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Abstract 
 

The landscape of biological research and innovation has been transformed 

with the invention of genome sequencing methods and corresponding 

assembly and annotation algorithms. Yet many assemblies and annotations 

remain fragmented limiting applications which require more complete and 

reliable datasets. 

  

The goal of this thesis was to establish methods to detect fragmentation in 

genome and transcriptome annotation by exploiting available data from 

related species in a phylogenetic framework. 

  

Prior to applying core methods to detect fragmentation, it is important to 

establish informative sequences from related species, i.e. putative homologs. 

This typically requires all-against-all protein-protein sequence comparison 

within and across species in the dataset. To speed up this process, we 

developed an approach which attempts to incorporate transitive property of 

homology and considers putative homology on putative protein 

subsequences. 

  

Putative homologs can then be used as input for our phylogenetic heuristics 

to detect fragments of the same gene model in the genome assembly of 

interest. One heuristic collapses internal tree branches with low SH-like 

branch support, the other exploits a likelihood ratio value. The heuristics 

found 1,221 pairs of distinct gene models in the challenging putative bread 

wheat genome which we believe are actually fragments of the same gene 

model. 

 

We also employed the heuristics on the putative genome of wild olive and 

identified 102 pairs of distinct gene models, potentially fragments of the 

same model. Importantly, we provide guidelines on assessing predictions 

based on the data at hand. 
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Finally, we started exploring behaviour of the heuristics on the transcript 

models constructed on the cassava transcriptome assembly. Due to time 

constraints, the outcomes of the study are limited but hopefully provide 

sound guidelines for further work. 

  

The methods are not restricted to the plant kingdom and can already be used 

on any species in their current state. 
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Impact statement 
 

Genome and transcriptome sequencing have transformed biological 

research across all domains of life. Sequencing is often the first step, 

followed by: 1) assembling, the process of reconstructing typically unknown 

DNA or RNA sequences, and 2) annotation, the process of identifying the 

newly constructed sequences and possibly ascribing them function. Despite 

scientific and technological advances over the past decades, assembling 

remains a difficult task yielding fragmented assemblies which can also 

contain misassembled sequences and uncorrected sequencing errors. 

Subsequently, the annotation pipeline, incapable of dealing with all assembly 

artefacts and imperfections, assigns gene models which actually represent 

only fragments of the true genes. This then affects downstream analyses 

which require complete and accurate datasets. 

 

The challenges of sequencing, assembling and annotation increase with the 

increase in complexity of the genome under study. The problems are 

particularly pronounced in plants, arising from their complex evolutionary 

histories. Yet, plant data is crucial for the agricultural and biotechnological 

innovations necessary to meet the ever-growing demands for food. 

 

Our work introduces innovative methodology to improve fragmented genome 

annotation in a phylogenetic setting. We developed two phylogenetic 

heuristics which detect gene models capturing different parts of the same 

gene, based on information from a reference set of gene models derived 

from putative evolutionarily-related genes across closely related species. We 

applied the methods to the challenging fragmented putative genome of bread 

wheat and to the only available genome assembly and annotation of wild 

olive to date. The predictions could be further investigated to determine the 

cause of fragmented annotation. In particular, if the fragmentation already 

existed in the corresponding assembly, the predictions could aid improving 

genome assemblies as well. 
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To allow for the application of methods on a researcher’s dataset of interest, 

we provide their source code which can be used on any species, including 

outside the plant kingdom (https://github.com/DessimozLab/esprit2). We also 

provide a step-by-step guide which can help to assess the methods’ 

behaviour on a dataset and the predictions they make without using any 

additional data, which will often be the case for a newly sequenced species. 

In addition, we provide suggestions for further research on adapting the 

heuristics to the transcriptome annotation.  

 

The heuristics require reference gene models of putative homologs from 

other species. Yet homology inference can be a computational bottleneck in 

a pipeline. We thus developed an algorithm which attempts to speed up the 

inference by considering transitive property of homology and subsequence-

level homology. Its source code is also publicly available. 

 

In the era of accumulating data, we hope that our approaches will aid 

scientific research and motivate further applications, refinements and method 

developments. With ongoing and future sequencing projects, the number of 

available annotated genome and transcriptome assemblies will continue to 

increase. Importantly, this will also reduce the average evolutionary distance 

between the represented species, and facilitate further applications and 

advancements in the field of comparative genomics. Hopefully, this work 

makes a contribution towards exploiting the full potential of sequence data. 
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Chapter 1: Introduction 

 

1.1 Genome and transcriptome assemblies 
 

The ability to include genomic (DNA) and transcriptomic (RNA) data into 

biological studies has accelerated research across all domains of life. It has 

been facilitated with the development of sequencing technologies and 

assembling approaches which attempt to reconstruct DNA or RNA 

sequences from the sequence fragments. Being faced with the difficult task 

of putting back the pieces into an often unknown and large jigsaw puzzle, 

assemblers cannot resolve all the issues and hence produce fragmented 

assemblies with various mistakes within the fragments. 

 

1.1.1 Sequencing 
 

In 1980, the Nobel Prize in Chemistry was awarded in part to Walter Gilbert 

and Frederick Sanger "for their contributions concerning the determination of 

base sequences in nucleic acids" (Kolata, 1980)—their independent 

groundbreaking work from the 1970s (Sanger and Coulson, 1975; Maxam 

and Gilbert, 1977; Sanger, Nicklen and Coulson, 1977) which opened the 

door to genome and transcriptome sequencing, and initiated the revolution in 

biological sciences. 

 

The Sanger method (Sanger, Nicklen and Coulson, 1977) prevailed in 

industry for decades. In their experiments, Sanger, Nicklen and Coulson 

managed to determine 15-200 nucleotides of a sequence, sometimes even 

up to 300 “with reasonable accuracy”. Over the years, the method was 

further improved leading to today’s automated high throughput Sanger 

sequencing methods which can provide  ~1,000 bp long reads with up to 

99.999% accuracy (Shendure and Ji, 2008).  
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The next-generation sequencing (NGS), high-throughput sequencing (HTS) 

or the second-generation sequencing technologies started another revolution 

as they made sequencing affordable to individual laboratories at a fraction of 

the Sanger sequencing costs (Shendure and Ji, 2008; Metzker, 2009; 

Goodwin, McPherson and McCombie, 2016). Its invention and 

commercialisation in mid 2000s caused the exponential increase of the 

number of available putative genomes, fostered population genomics 

studies, enriched the medical data and advanced biotechnological innovation 

(Shaffer, 2007; Zynda, 2014). Some of the drawbacks coming from shorter 

(35-700 bp) and more error-prone (~0.1-15%) reads can be overcome with 

higher sequencing depth, i.e. by sequencing target genome or target 

genomic region multiple times (e.g. 10x or even 10,000x) (Goodwin, 

McPherson and McCombie, 2016).  

 

The third-generation sequencing methods emerged around the year 2010 as 

a potential solution to the limitations of the NGS reads—reconstruction of 

challenging genomic regions and fragmentation in assemblies caused by 

short reads (McCarthy, 2010). They are able to provide longer reads but with 

relatively high error rates and higher costs than the NGS technologies 

(Sedlazeck et al., 2018; Wang et al., 2019). For instance, a 2015 review of 

the Pacific Biosciences (PacBio) sequencing platform reported a median 

read length of around 20 kbp but with error rates between 11 and 15% 

(Rhoads and Au, 2015). Publications document very long (ultra-long) reads 

generated by Oxford Nanopore Technologies (ONT) of up to ~1Mb and error 

rates of 12-38% (Besser et al., 2018; Jain et al., 2018; van Dijk et al., 2018)1. 

Consequently, computational and experimental approaches for error 

correction have been developed (Laehnemann, Borkhardt and McHardy, 

2016; van Dijk et al., 2018). Computational methods attempt to detect and 

trim, filter out or correct affected reads, usually relying on the information 

already contained in the dataset (e.g. per base quality scores, base 

frequencies) but they can also incorporate additional data such as short 

                                            
1 Some literature classifies nanopore-based sequencing as the fourth-generation 
sequencing technology, e.g. Feng et al. (2015), Bhadauria (2017). 
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reads2. A new type of reads—linked-reads—has been developed by 10X 

Genomics (Zheng et al., 2016). They consist of short Illumina reads linked 

together sparsely covering 100 kbp on average (Zheng et al., 2016; 

Sedlazeck et al., 2018). Short NGS reads ensure high read accuracy, the 

sparsity reduces the costs of sequencing and linking provides long-range 

information (Zheng et al., 2016). 

