

series in powers of x−x∗ and, furthermore, in view of Definition 2.1 this series can be

inverted, giving an asymptotic expansion of x − x∗ in powers of ϕη . Consequently,

the function a(t, x; y, η) can be expanded into an asymptotic series in powers of ϕη .

The coefficients of the latter expansion are determined using the fact that

[
Lα(ϕη)

β
]∣∣∣
x=x∗

=


α!, α = β,

0, α 6= β.

This gives us

a '
∑
|α|≥0

(ϕη)
α

α!
[Lαa]|x=x∗ . (2.6.20)

The symbol ' in (2.6.20) indicates that we are dealing with an asymptotic expansion.

Namely, it means that for any r ∈ N0 we have

a−
∑

0≤|α|≤r

(ϕη)
α

α!
[Lαa]|x=x∗ = O

(
‖x− x∗‖r+1

)
.
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Formula (2.6.19) allows us to rewrite the asymptotic expansion (2.6.20) as

a ' a|x=x∗ −
∞∑
k=1

(−1)kFk a. (2.6.21)

The advantage of (2.6.21) over (2.6.20) is that the restriction operator ( · )|x=x∗

appears only in one place, in the first term on the RHS of (2.6.21). Formula (2.6.21)

is a generalisation of the formula

a(x) ' a(0) + xa′(x)− x2

2
a′′(x) +

x3

6
a′′′(x) + . . . (2.6.22)

from the analysis of functions of one variable. Namely, formula (2.6.21) turns into

(2.6.22) if we set d = 1 and choose a phase function ϕ linear in x.

At this point it is worth discussing what happens under changes of local coor-

dinates x. Examination of formula (2.6.8) shows that the operators Lα map scalar

functions to scalar functions, i.e. the map a 7→ Lαa is invariant under changes of

local coordinates x; note that the index α does not play a role in this argument as it

lives at a different point, y, and in a different coordinate system. As the operators

Fk are expressed in terms of the Lα , the operator
∑∞

k=1(−1)kFk appearing on the

RHS of formula (2.6.21) also maps scalar functions to scalar functions.

Using formulae (2.6.15) and (2.6.12), (2.6.13), we can rewrite (2.6.21) as

a ' a∗ −
d∑

γ=1

ϕηγ

∞∑
k=1

(−1)k

k
Fk−1 Lγ a

= a∗ −
d∑

γ=1

ϕηγ

∞∑
k=1

(−1)k

k

∑
|α|=k−1

(ϕη)
α

α!
Lα Lγ a

= a∗ +
d∑

γ=1

ϕηγ
∑
|α|≥0

(−ϕη)α

α! (|α|+ 1)
Lα Lγ a ,

where a∗ = a|x=x∗ . Thus, we have represented our amplitude in the form (2.6.11)

with

b̃γ '
∑
|α|≥0

(−ϕη)α

α! (|α|+ 1)
Lα Lγ a . (2.6.23)

Combining (2.6.1) with (2.6.11) and (2.6.23) and by using the identity

ϕηγe
i ϕ =

1

i

∂

∂ηγ
eiϕ
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we get, upon integration by parts,

Iϕ(a) =

∫
T ∗yM

eiϕ

a∗ + i w−1 ∂

∂ηγ

w ∑
|α|≥0

(−ϕη)α

α! (|α|+ 1)
Lα

Lγ a

w d̄η .

Note that a∗ no longer depends on x and the second contribution to the amplitude

is now of order m − 1. Recursive repetition of this procedure yields (2.6.3)–(2.6.5).

The cut-off on the possible values of |α| in (2.6.5) follows from incorporating the

information that ϕη|x=x∗ = 0.

2.7 Invariant representation of the identity operator

Step three of our algorithm described in Section 2.5 involves initial conditions deter-

mined by the symbol of the identity operator, which appears in our construction as

a pseudodifferential operator written in the form∫
T ′M

eiϕ(0,x;y,η;ε) s(y, η; ε)χ(0, x; y, η)w(0, x; y, η; ε) ( · ) ρ(y) dy d̄η

with the Levi-Civita phase function and some symbol s, cf. (2.5.1). Recall that χ is

a cut-off and w is defined by formula (2.5.3). Note also that coordinate systems x

and y may be different.

Invariant representation of pseudodifferential operators on manifolds is not a

well studied subject. Existing literature comprises [85] and [49], though invariant

representations come there in slightly different forms. The aim of this Section is to

establish a few results in this direction for the identity operator.

Clearly, the principal symbol of the identity operator is

s0(y, η) = 1, (2.7.1)

irrespective of the choice of the phase function. In general, one would expect sublead-

ing homogeneous components of the symbol to depend on the phase function. This

turns out not to be the case for s−1, which is zero for any choice of phase function.

Theorem 2.15. Let φ ∈ C∞(M ×T ′M ;C) be a positively homogeneous function (in

momentum) of degree 1 satisfying the conditions

(a) φ(x; y, η) = (x− y)α ηα +O(‖x− y‖2) ,
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(b) Imφ ≥ 0.

In stating condition (a) we use the same local coordinates for x and y.

Consider a pseudodifferential operator

(Iφ,s f)(x) =

∫
T ′M

ei φ(x;y,η) s(y, η)χ(x; y, η) v(x; y, η) f(y) dy d̄η , (2.7.2)

where s ∼
∑

k∈N0
s−k ∈ S0(T ′M), χ is a cut-off and

v(x; y, η) = ρ(x)−1/2 ρ(y)1/2 [det2φxη]
1/4 . (2.7.3)

If Iφ,s − Id is an infinitely smoothing operator, then

s−1(y, η) = 0.

Remark 2.16. It is easy to see that the quantity defined by formula (2.7.3) is a scalar

function v : M × T ′M → C. The branch of the complex root is chosen so that v = 1

on the diagonal x = y.

Proof of Theorem 2.15. Let us define the dual pseudodifferential operator I′φ,s via

the identity∫
M

[
k(x)

][
(Iφ,s f)(x)

]
ρ(x) dx =

∫
M

[
(I′φ,s k)(y)

][
f(y)

]
ρ(y) dy ,

where f, k : M → C are smooth functions. The explicit formula for the pseudodif-

ferential operator I′φ,s reads

(I′φ,s k)(y) =

∫
M×T ′yM

ei φ(x;y,η) s(y, η)χ(x; y, η)u(x; y, η) k(x) dx d̄η ,

where

u(x; y, η) = ρ(x) ρ(y)−1 v(x; y, η) = ρ(x)1/2 ρ(y)−1/2 [det2φxη]
1/4 . (2.7.4)

Of course, the condition that Iφ,s−Id is an infinitely smoothing operator is equivalent

to the condition that I′φ,s − Id is an infinitely smoothing operator.

Let us now fix an arbitrary point P ∈ M and work in local coordinates y such

that y = 0 at P . Furthermore, let us use the same local coordinates for x and for y.

Consider the map

k 7→ (I′φ,s k)(0). (2.7.5)
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The map (2.7.5) is a distribution, a continuous linear functional. We want the

distribution (2.7.5) to approximate, modulo C∞, the delta distribution, i.e. we want∫
ei φ(x;0,η) s(0, η)χ(x; 0, η)u(x; 0, η) k(x) dx d̄η = k(0) (2.7.6)

modulo a smooth functional. Substituting (2.7.4) into (2.7.6) we rewrite the latter

as ∫
ei φ(x;0,η) s(0, η)χ(x; 0, η)κ(x)

√
detφxη dx d̄η = κ(0) , (2.7.7)

where κ(x) = ρ(x)1/2 k(x) and the branch of the square root is chosen so that√
detφxη = 1 at x = 0; see also Remark 2.7. Formula (2.7.7) is, in turn, equivalent

to ∫
ei φ(x;0,η) s(0, η)χ(x; 0, η)

√
detφxη d̄η =

∫
ei x

αηα d̄η . (2.7.8)

The integrals in (2.7.8) are understood as distributions in the variable x and equality

is understood as equality modulo a smooth distribution.

The complex exponential in (2.7.8) admits the expansion

ei φ(x;0,η) = ei x
αηα

[
1 +

i

2
φxµxν (0; 0, η)xµ xν +O(‖x‖3)

]
. (2.7.9)

Furthermore,

√
detφxη (x; 0, η) = 1 +

1

2
φxαxβηα(0; 0, η)xβ +O(‖x‖2). (2.7.10)

Substituting (2.7.9) and (2.7.10) into the LHS of (2.7.8) and integrating by parts we

get

∫
ei x

γηγ
(

1+s−1(0, η)− i

2
φxµxνηµην (0; 0, η)+

i

2
φxαxβηαηβ (0; 0, η) +O(‖η‖−2)

)
d̄η

=

∫
ei x

γηγ
(
1 + s−1(0, η) +O(‖η‖−2)

)
d̄η ,

from which we conclude that s−1(0, η) = 0.

We have shown that s−1 vanishes identically on the punctured cotangent fibre

at the point P ∈ M . As the point P is arbitrary and s−1 is a scalar function, we

conclude that s−1(y, η) = 0, ∀(y, η) ∈ T ′M .

Stronger results can be established for the Levi-Civita phase function.
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Theorem 2.17. The sub-subleading contribution to the symbol of the identity opera-

tor written as a pseudodifferential operator (2.7.2) with the Levi-Civita phase function

ϕ(0, x; y, η; ε) is

s−2(y, η) =
(d− 1) (d− 2) ε2

8 gαβ(y) ηαηβ
. (2.7.11)

Proof. Let us fix a point P ∈M and argue as in the proof of Theorem 2.15, arriving

at (2.7.8). Note that in this argument we did not specify the choice of a local

coordinate system in a neighbourhood of the point P .

Let us choose geodesic normal coordinates centred at P . Then the explicit for-

mula for the phase function appearing in (2.7.8) reads

φ(x; 0, η) = ϕ(0, x; 0, η; ε) = xαηα +
i ε

2
‖η‖ ‖x‖2 ,

where ‖ · ‖ stands for the Euclidean norm, see also (2.4.2).

The complex exponential in (2.7.8) admits the expansion

ei φ(x;0,η) = ei x
αηα

[
1− ε

2
‖η‖ ‖x‖2 +

ε2

8
‖η‖2 ‖x‖4 +O(‖x‖6)

]
. (2.7.12)

We have

(φxαηβ )(x; 0, η) = δα
β + i ε δαµ δ

βν ην
‖η‖

xµ . (2.7.13)

It is well know that, given the identity matrix I and arbitrary small square matrix

A of the same size, the expansion for det(I +A) reads

det(I +A) = 1 + trA+
1

2

[
(trA)2 − tr(A2)

]
+O(‖A‖3). (2.7.14)

Formulae (2.7.13) and (2.7.14) imply

√
detφxη (x; 0, η) = 1 +

iε

2‖η‖
xαηα +

ε2

8‖η‖2
(xβηβ)2 +O(‖x‖3). (2.7.15)

Substituting (2.7.12) and (2.7.15) into the LHS of (2.7.8) and integrating by parts

we get∫
ei x

γηγ
(

1 + s−2(0, η)− ε2

8

(
ηαηβ
‖η‖2

)
ηαηβ

+O(‖η‖−3)
)

d̄η

=

∫
ei x

γηγ

(
1 + s−2(0, η)− (d− 1) (d− 2) ε2

8‖η‖2
+O(‖η‖−3)

)
d̄η ,

which gives us (2.7.11).
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The algorithm described in the proof of Theorem 2.17 allows one to calculate

explicitly s−3, s−4, . . . but the calculations become cumbersome. We list the resulting

formulae for the special case d = 2:

s−3(y, η) =
1

23

ε3

(gαβ(y) ηαηβ)3/2
, s−4(y, η) = 0 ,

s−5(y, η) =
32 × 5

26

ε5

(gαβ(y) ηαηβ)5/2
, s−6(y, η) = 0 ,

s−7(y, η) =
32 × 52 × 13

210

ε7

(gαβ(y) ηαηβ)7/2
, s−8(y, η) = 0 ,

s−9(y, η) =
33 × 52 × 72 × 47

26

ε9

(gαβ(y) ηαηβ)9/2
, s−10(y, η) = 0 .

(2.7.16)

We have an even stronger result for the real-valued Levi-Civita phase function.

The following theorem holds for Riemannian manifolds M of arbitrary dimension d.

Theorem 2.18. The full symbol of the identity operator written as a pseudodiffer-

ential operator (2.7.2) with the real-valued Levi-Civita phase function ϕ(0, x; y, η; 0)

is

s(y, η) = 1. (2.7.17)

Proof. Formula (2.7.17) is established by arguing as in the proof of Theorem 2.17.

2.8 The subprincipal symbol of the propagator

Sometimes, for particular purposes (e.g. in spectral theory), one needs only a few

leading homogeneous components of the full symbol a. In this Section we will re-

visit and analyse further the construction of Section 2.5 for the special case of the

subprincipal symbol.

Definition 2.19. We call the scalar function a−1(t; y, η; ε) appearing in Definition 2.9

the subprincipal symbol of the wave propagator.

Acting with the wave operator (2.5.4) on the oscillatory integral∫
ei ϕ(t,x;y,η;ε) (1 + a−1(t; y, η; ε)) w(t, x; y, η; ε) d̄η, (2.8.1)

one obtains a new oscillatory integral∫
ei ϕ(t,x;y,η;ε) a(t, x; y, η; ε)w(t, x; y, η; ε) d̄η,
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with

a = (1 + a−1) e−i ϕ
[
P (ei ϕw)

]
w−1 + (a−1)tt + 2 (a−1)t

(
i ϕt + wtw

−1
)
. (2.8.2)

Here and in the following we drop the arguments for the sake of clarity.

Lemma 2.20. The function

b(t, x; y, η; ε) := e−i ϕ
[
P (ei ϕw)

]
w−1

decomposes as b = b2 + b1 + b0, where

b2 = − (ϕt)
2 + gαβ(x) (∇α ϕ) (∇β ϕ) , (2.8.3a)

b1 = i
[
ϕtt − gαβ(x)∇α∇β ϕ+ 2 (logw)t ϕt − 2 gαβ(x) [∇α(logw)] (∇β ϕ)

]
,

(2.8.3b)

b0 = w−1
[
wtt − gαβ(x)∇α∇β w

]
, (2.8.3c)

the bk, k = 2, 1, 0, are positively homogeneous in η of degree k, and ∇ is the Levi-

Civita connection acting in the variable x.

Proof. In view of formula (2.1.2) the contribution to b from the Laplacian reads

− e−i ϕ

w
∆
(
ei ϕw

)
= −i gµν(x)ϕxµxν + gµν(x)ϕxµ ϕxν − gµν(x)wxµxν w

−1

− 2 i gµν(x)ϕxµ wxν w
−1 − ρ(x)−1 [ρ(x) gµν(x)]xµ

(
i ϕxν − wxν w−1

)
. (2.8.4)

On the other hand, the contribution from the second derivative in time is

e−i ϕ

w

∂2

∂t2
(
ei ϕw

)
= − (ϕt)

2 + i ϕtt + 2 i ϕtwtw
−1 + wttw

−1 . (2.8.5)

Combining (2.8.4) and (2.8.5), singling out terms with the same degree of homogene-

ity and using the chain of identities

ρ(x)−1 (ρ(x) gµν(x))xµ = [gµν(x)]xµ +
1

2
gµν(x) [ln(det gκλ(x))]xµ = −Γναβ(x) gαβ(x)

we arrive at (2.8.3a)–(2.8.3c).

In terms of the homogeneous components of b, formula (2.8.2) reads

a = b2

+ b1 + b2 a−1

+ b0 + b1 a−1 + 2 i (a−1)t ϕt

+ b0 a−1 + (a−1)tt + 2 a−1wtw
−1 ,

(2.8.6)
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where we arranged on different lines contributions of decreasing degree of homogene-

ity, from 2 to −1.

Before constructing the amplitude-to-symbol operator and writing down the

transport equations, we need a few preparatory lemmata.

Lemma 2.21. We have

ϕt|x=x∗ = −h(y, η). (2.8.7)

Proof. Differentiating in t both sides of (i) in Definition 2.1, one obtains

0 = ϕt|x=x∗ + ϕxα |x=x∗ ẋ
∗α

= ϕt|x=x∗ + ξ∗α hξα(x∗, ξ∗)

= ϕt|x=x∗ + h(x∗, ξ∗) .

In the second step condition (ii) from Definition 2.1 has been used, whereas the last

step is a consequence of Euler’s theorem on homogeneous functions. Formula (2.8.7)

now follows from the fact that the Hamiltonian is preserved along the flow.

Lemma 2.22. The function b2 defined by (2.8.3a) has a second order zero in x at

x = x∗(t; y, η), namely,

b2|x=x∗ = 0, ∇b2|x=x∗ = 0.

Proof. Rewriting b2 as

b2 = −(ϕt)
2 + h2(x,∇ϕ),

one immediately concludes that b2 vanishes along the flow by Lemma 2.21 and Def-

inition 2.1, condition (ii).

Proving that the derivative vanishes as well is slightly trickier. We have

∇µb2 = −2ϕt ϕtxµ + 2h(x,∇ϕ) [h(x,∇ϕ)]xµ ,

from which it ensues, by evaluating along the flow, that

∇µb2|x=x∗ =
(
−2ϕt ϕtxµ + 2h(x,∇ϕ) [h(x,∇ϕ)]xµ

)∣∣
x=x∗

= 2h(y, η)
(
ϕtxµ + [h(x,∇ϕ)]xµ

)∣∣
x=x∗

,

where, once again, we used Lemma 2.21. The problem at hand is now down to

showing that (
ϕtxµ + [h(x,∇ϕ)]xµ

)∣∣
x=x∗

= 0. (2.8.8)
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From the general properties of a phase function of class Lh, one argues that, in an

arbitrary coordinate system, ϕ can be represented as

ϕ = (x− x∗)α ξ∗α +
1

2
[Hϕ]µν (x− x∗)µ (x− x∗)ν +O(‖x− x∗‖3), (2.8.9)

with

[Hϕ]αβ := ϕxαxβ |x=x∗ .

Combining (2.8.9) with Hamilton’s equations, we get

ϕtxα |x−x∗ = ξ̇∗α − [Hϕ]αµ ẋ
∗µ = −hxα(x∗, ξ∗)− [Hϕ]αµ hξµ(x∗, ξ∗). (2.8.10)

Moreover, we have

[h(x,∇ϕ)]xα |x=x∗ =hxα(x∗, ξ∗) + hξµ(x∗, ξ∗) ϕxαxµ |x=x∗

=hxα(x∗, ξ∗) + [Hϕ]αµ hξµ(x∗, ξ∗).
(2.8.11)

Substitution of (2.8.10) and (2.8.11) into (2.8.8) concludes the proof.

Lemmata 2.21 and 2.22 are not specific to the Levi-Civita phase function: they

remain true for any phase function of the class Lh.

We are now in a position to analyse the transport equations. With the notation

from Section 2.5, in view of formulae (2.5.9) and (2.8.6) we have

b2 =S0 b2 , (2.8.12a)

b1 =S−1 b2 + S0 b1 , (2.8.12b)

b0 =S−2 b2 + S−1 b1 + S0 b0 − 2 i h (a−1)t + a−1 b1 . (2.8.12c)

Note that homogeneous components of the symbol a−k with degree of homogeneity

less than −1, even if taken into account in (2.8.1), would not contribute to (2.8.12a)–

(2.8.12c). Note also the appearance of the x-independent term a−1 b1 on the RHS of

(2.8.12c): it can be traced back to the fact that Lemma 2.22 implies

S−1(b2 a−1) = a−1S−1b2.

The zeroth transport equation b2 = 0 is clearly satisfied, due to Lemma 2.22.
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Lemma 2.23. The first transport equation (FTE) b1 = 0 can be equivalently rewrit-

ten as

(ϕtt −∆ϕ)|x=x∗ = 2h
d(log w∗)

dt
+

1

2
(x∗ηα)γ

[
[(ϕxη)

−1]α
β (b2)xβxγ

]∣∣∣
x=x∗

, (2.8.13)

where w∗(t; y, η; ε) = w(t, x∗(t; y, η); y, η; ε).

Proof. Consider the operator S−1 defined in (2.5.8b). When acting on a function

with a second order zero along the flow, it can be simplified to read

S−1 b2 = i
∂(Lβ b2)

∂ηβ

∣∣∣∣
x=x∗

− i

2

[
ϕηαηβ LαLβ b2

]∣∣
x=x∗

. (2.8.14)

Here we used the fact that S0 ϕη = 0. Using the notation Hf := fxx|x=x∗ and

putting Φxη := ϕxη|x=x∗ , we observe that

(Φxη)α
β = (ξ∗ηβ )α − (Hϕ)αµ (x∗ηβ )µ

and, consequently,

ϕηαηβ
∣∣
x=x∗

=− (x∗ηα)γ (ξ∗ηβ )γ + (Hϕ)µν (x∗ηα)µ(x∗ηβ )ν

= −(x∗ηα)γ
[
(ξ∗ηβ )γ − (Hϕ)γν (x∗ηβ )ν

]
= −(x∗ηα)γ (Φxη)γ

β.

Hence, recalling formula (2.5.7), we obtain

− i
2

[
ϕηαηβ LαLβ b2

]∣∣
x=x∗

=
i

2
(x∗ηα)γ (Φxη)γ

β (Φ−1
xη )α

δ (Φ−1
xη )β

ρ (Hb2)δρ

=
i

2
(x∗ηα)γ δγ

ρ (Φ−1
xη )α

δ (Hb2)δρ

=
i

2
(x∗ηα)ρ (Φ−1

xη )α
δ (Hb2)δρ .

(2.8.15)

Furthermore, upon writing

b2 =
1

2
(Hb2)αβ (x− x∗)α (x− x∗)β +O(‖x− x∗‖3),

the first term in (2.8.14) becomes

i
∂(Lβ b2)

∂ηβ

∣∣∣∣
x=x∗

= −i (x∗ηα)γ (Φ−1
xη )α

µ (Hb2)µγ . (2.8.16)

By substituting (2.8.15) and (2.8.16) into (2.8.14) we arrive at the last summand

on the LHS of (2.8.13). As for the remaining terms, they correspond to S0 b1 in

(2.8.12b) and are obtained by evaluating (2.8.3b) along the flow and performing

straightforward algebraic manipulations.
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It is possible to show directly, by means of a long and tedious, though non-

trivial, computation that (2.8.13) is satisfied automatically, thus providing a direct

proof that the principal symbol of the wave propagator is indeed 1. If one started

with a generic term a0 in (2.8.1), the FTE would be an ordinary differential equation

allowing for the (unique) determination thereof. Lemma 2.23 gives us an explicit

formula for the action of the wave operator on the Levi-Civita phase function.

Let us now move on to the second transport equation b0 = 0, the one that

allows for the determination of the subprincipal symbol a−1(t; y, η; ε). To the end of

computing the subprincipal symbol, a simplified representation of the operators S−1

and S−2 may be used. Recall that for general k the operators S−k are defined by

formulae (2.5.8a) and (2.5.8b). Put

B−1 := i w−1 ∂

∂ηα
wLα −

i

2
ϕηαηβ Lα Lβ . (2.8.17)

Then we have

S−1 = S0 B−1 , (2.8.18)

S−2 = S0 B−1

i w−1 ∂

∂ηβ
w

1 +
∑

1≤|α|≤3

(−ϕη)α

α!(|α|+ 1)
Lα

Lβ

 , (2.8.19)

and these representations can now be used in formula (2.8.12c).

The last ingredient needed to write down the subprincipal symbol is the initial

condition at t = 0, extensively discussed in Section 2.7. The Levi-Civita phase

function evaluated at t = 0, ϕ(0, x; y, η; ε), clearly satisfies the assumptions (a) and

(b) of Theorem 2.15, hence a−1|t=0 = 0. Integrating in time, we arrive at the

following theorem.

Theorem 2.24. The global invariantly defined subprincipal symbol of the wave prop-

agator is

a−1(t; y, η; ε) = − i

2h

∫ t

0
[S−2 b2 + S−1 b1 + S0 b0] (τ ; y, η; ε) dτ . (2.8.20)

The functions bk, k = 2, 1, 0, are defined by (2.8.3a)–(2.8.3c), (2.4.3), (2.5.3), while

the operators S−2, S−1 and S0 are given by (2.8.17)–(2.8.19) and (2.5.7), (2.5.8a).
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2.9 Small time expansion for the subprincipal symbol

The small time behaviour of the wave propagator carries important information

about the spectral properties of the Laplace–Beltrami operator. Our geometric con-

struction allows us to derive an explicit universal formula for the coefficient of the

linear term in the expansion of the subprincipal symbol when t tends to zero. In Sec-

tion 2.10 we will explain how this formula can be used to recover, in a straightforward

manner, the third Weyl coefficient.

When time is sufficiently small we can use the real-valued Levi-Civita phase

function, since condition (iii) in Definition 2.1 is automatically satisfied. Therefore,

throughout this section we set ε = 0.

Theorem 2.25. The subprincipal symbol of the wave propagator admits the following

expansion for small times:

a−1(t; y, η) =
i

12h(y, η)
R(y) t+O(t2) , (2.9.1)

where R is scalar curvature.

Proof. Let us fix an arbitrary point y ∈ M and choose geodesic normal coordinates

centred at y. As a−1 is a scalar function, in order to prove the theorem it is sufficient

to prove

a−1(t; 0, η) =
i

12h(0, η)
R(0) t+O(t2) (2.9.2)

in the chosen coordinate system.

As we are dealing with the case when t tends to zero, we can assume that x∗ and

x both lie in a geodesic neighbourhood of y. In what follows we use for x geodesic

normal coordinates centred at y and perform a double Taylor expansion of the phase

function in powers of t and x simultaneously. We shall also assume that t and ‖x‖

are of the same order.

It is well known that in geodesic normal coordinates centred at y we have

x∗α =
ηα

h
t , (2.9.3)

where ηα = δαβηβ . Substituting (2.9.3) into the first Hamilton’s equation (2.2.1) we
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get

ξ∗α = gαβ(x∗) ηβ

=
[
gαβ

(η
h
t
)]
ηβ

=

(
δαβ −

1

3
Rαµβν(0)

ηµην

h2
t2 +O(t3)

)
ηβ

= ηα +O(t3).

(2.9.4)

The simplifications in the above calculations are due to the properties of normal

coordinates and the (anti)symmetries of the Riemann curvature tensor R.

Arguing as in the proof of Theorem 2.6 and using formula (2.9.3), one concludes

that the initial velocity of the (unique) geodesic connecting x∗ to x is

γ̇(0)α = (x− x∗)α +
1

2
Γαβγ(x∗) (x− x∗)β (x− x∗)γ

+
1

2
(∂xµΓαβγ)(x∗) (x− x∗)µ (x− x∗)β (x− x∗)γ

+O(‖x− x∗‖4)

= xα − ηα

h
t+

1

2
(∂xµΓαβγ)(0)

ηµ

h
t
(
x− η

h
t
)β (

x− η

h
t
)γ

+
1

2
(∂xµΓαβγ)(0)

(
x− η

h
t
)µ (

x− η

h
t
)β (

x− η

h
t
)γ

+O(‖x‖4 + t4)

= xα − ηα

h
t− (∂xµΓαβγ)(0)

ηβ

h
t xµ xγ +

1

2
(∂xµΓαβγ)(0)

ηβ ηγ

h2
t2 xµ

+
1

2
(∂xµΓαβγ)(0)xµxβxγ +O(‖x‖4 + t4)

= xα − ηα

h
t+

1

3h
Rαγβµ(0) ηβ t xγxµ − 1

3
Rαβγµ(0)

ηβ ηγ

h2
t2 xµ

+O(‖x‖4 + t4) .

(2.9.5)

Here at the last step we resorted to the identity

(∂xµΓαβγ)(0) = −1

3
(Rαβγµ(0) +Rαγβµ(0)). (2.9.6)

Lemma 2.5 and formulae (2.9.4), (2.9.5) imply that our real-valued Levi-Civita

phase function admits the following Taylor expansion in powers of x and t:

ϕ(t, x; 0, η) = xα ηα − t h+
1

3h
Rαµ

β
ν(0) ηα ηβ t x

µ xν +O(‖x‖4 + t4) . (2.9.7)

The next step is computing the homogeneous functions b2, b1 and b0 defined by

(2.8.3a)–(2.8.3c) at t = 0.
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Direct inspection tells us that

−(ϕt)
2
∣∣
t=0

= −h2 +
2

3
Rαµ

β
ν(0) ηα ηβ t x

µ xν +O(‖x‖3)

and

gαβ(x)ϕxα ϕxβ
∣∣∣
t=0

= h2 +
1

3
Rαµ

β
ν(0) ηα ηβ t x

µ xν +O(‖x‖3) .

Adding up the above two formulae, we get

b2(0, x; 0, η) = Rαµ
β
ν(0) ηα ηβ x

µ xν +O(‖x‖3). (2.9.8)

Let us now move on to b1. Direct differentiation of (2.9.7) reveals that

ϕtt|t=0 = O(‖x‖2), ϕt|t=0 = −h+O(‖x‖2) , ϕxx|t=0 = O(‖x‖2) . (2.9.9)

Furthermore, we have

ϕxρησ = δρ
σ + t

2

3h

(
Rσρ

β
ν(0) ηβ +Rαρ

σ
ν(0) ηα

)
xν +O(‖x‖3 + |t|3) (2.9.10)

and, consequently,

detϕxρησ = 1− t 2

3h
Ricα ν(0) ηα x

ν +O(‖x‖3 + |t|3). (2.9.11)

Plugging (2.9.11) into (2.5.3) and expanding the Riemannian density in normal

geodesic coordinates, one eventually obtains

w = 1 +
1

12
Ricµν(0)xµ xν − t

3h
Ricα ν(0) ηα x

ν +O(‖x‖3 + |t|3). (2.9.12)

Formulae (2.9.6), (2.9.7), (2.9.9) and (2.9.12) give us

−igαβ(x)∇α∇β ϕ
∣∣∣
t=0

=− igαβ(x)
(
−Γγαβ(x) ϕxγ |t=0 +O(‖x‖2)

)
=− i

3
δαβ (Rγαβµ(0) +Rγβαµ(0))xµ ηγ +O(‖x‖2)

=
2 i

3
Ricγ µ(0) ηγ x

µ +O(‖x‖2),

(2.9.13)

2 i(logw)t ϕt|t=0 =
2 i

3
Ricα ν(0) ηα x

ν +O(‖x‖2), (2.9.14)

−2 i gαβ(x) [∇α(logw)]∇β ϕ
∣∣∣
t=0

= − i
3

Ricα ν(0) ηα x
ν +O(‖x‖2). (2.9.15)
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Substitution of (2.9.9) and (2.9.13)–(2.9.15) into (2.8.3b) yields

b1(0, x; 0, η) = i Ricα µ(0) ηα x
µ +O(‖x‖2). (2.9.16)

Finally, let us deal with b0. Formula (2.9.12) implies that

w = 1 +O(‖x‖2 + t2), wtt = O(‖x‖+ |t|),

wx = O(‖x‖+ |t|), wxx =
1

6
Ric(0) +O(‖x‖+ |t|).

Substituting the above formulae into (2.8.3c), we get

b0(0, x; 0, η) = −1

6
R(0) +O(‖x‖). (2.9.17)

Theorem 2.24 tells us that

a−1(t; 0, η) = − i

2h
[S−2 b2 + S−1 b1 + S0 b0]|t=0 t+O(t2) . (2.9.18)

Recall that the S−2, S−1 and S0 in the above formula are the amplitude-to-symbol

operators.

Calculating the last term in the square brackets in (2.9.18) is easy. Namely, using

(2.9.17), we get

[S0 b0]|t=0 = b0(0, 0; 0, η) = −1

6
R(0) . (2.9.19)

Calculating the first two terms in the square brackets in (2.9.18) seems to be

a challenging task because the formulae for the operators S−2 and S−1 are com-

plicated. However, at t = 0 and in chosen local coordinates our phase function

reads

ϕ(0, x; 0, η) = xα ηα

and this leads to fundamental simplifications. Namely, at t = 0 we have

[S−1 ( · )]|t=0 =

[
i
∂

∂ηα

∂

∂xα
( · )

]∣∣∣∣
t=0, x=0

, (2.9.20)

[S−2 ( · )]|t=0 =
1

2

[(
i
∂

∂ηα

∂

∂xα

)2

( · )

]∣∣∣∣∣
t=0, x=0

. (2.9.21)

Substituting (2.9.8) and (2.9.16) into (2.9.20) and (2.9.21) respectively, we get

[S−2 b2]|t=0 = R(0) , [S−1 b1]|t=0 = −R(0) . (2.9.22)

Formulae (2.9.18), (2.9.19) and (2.9.22) imply (2.9.2).
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2.10 Weyl coefficients

The aim of this Section is show that the small time expansion for the subprincipal

symbol of the propagator (Theorem 2.25) allows us to recover in a straightforward

manner the first three Weyl coefficients and that our result agrees with those obtained

by the heat kernel method.

Let

N(y;λ) :=
∑
λk<λ

|vk(y)|2

be the local counting function. When integrated over the manifold, N(y;λ) turns

into the usual (global) counting function

N(λ) :=
∑
λk<λ

1 =

∫
M
N(y;λ) ρ(y) dy .

Let µ̂ : R→ C be a smooth function such that µ̂(t) = 1 in some neighbourhood

of the origin and the support of µ̂ is sufficiently small. Here ‘sufficiently small’

means that supp µ̂ ⊂ (−T0, T0), where T0 is the infimum of the lengths of all possible

loops. A loop is defined as follows. Suppose that we have a Hamiltonian trajectory

(x(t; y, η), ξ(t; y, η)) and a real number T > 0 such that x(T ; y, η) = y. We say in

this case that we have a loop of length T originating from the point y ∈M .

We denote by

F [f ](t) = f̂(t) =

∫ +∞

−∞
e−itλ f(λ) dλ

the one-dimensional Fourier transform and by

F−1[f̂ ](λ) = f(λ) =
1

2π

∫ +∞

−∞
eitλ f̂(t) dt

its inverse. Accordingly, we denote µ := F−1[µ̂].

Further on we will deal with the mollified counting function (N ∗ µ)(y, λ) rather

than the original discontinuous counting function N(y, λ). Here the star stands for

convolution in the variable λ. More specifically, we will deal with the derivative, in

the variable λ, of the mollified counting function. The derivative will be indicated

by a prime.
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It is known [8, 41, 51, 68, 69, 70, 104] that the function (N ′ ∗ µ)(y, λ) admits an

asymptotic expansion in integer powers of λ :

(N ′ ∗ µ)(y, λ) = cd−1(y)λd−1 + cd−2(y)λd−2 + cd−3(y)λd−3 + . . . as λ→ +∞.

(2.10.1)

Definition 2.26. We call the coefficients ck(y) appearing in formula (2.10.1) local

Weyl coefficients.

Note that our definition of Weyl coefficients does not depend on the choice of

mollifier µ.

Integrating (2.10.1) in λ and using the fact that (N ′ ∗µ)(y, λ) decays faster than

any power of λ as λ→ −∞, we get

(N ∗ µ)(y, λ) =
cd−1(y)

d
λd +

cd−2(y)

d− 1
λd−1 + . . . + c0(y)λ + c−1(y) lnλ + b

− c−2(y)λ−1 − c−3(y)

2
λ−2 − . . . as λ→ +∞, (2.10.2)

where b is some constant. Our Definition 2.26 is somewhat non-standard as it is

customary to call the coefficients

cd−1(y)

d
,
cd−2(y)

d− 1
, . . .

appearing in the asymptotic expansion (2.10.2) Weyl coefficients rather than those

in the asymptotic expansion (2.10.1). However, for the purposes of this thesis we

will stick with Definition 2.26.

A separate question is whether one can get rid of the mollifier in (2.10.2). It is

known [102, 104] that under appropriate geometric conditions on loops we do indeed

have

N(y, λ) =
cd−1(y)

d
λd +

cd−2(y)

d− 1
λd−1 + o(λd−1) as λ→ +∞.

See also Remark 3.6 for a brief discussion regarding the third unmollified term. We

shall not discuss unmollified spectral asymptotics in this thesis.

We have

(N ′ ∗ µ)(y, λ) = F−1
[
F
[
(N ′ ∗ µ)

]]
(y, λ) = F−1 [u(t, y, y) µ̂(t)] , (2.10.3)

where u is the Schwartz kernel (2.1.6) of the propagator (2.1.5). At each point

of the manifold the quantity u(t, y, y) is a distribution in the variable t — more
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precisely, an element in C∞(Mx × My;D′(R)) — and the construction presented

in previous sections allows us to write down this distribution explicitly, modulo a

smooth function. Hence, formula (2.10.3) opens the way to the calculation of Weyl

coefficients.

Theorem 2.27. The first three Weyl coefficients are

cd−1(y) =
Sd−1

(2π)d
, (2.10.4)

cd−2(y) = 0 , (2.10.5)

cd−3(y) =
d− 2

12
R(y) cd−1(y) , (2.10.6)

where

Sd−1 =
2πd/2

Γ(d2)
(2.10.7)

is the Riemannian volume of the (d− 1)-dimensional unit sphere, R is scalar curva-

ture and Γ is the gamma function.

Proof. Our task is to substitute (2.3.1), (2.3.2) into F−1 [u(t, y, y) µ̂(t)] and expand

the resulting quantity in powers of λ as λ→ +∞. The smooth term K from (2.3.1)

does not affect the asymptotic expansion, so the problem reduces to the analysis of

an explicit integral in d+ 1 variables depending on the parameter λ. In what follows

we fix a point on the manifold and drop the y in our intermediate calculations. As

in the proof of Theorem 2.17, we work in geodesic normal coordinates centred at our

chosen point.

The construction presented in the above sections tells us that the only singularity

of the distribution u(t, y, y) µ̂(t) is at t = 0. Hence, in what follows, we can assume

that the support of µ̂ is arbitrarily small. In particular, this allows us to use the

real-valued (ε = 0) Levi-Civita phase function.

We have

a0(t, η) = 1 (2.10.8)

and, by Theorem 2.25,

a−1(t, η) =
i

12 ‖η‖
R t+O(t2) . (2.10.9)
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The lower order terms a−2, a−3, . . . in the expansion (2.5.2) do not affect the first

three Weyl coefficients and neither does the remainder term in (2.10.9), so further

on we assume that the full symbol of the propagator reads

a(t, η) = 1 +
i

12 ‖η‖
R t . (2.10.10)

Using formula (2.9.7) with x = y we get

ϕ(t, η) = −‖η‖ t+O(t4) . (2.10.11)

Replacing ei ϕ(t,η) by e−i ‖η‖ t in the oscillatory integral (2.3.2) does not affect the

first three Weyl coefficients: this fact is established by using (2.10.11) and expand-

ing eO(t4) into a power series, with account of the fact that this O-term is positively

homogeneous in η of degree one (a similar argument was used in the proofs of The-

orems 2.15 and 2.17). Hence, further on we assume that

eiϕ(t,η) = e−i‖η‖t . (2.10.12)

Using formula (2.9.10) with x = y we get

ϕxαηβ (t, η) = δα
β +O(t3) . (2.10.13)

Substitution of (2.10.13) into (2.5.3) gives us

w(t, η) = 1 +O(t3) . (2.10.14)

The remainder term in (2.10.14) does not affect the first three Weyl coefficients, so

further on we assume that

w(t, η) = 1 . (2.10.15)

Substituting (2.10.10), (2.10.12) and (2.10.15) into (2.3.2), we conclude that for-

mula (2.10.3) can now be rewritten as

(N ′ ∗ µ)(y, λ) =
1

2π

∫
Rd+1

(
1 +

i

12 ‖η‖
R t
)
ei(λ−‖η‖)t µ̂(t)χ(‖η‖) d̄η dt + O(λd−4).

(2.10.16)

Here χ ∈ C∞(R) is a cut-off such that χ(r) = 0 for r ≤ 1/2 and χ(r) = 1 for r ≥ 1.

Switching to spherical coordinates in Rd, we rewrite (2.10.16) as

(N ′∗µ)(y, λ) =
Sd−1

(2π)d+1

∫
R2

(
rd−1 +

i

12
R rd−2 t

)
ei(λ−r)t µ̂(t)χ(r) dr dt + O(λd−4).

(2.10.17)
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Here r is the radial coordinate and the extra factor (2π)d in the denominator came

from (2.2.3).

Observe that

t ei(λ−r)t = i
∂

∂r
ei(λ−r)t ,

so integrating by parts in (2.10.17) we simplify this formula to read

(N ′ ∗ µ)(y, λ) =
Sd−1

(2π)d+1

∫
R2

rd−1 ei(λ−r)t µ̂(t)χ(r) dr dt + O(λd−4) (2.10.18)

for d = 2 and

(N ′∗µ)(y, λ) =
Sd−1

(2π)d+1

∫
R2

(
rd−1 +

d− 2

12
R rd−3

)
ei(λ−r)t µ̂(t)χ(r) dr dt+O(λd−4)

(2.10.19)

for d ≥ 3.

It remains only to drop the cut-off χ in formulae (2.10.18) and (2.10.19) as this

does not affect the asymptotics when λ→ +∞ and to make use of the formula

1

2π

∫
R2

rm ei(λ−r)t µ̂(t) dr dt = λm,

which holds for m = 0, 1, 2, . . ..

We see that formulae (2.10.18) and (2.10.19) give us (2.10.4)–(2.10.6).

