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Figure 1: Flow of data from capture to comparison.

ABSTRACT

Free-Viewpoint Video (FVV) is a type of volumetric content in
which an animated, video-textured 3D mesh of a character per-
formance is constructed using data from an array of cameras.
Previous work has demonstrated excellent results when creating
motion graphs from FVV content, but these techniques are often
prohibitively expensive in practice. We propose the use of skele-
tons to identify cut points between FVV clips, allowing a minimal
set of frames to be processed into a 3D mesh. While our method
performed with 2.8% poorer accuracy than the state-of-the-art for
our synthetic dataset, cost and processing time requirements are
dramatically reduced.

Index Terms: [Computing methodologies]—Shape analysis;
Virtual reality; Motion capture; Motion processing

1 INTRODUCTION AND RELATED WORK

In Free-Viewpoint Video (FVV), a number of inward-facing cam-
eras are arranged around a central character performance [5].
Data from these camera views is processed to produce an ani-
mated, video-textured 3D mesh, which can then be integrated
into a virtual 3D scene. In our work, we rely on a reconstruction
technique similar to that described by Collet et al. in [3].

FVV is an increasingly popular method for producing immer-
sive content. While FVV has many advantages as a content pro-
duction tool (e.g. realistic secondary motions such as clothes) it
also has issues. Two of the main issues are the cost and processing
time. Aside from the standard costs of media production, FVV re-
quires an expensive data-processing step to turn the high volume
of 2D video data into an animated 3D mesh. This cost results from
the time required by a server farm to process the 3D model.

One mechanism to reduce production costs is through content
reuse. For example, processing a shorter duration of FVV content
into a 3D mesh, and then looping it in such a way as to disguise the
loop point. An example of this is a walk cycle, where the periodic
movement can allow a shorter video to be looped. This technique
can be considered analogous to Video Textures [8].

Another issue with FVV is that the content is fixed at the point
of filming, and therefore lacks the interactivity that rigged avatar
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performances can provide. One mechanism to combat this issue
is through the use of motion graphs [6]. In motion graphs, clips
of captured motion (e.g. walking, jumping, etc) are cut together,
allowing the sequence of motion elements to be varied at runtime.

Both motion graphs and loops have been explored in FVV con-
tent before with excellent results [2,7]. To create loops and motion
graphs, good points must be identified in which the cut can be
disguised. This requires that the character performance exhibit
the same shape and dynamics at these moments. A large amount
of research has been done to explore how good match points can
be identified from the 3D mesh (e.g. [4]).

We argue that comparisons performed on the 3D mesh happen
too late in the pipeline, as processing these 3D meshes has a high
cost. Performing comparisons on the 3D meshes requires that all
frames be processed before comparison, with large numbers of
meshes being discarded after comparisons indicate they are not
suitable due to poor quality match points.

To counteract this wasteful process, match points must be iden-
tified before 3D reconstruction. Here, we propose identifying
match points by comparing 3D skeletons derived from multi-view
RGB camera data. Using receiver operating characteristic (ROC)
curves, we evaluate a skeleton-based technique for identifying
match points in a synthetic dataset. Additionally, we demonstrate
our technique works on real-world data. Based on this analysis, we
propose that skeletons represent a viable mechanism for reducing
production costs and processing time.

2 SKELETON-BASED MATCH POINT DETECTOR

The overall structure of our Skeleton-Based Match Point Detector
(SBMPD) system is shown in Figure 1. We consider a volumetric
capture studio with n calibrated RGB cameras (in our case, n =
53). For each of these camera views, we identify the 2D skeleton
using OpenPose [1]. We discard any joint positions that have been
identified by OpenPose with low confidence. Using the intrinsic
and extrinsic calibration matrices for each camera, a 2D joint
position becomes a ray from each camera. The 3D position of a
joint is taken to be the point with the minimum sum of squared
distances to all rays for that joint. The output of this process is the
25 joints of a 3D skeleton per frame.