 

Having obtained a set of raw sequencing reads, the next step is a genome or 

transcriptome assembly.  

 

1.1.2 Assembling 
 

Starting with sequencing reads, there are two main types of sequence 

reconstruction: genome assembly and transcriptome assembly. The aim of 

genome assembly is to reconstruct the putative genome sequence and 

obtain one gapless sequence per chromosome representing all genes and 

intergenic regions (Baker, 2012). Transcriptome assembly attempts to 

capture all expressed transcripts and their isoforms represented by the reads 

(Martin and Wang, 2011)3. A high-quality genome assembly aids studying 

genome structure, gene function, evolution of genes and species, 

discovering genetic variation and associated biological traits within and 

across species (Hunt et al., 2014; Chaisson, Wilson and Eichler, 2015; 

Muggli et al., 2015; Meltz Steinberg et al., 2017). While a genome assembly 

provides a static picture of a genome, transcriptome assembly captures what 

is going on in a certain cell (tissue or organism) under certain conditions at a 

certain developmental stage (Wang, Gerstein and Snyder, 2009; Manzoni et 

al., 2018). Furthermore, sequencing and assembling a transcriptome is 

typically less complex and cheaper than it is for a genome (Góngora-Castillo 

and Buell, 2013). Thus, in the absence of a (high-quality) genome assembly, 
                                            
2 An extensive list of error correction tools as well as those implementing this task 
as one of the steps in a more complex pipeline can be found in, e.g. Laehnemann, 
Borkhardt and McHardy, 2016. 
3 A historical overview of the term “gene” (coupled with key findings on gene 
transcription which had an effect on the definition of a gene) can be found in, e.g. 
Gerstein et al. (2007) and Portin and Wilkins (2017). 
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researchers often opt for a transcriptome assembly if it provides adequate 

information for their purposes (Góngora-Castillo and Buell, 2013). A 

transcriptome assembly can also reveal previously unknown genes and 

improve existing genome annotation (Lu, Zeng and Shi, 2013)4. 

 

There are three main differences between genome and transcriptome reads 

which affect their assembly (Martin and Wang, 2011). First, higher 

sequencing depth reveals repetitive regions in a genome whereas it indicates 

abundance in transcriptomes. Second, in genome sequencing projects, both 

strands are sequenced while that may not be the case with transcriptomes. 

Third, isoforms of the same gene which share exons pose difficulties in 

transcriptome assemblies. However, both genome and transcriptome 

assembly exploit the same strategies with modifications depending on 

sequencing technology and peculiarities of the input data. In fact, numerous 

assembly tools were initially developed for genomic data and later extended 

for transcriptome input.  

 

There are also differences between reads obtained by different sequencing 

technologies, such as read lengths and sequencing error rates (see section 

1.1.1), which have to be accommodated by assemblers and assembly 

pipelines. In the rest of the section, we describe assembling the second-

generation sequencing reads and briefly refer to the third-generation reads 

assembly. Conceptually, the assembly process is the same regardless of the 

technology: reads are extended to contigs, and in the case of the genome 

assemblies contigs are further ordered, oriented and linked into scaffolds 

which are ordered and linked into putative chromosomes.  

 

For a newly sequenced species, the assembly process starts with identifying 

gapless overlapping reads and forming contiguous sequences—contigs 

(Baker, 2012). The existing algorithms are referred to as de novo algorithms, 

and typically fall into one of three categories: the greedy approach, the 

overlap layout consensus approach and the de Bruijn graph approach. More 

                                            
4 More about genome and transcriptome annotation in section 1.2 
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details on the approaches and tools can be found in, e.g. Zhou et al. (2002), 

Pop (2009), Li et al. (2012), Bradnam et al. (2013), Nagarajan and Pop 

(2013), Wang and Gribskov (2017), Voshall and Moriyama (2018). 

Regardless of the approach, extending sequences based on overlap is not 

trivial.  

 

If the assembly of sequenced species or very closely related species is 

available, reads can be assembled using a reference-based assembly (Lee 

and Tang, 2012). By mapping the reads to the reference first and then 

assembling them, contamination and sequencing artefacts are easier to 

detect as they will unlikely align to the reference. A genome assembly can 

also be used as a reference in the process of transcriptome assembly 

(Voshall and Moriyama, 2018). If a genome assembly is not sufficiently 

similar, a putative proteome can serve the same purpose. Examples of tools 

employed in reference-based assembling can be found in, e.g. 

Schneeberger et al. (2011), Steijger et al. (2013), Voshall and Moriyama 

(2018). 

 

A reference-based approach can be combined with a de novo approach 

(Sohn and Nam, 2016). Following a reference-based assembly, contigs can 

be assembled with unmapped reads using a de novo algorithm. De novo 

assembly can also be computed for each loci separately taking the 

advantage of parallel computing. If the available reference assembly is of low 

quality or from a closely related species, the first step can be to do de novo 

assembly followed by mapping resulting contigs and unassembled reads to 

the reference assembly in order to join contigs and fill in the gaps between 

them (Silva et al., 2013). This way the dependence on the reference 

assembly is weaker and errors in the reference may not propagate to the 

target assembly. Furthermore, novel and diverged genes can be assembled 

de novo. This is particularly important to transcriptome data for novel and 

trans-spliced transcripts, as well as for transcripts missing in the genome 

assembly. Less conserved non-coding regions will also benefit from de novo 

assembling.  
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In genome assembly projects, contig assembly is typically followed by linking 

contigs into scaffolds (Hunt et al., 2014; Ghurye et al., 2017). The ultimate 

goal of scaffolding is one sequence per chromosome which might contain 

gaps of correctly estimated lengths. Some contig assemblers already 

incorporate a scaffolding module. However, scaffolding is usually performed 

as a separate step of the assembly pipeline and uses complementary 

information derived from multiple sequencing technologies or experiments to 

improve the contiguity of the assembly. Scaffolders typically incorporate 

paired-end reads and mate pair libraries, and information available from the 

sequencing experiment such as ordering, orientation and the expected 

distance between the reads. In addition, RNA-seq data, long reads, 

chromatin interaction datasets and optical mapping can be employed for 

scaffolding or even placing scaffolds within chromosomes (Mortazavi et al., 

2010; Burton et al., 2013; Dong et al., 2013; Rice and Green, 2019). This 

kind of linearisation of contigs into scaffolds is not applicable to transcriptome 

assemblies due to multiple transcript isoforms being expressed by a single 

gene (Xie et al., 2014). Extensive evaluations of scaffolding tools can be 

found in, e.g. Hunt et al. (2014), Mandric, Knyazev and Zelikovsky (2018). 

 

Once the contigs are ordered and oriented into scaffolds, it is easier to 

reconstruct the sequences in the gaps, if desired. This process is often called 

gap filling, gap closing or genome finishing (Boetzer and Pirovano, 2012; 

Paulino et al., 2015; Ghurye and Pop, 2019; Rice and Green, 2019). Gaps 

can be filled by identifying and assembling initial sequencing reads, 

resequencing the target regions or using additional reads from a different 

technology (Kremer, McBride and Pinto, 2017; Ghurye and Pop, 2019). An 

assembly built by combining sequencing data from different technologies is 

often referred to as hybrid assembly (Utturkar et al., 2014; De Maio et al., 

2019).  

 

Assembling third-generation sequencing reads requires algorithms capable 

of dealing with long read lengths and high error rates (Sedlazeck et al., 

2018). Typically, the assembling process starts with read error correction 

either using NGS reads (for low long-read coverage, i.e. < 30x) or based on 
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self-correction, i.e. exploiting the alignment of long reads to themselves 

which tends to be more successful but also more expensive as it requires 

higher levels of coverage (Sedlazeck et al., 2018; Jung et al., 2019). 