As a final step, let us show that Theorem 2.27 agrees with the classical heat

kernel expansion. To this end, let us introduce the (local) heat kernel

Z(y, t) :=

∫ +∞

−∞
e−tλ

2
N ′(y, λ) dλ =

∫ +∞

0
e−tλ

2
N ′(y, λ) dλ+

1

Vol(M, g)
. (2.10.20)

If we now replace N ′(y, λ) in formula (2.10.20) with its mollified version (N ′ ∗

µ)(y, λ) this gives an error, but this error can be easily estimated:

Z(y, t) =

∫ +∞

0
e−tλ

2
(N ′ ∗ µ)(y, λ) dλ + O(1) as t→ 0+. (2.10.21)

Substituting (2.10.1) and (2.10.4)–(2.10.6) into (2.10.21), we get

Z(y, t) = cd−1(y)

∫ +∞

0
e−tλ

2
λd−1 dλ + O(1) as t→ 0+ (2.10.22)

for d = 2,

Z(y, t) =

∫ +∞

0
e−tλ

2
(
cd−1(y)λd−1 + cd−3(y)λd−3

)
dλ + O(| ln t|) as t→ 0+

(2.10.23)



2.11. Explicit examples 71

for d = 3, and

Z(y, t) =

∫ +∞

0
e−tλ

2
(
cd−1(y)λd−1 + cd−3(y)λd−3

)
dλ + O

(
t(3−d)/2

)
as t→ 0+

(2.10.24)

for d ≥ 4.

We have ∫ +∞

0
e−z

2
zd−1 dz =

Γ(d2)

2
. (2.10.25)

We also have ∫ +∞

0
e−z

2
zd−3 dz =

Γ(d2 − 1)

2
=

Γ(d2)

d− 2
(2.10.26)

for d ≥ 3.

Using (2.10.4)–(2.10.7), (2.10.25) and (2.10.26) we can rewrite formulae (2.10.22)–

(2.10.24) as a single formula

Z(y, t) =


(4πt)−d/2 +O(1) for d = 2,

(4πt)−d/2
(
1 + 1

6 R(y) t
)

+O(| ln t|) for d = 3,

(4πt)−d/2
(
1 + 1

6 R(y) t
)

+O
(
t(3−d)/2

)
for d ≥ 4

(2.10.27)

as t→ 0+.

It is known [91], [21, Ch. III, E.IV.], [101, Section 3.3], that for all d ≥ 2 the heat

kernel admits the expansion

Z(y, t) = (4πt)−d/2
(

1 +
1

6
R(y) t

)
+O

(
t(4−d)/2

)
as t→ 0+. (2.10.28)

We see that our result (2.10.27) agrees with the classical formula (2.10.28).

2.11 Explicit examples

In this section we will apply our construction to the detailed analysis of two explicit

examples.

2.11.1 The 2-sphere

The first example we will discuss is the 2-sphere. Clearly, for the 2-sphere one can

construct the propagator via functional calculus, since eigenvalues and eigenfunc-

tions are known explicitly. However, the 2-sphere is interesting as it represents, in a
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sense, the ‘most singular’ instance of a Riemannian manifold in terms of topological

obstructions because the geodesic flow on the cosphere bundle is 2π-periodic. Fur-

thermore, geodesics focus at t = πk, k ∈ Z. As we will show, even in this simple

example our method provides interesting insight.

Let S2 be the standard 2-sphere embedded in Euclidean space (E3, δE := dx2 +

dy2 + dz2) via the map ι : S2 → E3, in such a way that the south pole is tangent to

the plane z = 0 at the origin O = (0, 0, 0). The sphere is endowed with the standard

round metric g := ι∗δE .

Let us introduce coordinates on S2 minus the north pole by a stereographic

projection onto the xy-plane,

σ : R2 → S2 \


0

0

2

 ,

u
v

 7→

x

y

z

 =
1

1 +K2


u

v

2K2

 , (2.11.1)

where K :=
√
u2+v2

2 . The metric in stereographic coordinates reads

g =
1

(1 +K2)2

[
du2 + dv2

]
. (2.11.2)

Without loss of generality, we will set y = (0, 0) ∈ R2 in stereographic coordinates.

Further on we denote by z = (u, v) a generic point on the stereographic plane.

Straightforward analysis shows that

z∗(t; η) = 2 tan(t/2)
η

‖η‖
, (2.11.3a)

ξ∗(t; η) = cos2(t/2) η , (2.11.3b)

provide a solution to the Hamiltonian system (2.2.1) for the Hamiltonian (2.2.5) with

initial conditions z∗(0, η) = (0, 0) and ξ∗(0, η) = η = (η1, η2).

Our first goal is to compute the scalar part of the weight w2 along the flow, i.e.

ρ(y)

ρ(z)
detϕzαηβ

∣∣∣∣
z=z∗

,

for the Levi-Civita phase function ϕ on the sphere associated with the metric g.

Lemma 2.28. For the 2-sphere we have

ρ(y)

ρ(z)
det ϕzαηβ

∣∣∣∣
z=z∗

= cos(t)− i ε sin(t). (2.11.4)
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Proof. A key ingredient in the computation of (2.11.4) is formula (2.4.4) from The-

orem 2.6. As a first step, we need to compute the Christoffel symbols of g along the

geodesic flow.

By means of (2.11.2) and (2.11.3), one obtains

Γuuu(u∗, v∗) = −sin(t)

2

ηu
‖η‖

, Γuuv(u
∗, v∗) = −sin(t)

2

ηv
‖η‖

, Γuvv(u
∗, v∗) =

sin(t)

2

ηu
‖η‖

,

Γvvv(u
∗, v∗) = −sin(t)

2

ηv
‖η‖

, Γvvu(u∗, v∗) = −sin(t)

2

ηu
‖η‖

, Γvuu(u∗, v∗) =
sin(t)

2

ηv
‖η‖

.

(2.11.5)

Substituting (2.11.2), (2.11.3) and (2.11.5) into (2.4.4), we get

ϕzαηβ
∣∣
z=z∗

=

cos2(t/2)

1− [1− cos(t) + i ε sin(t)]
η2

2

‖η‖2
[1− cos(t) + i ε sin(t)]

η1η2

‖η‖2

[1− cos(t) + i ε sin(t)]
η1η2

‖η‖2
1− [1− cos(t) + i ε sin(t)]

η2
1

‖η‖2

 ,

from which it ensues that

detϕzαηβ
∣∣
z=z∗

= cos4(t/2) [cos(t)− i ε sin(t)] .

Since ρ(z∗(t; η)) = cos4(t/2) and ρ(y) = 1, this completes the proof.

Note that (2.11.4) is a scalar identity and, as such, independent of the choice of

coordinates.

Let ε = 0, which corresponds to the adoption of a real-valued phase function.

Direct inspection of (2.11.4) tells us that ϕzη|z=z∗ becomes degenerate at t = π
2 +πk,

k ∈ Z and, consequently, w vanishes at these values of t.

If, on the other hand, ε > 0, then w is non-zero for all values of t. This fact is

the analytic counterpart of the circumvention of the topological obstruction.

The result of Lemma 2.28 can be used to compute the Maslov index. Let γ be

the lift to the Lagrangian submanifold Λh of a great circle starting and ending at y

and set, for simplicity, ε = 1. Then by (2.2.7), (2.11.4) we get

ϑϕ =
1

π
dt

and, in view of (2.2.8), we conclude that

ind(γ) =
1

π

∫ 2π

0
dt = 2 .
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Let us now move on to the calculation of the subprincipal symbol of the wave

propagator. For the 2-sphere the geodesic distance between two arbitrary points can

be computed explicitly via a closed formula. With the above notation, consider the

auxiliary map

σ̃ : R2 → R3, (u, v) 7→ 1

1 +K2


u

v

K2 − 1

 ,

which is nothing but the map (2.11.1) shifted by (0, 0,−1). Then the geodesic dis-

tance between (u, v) and (u′, v′) is given by

dist((u, v), (u′, v′)) = arccos
[
σ̃(u, v) · σ̃(u′, v′)

]
, (2.11.6)

where the dot stands for the inner product in E3.

Formulae (2.11.6) and (2.2.1) yield an explicit representation for (2.4.3), which

can be used to set up the algorithm described in Section 2.8.

For ε = 1 the functions appearing on the RHS of (2.8.20) read

S−2 b2 =
1

4

(
−3 + 2e2 i t + e4 i t

)
, (2.11.7a)

S−1 b1 =
1

6

(
7− 4e2 i t − 3e4 i t

)
, (2.11.7b)

S0 b0 =
1

12

(
−8 + e2 i t

)
. (2.11.7c)

Substitution of (2.11.7a)–(2.11.7c) into (2.8.20) yields a formula for the subprincipal

symbol:

a−1(t; y, η; 1) =
i t

8 ‖η‖
+

2e2 i t + 3e4 i t − 5

96 ‖η‖
.

For a general ε > 0 the corresponding formulae are more complicated and the

final expression for the subprincipal symbol reads

a−1(t; y, η; ε) =
i t

8 ‖η‖
+
i sin(2t)− 4ε sin2(t) + 3 i ε2 sin(2t) + 6ε3 sin2(t)

48 ‖η‖ (cos(t)− iε sin(t))2
. (2.11.8)

Formulae (2.11.7a)–(2.11.8) have been obtained using the licensed software Math-

ematica. The Mathematica script is provided in Appendix A.1
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Remark 2.29. For t 6= π/2+πk, k ∈ Z, the subprincipal symbol admits the following

expansion in powers of ε:

a−1(t; y, η; ε) =
i t

8 ‖η‖
+
i tan(t)

24 ‖η‖
− ε tan2(t)

6 ‖η‖

+ i

∞∑
k=2

(i ε)k

24 ‖η‖
(tan(t))k−1 ((3k + 1) tan2(t)− 3

)
.

Note that for ε = 0 the above formula turns to

a−1(t; y, η; 0) =
i

24 ‖η‖
(3t+ tan(t)) , (2.11.9)

which is the subprincipal symbol of the propagator for the real-valued Levi-Civita

phase function. Of course, formula (2.11.9) can only be used for t ∈ (−π/2, π/2):

topological obstructions prevent the use of the real-valued phase function for large

t. It is easy to check that (2.11.9) agrees with (2.9.1), with R(y) = 2.

Let us now run a test for our formula (2.11.8). To this end, let us shift the

Laplacian by a quarter,

−∆ 7→ −∆ +
1

4
. (2.11.10)

Note that the eigenvalues of the operator
√
−∆ + 1/4 are half-integer, hence, the

corresponding propagator Ũ(t) := e−it
√
−∆+1/4 is 2π-antiperiodic,

Ũ(t+ 2π) = −Ũ(t). (2.11.11)

Going back to Lemma 2.20, we see that the shift of the Laplacian (2.11.10) does not

affect b2 and b1, but shifts b0 as

b0 7→ b0 + 1/4 . (2.11.12)

Theorem 2.24 and formula (2.11.12) tell us that the subprincipal symbol of the

propagator transforms as

a−1(t; y, η; 0) 7→ a−1(t; y, η; 0)− i t

8‖η‖
. (2.11.13)

Applying the transformation (2.11.13) to formula (2.11.8), we see that the subprin-

cipal symbol of the propagator becomes 2π-periodic. It remains only to reconcile the

periodicity of the full symbol of the propagator with the antiperiodicity (2.11.11)
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of the propagator itself. This is to do with the Maslov index: formulae (2.5.3) and

(2.11.4) tell us that the weight w picks up a change of sign as we traverse the periodic

geodesic, a great circle.

It is known that constructing the wave propagator associated with the shifted

Laplacian (2.11.10) is often easier and some formulae are available in the litera-

ture. For example, formulae for the wave kernel of shifted Laplacians on rank one

symmetric spaces was computed in [30]. See also [40], [107, Section 3].

2.11.2 The hyperbolic plane

From a strictly rigorous point of view, our construction works for closed manifolds

only. However, the compactness assumption is largely technical and can be relaxed,

even though this generalisation is not absolutely straightforward. In our thesis we

refrain from carrying out such an extension, but we discuss a non-compact example,

formally applying our algorithm to the hyperbolic plane.

Adopting the hyperboloid model for the hyperbolic plane, we consider the upper

sheet of the hyperboloid

H2 := {(x, y, z) ∈ R3 |x2 + y2 − z2 = −1, z > 0}

endowed with metric δH = dx2 + dy2−dz2. Projecting H2 onto R2 with coordinates

(u, v), we obtain the induced metric

g =
1

1 + u2 + v2

[
(1 + v2) du2 − 2uv dudv + (1 + u2) dv2

]
.

The metric g is Riemannian, with constant Gaussian curvature equal to −1.

Setting, without loss of generality, y = 0 and denoting z = (u, v), the cogeodesic

flow is given by

z∗(t; η) = sinh(t)
η

‖η‖
,

ξ∗(t; η) =
1

cosh(t)
η .

Unlike the sphere, the hyperbolic plane does not present caustics due to its negative

curvature. Hence, there are no topological obstructions to a construction global in

time with real-valued phase function. In particular, the Levi-Civita phase function

with ε = 0 can be used.
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Arguing as for the 2-sphere, one gets for ε ≥ 0

ϕzαηβ
∣∣
z=x∗

=

1

‖η‖2

η2
1 sech(t) + η2

2(cosh(t) + i ε sinh(t)) −η1η2 tanh(t)(sinh(t) + i ε cosh(t))

−η1η2 tanh(t)(sinh(t) + i ε cosh(t)) η2
2 sech(t) + η2

1(cosh(t) + i ε sinh(t))


and

ρ(y)

ρ(x)
det ϕzαηβ

∣∣∣∣
z=z∗

= cosh(t) + i ε sinh(t).

Direct inspection immediately reveals that, as expected, ϕzη|z=z∗ is non-degenerate

for all times, even with ε = 0.

Carrying out our algorithm for ε = 0, we establish that the homogeneous com-

ponents of the reduced amplitude read

S−2 a2 = −2

3
(2 + cosh(2t)) sech2(t) ,

S−1 a1 =
2

3
(2 + cosh(2t)) sech2(t) ,

S0 a0 =
1

12
(3 + sech2(t)) .

Substitution of the above expressions into (2.8.20) yields a formula for the subprin-

cipal symbol:

a−1(t; y, η; 0) = − i

24 ‖η‖
(3t+ tanh(t)) . (2.11.16)

Note that formulae for the hyperbolic plane are very similar to those for the

sphere, with trigonometric functions being replaced by their hyperbolic counterparts.

This is consistent with the results in [113], see also [120, Sec. 3.7.2]. Formula (2.11.16)

is, of course, in agreement with (2.9.1), with R(y) = −2.

Our explicit examples gave us the opportunity to illustrate, once again, the im-

portance of formula (2.4.4): it allows one to extract topological information by means

of a simple direct computation.

2.12 Circumventing topological obstructions: geometric

picture

As discussed in the previous sections, the weight w defined by formula (2.5.3) is a

crucial object in our mathematical construction in that it carries important topo-
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logical information. It is possible, for instance, to compute the Maslov index purely

in terms of w. The fact that, in general, a construction global in time is impossible

using real-valued phase functions can be traced back to the degeneracy of w. In this

Section we will provide a geometric description of ϕxη , the key ingredient of w, along

the flow.

Let us fix a point y ∈M and consider the one-parameter family of d-dimensional

smooth submanifolds of the cotangent bundle defined by

Ty(t) := {(x∗(t; y, η), ξ∗(t; y, η)) ∈ T ∗M | η ∈ T ′yM}.

For every value of t , Ty(t) consists of all points of the cotangent bundle corresponding

to the cogeodesic flow at time t for the initial position y and all possible momenta.

The smoothness of Ty(t) follows from the preservation of the symplectic volume.

The manifolds Ty(t) are Lagrangian. In fact, Ty(0) = T ′yM = T ∗yM \ {0} is the

punctured cotangent fibre at y, which is clearly Lagrangian, and the cogeodesic flow

preserves the symplectic form.

In the following we will construct a family of metrics associated with the above

submanifolds. In the rest of this section we will drop the arguments t and y in x∗

and ξ∗ whenever these arguments are fixed, writing simply x∗(η) and ξ∗(η).

In an arbitrary coordinate system a small increment δη in momentum produces

an increment in x∗(η) given by

[x∗(η + δη)− x∗(η)]α = [x∗(η)]αηµ δηµ +O(‖δη‖2).

This allows us to define a bilinear form

Qµν(η; t, y) := gαβ(x∗(η)) qαµ(η; t, y) qβν(η; t, y) , (2.12.1)

where

qαµ(η; t, y) := [x∗(η)]αηµ . (2.12.2)

We call Q the position form.

An analogous construction is possible for momentum ξ∗(η), although extra care

is needed due to the fact that ξ∗(η) and ξ∗(η + δη) live in different fibres of the

bundle. Under the assumption that δη is sufficiently small, let us parallel transport
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ξ∗(η + δη) along the (unique) geodesic going from x∗(η + δη) to x∗(η), denoted by

γ : [0, 1]→M . The parallel transport equation reads

γ̇α(s)∇α ζ(γ(s))β = γ̇α(s) [∂αζβ(γ(s))− Γραβ(γ(s)) ζρ(γ(s))] = 0 , (2.12.3)

where ζ denotes the image under parallel transport of ξ∗(η + δη) along γ. It is not

hard to check that the solution to (2.12.3) is given by

ζα(γ(s)) = ξ∗α(η + δη) + Γραβ(γ(s)) ξ∗ρ(η) s (δx∗)β +O(‖δx∗‖2) ,

where δx∗ = x∗(η)− x∗(η + δη). Hence, we get

ζα(γ(1))− ξ∗α(η) =
[
(ξ∗α(η))ηµ − Γραβ(x∗(η)) ξ∗ρ(η) (x∗(η))βηµ

]
(δη)µ +O(‖δη‖2) .

Put

pαµ(η; t, y) := gαγ(x∗(η))
[
(ξ∗γ(η))ηµ − Γργβ(x∗(η)) ξ∗ρ(η) (x∗(η))βηµ

]
(2.12.4)

and define the bilinear form

Pµν(η; t, y) := gαβ(x∗(η)) pαµ(η; t, y) pβν(η; t, y) . (2.12.5)

We call P the momentum form.

It is convenient, at this point, to redefine the position and momentum forms by

lowering their indices using the metric g at the point y. Hence, further on we have

Q = Qµν and P = Pµν . Clearly, by construction, we have

Q,P ∈ C∞(Ty(t);⊗2
sT
∗Ty(t)).

Our Q and P are natural candidates for metrics on Ty(t). This turns out not to be

the case: Q and P are pseudometrics but not necessarily metrics. However, their

sum is a metric.

Theorem 2.30. Let a and b be positive parameters. Then the linear combination of

the position and momentum forms

ah2Q+ bP ∈ C∞(Ty(t);⊗2
sT
∗Ty(t)) (2.12.6)

is a metric.
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The h in the above formula stands for h(y, η). This factor has been introduced

so that both terms have the same degree of homogeneity (zero) in η.

Proof. Our Q and P are symmetric and can be written as Q = qT g q, P = pT g p,

which implies that they are non-negative. To prove that their linear combination

ah2Q + bP = ah2qT g q + b pT g p is a metric we only need show that it is non-

degenerate. Choosing normal geodesic coordinates x centred at x∗(t; y, η), it is easy

to see that v ∈ T(x∗(η),ξ∗(η))Ty(t) is in the null space of ah2Q + bP if and only if v[

satisfies

[x∗(η)]αηµ vµ = 0 and [ξ∗α(η)]ηµ vµ = 0 . (2.12.7)

Since the Hamiltonian flow is non-degenerate, i.e. it preserves the tautological 1-

form, the two conditions (2.12.7) cannot be simultaneously fulfilled unless v = 0.

Therefore, ah2Q+ bP is non-degenerate.

The metric ah2Q+ bP is closely related to ϕxη along the flow: condition (iii) in

Definition 2.1 translates, in geometric terms, into the statement that the intersection

of null spaces of Q and P is the zero subspace. The weight w becoming degenerate

in the case of a real-valued phase function corresponds, in this geometric picture, to

Q and P separately not being metrics. We will show this below for the case of the

2-sphere, as an explicit example.

Before moving to that, let us make the aforementioned relation between Q, P on

the one hand and ϕxη on the other mathematically precise.

Theorem 2.31. We have

ϕxαηµ
∣∣
x=x∗

= gαβ(x∗)
[
pβµ − i ε h qβµ

]
. (2.12.8)

Proof of Theorem 2.31. The identity (2.12.8) is established by comparing (2.4.4)

with (2.12.2) and (2.12.4).

Example 2.32 (Position and momentum forms for S2). With the notation of Sec-
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tion 2.11, the quantities q and p defined by formulae (2.12.2) and (2.12.4) read

qαµ =
2 tan(t/2)

‖η‖3

 η2
2 −η1η2

−η1η2 η2
1

 ,

pαµ =
1

cos2(t/2) ‖η‖2

 η2
1 + η2

2 cos(t) η1η2(1− cos(t))

η1η2(1− cos(t)) η2
2 + η2

1 cos(t)

 .

Consequently, the position and momentum forms are given by

Qµν =
sin2(t)

‖η‖4

 η2
2 −η1 η2

−η1 η2 η2
1

 , Pµν =
1

‖η‖2

η2
1 + η2

2 cos2(t) η1 η2 sin2(t)

η1 η2 sin2(t) η2
2 + η2

1 cos2(t)

 .

We have detQ = 0 and detP = cos2(t). This implies that P , which is associated

with the real part of (2.4.4) via (2.12.8) and (2.12.5), becomes degenerate for t =

π/2. However, for the full metric h2Q + P we have in chosen local coordinates

h2Qµν + Pµν = δµν , so that that the full metric h2Q + P is non-degenerate for all

t ∈ R. This example is remarkable in that the metric (2.12.6) with a = b = 1 does

not depend on t.
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Chapter 3

The massless Dirac propagator

3.1 Statement of the problem

Let (M, g) be a connected oriented closed Riemannian 3-manifold. We denote by ∇

the Levi-Civita connection, by Γαβγ the Christoffel symbols and by

ρ(x) :=
√
gαβ(x) (3.1.1)

the Riemannian density.

Let ej , j = 1, 2, 3, be a positively oriented global framing, i.e. a set of three

orthonormal smooth vector fields1 whose orientation agrees with the orientation of

the manifold. In chosen local coordinates xα, α = 1, 2, 3, we will denote by ejα the

α-th component of the j-th vector field. Throughout this Chapter we use Greek

letters for holonomic (tensor) indices and Latin for anholonomic (frame) indices. We

adopt Einstein’s convention of summation over repeated indices.

Let

s1 :=

0 1

1 0

 = s1 , s2 :=

0 −i

i 0

 = s2 , s3 :=

1 0

0 −1

 = s3 (3.1.2)

be the standard Pauli matrices and let

σα := sj ej
α (3.1.3)

be their projection along the framing. The quantity σα is a vector-function with

values in the space of trace-free Hermitian 2× 2 matrices.
1Observe that an orientable 3-manifold is automatically parallelisable [74, 110].
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Definition 3.1. We call massless Dirac operator the operator

W := −iσα
(

∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+ Γβαγ σ

γ

))
: H1(M ;C2)→ L2(M ;C2). (3.1.4)

Here H1 is the usual Sobolev space of functions which are square integrable together

with their first partial derivatives.

In theoretical physics the massless Dirac equation is often referred to as the Weyl

equation, which explains our notation. Henceforth, we refer to the massless Dirac

operator simply as the Dirac operator, which conforms with the terminology adopted

in differential geometry.

Remark 3.2. The Dirac operator admits several equivalent definitions. The most

common is the geometric definition written in terms spinor bundles. Our analytic

Definition 3.1 is equivalent to the standard geometric one, see [54, Appendix B].

Definition 3.1 depends on the choice of framing and this issue requires clarifica-

tion.

Let

G : M → SU(2) (3.1.5)

be an arbitrary smooth special unitary matrix-function and let W̃ be the Dirac

operator corresponding to a given framing. Consider the transformation

W̃ 7→ G∗W̃G := W, (3.1.6)

where the star indicates Hermitian conjugation. It turns out that W is also a Dirac

operator, only corresponding to a different framing.

Let us now look at the matter the other way round. Suppose that W̃ and W are

two Dirac operators. Does there exist a smooth matrix-function (3.1.5) such that

W = G∗W̃G ? If the operators W̃ and W are in a certain sense ‘close’ then the

answer is yes, but in general there are topological obstructions and the answer is no.

This motivates the introduction of the concept of spin structure, see Chapter 4.

The gauge transformation (3.1.5), (3.1.6) is the manifestation, at operator level,

of the freedom of pointwise rotating the framing in a smooth way,

ẽj 7→ Oj
k ẽk =: ej , O ∈ C∞(M ; SO(3)), (3.1.7)



3.1. Statement of the problem 85

via the double cover

SU(2)
2:1→ SO(3).

The Dirac operator (3.1.4) is uniquely determined by the metric and spin struc-

ture modulo an SU(2) gauge transformation.

The Dirac operator is symmetric with respect to the L2 inner product

〈u, v〉 :=

∫
M
u∗v ρdx , u, v ∈ L2(M ;C2), (3.1.8)

where dx = dx1dx2dx3. Furthermore, a simple calculation shows that it is elliptic2.

It is known that the Dirac operator is self-adjoint and its spectrum is discrete,

accumulating to +∞ and to −∞. Let λk be the eigenvalues of W and vk the corre-

sponding orthonormal eigenfunctions, k ∈ Z. The choice of particular enumeration

is irrelevant for our purposes, but what is important is that eigenvalues are enumer-

ated with account of their multiplicity. Note that the Dirac operator has the special

property that it commutes with the antilinear operator of charge conjugation

v =

v1

v2

 7→
−v2

v1

 =: C(v),

see [42, Appendix A] for details, and this implies that eigenvalues have even multi-

plicity.

Definition 3.3. We define the Dirac propagator as

U(t) := e−itW . (3.1.9)

The Dirac propagator is the (distributional) solution of the hyperbolic Cauchy

problem (
−i ∂

∂t
+W

)
U = 0 , (3.1.10a)

U(0) = Id . (3.1.10b)

It is a time-dependent unitary operator which can written via functional calculus as

U(t) =
∑
λk

e−itλk vk 〈vk , · 〉. (3.1.11)

2Ellipticity means that the determinant of the principal symbol does not vanish on T ∗M \ {0}.
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The Dirac propagator can be written as a sum of three operators

U(t) = U+(t) + U0 + U−(t) (3.1.12)

defined as

U+(t) :=
∑
λk>0

e−itλk vk 〈vk , · 〉, (3.1.13a)

U0 :=
∑
λk=0

vk 〈vk , · 〉, (3.1.13b)

U−(t) :=
∑
λk<0

e−itλk vk 〈vk , · 〉. (3.1.13c)

We call the operators (3.1.13a), (3.1.13b) and (3.1.13c) positive, zero mode and neg-

ative propagators, respectively. These are time-dependent partial isometries. Note

that the operator U0 is nontrivial only if the Dirac operator has zero modes (i.e. if

zero is an eigenvalue).

We define the positive (+) and negative (−) local counting functions as

N±(y;λ) :=


0 for λ ≤ 0,∑

0<±λk<λ[vk(y)]∗ vk(y) for λ > 0.

(3.1.14)

Of course, integration over M gives

N±(λ) :=

∫
M
N±(y;λ) ρ(y) dy =


0 for λ ≤ 0,∑

0<±λk<λ 1 for λ > 0.

(3.1.15)

The functions (3.1.15) are the ‘global’ counting functions, the only difference with

the usual definition [104] being that we count the positive and negative eigenvalues

separately.

Let µ̂ : R → C be a smooth function such that µ̂ = 1 in some neighbourhood

of the origin and supp µ̂ is sufficiently small. Here ‘sufficiently small’ means that

supp µ̂ ⊂ (−T0, T0), where T0 is the infimum of lengths of all the geodesic loops

originating from all the points of the manifold.

Following the notation set out in Chapter 2, we write the Fourier transform as

Fλ→t[f ](t) = f̂(t) =

∫ +∞

−∞
e−itλf(λ) dλ (3.1.16)
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and the inverse Fourier transform as

F−1
t→λ[f̂ ](λ) = f(λ) =

1

2π

∫ +∞

−∞
eitλf̂(t) dt. (3.1.17)

Accordingly, we put µ := F−1[µ̂].

It is known [51, 68, 69, 70, 104] that the mollified derivative of the positive

(resp. negative) counting function admits a complete asymptotic expansion in integer

powers of λ:

(N ′± ∗ µ)(y, λ) = c±2 (y)λ2 + c±1 (y)λ+ c±0 (y) + . . . as λ→ +∞. (3.1.18)

Here ∗ stands for the convolution in the variable λ.

Definition 3.4. We call local Weyl coefficients the smooth functions c±k (y) appearing

in the asymptotic expansions (3.1.18).

Remark 3.5. (i) Our definition of Weyl coefficients does not depend on the choice

of mollifier µ. If µ̃ is another mollifier with the same support properties, then

(N ′± ∗ µ)(y, λ)− (N ′± ∗ µ̃)(y, λ) = O(λ−∞) as λ→ +∞.

(ii) Our definition of Weyl coefficients is, in a sense, unusual. The standard conven-

tion in the literature is to call local Weyl coefficients the functions appearing in

the asymptotic expansion of the mollified counting function N ∗ µ, as opposed

to its derivative. The two definitions are, effectively, the same up to integrating

factors,

(N± ∗ µ)(y, λ) =

∫ λ

−∞
(N ′± ∗ µ)(y, κ) dκ

=
1

3
c±2 (y)λ3 +

1

2
c±1 (y)λ2 + c±0 (y)λ+ . . . as λ→ +∞, (3.1.19)

compare (3.1.18) with (3.1.19). As a matter of convenience, we will stick with

Definition 3.4 throughout this Chapter.

(iii) It was shown in [42] that

c±2 (y) =
1

2π2
, c±1 (y) = 0. (3.1.20)
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(iv) The unmollified counting functions N±(y, λ) also admit asymptotic expansions

as λ→ +∞, but here the situation is more delicate because these functions are

discontinuous and one encounters number-theoretic issues. It is known [41, 42]

that

N±(y, λ) =
1

6π2
λ3 +O(λ2) as λ→ +∞ (3.1.21)

uniformly over y ∈ M and, furthermore, under appropriate assumptions on

geodesic loops,

N±(y, λ) =
1

6π2
λ3 + o(λ2) as λ→ +∞. (3.1.22)

(v) An important topic in the spectral theory of first order elliptic systems is the

issue of spectral asymmetry [2, 3, 4, 5]. Let us mention that to observe spec-

tral asymmetry for our Dirac operator one as to go as far as the sixth Weyl

coefficients. This follows from the fact that the eta function

η(s) :=
∑
λk 6=0

sgnλk
|λk|s

=

∫ +∞

0
λ−s(N ′+(λ)−N ′−(λ)) dλ

is holomrphic in the complex half-plane Re s > −2 [22, 60] and has its first pole

at s = −2. The value of the residue of the eta function at s = −2, which was

computed explicitly by Branson and Gilkey [27], describes the difference∫
M

(c+
−3(y)− c−−3(y)) ρ(y) dy

between the sixth (global) Weyl coefficients.

This Chapter has two main objectives.

Objective 1 Construct the propagators U±(t) explicitly, modulo integral opera-

tors with infinitely smooth kernels, and do so as a single invariantly defined oscillatory

integral global in space and in time.

Objective 2 Compute the third Weyl coefficient c±0 (y).

Remark 3.6. One cannot, in general, identify the third Weyl coefficient by looking at

the asymptotic behaviour of the unmollified counting function. In order to illustrate
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this point, let us consider the 3-torus equipped with standard flat metric. Already

in this simple case the mathematical statement

N±(y, λ) =
1

6π2
λ3 + c±0 (y)λ+ o(λ) as λ→ +∞ (3.1.23)

is false. This fact can be established by writing down the eigenvalues explicitly as in

[42, Appendix B] and using standard results [65] from analytic number theory.

3.2 Main results

The study of Dirac operators, arguably the most important operators from the point

of view of physical applications alongside the Laplacian, has a long and noble history

in the mathematical literature. Excellent introductions to the topic can be found in

[79] and [58].

Due to its physical significance, a lot of attention has been attracted by the

spectrum of Dirac operators on Riemannian manifolds and numerous researchers have

contributed to our current understanding of the topic. One can ask, for example, how

the eigenvalues behave under perturbations of the metric [25, 54], how the spectrum

depends on the spin structure [12], whether zero modes exist [10], et cetera.

In the second part of this Chapter, we will be concerned with the study of the

asymptotic behaviour of large (in modulus) eigenvalues of the massless Dirac operator

on a closed 3-manifold. In the case of scalar elliptic operators, such as for example

the Laplace–Beltrami operator, a wide range of classical techniques are available in

the literature to compute spectral asymptotics. However, if one is interested in a

first order system, whose spectrum is, in general, not semi-bounded, the heat kernel

method can no longer be applied, at least in its original form, and even resolvent

techniques require major modification [9]. This is why for the Dirac operator — and

for non-semibounded operators in general — the so-called wave method described in

the previous Chapter, which consists in recovering information about the eigenvalue

counting function from the small time behaviour of the wave propagator, is even

more natural.

Our goal is to construct the positive and negative Dirac propagators explicitly,

in a global — i.e., as a single oscillatory integral — and invariant (under change of

coordinates and gauge transformations) fashion.
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Our work partly builds upon [41] and [42]. In [41], using the wave method,

Chervova, Downes and Vassiliev obtained an explicit formula for the second Weyl

coefficient of an elliptic self-adjoint first order pseudodifferential matrix operator,

fixing thirty years of incorrect or incomplete publications in the subject, see [41,

Section 11]. In [42] the same authors applied the results from [41] to the massless

Dirac operator. Unlike in this thesis, the approach from [41] is not geometric in

nature and complex-valued phase functions do not appear. Note that some results

from [42] were improved by Strohmaier and Li in [83], where the authors studied the

second term of the mollified spectral counting function of Dirac type operators and

characterised the operators in this class with vanishing second Weyl coefficient.

A fully geometric global construction of the (scalar) wave propagator e−it
√
−∆

on closed Riemannian manifolds, as a single oscillatory integral with complex-valued

phase function, was the subject of Chapter 2, and has recently been extended to the

Lorentzian setting by the author and collaborators in [32].

Our main results are as follows.

1. We present a global construction of each of the two propagators, the positive

propagator U+(t) and the negative propagator U−(t), as a single invariantly

defined oscillatory integral, global in space and in time, with distinguished

complex-valued phase function (Theorem 3.9). We provide a closed formula for

the principal symbols of the propagators (Theorem 3.26) and an algorithm for

the calculation of the subprincipal symbols and all asymptotic components of

the amplitude of lower degree of homogeneity in momentum (subsection 3.3.3).

2. We give an explicit small time expansion of principal and subprincipal symbols

of positive and negative propagators in terms of geometric invariants (Theo-

rem 3.38).

3. We compute the third local Weyl coefficients in the asymptotic expansion of

the two eigenvalue counting functions (3.1.14) (Theorem 3.39).

Along the way, we prove a number of results about general first order elliptic

systems and invariant representations of pseudodifferential operators on manifolds.
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This Chapter is structured as follows.

In Section 3.3 we characterise positive and negative propagators for a general

first order elliptic self-adjoint (pseudo)differential matrix operator A in terms of the

eigenvalues of Aprin. Then, we explain how to construct them explicitly as a finite

sum of oscillatory integrals global in space and time.

In Section 3.4 we deal with the delicate issue of invariant descriptions of pseu-

dodifferential operators acting on scalar functions. In particular, we examine the

relation between the g-subprincipal symbol and the standard notion of subprincipal

symbol for operators acting on half-densities.

In Section 3.5 we apply the results from Section 3.3 to the massless Dirac operator.

A formula for the principal symbol of positive and negative Dirac propagators is

provided in Section 3.6, whereas small time expansions for principal and subprincipal

symbols of positive and negative propagators are obtained in Section 3.7. Our final

results are expressed in terms of geometric invariants: the curvature of the Levi-

Civita connection associated with the metric g and the torsion of the Weitzenböck

connection generated by the framing defining the Dirac operator.

In Section 3.8 we use the results from Section 3.7 to compute the third local Weyl

coefficients for the massless Dirac operator.

Finally, in Section 3.9 we apply our techniques to two explicit examples: M = S3,

where formulae are isotropic in momentum, and M = S2 × S1, where they are not.

3.3 Preliminary results for general first order systems

In this section we will consider a broader class of first order systems and we will

prove fairly general results, which will be later applied to the special case of the

Dirac operator. In doing so, we will need some of the technology developed in

[41]. The setting of our analysis is somewhat different from that in [41], in that our

operators are differential, as opposed to pseudodifferential (see also Remark 3.14),

and act on scalar functions on a Riemannian manifold, as opposed to half-densities

on a manifold with no metric structure. In particular, the change in the domain

of the operator raises delicate issues concerning the invariance of the mathematical

objects involved. For these reasons we provide here a modified version of some of
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the results from [41], adapted to our setting.

Throughout this section, M will be a smooth connected closed Riemannian man-

ifold of dimension d ≥ 2.

Let A be an elliptic symmetric first orderm×mmatrix differential operator acting

on m-columns of smooth complex-valued scalar functions v ∈ C∞(M ;Cm) and let

Aprin : T ′M → Herm(m,C) be the principal symbol of A, where T ′M := T ∗M \ {0}

and Herm(m,C) is the real vector space of m×m Hermitian matrices.

We denote by h(j)(x, ξ) the eigenvalues of Aprin(x, ξ) enumerated in increasing

order, with positive index j = 1, 2, . . . ,m+ for positive h(j)(x, ξ) and negative index

j = −1,−2, . . . ,−m− for negative h(j)(x, ξ). We assume that the eigenvalues of the

principal symbol Aprin are simple. Clearly, m = m+ + m−, because the ellipticity

condition detAprin(x, ξ) 6= 0 ensures that all eigenvalues are nonzero. In fact, as our

operator is differential, one can show [56, Remark 2.1] that m can only be even and

that we have

m+ = m− =
m

2
. (3.3.1)

Furthermore, the eigenvalues h(j) of the principal symbol and the corresponding

normalised eigenvectors v(j) possess the symmetry

h(−j)(x, ξ) = −h(j)(x,−ξ), v(−j)(x, ξ) = v(j)(x,−ξ), j = 1, . . . ,
m

2
. (3.3.2)

Under the above assumptions the spectrum of A is discrete and accumulates to

+∞ and to −∞. We denote eigenvalues and orthonormalised eigenfunctions of A by

λk and vk, respectively, enumerated with account of their multiplicity.

By replacing W with A, one can define the ‘full’ propagator UA(t) for A via

(3.1.11), as well as the positive, zero mode and negative propagators via (3.1.13a)–

(3.1.13c), which we denote by U+
A (t), U0

A and U−A (t), respectively.

Each eigenvalue h(j)(x, ξ) of the principal symbol can be interpreted as a Hamil-

tonian on the cotangent bundle. The corresponding Hamiltonian flow

(x(j)(t; y, η), ξ(j)(t; y, η)),

i.e. the (global) solution to Hamilton’s equations

ẋ(j) = h
(j)
ξ (x(j), ξ(j)), ξ̇(j) = −h(j)

x (x(j), ξ(j))
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with initial condition (x(j)(0; y, η), ξ(j)(0; y, η)) = (y, η), generates a Lagrangian man-

ifold to which one can, in turn, associate a global Lagrangian distribution. See Sec-

tion 2.2 and references therein for details. In particular, the singularities of the

solution to the initial value problem

(−i∂t +A)v = 0, v|t=0 = v0 (3.3.3)

propagate along Hamiltonian trajectories generated by the eigenvalues of Aprin.

3.3.1 Positive and negative propagators: an abstract approach

Our aim is to show that U+
A (t) and U−A (t) can be separately approximated by a finite

sum of global oscillatory integrals. Before doing so, let us state and prove an abstract

preparatory theorem.

Notation 3.7. Let

v ∈ C∞(R×Mx ×My), (λ, x, y) 7→ v(λ, x, y).

We write

v = O(|λ|−∞) as λ→ ±∞ (3.3.4)

if for every α > 0, every k ∈ N and every linear partial differential operator P with

infinitely smooth coefficients of order k on Mx ×My there exists a positive constant

Cα,P such that

|Pv| ≤ Cα,P |λ|−α for ± λ > 1 , (3.3.5)

uniformly over Mx ×My .

Theorem 3.8. Let (T−, T+) ⊆ R be an open interval (possibly, the whole real line)

and let u+(t, x, y), u−(t, x, y), ũ+(t, x, y) and ũ−(t, x, y) be elements of C∞(Mx ×

My;D′(T−, T+)), satisfying

(a) u+(t, x, y) + u−(t, x, y) = ũ+(t, x, y) + ũ−(t, x, y) mod C∞((T−, T+) ×Mx ×

My) .

Furthermore, assume that for every ζ ∈ C∞0 (T−, T+) we have

(b) F−1
t→λ[ζ u±] = O(|λ|−∞) as λ→ ∓∞,
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(c) F−1
t→λ[ζ ũ±] = O(|λ|−∞) as λ→ ∓∞.

Then

u±(t, x, y) = ũ±(t, x, y) mod C∞((T−, T+)×Mx ×My). (3.3.6)

Proof. Let ζ ∈ C∞0 (T−, T+). Multiplying (a) by ζ(t) we get

ζ(t)u+(t, x, y) + ζ(t)u−(t, x, y) = ζ(t) ũ+(t, x, y) + ζ(t) ũ−(t, x, y)

mod C∞0 (R×Mx ×My). (3.3.7)

Applying the inverse Fourier transform F−1
t→λ to (3.3.7), letting λ → +∞ and using

assumptions (b) and (c) we obtain

F−1
t→λ[ζ u+] = F−1

t→λ[ζ ũ+] +O(|λ|−∞) as λ→ +∞. (3.3.8)

Here, when dealing with the remainder from (3.3.7), we used the fact that the Fourier

transform of a compactly supported smooth function is rapidly decreasing. The

compactness of M ensures a uniform estimate in the spatial variables.