3D skeletons are then compared to assess frame similarity. The
3D skeletons are first aligned. To ensure actions remain on the
ground plane, rotations are only calculated around the “up” vec-
tor. Each entry in a 3D skeleton similarity matrix Sg(i, j) is taken
to be the summed Euclidean distance of the joint locations be-
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Figure 2: ROC curve showing SBMPD performance for self-similarities
against TGT (temporal window = 2).

tween the 3D skeletons for frames i and j. The similarity matrix
is then temporally filtered to include dynamics as in [8]. In this
technique, static frame comparisons over a temporal window are
incorporated into a frame’s measure. In practice, this is achieved
by applying a convolution to S [8].

3 EVALUATION METHODOLOGY

We evaluated the accuracy of our SBMPD when identifying match
points between frames using ROC curves on synthetic data, as
in [4]. This synthetic data was constructed by applying six motion
capture performances to a rigged avatar. To ensure the synthetic
data approximates the inputs for our skeleton-based technique,
we re-created the layout of the physical RGB cameras of the vol-
umetric capture rig in Blender version 2.79b. From the synthetic
data, we generated a temporal ground truth (TGT) as in [4]. These
ground truth distances between frames were then normalized into
the range [0,1]. As in [4], we then use a threshold value of 0.3 to
create a ground-truth binary classification matrix.

We also perform an evaluation of our SBMPD on real data. As
the topology of the 3D mesh in our FVV data is not fixed so a
TGT cannot be established, ROC curve analysis is not appropriate.
Instead, we analysed visually how well our skeleton-based method
works through heatmaps and examples of identified match points.

4 RESULTS

An ROC curve showing the SBMPD self-similarity performance
against the TGT binary classification matrix is shown in Figure 2.
The standard way to report the accuracy of a discriminator mod-
elled using ROC curves is the area under the curve (AUC), where
an AUC of 1 indicates ideal discrimination for a dataset. The ROC
curve shown in Figure 2 shows an AUC of 0.988 for self-similarity
comparisons. We achieved an AUC of 0.972 across all pairwise
comparisons.

We also tested our SBMPD on real data. We take as an example
the creation a motion sequence, in which we want the character
to start walking from a standing position. To achieve this, we will
need to identify a match point between a “start walking” clip and
a “walking” clip. Figure 3 shows normalized SBMPD scores for
transitions between frames in a “start walking” clip and a “walk-
ing” clip. As can be seen in Figure 3, no suitable transitions are
identified for earlier frames in the “start walking” clip. This is cor-
rect — as the actor was standing still before they started walking,
there would be no good cut into a walking clip from these frames.
Later in the “start walking” clip, suitable match points are found
in the “walking” clip at frames where the shape and dynamics of
the motions would allow a reasonable cut. In our accompanying
video, we show a cut identified by our SBMPD as being suitable.
We also show an entire sequence composed of “start”, “walk” and
“stop” motion clips in our accompanying video.
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Figure 3: “Start walking” against “walking”. Left: heatmap showing
normalized SBMPD score between frames (a darker colour means
frames are more similar). Right: The heatmap thresholded at 0.3.

5 COMPARISON AGAINST THE STATE-OF-THE-ART

The state-of-the-art in terms of match point identification could
be considered to be techniques that employ temporally consistent
meshes, as these allow the trivial comparison of shapes using
the Euclidean distance between corresponding vertices (e.g. [2]).
This is analogous to the way our ground truth was created for our
synthetic dataset. In this way, temporally consistent meshes could
be considered to produce ideal identification of match points, with
an AUC of 1, verses our AUC of 0.972 across all shots. Therefore
our SBMPD could be considered to perform with 2.8% poorer
accuracy than the state-of-the-art for our synthetic dataset.

This decrease in accuracy comes with substantial improve-
ments in cost and time requirements, however. The mesh process-
ing cost for state-of-the-art mesh comparison techniques increase
linearly with the amount of content being compared, while mesh
processing costs for our SBMPD system increase linearly with the
amount of content required for the final output. In a real-world
example, this represented a 6.5-fold cost and processing time
reduction, although this reduction can be substantially more de-
pending on the amount of content captured and the final output
duration.
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