Corrected reads are then assembled into contigs with algorithms 

accommodating long reads and tolerating remaining errors within them. In 

the following step—contig consensus polishing—errors within contigs are 

corrected using paired-end or mate pair NGS reads (limited to repetitive 

sequences but generally leads to higher accuracy) or the reads used for 

assembly (Sedlazeck et al., 2018; Jung et al., 2019). Despite high error rates 

in the reads, the estimated assembly error rates can be lower than 1% 

(Sedlazeck et al., 2018). Genome assembling then continues with 

scaffolding. The best results have been reported with employing BioNano 

Genomics optical mapping, Hi-C data and 10X Genomics linked-reads 

(Sedlazeck et al., 2018). That type of data can also help ordering and linking 

scaffolds into putative chromosomes (Jung et al., 2019). Additional long 

reads and linked-reads can help gap filling (Sedlazeck et al., 2018; Jung et 

al., 2019). Sedlazeck et al., 2018, Jung et al., 2019 and Wee et al., 2019 

also provide extensive lists of tools for long-read data. 

 

Regardless of the sequencing technology, dealing with sequencing errors—

identifying, correcting or even dismissing low-quality reads—before and/or 

during both genome and transcriptome assembly is of high importance 

(Bokulich et al., 2013; Edgar and Flyvbjerg, 2015). If not treated 

appropriately, they can be detrimental. Some assemblers have been 

developed jointly with a sequencing technology which optimises treating 

peculiarities arising from the sequencing and, vice versa, which help optimise 

the sequencing experiment to obtain good input data for the assembler 

(Fryslie, no date; Butler et al., 2008). 

 
 

It is worth mentioning that a whole genome or transcriptome assembly 

process, no matter the approach chosen, requires a non-negligible amount of 

computational resources. Assemblers typically heavily exploit efficient data 

structures and rely on various optimisation algorithms to reduce memory 
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consumption and break the big problem into smaller problems which can be 

computed in parallel (Ocaña and de Oliveira, 2015). Yet, the large amounts 

of input sequencing data and complexity of the problem require memory and 

time which often can be satisfied only on high-performance computing 

clusters. 

 

1.1.3 Assembling challenges 
 

As indicated in the previous section, building an assembly from a set of raw 

reads is challenging. A typical assembly contains fully and partially 

assembled sequences, with or without assembling errors within them. It is a 

consequence of biological complexities deriving the data, imperfect 

sequencing technologies and assembly heuristics attempting to deal with the 

data (Martin and Wang, 2011). In this section, we provide a brief overview of 

the most frequent de novo genome and transcriptome assembling 

challenges and the resulting artifacts. However, reference-based assembling 

is also prone to errors due to fragmentation and mistakes in the reference 

sequence(s) and due to true biological differences between the reference 

assembly and the one being assembled, thus leading to the same types of 

artifacts. If not detected and corrected, misassemblies lead to 

misannotations5 and adversely affect downstream analyses (Kremer, 

McBride and Pinto, 2017).   

 

The major challenge for genome assemblers lies in repetitive regions—highly 

similar or identical sequences present at different locations in the genome 

(Treangen and Salzberg, 2011; Meltz Steinberg et al., 2017). Typically, 

repetitive regions make up the majority of eukaryotic genomes (Biscotti, 

Olmo and Heslop-Harrison, 2015), and in plants can take up even more than 

80% of the genome—as indicated in maize and wheat analyses (Schnable et 

al., 2009; International Wheat Genome Sequencing Consortium (IWGSC), 

2014). Even bacterial genomes can consist of almost 40% repeats (Cho et 

al., 2007).  

                                            
5 More about genome and transcriptome annotation in section 1.2 
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The problem of assembling repeats is particularly pronounced for reads 

coming from second-generation sequencers as their short length does not 

span the whole repetitive region (Treangen and Salzberg, 2011). Typical de 

novo misassemblies caused by repeats include fragmentation of repetitive 

regions, rearrangements (Fig. 1.1b), inversions (Fig. 1.1c), collapsing 

tandem repeats (Fig. 1.1e), collapsing interspersed repeats and repeat 

expansions (Fig. 1.1f) (Phillippy, Schatz and Pop, 2008; Treangen and 

Salzberg, 2011). Furthermore, repeat-flanking regions often get 

misassembled, too, or cannot be assembled into the same contig with the 

neighbouring repeat (Meltz Steinberg et al., 2017). Collapsing repeats 

reduces both the size and complexity of a genome assembly while 

fragmentation and expansion increase. Orientation of mate pair reads and 

their insert size length can be beneficial for detecting and correcting 

misassemblies as illustrated in Figure 1.1a-c (Treangen and Salzberg, 2011; 

Li and Copley, 2013; Chaisson, Wilson and Eichler, 2015). In addition, read 

coverage analysis can indicate collapsing tandem repeats and repeat 

expansion (Fig. 1.1d-f). Longer third-generation reads can also help to obtain 

full-length repeats, especially if the repeat length is shorter than the read 

length (Acuña-Amador et al., 2018; Sedlazeck et al., 2018). 
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Figure 1.1: Examples of misassemblies caused by repetitive sequences 
(reproduced from: Muggli et al. (2015)6). 

Boxes A and C represent non-repetitive regions and their orientations while 

R’s depicts oriented identical repetitive regions. Arrows represent 

sequencing reads. Mate pair reads with correct orientation and insert length 

are depicted in black, otherwise in blue. a) Correct assembly (with correctly 

mapped mate pair reads). b) Rearrangement. c) Inversion. d) Correct 

assembly (with mapped paired-end reads depicting coverage). e) Collapsed 

repeat (with mapped paired-end reads depicting coverage). f) Expanded 

repeat (with mapped paired-end reads depicting coverage). 

 

In genome sequencing, haplotypes of a diploid genome can be sequenced at 

the same time which poses difficulties in getting a single haploid-like 

assembly for highly polymorphic genomes7,8 (Snyder et al., 2015; Kyriakidou 

et al., 2018). The problem is even more challenging for polyploid organisms 

which have more than two homologous copies of each chromosome, yet are 

still being represented by a single sequence (Meltz Steinberg et al., 2017). 

                                            
6 Republished with permission of Oxford University Press (licence number 
4841820489507), from Martin D. Muggli, Simon J. Puglisi, Roy Ronen and Christina 
Boucher, Misassembly detection using paired-end sequence reads and optical 
mapping data, Bioinformatics, 2015, Volume 31, Issue 12, Page i82. 
7 This common practice of single-sequence representation per set of homologous 
chromosomes stems from the high similarity of chromosome copies (Meltz 
Steinberg et al., 2017). 
8 Some studies attempt to provide assemblies for each haplotype (e.g. Jones et al. 
(2004), Levy et al. (2007), Cao et al. (2015)). There are also tools for reconstruction 
of both haploid sequences from the input reads or assembly (e.g. Chin et al. (2016), 
Goltsman, Ho and Rokhsar (2017), Huang, Kang and Xu (2017), Koren et al. 
(2018)). 
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For example, The 1000 Genomes Project Consortium (2015) identified more 

than 88 million of putative single nucleotide polymorphisms (SNPs), indels 

and structural variants in the human genome, and Rimbert et al. (2018) 

identified 3.3 million putative SNPs in wheat. 

 

Tools typically attempt to construct a mosaic of assembled sequences from 

homozygous regions and either consensus or randomly chosen sequences 

for heterozygous regions (Pryszcz and Gabaldón, 2016). However, 

assemblers usually collapse homozygous contigs9 into a single contig, yet 

being cautious of bona fide duplications within a genome, they typically 

assemble the two heterozygous contigs separately and leave them both in 

the genome assembly (Fig. 1.2a) (Pryszcz and Gabaldón, 2016). Then, the 

assembler is unable to unambiguously merge contigs corresponding to 

neighbouring homo- and heterozygous regions. Similarly, a scaffolder might 

have difficulties in linking homo- and heterozygous contigs into scaffolds 

(Hunt et al., 2014). Thus, the assembly remains fragmented with 

overestimated genome size. This is often referred to as allelic variation gaps 

(Chaisson, Wilson and Eichler, 2015). Consequently, shorter wrong gene 

models could get assigned to fragmented regions, synteny breaks, and 

putative paralogous genes and duplicated regions can get inferred. 

 

  

                                            
9 By homozygous contigs we mean contigs assembled from reads originating from 
homozygous genomic regions; analogous for heterozygous contigs. 
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Figure 1.2: Various examples of misassemblies (reproduced from: 
Denton et al. (2014)10). 

Boxes represent exons and straight lines between them introns. a) 

Erroneous sequence duplication. b) Sequence fragmentation. c) Collapsing 

sequences of paralogous genes. d) Missing gene sequence. 