Furthermore, (b) and (c) immediately imply

F−1
t→λ[ζ u+] = F−1

t→λ[ζ ũ+] +O(|λ|−∞) as λ→ −∞. (3.3.9)

Combining (3.3.8) and (3.3.9) we arrive at

F−1
t→λ[ζ (u+ − ũ+)] = O(|λ|−∞) as |λ| → +∞, (3.3.10)

which implies

ζ (u+ − ũ+) ∈ C∞(R×Mx ×My). (3.3.11)

As ζ ∈ C∞0 (T−, T+) in the above formula is arbitrary, we conclude that

u+ − ũ+ ∈ C∞((T−, T+)×Mx ×My). (3.3.12)

A similar argument gives

u− − ũ− ∈ C∞((T−, T+)×Mx ×My). (3.3.13)
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3.3.2 Construction of positive and negative propagators

Theorem 3.9. The positive and negative propagators can be written, modulo an

infinitely smoothing operator, as a finite sum of oscillatory integrals, global in space

and in time. More precisely, we have

U+
A (t)

mod Ψ−∞
=

m+∑
j=1

U
(j)
A (t), (3.3.14)

U−A (t)
mod Ψ−∞

=
m−∑
j=1

U
(−j)
A (t), (3.3.15)

where

U
(j)
A (t) :=

1

(2π)d

∫
T ′M

eiϕ
(j)(t,x;y,η) a(j)(t; y, η)χ(j)(t, x; y, η)w(j)(t, x; y, η) ( · ) ρ(y) dy dη

(3.3.16)

and

• by mod Ψ−∞
= we mean that the operator on the LHS is equal to the operator on

the RHS up to an integral operator with infinitely smooth integral kernel;

• the phase function ϕ(j) ∈ C∞(R×M × T ′M ;C) satisfies

(i) ϕ(j)
∣∣
x=x(j)

= 0,

(ii) ϕ
(j)
xα

∣∣∣
x=x(j)

= ξ
(j)
α ,

(iii) detϕ
(j)
xαηβ

∣∣∣
x=x(j)

6= 0,

(iv) Imϕ(j) ≥ 0;

• the symbol a(j) ∈ S0
ph(R× T ′M ; Mat(m;C)) is an element in the class of poly-

homogeneous symbols of order zero with values in m × m complex matrices,

which means that a(j) admits an asymptotic expansion in components positively

homogeneous in momentum,

a(j)(t; y, η) ∼
+∞∑
k=0

a
(j)
−k(t; y, η), a

(j)
−k(t; y, α η) = α a

(j)
−k(t; y, η) ∀α > 0;

(3.3.17)

• the function χ(j) ∈ C∞(R×M × T ′M) is a cut-off satisfying

(I) χ(j)(t, x; y, η) = 0 on {(t, x; y, η) | |h(j)(y, η)| ≤ 1/2},
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(II) χ(j)(t, x; y, η) = 1 on the intersection of {(t, x; y, η) | |h(j)(y, η)| ≥ 1} with

some conical neighbourhood of {(t, x(j)(t; y, η); y, η)},

(III) χ(j)(t, x; y, α η) = χ(j)(t, x; y, η) for α ≥ 1 on {(t, x; y, η) | |h(j)(y, η)| ≥ 1};

• the weight w(j) is defined by

w(j)(t, x; y, η) := [ρ(x) ρ(y)]−
1
2

[
det2(ϕ

(j)
xαηβ

)
] 1

4
, (3.3.18)

where the smooth branch of the complex root is chosen in such a way that

w(0, y; y, η) = [ρ(y)]−1.

Remark 3.10. Note that the weight w(j) is the inverse of a smooth density in the

variable y and a smooth scalar function in all other variables. The powers of the

Riemannian density ρ in (3.3.18) are chosen in such a way that the symbol a(j) and

the integral kernel

u(j)(t, x, y) :=
1

(2π)d

∫
T ′yM

eiϕ
(j)(t,x;y,η) a(j)(t; y, η)χ(j)(t, x; y, η)w(j)(t, x; y, η) dη

(3.3.19)

of the operator (3.3.16) are scalar functions in all variables. The fact that the symbol

is a genuine scalar function on R× T ′M is a crucial feature of our construction.

Taking the square and then extracting the fourth root in (3.3.18) serves the

purpose of making the weight invariant under inversion of a single coordinate xα

or a single coordinate yα. Note, however, that if one works on an orientable and

oriented manifold, then one can simplify (3.3.18) to read

w(j)(t, x; y, η) = [ρ(x) ρ(y)]−
1
2

[
detϕ

(j)
xαηβ

] 1
2
. (3.3.20)

Remark 3.11. The existence of a phase function satisfying conditions (i)–(iv) is a

nontrivial matter. In fact, the space of phase function satisfying these conditions is

nonempty and path-connected, see [77, Lemmata 1.4 and 1.7].

Proof of Theorem 3.9. Suppose that we have constructed the symbols a(j) appearing

in the oscillatory integrals (3.3.16) so that

ŨA(t) :=
∑
j

U
(j)
A (t) =

m+∑
j=1

U
(j)
A (t) +

m−∑
j=1

U
(−j)
A (t) (3.3.21)
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satisfies (
−i ∂

∂t
+A

)
ŨA(t)

mod Ψ−∞
= 0 , (3.3.22a)

ŨA(0)
mod Ψ−∞

= Id . (3.3.22b)

How to achieve this will be explained in subsection 3.3.3.

Put

ũ+(t, x, y) :=

m+∑
j=1

u(j)(t, x, y), (3.3.23)

ũ−(t, x, y) :=

m−∑
j=1

u(−j)(t, x, y), (3.3.24)

so that the Schwartz kernel of the operator ŨA(t) reads

ũ(t, x, y) = ũ+(t, x, y) + ũ−(t, x, y). (3.3.25)

Let u(t, x, y), u+(t, x, y) and u−(t, x, y) be the Schwartz kernels of the operators

UA(t), U+
A (t), and U−A (t), respectively.

Formulae (3.3.22a) and (3.3.22b) imply

u(t, x, y) = ũ(t, x, y) mod C∞(R×Mx ×My; Mat(m,C)). (3.3.26)

This fact can be established as follows.

Let

u∞(t, x, y) := u(t, x, y)− ũ(t, x, y). (3.3.27)

From the construction algorithm, we know that[(
−i ∂

∂t
+A(x)

)
u∞

]
(t, x, y) = f(t, x, y), (3.3.28)

u∞(0, x, y) = ζ(x, y), (3.3.29)

where f ∈ C∞(R×Mx ×My; Mat(m,C)) and ζ ∈ C∞(Mx ×My; Mat(m,C)). Here

the superscript in A(x) indicates that the differential operator A acts in the variable x.

Using functional calculus, we can write the functions u∞, f and ζ in terms of the

eigenfunctions of A as

u∞(t, x, y) =
∑
j,k

ajk(t) vj(x) [vk(y)]∗, (3.3.30)
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f(t, x, y) =
∑
j,k

bjk(t) vj(x) [vk(y)]∗, (3.3.31)

ζ(x, y) =
∑
j,k

cjk vj(x) [vk(y)]∗. (3.3.32)

Here the smooth functions bjk and the constants cjk are given, whereas the functions

ajk are our unknowns. Substituting (3.3.30)–(3.3.32) into (3.3.28), (3.3.29) we obtain

the family of first order ODEs[(
−i d

dt
+ λj

)
ajk

]
(t) = bjk(t), (3.3.33)

ajk(0) = cjk, (3.3.34)

whose solutions are

ajk(t) = e−iλjt
(
cjk + i

∫ t

0
eiλjs bjk(s) ds

)
. (3.3.35)

Straightforward integration by parts and the fact that λk ∼ k1/d when k →∞ allow

one to conclude that aj,k decay faster than any power of j and k as j, k → ∞.

This implies that the series on the RHS of (3.3.30) defines a function u∞ which is

smooth in all variables. So we arrive at (3.3.26), which gives us assumption (a) in

Theorem 3.8 with (T−, T+) = R.

Resorting to standard stationary phase arguments — see, e.g., [104, Appendix C]

– and using the properties (i)–(iv) of our phase functions, it is easy to see that u±

and ũ± satisfy assumptions (b) and (c) of Theorem 3.8. Hence, Theorem 3.8 gives

us (3.3.14) and (3.3.15).

The fact that the construction is global in time is guaranteed by [77, Lemma 1.2].

Remark 3.12. If one is prepared to give up globality in time, Theorem 3.9 and

the corresponding proof can be adapted in a straightforward manner to the more

customary case of real-valued — as opposed to complex-valued — phase functions.

This is achieved by prescribing the phase functions to take values in R, dropping

condition (iv) and replacing everywhere in the statement and in the proof the time

domain R with the interval (T−, T+), where

T+ := min
j

inf{t > 0 | detϕ
(j)
xαηβ

∣∣∣
x=x(j)

= 0, (y, η) ∈ T ′M} , (3.3.36)
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T− := max
j

sup{t < 0 | detϕ
(j)
xαηβ

∣∣∣
x=x(j)

= 0, (y, η) ∈ T ′M} . (3.3.37)

The values of T± depend on the choice of particular real-valued phase functions, but

we always have T− < 0 < T+ . Observe that Theorem 3.8 was formulated in such a

way that it covers both the case of real-valued and complex-valued phase functions.

The reader will have noticed that the zero mode propagator U0
A does not appear

in our construction. This is due to the fact that, clearly,

U0
A

mod Ψ−∞
= 0.

We end this subsection with the observation that, thanks to the presence of the

weight w(j) in formula (3.3.16), the scalar matrix-function a
(j)
0 does not depend on

the choice of the phase functions ϕ(j). This motivates the following definition.

Definition 3.13. We call a(j)
0 the principal symbol of the Fourier integral operator

(3.3.16).

The above definition agrees with the standard definition of principal symbol of

a Fourier integral operator expressed as a section of the Keller–Maslov bundle, see

[77, subsection 2.4].

3.3.3 The algorithm

The integral kernel (3.3.19) of U (j)
A (t) can be constructed explicitly as follows.

Step 1. Choose a phase function ϕ(j) compatible with Theorem 3.9. We will see

later on that for the special case of the Dirac operator we can identify distinguished

phase functions, the Levi-Civita phase functions. Furthermore, set χ(j) ≡ 1. In fact,

the purpose of the cut-off is to localise integration in a neighbourhood of the h(j)-flow

and away from the zero section: different choices of χ(j) result in oscillatory integrals

differing by an infinitely smooth function.

Step 2. Act with the operator −i∂t + A(x) on the oscillatory integral (3.3.19).

This produces a new oscillatory integral

1

(2π)d

∫
T ′yM

eiϕ
(j)(t,x;y,η) a(j)(t, x; y, η)χ(j)(t, x; y, η)w(j)(t, x; y, η) dη (3.3.38)
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whose amplitude a(j) ∈ C∞(R×M × T ′M ; Mat(m,C)) is given by

a(j) := e−iϕ
(j)

[w(j)]−1
(
−i∂t +A(x)

)(
eiϕ

(j)
a(j)w(j)

)
. (3.3.39)

By making use of the fact that ϕ(j) and w(j) are positively homogeneous in

momentum η of degree 1 and 0, respectively, one can write down an asymptotic ex-

pansion for the amplitude a(j) in components positively homogeneous in momentum:

a(j)(t, x; y, η) ∼
+∞∑
k=−1

a
(j)
−k(t, x; y, η), a

(j)
−k(t, x; y, α η) = α−k a

(j)
−k(t, x; y, η), ∀α > 0.

(3.3.40)

Step 3. As u(j)(t, x, y) is to be the (distributional) solution of the hyperbolic

equation

(−i∂t +A(x))u(j)(t, x, y)
mod C∞

= 0,

one would like to impose the condition a(j)(t, x, y, η) = 0. However, the amplitude

a(j), unlike the symbol a(j), depends on x, and doing so would result in an unsolv-

able system of partial differential equations (PDEs). The current step consists in

excluding the dependence of a(j) on x by means of a procedure known as reduction

of the amplitude, to the end of reducing the system of PDEs to a system of ordinary

differential equations, instead.

Put

L(j)
α :=

[
(ϕ(j)

xη )−1
]
α

β ∂

∂xβ
(3.3.41)

and define

S
(j)
0 := ( · )|x=x(j) , (3.3.42a)

S
(j)
−k := S

(j)
0

i [w(j)]−1 ∂

∂ηβ
w(j)

1 +
∑

1≤|α|≤2k−1

(−ϕ(j)
η )α

α! (|α|+ 1)
L

(j)
α

L
(j)
β

k ,
(3.3.42b)

where α ∈ Nd, |α| =
∑d

j=1 αj and (−ϕ(j)
η )α := (−1)|α| (ϕ

(j)
η1 )α1 . . . (ϕ

(j)
ηd )αd . The

operator (3.3.42b) is well defined, because the differential operators L(j)
α commute.

Furthermore, the operators S
(j)
−k are invariant under change of local coordinates x

and y.
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The amplitude-to-symbol operator is defined as

S(j) : C∞(R×M × T ′M)→ C∞(R× T ′M) ,

S(j) :=

∞∑
j=0

S
(j)
−k . (3.3.43)

When acting on a function positively homogeneous in momentum, the operator

S
(j)
−k excludes the dependence on x and decreases the degree of homogeneity by k.

The reduction of the amplitude is achieved by replacing the amplitude a(j) in

(3.3.38) by

S(j)a(j) =: b(j), (3.3.44)

with

b(j)(t; y, η) ∼
+∞∑
k=−1

b
(j)
−k(t; y, η) , b

(j)
−k =

∑
l+s=k

S
(j)
−l a

(j)
−s .

The oscillatory integral

1

(2π)d

∫
T ′yM

eiϕ
(j)(t,x;y,η) b(j)(t; y, η)χ(j)(t, x; y, η)w(j)(t, x; y, η) dη (3.3.45)

differs from (3.3.38) only by an infinitely smooth function.

We remind the reader that further particulars and detailed proofs concerning the

amplitude-to-symbol operator were provided in Section 2.6.

Step 4. Set

b
(j)
−k = 0, k = −1, 0, 1, . . . . (3.3.46)

Equations (3.3.46), combined with the initial conditions stemming from the con-

straint ∑
j

U (j)(0)
mod Ψ−∞

= Id, (3.3.47)

yield a hierarchy of (matrix) transport equations for the homogeneous components

a
(j)
−k.

Let us make a few remarks warranted by formula (3.3.47).

The m oscillatory integrals appearing on the RHS of (3.3.14) and (3.3.15) are not

independent of one another, but they ‘mix’ at t = 0 via the initial condition (3.3.47).
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Now, satisfying (3.3.47) involves representing the identity operator on C∞(M ;Cm)

in a somewhat nonstandard fashion, as

Id
mod Ψ−∞

=∑
j

1

(2π)d

∫
T ′M

eiϕ
(j)(0,x;y,η) s(j)(y, η)χ(j)(0, x; y, η)w(j)(0, x; y, η) ( · ) ρ(y) dy dη,

(3.3.48)

with s(j) ∈ S0
ph(T ′M ; Mat(m;C)).

In terms of the symbols a(j), the initial condition (3.3.47) reads

a(j)(0; y, η) = s(j)(y, η). (3.3.49)

From the fact that the principal symbol of the identity operator is the identity matrix

it follows that ∑
j

a
(j)
0 (0; y, η) =

∑
j

s
(j)
0 (y, η) = 1m×m. (3.3.50)

Furthermore, one can show that

s
(j)
0 (y, η) = v(j)(y, η) [v(j)(y, η)]∗.

However, obtaining formulae for subleading components s(j)
−1 is already a challenging

task, see [41, subsection 4.2]. In general, lower order components of s(j) depend in

a nontrivial manner on the eigenvalues and eigenprojections of the matrix-function

Aprin(x, ξ) and on the choice of phase functions ϕ(j).

The invariant representation of the identity operator — and, more generally,

of pseudodifferential operators — on manifolds is not a well-studied subject. An

initial analysis of the scalar case was carried out in Section 2.7. For the case of

massless Dirac a more detailed examination of the operator (3.3.48) will be provided

in subsection 3.5.2.

Remark 3.14. All statements and results presented in this section carry over verbatim

to the case where A is an elliptic symmetric first orderm×mmatrix pseudodifferential

— as opposed to differential — operator, with the following exceptions:

• formulae (3.3.1) and (3.3.2) have to be dropped as they are no longer true;
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• ‘Step 2.’ in subsection 3.3.3 has to be modified to take into account the action of

a pseudodifferential operator on an oscillatory integral in an invariant manner,

along the lines of [18, Section 4.3].

Remark 3.15. Let us point out that in this section we did not use anywhere the

fact that M carries a Riemannian structure. If one replaces the Riemannian density

(3.1.1) with an arbitrary positive density, all statements and results stay the same.

3.4 Invariant description of pseudodifferential operators

acting on scalar functions

In order to prepare ourselves to address the issue of initial conditions for our transport

equations in the case of the massless Dirac operator, we need to discuss first the

more general question of invariant representation of a pseudodifferential operator.

We devote a separate section to this, as we believe this matter to be of independent

interest. Note that we treat the case of a scalar operator merely for the sake of

presentational convenience: all the formulae and arguments in this subsection remain

unchanged for matrix pseudodifferential operators acting on m-columns of scalar

functions.

Definition 3.16. We call time-independent Levi-Civita phase function the function

φ ∈ C∞(M × T ′M ;C) defined by

φ(x; y, η) :=

∫
γ
ζ dz +

iε

2
h(y, η) [dist(x, y)]2 (3.4.1)

when x lies in a geodesic neighbourhood of y and continued smoothly elsewhere in

such a way that Imφ ≥ 0. Here γ is the (unique) shortest geodesic connecting y to

x, ζ is the parallel transport of η along γ,

h(y, η) :=
√
gαβ(y) ηαηβ , (3.4.2)

dist is the geodesic distance and ε is a positive parameter.

Let P be a pseudodifferential operator of order p acting on scalar functions over a

Riemannian d-manifold. The operator P can be written, modulo an integral operator
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with smooth kernel, in the form

P =

∫
T ′M

eiφ(x;y,η) p(y, η)χ0(x; y, η)w0(x; y, η) ( · ) ρ(y) dy dη, (3.4.3)

where φ is the time-independent Levi-Civita phase function, p ∈ Smph(T ′M), χ0 is a

cut-off localising the integration in a neighbourhood of the diagonal and away from

the zero section (see also (I)–(III) in Theorem 3.8) and

w0(x; y, η) := [ρ(x) ρ(y)]−
1
2
[
det2φxαηβ (x; y, η)

] 1
4 . (3.4.4)

Here the smooth branch of the complex root is chosen in such a way that w0(y; y, η) =

[ρ(y)]−1.

Remark 3.17. Note that (3.4.3) is, effectively, a special case of (3.3.16) with t = 0.

Formula (3.4.3) provides an invariant representation of the pseudodifferential

operator P .

Definition 3.18. We call full symbol of the operator P the scalar function

p(y, η) ∼
+∞∑
k=−p

p−k(y, η).

Furthermore, we call the homogeneous functions pp and pp−1 the g-principal and

g-subprincipal symbol, respectively3.

The notions of principal and subprincipal symbols of a pseudodifferential operator

are nowadays standard concepts in microlocal analysis. The former makes sense for

operators acting either on scalar functions or on half-densities, whereas the latter

is only defined for operators acting on half-densities. We refer the reader to [67]

for further details. Note that the concept of subprincipal symbol was introduced by

Duistermaat and Hörmander in [52, Eqn. (5.2.8)].

It is easy to see that the concept of principal symbol Pprin and that of g-principal

symbol pp coincide. As far as the subprincipal symbol is concerned, the situation is

more complicated, in that before drawing a comparison we need to turn our operator

into an operator acting on half-densities.
3Here ‘g’ is a reference to the Riemannian metric used in the construction of the phase function

φ.
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Put

P1/2 := ρ1/2 P ρ−1/2 (3.4.5)

and let Psub be the subprincipal symbol of the operator (3.4.5) defined in accordance

with [52, Eqn. (5.2.8)].

A natural question to ask is: what is the relation between Psub and pp−1?

Theorem 3.19. The invariant quantities Psub and pp−1 are related as

pp−1 = Psub +
i

2
(Pprin)yαηα +

i

2
Γαβγ

[
ηα(Pprin)ηβ

]
ηγ
− ε

2
gβγ

[
h (Pprin)ηβ

]
ηγ
. (3.4.6)

Theorem 3.19 implies that, in particular, the two notions of subprincipal symbol

coincide when the principal symbol does not depend on η, i.e. when P is a pseudod-

ifferential operator of the type “multiplication by a scalar function plus an operator

of order −1”. Note that the identity operator, whose invariant representation was

investigated in Section 2.7, falls into this class. This is why we did not introduce the

terminology “g-subprincipal symbol” in Chapter 2.

A tedious, yet straightforward, calculation shows that the RHS of (3.4.6) is a

scalar function on the cotangent bundle. In fact, the second and third summands

on the RHS of (3.4.6) admit an invariant representation in terms of the Laplace–

Beltrami operator associated with the neutral metric n on the cotangent bundle

T ∗M , which, in local coordinates (x1, . . . , xd, ξ1, . . . , ξd), reads

njk(x, ξ) =

−2 ξγ Γγαβ(x) δα
µ

δνβ 0

 , j, k ∈ {1, . . . , 2d}.

The adjective ‘neutral’ refers to the fact that the metric n has signature (d, d).

Proof of Theorem 3.19. Consider the pseudodifferential operator P and turn it into

an operator on half-densities P1/2 via (3.4.5). In what follows we work in an arbitrary

coordinate system, the same for x and y.

Dropping the cut-off, the integral kernel of P1/2 now reads

1

(2π)d

∫
T ′yM

eiφ(x;y,η) p(y, η)
√

detφxη dη . (3.4.7)
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Our phase function (3.4.1) admits the expansion

φ(x; y, η) = (x− y)αηα +
1

2
Γαβγ ηα(x− y)β(x− y)γ +

iεh

2
gαβ(x− y)α(x− y)β

+O(‖x− y‖3),

(3.4.8)

which implies that

√
detφxη = 1 +

1

2
[Γααβ + iεh−1ηβ](x− y)β +O(‖x− y‖2). (3.4.9)

Substituting (3.4.8) and (3.4.9) into (3.4.7), we get

1

(2π)d

∫
ei(x−y)αηα

{
pp

+

(
1

2
[iΓαβγ ηα − εhgβγ ] (x− y)β(x− y)γ +

1

2

[
Γααβ + iεh−1ηβ

]
(x− y)β

)
pp

+ pp−1 +O(‖η‖p−2)
}

dη . (3.4.10)

Excluding the x-dependence from the amplitude in (3.4.10) by acting with the op-

erator

Sright( · ) :=

[
exp

(
i

∂2

∂xµ ∂ηµ

)
( · )
]∣∣∣∣
x=y

, (3.4.11)

we arrive at

1

(2π)d

∫
ei(x−y)αηα

{
pp

− i

2

[
ηα Γαβγ (pp)ηβ

]
ηγ

+
ε

2

[
h gγβ (pp)ηβ

]
ηγ

+ pp−1 +O(‖η‖p−2)
}

dη . (3.4.12)

Computing the subprincipal symbol of (3.4.12) and using the fact that pp = Pprin =

(P1/2)prin , we obtain (3.4.6). Note that the sign in front of the correction term

i

2
(Pprin)yαηα

is opposite to the usual one, see, for example, (C.1.3). This is due to the fact that

we use here the right — as opposed to left — quantisation.
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3.5 Global propagator for the massless Dirac operator

In this section we will start the analysis of the global propagator for the Dirac

operator, specialising Theorem 3.9 to the case A = W .

We denote by

Wprin(y, η) := σα(y) ηα (3.5.1)

the principal symbol of W and by

W0(x) := − i
4
σα(x)σβ(x)

(
∂σβ

∂xα
(x) + Γβαγ(x)σγ(x)

)
(3.5.2)

its zero order part, see Definition 3.1.

The principal symbol Wprin(y, η) has eigenvalues h± = ±h, where h is given by

(3.4.2), compare with (3.3.2). This fact, which can be easily established by writing

down (3.5.1) in local coordinates, shows that the Dirac operator is indeed elliptic.

It is well-known that the Hamiltonian flow (x+(t; y, η), ξ+(t; y, η)) generated by h

is (co-)geodesic. The two flows, (x+(t; y, η), ξ+(t; y, η)) and (x−(t; y, η), ξ−(t; y, η)),

are related as

(x−(t; y, η), ξ−(t; y, η)) = (x+(t; y,−η),−ξ+(t; y,−η)). (3.5.3)

Our goal is to write down explicitly the positive and negative propagators (3.1.13a)

and (3.1.13c) in the form (3.3.16) for a distinguished choice of phase functions.

To this end, we give the following definition (see also Section 2.4).

Definition 3.20. We call positive (+), resp. negative (−), Levi-Civita phase function

the infinitely smooth function ϕ± ∈ C∞(R×M × T ′M ;C) defined by

ϕ±(t, x; y, η) =

∫
γ±
ζ± dz +

i ε

2
h(y, η) dist2(x, x±(t; y, η)) (3.5.4)

for x in a geodesic neighbourhood of x±(t; y, η) and continued smoothly elsewhere

in such a way that Imϕ± ≥ 0. Here dist is the Riemannian geodesic distance, the

path of integration γ± is the shortest geodesic connecting x± to x, ζ± is the result

of the parallel transport of ξ±(t; y, η) along γ± and ε is a positive parameter.

The positive and negative Levi-Civita phase functions are related as

ϕ−(t, x; y, η) = −ϕ+(t, x; y,−η). (3.5.5)
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Let us point out that the way one continues ϕ± outside a neighbourhood of the

flow does not affect the singular part of the propagators. The choice of a different

smooth continuation results in an error mod Ψ−∞
= 0, as one can show by a straight-

forward (non)stationary phase argument.

Remark 3.21. The time-independent phase function φ introduced in the previous

section is the restriction to t = 0 of the phase functions ϕ±,

φ(x; y, η) = ϕ+(0, x; y, η) = ϕ−(0, x; y, η). (3.5.6)

It is easy to see that the positive and negative Levi-Civita phase functions satisfy

conditions (i), (ii) and (iv) from Theorem 3.9. Furthermore, [104, Corollary 2.4.5]

implies that condition (iii) is also satisfied. Hence, Theorem 3.9 ensures that the

integral kernel of U± can be written as a single oscillatory integral

u±(t, x, y) :=
1

(2π)3

∫
T ′yM

eiϕ
±(t,x;y,η) a±(t; y, η)χ±(t, x; y, η)w±(t, x; y, η) dη,

(3.5.7)

where ϕ± is the positive/negative Levi-Civita phase function.

Definition 3.22. We define the full symbol of the positive (resp. negative) propaga-

tor to be the scalar matrix-function a+ (resp. a−), obtained through the algorithm

described in Section 3.3.3 with Levi-Civita phase functions.

We define the subprincipal symbol of the positive (resp. negative) propagator to

be the scalar matrix-function a+
−1 (resp. a−−1) obtained the same way.

As to the principal symbol, this object was defined earlier, see Definition 3.13.

We stress that the mathematical objects contained in the above definition are

uniquely and invariantly defined. They only depend on the phase functions which,

in turn, originate from the geometry of M in a coordinate-free covariant manner,

cf. Definition 3.5.4.

To the best of our knowledge, there is no accepted definition of full symbol or

subprincipal symbol for a Fourier integral operator available in the literature to date.

The geometric nature of our construction allows us to provide invariant definitions

of full and subprincipal symbol of the Dirac propagator, analyse them, and give

explicit formulae. Our work, from this Chapter and the previous one, aims to build
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towards an invariant theory for pseudodifferential and Fourier integral operators on

manifolds.

Before moving on to computing the principal and subprincipal symbols of the

positive (resp. negative) Dirac propagator, an important remark is in order. In

addition to what was discussed in Section 3.3 for the general case, the construction

of the Dirac propagator has to be consistent with the gauge transformation (3.1.5),

(3.1.6). In particular, the action of the gauge transformation needs to be carefully

accounted for by the construction process.

The transformation (3.1.6) leads to the transformation

a±(t; y, η) 7→ G∗(x) a±(t; y, η)G(y). (3.5.8)

in the oscillatory integral (3.5.7). Note that this introduces an x-dependence which

has to be handled by means of amplitude-to-symbol reduction (3.3.43).

3.5.1 Transport equations

By acting with the Dirac operator W on (3.5.7) in the variable x and dropping the

cut-off, we obtain

Wu±(t, x, y) =
1

(2π)3

∫
T ′yM

eiϕ
±(t,x;y,η) a±(t; y, η)w±(t, x; y, η) dη, (3.5.9)

where

a = −ie−iϕ±(w±)−1∂t

(
eiϕ
±
a±w±

)
+
[
−ie−iϕ±(w±)−1σα∂xα

(
eiϕ
±
w±
)

+W0

]
a±

=
(
ϕ±t + σαϕ±xα

)
a± − ia±t +

[
−i(w±)−1

(
w±t + σαw±xα

)
+W0

]
a±.

(3.5.10)

Put

a ∼
+∞∑
k=−1

a−k, (3.5.11)

where

a±1 :=
(
ϕ±t +Wprin(x, ϕ±x )

)
a±0 (3.5.12)

and

a±−k :=
(
ϕ±t +Wprin(x, ϕ±x )

)
a±−k−1 − i(a

±
−k)t +

[
−i(w±)−1

(
w±t + σαw±xα

)
+W0

]
a±−k

(3.5.13)



110 Chapter 3. The massless Dirac propagator

for k ≥ 0. Note that the a±−k, k ≥ −1, are positively homogeneous in momentum of

degree −k.

Our transport equations read

S±0 a
±
1 = 0, (3.5.14)

S±−1a
±
1 + S±0 a

±
0 = 0, (3.5.15)

S±−2a
±
1 + S±−1a

±
0 + S±0 a

±
−1 = 0, (3.5.16)

. . .

Recalling that v± are the normalised eigenvectors of Wprin corresponding to the

eigenvalues ±h, denote by

P±(y, η) := v±(y, η) [v±(y, η)]∗. (3.5.17)

the spectral projections along the eigenspaces spanned by v±. Of course,

Wprin = h (P+ − P−), (3.5.18)

Id = P+ + P−, (3.5.19)

and

P± =
1

2

(
Id± Wprin

h

)
. (3.5.20)

Let us label the transport equations with nonnegative integer numbers in in-

creasing order, so that (3.5.14) is the zeroth transport equation, (3.5.15) is the first

transport equation and so on. Direct inspection of (3.5.12) and (3.5.13) reveals that

• multiplication of the n-th transport equation by P∓(x±, ξ±) on the left allows

one to determine

P∓(x±, ξ±)a±−n(t; y, η), n ≥ 0, (3.5.21)

algebraically;

• multiplication of the (n + 1)-th transport equation by P±(x±, ξ±) on the left

and the use of (3.5.21), allows one to determine

P±(x±, ξ±)a±−n(t; y, η), n ≥ 0, (3.5.22)

upon solving a matrix ordinary differential equation in the variable t.

Summing up (3.5.21) and (3.5.22) one obtains a±−k(t; y, η), in view of (3.5.19).
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3.5.2 Pseudodifferential operators U±(0)

This subsection is devoted to the examination of operators U±(0). We need to

examine these operators because, as explained in subsection 3.3.3, their full symbols

determine the initial conditions a±−k(0; y, η) for our transport equations.

We have

U±(0) = θ(±W ), (3.5.23)

where

θ(λ) :=


1 for λ > 0,

0 for λ ≤ 0.

(3.5.24)

We see that the operators U±(0) are self-adjoint pseudodifferential operators of order

zero, orthogonal projections onto the positive/negative eigenspaces of the operator

W . The operator Id−U+(0)−U−(0) is the orthogonal projection onto the nullspace

of the operator W , hence

U+(0) + U−(0)
mod Ψ−∞

= Id. (3.5.25)

The principal symbols of the operators U±(0) read

[U±(0)]prin = P±(y, η), (3.5.26)

where P± are the orthogonal projections onto the positive/negative eigenspaces of

the principal symbol of the operator W , see (3.5.17).

The analysis of the full symbol of U±(0) is a delicate task which was investigated,

to a certain extent and in a somewhat different setting, in [41]. In order to develop

the ideas from [41] we have to address a number of issues.

• We are now dealing with scalar fields as opposed to half-densities.

• We are now making full use of Riemannian structure.

• We are now working in the special setting of a system of two equations in

dimension three with trace-free principal symbol.

• Unlike [41, 42], we are aiming to evaluate the actual matrix-functions [U±(0)]sub

and not only their traces.
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In order to calculate the subprincipal symbols of the pseudodifferential operators

U±(0) we will need the following auxiliary result.

Theorem 3.23. Fix a point y ∈ M and let {ẽ}3j=1 be a framing on M . Let G ∈

C∞(M ;SU(2)) be a gauge transformation such that G(y) = Id and let

ej
α :=

1

2
tr(sj G

∗ skG) ẽk
α. (3.5.27)

Then

∇αG(y) = − i
2

[
∗
Kαβ(y)−

∗
K̃αβ(y)

]
σβ(y), (3.5.28)

where K (resp. K̃) is the contorsion tensor of the Weitzenböck connection (see Ap-

pendix B.1) associated with the framing {ej}3j=1 (resp. {ẽj}3j=1), the star stands for

the Hodge dual applied in the first and third indices, see formula (B.1.7), and σα(y)

is defined by (3.1.3).

Proof. The proof is provided in Appendix B.2.1.

Remark 3.24. Let {ẽ}3j=1 and {e}3j=1 be a pair of framings related in accordance

with (3.5.27), and let W̃ and W be the corresponding massless Dirac operators, see

Definition 3.1. Then

W = G∗W̃G. (3.5.29)

The following theorem is the main result of this subsection.

Theorem 3.25. We have

[U±(0)]sub(y, η) = ± 1

4(h(y, η))3

∗
Tαβ(y) ηαηβ Id , (3.5.30)

where T is the torsion tensor of the Weitzenböck connection (see Appendix B.1)

associated with the framing {ej}3j=1 encoded within the massless Dirac operator W

(see Definition 3.1) and the star stands for the Hodge dual applied in the second and

third indices, see formula (B.1.6).

Proof. Let us fix a point y ∈ M and choose normal geodesic coordinates x centred

at y such that ejα(y) = δj
α . Consider the (local) operator with constant coefficients

W̃ := −isα ∂

∂xα
, (3.5.31)
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where the sα are the standard Pauli matrices (3.1.2). Let us choose a smooth special

unitary 2× 2 matrix-function G such that

G(0) = Id, (3.5.32)

[W ]prin = [G∗W̃G]prin +O( ‖η‖ ‖x‖2 ) , (3.5.33)

compare with (3.5.29). It is easy to see that such a matrix-function G(x) exists and

is defined uniquely modulo O(‖x‖2).

Let us now compare the subprincipal symbols of the pseudodifferential operators

θ(±W ) and θ(±G∗W̃G), with G∗W̃G understood as an operator acting in Euclidean

space (constant metric tensor gαβ(x) = δαβ). It can be shown that at the origin we

have

[W ]sub(0, η) = [G∗W̃G]sub(0, η).

Thus, the proof of the Theorem 3.25 has been reduced to the case when we are in

Euclidean space and the operator W is given by formulae (3.5.29) and (3.5.31).

We have

θ(±W̃ ) =
1

(2π)3

∫
T ′R3

ei(x−z)
αηα P±(η) ( · ) dz dη , (3.5.34)

where

P±(η) =
1

2

(
Id± 1

‖η‖
sβηβ

)
. (3.5.35)

Formulae (3.5.34) and (3.5.35) imply that

θ(±G∗W̃G) =
1

(2π)3

∫
T ′R3

ei(x−z)
αηα Q±(x, z, η) ( · ) dz dη , (3.5.36)

where

Q±(x, z, η) = G∗(x)P±(η)G(z) =
1

2
G∗(x)

(
Id± 1

‖η‖
sβηβ

)
G(z) . (3.5.37)

Excluding the z-dependence from the amplitude Q± by acting with the operator

Sleft( · ) :=

[
exp

(
−i ∂2

∂zµ ∂ηµ

)
( · )
]∣∣∣∣
z=x

, (3.5.38)

compare with (3.4.11), we arrive at

θ(±G∗W̃G) =
1

(2π)3

∫
T ′R3

ei(x−z)
αηα Q±(x, η) ( · ) dz dη , (3.5.39)
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where

Q±(x, η) = Q±0 (x, η) +Q±−1(x, η) +O(‖η‖−2) , (3.5.40)

Q±0 (x, η) =
1

2
G∗(x)

(
Id± 1

‖η‖
sβηβ

)
G(x) , (3.5.41)

Q±−1(x, η) = − i

2
G∗(x)

(
Id± 1

‖η‖
sβηβ

)
ηµ

Gxµ(x) . (3.5.42)

In the Euclidean setting the standard formula [52, Eqn. (5.2.8)] for the subprin-

cipal symbol reads

[θ(±G∗W̃G)]sub = Q±−1 +
i

2
(Q±0 )xµηµ . (3.5.43)

Substituting (3.5.41) and (3.5.42) into (3.5.43) and setting x = 0, we get

[θ(±G∗W̃G)]sub = ± i
4

[
G∗xµ

(
1

‖η‖
sβηβ

)
ηµ

−
(

1

‖η‖
sβηβ

)
ηµ

Gxµ

]

= ±
i(δβ

µ‖η‖2 − ηβ ηµ)

4‖η‖3
[
G∗xµs

β − sβGxµ
]
. (3.5.44)

Theorem 3.23 tells us that Gxµ = i
2

∗
Kµν s

ν . Substituting this into (3.5.44), and using

standard properties of Pauli matrices and (B.1.10), we get

[θ(±G∗W̃G)]sub = ±
δβ
µ‖η‖2 − ηβ ηµ

8‖η‖3
[
sνsβ + sβsν

] ∗
Kµν

= ± 1

4‖η‖3

(
∗
Kγ

γδµν −
∗
Kµν

)
ηµην Id

= ± 1

4‖η‖3
∗
Tµν η

µ ην Id .

(3.5.45)

The above argument combined with (3.5.23) yields (3.5.30).

Observe that formula (3.5.30) implies

tr [U±(0)]sub(y, η) = ± 1

2(h(y, η))3

∗
Tαβ(y) ηαηβ , (3.5.46)

which agrees with [41, formula (1.20)] and [42, formula (4.1) with c = +1].

3.6 Principal symbol of the global Dirac propagator

In this section we provide an explicit geometric characterisation of the principal

symbols of the positive and negative Dirac propagators.
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Theorem 3.26. The principal symbols of the positive and negative Dirac propagators

are

a±0 (t; y, η) = ζ±(t; y, η) [v±(y, η)]∗, (3.6.1)

where ζ±(t; y, η) is the parallel transport of v±(y, η) along x± with respect to the spin

connection, i.e.(
d

dt
+ [ẋ±]α

1

4
σβ

(
∂σβ

∂xα
+ Γβαγσ

γ

))
ζ± = 0, ζ±|t=0 = v±. (3.6.2)

Proof. It is known [102, 93] that the principal symbols a±0 are independent of the

choice of the phase function and read

a±0 (t; y, η) = v±(x±, ξ±) [v±(y, η)]∗ e−i
∫ t
0 q
±(x±(τ ;y,η),ξ±(τ ;y,η)) dτ , (3.6.3)

where

q± = [v±]∗Wsub v
± − i

2
{[v±]∗,Wprin − h±, v±} − i [v±]∗{v±, h±} , (3.6.4)

and

Wsub(y) := W0(y) +
i

2
σα(y) Γβαβ(y) +

i

2
[Wprin(y, η)]yαηα . (3.6.5)

In formula (3.6.4) curly brackets denote the Poisson bracket

{B,C} := ByαCηα −BηαCyα (3.6.6)

and the generalised Poisson bracket

{B,C,D} := ByαCDηα −BηαCDyα (3.6.7)

on matrix-functions on the cotangent bundle. In formula (3.6.5) the second term on

the RHS is the result of switching to half-densities, see (3.4.5).

Introducing the shorthand q±(t) := q±(x±(t; y, η), ξ±(t; y, η)), the task at hand

is to show that

ζ±(t; y, η) = e−i
∫ t
0 q
±(τ) dτ v±(x±, ξ±).

More explicitly, we need to show that

ei
∫ t
0 q
±(τ) dτ

(
d

dt
+ [ẋ±]α

1

4
σβ

(
∂σβ

∂xα
+ Γβαγσ

γ

))[
e−i

∫ t
0 q
±(τ) dτ v±(x±, ξ±)

]
= 0,

(3.6.8)
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where we premultiplied our expression by ei
∫ t
0 q
±(τ) dτ for the sake of convenience.

We shall prove (3.6.1) for a+
0 , which corresponds to the upper choice of signs in

(3.6.8). The proof for a−0 is analogous.

Let us begin by computing

ei
∫ t
0 q

+(τ) d

dt

(
e−i

∫ t
0 q

+(τ) dτ v+(x+, ξ+)
)

= −iq+(t) v+ + v+
xα [ẋ+]α + v+

ξα
[ξ̇+]α

= −iq+(t) v+ + {v+, h}.

(3.6.9)

To this end, let us choose geodesic normal coordinates centred at x+(t; y, η) = 0

and such that [ξ+(t; y, η)]α = δ3α. Furthermore, up to a global rigid rotation of the

framing, we can assume that

ej
α(0) = δj

α. (3.6.10)

In our special coordinate system we have

v+(0, ξ+) =

1

0

 , v−(0, ξ+) =

0

1

 , (3.6.11)

and we can expand our framing about x+ = 0 as
e1

1(x) e1
2(x) e1

3(x)

e2
1(x) e2

2(x) e2
3(x)

e3
1(x) e3

2(x) e3
3(x)

 =


1 l3(x) −l2(x)

−l3(x) 1 l1(x)

l2(x) −l1(x) 1

+O(‖x‖2) as x→ 0,

(3.6.12)

where lk(x) = O(‖x‖), k = 1, 2, 3.