 

To identify some of these erroneous gene and region duplications, similarity 

searches for potential pairs of heterozygous regions, read coverage patterns 

and mate pair reads from the same individual, as well as sequencing parents 

and other individuals of the same species, can be employed (Kelley and 

Salzberg, 2010; Zhang and Backström, 2014; Pryszcz and Gabaldón, 2016). 

If available, synteny information can help scaffolding (Ghurye and Pop, 

2019). Assemblies built from long reads are promising but can still contain 

sequencing errors interpreted as biological differences (Huang, Kang and 

Xu, 2017; Sedlazeck et al., 2018; Rice and Green, 2019). Various software 

tools try to utilise these concepts in an automatic fashion. While some 

assemblers are specifically designed for heterozygous genomes (Chin et al., 

2016; Edge, Bafna and Bansal, 2017; Kajitani et al., 2019), some genome 

assemblers implement a feature to deal with heterozygosity (Gnerre et al., 

2011; Safonova, Bankevich and Pevzner, 2014). There are also tools which 

attempt to reduce the redundancy in the already existing assemblies (Huang 

                                            
10 Used under the terms of Creative Commons Attribution International License 4.0 
(https://creativecommons.org/licenses/by/4.0). Capital letters labelling the panels in 
the original figure were converted into lower case. 
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et al., 2012; Pryszcz and Gabaldón, 2016). However, none of the tools fully 

resolve the issues arising from heterozygosity. 

 

Gene duplication can cause construction of unrealistic chimeric sequences, 

collapsing multiple sequences into one and sequence fragmentation (Denton 

et al., 2014; Chaisson, Wilson and Eichler, 2015; Indrischek et al., 2016).  

 

A frequent artifact is the creation of chimeric sequences where reads derived 

from paralogous genes are merged together (Vukašinović et al., 2014; 

Indrischek et al., 2016). Consequently, annotation pipelines assign them 

unrealistic gene models. Such mis-joins in the assembly could be detected 

by analysing alignments of the input reads to the assembly. More precisely, 

multiple reads sharing a breakpoint in the alignment indicate a potential 

misassembly (Phillippy, Schatz and Pop, 2008).  

 

Another common scenario is collapsing highly similar sequences derived 

from paralogous genes (Fig. 1.2c) which reduces the size and complexity of 

a putative genome (Denton et al., 2014). Such sequences could be detected 

by examining coverage patterns of aligned reads.  

 

Finally, sequences coming from paralogous genes might not get fully 

assembled due to assembler’s inability to unambiguously extend contigs 

(Alkan, Sajjadian and Eichler, 2011; Chaisson, Wilson and Eichler, 2015). 

Gene sequences remain fragmented over multiple contigs which can end up 

on the same or different scaffolds (Fig. 1.2b) (Alkan, Sajjadian and Eichler, 

2011). The subsequent annotation pipeline might then annotate each 

fragment as a separate gene model, thereby increasing the overall number 

of putative genes (Denton et al., 2014; Salzberg, 2019). If fragments are on 

contigs which are too short (typically < 100 bp or  < 200 bp), the contigs 

might get filtered out from the assembly (e.g. Zerbino and Birney (2008), 

Simpson et al. (2009), Simpson and Durbin (2012), Jackman et al. (2017)). 

Thus, the gene sequence might be partially or completely missing from the 

assembly and annotation (Fig. 1.2d). 
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Paired-end reads can help resolve some cases of fragmentation and extend 

contigs (Boetzer et al., 2011; Renaut et al., 2018). Putative full-length 

paralogous sequences can be reconstructed from long reads as well (Pollard 

et al., 2018; Vollger et al., 2019). Fragments of the same putative paralog 

may also lie on two interleaved scaffolds with non-overlapping contigs. Some 

annotation tools can recognise and correctly annotate such cases (Keller et 

al., 2008; Indrischek et al., 2016). 

 

Other examples of genome misassemblies include indels (insertions and 

deletions) and base errors—due to assembler’s heuristics or sequencing 

errors (especially for third-generation sequencers). Again, inspecting 

alignment patterns of input reads to the assembled contigs might be of help 

(Gurevich et al., 2013; Hunt et al., 2013; Zhu et al., 2015; Kremer, McBride 

and Pinto, 2017; Rice and Green, 2019).  

 

Some genomic regions might be challenging to sequence and assemble due 

to base pair composition (Baker, 2012; Benjamini and Speed, 2012; Ghurye 

and Pop, 2019). For example, AT- and GC-rich regions with reads affected 

by GC-content bias (due to PCR amplification in the sequencing protocol11) 

might lead to fragmented sequences, translocation errors and artificial 

tandem repeats if the bias is not reduced prior to assembling (Chen et al., 

2013). More complete and accurate assembly can be achieved with higher 

sequencing depth, yet high coverage also poses the risk of more assembly 

errors (Chen et al., 2013). 

 

Moving from contigs to a single gapless DNA sequence representation of a 

chromosome12 is quite challenging. An assembler typically stops extending 

contigs due to an inability to choose among multiple possible options, usually 

stemming from the repetitiveness of the region (Hunt et al., 2014; Ghurye 

and Pop, 2019; Rice and Green, 2019). Thus, the linking data used for 

                                            
11 There are also amplification-free sequencing protocols (Kozarewa et al., 2009) 
and technologies, e.g. Helicos and Pacific Biosciences (Sam et al., 2011). 
12 Depending on the study, it can be chromosome arm or, more generally, 
sequenced region. 
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scaffolding should be long enough to span the whole repeat (or difficult 

region) but short enough so as not to span multiple repeated sequences 

(difficult regions) (Ghurye and Pop, 2019). It should also allow for correct 

estimation of the distances between contigs. Usually additional data from 

multiple technologies is used for scaffolding. However, a scaffolder still might 

not be able to unambiguously and correctly place all contigs within a genome 

given the available evidence. Consequently, that affects gap filling, i.e. the 

reconstruction of sequences in the gaps between contigs, and the 

fragmentation remains. Some scaffolders do not even attempt to order and 

orient repeats (Koren, Treangen and Pop, 2011). The presence of 

heterozygosity in non-haploid organisms also complicates the goal of getting 

a single sequence assembly, as mentioned earlier. 

 

Evaluations of de novo genome assemblies indicate that a large number of 

gaps is found in regions affected by GC-content bias, repeats and allelic 

variation (Vezzi, Narzisi and Mishra, 2012; Denton et al., 2014; Meltz 

Steinberg et al., 2017). Common types of gaps include: i) sequence 

coverage gaps or depth of coverage gaps, ii) segmental duplication-

associated gaps, iii) satellite-associated gaps, iv) muted gaps, and v) allelic 

variation gaps mentioned earlier (Chaisson, Wilson and Eichler, 2015).  

 

Sequence coverage gaps happen when no reads are sampled from a region 

while depth of coverage gaps occur when the reads are sampled with low 

coverage due to sequencing challenges (e.g. sequencing AT- and GC-rich 

regions with NGS technologies) (Chaisson, Wilson and Eichler, 2015; Meltz 

Steinberg et al., 2017). It could be resolved by resequencing the problematic 

region (Meltz Steinberg et al., 2017).  

 

Segmental duplication-associated gaps are caused by the assembler’s 

inability to unambiguously resolve possible scenarios caused by highly 

similar sequences (>90% sequence identity) (Chaisson, Wilson and Eichler, 

2015). Hence, the assembler stops extending contigs and the region is 

represented by fragments flanked with gaps. The problem becomes even 

more challenging for structurally polymorphic segmental duplications in 
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diploid and polyploid organisms, increasing the probability of mistakenly 

merging reads and contigs derived from different alleles. Assembled 

sequences could be further extended with the help of additional long reads 

(Chaisson, Wilson and Eichler, 2015).  

 

Satellite-associated gaps are associated with short tandem repeats 

(microsatellites), variable number of tandem repeats (macrosatellites) and 

centromeric satellite repeats (Chaisson, Wilson and Eichler, 2015). Based on 

reads‘ overlap, i.e. “piling up” of reads, the assembler is not able to keep 

extending a contig. Read coverage analysis can be helpful in determining the 

copy number of repeats but sequencing reads longer than the repetitive 

region is essential for accurate assembly. Centromeric, acrocentric and 

telomeric chromosome areas are abundant with these repeats, and being so 

challenging to reconstruct, the areas are typically not part of the assembly 

(Chaisson, Wilson and Eichler, 2015).  

 

Muted gaps refer to ungapped sequences with a collapsed or truncated part 

typically present in many individuals (Chaisson, Wilson and Eichler, 2015). 

Beside assembly limitations in polymorphic and repetitive regions, muted 

gaps could arise from sequencing protocol. In particular, in clone-based 

sequencing, some DNA regions get deleted during cloning if they are toxic to 

bacteria (Chaisson, Wilson and Eichler, 2015; Meltz Steinberg et al., 2017). 

Long-read technologies have proven to be useful for gap closing regardless 

of whether it arises from sequencing or assembling challenges (Sedlazeck et 

al., 2018).  

 

Some genome assembly challenges are encountered in assembling 

transcriptomes as well. In transcriptome assemblies, repeated sequences 

are usually shorter and appear with lower copy-numbers, still posing 

analogous challenges but to a lesser degree (Lima et al., 2017; Hölzer and 

Marz, 2019). Some mistakes (e.g. collapsed tandem repeats, repeat 

expansion) cannot be detected and corrected in the same way as in the case 

of a genome assembly because here read coverage is related to the 

expression level and not copy-number (Martin and Wang, 2011). Reads 
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derived from transcripts expressed by different gene copies are present. If 

contigs corresponding to homologous transcripts are collapsed into a 

consensus contig, it can be detected by mapping input reads to the 

assembled contig and measuring nucleotide supports (Fig. 1.3, Family 

collapse) (Smith-Unna et al., 2016). Insertions will not be supported by the 

evidence from input reads (Fig. 1.3, Unsupported insertion) (Smith-Unna et 

al., 2016). Similarly, input reads will not support deletions within the contig 

introduced by an assembler and, more generally, incomplete transcript 

sequences (Fig. 1.3, Incompleteness) (Smith-Unna et al., 2016). Again, base 

errors are present due to uncorrected sequencing errors or have been 

introduced as a consequence of assembler’s heuristics (Martin and Wang, 

2011). Some of them can still be detected and corrected with the reads at 

hand. Chimera can be detected if the expression levels of corresponding 

transcripts differ (Fig. 1.3, Chimerism), otherwise it is hard to distinguish 

them from true trans-spliced transcripts (Martin and Wang, 2011). 

Rearrangements and inversions can be detected from the input paired-end 

reads or additional mate pair reads by inspecting the insert size length and 

orientation of the reads as in the case of genome assembly (Fig. 1.3, Local 

misassembly) (Smith-Unna et al., 2016). Like in genome assemblies, long-

read sequencing can be useful in resolving challenging regions (Sedlazeck 

et al., 2018). 
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Figure 1.3: Examples of transcript misassemblies and their 

identification with paired-end reads used for assembly (reproduced 
from: Smith-Unna et al. (2016)13). 

 

As already mentioned, genes are expressed at various levels which is 

reflected in the reads derived from corresponding RNA (Van Verk et al., 

2013). For example, some genes in plants can have more than five times 

higher expression level than others present in the same sample (Bräutigam 

et al., 2011; Gowik et al., 2011). Higher expression levels (which lead to 

higher sequencing coverage) are favourable for assembling more and longer 

transcript sequences (Zhao et al., 2011) while sequences of poorly 

expressed transcripts (having lower sequencing coverage) are more likely to 

remain fragmented (Babarinde, Li and Hutchins, 2019). Furthermore, 

transcripts with low levels of expression might be considered as assembly 

artifacts and removed from the assembly (Hölzer and Marz, 2019). For 

fragments present in the assembly, fragmentation due to low expression can 

                                            
13 Used under the terms of Creative Commons Attribution International License 4.0 
(https://creativecommons.org/licenses/by/4.0). No changes were made to the 
original figure. 
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be resolved with the help of read pairs mapping to two contigs (Fig. 1.3, 

Fragmentation) (Smith-Unna et al., 2016). Researchers should also be 

aware of low coverage caused by sequencing GC-rich regions using 

protocols employing PCR amplification (Martin and Wang, 2011).  

 

Particularly in eukaryotes, a gene can produce multiple transcript isoforms 

sharing exons (Fig. 1.4) and their reconstruction is one of the major 

transcriptome assembly challenges (Nilsen and Graveley, 2010; Steijger et 

al., 2013). Transcript isoforms arise from alternative transcription start sites, 

alternative splice sites and alternative polyadenylation sites (Proudfoot, 

Furger and Dye, 2002). Some studies suggest that more than 90% of human 

multiexonic genes express transcript isoforms (Pan et al., 2008; Wang et al., 

2008), and Reyes and Huber (2018) argue that the majority of them could be 

due to alternative transcription start sites and alternative polyadenylation 

sites. An assembled transcript isoform might contain extra or missing exons 

and include or exclude wrong unspliced introns. An assembler might co-

assemble sequences of distinct transcript isoforms, as well as produce 

fragmented isoform sequences or miss an isoform altogether (Góngora-

Castillo and Buell, 2013; Steijger et al., 2013).  
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Figure 1.4: Transcript isoforms (reproduced from: Costa et al. (2010)14). 
Constitutive exons are depicted by blue boxes, alternatively spliced exons by 

red and violet boxes, and alternative splicing events by dashed lines. a) 

Canonical exon skipping. b) Alternative 5′ splicing. c) Alternative 3′ splicing. 

d) Mutually exclusive splicing. e) Intra-exonic splice site (exon depicted in the 

middle is partially excluded from the transcript). f) Alternative transcription 

start site (new alternative 5′ exon). g) Alternative polyadenylation site (new 

alternative 3′ exon). h) Intron retention. 

 

As shown in Figure 1.5, read coverage (i.e. exon-level expression data) can 

help determining isoform sequences, yet due to heuristic solving of a 

complex combinatorial task, it might lead to missing putative isoforms. 

Information from paired reads and long-read sequencing help to obtain more 

complete putative isoform sequences and reveal more alternative putative 

isoforms of the same gene (Katz et al., 2010; Sharon et al., 2013; Bolisetty, 

Rajadinakaran and Graveley, 2015; Sedlazeck et al., 2018). Additional 

information on isoform-specific exon-exon junctions and reads spanning 

exon-exon junctions can also help reconstructing transcript isoforms of the 

same gene (Góngora-Castillo and Buell, 2013).  

                                            
14 Used under the terms of Creative Commons Attribution International License 3.0 
(https://creativecommons.org/licenses/by/3.0). Panel labelling was modified. 
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Figure 1.5: Missing transcript isoforms (reproduced from: Góngora-
Castillo and Buell (2013)15).  

Boxes E1, E2 and E3 depict exons while I1 and I2 depict introns. Red lines 

represent sequencing reads. a) A gene with three alternative isoforms. b) 

Read coverage misled to correctly assembling one transcript isoform 

sequence and missing two. 

 

In general, low-abundance transcripts, especially if derived by complex 

splicing patterns, are more challenging to assemble and thus, more likely to 

be missing from the assembly or represented by fragments (Babarinde, Li 

and Hutchins, 2019). 

 

As already mentioned in the previous section, the aim of transcriptome 

assembly is to reconstruct the sequences of all the expressed transcripts and 
                                            
15 Republished with permission of the Royal Society of Chemistry, from 
Bioinformatics challenges in de novo transcriptome assembly using short read 
sequences in the absence of a reference genome sequence, Elsa Góngora-Castillo 
and C. Robin Buell, volume 30, edition number 4, 2013; permission conveyed 
through Copyright Clearance Center, Inc. (licence ID 1039523-1). 
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their isoforms in a given sample (Martin and Wang, 2011). Thus, when 

dealing with non-haploid organisms, transcripts originating from both 

monoallelic and biallelic gene expression will be present in a sample, 

regardless of homo- or heterozygosity (Knight, 2004; Gimelbrant et al., 2007; 

Filipczyk et al., 2013; Eckersley-Maslin and Spector, 2014; Pinter et al., 

2015). High rates of heterozygosity pose difficulties for transcriptome 

assemblers as well (Voshall and Moriyama, 2018). In the case of biallelic 

gene expression, transcript sequences derived from heterozygous alleles 

can be fragmented over multiple contigs (Fig. 1.3, Fragmentation) while 

sequences from homozygous alleles tend to be collapsed due to their high 

similarity (Fig. 1.3, Family collapse) (Ruttink et al., 2013; Farrell et al., 2014; 

Ojeda et al., 2019). Again, longer reads from third-generation sequencing 

technologies can span whole transcript length, and thus reduce 

fragmentation and increase assembly completeness, assuming corrected 

sequencing errors (Ruttink et al., 2013; Ojeda et al., 2019).  