The fact that ([v+]∗v+)(x, ξ) = 1 implies

{[v+]∗, P+, v+}(0, ξ+) = [v+
xα ]∗ v+ [v+]∗ v+

ξα − [v+
ξα

]∗ v+ [v+]∗ v+
xα = 0, (3.6.13)

which, in turn, yields

{[v+]∗,Wprin, v
+} = h {[v+]∗, 2P+ − Id, v+} = −h {[v+]∗, v+}. (3.6.14)

A standard perturbation argument gives us

h {[v+]∗, v+}(0, ξ+) = − i
2

(
∂l1

∂x1
+
∂l2

∂x2

)∣∣∣∣
x=0

(3.6.15)
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and

{v+, h}(0, ξ+) =
i

2

 0

∂l1

∂x3
+ i

∂l2

∂x3


∣∣∣∣∣∣∣
x=0

. (3.6.16)

Furthermore, combining (3.6.12) with (3.1.3) and (3.6.5), we get

Wsub(0) = − 1

2

(
∂l1

∂x1
+
∂l2

∂x2
+
∂l3

∂x3

)∣∣∣∣
x=0

Id. (3.6.17)

Substituting (3.6.11), (3.6.14) and (3.6.15)–(3.6.17) into (3.6.4), and then (3.6.4)

and (3.6.16) into (3.6.9), we conclude that

ei
∫ t
0 q

+(τ) d

dt

(
e−i

∫ t
0 q

+(τ) dτ v+(x+, ξ+)
)

=
i

2

 ∂l3

∂x3

0


∣∣∣∣∣∣∣
x=0

+
i

2

 0

∂l1

∂x3
+ i

∂l2

∂x3


∣∣∣∣∣∣∣
x=0

.

(3.6.18)

Similarly, in our special coordinate system we have

[ẋ+]α
1

4
σβ

(
∂σβ

∂xα
+ Γβαγσ

γ

)
v+

∣∣∣∣
x=0, ξ=ξ+

=
1

4
σβ

(
∂σβ

∂x3

)1

0

∣∣∣∣∣∣
x=0

= − i
2

 ∂l3

∂x3

∂l1

∂x3
+ i

∂l2

∂x3


∣∣∣∣∣∣∣
x=0

.

(3.6.19)

Summing up (3.6.18) and (3.6.19) we arrive at (3.6.8).

3.7 Explicit small time expansion of the symbol

Even though the presence of gauge degrees of freedom represents an additional chal-

lenge in the analysis of the propagator, one can put this freedom to use and exploit

it to obtain a small time expansion for the propagator.

Our strategy goes as follows.

1. Compute the principal and subprincipal symbol of the positive (resp. negative)

propagator for a conveniently chosen framing;

2. Using the gauge transformation (3.1.7), (3.1.6), switch to an arbitrary framing

with the same orientation4;

3. Express the final result in terms of geometric invariants.
4Recall that in this Chapter the orientation is prescribed from the beginning.
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3.7.1 Special framing

Let us fix an arbitrary point y ∈M and let Vj ∈ TyM , j = 1, 2, 3 be defined by

Vj := ej(y). (3.7.1)

Definition 3.27 (Levi-Civita framing). Let U be a geodesic neighbourhood of y.

For x ∈ U , let ẽloc
j (x), j = 1, 2, 3, be the parallel transport of Vj along the shortest

geodesic connecting y to x. We define the Levi-Civita framing generated by {ej}3j=1 at

y to be the equivalence class of framings coinciding with {ẽloc
j }3j=1 in a neighbourhood

of y.

With slight abuse of notation, in the following we will confuse the Levi-Civita

framing with one of its representatives, denoted by {ẽj}3j=1. The choice of a particular

representative does not affect our results.

Using the Levi-Civita framing is especially convenient due to the following prop-

erty.

Lemma 3.28. In normal coordinates centred at y, the Levi-Civita framing admits

the following expansion:

ẽj
α(x) = ej

α(y) +
1

6
ej
β(y)Rαµβν(y)xµxν +O(‖x‖3), j = 1, 2, 3, (3.7.2)

where R is the Riemann curvature tensor.

Proof. In normal geodesic coordinates centred at y, the unique geodesic connecting

y to x can be written as

γα(t) =
xα

‖x‖E
t,

where ‖ · ‖E is the Euclidean norm, so that γ(‖x‖E) = x. Assuming t and ‖x‖E to

be small and of the same order, let us perform an expansion in powers of t of ẽj .

The parallel transport equation defining the framing {ẽj}3j=1 reads

˙̃ej
α(γ(t)) = −γ̇β(t) Γαβµ(γ(t)) ẽj

µ(γ(t)), j = 1, 2, 3. (3.7.3)

Since ẽj(0) = Vj and Γ(0) = 0, at linear order in t we have ˙̃ej(γ(t)) = 0 + O(t),

which implies

ẽj(γ(t)) = Vj +O(t2). (3.7.4)
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Substituting (3.7.4) into (3.7.3), we get

˙̃ej
α(γ(t)) = −x

β xν

‖x‖2E
∂νΓαβµ(0)Vj

µ t+O(t2), (3.7.5)

so that

ẽj
α(γ(t)) = Vj −

1

2

xβxν

‖x‖2E
∂νΓαβµ(0)Vj

µ t2 +O(t3) (3.7.6)

and

ẽj
α(x) = ẽj

α(γ(‖x‖E)) = Vj
α − 1

2
∂νΓαβµ(0)Vj

µ xβxν +O(‖x‖3), j = 1, 2, 3.

(3.7.7)

Formula (3.7.2) follows at once from (3.7.7) and the elementary identity

∂νΓαβµ(0) = −1

3
(Rαβµν +Rαµβν)(0). (3.7.8)

Corollary 3.29. In normal coordinates x centred at y, the Pauli matrices σ̃α(x)

projected along the Levi-Civita framing (see (3.1.3)) satisfy

σ̃α(y) = σα(y), [σ̃α]xβ (y) = 0, [σ̃α]xµxν (y) =
1

6
[Rανβµ(y) +Rαµβν(y)]σβ(y).

(3.7.9)

Proof of Corollary 3.29. Formula (3.7.9) follows immediately from (3.7.2).

Corollary 3.30. Let W̃ be the Dirac operator (3.1.4) corresponding to the choice

of the Levi-Civita framing. Then, in normal coordinates centred at y, its zero order

part W̃0 (see formula (3.5.2)) admits the following expansion:

W̃0(x) =
i

4
Ricαβ(y) σ̃β(y)xα +O(‖x‖2). (3.7.10)

3.7.2 Small time expansion of the principal symbols

The first step towards computing small time expansions for principal and subprin-

cipal symbols of W is to obtain an expression for these objects in a neighbourhood

of a given point y ∈ M for the choice of the Levi-Civita framing generated by our

framing {ej}3j=1 at y. Observe that, as we are after a small time expansion of the

symbols, it is enough to restrict our attention to a small open neighbourhood of y.

In the following, we will denote with a tilde objects associated with the Dirac

operator W̃ corresponding to the choice of the Levi-Civita framing.
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Theorem 3.31. We have

ã±0 (t; y, η) = P̃±(y, η) +O(t3). (3.7.11)

Proof. In view of formula (3.6.1), we need to show that

ζ̃±(t; y, η) = ṽ±(y, η) +O(t3). (3.7.12)

Once this is achieved, (3.7.11) follows from the fact that W̃prin(y, η) = Wprin(y, η).

A perturbation argument shows that if ζ̃± solves (3.6.2) with initial condition

ζ̃±(0; y, η) = ṽ±(y, η), then

ζ̃±(t; y, η) = ṽ±(y, η)

− t2

2

{
ηαηµ

[h(y, η)]2

[
σ̃β(0)[σ̃β(0)]xαxµ + σ̃β(0)

∂Γβαγ
∂xµ

(0)σ̃γ(0)

]}
ṽ±(y, η)

+O(t3).

(3.7.13)

Using Corollary 3.29 and the identity (3.7.8), we obtain[
σ̃β(0)[σ̃β(0)]xαxµ + σ̃β(0)

∂Γβαγ
∂xµ

(0)σ̃γ(0)

]
ηαηµ

=

[
1

6
(Rβαγµ +Rβµγα)(0)− 1

3
(Rβαγµ +Rβγαµ)(0)

]
σ̃β(0)σ̃γ(0) ηαηµ

=

[
1

6
2Rβαγµ(0)− 1

3
Rβαγµ(0)

]
σ̃β(0)σ̃γ(0) ηαηµ

= 0. (3.7.14)

Substituting (3.7.14) into (3.7.13) we arrive at (3.7.12).

3.7.3 Small time expansion of the subprincipal symbols

Let us now turn our attention to the subprincipal symbols ã±−1.

Unlike the principal symbols, the subprincipal symbol depends on the choice of

the phase function. As here we are only interested in small time expansions and the

injectivity radius Inj(M, g) is strictly positive, we can work, without loss of generality,

in a neighbourhood of y with no conjugate points to y. The absence of conjugate

points allows us to construct positive and negative propagators for small times by

means of the algorithm described in subsection 3.3.3 for the choice of real-valued
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Levi-Civita phase functions

ϕ±(t, x; y, η) =

∫
γ±
ζ± dz, (3.7.15)

cf. Definition 3.20 for ε = 0.

In the remainder of this subsection we adopt the same coordinates for x and y

and we choose normal geodesic coordinates centred at y. We remind the reader that,

in such coordinates,

[x±]α(t; 0, η) = ±η
α

h
t. (3.7.16)

According to (2.9.7) and (2.9.12), we have

ϕ±(t, x; 0, η) = xαηα ∓ h t±
1

3h
Rαµ

β
ν(0)ηαηβ x

µxν +O(‖x‖4 + t4) (3.7.17)

and

w±(t, x; 0, η) = 1 +
1

12
Ricµν(0)xµ xν ∓ t

3h
Ricµ ν(0) ηµ x

ν +O(‖x‖3 + |t|3). (3.7.18)

Recall that the weight w is defined by (3.3.18).

As explained in subsection 3.5.1, the subprincipal symbols are determined by the

first and the second transport equations, (3.5.14) and(3.5.15). More precisely, if we

are interested in expansions with remainder O(t2), we need to determine the RHS of

(3.5.15) at zero order in t and the RHS of (3.5.14) up to first order in t.

To this end, we begin by observing that formulae (3.7.17) and (3.7.18), see

(3.3.42), imply that the differential evaluation operators S±−2 and S±−1 admit the

following expansions in normal coordinates centred at y.

Lemma 3.32. We have

(a)

S±−2 =
1

2

[
i

∂2

∂xα∂ηα

]2

( · )

∣∣∣∣∣
t=0, x=0

+O(t), (3.7.19)

(b)

S±−1 = iS±0

(
∂2

∂xα∂ηα
± t

2
hηαηβ

∂2

∂xα∂xβ

)
+O(t2). (3.7.20)

Proof. (a) It is an immediate consequence of (3.7.16), (3.7.18) and

L±α =
∂

∂xα
+O(‖x‖+ |t|). (3.7.21)
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(b) Substituting (3.7.18) into (3.3.42) with k = 1 and recalling that ϕ±η
∣∣
x=x±

= 0,

we get

S±−1 = S±0

[
i

∂2

∂xα∂ηα
− i

2
ϕ±ηαηβL

±
αL
±
β

]
+O(t2). (3.7.22)

Formula (3.7.21) and the fact that

ϕ±ηαηβ

∣∣∣
x=x±

= ∓t hηαηβ +O(t3) (3.7.23)

yield (3.7.20).

In order to be able to compute the subprincipal symbols, we need to determine

the initial condition ã±−1|t=0 first.

Lemma 3.33. For the choice of real-valued Levi-Civita phase functions, the positive

and negative subprincipal symbols ã±−1 vanish at t = 0:

ã±−1(0; y, η) = 0. (3.7.24)

Proof. The subprincipal symbols are scalar functions, so it enough to establish

(3.7.24) in one specific coordinate system. Let us choose normal coordinates centred

at y = 0 such that ẽjα(0) = δj
α. We observe that the torsion of the Weitzenböck

connection generated by the Levi-Civita framing at y vanishes at y, as a conse-

quence of the fact that the first derivatives of the framing are zero, cf. (3.7.2) and

(B.1.2)-(B.1.3). Therefore, Theorem 3.25 tells us that

[U±(0)]sub(0, η) = 0. (3.7.25)

A straightforward perturbation argument shows that

(v±)xα(0, η) = 0. (3.7.26)

Substituting (3.7.25) and (3.7.26) into (3.4.6) with P = U±(0) and ε = 0 and using

the fact that Christoffel symbols vanish at y, we arrive at (3.7.24).

We are now in a position to examine the first transport equation.

Lemma 3.34. The projection onto the negative (resp. positive) eigenspace of W̃prim

of the subprincipal symbol of the positive (resp. negative) propagator is given by

P̃∓(x±, ξ±)ã±−1(t; y, η) =

± it P̃∓(y, η)

[
1

8h3
Ricαβ(y) ηαηβ − 1

4h
Ricαβ(y) ηαP̃±ηβ (y, η)

]
+O(t2). (3.7.27)
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Proof. We will establish formula (3.7.27) by expanding the first transport equation

(3.5.14) up to first order in t and then acting with P̃∓ on the left. Recall that a±−k
is defined by (3.5.13).

Working in normal coordinates centred at y and using (3.7.17)-(3.7.18), we obtain

S±0 ã
±
0 (t; 0, η) =

{(
ϕ±t + W̃prin(x, ϕ±x )

)
ã±−1 − i(ã

±
−0)t

+
[
−i(w±)−1

(
w±t + σαw±xα

)
+ W̃0

]
ã±−0

}∣∣∣
x=x±

= (W̃prin(x±, ξ±)∓ h) ã±−1(t; 0, η)

+
i t

3h2
Ricαν(0)

(
ηαην ± 1

2
h ηα σ̃ν(0)

)
P̃±(y, η)

± t ηα

h
(W̃0)xα(0) P̃±(y, η) +O(t2).

(3.7.28)

Furthermore, in view of Theorem 3.26 and Lemma 3.32(b), we have

S±−1ã
±
1 (t; 0, η) =

[
∂2

∂xα∂ηα
± t

2
hηαηβ

∂2

∂xα∂xβ

] (
ϕ±t + W̃prin(x, ϕ±x )

)
ã±0

∣∣∣
x=x∗

+O(t2)

= − 2it

3h2
Ricαν(0) ηαηνP̃± ± it

[
2

3h
Rµα

ν
β(0) ηµην σ̃

β(0)P̃±
]
ηα

± itη
β

h

[
(W̃prin)xαxβ (0, η)P̃±

]
ηα

+ i t

[
hηαηβ

3h
Rµα

ν
β(0) ηµην ±

1

2
hηαηβ (W̃prin)xαxβ (0, η)

]
P̃± +O(t2).

(3.7.29)

Adding up (3.7.28) and (3.7.29) and projecting along P̃∓, we arrive at

P̃∓ã±−1(t; 0, η) =
it

h
P̃∓

{
1

12h
Ricαν(0) ηασ̃ν(0)P̃± − iηα

2h
(W̃0)xα(0) P̃±

+

[
1

3h
Rµα

ν
β(0) ηµην σ̃

β(0) P̃±
]
ηα

+
ηβ

2h

[
(W̃prin)xαxβ (0, η)P̃±

]
ηα

+
1

4
hηαηβ (W̃prin)xαxβ (0, η) P̃± }+O(t2).

(3.7.30)

Let us compute the summands in (3.7.30) separately. To this end, let us put

A1 :=
1

12h
Ricαν(0) ηασ̃ν(0)P̃±, A2 := − iη

α

2h
(W̃0)xα(0) P̃±,

A3 :=

[
1

3h
Rµα

ν
β(0) ηµην σ̃

β(0) P̃±
]
ηα

, A4 :=
ηβ

2h

[
(W̃prin)xαxβ (0, η)P̃±

]
ηα
,

A5 :=
1

4
hηαηβ (W̃prin)xαxβ (0, η) P̃±.

(3.7.31)
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• A1: It ensues from elementary properties of P̃± that

P̃∓σ̃αP̃± = P̃∓[W̃prinP̃
±]ηα − P̃∓W̃prinP̃

±
ηα = ±2h P̃∓P̃±ηα . (3.7.32)

Hence

P̃∓A1 = P̃∓
(
±1

6
Ricαβ(0) ηαP̃±ηβ

)
. (3.7.33)

• A2: Combining Lemma 3.30 with the identity

hηαηβ =
h2 δαβ − ηαηβ

h3
(3.7.34)

and using (3.7.32), we get

P̃∓A2 = P̃∓
(
±1

4
Ricαβ(0) ηαP̃±ηβ

)
. (3.7.35)

• A3: We have

A3 =

[
1

3h
Rµα

ν
β(0) ηµην σ̃

β(0) P̃±
]
ηα

=
1

3h
Rµα

ν
β(0) σ̃β(0)

[
ηµην P̃

±
]
ηα

= − 1

3h
Ricµν(0) ηµ σ̃ν(0) P̃± ± 1

6h2
Ricµβ(0) ηµηβ Id,

(3.7.36)

so that, by (3.7.32),

P̃∓A3 = P̃∓
(
∓2

3
Ricαβ(0) ηαP̃±ηβ ±

1

6h2
Ricαβ(0) ηαηβ

)
. (3.7.37)

• A4: Recalling (3.7.9), we have

A4 =
ηβ

2h
(σ̃µ)xαxβ (0)

[
ηµ P̃

±
]
ηα

= − 1

12h
Ricαβ(0) ηασ̃β(0) P̃± ∓ 1

24h2
Ricαβ(0) ηαηβ Id,

(3.7.38)

so that, by (3.7.32),

P̃∓A4 = P̃∓
(
∓1

6
Ricαβ(0) ηαP̃±ηβ ∓

1

24h2
Ricαβ(0) ηαηβ

)
. (3.7.39)

• A5: In view of (3.7.34) and (3.7.9), we have

A5 =
1

4

(
δαβ

h
− ηαηβ

h3

)
1

6
[Rµβνα +Rµανβ ] (0) σ̃ν(0) ηµ P̃

±

=
1

12h
Ricµν(0) ηµσ̃ν(0) P̃±,

(3.7.40)

so that, by (3.7.32),

P̃∓A5 = P̃∓
(
±1

6
Ricαβ(0) ηαP̃±ηβ

)
. (3.7.41)
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Substituting (3.7.33), (3.7.35), (3.7.37), (3.7.39) and (3.7.41) into (3.7.30) we

arrive at (3.7.27).

Let us now move to the second transport equation.

Lemma 3.35. The projection onto the positive (resp. negative) eigenspace of W̃prin

of the subprincipal symbol of the positive (resp. negative) propagator is given by

P̃±(x±, ξ±)ã±−1(t; y, η) =

∓ it P̃±
[

1

24h
R(0) +

1

8h3
Ricαβ(0) ηα ηβ +

1

4h
Ricαβ(0) ηα P̃±ηβ

]
+O(t2). (3.7.42)

Proof. We will establish formula (3.7.42) by computing the second transport equation

(3.5.14) at zero order in t and then acting with P̃± on the left.

With account of Lemma 3.32, we have

S±−2ã
±
1

∣∣
t=0

= −1

2

∂4

∂xα∂ηα∂xβ∂ηβ

(
ϕ±t + W̃prin(x, ϕ±x )

)
a±0

∣∣∣∣
x=0,t=0

= −1

2

∂4

∂xα∂ηα∂xβ∂ηβ

(
∓h± 1

3h
Rγµ

ρ
ν(0) ηγ ηρ x

µ xν +O(‖x‖3)

+σ̃α(0)(ηα +O(‖x‖3))P̃±
)∣∣∣
x=0,t=0

= − ∂2

∂ηα∂ηβ

(
± 1

3h
Rγα

ρ
β(0) ηγ ηρ +

1

2
(W̃prin)xαxβ (0, η)

)
P̃±,

(3.7.43)

S±−1ã
±
0

∣∣
t=0

= i
∂2

∂xα∂ηα

[(
∓h+ W̃prin(x, η)

)
ã±−1(0; y, η)− i(ã±0 )t

+

(
± iηµ

3h
Ricµ ν(0)xν +− i

6
Ricµν(0) σ̃µ(0)xν +O(‖x‖2)

)
P̃±

+W̃0(x)P̃±
]∣∣∣
t=0,x=0

= ∓ ∂

∂ηα

( ηµ

3h(j)
Ricµ α(0)P̃±

)
+

1

6
Ricαµ(0) σ̃µ(0) P̃±ηα + i (W̃0)xα(0)P̃±ηα

(3.7.44)

and

S±0 ã
±
−1

∣∣
t=0

= (∓h+ W̃prin(0, η))ã±−2(0)− i (ã±−1)t|t=0. (3.7.45)

In carrying out the above calculations we used Theorem 3.31 and Lemma 3.33.

Note that, when multiplying on the left by P̃±, the terms containing ã±−2 disappear.
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Summing up (3.7.43), (3.7.44) and (3.7.45), and projecting along P̃±, we obtain

(P̃±ã±−1)t (0; y, η) =iP̃±
∂2

∂ηα∂ηβ

[(
± 1

3h
Rγα

ρ
β(0) ηγ ηρ +

1

2
(W̃prin)xαxβ (0, η)

)
P̃±
]

± iP̃± ∂

∂ηα

[ηµ
3h

Ricµ α(0)P̃±
]
− i

6
Ricαµ(0) σ̃µ(0) P̃±ηα

+ P̃±(W̃0)xα(0)P̃±ηα +O(t).

(3.7.46)

Using the identity

± ∂

∂ηβ

[
1

3h
Rγα

ρ
β(0) ηγ ηρP̃

±
]

= ∓ηµ
3h

Ricµ α(0)P̃± ± 1

3h
Rγα

ρ
β(0) ηγ ηρP̃

±
ηβ
,

formula (3.7.46) becomes

(P̃±ã±−1)t (0; y, η) =
i

2
P̃±

∂2

∂ηα∂ηβ

[
(W̃prin)xαxβ (0, η)P̃±

]
± iP̃± ∂

∂ηα

[
1

3h
Rγα

ρ
β(0) ηγ ηρ P̃

±
ηβ

]
− i

6
Ricαµ(0) σ̃µ(0) P̃±ηα + P̃±(W̃0)xα(0)P̃±ηα +O(t).

(3.7.47)

Let us put

B1 :=
i

2

[
(W̃prin)xαxβ (0, η)P̃±

]
ηαηβ

, B2 :=
i

3h
Rγα

ρ
β(0) ηγ ηρ P̃

±
ηβ
,

B3 := − i
6

Ricαµ(0) σ̃µ(0) P̃±ηα + (W̃0)xα(0)P̃±ηα .

(3.7.48)

• B1: It follows from (3.5.20), Corollary 3.29 and (3.7.34) that

P̃±B1 =
i

6
P̃±

[
Rµβνα ηµ σ̃

ν 1

2

(
Id± ηρ σ̃

ρ

h

)]
ηαηβ

= ± i

12
P̃±Rµβνα σ̃

ν σ̃ρ
(ηµ ηρ

h

)
ηαηβ

= ±
(
− i

12h
R(0) +

i

12h3
Ricαβ(0) ηαηβ

)
P̃±.

(3.7.49)

• B2: Differentiating (3.5.20) with respect to ηβ yields

P̃±ηβ = ± 1

2h
(W̃prin)ηβ ∓

ηβ

2h3
W̃prin

= ±1

2

(
σ̃β

h
− ηβ ηρ σ̃

ρ

h3

)
.

(3.7.50)

Substituting (3.7.50) into B2 in (3.7.48) we obtain

±P̃±B2 =
i

6
P̃±Rµα

ν
β

[
σ̃β
(ηµην
h2

)
ηα

+ σ̃ρ
(
ηµηνη

βηρ
h4

)
ηα

]
= − i

6h2
P̃± Ricµ β(0) ηµ σ̃

β(0).

(3.7.51)
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• B3: By means of Corollary 3.30 and formula (3.7.50) we get

B3 =

(
± i

4
Ricαβ(0)σα ∓ i

6
Ricαβ(0)σα

)
1

2

(
σβ

h
− ηβ σρηρ

h3

)
= ± i

24
Ricαβ(0)σα

(
σβ

h
− ηβ σρηρ

h3

)
= ±

(
i

24h
R(0) Id− i

24h3
Ricαβ(0) ηβηρσ

α(0)σρ(0)

)
.

(3.7.52)

Now, since P̃± σ̃ρ(0)ηρ = P̃± W̃prin(0, η) = ±h P̃± and σ̃ασ̃ρ = −σ̃ρσ̃α +

2 δαρ Id, formula (3.7.52) implies

P̃±B3 = P̃±
(
± i

24h
R(0) +

i

24h2
Ricαβ(0) ηα σ̃β ∓ i

12h3
Ricαβ(0) ηαηβ

)
.

(3.7.53)

Summing up (3.7.49), (3.7.51) and (3.7.53) we arrive at

(P̃±ã±−1)t (0; y, η) = iP̃±
(
∓ 1

24h
R(0)− 1

8h2
Ricαβ(0) ηα σ̃β(0)

)
+O(t). (3.7.54)

A straightforward calculation shows that

P̃±σ̃α = ±P̃±
(
ηα

h
+ 2hP̃±ηα

)
. (3.7.55)

Substituting the above equation into (3.7.54) and integrating in time with initial

condition (3.7.24), we obtain (3.7.42).

The pieces of information from Lemma 3.34 and Lemma 3.35 can be combined

to give the following result.

Theorem 3.36. For the choice of the Levi-Civita framing, the subprincipal symbols

of the positive and negative propagators admit the following small time expansion:

ã±−1(t; y, η) = ∓it
(

1

24h
R(y) P̃±(y, η)− 1

8h2
Ricαβ(y) ηα (W̃prin)ηβ (y, η)

)
+O(t2) .

(3.7.56)

Proof. Summing up formulae (3.7.27) and (3.7.42), we obtain

ã±−1(t; y, η) = ∓ it

24h
R(y) P̃±(y, η)∓ it

8h4
Ricαβ(y) ηα ηβ W̃prin(y, η)

− it

4h
Ricαβ(y) ηα P̃±ηβ (y, η) +O(t2) .

(3.7.57)

The substitution of (3.7.50) into the RHS of the above equation gives (3.7.56).

Note that if the manifold is Ricci-flat then ã±−1(t; y, η) = O(t2).
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3.7.4 Invariant reformulation

In the previous subsections, we derived the quite elegant and compact formulae

(3.7.11) and (3.7.56), which have been obtained under the assumption that the chosen

framing is the Levi-Civita framing at y. The task at hand is now to obtain similar

formulae for the Dirac operator W corresponding to an arbitrary positively oriented

framing {ej}3j=1.

Given a framing {ej}3j=1 and a point y ∈M , there exits a special unitary matrix-

function G, defined in a neighbourhood of y, such that {ej}3j=1 and the Levi-Civita

framing {ẽj}3j=1 generated by {ej}3j=1 at y are related in accordance with

ej
α(x) =

1

2
tr(sj G

∗(x) skG(x)) ẽk
α(x). (3.7.58)

The symbols ã± and a± are related as

a± = S±[G∗(x) ã±G(y)], (3.7.59)

cf. Section 3.5. Note that on the RHS of (3.7.59) the transformed symbol is acted

upon by amplitude-to-symbol operators (3.3.43). In fact, the gauge transformation

G introduces an x-dependence in the amplitude, which needs to be excluded.

Working in normal coordinates centred at y, formula (3.7.59), combined with

(3.7.16) and (3.7.11), implies

a±0 = G∗(x±)P±G(y) +O(t3)

= P± ± t ηα

h
G∗xα(y)P± +

t2

2

ηαηβ

h2
G∗xαxβ (0)P± +O(t3)

= P± ± t ηα

h
∇αG∗(y)P± +

t2

2

ηαηβ

h2
∇α∇βG∗(0)P± +O(t3).

(3.7.60)

Similarly, by means of (3.7.16) and Lemma 3.32, from (3.7.59) we get

a±−1 = S±−1[G∗(x) ã±0 G(y)] + S±0 [G∗(x) ã±−1G(y)]

= iG∗xα(y)P±ηα ± itG
∗
xαxβ (y)

(
hηβ P

±
ηα +

1

2
hηαηβ P

±
)

+ ã±−1 +O(t2)

= i∇αG∗(y)P±ηα ± it∇α∇βG
∗(y)

(
hηβ P

±
ηα +

1

2
hηαηβ P

±
)

+ ã±−1 +O(t2).

(3.7.61)
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The last step towards expressing (3.7.60) and (3.7.61) invariantly is writing ∇G

and ∇∇G in terms of geometric invariants. Theorem 3.23 tells us that

∇αG(y) = − i
2

∗
Kαβ(y) (Wprin)ηβ . (3.7.62)

The following theorem provides an expression for the second covariant derivatives of

the gauge transformation.

Theorem 3.37. Let us fix a point y and let G be a special unitary matrix-function

such that our framing {ej}3j=1 and the Levi-Civita framing {ẽj}3j=1 generated by

{ej}3j=1 at y are related in accordance with (3.7.58) in a neighbourhood of y. Then

we have

∇α∇β G(y) = − i
4

(
∇α

∗
Kβµ(y) +∇β

∗
Kαµ(y)

)
σµ(y)− 1

4

∗
Kαµ(y)

∗
Kβ

µ(y) Id, (3.7.63)

where K is the contorsion tensor of the Weitzenböck connection (see Appendix B.1)

associated with the framing {ej}3j=1 and the star stands for the Hodge dual applied

in the first and third indices (see formula (B.1.7)).

Proof. The proof is given in Appendix B.2.2.

Substituting (3.7.62) and (3.7.63) into (3.7.60) and (3.7.61) we arrive at the

following result.

Theorem 3.38. Let W be the massless Dirac operator (3.1.4). Then the the prin-

cipal and subprincipal symbols of the positive and negative propagators admit the

following small time expansion:

a±0 =

[
Id± it

2
hηα

∗
Kαβ (Wprin)ηβ

]
P±

+
t2

8

ηαηβ

h2

[
i
(
∇α

∗
Kβµ(y) +∇β

∗
Kαµ(y)

)
(Wprin)ηµ −

∗
Kαµ(y)

∗
Kβ

µ(y)

]
P± +O(t3),

(3.7.64)

a±−1 = −1

2

∗
Kαβ (Wprin)ηβ P

±
ηα

∓ it
(

1

24h
RP± − 1

8h2
Ricαβ η

α (Wprin)ηβ

)
∓ t

4

(
∇α

∗
Kβµ +∇β

∗
Kαµ

)
(Wprin)ηµ

(
hηβ P

±
ηα +

1

2
hηαηβ P

±
)

∓ it

4

∗
Kαµ

∗
Kβ

µ

(
hηβ P

±
ηα +

1

2
hηαηβ P

±
)

+O(t2),

(3.7.65)
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where
∗
K denotes the Hodge dual in the first and third indices of the contorsion tensor

of the Weitzenböck connection associated with the framing {ej}3j=1.

3.8 Spectral asymptotics

In this section, we will compute the third Weyl coefficient for the massless Dirac

operator. In doing so we will use the same notation as in Section 3.1 — recall in

particular formulae (3.1.18), (3.1.14) and the definition of the function µ.

Theorem 3.39. The third local Weyl coefficients for the massless Dirac operator are

c±0 (y) = − 1

48π2
R(y), (3.8.1)

where R is scalar curvature.

Proof. Let us fix a point y ∈ M and choose normal geodesic coordinates x centred

at y. Let us also choose a Levi-Civita framing {ẽj}3j=1, see Definition 3.27; here we

make use of the fact that Weyl coefficients do not depend on the choice of framing.

The same proof, but for a general framing, is given in Appendix B.3.

We have

(N ′+ ∗ µ)(y, λ) = F−1
[
F
[
(N ′+ ∗ µ)

]]
(y, λ) = F−1 [tru+(t, y, y) µ̂(t)] , (3.8.2)

(N ′− ∗ µ)(y, λ) = F−1
[
F
[
(N ′− ∗ µ)

]]
(y, λ) = F−1

[
tru−(t, y, y) µ̂(t)

]
, (3.8.3)

where u± is the Schwartz kernel of the propagator U± and tr stands for the matrix

trace. Note that at each point of the manifold the quantity tru±(t, y, y) is a distri-

bution in the variable t and the construction presented in preceding sections allows

us to write down this distribution explicitly, modulo a smooth function.

Our task is to substitute (3.5.7) into the right-hand sides of (3.8.2) and (3.8.3)

and expand the resulting quantities in powers of λ as λ → +∞. Thus, the prob-

lem reduces to the analysis of explicit integrals in four variables, η1, η2, η3 and t,

depending on the parameter λ . In what follows we drop the y in our intermediate

calculations.

The construction presented in preceding sections tells us that the only singularity

of the distribution tru±(t, y, y) µ̂(t) is at t = 0. Hence, in what follows, we can
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assume that the support of µ̂ is arbitrarily small. In particular, this allows us to use

the real-valued (ε = 0) Levi-Civita phase functions ϕ±.

Theorems 3.31 and 3.36 imply that

tr ã±0 (t; η) = 1 +O(t3) , (3.8.4)

tr ã±−1(t; η) = ∓ i

24 ‖η‖
R t+O(t2) . (3.8.5)

Formula (2.10.11) reads ϕ+(t, η) = −‖η‖ t + O(t4) , which, in view of (3.5.5),

implies

ϕ±(t, η) = ∓‖η‖ t+O(t4) . (3.8.6)

Using formulae (3.8.2)–(3.8.6) and arguing as in Section 2.10, we conclude that

(N ′± ∗ µ)(y, λ) =
S2

(2π)4

∫
R2

(
r2 − 1

24
R
)
ei(λ−r)t µ̂(t) dr dt

+ O(λ−1) as λ→ +∞, (3.8.7)

where S2 = 4π is the surface area of the 2-sphere. But

1

2π

∫
R2

rm ei(λ−r)t µ̂(t) dr dt = λm, m = 0, 1, 2, . . . , (3.8.8)

so (3.8.7) can be rewritten as

(N ′± ∗ µ)(y, λ) =
1

2π2
λ2 − 1

48π2
R(y) + O(λ−1) as λ→ +∞.

Remark 3.40. Let us compare the spectrum of the massless Dirac operator with the

spectrum of the Laplacian. Working on the same 3-manifold, let ∆ be the Laplace–

Beltrami operator and let N(y, λ) be the local counting function for the operator
√
−∆ . Then

(N ′ ∗ µ)(y, λ) = c2(y)λ2 + c1(y)λ+ c0(y) + . . . as λ→ +∞,

where the values of the first three Weyl coefficients are provided by Theorem 2.27.

Comparing these with (3.1.20) and (3.8.1), we conclude that

c±2 (y) = c2(y) , c±1 (y) = c1(y) = 0 , c±0 (y) = −1

2
c0(y) .

We see that the large (in modulus) eigenvalues of the massless Dirac operator are

distributed approximately the same way as the eigenvalues of the operator
√
−∆ ,

differing only in the third Weyl coefficient.
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3.9 Examples

In this Section we present two explicit examples, which show how our constructions

work in practice and which give us an opportunity to double-check our formulae.

The specific choice of examples is motivated by the fact that the first, M =

S3, is isotropic in momentum whereas the second, M = S2 × S1, is anisotropic in

momentum.

3.9.1 The case M = S3

Let R4 be Euclidean space equipped with Cartesian coordinates xα, α = 1, 2, 3, 4,

and put

ê4 =


0

0

0

1

 .

Consider the 3-sphere5

S3 := {x+ ê4 ∈ R4 | ‖x‖ = 1}

equipped with the standard round metric g and with the global framings {V±,k}3k=1

defined as the restriction to S3 of the vector fields in R4

V±,1 := (1− x4)
∂

∂x1
∓ x3 ∂

∂x2
± x2 ∂

∂x3
+ x1 ∂

∂x4
,

V±,2 := ±x3 ∂

∂x1
+ (1− x4)

∂

∂x2
∓ x1 ∂

∂x3
+ x2 ∂

∂x4
,

V±,3 := ∓x2 ∂

∂x1
± x1 ∂

∂x2
+ (1− x4)

∂

∂x3
+ x3 ∂

∂x4
.

(3.9.1)

It is easy to check that the vector fields (3.9.1) are tangent to S3, so that they restrict

to smooth vector fields on the 3-sphere. Note that (3.9.1) is an adaptation of [54,

Eqn. (C.1)] to the case at hand.

Let us introduce coordinates on S3 with the north pole excised by stereographi-

cally projecting it onto the tangent hyperplane to the south pole. The stereographic

5We shifted the sphere so as to place the south pole at the origin.
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map is given by

σ : R3 → S3 \


0

0

0

2

 ,


u

v

w

 7→

x1

x2

x3

x4

 =
1

1 + f2


u

v

w

2f2

 , (3.9.2)

where

f2 :=
1

4
(u2 + v2 + w2). (3.9.3)

In stereographic coordinates, the metric reads

g =
1

(1 + f2)2

[
du2 + dv2 + dw2

]
(3.9.4)

and our framings are given by

2V±,1 = (2− 2f2 + u2)
∂

∂u
+ (uv ∓ 2w)

∂

∂v
+ (uw ± 2v)

∂

∂w
,

2V±,2 = (uv ± 2w)
∂

∂u
+ (2− 2f2 + v2)

∂

∂v
+ (vw ∓ 2u)

∂

∂w
,

2V±,3 = (uw ∓ 2v)
∂

∂u
+ (vw ± 2u)

∂

∂v
+ (2− 2f2 + w2)

∂

∂w
.

(3.9.5)

A straightforward calculation shows that {V±,k}3k=1 are positively oriented framings

formed by (orthonormal) smooth Killing vector fields with respect to the metric g.

The framings {V±,k}3k=1 define, via (3.1.4), two Dirac operators W± related in

accordance with

W− = G∗W+G, (3.9.6)

where

G :=
1

4(1 + f2)

u2 + v2 + (w − 2i)2 4(v − iu)

−4(v + iu) u2 + v2 + (w + 2i)2

 . (3.9.7)

is the SU(2) gauge transformation relating the two framings via (3.7.58) with ẽk =

V+,k and ek = V−,k.

For definiteness, let us focus on W+. On account of the symmetries of the 3-

sphere, we will write formulae for principal and subprincipal symbols of the propa-

gator ofW+ at the south pole (y = (0, 0, 0)) for the choice of momentum η = (0, 0, 1).

The principal symbol (W+)prin has eigenvalues h±(y, η) = ±‖η‖, whose Hamil-

tonian flows in stereographic coordinates read

z±(t; 0, η) = ±2 tan(t/2)
η

‖η‖
, ξ±(t; 0, η) = cos2(t/2) η, (3.9.8)
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see also formula (3.5.3). Direct inspection of the parallel transport equation reveals

that the parallel transport of

v+(0, η) =

1

0

 , v−(0, η) =

0

1


along z+ and z−, respectively, is given by

ζ+(t; 0, η) = e−
it
2

1

0

 , ζ−(t; 0, η) = e
it
2

0

1

 , (3.9.9)

so that Theorem 3.26 gives us

a+
0 (t; 0, η) = e−

it
2

1 0

0 0

 , a−0 (t; 0, η) = e
it
2

0 0

0 1

 . (3.9.10)

The principal symbol of positive and negative propagators of W− at (t; 0, η) can be

obtained from (3.9.10) by means of the gauge transformation (3.9.7) evaluated at

z±(t; 0, η),

G|(u,v,w)=z±(t;0,η) =

e∓it 0

0 e±it

 .

Let us now move to the subprincipal symbol. From (3.9.5) we get

∗
Kαβ(y) = −δαβ, ∇γ

∗
Kαβ(y) = 0, (3.9.11)

so that Theorem 3.38 gives us

a±−1(t; 0, η) = ± 1

4‖η‖
Id∓it

(
1

2 ‖η‖
P± − 1

4‖η‖2
(W+)prin

)
+O(t2), (3.9.12)

and, in turn,

a+
−1(t; 0, η) =

1

4

1− it 0

0 1− it

+O(t2), a−−1(t; 0, η) = −1

4

1 + it 0

0 1− 3it

+O(t2).

(3.9.13)

Let us run a test for Theorem 3.39. It is well known [11, 12, 111, 114] that the

eigenvalues of the Dirac operator on the round 3-sphere are

±
(
k +

1

2

)
, k ∈ N \ {0},
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with multiplicity k(k + 1). Therefore, in view of (3.8.2), we have

Fλ→t[N ′+ ∗ µ](y, t) =
1

2π2
e−

it
2

∞∑
k=1

k(k + 1)e−ikt. (3.9.14)

Taking the Fourier transform of the RHS of (3.9.14) we get

F−1
t→λ

[
1

2π2
e−

it
2

∞∑
k=1

(k2 + k)e−iktµ̂(t)

]
=

1

4π3

∞∑
k=1

∫ +∞

−∞
eit(λ−

1
2
−k) (k2 + k) µ̂(t) dt

=
1

2π2

(
(λ− 1

2
)2 + (λ− 1

2
) +O(λ−∞)

)
=

1

2π2

(
λ2 − 1

4
+O(λ−∞)

)
.

(3.9.15)

Combining (3.9.15) and (3.9.14) we arrive at

[N ′+ ∗ µ](y, λ) =
1

2π2

(
λ2 − 1

4
+O(λ−∞)

)
as λ→ +∞. (3.9.16)

Formula (3.9.16) is in agreement with (3.8.1) with R(y) = 6.

3.9.2 The case M = S2 × S1

Let M = S2 × S1 be endowed with the metric g = gS2 + dϕ2, where gS2 is the round

metric on the 2-sphere. Let y ∈ M be given. In this subsection we shall compute

a small time expansion for the subprincipal symbols of the Dirac propagator W̃

associated with a Levi-Civita framing at y. In this case, the result will not be

isotropic in momentum η, because, unlike the previous example, (S2 × S1, g) is not

an Einstein manifold.