 

Some downstream applications, such as single-nucleotide polymorphism 

(SNP) discovery, require a reference transcriptome assembly such that each 

locus is represented by a single consensus allelic variant (Ruttink et al., 

2013; Stočes et al., 2016). However, it is quite challenging to differentiate 

between sequences derived from allelic variants of the same locus and 

sequences derived from paralogs at different loci (Dlugosch et al., 2013). If 

available, a proteome of closely related species can help to increase the 

contiguity and reduce the allelic redundancy of assembled transcripts 

(Ruttink et al., 2013; Koning-Boucoiran et al., 2015; Stočes et al., 2016). 

 

Being overcautious about duplicated genes, transcript isoforms and 

polymorphisms on the data with various gene expression levels and 

sequencing errors, an assembler might represent a transcript by multiple 

overlapping contigs (Fig. 1.3, Redundancy) (Liu et al., 2014). In that case, 

input reads map to multiple contigs but are all assigned to the best 

representative (e.g. the longest contig) (Smith-Unna et al., 2016). 
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Analysis of sequencing data revealed that gene expression, especially in 

eukaryotes, is much more complex than previously thought. For example, 

there are indications that 75–85% of the human genome is transcribed, of 

which only up to 2% is protein-coding (Djebali et al., 2012). Some types of 

non-coding RNA (ncRNA), like ribosomal RNA (rRNA), transfer RNA (tRNA), 

small nuclear RNA (snRNA) and small nucleolar RNA (snoRNA), have 

established roles (Jensen, Jacquier and Libri, 2013). There are also many 

ncRNA molecules, with currently unknown functions, which are often said to 

result from the process of pervasive transcription (Kapranov et al., 2007; 

Jacquier, 2009; Jensen, Jacquier and Libri, 2013; Wade and Grainger, 

2014). Their transcription typically starts at unexpected places, such as 

intragenic regions and (non-coding) antisense strand, their expression levels 

are usually very low and it is believed that the majority of them are likely 

“junk” (Berretta and Morillon, 2009; Lybecker, Bilusic and Raghavan, 2014; 

Palazzo and Lee, 2015; Neri et al., 2017).  

 

Assembling the landscape of various RNA molecules is further complicated 

by imperfections of sequencing protocols. Researchers are usually interested 

in assembling transcripts from protein-coding messenger RNA (mRNA) 

which typically makes 1-2% of the total cellular RNA (Conesa et al., 2016). 

Yet, usually the majority of cellular RNA, even more than 90%, is comprised 

of rRNA (Kukurba and Montgomery, 2015; Conesa et al., 2016). Thus, a 

sequencing protocol typically includes either an mRNA enrichment or rRNA 

depletion step to improve the detection of mRNA transcripts (Kukurba and 

Montgomery, 2015). Due to its convenience and low cost, Poly(A)+ 

enrichment is preferable when applicable (Hrdlickova, Toloue and Tian, 

2017). It can be used for RNA molecules containing poly(A) tail, such as 

most mRNAs and long non-coding RNAs (lncRNAs) in eukaryotes (Conesa 

et al., 2016; Hrdlickova, Toloue and Tian, 2017). However, samples of low 

quantity or low quality and samples of mRNA molecules without poly(A) tail 

require rRNA depletion (Kukurba and Montgomery, 2015; Conesa et al., 

2016; Pereira, Imada and Guedes, 2017).  
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Unfortunately, these RNA sequencing protocols come with artifacts. For 

example, some studies indicate that current methods (often but not 

necessary including poly(A)+ selection) yield reads from both precursor 

mRNA (pre-mRNA) and mRNA (Zhang et al., 2015). Assembling reads from 

pre-mRNA gives sequences of incompletely spliced isoforms (with retained 

introns)16 which lead to artificial gene models in transcriptome annotation. 

Sequencing some of these spurious isoforms can be avoided using 

polyribosomal RNA-seq technology (Zhang et al., 2015). An rRNA depletion 

protocol has been reported to lead to false models of alternatively spliced 

transcripts due to uneven sequencing coverage and skipped (i.e. 

unsequenced) exons (Sun et al., 2013).  

 

Importantly, despite poly(A)+ enrichment or rRNA depletion, some rRNA 

transcripts still get sequenced. Some of the corresponding reads can be 

detected by mapping the sequencing data to the databases of rRNA reads 

such as SILVA (Glöckner et al., 2017) or 5SrRNAdb of 5S rRNA sequences 

(Szymanski et al., 2016). There are also protocols for the enrichment of small 

ncRNAs, such as microRNA (miRNA), small interfering RNA (siRNA) and 

piwi-interacting RNA (piRNA) (Kukurba and Montgomery, 2015; Pereira, 

Imada and Guedes, 2017).  

 

Unlike DNA, RNA sequencing can be strand-specific which allows for better 

sequence reconstruction of antisense transcripts in comparison to non-

strand-specific sequencing protocols (Levin et al., 2010; Tsai et al., 2015). 

 

So far, we have discussed assembling challenges for second-generation 

sequencing reads. Long third-generation sequencing reads have been 

mentioned at multiple places as a potential remedy. However, the 

sequencing and computational methods for third-generation sequencing data 

are still limited in terms of producing gapless genome assemblies and 

                                            
16 Not all splice isoforms with introns are products of pre-mRNA. However, Zhang et 
al. (2015) speculate that retained introns from pre-mRNA could make up a large 
portion of introns in those RNA-seq datasets containing reads from pre-mRNA and 
mRNA. 
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complete transcriptome assemblies. For example, Koren et al. (2017) 

reported complete genome assemblies for a small genome of Escherichia 

coli (~4.65 Mbp). Getting and making use of the long reads is an emerging 

field and beyond the scope of this thesis. Thus, we only briefly cover 

challenges encountered in their assemblies. 

 

As indicated throughout this section, long sequencing reads can reduce 

assembling complexities arising from biological phenomena. However, these 

technologies suffer from a higher frequency of sequencing errors which can 

lead to erroneous and fragmented assemblies (Sedlazeck et al., 2018; Jung 

et al., 2019). Thanks to the existing error correction methods, e.g. PacBio 

reads derived from non-repetitive regions with ~20% sequencing errors can 

yield contigs with estimated accuracy of ≥99.9% but further improvements 

are still needed (Sedlazeck et al., 2018). Both Pacific Biosciences and 

Oxford Nanopore Technologies have difficulties in sequencing 

homopolymeric and other low-complexity regions (Sedlazeck et al., 2018; 

Jung et al., 2019). Sequencing protocols also require further investigation as 

they perhaps prevent full-length sequencing of some transcripts or their 

isoforms (Tardaguila et al., 2018; Wang et al., 2019).  

 

The advantage of the long reads is that they can cover longer repetitive 

regions, whole genes, transcripts, transcript isoforms or allelic variants 

(Mardis, 2017; Jin Lee and Pyo Hong, 2019). Longer reads also lead to 

longer contigs (Sedlazeck et al., 2018). Yet, even assemblers for long reads 

typically stop extending contigs due to repeats and ambiguities arising from 

heterozygosity, especially for polyploid species (Sedlazeck et al., 2018). 

Recent post-assembly tools attempt to reconstruct repetitive sequences in 

putative genomes based on discriminative statistical features among repeats 

(Bongartz, 2019) or based on high similarity of aligned error-corrected reads 

(Tischler-Höhle, 2019). Similarity of aligned error-corrected reads can also 

be used to resolve haplotype phasing (Tischler-Höhle, 2019). A more costly 

approach for a diploid genome is to sequence parental genomes using 

cheaper second generation approaches and employ them as a guide in 
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partitioning the offspring’s long reads into putative haplotypes prior to 

genome assembly (Koren et al., 2018). Reconstruction of heterozygous sites 

is further challenged by sequencing errors, and some approaches include 

error modeling and correction in order to infer biological differences more 

reliably (Beretta et al., 2018).  