Without loss of generality, we assume that y coincides with the north pole when

projected onto S2. The exponential map expy : TyM →M is realised explicitly by

(u, v, w) 7→ (θ =
√
u2 + v2, φ = arctan(v/u), ϕ = w). (3.9.17)

Formula (3.9.17) defines geodesic normal coordinates in a neighbourhood of y. In

such coordinates, the metric g reads

g(u, v, z) =
1

u2 + v2


u2 + v2 sin2(

√
u2+v2)

u2+v2
uv
(

1− sin2(
√
u2+v2)

u2+v2

)
0

uv
(

1− sin2(
√
u2+v2)

u2+v2

)
v2 + u2 sin2(

√
u2+v2)

u2+v2
0

0 0 u2 + v2

 .

(3.9.18)
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We will assume that normal coordinates are chosen so that the Levi-Civita fram-

ing satisfies ẽjα(y) = δj
α. In this case, the Hamiltonian flows generated by the

eigenvalues of W̃prin read, simply,

x±(t; 0, η) = ±t η
‖η‖

, ξ±(t; 0, η) = η.

The Ricci curvature of g in normal coordinates is given by

Ric(u, v, w) =
1

45


v2
(
2u2 + 2v2 − 15

)
+ 45 uv

(
15− 2

(
u2 + v2

))
0

uv
(
15− 2

(
u2 + v2

))
u2
(
2u2 + 2v2 − 15

)
+ 45 0

0 0 0


+O(‖(u, v, w)‖5). (3.9.19)

Hence, Theorem 3.36 tells us that

ã±−1(t; 0, η) = ∓it
(

1

12‖η‖
P̃± − 1

8‖η‖2
(η1 s

1 + η2 s
2)

)
+O(t2) . (3.9.20)

Let us stress once again that, even though the intermediate steps depend on the

choice of coordinates, the final result (3.9.20) is a scalar matrix-function, thus inde-

pendent of the choice of coordinates.



Chapter 4

Classification of first order

sesquilinar forms

4.1 Introduction

A natural way to obtain a system of partial differential equations on a manifold

is to vary a suitably defined sesquilinear form. If one is only interested in first

order systems, say, of the type described in Chapter 3, then one can concentrate

on a subclass of Hermitian forms acting on smooth m-columns over a smooth d-

dimensional manifold without boundary. A natural question is: can one classify

such forms up to (local) GL(m,C) gauge equivalence? In this Chapter we study

sesquilinear forms that generate first order systems of partial differential equations

on manifolds, with a particular focus on the this question.

In order to provide motivation for our analysis, let us first recall some basic facts

from linear algebra in finite dimension.

Working in a finite dimensional complex vector space V , consider an Hermitian

form

S : V × V → C, (u, v) 7→ S(u, v).

Here S is assumed to be antilinear in the first argument and linear in the second.

Variation of the real-valued action S(v, v) produces the following linear field equation

for v:

S(u, v) = 0, ∀u ∈ V. (4.1.1)

137
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Suppose now that our vector space V is equipped with an additional structure, an

inner product 〈 · , · 〉. Then the sesquilinear form S and inner product 〈 · , · 〉 uniquely

define a self-adjoint linear operator L : V → V via the formula

S(u, v) = 〈u, Lv〉, ∀u, v ∈ V. (4.1.2)

The argument also works the other way round: a self-adjoint linear operator uniquely

defines an Hermitian sesquilinear form via formula (4.1.2). Thus, in an inner product

space the concepts of Hermitian sesquilinear form and self-adjoint linear operator are

equivalent.

Given a linear operator L, we can consider the linear equation

Lv = 0. (4.1.3)

If S and L are related as in (4.1.2), then equations (4.1.1) and (4.1.3) are equivalent.

It may seem that there is no point in working with Hermitian sesquilinear forms

and that one can work with self-adjoint linear operators instead, which would be

easier for practical purposes. However, the more abstract take is justified by the fact

that the statement regarding the equivalence of linear equations (4.1.1) and (4.1.3)

is based on the use of an inner product. The concept of an Hermitian sesquilinear

form is more fundamental than the concept of a self-adjoint linear operator in that

it does not require an inner product for its definition. One can formulate and study

the linear equation (4.1.1) without introducing an inner product.

In the class of problems we are interested in, the above toy model translates into

the study of partial differential equations on manifolds in a setting when there is

no natural definition of an inner product invariant under relevant gauge transforma-

tions. Such a situation arises, for instance, when dealing with physically meaningful

problems in 4-dimensional Lorentzian spacetime, see Sections 4.9 and 4.10. Fully rel-

ativistic equations of mathematical physics are not always associated with a natural

inner product, not even an indefinite non-degenerate one.

In more precise terms, our goal is to study and classify sesquilinear forms acting

on compactly supported smooth sections of the trivial Cm-bundle over a smooth

manifold M , whose coordinate representation involves the sections themselves and

their first derivatives but no products of first derivatives. Adopting a non-canonical
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approach, we ask the question: when do two sesquilinear forms written in their

coordinate representation correspond to the same abstract sesquilinear form? In

other words, we are interested in establishing when two sesquilinear forms can be

obtained one from the other by a pointwise change of basis in the fibre depending

smoothly on the base point. As it turns out, this problem can be solved thanks to

the interplay of techniques from algebraic topology, geometry and analysis of partial

differential equations.

Our work builds upon results from [7], where the authors provide an analytic

definition of spin structure in the more restrictive operator setting.

This Chapter is structured as follows.

In Section 4.2 we provide a precise definition of the class of sesquilinear forms we

work with using the language of analysis of partial differential equations.

In Section 4.3 we formulate the mathematical problem we want to address,

namely, the classification of first order sesquilinear forms, distinguishing the two

different types of classification we will be looking at.

Section 4.4 contains a brief description of the main result of the Chapter: our

classification theorems in dimension four.

Sections 4.5 and 4.6 comprise preparatory work towards the proof of the main

theorems. In Section 4.5 we analyse properties of sesquilinear forms, identifying

geometric and topological objects naturally encoded in their analytic definition. In

Section 4.6 we recast our analytic definition of equivalence of sesquilinear forms in a

purely algebraic topological fashion, proving the equivalence of the two formulations.

Our main theorems are proved in Section 4.7.

Section 4.8 is concerned with a similar analysis in dimension three, under suitable

additional conditions. We also examine two explicit examples.

In Section 4.9 we revisit the sesquilinear forms vs linear operators issue in the

context of our main results.

In conclusion, in Section 4.10 we briefly mention some physically meaningful

applications of our results.

The main text of the Chapter is complemented by Appendix C.1 where we explain

the relation between the traditional definitions of symbols of (pseudo)differential
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operators and our definitions for sesquilinear forms.

4.2 First order sesquilinear forms

Let M be a real connected smooth d-manifold without boundary, not necessarily

compact. Local coordinates on M will be denoted by xα, α = 1, . . . , d.

We will be working with compactly supported smooth functions u : M → Cm.

Such functions can be thought of as sections of the trivial Cm-bundle overM or asm-

columns of smooth complex-valued scalar fields. They form an (infinite-dimensional)

vector space C∞0 (M ;Cm).

Definition 4.1. A first order sesquilinear form is a functional

S(u, v) :=

∫
M

[u∗Aα vxα + u∗xα B
α v + u∗C v] dx , u, v ∈ C∞0 (M ;Cm), (4.2.1)

where Aα(x), Bα(x) and C(x) are some prescribed smooth complex n × n matrix-

functions, the subscript xα indicates partial differentiation, the star stands for Her-

mitian conjugation and dx = dx1 . . . dxd. As in previous chapters, we adopt the

summation convention over repeated indices.

In formula (4.2.1) the elements of the matrix-function C are densities, whereas

the elements of the matrix-functions A are B are vector densities. Here and further

on we use bold script for density-valued quantities.

Performing integration by parts, one can rewrite the sesquilinear form (4.2.1) in

many different ways. We define the canonical representation of a first order sesquilin-

ear form to be

S(u, v) =

∫
M

[
− i

2
u∗Eα vxα +

i

2
u∗xα E

α v + u∗F v

]
dx . (4.2.2)

The matrix-functions in (4.2.1) and (4.2.2) are related by formulae

Eα = i(Aα −Bα), F = C− 1

2

∂(Aα + Bα)

∂xα
.

Recall the well-known fact that if wα is a vector density then ∂wα/∂xα is a density,

so elements of the matrix-function F(x) are densities.

We define the principal, subprincipal and full symbols of the sesquilinear form

(4.2.2) as

Sprin(x, p) := Eα(x) pα , (4.2.3)
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Ssub(x) := F(x), (4.2.4)

Sfull(x, p) := Sprin(x, p) + Ssub(x), (4.2.5)

respectively. Here pα, α = 1, . . . ,m, is the dual variable (momentum) and all the

above symbols are well defined on the cotangent bundle T ∗M . It is easy to see

that the full symbol uniquely determines our first order sesquilinear form and that

our sesquilinear form is Hermitian (that is, S(u, v) = S(v, u) ) if and only if its full

symbol is Hermitian.

Establishing a correspondence between a sesquilinear form or a (pseudo)differential

operator on the one hand and a (full) symbol on the other hand is often referred to as

quantisation. The argument in the above paragraph shows that first order sesquilin-

ear forms admit a particularly convenient and natural quantisation.

Further on we work with Hermitian first order sesquilinear forms.

An Hermitian first order sesquilinear form S(u, v) defines a real-valued action

S(v, v). Variation of this action produces field equations for v. This is a system of m

linear scalar first order partial differential equations for m unknown complex-valued

scalar fields.

Remark 4.2. Note that, according to Definition 4.1, a first order sesquilinear form

does not contain the term u∗xα D
αβ vxβ . The presence of such a term would funda-

mentally change the corresponding field equations, making them second order.

Definition 4.3. We say that the sesquilinear form S is non-degenerate if

Sprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M \ {0}. (4.2.6)

Condition (4.2.6) means that Sprin does not vanish as a matrix, i.e. for any

(x, p) ∈ T ∗M \ {0} the matrix Sprin(x, p) has at least one nonzero element. This is

the weakest possible non-degeneracy condition.

Further on we work with non-degenerate Hermitian first order sesquilinear forms.
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4.3 Statement of the problem

4.3.1 General linear classification

Consider a smooth matrix-function

G : M → GL(m,C). (4.3.1)

Given a sesquilinear form (4.2.2) we can now define another sesquilinear form

S̃(u, v) := S(Gu,Gv). (4.3.2)

We interpret this new sesquilinear form as a different representation of our original

sesquilinear form. What we did is we changed, fibrewise, the basis in our Cm-bundle

over M using the gauge transformation G.

The explicit formula for S̃(u, v) reads

S̃(u, v) =

∫
M

[
− i

2
u∗ Ẽα vxα +

i

2
u∗xα Ẽ

α v + u∗ F̃ v

]
dx ,

where

Ẽα = G∗EαG, F̃ = G∗FG+
i

2
[G∗xα E

αG−G∗EαGxα ] .

The corresponding full symbol is

S̃full = G∗ SfullG+
i

2
[G∗xα(Sfull)pαG−G∗(Sfull)pαGxα ] . (4.3.3)

Our goal is to perform the above argument the other way round, solving, effec-

tively, an ‘inverse problem’. Namely, suppose we are given two full symbols, Sfull(x, p)

and S̃full(x, p). Do they describe the same sesquilinear form? In order to deal with

this question rigorously we introduce the following definition.

Definition 4.4. We say that two full symbols Sfull(x, p) and S̃full(x, p) are GL-

equivalent if there exists a smooth matrix-function (4.3.1) such that (4.3.3) is satis-

fied.

4.3.2 Special linear classification

We will also deal with the problem of equivalence of symbols in a more restrictive,

special linear setting.
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Definition 4.5. We say that two full symbols Sfull(x, p) and S̃full(x, p) are SL-

equivalent if there exists a smooth matrix-function

G : M → SL(m,C) (4.3.4)

such that (4.3.3) is satisfied.

Let elaborate a bit on the motivation for Definition 4.5.

Suppose that we have an additional structure in our mathematical model, a

complex-valued volume form, namely, a non-vanishing map

vol : M → ∧n,0(Cm), vol(x) = c(x) dz1 ∧ . . . ∧ dzn,

where c(x) is some prescribed smooth non-vanishing complex scalar field.

The transformation u → Gu, where G is a matrix-function (4.3.1), turns vol

into the complex-valued volume form ṽol(x) = c̃(x) dz1 ∧ . . . ∧ dzn with c̃(x) =

c(x) detG(x).

As in the previous Subsection, we consider the ‘inverse’ problem which now in-

volves both the sesquilinear form and the complex-valued volume form. Namely, con-

sider two symbols Sfull(x, p) and S̃full(x, p) and two non-vanishing scalar fields c(x)

and c̃(x). Does there exist a smooth matrix-function (4.3.1) which turns (Sfull, c)

into (S̃full, c̃) ?

One way of addressing the above question is as follows. Choose an arbitrary

smooth matrix-function Q : M → GL(m,C) such that detQ(x) = c(x)/c̃(x) (for ex-

ample, one can take

Q(x) = diag (c(x)/c̃(x), 1, . . . , 1) ) and view the sesquilinear form S̃(Qu,Qv) as the

‘new’ sesquilinear form S̃. The two complex-valued volume forms now have the same

representation. After this we can only apply SL(m,C)-transformations (4.3.4) to

establish whether the two sesquilinear forms Sfull(x, p) and S̃full(x, p) are equivalent,

because we do not want to change the complex-valued volume form. This reduces

the problem to checking whether the symbols are SL-equivalent in the sense of Def-

inition 4.5.

Alternatively, we can do the argument the other way round. Take an arbitrary

smooth matrix-function Q : M → GL(m,C) such that detQ(x) = c̃(x)/c(x) and

view the sesquilinear form S(Qu,Qv) as the ‘new’ sesquilinear form S etc.
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It is easy to see that the outcome of this exercise does not depend on which way we

proceed or which Q we choose. In group-theoretic language, this corresponds to the

fact that the group of matrix-functions (4.3.4) is a normal subgroup of the group of

matrix-functions (4.3.1). The matrix-function Q picks a particular element in each of

the left cosets (or, equivalently, right cosets) of C∞(M,GL(m,C))/C∞(M,SL(m,C)).

4.4 Main results

The main problem addressed in the current Chapter is to give necessary and suf-

ficient conditions for a pair of full symbols to be GL-equivalent or SL-equivalent.

Our explicit non-canonical approach will eventually produce a full classification of

equivalence classes of sesquilinear forms for the special case

d = 4, m = 2, (4.4.1)

i.e. the case when we are dealing with a pair of complex-valued scalar fields over a

4-manifold.

Under the assumption (4.4.1) we have the following two theorems, which represent

the main result of this Chapter.

Theorem 4.6. Two full symbols Sfull(x, p) and S̃full(x, p) are GL-equivalent if and

only if

(i) the metrics encoded within these symbols belong to the same conformal class,

(ii) the electromagnetic covector potentials encoded within these symbols belong to

the same cohomology class in H1
dR(M),

(iii) their topological charges are the same,

(iv) their temporal charges are the same and

(v) they have the same 2-torsion spinc structure.

Theorem 4.7. Two full symbols Sfull(x, p) and S̃full(x, p) are SL-equivalent if and

only if

(i) the metrics encoded within these symbols are the same,
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(ii) the electromagnetic covector potentials encoded within these symbols are the

same,

(iii) their topological charges are the same,

(iv) their temporal charges are the same and

(v) they have the same spin structure.

The geometric and topological objects appearing in (i)–(v) in Theorems 4.6 and

4.7 will be introduced in Section 4.5 and examined further in Section 4.6. The proof

of the above theorems will be given in Section 4.7.

The construction presented in Sections 4.5–4.7 is not straightforward and comes

in several steps which combine techniques from differential geometry, algebraic topol-

ogy and analysis of partial differential equations.

4.5 Invariant objects encoded within sesquilinear forms

4.5.1 Geometric objects

Let us first explain what makes the case (4.4.1) special.

We start by observing that having the weaker constraint

d = m2 (4.5.1)

already brings about important geometric consequences. Namely, under the condi-

tion (4.5.1) a manifoldM admits a non-degenerate Hermitian first order sesquilinear

form if and only if it is parallelisable. The proof of this statement retraces that of

[7, Lemma 1.2].

Hence, without loss of generality, further on we assume that our manifold M

is parallelisable. Without this assumption we would not have any non-degenerate

Hermitian first order sesquilinear forms to work with.

Setting m = 2 and d = 4 has even more profound geometric consequences.

Namely, observe that the determinant of the principal symbol is a quadratic form in

momentum p:

detSprin(x, p) = −gαβ(x) pαpβ , (4.5.2)
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where gαβ(x) is a real symmetric 4 × 4 matrix-function with values in 2-densities.

More precisely, g is a rank two symmetric tensor density of weight two.

The quadratic form gαβ has Lorentzian signature (+,+,+,−) [55, Lemma 2.1].

This implies, in particular, that

detgαβ(x) < 0, ∀x ∈M.

Put

ρ(x) := (−detgµν(x))1/6. (4.5.3)

The quantity (4.5.3) is a density. This observation allows us to define the Lorentzian

metric

gαβ(x) := (ρ(x))−2 gαβ(x). (4.5.4)

Of course, formula (4.5.3) can now be rewritten in more familiar form as

ρ(x) = (−det gµν(x))1/2.

We see that the case (4.4.1) is special in that there is a Lorentzian metric encoded

within our sesquilinear form. This Lorentzian metric g is defined by the explicit

formulae (4.5.4), (4.5.3), (4.5.2).

Let gαβ be the contravariant metric tensor encoded within the sesquilinear for

S. Then the contravariant metric tensor g̃αβ encoded within the sesquilinear form S̃

defined by (4.3.2) is

g̃αβ = | detG|−2/3 gαβ. (4.5.5)

We see that the metric transforms conformally under the action of G as in (4.3.1).

In particular, it is invariant under (4.3.4).

The second geometric object encoded within our sesquilinear form is the electro-

magnetic covector potential. In order to single it out we first introduce the concept

of covariant subprincipal symbol

Scsub := Ssub +
i

16
gαβ{Sprin, adjSprin,Sprin}pαpβ , (4.5.6)

where gαβ is the inverse of gαβ ,

{F,G,H} := FxαGHpα − FpαGHxα
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is the generalised Poisson bracket on matrix-functions and adj is the operator of

matrix adjugation

F =

a b

c d

 7→
 d −b

−c a

 =: adjF.

We define the electromagnetic covector potential A as the — unique, due to (4.2.6)

— real-valued solution of

Scsub(x) = Sprin(x,A(x)). (4.5.7)

Note that (4.5.7) is a system of four linear algebraic equations for the four components

of A.

Lemma 4.8. The electromagnetic covector potential is given explicitly by the follow-

ing formula

Aα = −1

2
gαβ tr

(
[Scsub] [adj(Sprin)pβ ]

)
. (4.5.8)

Proof. In view of (4.5.2), multiplication of both sides of (4.5.7) by adj (Sprin(x, p))

gives

[Scsub(x)] [adj(Sprin(x, p))] = [Sprin(x,A(x))] [adj(Sprin(x, p)]

= (−gµν(x)Aµ(x) pν) Id.
(4.5.9)

Differentiating both sides of (4.5.9) with respect to pβ , taking the matrix trace and

lowering the index with the ((−2)-density valued) metric yields (4.5.8).

Formulae (4.5.2), (4.5.6) and (4.5.7) tell us that the full symbol is completely

determined by principal symbol and electromagnetic covector potential.

Lemma 4.9. Let A be the electromagnetic covector potential encoded within the

sesquilinear form S. Then the electromagnetic covector potential Ã encoded within

the sesquilinear form S̃ defined by (4.3.2) is

Ã = A+
1

2
grad(arg detG). (4.5.10)

Proof. From [55, formulae (5.1), (5.2), (D.4)–(D.6)] it follows that

S̃csub = G∗ScsubG−Q−Q∗, (4.5.11)
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with

Q = − i
8
gαβ G

∗ (Sprin)pα Gxγ G
−1 (adjSprin)pβ (Sprin)pγ G. (4.5.12)

The matrix-function G can be written locally as

G(x) = r(x) eiϕ(x)G1(x), (4.5.13)

where r, ϕ : M → R and G1 : M → SL(2,C) are smooth real and matrix-valued

functions respectively. In particular, ϕ(x) = 1
2 arg detG(x). From (4.5.13) we obtain

Gxγ G
−1 = (G1)xγ G

−1
1 +

rxγ

r
Id +i ϕxγ Id . (4.5.14)

The first term on the RHS of (4.5.14) is trace-free and hence, by [55, formula (C.1)],

it does not contribute to (4.5.12). The second term is real, and, when multiplied by

i, it does not contribute to Q+Q∗. Therefore, by substituting (4.5.14) into (4.5.12)

and, in turn, (4.5.12) into (4.5.11), we obtain

S̃csub = G∗ScsubG+G∗(Sprin)pγ ϕxγG, (4.5.15)

from which (4.5.10) ensues.

Remark 4.10. The use of the term ‘electromagnetic covector potential’ for the cov-

ector field A is motivated by the fact that this A is, in our context, a counterpart of

what in gauge theory is a U(1)-connection, see formula (4.5.10).

4.5.2 Topological objects

As explained in the beginning of the previous subsection, our manifold M is a priori

parallelisable, hence orientable. We specify an orientation on our manifold and define

the topological charge of our sesquilinear form as

ctop := − i
2

√
−detgαβ tr

(
(Sprin)p1(Sprin)p2(Sprin)p3(Sprin)p4

)
, (4.5.16)

where tr stands for the matrix trace. Straightforward calculations show that the

number ctop can take only two values, +1 or −1. It describes the orientation of

the principal symbol relative to our chosen orientation of local coordinates x =

(x1, x2, x3, x4).
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Our Lorentzian 4-manifold (M, g) does, in fact, possess an additional property:

it is automatically time-orientable, i.e. it admits a timelike (co)vector field. Indeed,

consider the quantity

fx(p) :=
1

ρ(x)
trSprin(x, p).

We are looking at a linear map

fx : T ∗xM → R, p 7→ fx(p),

depending smoothly on x ∈M . Non-degeneracy of our principal symbol implies that

range fx 6= {0}, ∀x ∈M.

By duality the linear map fx can be represented in terms of a nonvanishing vector

field t,

fx(p) = t(p) = tα(x) pα ,

which can be shown to be timelike.

Let us specify a time orientation by choosing a reference timelike covector field

q. We define the temporal charge of our sesquilinear form as

ctem := sgn t(q). (4.5.17)

It describes the orientation of the principal symbol relative to our chosen time ori-

entation.

Definition 4.11. Consider symbols corresponding to metrics from a given conformal

class and with the same topological and temporal charges. We define 2-torsion spinc

structure to be the equivalence class of symbols

[S] = {S̃ | S̃prin = G∗SprinG, G ∈ C∞(M,GL(m,C))} . (4.5.18)

Definition 4.12. Consider symbols corresponding to a given metric and with the

same topological and temporal charges. We define spin structure to be the equiva-

lence class of symbols

[S] = {S̃ | S̃prin = G∗SprinG, G ∈ C∞(M,SL(m,C))} . (4.5.19)

In the above definitions we use topological terminology, even though the defini-

tions themselves are stated in a purely analytic fashion. A rigorous justification for

this is provided in the next Section.
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4.6 Transition from analysis to topology

The aim of this section is to perform an analysis of Definitions 4.11 and 4.12, so as

to show that these analytic definitions are equivalent to standard topological ones.

We will establish this equivalence by rewriting the principal symbol of a sesquilinear

form in a way that is better suited for revealing topological content, see formula

(4.6.1) below.

4.6.1 Framings and their equivalence

Let M be an oriented time-oriented Lorentzian 4-manifold. By a frame at a point

x ∈ M we mean a positively oriented and positively time-oriented orthonormal, in

the Lorentzian sense, frame ej , j = 1, 2, 3, 4, in the tangent space TxM :

det ej
α > 0, q(e4) > 0,

gαβ ej
αek

β =


0 if j 6= k,

+1 if j = k 6= 4,

−1 if j = k = 4.

Here each vector ej has coordinate components ejα, α = 1, 2, 3, 4. By a framing of

M we mean a choice of frame at every point x ∈ M depending smoothly on the

point. Of course, the contravariant metric tensor is expressed via the framing as

gαβ = e1
αe1

β + e2
αe2

β + e3
αe3

β − e4
αe4

β

and the Lorentzian density is expressed via the framing as ρ = (det ej
α)−1.

Let

s1 = s1 =

0 1

1 0

 , s2 = s2 =

0 −i

i 0

 ,

s3 = s3 =

1 0

0 −1

 , s4 = −s4 =

1 0

0 1


be the standard basis in the real vector space of 2 × 2 Hermitian matrices. Then

the principal symbols of sesquilinear forms with ctop = ctemp = +1 are in one-to-

one correspondence with framings. This correspondence is realised explicitly by the



4.6. Transition from analysis to topology 151

formula

Sprin(x, p) = ρ(x) sj ej
α(x) pα . (4.6.1)

The nondegeneracy condition (4.2.6) implies that the vector fields ej , j = 1, 2, 3, 4,

are linearly independent. Moreover, they are automatically Lorentz-orthogonal with

respect to the metric encoded within Sprin, see [7, Sections 1 and 2]. Thus, the ej ,

j = 1, 2, 3, 4, provide a framing. Observe that one can also argue the other way

around: in view of (4.6.1) a framing completely determines the principal symbol.

The point of the above argument is that instead of working with an analytic

object, a principal symbol, we can work with an equivalent geometric object, a

framing.

In what follows SO+(3, 1) denotes the identity component of the Lorentz group

and CSO+(3, 1) denotes its conformal extension. Here ‘conformal extension’ refers

to multiplication of matrices from SO+(3, 1) by arbitrary positive factors. The Lie

group SO+(3, 1) is 6-dimensional, so CSO+(3, 1) is 7-dimensional. The conformal

extension of the Lorentz group is needed because gauge transformations (4.3.2),

(4.3.1) result in the scaling of the Lorentzian metric encoded within the principal

symbol, see formula (4.5.5).

Let us now fix a conformal class of Lorentzian metrics and within this class choose

a pair of principal symbols Sprin and S̃prin. Let ej and ẽj be the corresponding

framings. Then

ẽj = Oj
k ek (4.6.2)

for some uniquely defined smooth matrix-function O : M → CSO+(3, 1).

Suppose now that there exists a matrix-function G : M → GL(2,C) such that

S̃prin = G∗ SprinG. A straightforward calculation shows that the matrix-function O

appearing in (4.6.2) is expressed via G as

Oj
k =

1

2
| detG|−4/3 tr(sjG

∗skG). (4.6.3)

It is convenient to define

G := |detG|2/3G. (4.6.4)

Of course, the above formula can be inverted:

G = |detG|−2/7 G. (4.6.5)
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The advantage of working with the matrix-function

G : M → GL(2,C)

rather than the original matrix-function (4.3.1) is that formula (4.6.3) simplifies and

reads now

Oj
k =

1

2
tr(sjG∗skG). (4.6.6)

The switch from G to G does not affect the topological issues we are addressing, it

just makes formulae simpler.

Observe that when G ∈ SL(2,C), (4.6.6) is the standard spin homomorphism

formula which provides a map

Π : SL(2,C) −→ SO+(3, 1), Π(G) = O. (4.6.7)

When we allow G to take values in GL(2,C), formula (4.6.6) gives us a map

Π : GL(2,C) −→ CSO+(3, 1), Π(G) = O. (4.6.8)

We are now in a position to rephrase Definitions 4.11 and 4.12 as follows.

Consider symbols corresponding to metrics from a given conformal class and with

the same topological and temporal charges. We define 2-torsion spinc structure to

be the equivalence class of symbols, where two symbols are called equivalent if the

matrix-function O relating them, see (4.6.2), can be written in the form (4.6.6) for

some G : M → GL(2,C). In other words, the matrix-functionO : M −→ CSO+(3, 1)

admits a factorisation

O : M
G−→ GL(2,C)

Π−→ CSO+(3, 1). (4.6.9)

If the metric is the same, we define spin structure to be the equivalence class of

symbols, where two symbols are called equivalent if the matrix-function O relating

them can be written in the form (4.6.6) for some G : M → SL(2,C).

Remark 4.13. It is easy to see that in the GL case the matrix-function G, if it exists,

is defined uniquely modulo multiplication by eiϕ, where ϕ is an arbitrary smooth

real-valued scalar function. In the SL case the matrix-function G, if it exists, is

defined uniquely modulo multiplication by ±1.
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It follows from [7] that our definition of spin structure agrees with the accepted

topological one1. In the remainder of this section we establish a similar result for

2-torsion spinc structure.

Let us remind the reader that it follows from our assumptions (4.2.6) and (4.4.1)

that M is a Lorentzian manifold which is parallelisable and time-orientable. In

particular, it is spin. A choice of reference framing on M provides a trivialisation

of the tangent bundle TM so that any other framing is related to this reference

framing by a smooth function O : M → CSO+(3, 1). Two framings corresponding

to functions O1 and O2 are equivalent in the above sense if and only if there exists

a smooth function G : M → GL(2,C) such that O2 · (Π ◦ G) = O1 as functions

M → CSO+(3, 1).

4.6.2 Topological characterisation

In this Section, we will characterise the equivalence relation we used to define the

2-torsion spinc structures in purely topological terms. We begin by recalling that

the compact subgroups U(2) ⊂ GL(2,C) and SO(3) ⊂ CSO+(3, 1) are deformation

retracts of the respective non-compact Lie groups compatible with the map (4.6.8)

in the sense that the following diagram commutes

U(2) GL(2,C)

SO(3) CSO+(3, 1)

Ad Π (4.6.10)

Here we used the fact that the restriction of the map (4.6.8) to the subgroup U(2)

coincides with the adjoint map Ad : U(2) −→ SO(3). The two vertical arrows in this

diagram are principal U(1)–bundles, the action being multiplication by a diagonal

matrix; see Remark 4.13.

Lemma 4.14. The principal U(1)–bundles

U(2)→ SO(3) and GL(2,C)→ CSO+(3, 1)

1The map called Ad : SL(2,C) → SO+(3, 1) in [7] should in fact be understood as the spin

homomorphism Π.
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are non-trivial.

Proof. A principal bundle is known to be trivial if and only if it admits a section.

Assuming that the bundle U(2) → SO(3) admits a section s : SO(3) → U(2), we

immediately obtain a contradiction because the composition

H2(SO(3);Z)
Ad∗−−−−→ H2(U(2);Z)

s∗−−−−→ H2(SO(3);Z)

must be identity while H2(U(2);Z) = Z and H2(SO(3);Z) = Z/2. The argument

for the other bundle is similar.

We will be mostly interested in the bundle GL(2,C) → CSO+(3, 1). Given a

map f : M → CSO+(3, 1), associate with it the cohomology class O(f) = f∗(1) ∈

H2(M ;Z), where 1 ∈ H2(CSO+(3, 1);Z) = Z/2 is the generator. Note that O(f) is

an element of order at most two in H2(M ;Z); in particular, it automatically vanishes

whenever the group H2(M ;Z) has no 2-torsion.

Proposition 4.15. A map f : M → CSO+(3, 1) admits a factorisation (4.6.9) if

and only if O(f) = 0.

Proof. We begin by constructing, for a given map f : M → CSO+(3, 1), the pull

back principal bundle

E(f) GL(2,C)

M CSO+(3, 1)
f

π Π

where E(f) = { (x, p) | f(x) = Π(p) } ⊂M ×GL(2,C) and the maps π : E(f)→M

and E(f) → GL(2,C) are projections onto the respective factors. It is well known

(and can be checked by comparing the definitions) that f : M → CSO+(3, 1) admits

a factorisation (4.6.9) if and only if the bundle π : E(f) → M admits a section.

Since π : E(f) → M is a principal bundle it admits a section if and only if it is

trivial. The latter happens if and only if the first Chern class c1(E(f)) ∈ H2(M ;Z)

vanishes. Since c1 is natural with respect to pull backs, c1(E(f)) is the pul back
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via f∗ : H2(CSO+(3, 1);Z) → H2(M ;Z) of the first Chern class of the bundle

GL(2,C)→ CSO+(3, 1). According to Lemma 4.14, the latter bundle is non-trivial,

hence its first Chern class must be the generator 1 ∈ H2(CSO+(3, 1);Z) = Z/2 and

c1(E(f)) = f∗(1) = O(f).

Proposition 4.16. Every element of H2(M ;Z) of order two can be realised as O(f)

for some map f : M → CSO+(3, 1).

Proof. Let us consider the short exact sequence 0 −→ Z ·2−→ Z −→ Z/2 −→ 0. The

associated long exact sequence

. . . −→ H1(M ;Z/2)
∂−→ H2(M ;Z)

·2−→ H2(M ;Z) −→ H2(M ;Z/2) −→ . . .

implies that every element b ∈ H2(M ;Z) of order two belongs to the image of the

Bockstein homomorphism ∂ : H1(M ;Z/2) −→ H2(M ;Z). We will show that every

cohomology class a ∈ H1(M ;Z/2) is of the form a = f∗(1) for some f : M →

SO+(3, 1) and 1 ∈ H1(SO+(3, 1);Z/2) = Z/2. The result will then follow from the

commutative diagram

H1(SO+(3, 1);Z/2)
∂−−−−→ H2(SO+(3, 1);Z)yf∗ yf∗

H1(M ;Z/2)
∂−−−−→ H2(M ;Z)

(4.6.11)

whose upper row is an isomorphism, and the fact that SO+(3, 1) ⊂ CSO+(3, 1) is a

deformation retract.

Let us consider the double covering SL(2,C) → SO+(3, 1) given by the spin

homomorphism (4.6.7) and its associated fibration sequence (see, for instance, [47,

Lemma 8.23])

Z/2 −−−−→ SL(2,C) −−−−→ SO+(3, 1) −−−−→ K(Z/2, 1) −−−−→ BSL(2,C),

whereK(Z/2, 1) is the Eilenberg–MacLane space andBSL(2,C) the classifying space

of the Lie group SL(2,C). It gives rise to the exact sequence of homotopy sets (see

[47, Theorem 6.29])

[M,SO+(3, 1)] −−−−→ H1(M ;Z/2) −−−−→ [M,BSL(2,C)]
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using the fact that H1(M ;Z/2) = [M,K(Z/2, 1)]. We wish to show that the first

map in this sequence is surjective or, equivalently, that the second map is zero.

Write H1(M ;Z/2) = [M,RP∞] using the homotopy equivalence between K(Z/2, 1)

and the real projective space RP∞. Also observe that, up to homotopy equiva-

lence, BSL(2,C) = BSU(2) = HP∞, the quaternionic projective space. Then the

question becomes whether, for any continuous map M → RP∞, the composition

M → RP∞ → HP∞ with the natural inclusion RP∞ → HP∞ is homotopic to zero.

Since dimM = 4 and the 5–skeleton of the CW–complex HP∞ is HP1 = S4, the

cellular approximation theorem reduces this question to an identical question about

the composition M → RP4 → S4. By the Hopf theorem, a map M → S4 is homo-

topic to zero if and only if the induced map H4(S4;Z) → H4(M ;Z) is zero. In our

case, this last map splits as the composition

H4(S4;Z) −−−−→ H4(RP4;Z) −−−−→ H4(M ;Z),

with H4(RP4;Z) = Z/2. Since M is orientable, H4(M ;Z) is a free abelian group,

hence the second map in this composition must vanish.

It is worth mentioning that the orientability of M in this argument is essential:

in general, realisability of cohomology classes in H2(M ;Z) can be obstructed by the

non-trivial quadruple cup-product on H1(M ;Z/2).

Corollary 4.17. The set of 2-torsion spinc structures on M is in a bijective corre-

spondence with the 2-torsion subgroup of H2(M ;Z).

4.6.3 Differential geometric characterisation

Our goal in this Subsection is to identify the equivalence classes of framings with

the 2-torsion spinc structures on M , whose definition is modelled after that in Rie-

mannian geometry [79]; see Remark 4.19 below. In the special case at hand, when

the tangent bundle TM is trivialised via the reference frame, it reads as follows. A

2-torsion spinc structure on M is an equivalence class of commutative diagrams
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M ×GL(2,C)

M × CSO+(3, 1)

MΦ

π

π

where π stands for the projection onto the first factor, and the map Φ is equivariant

in that Φ(x, g) = Φ(x, 1) · Π(g) for all x ∈ M and g ∈ GL(2,C). Two diagrams as

above with the vertical maps Φ1 and Φ2 are called equivalent if there is a commutative

diagram

M ×GL(2,C) M ×GL(2,C)

M × CSO+(3, 1)

A

Φ1 Φ2

such that π ◦A = π and the map A is equivariant in that A(x, g) = A(x, 1) · g for all

x ∈M and g ∈ GL(2,C).

Theorem 4.18. For parallelisable time-orientable Lorentzian 4-manifolds, the equiv-

alence classes of framings as above are in bijective correspondence with the 2-torsion

spinc structures.

Proof. Using the commutativity of the first diagram, write Φ(x, g) = (x, φ(x, g)) for

some function φ : M × GL(2,C) → CSO+(3, 1) and observe that the equivariance

condition on Φ translates into the equation φ(x, g) = φ(x, 1) · Π(g). Therefore,

the map Φ is uniquely determined by the map ψ : M → CSO+(3, 1) given by

ψ(x) = φ(x, 1).

Similarly, write A(x, g) = (x, α(x, g)) and observe that the equivariance condition

on A translates into the equation α(x, g) = α(x, 1) · g. Therefore, the map A

is uniquely determined by the map β : M → GL(2,C) given by β(x) = α(x, 1).

One can easily check that the second commutative diagram then simply means that

ψ2 · Π(β) = ψ1 as functions M → CSO+(3, 1).
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Theorem 4.18 rigorously shows, in view of (4.6.1), the equivalence of two defini-

tions of 2-torsion spinc structure, the standard topological one and Definition 4.11.

Note that the equivalence we established is not canonical in that it depends on the

choice of reference frame.

Remark 4.19. It may be worth explaining the origin of the term ‘2-torsion spinc

structure’. Following the analogy with Riemannian geometry, one can define a spinc

structure on M as the equivalence class of lifts of the principal frame bundle of

M to a GL(2,C) bundle; even though the frame bundle of M is trivial, it may

lift to a non-trivial GL(2,C) bundle. Among these lifts is the lift to an SL(2,C)

bundle P associated with the spin structure on M . The bundle P must be trivial

for topological reasons: it is classified by its second Chern class c2(P ), and we know

that 4c2(P ) = −p1(TM) = 0 ∈ H4(M ;Z). As in the Riemannian case, one can

use P to establish a bijective correspondence between spinc structures on M and

the group H2(M ;Z). Under this correspondence, the spinc structure corresponding

to a cohomology class a ∈ H2(M ;Z) lives in a Hermitian rank-two bundle with the

first Chern class c1(P ) + 2a = 2a ∈ H2(M ;Z). Since we restrict ourselves to trivial

bundles, the class 2a must vanish. This means that a ∈ H2(M ;Z) is a 2-torsion,

hence the name of the corresponding spinc structure.

4.7 Proofs of main theorems

4.7.1 Proof of Theorem 4.6

Necessity

Let us first show that conditions (i)–(v) of Theorem 4.6 are necessary.

(i) Formula (4.5.5) tells us that the conformal class of metrics is preserved under

GL transformations, so condition (i) is necessary.

(ii) Lemma 4.9 tells us that condition (ii) is necessary.

(iii)-(iv) In order to deal with conditions (iii) and (iv) we observe that the two

charges, topological (4.5.16) and temporal (4.5.17), can be expressed via the
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framing as

ctop = sgn det ej
α, ctem = sgn q(e4).

We showed in Section 4.6 that under GL transformations the framing stays

within the original connected component of the conformally extended Lorentz

group, hence conditions (iii) and (iv) are necessary.

(v) As to the necessity of condition (v), it follows immediately from Defini-

tion 4.11.

Sufficiency

Let us now show that conditions (i)–(v) of Theorem 4.6 are sufficient.

We need to find a GL transformation which turns one full symbol into the other.

As explained in Subsection 4.5.1, a full symbol is completely determined by principal

symbol and electromagnetic covector potential. Thus, we need to find a GL trans-

formation which turns one principal symbol into the other and one electromagnetic

covector potential into the other.

Conditions (i) and (iii)–(v) ensure that we can find a matrix-function (4.3.1)

which turns one principal symbol into the other, see formula (4.5.18). Remark

4.13 and formulae (4.6.4), (4.6.5) tell us that this matrix-function (4.3.1) is defined

uniquely modulo multiplication by eiϕ, where ϕ is an arbitrary smooth real-valued

scalar function. In view of condition (ii) this function ϕ can be chosen so as to turn

one electromagnetic covector potential into the other.

All in all, we obtain a matrix-function G defined uniquely modulo multiplication

by a constant c ∈ C, |c| = 1.

4.7.2 Proof of Theorem 4.7

The proof of Theorem 4.7 is similar to that of Theorem 4.6, with only two modifica-

tions.

• SL transformations preserve the metric, so the requirement is that the two

metrics are the same as opposed to the two metrics being in the same conformal

class.
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• SL transformations preserve the electromagnetic covector potential, so the

requirement is that the two electromagnetic covector potentials are the same

as opposed to the two electromagnetic covector potentials being in the same

cohomology class in H1
dR(M).

All in all, we obtain a matrix-function G defined uniquely modulo multiplica-

tion by ±1.

4.8 The 3-dimensional Riemannian case

Let us consider first order sesquilinear forms satisfying the additional assumption

trSprin(x, p) = 0, ∀(x, p) ∈ T ∗M. (4.8.1)

In this setting it is natural to look at transformations of symbols generated by matrix-

functions

G : M → U(m) (4.8.2)

or

G : M → SU(m). (4.8.3)

Of course, U(m) ⊂ GL(m,C) and SU(m) ⊂ SL(m,C), so (4.8.2) and (4.8.3) are

special cases of (4.3.1) and (4.3.4) respectively. We are now more restrictive in our

choice of matrix-functions G because we want to preserve condition (4.8.1).

It turns out that for sesquilinear forms with trace-free principal symbol one can

perform a classification similar to that described in previous Sections. We list the

main results below, skipping detailed proofs as these are modifications of arguments

presented earlier in the Chapter.