 

The success of scaffolding is directly affected by the assembled contigs 

(their length, remaining mistakes, regions they span) and biases in the data 

used for scaffolding (e.g. lower coverage at fragile sites in BioNano 

Genomics maps, erroneous inversions in Hi-C-based approaches, limitations 

of Illumina sequencing such as GC-content bias in Hi-C and 10X Genomics 

data) (Sedlazeck et al., 2018). If gap filling is subsequently performed, it is 

important to be aware of the biological complexities and sequencing biases 

which potentially led to the observed fragmentation (Sedlazeck et al., 2018; 

Jung et al., 2019). 

 

1.1.4 Evaluation of assemblies 
 

Finally, it is easy to come up with a method for merging sequences but it is 

hard to design a pipeline that does it correctly (Salzberg and Yorke, 2005). 

Furthermore, it is very challenging to evaluate the accuracy and 

completeness of the assembly given that the true sequences are unknown. 

Various measures have been used but none of them are perfect (Earl et al., 

2011; Bradnam et al., 2013; O’Neil and Emrich, 2013). Thus, when 

evaluating an assembly, multiple measures should be considered and then 

interpreted in the light of their pros and cons. 

 

Widely used statistics include Nx and Lx—both depending only on the 

assembly and not on the true genome or transcriptome (Gurevich et al., 

2013; Bushmanova et al., 2016). Usually N50 and L50 are reported—the 

length of the shortest sequence in the assembly (contig or scaffold) such that 

sequences of that size or longer cover 50% of the assembly, and the number 

of sequences of that size or longer, respectively (Meltz Steinberg et al., 
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2017). NG50 might be more informative as it is defined as the length of the 

shortest sequence in the assembly such that sequences of that size or 

longer cover 50% of the estimated genome size (Meltz Steinberg et al., 

2017). Measures taking into account the dynamic nature of transcriptomes 

have also been developed. For transcriptome assemblies, e.g. ExN50 is 

calculated on the normalised expression data in the same way as N50 but 

considering only the top x% most highly expressed transcripts (Haas, 2015; 

Geniza and Jaiswal, 2017).  

 

In general, the size of the assembly and the number of annotated genes are 

often compared to the corresponding estimates which are challenging to 

obtain. For example, for each assembly they host, Ensembl database 

(Cunningham et al., 2019; Howe et al., 2020) provides information such as 

the number of basepairs, golden path length17, number of annotated coding 

and non-coding genes, number of annotated pseudogenes, number of 

annotated gene transcripts and number of annotated structural variants. 

These numbers can then be compared to the estimations from the literature.  

 

To assess the completeness of the assembly, approaches like BUSCO 

(Simão et al., 2015), CEGMA (Parra, Bradnam and Korf, 2007) and coreGF 

(Van Bel et al., 2012) check if the evolutionary conserved putative gene sets 

are present among the annotated genes which gives only a partial picture of 

the assembled and annotated gene space. Comparison to assemblies of 

closely related species or comparison between genome and transcriptome 

assembly can be powerful yet insufficient as they might not be sensitive 

enough to differentiate assembly errors from true biological differences or 

detect short-range rearrangements (Bradnam et al., 2013).  

 

The quality of the resulting assembly will depend on many parameters 

beside the biological complexity of the target species: from sequencing 

technology, experimental settings, read length, sequencing depth and other 

available data that can be used to improve assembly to the choice of 
                                            
17 Genome assembly size including estimated size of the gaps and excluding 
alternative sequences and pseudoautosomal regions. 
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assembly algorithms and other software tools, available computational 

resources, expertise on the species in question and the extent of manual 

curation. Depending on the study and available resources, some of the 

parameters can be optimised. Generally speaking, obtaining a high-quality 

assembly, especially for a non-model species, is still a herculean task, and 

the majority of sequencing projects reach the end by providing a “draft” 

genome and/or transcriptome assembly (Schliesky et al., 2012; Denton et al., 

2014; Richards, 2018; Voshall and Moriyama, 2018).  

 

1.2 Genome and transcriptome annotation 
 

To gain new scientific knowledge from a genome or transcriptome assembly, 

the assembly typically needs to undergo annotation. There are two types of 

annotation: structural and functional annotation. Structural annotation 

encompasses identification of putative genes, gene products, their exons, 

introns in case of a genome assembly or retained introns in case of a 

transcriptome assembly, untranslated regions and regulatory elements, while 

functional annotation seeks to characterise the functional role (if any) of 

these various components within broader molecular, cellular, organismal 

processes (Yandell and Ence, 2012; Bolger, Arsova and Usadel, 2018; 

Dominguez Del Angel et al., 2018). More specifically, the functional 

annotation comprises assignment of a wide range of biological information to 

the structurally annotated sequences such as name, domains, family, 

functional sites, biological functions, involvement in pathways and reactions, 

cellular location, etc., and usually exploits putative genes and gene products 

whose annotations have been obtained experimentally or in silico (Childs, 

2014). Non-coding sequences can also be annotated, typically using 

different approaches (Bolger et al., 2017).  

 

Structural annotation starts with a computation phase (Yandell and Ence, 

2012). The first step is the identification and masking of repeats (Yandell and 

Ence, 2012). The term “repeats” actually encompasses low-complexity 

sequences (e.g. homopolymeric runs of nucleotides) and transposable 
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elements (e.g. long interspersed nuclear elements (LINEs), short 

interspersed nuclear elements (SINEs)). They can be separately annotated 

with different tools (Smit, Hubley and Green, 2013-2015; Bergman and 

Quesneville, 2007). Then evidence from other sources is aligned to the 

assembly such as protein sequences, expressed sequence tags (ESTs) and 

RNA-seq data from the species being annotated and its closely related 

species (Brent, 2005). In the third step, tools for ab initio gene prediction are 

used (Jones, 2006). They typically rely on mathematical models and do not 

require external data as evidence. The models require training and 

parameter optimisation for the species under examination, which can be 

challenging. Sometimes a tool is trained on the sequences which will be then 

annotated (Lomsadze et al., 2005; Ter-Hovhannisyan et al., 2008). A tool 

can also come with a precomputed set of parameters (for example tuned on 

a publically available dataset of its authors’ choice) but that might not be 

optimal for the current study because even the genomes of closely related 

species can have different properties such as intron lengths, codon usage 

and GC content (similar for transcriptomes) (Korf, 2004). However, if enough 

training data is available, ab initio tools can reportedly identify nearly all 

genes and less successfully intron-exon structures (~60-70%) (Yandell and 

Ence, 2012). Identification of boundaries can be improved, for example by 

using evidence from ESTs and long-read data (Allen, Pertea and Salzberg, 

2004; Wei and Brent, 2006; Park et al., 2017; Xia et al., 2019). If additional 

information is used in the gene prediction process, the process is often called 

evidence-based or evidence-driven gene prediction (Liang et al., 2009; 

Müller et al., 2012; Yandell and Ence, 2012; Park et al., 2017). Most of the 

gene prediction tools actually do not predict genes—they predict only the 

most likely coding sequence (CDS) for each gene and do not report 

untranslated regions (UTRs) (Childs, 2014). Furthermore, not all the tools 

report alternatively spliced variants in transcriptome assemblies (Childs, 

2014). In both genome and transcriptome gene prediction, the tools might 

combine exons from multiple putative genes, skip exons or whole putative 

genes, as well as make false positive predictions (Childs, 2014).  
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The second phase of structural annotation is called annotation phase 

(Yandell and Ence, 2012). Evidence alignments and predictions from 

computation phase are manually or automatically combined to produce a 

final genome or transcriptome annotation with more accurate gene models 

(Zhang, 2002). In contrast to gene predictions, these outputs include UTRs. 

Transcriptome annotation outputs also include isoforms (Byrne et al., 2019).  

 

Structural annotations can be transferred to assemblies of the same or 

closely related species using reference-based annotation tools (see, e.g. 

Chatterji and Pachter (2006), Tcherepanov, Ehlers and Upton (2006), Otto et 

al. (2011))—a process referred to as similarity-based, reference-based or 

homology-based annotation (Gotoh, 2000; Wang, Chen and Li, 2004; 

Chatterji and Pachter, 2006). A reference-based annotation might not be 

limited to a single reference and it can be used in combination with other 

approaches to increase the confidence of annotations.  