Condition (4.5.1) is now replaced by

d = m2 − 1. (4.8.4)

Under the condition (4.8.4) a manifold M admits a non-degenerate Hermitian first

order sesquilinear form with trace-free principal symbol if and only if it is parallelis-

able. So, as in the four dimensional case, without loss of generality we assume that

our manifold is parallelisable.
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In this Section we deal with the special case

d = 3, m = 2, (4.8.5)

compare with (4.4.1). It is known [110, 74] that a 3-manifold is parallelisable if and

only if it is orientable. Therefore, orientability is our only topological restriction on

M .

Under the assumption (4.8.1) the non-degeneracy condition (4.2.6) is equivalent

to the condition

detSprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M \ {0}. (4.8.6)

But (4.8.6) is the standard ellipticity condition. Thus, we are led to consider formally

self-adjoint elliptic first order sesquilinear forms S with trace-free principal symbols

which act on sections of the trivial C2-bundle over a connected smooth oriented

3-manifold M without boundary.

We define gαβ(x) via (4.5.2). The quadratic form gαβ is positive definite, a fact

which implies, in particular, that

detgαβ(x) > 0, ∀x ∈M.

Put

ρ(x) := (detgµν(x))1/4. (4.8.7)

The quantity (4.8.7) is a density. This observation allows us to define the Riemannian

metric

gαβ(x) := (ρ(x))−2 gαβ(x).

Of course, formula (4.8.7) can now be rewritten in more familiar form as ρ(x) =

(det gµν(x))1/2 . And it is easy to see that our metric tensor is invariant under

transformations (4.3.2), (4.8.2).

We define the covariant subprincipal symbol in accordance with formula (4.5.6).

The magnetic covector potential A = (A1, A2, A3) and electric potential A4 are

defined as the solution of

Scsub(x) = Sprin(x,A(x)) +A4 Id ,
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compare with (4.5.7). For the magnetic potential we still have the explicit formula

(4.5.8) and for the electric potential we have

A4 =
1

2
trScsub .

The full symbol is completely determined by principal symbol, magnetic covec-

tor potential and electric potential. The electric potential is invariant under trans-

formations (4.3.2), (4.8.2), whereas the magnetic covector potential transforms in

accordance with formula (4.5.10).

We specify an orientation on our manifold and define the topological charge of

our sesquilinear form as

ctop := − i
2

√
detgαβ tr

(
(Sprin)p1(Sprin)p2(Sprin)p3

)
= sgn det ej

α, (4.8.8)

compare with (4.5.16).

Definition 4.20. Consider symbols corresponding to a given metric and with the

same topological charge. We define 2-torsion spinc structure to be the equivalence

class of symbols

[S] = {S̃ | S̃prin = G∗SprinG, G ∈ C∞(M,U(2))} . (4.8.9)

Definition 4.21. Consider symbols corresponding to a given metric and with the

same topological charge. We define spin structure to be the equivalence class of

symbols

[S] = {S̃ | S̃prin = G∗SprinG, G ∈ C∞(M,SU(2))} . (4.8.10)

Our analytic definition of 2-torsion spinc structure in dimension three, Defini-

tion 4.20, is equivalent to the standard topological one. This follows by the argu-

ment of Section 4.6.2 and Section 4.6.3 once the map GL(2,C) → CSO+(3, 1) is

replaced by the map U(2) → SO(3). Our analytic definition of spin structure in

dimension three, Definition 4.21, is also equivalent to the standard topological one,

which follows from [7] with the help of Diagram 4.6.10.

We define U -equivalence and SU -equivalence of symbols as in Definition 4.4,

replacing (4.3.1) by (4.8.2) and (4.8.3) respectively.

We have the following analogues of Theorems 4.6 and 4.7.
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Theorem 4.22. Two full symbols Sfull(x, p) and S̃full(x, p) are U -equivalent if and

only if

(i) the metrics encoded within these symbols are the same,

(ii) the electric potentials encoded within these symbols are the same,

(iii) the magnetic covector potentials encoded within these symbols belong to the same

cohomology class in H1
dR(M),

(iv) their topological charges are the same and

(v) they have the same 2-torsion spinc structure.

Theorem 4.23. Two full symbols Sfull(x, p) and S̃full(x, p) are SU -equivalent if and

only if

(i) the metrics encoded within these symbols are the same,

(ii) the electric potentials encoded within these symbols are the same,

(iii) the magnetic covector potentials encoded within these symbols are the same,

(iv) their topological charges are the same and

(v) they have the same spin structure.

4.8.1 Explicit examples

To conclude this Section, let us examine two explicit examples. The first one illus-

trates how topological obstructions may arise when classifying symbols in accordance

with (4.8.9), the second demonstrates the difference between spin and spinc.

The Lie group SO(3)

Let M = SO(3). We claim that SO(3) has more than one 2-torsion spinc structure.

This follows from Corollary 4.17 and the non-vanishing of the group H2(SO(3);Z)

but can also be seen directly as follows. With reference to Section 4.6.2, consider the

identity map

Id : M → SO(3).
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The map Id does not lift to a map SO(3) → U(2), namely, there does not exist a

map s : SO(3)→ U(2) such that the diagram

U(2)

SO(3) SO(3)

s
π

Id

commutes. A cohomological argument can be found in the proof of Lemma 4.14.

Another way to see this is as follows. Let us restrict ourselves to SU(2) matrices

with zero trace. These matrices form a sphere S2 ⊂ SU(2), which can also be viewed

as the conjugacy class of diag(i,−i) ∈ SU(2). Explicitly, the matrices in S2 are of

the form

A =

 ia b+ ic

−b+ ic −ia

 ,

where a, b, and c are real numbers such that a2 + b2 + c2 = 1. The adjoint represen-

tation sends matrices A and −A ∈ S2 to the same matrix, giving rise to the double

covering S2 → RP2 of the real projective plane. We shall show that the bundle

U(2) → SO(3) does not admit a section even over the subset RP2 ⊂ SO(3). The

issue one encounters with finding such a section is adjusting for the signs of SU(2)

matrices in S2 mapping to the same matrix in RP2. To make this adjustment, we

need to find a continuous function h : S2 → U(1) such that h(−x) = −h(x), where

−x stands for the antipodal map on the sphere. If such a function h existed, its

composition with the standard inclusion U(1) → R2 would give rise to a function

f : S2 → R2 with the property that f(−x) = −f(x). However, such a function

does not exist by the Borsuk–Ulam theorem [64, Theorem 1.10]: the Borsuk–Ulam

theorem states that, for any continuous function f : S2 → R2, there exists x ∈ S2

such that f(−x) = f(x). Combined with f(−x) = −f(x), this means that f(x) = 0

for some x, which contradicts the fact that the image of f belongs to the unit circle.

In fact, one can show that SO(3) has precisely two distinct 2-torsion spinc

structures and precisely two distinct spin structures because H2(SO(3);Z) = Z/2

and H1(SO(3);Z/2) = Z/2. In this particular case, spinc and spin structures are
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matched via the Bockstein isomorphism H1(SO(3);Z/2) → H2(SO(3);Z), cf. Dia-

gram (4.6.11).

The 3-torus

Let M = T3 be the 3-dimensional torus parameterised by mod 2π coordinates xα,

α = 1, 2, 3. Put

S(x, p) = Sprin(x, p) :=

 p3 p1 − ip2

p1 + ip2 −p3

 ,

S̃(x, p) = S̃prin(x, p) :=

 p3 eix
3
(p1 − ip2)

e−ix
3
(p1 + ip2) −p3

 .

We have

detSprin(x, p) = det S̃prin(x, p) = −
(
p2

1 + p2
2 + p2

3

)
,

which means that the metric encoded within the symbols S and S̃ is the same,

namely, the Euclidean metric. Furthermore, the topological charge (4.8.8) encoded

within the symbols S and S̃ is the same, +1. Do these symbols have the same spinc

structure? The answer is yes, because if we take

G(x) =

e−ix3 0

0 1

 ∈ C∞(M,U(2))

we get

S̃prin = G∗SprinG. (4.8.11)

However, it is easy to see that there does not exist an G ∈ C∞(M,SU(2)) which

would give (4.8.11), so our two symbols, S and S̃, have different spin structure.

In fact, it follows from Corollary 4.17 that the 3-torus has a unique 2-torsion spinc

structure because the cohomology group H2(T3;Z) = Z3 has no 2-torsion, but it has

eight distinct spin structures because the cohomology group H1(T3;Z/2) = (Z/2)3

has eight elements.

4.9 Sesquilinear forms vs linear operators

Having developed our theory, we are now in a position to connect the motivational

ideas outlined in the Section 4.1 with the theory of partial differential equations.
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Consider an Hermitian first order sequilinear form of the type (4.2.2) on the

infinite-dimensional vector space C∞0 (M ;C2).

4.9.1 Four-dimensional case

In dimension d = 4, introduce an inner product

〈u, v〉 :=

∫
M
u∗Bv ρdx , (4.9.1)

where B is some positive definite Hermitian 2 × 2 matrix-function and ρ is the

Lorentzian density defined as in Subsection 4.5.1. Our first order Hermitian sesquilin-

ear form S and inner product (4.9.1) define a formally self-adjoint first order linear

differential operator L. The problem here is that it is impossible to choose B so as

to have

G∗BG = B, ∀G ∈ GL(2,C)

or even

G∗BG = B, ∀G ∈ SL(2,C),

i.e. one cannot introduce an inner product compatible with our gauge transforma-

tions. Hence, in the 4-dimensional case the construction presented above defines a

linear field equation but not a linear operator.

4.9.2 Three-dimensional case

Working in dimension d = 3 and within the framework of Section 4.8 (see, in partic-

ular, formulae (4.8.1)–(4.8.3)), introduce the inner product

〈u, v〉 :=

∫
M
u∗v ρdx , (4.9.2)

where ρ is the Riemannian density encoded within our sesquilinear form in accor-

dance with formulae (4.5.2) and (4.8.7). Now (4.9.2) is compatible with our gauge

transformations. Hence, in the 3-dimensional case our construction defines a formally

self-adjoint elliptic first order linear differential operator.
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4.10 Applications

In dimension d = 4 a distinguished physically meaningful sesquilinear form is the

Weyl form. It is defined by the condition that the electromagnetic covector potential

is zero. The gauge group is SL(2,C). One cannot use here the gauge group GL(2,C)

because the electromagnetic covector potential is not invariant under the action of

this group, see Lemma 4.9. The corresponding linear field equation is called Weyl’s

equation, the accepted mathematical model for the massless neutrino in curved space-

time. The condition A = 0 translates, in physical terms, into the neutrino having no

electric charge and, therefore, not interacting with the electromagnetic field.

In dimension d = 3 and under the assumption (4.8.1) a distinguished physically

meaningful sesquilinear form is themassless Dirac form. It is defined by the condition

that the electric potential and magnetic covector potential are both zero. By analogy

with the previous paragraph, the gauge group here is SU(2) and one cannot use U(2)

because the magnetic covector potential is not invariant under the action of the latter.

The corresponding linear differential operator is the massless Dirac operator, studied

in Chapter 3.
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Chapter 5

Lorentzian elasticity

5.1 Introduction

The aim of this Chapter is to propose a new mathematical model for a class of

field theories in the Lorentzian setting. Inspired by the classical theory of elasticity

(see, e.g., [43, 44]), we construct a Lagrangian out of a pair of metrics related by

a spacetime diffeomorphism, which, in turn, represents the unknown of our model.

The variation of our Lagrangian under the volume preservation condition produces a

system of nonlinear partial differential equations, the field equations, whose analysis

constitutes the main subject of the Chapter.

Our work possesses several elements of novelty. Firstly, in spite of relying on

ideas from Riemannian elasticity, our theory is fully Lorentzian in that it deals

with diffeomorphisms of the whole spacetime into itself, giving detailed account of

the issues arising due to the indefinite signature. Secondly, our model incorporates

a volume preservation condition into a theory of elasticity, leading to interesting

mathematical consequences. Thirdly, we suggest new techniques for solving nonlinear

PDEs, ones of possibly broader relevance. Lastly, our construction gives rise to

solutions that appear to be physically meaningful, with potential applications in the

realm of theoretical and particle physics.

For the case of Minkowski spacetime, we provide two classes of explicit solu-

tions, massless and massive, which, at least at a formal level, offer a natural physical

interpretation in terms of elementary particles, namely, neutrino/antineutrino and

169
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electron/positron. Our massive solution contains two free parameters. Even though

these parameters can be interpreted as quantum mechanical mass and electric charge,

our model does not allow for their values to be determined. We attribute this to the

large number of symmetries implicitly present in our theory. One would hope that

appropriate symmetry breaking could overcome this shortcoming of our mathemat-

ical model.

Our model is, effectively, a nonlinear version of Maxwell’s theory. The only

dimensional parameter is the speed of light: it is encoded in the Minkowski metric

when we consider the case of flat spacetime. All other parameters are dimensionless

and are contained in our Largrangian.

We develop our theory in dimension d = 4 and for pseudo-Riemannian mani-

folds of Lorentzian signature. In principle, neither assumption is necessary for its

formulation. However, the physical conclusions we derive are specific to dimension

3 + 1. In particular, dimension 3 + 1 appears to be the lowest in which one observes

propagating massless solutions.

This Chapter is structured as follows. In Section 5.2 we present the mathematical

formulation of our model. In Section 5.3 we derive the corresponding nonlinear field

equations, accounting for the volume preservation condition. Section 5.4 is devoted

to discussing the role of displacements and rotations; in particular, we perform a

detailed analysis of the deformation gradient in terms of its Lorentzian polar decom-

position. Section 5.5 contains our first main result: the linearised field equations and

their connection with Maxwell’s equations. For Ricci-flat Lorentzian manifolds our

model gives, in the linear approximation, Maxwell’s equations in the Lorenz gauge

with exact current. In Sections 5.6 and 5.7 we introduce the concept of homogeneous

diffeomorphism and special subgroups of the Poincaré group respectively. These rep-

resent the group-theoretic tools which lie at the foundation of our construction of

solutions to nonlinear PDEs. Explicit solutions for Minkowski spacetime are pre-

sented in Sections 5.8 and 5.9. Massless solutions described in Section 5.8 come into

two types: right-handed and left-handed. Massive solutions described in Section 5.9

contain two free parameters: a positive parameter which has the geometric meaning

of quantum mechanical mass and a real parameter which may be interpreted as elec-

tric charge. Finally, in Section 5.10 and Section 5.11 we present a formal argument,
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showing that our massless and massive solutions can be associated with spinors sat-

isfying the massless and massive Dirac equations respectively. This constitutes the

first step towards possible future applications of our model in theoretical and particle

physics. In order to make the presentation smoother, we have moved notation and

auxiliary technical results into Appendices D.1–D.4.

5.2 Mathematical model

Let M be a connected 4-manifold. Local coordinates on M will be denoted by

x = (x1, x2, x3, x4) or y = (y1, y2, y3, y4).

We assume that our manifold M is equipped with Lorentzian metric g with

signature +++− . Throughout this Chapter the metric g is assumed to be prescribed.

The unknown quantity in our mathematical model is a diffeomorphism φ : M →

M . We will denote the group of diffeomorphisms by Diff(M).

Let us introduce a new (perturbed) Lorentzian metric h defined as the pullback of

g via φ, h := φ∗g. In local coordinates this new metric is written as follows. Take an

arbitrary point P ∈M and choose local coordinates x and y in the neighbourhoods

of P and φ(P ) respectively. Our diffeomorphism φ can then be written locally as

y = φ(x). (5.2.1)

The new metric tensor reads

hαβ(x) := gµν(φ(x))
∂φµ

∂xα
∂φν

∂xβ
. (5.2.2)

The gµν in the RHS of (5.2.2) is the representation of the metric tensor g in local

coordinates y. The metric h describes the interval between points of the deformed

continuum.

Having at our disposal two Lorentzian metrics, g and h, we can now write down

an action. To this end, let us first introduce some definitions.

Definition 5.1. The tensor

Sαβ(x) := [gαγ(x)] [hγβ(x)]− δαβ (5.2.3)

is called strain.
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The concept of strain tensor originates from the papers of Cauchy [38, 39]. The

strain tensor describes, pointwise, a linear map in the fibres of the tangent bundle,

vα 7→ Sαβ v
β. (5.2.4)

The linear algebraic motivation for the introduction of the map (5.2.4) is given in

Appendix D.2.1.

Let us now construct scalars out of a strain tensor. This can be done in many

different ways but only four, at most, will be independent. An arbitrary scalar can be

expressed, possibly in a nonlinear fashion, via the four chosen independent scalars.

The obvious way of choosing four independent scalars is tr(Sk), k = 1, 2, 3, 4, but

such a choice is inconvenient as it would make subsequent calculations cumbersome.

The most convenient choice of four scalar invariants is

e1(φ) := trS, (5.2.5a)

e2(φ) :=
1

2

[
(trS)2 − tr(S2)

]
, (5.2.5b)

e3(φ) := tr adjS, (5.2.5c)

e4(φ) := detS. (5.2.5d)

Here tr is the matrix trace and adj is the operator of matrix adjugation from linear

algebra.

The reasoning behind the particular choice (5.2.5a)–(5.2.5d) becomes clear if we

rewrite these invariants in terms of the eigenvalues of strain. The strain tensor (5.2.3),

viewed as a linear operator (5.2.4) acting in C4 has eigenvalues λk, k = 1, 2, 3, 4,

enumerated with account of their algebraic multiplicity. Note that some eigenvalues

may be complex, in which case they come in complex conjugate pairs. It is easy to

see that formulae (5.2.5a)–(5.2.5d) can be rewritten as

e1(φ) = λ1 + λ2 + λ3 + λ4 , (5.2.6a)

e2(φ) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 , (5.2.6b)

e3(φ) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 , (5.2.6c)

e4(φ) = λ1λ2λ3λ4 . (5.2.6d)

The advantage of choosing scalar invariants in this particular way is that the polyno-

mials appearing in the right-hand sides of formulae (5.2.6a)–(5.2.6d) are elementary



5.2. Mathematical model 173

symmetric polynomials.

Note that our scalars ek are spectral invariants: we are looking at quantities

that are determined by the spectrum of the linear map (5.2.4). Our definition of

scalar invariants is similar to that in [108, (3.56)], the only difference being that

we have four scalar invariants instead of three — a consequence of us adopting a

4-dimensional relativistic approach.

Our action then is

J (φ) :=

∫
M
L
(
e1(φ), e2(φ), e3(φ), e4(φ)

)√
−det gµν(x) dx , (5.2.7)

where L is some prescribed smooth real-valued function of four real variables such

that L(0, 0, 0, 0) = 0 and dx := dx1dx2dx3dx4. Variation of (5.2.7) with respect to

the unknown diffeormorphism φ ∈ Diff(M) generates field equations which can be

thought of as a Lorentzian version of nonlinear elasticity.

The physical assumptions underlying our choice of action (5.2.7) are isotropy and

homogeneity of our 4-dimensional continuum. Isotropy is expressed mathematically

in that the integrand L in (5.2.7) is a symmetric function of the eigenvalues of the

map (5.2.4). Homogeneity is expressed mathematically in that the integrand L in

(5.2.7) does not depend explicitly on x.

Two important examples of Lagrangians are given below.

Example 5.2 (Linear Lagrangian). The unique, up to rescaling, Lagrangian linear

in strain is

L(e1, e2, e3, e4) = e1. (5.2.8)

This is the action of a harmonic map, see [53, 14], the only difference being that here

the metric has Lorentzian signature.

Example 5.3 (Quadratic Lagrangian). The general form of a Lagrangian quadratic

(homogeneous of degree two) in strain is

L(e1, e2, e3, e4) = α(e1)2 + β e2 , (5.2.9)

where α, β ∈ R are parameters. In the 3-dimensional Riemannian setting the above

Lagrangian is used in the theory of elasticity: it describes a static isotropic homo-

geneous elastic continuum that is physically linear but geometrically nonlinear. The
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standard assumption in elasticity theory is

β 6= 0. (5.2.10)

Under the assumption (5.2.10) the Lagrangian (5.2.9) contains, up to rescaling, only

one dimensionless parameter, α/β. In elasticity theory the parameters λ = 2α + β

and µ = −β/2 are called Lamé parameters and the parameter ν = 2α+β
4α+β is called

Poisson’s ratio.

Remark 5.4. Our mathematical model does not involve the concepts of connection

and curvature. Moreover, it is easy to see that if the unperturbed metric g is flat

then the perturbed metric h is flat as well. Our model is quite different from those

commonly used in theories of bimetric gravity [100, 48, 63, 105], even though the

mathematical formalism is somewhat similar.

Field equations for the action (5.2.7) are not the equations that we will be study-

ing. We choose to impose, in addition, the volume preservation constraint

det gαβ(x) = dethµν(x). (5.2.11)

In other words, we choose to restrict our analysis to the subgroup of volume-preserving

diffeomorphisms Diffρ(M) ⊂ Diff(M). Here

ρ(x) :=
√
−det gαβ(x) (5.2.12)

is the Lorentzian density of the unperturbed metric.

The condition for a diffeomorphism to be volume preserving reads, locally,

ρ(x) = ρ(φ(x))

∣∣∣∣det

(
∂φα

∂xβ

)∣∣∣∣ . (5.2.13)

The ρ in the LHS of (5.2.13) is the representation of the density ρ in local coordinates

x, whereas the ρ in the RHS of (5.2.13) is the representation of the density ρ in local

coordinates y.

The idea of imposing the volume preservation condition (5.2.11) is not new. For

instance, it appears in unimodular theories of gravity, see [57, 29].

In spectral-theoretic fashion, the volume preservation constraint (5.2.11) can be

equivalently rewritten as

e1(φ) + e2(φ) + e3(φ) + e4(φ) = 0 . (5.2.14)
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Formula (5.2.14) allows us to express one of the four scalar invariants via the other

three. It is convenient to express e1 via e2, e3 and e4. Then our action (5.2.7) takes

the form

J(φ) =

∫
M
L
(
e2(φ), e3(φ), e4(φ)

)
ρ(x) dx , (5.2.15)

where

L(e2, e3, e4) = L(−e2 − e3 − e4, e2, e3, e4). (5.2.16)

Our mathematical model is formulated as follows: vary the action (5.2.15) over

volume preserving diffeomorphisms Diffρ(M) and seek critical points. The L appear-

ing in formula (5.2.15) is some prescribed smooth real-valued function of three real

variables which characterises the physical properties of our 4-dimensional isotropic

homogeneous continuum.

We shall now impose two conditions on the choice of the Lagrangian L.

Condition 1 We assume that

∂L

∂e2

∣∣∣∣
e2=e3=e4=0

6= 0, (5.2.17a)

which is the minimal non-degeneracy condition. This will be required in Sec-

tion 5.5 where we will show that in a Ricci-flat spacetime our linearised field

equations reduce to Maxwell’s equations. Without loss of generality we assume

further on that
∂L

∂e2

∣∣∣∣
e2=e3=e4=0

= −1, (5.2.17b)

which can always be achieved by rescaling.

Condition 2 We assume that the function of one variable L(e2, 0, 0) has a

critical point on the positive real axis:

∂L

∂e2

∣∣∣∣
e2=c, e3=e4=0

= 0 for some c > 0. (5.2.18)

This will be required in Section 5.9 where we will construct explicit massive

solutions of our nonlinear field equations in Minkowski spacetime.

Example 5.5 (Examples 5.2 and 5.3 continued). For the Lagrangian (5.2.16), (5.2.8)

we get precisely (5.2.17b), whereas for the Lagrangian (5.2.16), (5.2.9) we get

∂L

∂e2

∣∣∣∣
e2=e3=e4=0

= β,
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so condition (5.2.17a) is satisfied when we have (5.2.10).

As to condition (5.2.18), it is not satisfied for the Lagrangian (5.2.16), (5.2.8),

whereas for the Lagrangian (5.2.16), (5.2.9) it is satisfied if and only if αβ < 0.

5.3 Nonlinear field equations

Recall that the action in our mathematical model is defined by formula (5.2.15).

Our field equations are obtained by varying this action with respect to the unknown

diffeomorphism φ subject to the volume preservation constraint (5.2.11).

In order to write down the field equations let us initially disregard the constraint

(5.2.11) and argue along the lines of [73, Chapter 8]. In local coordinates our action

(5.2.15) can be written as

J(φ) =

∫
f

(
xα, φβ,

∂φγ

∂xκ

)
ρ(x) dx , (5.3.1)

where φβ is the local representation (5.2.1) of our diffeomorphism and f is some

function of x, φ(x) and the first partial derivatives of φ(x). We vary φ(x) as

φβ(x) 7→ φβ(x) + ∆φβ(x), (5.3.2)

where ∆φβ(x) is a small smooth perturbation with small compact support. Standard

variational arguments involving integration by parts give us the variation of (5.3.1)

in the form

∆J(φ) =

∫
Eλ

(
xα, φβ,

∂φγ

∂xκ
,
∂2φσ

∂xµ∂xν

)
∆φλ ρ(x) dx . (5.3.3)

The quantity Eλ appearing in the RHS of (5.3.3) is a two-point tensor: it behaves

as a scalar under changes of local coordinates x and as a covector under changes of

local coordinates y. Hence,

φ 7→ Eλ

(
xα, φβ,

∂φγ

∂xκ
,
∂2φσ

∂xµ∂xν

)
(5.3.4)

is an invariantly defined map from diffeomorphisms to covector fields.

We write the RHS of (5.3.4) in concise form as E(φ). Thus, the field equations

for the unconstrained action (5.2.15) read

E(φ) = 0. (5.3.5)
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This is a system of four nonlinear second order partial differential equations for four

unknowns, the functions φα(x), α = 1, 2, 3, 4, appearing in the local representation

(5.2.1) of our diffeomorphism φ.

An algorithm for the construction of the nonlinear differential operator E is

provided in Appendix D.4. However, we do not need the explicit form of E for our

purposes. Even when we will be writing particular solutions of our nonlinear field

equations — see Sections 5.8 and 5.9 — we will do this without using the explicit

form of the operator E.

Remark 5.6. A straightforward analysis shows that the identity map is a solution of

(5.3.5). Furthermore, any isometry from (M, g) to itself is a solution.

Let us now incorporate the volume preservation constraint (5.2.11) by adding to

our original action (5.2.15) the term

K(φ, p) :=

∫ [
p(φ(x))

] [
ρφ(x)− ρ(x)

]
dx , (5.3.6)

where ρφ(x) :=
√
−dethαβ(x) and p : M → R is an additional unknown scalar

function playing the role of a Lagrange multiplier. The function p can be interpreted

as pressure, cf. [94].

We will now vary our diffeomorphism as in (5.3.2).

Lemma 5.7. The formula for the variation of the functional (5.3.6) reads

∆K(φ, p) = −
∫ [

∂p

∂yα
(φ(x))

] [
∆φα(x)

] [
ρ(x)

]
dx . (5.3.7)

Proof. Observe that the diffeomorphism φ appears in formula (5.3.6) twice, so

∆K(φ, p) = ∆K1(φ, p) + ∆K2(φ, p), (5.3.8)

where

K1(φ, p) :=

∫ [
p(φ(x))

] [
ρφ(x)− ρ(x)

]
dx , (5.3.9)

K2(φ, p) :=

∫ [
p(φ(x))

] [
ρφ(x)

]
dx , (5.3.10)

the bold script indicating that this particular occurrence of φ is not subject to vari-

ation (5.3.2).
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Variation of (5.3.9) gives us

∆K1(φ, p) =

∫ [
∂p

∂yα
(φ(x))

] [
∆φα(x)

] [
ρφ(x)− ρ(x)

]
dx . (5.3.11)

In order to calculate the variation of (5.3.10) we switch from local coordinates x

to local coordinates y in accordance with y = φ(x) . Formula (5.3.10) now reads

K2(φ, p) =

∫ [
p(y)

] [
µφ(y)

]
dy1dy2dy3dy4, (5.3.12)

where µφ is the representation of the density ρφ in local coordinates y. An elementary

calculation, see also (5.4.9f) and (5.4.11), shows that

∆µφ(y) =
∂
([
µφ(y)

][
∆φα(φ−1(y))

])
∂yα

. (5.3.13)

Substituting (5.3.13) into (5.3.12) and integrating by parts, we get

∆K2(φ, p) = −
∫ [

∂p

∂yα
(y)

] [
∆φα(φ−1(y))

] [
µφ(y)

]
dy1dy2dy3dy4. (5.3.14)

It remains only to switch back from local coordinates y to local coordinates x. For-

mula (5.3.14) becomes

∆K2(φ, p) = −
∫ [

∂p

∂yα
(φ(x))

] [
∆φα(x)

] [
ρφ(x)

]
dx . (5.3.15)

Substituting (5.3.11) and (5.3.15) into (5.3.8) we arrive at (5.3.7).

Lemma 5.7 tells us that the field equations for the constrained action (5.2.15)

read

E(φ)− dp = 0, (5.3.16)

where dp is the gradient of pressure p. Equations (5.3.16) have to be supplemented

by the volume preservation condition (5.2.11).

The term dp appearing in formula (5.3.16) can be written in local coordinates as

(dp)α(x) = ψα
β(x)

∂(p ◦ φ)

∂xβ
(x) , (5.3.17)

where the two-point tensor ψαβ is defined by the identity

ψα
β(x)

∂φα

∂xγ
(x) = δβγ .

Formulae (5.3.16) and (5.2.11) give us a system of five partial differential equa-

tions for five unknowns, the functions φα(x), α = 1, 2, 3, 4, appearing in the local

representation (5.2.1) of our diffeomorphism φ and the scalar field (p ◦ φ)(x).
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5.4 Displacements and rotations

Suppose that our diffeomorphism φ : M → M is sufficiently close to the identity

map. Then it can be described by a vector field of displacements A. This vector

field can be equivalently defined in two different ways.

Take an arbitrary point P ∈ M and let Ω ⊂ M be a normal, with respect to g,

neighbourhood of P . As φ is close to the identity map we can assume, without loss

of generality, that φ(P ) ∈ Ω. Let γ : [0, 1] → Ω be the geodesic, with respect to g,

connecting P and φ(P ), so that γ(0) = P and γ(1) = φ(P ). Furthermore, let us

parameterize our geodesic in such a way that γ(τ) is a solution of the equation

γ̈λ +

{
λ

µν

}
γ̇µγ̇ν = 0,

where the dot stands for differentiation in τ . Then

A(P ) := γ̇(0). (5.4.1)

Alternatively, let W (P,Q) be the Ruse–Synge world function [112, Chapter II,

§1] with respect to g. Here P,Q ∈ M are assumed to be sufficiently close. Let

W ′(P,Q) := gradxW (x,Q)|x=P be the gradient of the world function with respect

to the first variable. Then

A[(P ) := −W ′(P, φ(P )). (5.4.2)

In formula (5.4.1) A is a vector, whereas in formula (5.4.2) A[ is a covector.

Raising and lowering tensor indices via the metric g turns one into the other, see

Appendix D.1.1 for notation.

Working with a vector field of displacements A rather than an abstract diffeo-

morphism φ makes the physical interpretation clearer.

The field of displacements generates rotations. Describing these rotations math-

ematically is the subject of finite strain theory in continuum mechanics [116, Section

23]. In what follows we present this construction in a version adapted to Lorentzian

signature and curved spacetime.

Consider the quantity
∂φν

∂xβ
(x) . (5.4.3)
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The quantity (5.4.3) is a two-point tensor: it transforms as a covector under changes

of local coordinates x and as a vector under changes of local coordinates y. The

two-point tensor (5.4.3) describes a linear map from TPM to Tφ(P )M ,

vα 7→ ∂φν

∂xβ
vβ.

Let us now parallel transport (5.4.3), in the upper tensor index and with respect

to the Levi-Civita connection associated with g, along the geodesic from φ(P ) to

P . This gives us a (one-point) (1,1)-tensor Dν
β(x) known in continuum mechanics

as the deformation gradient. The deformation gradient describes, pointwise, a non-

degenerate linear map in the fibres of the tangent bundle,

vα 7→ Dν
β v

β. (5.4.4)

Moreover, formula (5.2.2) can now be rewritten as

hαβ(x) = [Dµ
α(x)] [gµν(x)] [Dν

β(x)] . (5.4.5)

Further on we assume that the linear map (5.4.4) is sufficiently close to the

identity. The issue at hand is to decompose (5.4.4) into a composition of a stretching

map and a rotation map. This is achieved by means of the polar decomposition. The

concept of polar decomposition is standard in linear algebra, only now it has to be

adapted to Lorentzian signature. Some work in this direction was done in [23, 88].

Definition 5.8. We call a linear map vα 7→ Bα
β v

β Lorentz–symmetric if gαγBγ
β =

gβγB
γ
α, Lorentz–antisymmetric if gαγBγ

β = −gβγBγ
α and Lorentz–orthogonal if

Bµ
α gµν B

ν
β = gαβ .

Any linear map (5.4.4) sufficiently close to the identity can be uniquely decom-

posed as

Dα
β = Uαγ V

γ
β , (5.4.6)

where U is Lorentz–orthogonal and V is Lorentz–symmetric and close to the identity.

The existence of polar decomposition (5.4.6) can be established, for example, by using

the power series expansion for the function
√

1 + z with z = gαγ Dµ
γ gµν D

ν
β−δαβ .

In the setting of classical elasticity theory (Riemannian signature) the tensor V

appearing in formula (5.4.6) is called the right stretch tensor, see [116, p. 53].



5.4. Displacements and rotations 181

Formula (5.4.6) and the fact that D and V are close to the identity imply that

U is close to the identity as well. Therefore, U can be uniquely represented as

U = eF , (5.4.7)

where F is Lorentz–antisymmetric and small. The tensor F can be recovered from

the tensor U by using the power series expansion for the function ln(1 + z) with

z = Uαβ − δαβ .

Applying the above procedure to the deformation gradient we arrive at a Lorentz–

antisymmetric (1,1)-tensor Fαβ(x). Lowering the first tensor index via g, we get a

covariant antisymmetric tensor Fαβ(x) which can be viewed as a 2-form. We call it

the rotation 2-form.

Substituting (5.4.6) into (5.4.5) we get

hαβ(x) = [V µ
α(x)] [gµν(x)] [V ν

β(x)] . (5.4.8)

Remark 5.9. The order of indices in our polar decomposition (5.4.6) is important.

Had we done the polar decomposition the other way round, i.e. as Dα
β = V α

γ U
γ
β ,

we wouldn’t have gotten (5.4.8).

Formula (5.4.8) tells us that rotations do not appear explicitly in our mathe-

matical model. In other words, the physics described by our action (5.2.15) does

not feel rotations. However, we will still have to consider rotations later on in the

Chapter because they do not have a life of their own: rotations are generated by

displacements, cf. Sections 5.10 and 5.11.

The following lemma provides a list of formulae obtained by linearising in A.

Some of them will be used in Section 5.5.
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Lemma 5.10. We have

Dαβ = gαβ +∇βAα +O(|A|2), (5.4.9a)

Uαβ = gαβ −
1

2
(∇αAβ −∇βAα) +O(|A|2), (5.4.9b)

Fαβ = −1

2
(∇αAβ −∇βAα) +O(|A|2), (5.4.9c)

Vαβ = gαβ +
1

2
(∇αAβ +∇βAα) +O(|A|2), (5.4.9d)

Sαβ = ∇αAβ +∇βAα +O(|A|2), (5.4.9e)

dethκλ
det gµν

= 1 + 2∇αAα +O(|A|2). (5.4.9f)

In the above lemma and further on ∇ is the Levi-Civita connection associated

with g and tensor indices are raised and lowered using the metric g. In particular,

the tensor in the LHS of formula (5.4.9e) is our original strain tensor (5.2.3) but with

the first tensor index lowered. Of course, we have Sαβ = hαβ − gαβ .

Note that formulae (5.4.9c) and (5.4.9f) can be equivalently rewritten without

covariant derivatives using the identities

∇αAβ −∇βAα = ∂αAβ − ∂βAα = (dA[)αβ , (5.4.10)

∇αAα = ρ−1∂α(ρAα) = −δA[, (5.4.11)

where ρ is our Lorentzian density (5.2.12). See Appendix D.1.1 for exterior calculus

notation.

Remark 5.11. There is an alternative way of describing a diffeomorphism in terms

of a vector field. This alternative approach is in the spirit of fluid mechanics and is

based on Lie-algebraic considerations. Namely, consider a smooth vector field uα(x),

a field of ‘velocities’, and the autonomous system of ordinary differential equations
ẏ = u(y),

y|τ=0 = x,

(5.4.12)

that it generates. Here τ ∈ [0, 1] is a parameter and the dot stands for differentiation

in τ . We denote the solution of (5.4.12) by y(τ ;x). For u small enough the map

x 7→ y(1;x) realises a diffeomorphism close to the identity. At a formal level one

would hope to generate an arbitrary diffeomorphism close to the identity by a suitable
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choice of vector field u. Furthermore, if we choose a divergence-free vector field, i.e. a

vector field satisfying ρ−1∂α(ρuα) = 0 (compare with (5.4.9f) and (5.4.11)), then for u

small enough the map x 7→ y(1;x) realises a volume-preserving diffeomorphism close

to the identity. Unfortunately, this approach doesn’t work: it is known [86, p. 163]

that there does not exist a neighbourhood of the identity where the exponential map

exp : Vect(M) → Diff(M), from vector fields u to diffeomorphisms, is surjective.

There are simple explicit examples of diffeomorphisms of S1 arbitrarily close to the

identity that cannot be represented in terms of the above flow, see, for example, [90,

p. 1017], [16, p. 8–9], [75, p. 456–457]. The description of a diffeomorphism in terms

of a vector field of displacements A (see beginning of this section) does not suffer

from the deficiencies of the fluid mechanics description (5.4.12). The fundamental

difference between the two approaches is that the concept of displacement relies on

the use of the metric structure.

5.5 Linearised field equations

Carrying on from Section 5.4, we assume that our diffeomorphism φ : M → M is

sufficiently close to the identity map, so that it can be described by a vector field of

displacements A(x). Furthermore, we can choose the local coordinates y to be the

same as x. Our aim in the current Section is to linearise the field equations (5.3.16),

(5.2.11) in A(x) and p(x).

Formulae (5.4.9f) and (5.4.11) give us the linearisation of the volume preservation

condition (5.2.11):

δA[ = 0. (5.5.1)

Formula (5.3.17) now reads

(dp)α(x) =
∂p

∂xα
(φ(x)) ,

and its linearisation is the usual gradient

∂p

∂xα
(x) .

The issue at hand is the linearisation of E(φ).
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Inspection of formulae (5.2.5b)–(5.2.5d), (5.2.17b) and (5.4.9e) shows that the ex-

pansion of our Lagrangian L
(
e2(A), e3(A), e4(A)

)
in terms homogeneous in A starts

with the quadratic expression

L(2)(A) = −2 (∇αAα)2 +
1

2
(∇αAβ +∇βAα)(∇αAβ +∇βAα) , (5.5.2)

so that L
(
e2(A), e3(A), e4(A)

)
= L(2)(A)+O(|A|3). Variation of the quadratic action

J (2)(A) =

∫
M
L(2)(A) ρ(x) dx

generates the linearisation E(1)(A) of E(φ):

∆J (2)(A) =

∫
E

(1)
λ (A) ∆Aλ ρ(x) dx .

However, prior to variation it is useful to rewrite (5.5.2) as in the following lemma,

whose proof is a straightforward computation.

Lemma 5.12. The Lagrangian (5.5.2) can be equivalently rewritten as

L(2)(A) =
1

2
(∇αAβ −∇βAα)(∇αAβ −∇βAα)− 2 Ricµν A

µAν +∇κBκ , (5.5.3)

where Ric is the Ricci tensor associated with g and

Bκ = −2 [Aκ(∇γAγ)−Aγ(∇γAκ)] .

The divergence term ∇κBκ in formula (5.5.3) does not contribute to the field

equations, so we can replace our Lagrangian (5.5.2) with

L̃(2)(A) = ‖dA[‖2g − 2 Ric(A,A), (5.5.4)

see Appendix D.1.1 for exterior calculus notation. The advantage of writing our

quadratic Lagrangian in the form (5.5.4) is that this representation does not involve

covariant derivatives.

Formula (5.5.4) implies that the linearised operator generated by our action

(5.2.15) reads

E(1) = 2δd− 4 Ric. (5.5.5)

In formulae (5.5.4) and (5.5.5) we abuse notation by using the symbol Ric for

two different objects, the quadratic form on vectors Ric(u, u) := Ricαβu
αuβ and the

linear map on covectors Ric : vα 7→ Ricαβv
β .
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Hence, our linearised field equations (5.3.16), (5.2.11) readδd− 2 Ric −1
2d

δ 0

A[
p

 = 0.

If we introduce a new scalar field

p̃ := −1

2
p (5.5.6)

the above system takes the formδd− 2 Ric d

δ 0

A[
p̃

 = 0. (5.5.7)

Let us now briefly discuss the analytic properties of the 5×5 matrix linear partial

differential operator

Lin : Ω1(M)⊕ Ω0(M)→ Ω1(M)⊕ Ω0(M),

v
f

 7→
δd− 2 Ric d

δ 0

v
f

 .

(5.5.8)

We start with the observation that the operator Lin is formally self-adjoint (sym-

metric) with respect to the L2 inner product defined as in Appendix D.1.1.

The more specific properties of a linear differential operator are determined by its

principal symbol. In local coordinates, the principal symbol is obtained by leaving

only the leading (higher order) derivatives and replacing each partial differentiation

∂/∂xα by iξα, where ξ is the dual variable (momentum), see [104, subsection 1.1.3].

This gives a (matrix-)function on the cotangent bundle the properties of which deter-

mine the basic features of the differential operator such as ellipticity or hyperbolicity.

However, for our operator Lin matters are slightly more complicated because it has

a block structure 2nd order operator 1st order operator

1st order operator 0 order operator


with operators of different order in different blocks. Matrix operators with this par-

ticular structure are called Agmon-Douglis-Nirenberg type operators [1]. Application

of the Agmon–Douglis–Nirenberg construction gives the principal symbol of Lin as

the linear map v
f

 7→
‖ξ‖2g v − 〈ξ, v〉g ξ + ifξ

−i 〈ξ, v〉g

 . (5.5.9)
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The determinant of the linear map (5.5.9) is

− ‖ξ‖8g . (5.5.10)

Now, if our metric g were Riemannian then the quantity (5.5.10) would not vanish

on T ∗M \{0} and, hence, our operator Lin would be elliptic in the Agmon–Douglis–

Nirenberg sense. However, for Lorentzian metric g the quantity (5.5.10) vanishes

on light cones, which suggests that our operator Lin is hyperbolic. There is exten-

sive literature dealing with Agmon–Douglis–Nirenberg type operators in the elliptic

setting but we are unaware of similar results for the hyperbolic case. A rigorous

investigation of well-posedness issues for the operator Lin, though, would require

substantial work and possibly constitute a research project of its own. Hence, we

will not pursue the matter further in this thesis. For a review of different notions of

hyperbolicity in a setting similar to ours see [117, Section 4].

Note that if we replace the 5 × 5 matrix operator (5.5.8) with the 4 × 4 matrix

operator δd, then the principal symbol will be a degenerate matrix whose determinant

is identically zero.

Let us now assume that our spacetime (M, g) is Ricci-flat,

Ric = 0. (5.5.11)

Note that condition (5.5.11) is the definition of vacuum in General Relativity. More-

over, it is easy to see that if (M, g) is Ricci-flat, then so is (M,h).

Under condition (5.5.11) equation (5.5.7) implies

δdp̃ = �g p̃ = 0.

We see that we have a separate equation for the scalar field p̃, the wave equation.

This observation allows us to collect solutions of our system (5.5.7) into equivalence

classes corresponding to particular choices of p̃: we say that two solutions,

A[
p̃


and

A[′
p̃′

, are equivalent if p̃ = p̃′.

Let us now fix a particular solution p̃ of the wave equation and work within

the corresponding equivalence class. Then the first four equations from our system
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(5.5.7) can be rewritten as

δdA[ = J,

where J := −dp̃. We have arrived at Maxwell’s equations in the Lorenz gauge (5.5.1)

and with exact current J ∈ dΩ0(M). Recovering Maxwell’s equations in the Lorenz

gauge is not a factitious artefact of our theory, but, in a sense, a natural thing to

have: this is what one obtains when looking at irreducible representations of the

Poincaré group in the spirit of Wigner’s classification, cf. [17, Chapter 21].

5.6 Homogeneous diffeomorphisms

In the remainder of this Chapter we will construct explicit solutions of the nonlinear

field equations (5.3.16). Namely, we will write down explicitly volume preserving

diffeomorphisms φ satisfying (5.3.16) with p = 0. In other words, we will present

volume preserving solutions of the unconstrained nonlinear field equations (5.3.5).

Seeking such solutions constitutes an overdetermined problem: we are looking

at a system of five nonlinear partial differential equations (5.3.5), (5.2.11) for four

unknowns, the functions φα(x), α = 1, 2, 3, 4, appearing in the local representation

(5.2.1) of our diffeomorphism φ. We will base our construction on group-theoretic

ideas, the essence of which is explained below.

Further on Isom(M, g) denotes the finite-dimensional subgroup of Diff(M) com-

prising diffeomorphisms that are isometries.

Definition 5.13. Let φ ∈ Diff(M). We say that φ is homogeneous if there exists a

subgroup H ⊂ Isom(M, g) acting transitively on M and satisfying

H ◦ φ = φ ◦H. (5.6.1)

If we have the stronger property

ξ ◦ φ = φ ◦ ξ, ∀ξ ∈ H, (5.6.2)

we say that φ is equivariant.

In other words, condition (5.6.1) can be rewritten as follows: for any ξ ∈ H there
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exists a η ∈ H such that the diagram

M

φ

��

ξ
//M

φ

��

M η
//M

is commutative.

Theorem 5.14. Let φ be a homogeneous diffeomorphism. Then the scalar invariants

(5.2.5) are constant. Furthermore, if the covector field E(φ) defined in accordance

with formula (5.3.4) vanishes at a point then it vanishes identically.

Proof. Let us prove the second statement first. Let φ be a homogeneous diffeomor-

phism and x, y ∈ M two arbitrary points. We will assume that E(φ)|x = 0 and we

will show that E(φ)|y = 0. In view of Definition 5.13, there exist isometries ξ and η

such that

y = ξ(x), φ(y) = η(φ(x)) , (5.6.3)

and

η ◦ φ = φ ◦ ξ. (5.6.4)

Note that in writing (5.6.3) we only used the transitivity of the action of H on M ,

whereas (5.6.4) required the use of the additional condition (5.6.1).

It is possible to choose coordinates in some neighbourhoods U(x) and U(φ(x)) of

x and φ(x) respectively in such a way that φ is locally the identity map:

φ|U(x) ' Id : U(x)→ U(φ(x)).

We can then prescribe coordinates in some neighbourhood U(y) of y (resp. U(φ(y))

of φ(y)) via the isometry ξ (resp. η). This has two consequences. Firstly, the map

φ|U(y) : U(y)→ U(φ(y))

is the identity in our local coordinates. Secondly, in this coordinate representation

the components of the metric tensor are the same near x and y and near φ(x) and

φ(y). This can be easily seen by explicitly imposing the isometry conditions ξ∗g = g

and η∗g = g locally, after observing that ξ|U(x) ' Id and η|U(φ(x)) ' Id for our

choice of coordinates. In particular, the Jacobian of the change of coordinates from
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coordinates centred at x (resp. φ(x)) to coordinates centred at y (resp. φ(y)) is 1.

The local expression (5.3.4) of E(φ) depends only on the (local representation of

the) metric, φ and its derivatives. Since such local representations are the same in

neighbourhoods of x and y, E(φ)|x = 0 implies E(φ)|y = 0.

Finally, let us prove that the scalar invariants are constant. If we compute the

scalar invariants in local coordinates, we realise that they only depend on the local

representation of the metric, of φ and of its first derivatives, see (5.2.3) and (5.2.5).

Since such representations can be made the same in the neighbourhood of any pair

of points x and y, as described above, it ensues that the scalar invariants take the

same value everywhere, namely, they are constant.

Theorem 5.14 tells us that if we seek a solution of nonlinear field equations (5.3.5)

in the form of a homogeneous diffeomorphism then it is sufficient to satisfy these field

equations at a single point.

Remark 5.15. Note that our mathematical model is invariant under the action of

the group of isometries in the following sense. Let ϕ ∈ Diffρ(M) and p : M → R

be a solution of our field equations (5.3.16), and let ξ ∈ Isom(M, g) be an arbitrary

isometry. Then ξ ◦ ϕ and p ◦ ξ−1 is also a solution.

5.7 Special subgroups of the Poincaré group

In the remainder of the Chapter we work in Minkowski space M where the met-

ric is gαβ = diag(1, 1, 1,−1). Further on Poinc(M) := Isom(R4, g) denotes the

10-dimensional group of isometries of M, commonly known as the Poincaré group.

Clearly, Poinc(M) = R4 o O(3, 1).

In fact, we will be working with the identity component of the Poincaré group,

ISO+(3, 1). This is known to be the fundamental symmetry group of physics, in that

it turns inertial frames into one another.

The Poincaré group can be realised as a subgroup of the matrix group SL(5,R)

as follows:

R4 o O(3, 1) 3 (v,Λ) 7→

 Λ v

0 0 0 0 1

 ∈ SL(5,R).
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Here the 5 × 5 matrix acts on x ∈ M by matrix vector multiplication after comple-

menting it with 1, x
1

 7→
 Λ v

0 0 0 0 1

x
1

 .

We now introduce special subgroups of the restricted Poincaré group ISO+(3, 1)

which will be used later in Sections 5.8 and 5.9.

Definition 5.16. The right-handed massless screw group SG+
0 and left-handed mass-

less screw group SG−0 are the subgroups of ISO+(3, 1) realised in matrix representa-

tion by

SG±0 :=





cos(q3 + q4) ∓ sin(q3 + q4) 0 0 q1

± sin(q3 + q4) cos(q3 + q4) 0 0 q2

0 0 1 0 q3

0 0 0 1 q4

0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ R4


. (5.7.1)

Definition 5.17. Let m be a positive real number. The massive screw group SGm

is the subgroup of ISO+(3, 1) realised in matrix representation by

SGm :=





cos(2mq4) − sin(2mq4) 0 0 q1

sin(2mq4) cos(2mq4) 0 0 q2

0 0 1 0 q3

0 0 0 1 q4

0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ R4


. (5.7.2)

It is easy to see that SG+
0 , SG−0 and SGm are indeed subgroups of ISO+(3, 1)

and act transitively on M. Each of these groups is isomorphic to the direct product

of R with a 3-dimensional group of Bianchi type Bi(VII0).

Let ξ ∈ ISO+(3, 1). Then ξ−1 SG+
0 ξ , ξ

−1 SG−0 ξ and ξ−1 SGm ξ are also sub-

groups of ISO+(3, 1). The question we want to address is what happens under

conjugation.

Lemma 5.18. There does not exist a ξ ∈ ISO+(3, 1) such that ξ−1 SG+
0 ξ = SG−0 .
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Proof. The result follows from Lemma D.6: the Hodge dual of axial torsion associated

with the two groups lies on opposite sides of the light cone and conjugation by an

element of ISO+(3, 1) cannot change this.

Lemma 5.18 tells us that the groups SG+
0 and SG−0 are genuinely different, in

that one cannot be turned into the other by conjugation.

Let us now examine what happens when we conjugate the massive screw group.

It turns out that the situation here is completely different. Namely, choose ξ =

diag(−1,−1,−1,−1, 1) to be the PT transformation. Then

ξ−1 SGm ξ =





cos(2mq4) − sin(2mq4) 0 0 −q1

sin(2mq4) cos(2mq4) 0 0 −q2

0 0 1 0 −q3

0 0 0 1 −q4

0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ R4



=





cos(2mq4) sin(2mq4) 0 0 q1

− sin(2mq4) cos(2mq4) 0 0 q2

0 0 1 0 q3

0 0 0 1 q4

0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ R4


.

This means that a different choice of signs in (5.7.2) does not yield a different fam-

ily of subgroups. The argument presented in this paragraph is in agreement with

Lemma D.6: the Hodge dual of axial torsion associated with the massive group is

spacelike and conjugation moves this covector without encountering obstructions.

5.8 Explicit massless solutions of nonlinear field equa-

tions

Working in Minkowski space M, we will describe our diffeomorphism φ by a vector

field of displacements

φ : xα 7→ xα +Aα(x). (5.8.1)

The concept of a vector field of displacements was introduced in Section 5.4. The

special feature of Minkowski space is that we do not need to assume that our diffeo-
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morphism is sufficiently close to the identity map. The only restriction on the choice

of vector field A is

det(Dα
β) 6= 0, (5.8.2)

where

Dα
β = δαβ + ∂Aα/∂xβ (5.8.3)

is the deformation gradient, see formula (5.4.4) and associated discussion. Condition

(5.8.2) ensures that we do indeed have a diffeomorphism, a smooth invertible map.

We seek volume preserving solutions. Examination of formula (5.4.5) shows that

in Minkowski space the volume preservation condition (5.2.11) reduces to

|det(Dα
β)| = 1,

which means that we either have

det(Dα
β) = +1 (5.8.4a)

or

det(Dα
β) = −1. (5.8.4b)

Solutions presented in this section and the next one will possess the property (5.8.4a).

We say that a real lightlike covector p = (p1, p2, p3, p4) lies on the forward light

cone if p4 > 0. We say that a complex vector u = (u1, u2, u3, u4) is isotropic if

uαū
α > 0 and uαuα = 0.

The use of the term ‘isotropic’ is motivated by Cartan who used it in the 3-

dimensional Euclidean setting. If we choose a coordinate system such that u4 = 0

our definition is equivalent to that in [37, Chapter III, Section I].

Theorem 5.19. Let p be a real lightlike covector on the forward light cone, let u be

a complex isotropic vector orthogonal to p and let

Aα(x) = uα eipβx
β
. (5.8.5)

Then the diffeomorphism (5.8.1) with

A(x) = Re [A(x)] (5.8.6)

is volume preserving and satisfies the nonlinear field equations (5.3.5).
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Proof. We can perform a (unique) proper orthochronous Lorentz transformation of

coordinates so that formula (5.8.5) reads

Aα(x) = a


1

∓i

0

0

 ei(x
3+x4), (5.8.7)

where a =
√
uαūα/2 . Then (5.8.6) becomes

Aα(x) = a


cos(x3 + x4)

± sin(x3 + x4)

0

0

 . (5.8.8)

Substituting (5.8.8) into (5.8.3) we get the following explicit formula for the defor-

mation gradient:

Dα
β =


1 0 −a sin(x3 + x4) −a sin(x3 + x4)

0 1 ±a cos(x3 + x4) ±a cos(x3 + x4)

0 0 1 0

0 0 0 1

 , (5.8.9)

where the first tensor index, α, enumerates the rows and the second, β, the columns.

It is immediately clear that (5.8.4a) is satisfied. Substituting now (5.8.9) into (5.4.5)

and (5.2.3) we get the following explicit formula for the strain tensor:

Sαβ =


0 0 −a sin(x3 + x4) −a sin(x3 + x4)

0 0 ±a cos(x3 + x4) ±a cos(x3 + x4)

−a sin(x3 + x4) ±a cos(x3 + x4) a2 a2

a sin(x3 + x4) ∓a cos(x3 + x4) −a2 −a2

 .

(5.8.10)

It is easy to check that the matrix (5.8.10) is nilpotent, so all our scalar invariants

(5.2.5) vanish identically. Note that the nilpotency index of (5.8.10) is three, which,

according to Lemma D.3, is the maximal possible.

We vary the vector field of displacements A(x) as

Aα(x) 7→ Aα(x) + ∆Aα(x).
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This generates an increment of our scalar invariants ∆ej and an increment of our

Lagrangian
4∑
j=2

∂L

∂ej

∣∣∣∣
e2=e3=e4=0

∆ej .

In order to prove that our diffeomorphism satisfies the nonlinear field equations

(5.3.5) it is sufficient to prove that

∫
R4

∆ej dx = 0 , j = 2, 3, 4. (5.8.11)

Straightforward calculations give

∆e1 = 2

(
δβα +

∂Aα
∂xβ

)
∂∆Aα

∂xβ
, (5.8.12a)

∆e2 = −2

(
a2 pβ pα +

∂Aβ

∂xα
+
∂Aα
∂xβ

)(
∂∆Aα

∂xβ
+
∂Aγ
∂xα

∂∆Aγ

∂xβ

)
, (5.8.12b)

∆e3 = 2 a2 pβ pα

(
∂∆Aα

∂xβ
+
∂Aγ
∂xα

∂∆Aγ

∂xβ

)
= 2 a2 pβ pα

∂∆Aα

∂xβ
, (5.8.12c)

∆e4 = 0 , (5.8.12d)

where pκ = (0, 0, 1, 1). Integrating (5.8.12b)–(5.8.12d) by parts and using the iden-

tities

�A = 0,
∂Aα

∂xα
= 0,

(
pα

∂

∂xα

)
A = 0,

we arrive at (5.8.11).

The crucial element of the above proof is the observation that the scalar invariants

(5.2.5) generated by the diffeomorphism (5.8.1), (5.8.8) are constant. We established

this fact by means of explicit analytic calculations. However, at a group-theoretic

level this follows from Theorem 5.14. Indeed, take an arbitrary ξ ∈ SG±0 , see formula

(5.7.1). This isometry acts as

ξ :


x1

x2

x3

x4

 7→

x1 cos(q3 + q4)∓ x2 sin(q3 + q4)

±x1 sin(q3 + q4) + x2 cos(q3 + q4)

x3

x4

+


q1

q2

q3

q4

 .
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Our diffeomorphism (5.8.1), (5.8.8) acts as

φ± :


x1

x2

x3

x4

 7→

x1

x2

x3

x4

+ a


cos(x3 + x4)

± sin(x3 + x4)

0

0


and its inverse acts as

φ−1
± :


x1

x2

x3

x4

 7→

x1

x2

x3

x4

− a


cos(x3 + x4)

± sin(x3 + x4)

0

0

 .

Composing ξ with φ± we get

ξ ◦ φ± :


x1

x2

x3

x4

 7→

x1 cos(q3 + q4)∓ x2 sin(q3 + q4)

±x1 sin(q3 + q4) + x2 cos(q3 + q4)

x3

x4

+


q1

q2

q3

q4



+ a


cos(x3 + q3 + x4 + q4)

± sin(x3 + q3 + x4 + q4)

0

0

 .

Finally, a composition with φ−1
± gives us

φ−1
± ◦ ξ ◦ φ± :


x1

x2

x3

x4

 7→

x1 cos(q3 + q4)∓ x2 sin(q3 + q4)

±x1 sin(q3 + q4) + x2 cos(q3 + q4)

x3

x4

+


q1

q2

q3

q4



+ a


cos(x3 + q3 + x4 + q4)

± sin(x3 + q3 + x4 + q4)

0

0

− a


cos(x3 + q3 + x4 + q4)

± sin(x3 + q3 + x4 + q4)

0

0

 ,

which means that φ−1
± ◦ ξ ◦ φ± = ξ. Thus, our diffeomorphism φ± is equivariant as

per Definition 5.13 with H = SG±0 .
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Observe now that the complex 2-form p∧ u[ is an eigenvector of the Hodge star.

This motivates the following definition.

Definition 5.20. We say that a solution from Theorem 5.19 is right-handed if ∗(p∧

u[) = i (p ∧ u[) and left-handed if ∗(p ∧ u[) = −i (p ∧ u[) .

It is easy to see that the upper sign in formula (5.8.8) corresponds to a right-

handed solution and the lower sign corresponds to a left-handed one. Note that

we defined right/left-handedness for groups (Definition 5.16) and massless solutions

(Definition 5.20) in such a way that they agree.

5.9 Explicit massive solutions of nonlinear field equations

Theorem 5.21. Let m be a positive real number and let p be a real timelike covector

with pβpβ = −4m2 and p4 > 0. Let u be a complex isotropic vector orthogonal to p,

and let v be a real vector orthogonal to p and u. Suppose that

4m2

(
1

2
uαū

α + vβv
β

)
= c , (5.9.1)

where c is a critical point from (5.2.18), and put

Aα(x) = uα eipβx
β
. (5.9.2)

Then the diffeomorphism (5.8.1) with

A(x) = Re [A(x)] + (pγx
γ) v (5.9.3)

is volume preserving and satisfies the nonlinear field equations (5.3.5).

Remark 5.22. It is easy to see that under the assumptions of Theorem 5.21 the scalar

‖dA[‖2g is constant,

‖dA[‖2g = −4m2

(
1

2
uαū

α + vβv
β

)
.

Hence, formula (5.9.1) can be equivalently rewritten as

‖dA[‖2g = −c , (5.9.4)

which is a condition on the strength of the field dA[. We see a certain similarity

with the Born–Infeld model [24], [72, Section 2.1] which sets constraints on admissible

values of ‖dA[‖2g.
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Proof of Theorem 5.21. Arguing as in the proof of Theorem 5.19, we can perform a

(unique) proper orthochronous Lorentz transformation of coordinates so that formula

(5.9.2) reads

Aα(x) = a


1

−i

0

0

 e2imx4 (5.9.5)

and (5.9.3) becomes

Aα(x) =


a cos(2mx4)

a sin(2mx4)

2mbx4

0

 . (5.9.6)

Here

a =

√
uαūα

2
, (5.9.7a)

b = − i

4ma2
∗(p ∧ u[ ∧ ū[ ∧ v[). (5.9.7b)

Note that |b| =
√
vαvα. However, in defining the scalar invariant b we used the

seemingly more complicated formula (5.9.7b) in order to capture information on the

relative orientation of the four covectors p, Reu[, Imu[ and v[. With this notation

formula (5.9.1) can be rewritten as

4m2(a2 + b2) = c . (5.9.7c)

The corresponding deformation gradient reads

Dα
β =


1 0 0 −2ma sin(2mx4)

0 1 0 2ma cos(2mx4)

0 0 1 2mb

0 0 0 1

 , (5.9.8)

for which (5.8.4a) is satisfied. The resulting strain tensor is

Sαβ =


0 0 0 −2ma sin(2mx4)

0 0 0 2ma cos(2mx4)

0 0 0 2mb

2ma sin(2mx4) −2ma cos(2mx4) −2mb −c

 . (5.9.9)
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Unlike (5.8.10), the matrix (5.9.9) is not nilpotent: its eigenvalues are zero (al-

gebraic and geometric multiplicity two) and

− c
2
±
√
c(c− 4)

2
.

The matrix is diagonalisable if and only if c 6= 4.

The fact that the eigenvalues of the strain tensor (5.9.9) are constant implies that

all our scalar invariants (5.2.5) are constant:

e1 = −c, e2 = c, e3 = e4 = 0.

Arguing as in the proof of Theorem 5.19, we see that in order to prove that our

diffeomorphism satisfies the nonlinear field equations (5.3.5) it is sufficient to show,

in view of (5.2.18), that ∫
R4

∆ej dx = 0 , j = 3, 4.

It is easy to see that ∆e4 = 0, which, in essence, is to do with the fact that zero

is a double eigenvalue of (5.9.9).

The formula for ∆e3 reads

∆e3 = Bβ
α
∂∆Aα

∂xβ
,

where the Bβ
α is some tensor. The explicit formulae for the components of this tensor

are complicated, however for our purposes it suffices to observe that B4
α = 0 and

that the remaining components depend only on the coordinate x4. Hence, integration

by parts yields∫
R4

∆e3 dx = −
∫
R4

(
∂Bβ

α

∂xβ

)
∆Aα dx = −

∫
R4

(
∂B4

α

∂x4

)
∆Aα dx = 0 .

Group-theoretic arguments apply to the massive case as well. Taking an arbitrary

ξ ∈ SGm, see formula (5.7.2), we get φ−1 ◦ ξ ◦ φ = η, where

SGm 3 η :


x1

x2

x3

x4

 7→

x1 cos(2mq4)− x2 sin(2mq4))

x1 sin(2mq4) + x2 cos(2mq4)

x3

x4

+


q1

q2

q3 − 2mbq4

q4

 .

This means that our diffeomorphism φ is homogeneous as per Definition 5.13 with

H = SGm. It is equivariant if and only if b = 0.
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(i) b > 0 (ii) b < 0

Figure 1: Massive solution

Let us discuss the continuum mechanics interpretation of formula (5.9.6). We are

looking at a translation (rigid motion without rotation) of 3-dimensional Euclidean

space which is a function of the time coordinate x4. Every point of 3-dimensional

Euclidean space moves along a helix, see Figure 1(i) for b > 0 and Figure 1(ii) for

b < 0.

The parameter b could be interpreted as electric charge. Note that for given

values of positive parameters m and a the parameter b can take only two values,

b = ±
√

c

4m2
− a2 .

5.10 Massless Dirac equation

Let the diffeomorphisms φ+ and φ− be right-handed and left-handed massless so-

lutions as per Definition 5.20. In this section we will calculate the corresponding

rotation 2-forms, see Section 5.4, and show that they are equivalent to spinor fields

which satisfy massless Dirac equations.

The deformation gradient reads

Dα
β = δαβ + Re

[
iuαpβ e

ipγxγ
]
. (5.10.1)

In a particular coordinate system the above formula turns to (5.8.9). Performing a
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polar decomposition (5.4.6), we get

Uαβ = δαβ −
1

2
Re
[
i (pαuβ − uαpβ) eipγx

γ ]− uγ ū
γ

16
pαpβ , (5.10.2)

V α
β = δαβ +

1

2
Re
[
i (pαuβ + uαpβ) eipγx

γ ]
+

3uγ ū
γ

16
pαpβ .

On account of formula (5.4.7) one can compute the logarithm of (5.10.2), lower the

first index and obtain the following explicit formula for the rotation 2-form:

F = −1

2
Re
[
i(p ∧ u[)eipγxγ

]
= −1

2
dA[. (5.10.3)

We see that the formula for our rotation 2-form is remarkably simple. Recall

that for a general diffeomorphism we have F = −1
2dA[ + O(‖A‖2), see formulae

(5.4.9c) and (5.4.10). However the deformation gradient generated by our massless

solutions is very special and turns out to be linear in displacements, without any

second (or higher) order terms and without any assumptions on the amplitude. The

underlying reason for such simplicity is that at any given point of M one can identify

a 2-dimensional invariant subspace of the tangent fibre in which the deformation

gradient (5.10.1) differs from the identity map. Furthermore, the restriction of the

Minkowski metric to this subspace is degenerate.

Put

F := −1

2
dA[ = − i

2
(p ∧ u[) eipγxγ , (5.10.4)

so that F = ReF. In the remainder of this section we examine the structure of the

complex-valued 2-form F.

The 2-form F is polarised

∗ F = ±iF (5.10.5)

(cf. Definition 5.20) and degenerate

detF = 0.

It is known, see Appendix D.1.3, that such a 2-form is equivalent, modulo sign, to a

spinor field which is, effectively, the square root of F. This spinor field is undotted,

ξ = ξa, in the left-handed case (lower sign in (5.10.5)) and dotted, η = ηȧ , in the

right-handed case (upper sign in (5.10.5)).
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Theorem 5.23. The spinor field ξ associated with a left-handed massless solution

satisfies the massless Dirac equation

σαȧb ∂xαξ
b = 0. (5.10.6)

The spinor field η associated with a right-handed massless solution satisfies the mass-

less Dirac equation

σαḃa ∂xαηḃ = 0. (5.10.7)

Proof. It is sufficient to establish the identities (5.10.6) and (5.10.7) in one coordinate

system, so let us work in the coordinate system in which we have (5.8.7). Plugging

(5.8.7) into (5.10.4) we get

Fαβ = − ia
2


0 0 −1 −1

0 0 ±i ±i

1 ∓i 0 0

1 ∓i 0 0

 ei(x
3+x4),

where the upper/lower sign corresponds to right-/left-handedness respectively. Using

formulae from Appendix D.1.3 we conclude that

ξa = ±
√
a

2

0

i

 ei(x
3+x4)/2, (5.10.8)

ηȧ = ±
√
a

2

1

0

 ei(x
3+x4)/2. (5.10.9)

It remains only to substitute (D.1.1) and (5.10.8) into (5.10.6), and (D.1.2) and

(5.10.9) into (5.10.7).

5.11 Massive Dirac equation

Let the diffeomorphism φ be a massive solution as per Theorem 5.21. The corre-

sponding deformation gradient reads

Dα
β = δαβ + Re

[
iuαpβ e

ipγxγ
]

+ vαpβ. (5.11.1)

In a particular coordinate system the above formula turns to (5.9.8). Explicit calcula-

tions show that (5.10.1) admits a polar decomposition if and only if c < 4. Assuming
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that c < 4 and arguing as in Section 5.10 we arrive at the following explicit formula

for the rotation 2-form:

F = − 1√
c

arctanh

(√
c

2

)(
Re
[
i(p ∧ u[)eipγxγ

]
+ (p ∧ v[)

)
= − 1√

c
arctanh

(√
c

2

)
dA[. (5.11.2)

Observe that unlike the massless case (5.10.3) the prefactor in the RHS of (5.11.2)

brings about, effectively, contributions nonlinear in A, see (5.9.4). But apart from

the prefactor formula (5.11.2) is quite simple. Here the underlying reason is the same

as in the massless case: at any given point of M one can identify a 2-dimensional

invariant subspace of the tangent fibre in which the deformation gradient (5.11.1)

differs from the identity map.

Put

F := − 1√
c

arctanh

(√
c

2

)
dA[ = − i√

c
arctanh

(√
c

2

)
(p ∧ u[) eipγxγ ,

which captures information about the oscillating part of F . As in the previous

section, we will now examine the geometric content of F.

Unlike the massless case, F is not polarised. However, it can be decomposed into

a sum of polarised pieces

F = F+ + F− ,

F+ =
F− i ∗ F

2
, F− =

F + i ∗ F
2

,

∗ F± = ±iF± . (5.11.3)

In our case the two polarised pieces are degenerate, i.e.

detF± = 0. (5.11.4)

The latter follows easily from the observation that the pair of identities (5.11.4) is

equivalent to

detF = 0, Fαβ Fαβ = 0.

The 2-form F− is equivalent, modulo sign, to an undotted spinor field ξ = ξa and

the 2-form F+ is equivalent, modulo sign, to a dotted spinor field η = ηȧ . Since in

our case the scalar ξaη̄a is real and nonzero, one can choose the relative sign of ξ and
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η so that ξaη̄a > 0. Thus, our complex-valued 2-form F is equivalent to a bispinor

field (ξ, η). This bispinor field is defined uniquely up to sign and is, effectively, the

square root of F.

Theorem 5.24. The bispinor field (ξ, η) associated with a massive solution satisfies

the massive Dirac equation

− iσαȧb ∂xαξb = mηȧ , −iσαḃa ∂xαηḃ = mξa . (5.11.5)

Proof. Arguing along the same lines as that of Theorem 5.23, in the special coordi-

nate system in which we have (5.9.5) we get

ξa = ηȧ = ±

√
ma√
c

arctanh

(√
c

2

)0

i

 eimx
4
.

The above bispinor field clearly satisfies (5.11.5).

Remark 5.25. In writing the massive Dirac equation (5.11.5) we adopted the spinor

representation, cf. [20, formula (20.2)], as opposed to the standard representation,

cf. [20, formulae (21.19), (21.17)].
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Appendix A

The wave propagator:

complementary material

A.1 The subprincipal symbol for the 2-sphere: Mathe-

matica script

This Appendix contains the Mathematica code implemented to compute the sub-

principal symbol of the wave propagator for the 2-sphere, see Section 2.11.1. In the

script we adopt the notation τ = t/2.

(* Propagator for the 2-sphere: complete scrpit *)

(* (c) Matteo Capoferri - 18 September 2017 *)

SetDirectory[NotebookDirectory[]];

(* Definition of the phase function *)

(* Unit vector in R^3 corresponding to the point (u,v) *)

w[{u_, v_}] := {4 u/(4 + u^2 + v^2), 4 v/(4 + u^2 + v^2), (u^2 + v^2 - 4)(4+ u^2 + v

^2)};

(* Towards the taylor expansion for the geodesic distance*)

\[CapitalPsi][{u_, v_}, {x_,y_}] :=

(Cross[w[{u, v}], w[{x, y}]][[1]])^2 +(Cross[w[{u, v}], w[{x, y}]][[2]])^2

+ (Cross[w[{u, v}], w[{x, y}]][[3]])^2;

205
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\[Chi][x_] := Normal[Series[ArcSin[Sqrt[x]]/Sqrt[x], {x, 0, 5}]];

(* Distance squared *)

distsq[{u_, v_}, {x_,y_}] := \[CapitalPsi][{u, v}, {x,y}] \[Chi][\[CapitalPsi][{u, v

}, {x, y}]]^2;

(* Derivative of the distance squared *)

Ddistsq[\[Tau]_, {u_,v_}, {\[Eta]1_, \[Eta]2_}] :=

{D[distsq[{u, v}, {x, y}], x], D[distsq[{u, v}, {x, y}], y]}

/. {x -> 2 Tan[\[Tau]] \[Eta]1/Sqrt[\[Eta]1^2 + \[Eta]2^2],

y -> 2 Tan[\[Tau]] \[Eta]2/Sqrt[\[Eta]1^2 + \[Eta]2^2]};

(* Phase function: real part *)

Re\[CapitalPhi][\[Tau]_, {u_, v_}, {\[Eta]1_, \[Eta]2_}] :=

-1/2 Cos[\[Tau]]^(-2) {\[Eta]1, \[Eta]2}.Ddistsq[\[Tau], {u, v}, {\[Eta]1, \[

Eta]2}];

(* Phase function: imaginary part *)

Im\[CapitalPhi][\[Epsilon]_, \[Tau]_, {u_,v_}, {\[Eta]1_, \[Eta]2_}] :=

1/2 \[Epsilon] Sqrt[\[Eta]1^2 + \[Eta]2^2] distsq[{u, v}, {x,y}]

/. {x ->2 Tan[\[Tau]] \[Eta]1/Sqrt[\[Eta]1^2 + \[Eta]2^2],

y -> 2 Tan[\[Tau]] \[Eta]2/Sqrt[\[Eta]1^2 + \[Eta]2^2]};

(* Phase function: rea partl + imaginary part *)

\[CapitalPhi][\[Epsilon]_, \[Tau]_, {u_, v_}, {\[Eta]1_, \[Eta]2_}] :=

Re\[CapitalPhi][\[Tau], {u, v}, {\[Eta]1, \[Eta]2}] + I Im\[CapitalPhi][\[

Epsilon], \[Tau], {u,v}, {\[Eta]1, \[Eta]2}];

(* Taylor expansion of the phase function *)

Phi0 = Normal[Series[\[CapitalPhi][\[Epsilon],\[Tau],{2 Tan[\[Tau]]+s Z1,s Z2},{1,

0}],{s,0,7}]]

/. {s -> 1} // Simplify;

Phi1 = Phi0 /. {Z1 ->z1 Cos[\[Theta]] + z2 Sin[\[Theta]] + (Cos[\[Theta]] \[Minus] 1)

r,

Z2 -> \[Minus]z1 Sin[\[Theta]] + z2 Cos[\[Theta]] \[Minus] Sin[\[Theta]] r} //

Simplify;
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rho = Normal[Series[Sqrt[(1 + s \[Zeta]1)^2 + s^2 \[Zeta]2^2] - 1, {s, 0, 6}]] /. {s

-> 1};

theta = Normal[Series[ArcTan[s \[Zeta]2 /(1 + s \[Zeta]1)], {s, 0, 6}]] /. {s -> 1};

Zstar = 2 Tan[\[Tau]]

Normal[Series[{(1 + s \[Zeta]1)/Sqrt[(1 + s \[Zeta]1)^2 + s^2 \[Zeta]2^2],

s \[Zeta]2/Sqrt[(1 + s \[Zeta]1)^2 + s^2 \[Zeta]2^2]}, {s, 0, 6}]]

/. {s -> 1};

Phi2 = Phi1

/. {Sin[\[Theta]] -> Normal[Sin[\[Theta]] + O[\[Theta]]^7],

Cos[\[Theta]] -> Normal[ Cos[\[Theta]] + O[\[Theta]]^7]} // Simplify;

Phi3 = (1 + \[Rho]) Normal[Phi2];

Phi4 = Phi3 /. {r -> 2 Tan[\[Tau]], \[Theta] -> theta, \[Rho] -> rho};

Phi5 = Normal[Series[

Phi4 /. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta

]2},

{s, 0, 6}]] /. {s -> 1} // Simplify;

Phi5 >> "PF.m"

(* Taylor expansion of the first time derivative of the phase function \varphi_\tau

*)

Phi\[Tau]0 = Phi0 /. {Z1 -> x1 - 2 Tan[\[Tau]]};

Phi\[Tau]1 = D[Phi\[Tau]0, \[Tau]];

Phi\[Tau]2 = Phi\[Tau]1 /. {x1 -> Z1 + 2 Tan[\[Tau]]};

Phi\[Tau]3 = Phi\[Tau]2

/. {Z1 -> z1 Cos[\[Theta]] + z2 Sin[\[Theta]] + (Cos[\[Theta]] \[Minus] 1) r,

Z2 -> \[Minus]z1 Sin[\[Theta]] + z2 Cos[\[Theta]] \[Minus] Sin[\[Theta

]] r};

Phi\[Tau]4 = Phi\[Tau]3
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/. {Sin[\[Theta]] -> Normal[Sin[\[Theta]] + O[\[Theta]]^7],

Cos[\[Theta]] -> Normal[ Cos[\[Theta]] + O[\[Theta]]^7]};

Phi\[Tau]5 = (1 + \[Rho]) Phi\[Tau]4;

Phi\[Tau]6 = Phi\[Tau]5 /. {r -> 2 Tan[\[Tau]], \[Theta] -> theta, \[Rho] -> rho};

Phi\[Tau]7 = Normal[Series[

Phi\[Tau]6 /. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1,

\[Zeta]2 -> s \[Zeta]2}, {s, 0, 6}]] /. {s -> 1} // Simplify;

Phi\[Tau]7 >> "PFt.m"

(* Taylor expansion of the second time derivative of the phase function \varphi_{\tau\

tau} *)

Phi\[Tau]\[Tau]1 = D[Phi\[Tau]0, \[Tau], \[Tau]];

Phi\[Tau]\[Tau]2 = Phi\[Tau]\[Tau]1 /. {x1 -> Z1 + 2 Tan[\[Tau]]};

Phi\[Tau]\[Tau]3 =

Phi\[Tau]\[Tau]2

/. {Z1 -> z1 Cos[\[Theta]] + z2 Sin[\[Theta]] + (Cos[\[Theta]] \[Minus] 1) r

,

Z2 -> \[Minus]z1 Sin[\[Theta]] + z2 Cos[\[Theta]] \[Minus] Sin[\[Theta

]] r};

Phi\[Tau]\[Tau]4 = Phi\[Tau]\[Tau]3

/. {Sin[\[Theta]] -> Normal[Sin[\[Theta]] + O[\[Theta]]^7],

Cos[\[Theta]] -> Normal[ Cos[\[Theta]] + O[\[Theta]]^7]};

Phi\[Tau]\[Tau]5 = (1 + \[Rho]) \Phi\[Tau]\[Tau]4;

Phi\[Tau]\[Tau]6 = Phi\[Tau]\[Tau]5 /. {r -> 2 Tan[\[Tau]], \[Theta] -> theta, \[Rho]

-> rho};

Phi\[Tau]\[Tau]7 = Normal[Series[Phi\[Tau]\[Tau]6

/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 6}]]

/. {s -> 1} // Simplify;
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Phi\[Tau]\[Tau]7 >> "PFtt.m"

(* Taylor expansion of \varphi_{z\eta}^{-1}, \det(\varphi_{z\eta}), \det(\varphi_{z\

eta}^{-1}) *)

PhaseFunction = << "PF.m";

PhiZzeta = {{D[PhaseFunction, z1, \[Zeta]1], D[PhaseFunction, z1, \[Zeta]2]},{D[

PhaseFunction, z2, \[Zeta]1],

D[PhaseFunction, z2, \[Zeta]2]}};

DetPhiZzeta = Det[PhiZzeta];

DetPhiZzeta1 = Normal[Series[

DetPhiZzeta /. {z1 -> s z1, z2 -> s z2 , \[Zeta]1 -> s \[Zeta]1,

\[Zeta]2 -> s \[Zeta]2}, {s, 0, 4}]]

/. {s -> 1} // Simplify;

X = DetPhiZzeta1 - Cos[\[Tau]]^4 (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]) //

Simplify;

Y = X/(Cos[\[Tau]]^4 (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]));

DetPhiZzetaInv = 1/(Cos[\[Tau]]^4 (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]))

(1 - Y + Y^2 - Y^3 + Y^4 - Y^5 + Y^6);

DetPhiZzetaInv1 = Normal[Series[DetPhiZzetaInv

/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 4}]]

/. {s -> 1};

DetPhiZzetaInv2 = DetPhiZzetaInv1 // Simplify;

PhiZzetaInv = DetPhiZzetaInv2

{{PhiZzeta[[2, 2]], -PhiZzeta[[1, 2]]}, {-PhiZzeta[[2, 1]], PhiZzeta[[1,

1]]}};

PhiZzetaInv1 = Normal[Series[PhiZzetaInv
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/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 4}]]

/. {s -> 1} // Simplify;

PhiZzetaInv1 >> "PFzZetaInv.m"

DetPhiZzetaInv2 >> "DetPFzZetaInv.m"

DetPhiZzeta1 >> "DetPhizZeta.m"

(* Amplitude-to-symbol operator *)

(* Preliminary definitions *)

PF = << "PF.m";

PhiZzetaInv = << "PFzZetaInv.m";

DetPhiZzetaInv = << "DetPFzZetaInv.m" ;

DetPhiZzeta = << "DetPhizZeta.m";

PFt = << "PFt.m";

PFtt = << "PFtt.m";

InvMetricComponent = (1 + 1/4 u^2 + 1/4 v^2)^2 /. {u -> z1 + 2 Tan[\[Tau]],

v -> z2} (* REMARK: we only need this for all practical purposes, as the metric is

diagonal and a multiple of the identity *);

detg = 1/(1 + 1/4 u^2 + 1/4 v^2)^4 /. {u -> z1 + 2 Tan[\[Tau]], v -> z2};

(* Useful derivatives of the phase function and of the weight *)

PF\[Zeta] = {D[PF, \[Zeta]1], D[PF, \[Zeta]2]};

PF\[Zeta]\[Zeta] = {{D[PF, \[Zeta]1, \[Zeta]1], D[PF, \[Zeta]1, \[Zeta]2]},

{D[PF, \[Zeta]2, \[Zeta]1], D[PF, \[Zeta]2, \[Zeta]2]}};

DetPFz\[Zeta]\[Tau] = D[PFt, z1, \[Zeta]1] D[PF, z2, \[Zeta]2]

+ D[PF, z1, \[Zeta]1] D[PFt, z2, \[Zeta]2] - D[PFt, z1, \[Zeta]2] D[PF, z2,

\[Zeta]1]

- D[PF, z1, \[Zeta]2] D[PFt, z2, \[Zeta]1];

DetPFz\[Zeta]\[Tau]\[Tau] = D[PFtt, z1, \[Zeta]1] D[PF, z2, \[Zeta]2]

+ 2 D[PFt, z1, \[Zeta]1] D[PFt, z2, \[Zeta]2] + D[PF, z1, \[Zeta]1] D[PFtt, z2

, \[Zeta]2]

- D[PFtt, z1, \[Zeta]2] D[PF, z2, \[Zeta]1]
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- 2 D[PFt, z1, \[Zeta]2] D[PFt, z2, \[Zeta]1]

- D[PF, z1, \[Zeta]2] D[PFtt, z2, \[Zeta]1];

(* The subscript 0 following the name denotes evaluation at z=z^* *)

PhiZzetaInv0 = {{Sec[\[Tau]]^2,0},{0,Sec[\[Tau]]^2/(Cos[2 \[Tau]] -I \[Epsilon] Sin[2

\[Tau]])}};

DetPhiZzetaInv0 = Sec[\[Tau]]^4/( Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]);

DetPhiZzeta0 = Cos[\[Tau]]^4 (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]);

InvMetricComponent0 = Sec[\[Tau]]^4;

DzetaDetPhiZzeta0 = {0, 0};

Phizetazeta0 = {{0,0}, {0,-2 Cos[\[Tau]] Sin[\[Tau]](Cos[2 \[Tau]] -I \[Epsilon] Sin[2

\[Tau]])}};

(* Differential operators L *)

L[y_] := {PhiZzetaInv[[1, 1]] D[y, z1] + PhiZzetaInv[[1, 2]] D[y, z2],

PhiZzetaInv[[2, 1]] D[y, z1] + PhiZzetaInv[[2, 2]] D[y, z2]};

L0[y_] := {PhiZzetaInv0[[1, 1]] D[y, z1] + PhiZzetaInv0[[1, 2]] D[y, z2],

PhiZzetaInv0[[2, 1]] D[y, z1] + PhiZzetaInv0[[2, 2]] D[y, z2]};

(* Differential-evaluation operators \mathfrak{S} *)

S1[y_] := -1/2 Sum[PF\[Zeta][[k]] L[y][[k]], {k, 1, 2}];

S2[y_] := 1/6 Sum[ PF\[Zeta][[k]] PF\[Zeta][[j]] L[L[y][[j]]][[k]], {k, 1, 2}, {j, 1,

2}];

S3[y_] := -1/24 Sum[PF\[Zeta][[k]] PF\[Zeta][[j]] PF\[Zeta][[i]]

L[L[L[y][[i]]][[j]]][[k]], {k, 1, 2}, {j, 1, 2}, {i, 1, 2}];

S[y_] := S1[y] + S2[y] + S3[y];

(* NOTATION: here B stands for a facilitated version of \mathfrak{S}, to reduce

computational effort *)

B1[y_] := I/2 DetPhiZzetaInv

(D[DetPhiZzeta, \[Zeta]1] (L[y][[1]] + S1[L[y][[1]]])

+ D[DetPhiZzeta, \[Zeta]2] (L[y][[2]] + S1[L[y][[2]]]))
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+ I (D[L[y][[1]] + S1[L[y][[1]]], \[Zeta]1]

+ D[L[y][[2]] + S1[L[y][[2]]], \[Zeta]2]);

B2[y_] := I/2 DetPhiZzetaInv ( D[DetPhiZzeta, \[Zeta]1] (L[y][[1]] + S[L[y][[1]]])

+ D[DetPhiZzeta, \[Zeta]2] (L[y][[2]] + S[L[y][[2]]])) + I (D[L[y][[1]]

+ S[L[y][[1]]], \[Zeta]1] + D[L[y][[2]] + S[L[y][[2]]], \[Zeta]2]);

B1b2[y_] := I (L[D[y, \[Zeta]1]][[1]] + L[D[y, \[Zeta]2]][[2]]

- 1/2 (-2 Cos[\[Tau]] Sin[\[Tau]] (Cos[2 \[Tau]]

- I \[Epsilon] Sin[2 \[Tau]]) L0[L[y][[2]]][[2]]))

(* SPECIAL CASE: B1 when acting on function with a second

order zero *);

B1b1[y_] := I (D[L[y][[1]], \[Zeta]1] + D[L[y][[2]], \[Zeta]2]

- 1/2 (-2 Cos[\[Tau]] Sin[\[Tau]] (Cos[2 \[Tau]]

- I \[Epsilon] Sin[2 \[Tau]]) L0[L[y][[2]]][[2]]))

(* SPECIAL CASE: B1 when acting on b_1 *);

B2self[y_] := I (D[L[y][[1]], \[Zeta]1] + D[L[y][[2]], \[Zeta]2]

+ Cos[\[Tau]] Sin[\[Tau]] (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]]) L0[L[y

][[2]]][[2]])

(* SPECIAL CASE: B2 when acting on B2b2 *);

(* Homogeneous components of the amplitude b_2, b_1 and b_0 *)

b2 = -1/4 (PFt)^2 + InvMetricComponent ((D[PF, z1])^2 + (D[PF, z2])^2) ;

b1 = I 1/4 PFtt

- I InvMetricComponent (D[PF, z1, z1] + D[PF, z2, z2])

+ I 1/4 DetPhiZzetaInv DetPFz\[Zeta]\[Tau] PFt

- I InvMetricComponent DetPhiZzetaInv (D[DetPhiZzeta, z1] D[

PF, z1]

+ D[DetPhiZzeta, z2] D[PF, z2])

- I (D[InvMetricComponent, z1] D[PF, z1]

+ D[InvMetricComponent, z2] D[PF, z2])

;

b0 = -1/16 (DetPhiZzetaInv0)^2 ((DetPFz\[Zeta]\[Tau])^2

- 2 DetPhiZzeta0 DetPFz\[Zeta]\[Tau]\[Tau])
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+ 1/4 (DetPhiZzetaInv0)^2 (1 + Tan[\[Tau]]^2)^2 ((D[DetPhiZzeta, z1])

^2

+ (D[DetPhiZzeta, z2])^2 - 2 DetPhiZzeta0 (D[DetPhiZzeta, z1,

z1]

+ D[DetPhiZzeta, z2, z2]))

- 1/2 DetPhiZzetaInv0 (D[InvMetricComponent,

z1] D[DetPhiZzeta, z1]

+ D[InvMetricComponent, z2] D[

DetPhiZzeta, z2])

- (1 + Tan[\[Tau]]^2);

(* Transport equations *)

(* First Transport Equation *)

FTE = B1b2[b2] + b1 /. {z1 -> 0, z2 -> 0, \[Zeta]1 -> 0, \[Zeta]2 -> 0} // Simplify

(* Second Transport Equation *)

(* (B2)^2 [b2] *)

(* It needs to be dealt with differently and separately, because still computationally

quite expensive *)

b2tay = Normal[Series[b2

/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 4}]]

/. {s -> 1} // Simplify;

Lb2tay = Normal[Series[L[b2]

/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 3}]]

/. {s -> 1};

SLb2tay = Normal[Series[S[Lb2tay]

/. {z1 -> s z1, z2 -> s z2, \[Zeta]1 -> s \[Zeta]1, \[Zeta]2 -> s \[Zeta]2}, {

s, 0, 3}]]

/. {s -> 1};

B2b2 = I/2 DetPhiZzetaInv (D[DetPhiZzeta, \[Zeta]1] (La2tay[[1]]

+ SLb2tay[[1]]) + D[DetPhiZzeta, \[Zeta]2] (Lb2tay[[2]] + SLb2tay[[2]]))

+ I (D[Lb2tay[[1]] + SLb2tay[[1]], \[Zeta]1] + D[Lb2tay[[2]]

+ SLb2tay[[2]], \[Zeta]2]);
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fraksn1b2 = B2self[B2b2];

B2sqb2 = fraksn1b2 /. {z1 -> 0, z2 -> 0, \[Zeta]1 -> 0, \[Zeta]2 -> 0} // Simplify;

(* Reduced amplitude *)

RA1 = ((8 - 5 \[Epsilon]^2 + (4 - 7 \[Epsilon]^2) Cos[4 \[Tau]] + 3 I (\[Epsilon] + \[

Epsilon]^3)

Sin[4 \[Tau]])/(6 (Cos[2 \[Tau]] - I \[Epsilon] Sin[2 \[Tau]])^2))

(* B2sqb2 evaluated at z=z^* *);

RA2 = B1b1[b1] /. {z1 -> 0, z2 -> 0, \[Zeta]1 -> 0, \[Zeta]2 -> 0} // Simplify;

RA3 = b0 /. {z1 -> 0, z2 -> 0, \[Zeta]1 -> 0, \[Zeta]2 -> 0} // Simplify;

RA = RA1 + RA2 + RA3;

(* ODE for the subprincipal symbol *)

STE = RA - I D[f[\[Tau]], \[Tau]];

DSolve[{STE == 0, f[0] == 0}, f[\[Tau]], \[Tau]] // Simplify



Appendix B

The Dirac propagator:

complementary material

B.1 The Weitzenböck connection

In this Appendix we recall the main properties of the Weitzenböck connection and

fix our signs conventions, which are chosen in agreement with [92].

Let M be an oriented Riemannian 3-manifold and let {ej}3j=1 be a global or-

thonormal framing.

Definition B.1. The Weitzenböck connection is the affine connection ∇W on M

defined by the condition

∇Wv (f i ei) = v(f i) ei , (B.1.1)

for every vector field v and f i ∈ C∞(M ;R), i = 1, 2, 3.

The Weitzenböck connection is a curvature-free metric-compatible connection.

Formula (B.1.1) implies

0 = ∇Wek ej
α = ek

β ∂ej
α

∂xβ
+ ek

β Υα
βγ ej

γ ,

which, in turn, yields a formula for the Weitzenböck connection coefficients Υα
βγ in

terms of the framing:

Υα
βγ = − ejγ

∂ej
α

∂xβ
= ej

α∂e
j
γ

∂xβ
. (B.1.2)
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Here ejα := δjk gαβ ek
β . The torsion tensor associated with ∇W is

Tαβγ = Υα
βγ −Υα

γβ (B.1.3)

and the curvature tensor vanishes identically. The Weitzenböck connection coeffi-

cients and the Christoffel symbols are related via the identity

Υα
βγ = Γαβγ +

1

2
(Tαβγ + Tβ

α
γ + Tγ

α
β) , (B.1.4)

see [92, Eqn. (7.34)]. The second summand on the RHS of (B.1.4)

Kα
βγ :=

1

2
(Tαβγ + Tβ

α
γ + Tγ

α
β) (B.1.5)

is called contorsion of ∇W . Note that the torsion tensor is antisymmetric in the

second and third indices, Tαβγ = −Tαγβ , whereas the contorsion tensor is antisym-

metric in the first and third ones, Kαβγ = −Kγβα. Torsion and contorsion can be

expressed one in terms of the other and capture the geometric information encoded

within the framing.

In dimension three antisymmetric tensors of order two are equivalent to vectors.

Therefore, we define
∗
Tαβ :=

1

2
Tα

µν Eµνβ (B.1.6)

and
∗
Kαβ :=

1

2
Kµ

α
ν Eµνβ , (B.1.7)

where

Eαβγ(x) := ρ(x) εαβγ , (B.1.8)

ρ is the Riemannian density and ε is the totally antisymmetric symbol, ε123 := +1.

It is often convenient to use (B.1.6) and (B.1.7) instead of T and K because the

former have lower order – two instead of three.

As a final remark, we observe that formulae (B.1.6), (B.1.7) and (B.1.5) imply

∗
Kαβ =

∗
Tαβ −

1

2

∗
T γγ gαβ , (B.1.9)

∗
Tαβ =

∗
Kαβ −

∗
Kγ

γ gαβ . (B.1.10)
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B.2 Some techincal proofs

B.2.1 Proof of Theorem 3.23

In the following, we work in normal coordinates centred at y = 0 such that

ej
α(0) = ẽj

α(0) = δj
α.

Since G ∈ C∞(M ;SU(2)) and G(0) = Id, there exist smooth real-valued functions

Ak, k = 1, 2, 3, such that Ak(0) = 0 and

G(x) = eis
k Ak(x) (B.2.1)

in a neighbourhood of y = 0. Differentiating (B.2.1) with respect to x and evaluating

the result at 0, we obtain

Gxα(0) = isk Fkα, (B.2.2)

where Fkα := [Ak]xα(0).

Now, differentiating (3.5.27) with respect to x and evaluating the result at 0, we

obtain

∂ej
α

∂xβ
(0) =

1

2
tr
[
sj G

∗
xβ (0) sk + sj s

kGxβ (0)
]
ẽk
α(0) +

∂ẽk
α

∂xβ
(0)

=
1

2
tr
[
[sj s

kGxβ (0)]∗ + sj s
kGxβ (0

]
ẽk
α(0) +

∂ẽk
α

∂xβ
(0)

= Re tr
[
sj s

kGxβ (0)
]
ẽk
α(0) +

∂ẽk
α

∂xβ
(0).

(B.2.3)

Contracting (B.2.3) with ejγ(0) = ẽjγ(0) = δjγ , using (B.1.2) and rearranging, we

obtain

Υ̃α
βγ(0)−Υα

βγ(0) = Re tr
[
i sjs

ksl
]
Flβ δ

j
γ δk

α

= −2 εγ
αl Flβ.

(B.2.4)

In view of (B.1.3), formula (B.2.4) implies

Tαβγ(0)− T̃αβγ(0) = 2 εγ
αl Flβ − 2 εβ

αl Flγ . (B.2.5)

Contracting (B.2.5) with 1
2Eσ

βγ(y) = 1
2εσ

βγ , cf. (B.1.8), we get

∗
Tασ(0)−

∗
T̃ασ(0) = 2εσ

βγ εγ
αlFlβ

= 2δβl Flβ δσ
α − 2δσ

l Flα.

(B.2.6)
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Inverting (B.2.6) so as to express F in terms of [
∗
T −

∗
T̃ ](0), we arrive at

−2Fkβ = δk
α [
∗
T −

∗
T̃ ]αβ(y)− 1

2
δkβ [

∗
T −

∗
T̃ ]γγ(0)

= δk
α
[ ∗
K −

∗
K̃
]
αβ

(0).

(B.2.7)

Substitution of (B.2.7) into (B.2.2) gives (3.5.28).

B.2.2 Proof of Theorem 3.37

By definition of Levi-Civita framing, formula (3.7.58) implies G(y) = Id. In the

following, we work in a sufficiently small neighbourhood U of y and we choose normal

coordinates centred at y = 0 such that ẽjα(0) = ej
α(0) = δj

α.

Since G ∈ C∞(M ;SU(2)) and G(0) = Id, there exist smooth real-valued func-

tions Ak, k = 1, 2, 3, such that vk(0) = 0 and

G(x) = eis
k Ak(x) (B.2.8)

in a neighbourhood of y = 0. Differentiating (B.2.8) twice with respect to x and

evaluating the result at zero we obtain

Gxαxβ (0) = isk [Ak]xαxβ (0)− 1

2
sk sj (FkαFjβ + FjαFkβ)

=iskHkαβ − δjk IdFjαFkβ.

(B.2.9)

Here Hkαβ := [Ak]xαxβ (0) and Fkα := [Ak]xα(0). The task at hand is to express H

in terms of the contorsion tensor K and its derivatives.

Differentiating the identity

Υα
βγ(x) = ek

α(x)
∂ekγ
∂xβ

(x) (B.2.10)

with respect to xµ, evaluating the outcome at y = 0 and resorting to Lemma 3.7.2,

we obtain

[Υα
βγ ]xµ (0) =

∂ek
α

∂xµ
(0)

∂ekγ
∂xβ

(0) + ek
α(0)

∂2ekγ
∂xβ∂xµ

(0)

= −Υα
µρ(0) Υρ

βγ(0)

+ δk
α Re tr[skG∗xβxµ(0) sl + skG∗xβ (0) slGxµ(0)] δlγ

+ δk
α [ẽkγ ]xβxµ(0)

= −Υα
µρ(0) Υρ

βγ(0) + δk
αδlγ Re tr[sl s

kG∗xβxµ(0)]

+ δk
αδlγ Re tr[skG∗xβ (0) slGxµ(0)] + δk

α [ẽkγ ]xβxµ(0).

(B.2.11)
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Straightforward calculations show that

−Υα
µρ(0) Υρ

βγ(0) = −Re tr [sαG∗xµ(0)sρ] Re tr
[
sρG∗xβ (0)sγ

]
= 4δαγF

r
βFrµ − 4δαj δγ

k FjβFkµ,
(B.2.12)

δk
αδlγ Re tr[sl s

kG∗xβxµ(0)] = −2εαγ
rHrβµ − 2δαγ F

r
β Frµ (B.2.13)

and

δk
αδlγ Re tr[slG

∗
xβ (0) skGxµ(0)] = 2(δαkδjγ + δαjδkγ)FjµFkβ − 2δαγ F

r
β Frµ.

(B.2.14)

Substituting (B.2.12)–(B.2.14) into (B.2.11) we obtain

[Υα
βγ ]xµ (0) = −2εαγ

rHrβµ+2(δαjδkγ−δαkδjγ)FjµFkβ+δk
α [ẽkγ ]xβxµ(0). (B.2.15)

Summing up (B.2.15) and (B.2.15) with indices β and µ swapped, we arrive at

[Υα
βγ ]xµ (0) + [Υα

µγ ]xβ (0) = −4εαγ
rHrβµ + 2δk

α [ẽkγ ]xβxµ(0). (B.2.16)

Now, formula (B.1.4) and the fact that the Christoffel symbols vanish at y = 0 imply

εα
γ
ρ Υα

µγ(0) = εα
γ
ρK

α
µγ(0) = 2

∗
Kµρ(0). (B.2.17)

Hence, by contracting (B.2.16) with εαγρ, substituting (B.2.17) in, and resorting to

the identity

εα
γ
ρ ε

α
γ
r = 2δρ

r,

we obtain

[
∗
Kβρ]xµ(0) + [

∗
Kµρ]xβ (0) = −4 δρ

rHrβµ + εα
γ
ρ δk

α [ẽkγ ]xβxµ(0). (B.2.18)

We claim that

εα
γ
ρ δk

α [ẽkγ ]xβxµ(0) = 0. (B.2.19)

To see this, let us observe that formula (3.7.2) implies

ẽkγ(x) = ekγ(0)− 1

6
ekρ(0)Rγτ

ρ
ν(0)xτxν +O(‖x‖3), j = 1, 2, 3,

so that

δk
α [ẽkγ ]xβxµ(0) = −1

6
(Rγβ

α
µ +Rγµ

α
β) (0). (B.2.20)
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The RHS of (B.2.20) is symmetric in α and γ, whereas εαγρ is antisymmetric in the

same indices, so (B.2.19) follows.

All in all, (B.2.9), (B.2.18) and (B.2.19) give us

∇α∇β G(0) = − i
4

[∇α
∗
Kβρ(0) +∇β

∗
Kαρ(0)]σρ(0)− δjk IdFjαFkβ. (B.2.21)

Finally, the substitution of (B.2.7) with K̃ = 0 (which is the case for the Levi-Civita

framing) into (B.2.21) yields (3.7.63).

B.3 Third Weyl coefficient: an alternative derivation

In this Appendix we shall provide an alternative proof for Theorem 3.39 starting

from formulae (3.7.64) and (3.7.65), as opposed to formulae (3.7.11) and (3.7.56).

This will also serve as a test for formulae (3.7.64) and (3.7.65).

Theorem 3.38 gives us

tr a±0 =1 +
it

2

ηαηβ

h2

∗
Kαβ ±

it2

8

ηαηβηµ

h3

(
∇α

∗
Kβµ +∇β

∗
Kαµ

)
− t2

8

ηαηβ

h2

∗
Kαµ

∗
Kβ

µ +O(t3),

(B.3.1)

and

tr a±−1 = ∓1

2
hηαηβ

∗
Kαβ ∓

it

24h
R

− t

4

(
∇α

∗
Kβµ +∇β

∗
Kαµ

)(
hηβ hηαηβ +

1

2
hηαηβ hηµ

)
∓ it

8

∗
Kαµ

∗
Kβ

µ hηαηβ

+O(t2),

(B.3.2)

where we used the identities

tr(σβP±) = ±η
β

h
, tr(σβP±ηα) = ±hηαηβ . (B.3.3)

We observe that (B.3.1) and (B.3.2) differ from (3.8.4) and (3.8.5) only in the terms

containing contorsion. The task at hand is, therefore, to show that contributions to

N ′± ∗ µ coming from terms containing contorsion cancel out.

It is easy to see that there is no term containing contorsion contributing to the

first Weyl coefficients, i.e. to order O(λ2).
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Arguing as in Section 3.8, we find that the contribution of order O(λ) to N ′± ∗ µ

is given by

1

(2π)4

∫
R

∫
T ∗yM

ei(λ∓‖η‖)t
(
it

2

ηαηβ

h2

∗
Kαβ ∓

1

2
hηαηβ

∗
Kαβ

)
µ̂(t)χ(‖η‖) dη dt

=
1

(2π)4

∫
R

∫
T ∗yM

ei(λ−‖η‖)t
(
± it

2

ηαηβ

h2

∗
Kαβ ∓

1

2
hηαηβ

∗
Kαβ

)
µ̂(±t)χ(‖η‖) dη dt.

(B.3.4)

Switching to polar coordinates η 7→ (r := ‖η‖, ω := η/‖η‖) ∈ R × S2 and dropping

the cut-off, (B.3.4) turns into

1

(2π)4

∫
R

∫
R

∫
S2
ei(λ−r)t

(
± it

2
ωαωβ

∗
Kαβ ∓

1

2r

(
δαβ − ωαωβ

) ∗
Kαβ

)
µ̂(±t) r2 dω dr dt

= ± 1

(2π)4

∫
R

∫
R

∫
S2
ei(λ−r)tr

(
ωαωβ

∗
Kαβ −

1

2

(
δαβ − ωαωβ

) ∗
Kαβ

)
µ̂(±t) dω dr dt

= ± λ

(2π)3

∫
S2

(
3

2
ωαωβ

∗
Kαβ −

1

2

∗
Kα

α

)
dω

= ± λ

(2π)3

(
2π
∗
Kα

α − 2π
∗
Kα

α

)
= 0,

(B.3.5)

which tells us that the second Weyl coefficients vanish. In (B.3.5) we used (3.8.8)

and the identity ∫
S2
ωαωβdω =

4π

3
δαβ. (B.3.6)

Let us now consider contributions of order O(1), i.e. contribution to the third

Weyl coefficients. We observe that the term

± it
2

8

ηαηβ

h2

(
∇α

∗
Kβµ +∇β

∗
Kαµ

)
ηµ

h

from (B.3.1) and the term

− t
4

(
∇α

∗
Kβµ +∇β

∗
Kαµ

)(
hηβ hηαηβ +

1

2
hηαηβ hηµ

)
from (B.3.2) vanish upon integration because they are odd in momentum.

Hence, we are only left to deal with the last summand before the remainder in

(B.3.1) and (B.3.2), respectively. The contribution of the former to N ′± ∗ µ is

− 1

8(2π)4

∫
R

∫
T ∗yM

ei(λ−‖η‖)t
(
t2
ηαηβ

h2

∗
Kαµ

∗
Kβ

µ

)
µ̂(±t)χ(‖η‖) dη dt. (B.3.7)
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Switching to polar coordinates and dropping the cut-off, we get

−
∗
Kαµ

∗
Kβ

µ

8(2π)4

∫
R

∫
R

∫
S2
ei(λ−r)t

(
t2ωαωβ

)
µ̂(±t)r2 dr dt dω

=

∗
Kαµ

∗
Kβ

µ

8(2π)4

∫
R

∫
R

∫
S2
ei(λ−r)t

(
2ωαωβ

)
µ̂(±t) dr dtdω

=

∗
Kαµ

∗
Kβ

µ

4(2π)3

∫
S2
ωαωβ dω

=

∗
Kαµ

∗
Kβ

µ

4(2π)3

4π

3
δαβ

=

∗
Kαµ

∗
Kαµ

6(2π)2
.

(B.3.8)

The contribution of the last summand on the RHS of (B.3.2) to N ′± ∗ µ is

1

(2π)4

∫
R

∫
T ∗yM

ei(λ−‖η‖)t
(
− it

8

∗
Kαµ

∗
Kβ

µ hηαηβ

)
µ̂(±t)χ(‖η‖) dη dt. (B.3.9)

Switching to polar coordinates and dropping the cut-off, we get

−
∗
Kαµ

∗
Kβ

µ

8(2π)4

∫
R

∫
R

∫
S2
ei(λ−r)t it

(
δαβ

r
− ωαωβ

r

)
µ̂(±t) r2 dω dr dt

= −
∗
Kαµ

∗
Kβ

µ

8(2π)3

∫
S2

(
δαβ − ωαωβ

)
dω

= −
∗
Kαµ

∗
Kβ

µ

8(2π)3

(
4πδαβ − 4π

3
δαβ
)

= −
∗
Kαµ

∗
Kαµ

6(2π)2
.

(B.3.10)

We see that (B.3.8) and (B.3.10) cancel out. Therefore, third Weyl coefficients

computed from (B.3.1) and (B.3.2) are in agreement with Theorem 3.39.
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Classification of sesquilinear

forms: complementary material

C.1 The concepts of principal and subprincipal symbol

The concepts of principal and subprincipal symbol are widely used in modern analy-

sis, however they are traditionally employed for the description of (pseudo)differential

operators, see Chapters 2 and 3. In the main text of Chapter 4 we used these concepts

for the description of sesquilinear forms. We explain below the relation between the

two seemingly different versions of, essentially, the same objects.

Let L(1/2) be a first order linear differential operator acting onm-columns of half-

densities, i.e. spatially varying complex-valued quantities onM which under changes

of local coordinates transform as the square root of a density. In local coordinates

this operator reads

L(1/2) = −iEα(x)
∂

∂xα
+ F (x), (C.1.1)

where Eα(x) and F (x) are some m × m matrix-functions, compare with (4.2.2).

Here the superscript (1/2) indicates that we are dealing with an operator acting on

half-densities.

We define the principal, subprincipal and full symbols of the operator (C.1.1) as

L
(1/2)
prin (x, p) := Eα(x) pα , (C.1.2)

L
(1/2)
sub (x) := F (x) +

i

2

(
L

(1/2)
prin

)
xαpα

(x) = F (x) +
i

2
(Eα)xα(x) , (C.1.3)
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L
(1/2)
full (x, p) := L

(1/2)
prin (x, p) + L

(1/2)
sub (x) (C.1.4)

respectively. It is easy to see that the full symbol L(1/2)
full uniquely determines our

first order linear differential operator L(1/2).

The definition of the subprincipal symbol (C.1.3) originates from the classical

paper [52] of J.J. Duistermaat and L. Hörmander: see formula (5.2.8) in that paper.

Unlike [52], we work with matrix-valued symbols, but this does not affect the formal

definition of the subprincipal symbol. The correction term i
2

(
L

(1/2)
prin

)
xαpα

plays a

crucial role in formula (C.1.3): its presence ensures that the subprincipal symbol is

invariant under changes of local coordinates.

Our formulae (4.2.3)–(4.2.5) are analogues of the standard formulae (C.1.2)–

(C.1.4). The bold script in the former indicates that we are dealing with density-

valued quantities.

In order to establish the relation between symbols of sesquilinear forms and sym-

bols of operators, let us fix a particular positive density µ and introduce the inner

product

〈u, v〉 :=

∫
M
u∗v µdx (C.1.5)

on m-columns of scalar fields. Formulae (4.1.2), (4.2.2) and (C.1.5) define a linear

operator L.

The main result of this appendix is the following lemma.

Lemma C.1. Conditions

L = µ−1/2L(1/2)µ1/2 (C.1.6)

and

Sfull = µL
(1/2)
full (C.1.7)

are equivalent.

Proof. Formula (C.1.1) implies

µ−1/2L(1/2)µ1/2 = −iEα ∂

∂xα
+ F − i

2
Eα (lnµ)xα . (C.1.8)

Performing integration by parts, we rewrite formula (4.2.2) as

S(u, v) =

∫
M
u∗
[

1

µ

(
−iEα ∂

∂xα
+ F− i

2
(Eα)xα

)
v

]
µ dx ,
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which gives us the following explicit local representation of the operator L :

L =
1

µ

(
−iEα ∂

∂xα
+ F− i

2
(Eα)xα

)
. (C.1.9)

Substituting (C.1.9) and (C.1.8) into (C.1.6), we see that the latter reduces to the

pair of equations

Eα = µEα, (C.1.10)

F− i

2
(Eα)xα = µ

(
F − i

2
Eα (lnµ)xα

)
. (C.1.11)

Substituting (C.1.10) into (C.1.11) we rewrite the latter in equivalent form

F = µ

(
F +

i

2
(Eα)xα

)
. (C.1.12)

In view of (4.2.3)–(4.2.5) and (C.1.2)–(C.1.4) conditions (C.1.10) and (C.1.12) are

equivalent to (C.1.7).

As already pointed out in Section 4.9, in the most general setting of arbitrary

d (dimension of the manifold), arbitrary m (number of scalar fields) and arbitrary

sesquilinear form the introduction of an inner product of the form (C.1.5) does not

make much sense because this inner product is incompatible with general linear and

special linear gauge transformations. However, it makes sense in the special case

(4.8.5), (4.8.1) because the inner product (C.1.5) is compatible with unitary and

special unitary gauge transformations. And in this special case it is natural to take

µ = ρ , where ρ is the Riemannian density encoded within our sesquilinear form in

accordance with formulae (4.5.2) and (4.8.7).
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Appendix D

Lorentzian elasticity: notation and

complementary material

D.1 Notation and conventions

D.1.1 Exterior calculus

In this appendix M is a 4-manifold equipped with Lorentzian metric g and Levi-

Civita connection ∇.

It is well known that the metric g induces a canonical isomorphism between

the tangent bundle TM and the contangent bundle T ∗M , the so-called musical

isomorphism. We denote it by [ : TM → T ∗M and its inverse by ] : T ∗M → TM .

Given a scalar field f ∈ C∞(M), its exterior derivative df is defined as the

gradient. Given a 1-form A ∈ Ω1(M), its exterior derivative dA ∈ Ω2(M) is defined,

componentwise, as

(dA)αβ = ∂xαAβ − ∂xβAα .

Given a pair of rank k covariant antisymmetric tensors Q and T we define their

pointwise inner product as

〈Q,T 〉g :=
1

k!
Qα1...αk

Tβ1...βk g
α1β1 · · · gαkβk ,

and, accordingly,

‖Q‖2g := 〈Q,Q〉g .
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We define the L2 inner product

(Q,T )L2 :=

∫
〈Q,T 〉g

√
−det gµν dx .

Given U ∈ Ωk(M) and V ∈ Ωk−1(M) we define the action of the codifferential

δ : Ωk(M)→ Ωk−1(M) in accordance with

〈U,dV 〉 = 〈δU, V 〉.

In particular, when A ∈ Ω1(M) and F ∈ Ω2(M), we get in local coordinates

δA = −∇αAα,

(δF )α = ∇βFαβ.

For the sake of clarity, let us mention that the wedge product of 1-forms reads

(A ∧B)αβ = AαBβ −AβBα .

We define the action of the Hodge star on a rank k antisymmetric tensor as

(∗Q)µk+1...µ4 :=
1

k!

√
−det gαβ Q

µ1...µk εµ1...µ4 ,

where ε is the totally antisymmetric symbol, ε1234 := +1.

D.1.2 Spinors

In this Appendix as well as in Appendix D.1.3 we restrict ourselves to the special

case of Minkowski space M. We work with 2-component Weyl spinors as opposed

to 4-component Dirac spinors. We recall below the basic ideas and conventions,

referring the reader to [20, Section 18] and [28, Section 1.2] for further details.

In line with [20, 28] we treat spinors as holonomic objects. This approach sim-

plifies analysis in the case of flat space and is traditionally used in particle physics.

We adopt the following conventions.

• ‘Metric’ spinor:

εab = εȧḃ = εab = εȧḃ =

 0 1

−1 0

 .
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• ‘Covariant’, with respect to spinor indices, Pauli matrices:

σ1
ȧb :=

0 1

1 0

 , σ2
ȧb :=

0 −i

i 0

 , σ3
ȧb :=

1 0

0 −1

 , σ4
ȧb :=

1 0

0 1

 .

(D.1.1)

• ‘Contravariant’, with respect to spinor indices, Pauli matrices:

σ1ȧb =

 0 −1

−1 0

 , σ2ȧb =

0 −i

i 0

 , σ3ȧb =

−1 0

0 1

 , σ4ȧb =

1 0

0 1

 .

(D.1.2)

Here σαȧb = εȧċεbdσαċd.

Pauli matrices satisfy the identities

σαḃa σβḃc + σβḃa σαḃc = −2gαβδac , (D.1.3a)

σαȧb σ
βċb + σβȧb σ

αċb = −2gαβδȧ
ċ . (D.1.3b)

D.1.3 Spinor representation of 2-forms

Let F− and F+ be polarised complex 2-forms, see (5.11.3). Then F− is equivalent to

a trace-free undotted rank two spinor ζbc ,

(F−)αβ = −iσαȧb ζbc σβȧc , (D.1.4a)

and F+ is equivalent to a trace-free dotted rank two spinor θḃ
ċ ,

(F+)αβ = iσαḃa θḃ
ċ σβċa . (D.1.4b)

The identities (D.1.3a) and (D.1.3b) ensure that that the right-hand sides of (D.1.4a)

and (D.1.4b), respectively, are antisymmetric in α, β.

Fact D.1. The following are equivalent.

(i) detF− = 0 .

(ii) det ζ = 0 .

(iii) There exists a rank one spinor ξa such that ζbc = ξb ξd εdc .

Fact D.2. The following are equivalent.
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(i) detF+ = 0 .

(ii) det θ = 0 .

(iii) There exists a rank one spinor ηȧ such that θḃ
ċ = ηḃ ηḋ ε

ḋċ .

Facts D.1 and D.2 imply that a degenerate polarised 2-form is equivalent to the

square of a rank 1 spinor. The latter is defined uniquely up to sign.

The equivalence between (i) and (ii) in the above statements is a straightforward

consequence of (D.1.4a) and (D.1.4b), whereas (iii) is not so obvious. The relevant

arguments are presented in Appendix D.2.2.

D.2 Some results in linear algebra

D.2.1 Linear algebra involving a pair of quadratic forms

Working in an n-dimensional real vector space V , consider a pair of non-degenerate

symmetric bilinear forms, g : V ×V → R and h : V ×V → R. These uniquely define

an invertible linear operator L : V → V via the formula

h(u, v) = g(Lu, v), ∀u, v ∈ V.

The eigenvalue problem for the operator L

Lu = λu

can be equivalently reformulated in terms of bilinear forms

h(u, v) = λg(u, v), ∀v ∈ V.

The expression h− λg is called a linear pencil of symmetric bilinear forms.

It is well known [59, Section X.6] that if at least one of the forms is sign definite,

then L has real eigenvalues and is diagonalisable. In this case the associated pencil

is called regular.

If neither g nor h is sign definite, then the operator L may have complex eigen-

values and may not be diagonalisable. In particular, the strain operator

S := L− Id
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may be nilpotent. This is a fundamental difference with the regular (sign definite)

case where the strain operator cannot be nilpotent.

We now address the question what is the maximal nilpotency index of S.

Lemma D.3. Suppose that n ≥ 4 and that both g and h have Lorentzian signature

+ · · · +︸ ︷︷ ︸
n−1

− .

Then the nilpotency index of S is less than or equal to three.

Proof. Observe first that it is sufficient to prove the lemma in the complex setting,

where we can use [61, Theorem 8.4.1]. Examination of the latter shows that nilpo-

tency index strictly greater than four is not possible, whereas nilpotency index equal

to four is possible only if we have an invariant subspace in which our operator has

the structure [61, formula (8.4.19)]. But the matrix N from [61, formula (8.4.19)]

with λ = 0 has nilpotency index at most three.

Remark D.4. Closer examination shows that in our setting the structure [61, for-

mula (8.4.19)] cannot be realised because the latter describes an operator which is

Lorentz–normal but not Lorentz–symmetric. The only way the strain operator can

get nilpotency index three is when it has a Jordan block of the type [61, formula

(8.4.18)] with λ = r = 0. As a final observation, let us point out that in dimensions

n = 2 and n = 3 the maximal nilpotency indices two and three can actually be

attained.

D.2.2 Nilpotent operators in a 2D symplectic space

Lemma D.5. Let V be a 2-dimensional complex vector space equipped with a sym-

plectic form ω and let L : V → V be a linear operator. Then L is nilpotent if and

only if there exists a u ∈ V such that

Lv = uω(u, v), ∀v ∈ V. (D.2.1)

Proof. An operator of the form (D.2.1) is clearly nilpotent. So we only need to prove

the converse statement.

Let L be nilpotent. Choose a basis in V so that the symplectic form reads

ω(v, w) = εrs v
rws, (D.2.2)
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where ε is the totally antisymmetric symbol, ε12 = +1. The linear operator L is

represented in this basis by the matrix

Lrs =

a b

c d

 . (D.2.3)

The nilpotency condition is equivalent to the trace and the determinant of L both

being zero. Hence, (D.2.3) can be rewritten as

Lrs =

√−bc b

c −
√
−bc

 (D.2.4)

with appropriate choice of complex square root. The matrix (D.2.4) can be factorised

as

Lrs =

 √
b

−
√
−c

(√b −√−c)
 0 1

−1 0

 , (D.2.5)

where the square roots are chosen in such a way that
√
b
√
−c =

√
−bc . Formulae

(D.2.5) and (D.2.2) give us (D.2.1) with

u =

 √
b

−
√
−c

 .

D.3 Differential geometric characterisation of screw groups

Let SG be one of the screw groups SG+
0 , SG−0 or SGm defined in Section 5.7. In

what follows, the (global) isomorphism TM 'M×M will be tacitly understood. In

particular, we will not distinguish between points of M and vectors in the tangent

fibres.

Direct inspection shows that for any P,Q ∈M there exists a unique ξ ∈ SG such

that ξ(P ) = Q. This allows us to define a map

Υ : TPM→ TQM ,

V 7→ ξ(P + V )−Q,

depending only on P and Q, which, in turn, determine ξ. The map Υ is linear and de-

fines a metric compatible affine connection with vanishing curvature and nonvanish-
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ing torsion. Such connections are known as Weitzenböck connections. Weitzenböck

connections on orientable Riemannian 3-manifolds were discussed in Appendix B.1.

We define the covariant derivative of a vector field as

∂vα

∂xβ
+ Υα

βγv
γ

and torsion in accordance with (B.1.3). It is known [92, formula (7.34)] that a metric

compatible affine connection is determined by metric and torsion, so torsion provides

a convenient tensorial description of a connection on the Minkowsi space.

Torsion has three irreducible pieces [87, formulae (4.1)–(4.4)]

T = T ax + T vec + T ten,

T ax
αβγ =

1

3
(Tαβγ + Tβγα + Tγαβ), (D.3.1)

T vec
αβγ =

1

3
(gαβT

µ
µγ − gαγTµµβ), (D.3.2)

labelled by the adjectives axial, vector and tensor respectively. We remind the reader

that we raise and lower tensor indices using the metric g.

Lemma D.6. For all three groups SG+
0 , SG−0 and SGm torsion is constant and

vector torsion is zero. The corresponding formulae for axial torsion read

(∗T ax
± )α = ∓ 2

3
( 0 , 0 , 1 , 1 ) ,

(∗T ax
m )α = − 4

3
( 0 , 0 , m , 0 ) .

Proof. Straightforward calculations give the following expressions for the nonzero

connection coefficients.

• For SG±0

Γ1
32 = ±1, Γ2

31 = ∓1,

Γ1
42 = ±1, Γ2

41 = ∓1.

• For SGm

Γ1
42 = 2m, Γ2

41 = −2m.

It remains only to substitute the above expressions into formulae (B.1.3), (D.3.1)

and(D.3.2).
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D.4 Explicit formulae for our field equations

In this Appendix we sketch out an algorithm for the derivation of the explicit form

of the differential operator E(φ) introduced in Section 5.3. We will do this for the

special case of a Lagrangian of the form (5.2.9) from Example 5.3 and in Minkowski

space. Throughout this appendix we shall use the notation ∂α = ∂/∂xα.

Substituting (5.2.9) into (5.2.16) we get

L(e2, e3, e4) = α(e2 + e3 + e4)2 + β e2 . (D.4.1)

To begin with, let us rewrite the scalars e3 and e4 in terms of tr(Sk), k = 1, 2, 3, 4:

e3 =
1

6

[
(trS)3 − 3(trS) tr(S2) + 2 tr(S3)

]
, (D.4.2a)

e4 =
1

24

[
(trS)4 − 6(trS)2 tr(S2) + 3(tr(S2))2 + 8(trS) tr(S3)− 6 tr(S4)

]
.

(D.4.2b)

Substituting (5.2.5b), (D.4.2a) and (D.4.2b) into (D.4.1) we get a representation

of our Lagrangian L as a linear combination of terms

k∏
j=1

Sαjβj , (D.4.3)

where {β1, . . . , βk} is some permutation of {α1, . . . , αk}. The number k takes values

from two to eight. In what follows we write down the contribution to E(φ) coming

from a single term (D.4.3).

The explicit formula for the strain tensor reads

Sαβ = ∂βA
α + ∂αAβ + (∂αAγ)(∂βA

γ).

Variation Aα(x) 7→ Aα(x) + ∆Aα(x) gives us

∆Sαβ = ∂β(∆Aα) + ∂α(∆Aβ) + (∂α(∆Aγ))(∂βA
γ) + (∂αAγ)(∂β(∆Aγ))

= δαγ ∂β(∆Aγ) + gβγ ∂
α(∆Aγ) + (∂α(∆Aγ))(∂βAγ) + (∂αAγ)(∂β(∆Aγ)).

We define the linear differential operator

Dα
βγ := [gβγ + (∂βAγ)] ∂α + [δαγ + (∂αAγ)] ∂β + 2(∂α∂βAγ).
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The contribution to E(φ) coming from (D.4.3) reads

−
k∑
l=1

Dαl
βlγ

k∏
j=1
j 6=l

Sαjβj .

The above algorithm can be easily generalised to spacetimes with x-dependent

metric and to Lagrangians of general form.
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