 

In practice, researchers usually run multiple gene prediction tools 

independently (computation phase) and then combine their outputs to 

choose annotation for each putative loci (annotation phase)—typically the 

most representative gene models for all obtained gene predictions given 

external evidence at hand. For example, the International Wheat Genome 

Sequencing Consortium (IWGSC) et al. (2018) annotated bread wheat 

genome assembly by combining the outputs of two independent 

computational pipelines (encompassing ab initio, evidence-driven and 

similarity-based gene model predictions) with supporting evidence (e.g. 

transcriptome data, putative homologs) and gene characteristics (such as 

length of coding region, proportion of canonical introns), and then integrating 

a manually curated set of gene models to obtain a more complete and less 

redundant annotation. Unver et al. (2017) produced a consensus set of gene 

models for the wild olive genome assembly from ab initio and homology-

based approaches and supporting evidence from RNA-seq data. 

 

Functional annotation is often based on sequence similarity between the 

sequence being annotated and annotated reference sequence(s). Existing 
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knowledge is propagated to the putative gene products under study based 

on inferred homology or orthology (Bolger, Arsova and Usadel, 2018; 

Dominguez Del Angel et al., 2018). In cases with low sequence similarity, 

identification of protein motifs and domains can provide better functional 

annotation as they tend to be more conserved (Armstrong et al., 2019). Such 

methods are typically based on representing already annotated putative 

gene families with multiple sequence alignments and hidden Markov models 

(HMMs) which are then used to annotate new sequences. 

 
Non-sequenced data, both experimental and in silico predictions, can also be 

used for functional annotation or to increase the reliability of obtained 

annotations (Bolger, Arsova and Usadel, 2018). Expression data can help to 

determine if a putative protein is functional and provide insights into its 

function (Richardson and Watson, 2013; Childs, 2014). Methods employing 

“guilt by association” rule assign function based on co-expression with an 

annotated gene (Usadel et al., 2009; Mutwil et al., 2010; Tohge and Fernie, 

2012; Obayashi et al., 2018) or based on protein-protein interactions (Stelzl 

et al., 2005; Sharan, Ulitsky and Shamir, 2007; Yu et al., 2013). 

 

Non-coding genome and transcriptome sequences can also be annotated. 

For example, repeats (low-complexity sequences and transposable 

elements) can be identified using ab initio methods and comparison to the 

already annotated sequences deposited in the databases (Saha et al., 2008; 

Alexander et al., 2010). Pseudogenes, thanks to their high sequence 

similarity to the putative functional parent gene, can be identified by 

searching against putative protein-coding sequences and inspecting 

additional properties such as premature stop codons, frameshifts and 

genomic context of the sequence to differentiate between putative genes and 

pseudogenes (Harrison, 2014). Databases of putative pseudogenes and 

evidence from literature can also be used (Chen, Ma and Zeng, 2011). 

Computational structural annotation of regulatory elements typically relies on 

identification of conserved sequence motifs—known or ab initio based on 

training data—with many false positive matches (Shlyueva, Stampfel and 

Stark, 2014). Due to the absence of coding constraints, the primary 
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sequence of non-coding RNA (ncRNA) tends to be less conserved and more 

heterogeneous (Yandell and Ence, 2012; Armstrong et al., 2019). 

Furthermore, homology inference at the nucleotide level is more challenging 

than at a protein level. Yet, conserved secondary structure and motifs can 

help ncRNA structural annotation (Yandell and Ence, 2012). Functional 

annotation of non-coding sequences relies on experimental data (e.g. ChIP-

chip, ChIP-seq and RNA-seq) (Alexander et al., 2010). Co-expression with 

protein-coding genes across various experimental conditions can indicate 

involvement in the same biological processes or regulation of gene 

expression (Alexander et al., 2010; Chen, Shi and Shi, 2017; Chekanova 

and Wang, 2019). Generally speaking, annotation of non-coding sequences 

is more difficult and less accurate than annotation of coding sequences 

(Yandell and Ence, 2012). 

 

Having obtained a set of annotations, it is crucial to assess and curate them, 

as mistakes will affect downstream analyses and future annotations (Yandell 

and Ence, 2012; Childs, 2014). If an extensive high-quality reference 

annotation of the same species is available, it is possible to use it for 

assessment and correction of the newly obtained annotation. Approximations 

to precision and recall can be calculated at the level of gene models, 

annotated transcripts, exons and nucleotides, and annotation edit distance 

(AED) can be used to quantify changes between two annotations (Eilbeck et 

al., 2009). However, usually a high-quality annotation of the same species is 

not available. Thus, the assessment depends on the complementary data 

from the same and/or different species—sequencing data, expression data, 

evidence from the literature. For example, a transcript from a reference 

species aligning to an annotated intron could indicate a misannotated exon 

(Childs, 2014). AED can also be used to quantify the agreement between an 

annotation and its supporting evidence (Eilbeck et al., 2009). Measures such 

as percentage of exon-intron annotations supported by external evidence or 

percentage of annotations encoding known putative protein domains can 

also be calculated (Yandell and Ence, 2012). Similarly to assessing 

completeness of the assembly, BUSCO (Simão et al., 2015) and CEGMA 

(Parra, Bradnam and Korf, 2007) can also be used to assess annotation. 
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Typically, evidence from a single or multiple sources is manually combined 

and judged, followed by manual correction of errors (Yandell and Ence, 

2012; Childs, 2014).  

 

Genome and transcriptome annotation is challenging. It depends on the 

quality of the assembly being annotated, reference annotation (its 

completeness, errors, evolutionary distance to the species under 

investigation), other available evidence (expression data, sequencing data, 

literature), tools being used and the extent of manual curation (Yandell and 

Ence, 2012; Richardson and Watson, 2013; Bolger, Arsova and Usadel, 

2018). Assembly errors caused by uncorrected sequencing errors can yield 

structurally annotated sequences with artificial mutations or shorter 

sequences due to false stop codons. However, if the majority of the coding 

region is correctly assembled, most methods can deal with it (Bolger, Arsova 

and Usadel, 2018). Fragmented assemblies can induce fragmented and 

missing gene models (Bolger, Arsova and Usadel, 2018; Richards, 2018). 

Some annotation tools attempt to recognise and merge fragments derived 

from the same gene but spread across multiple contigs or scaffolds, yet 

many fragments remain misannotated as full-length gene models or 

unannotated due to their short length (Indrischek et al., 2016). This directly 

affects the overall number of gene models in a putative genome. Similarly, 

biological phenomena such as gene fusion and fission introduce more 

challenges in the annotation. Nevertheless, the domains of those sequences 

(resulting from fragmentation, fusion or fission) can be correctly identified 

(Richardson and Watson, 2013). More reliable annotation is expected on 

assemblies derived from long third-generation reads, particularly if such a 

gene (or transcript) sequence is shorter than a read length (Wang et al., 

2019). These can also be employed as additional evidence for annotation of 

sequences assembled from shorter reads. Another challenging biological 

phenomena are alternative splicing, alternative transcription start sites and 

alternative polyadenylation sites yielding multiple transcript isoforms 

expressed by a single gene and present in a transcriptome assembly. Their 

annotation heavily depends on the quality of their assembly—partially and 

fully assembled isoform sequences, some of which contain mistakes as 
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substantial as extra or missing exons and retained introns, are subjected to 

annotation while some isoform sequences are completely missing. Again, 

long sequencing reads and corresponding assemblies can help avoiding 

structural annotation mistakes thanks to the improved identification of full-

length isoforms and exon-intron boundaries (Abdel-Ghany et al., 2016; Wang 

et al., 2016, 2019). Non-coding sequences pose further annotation problems. 

Tools can predict coding sequences in non-coding regions, and methods 

have troubles with differentiating among ncRNA genes, spurious 

transcription and protein-coding genes with lower conservation rates (Yandell 

and Ence, 2012; Armstrong et al., 2019). Some sequences can correctly be 

classified as coding or non-coding using measures of protein-scoring 

capacity from RNA-seq or mass spectrometry data (Chen, Shi and Shi, 

2017). Some mistakes in structural annotation are discovered during 

functional annotation while some can cause further errors (Richardson and 

Watson, 2013; Childs, 2014; Dominguez Del Angel et al., 2018). 

Furthermore, merging or updating annotations is not a trivial task—beside 

technical obstacles, such as different annotation formats, nomenclature and 

vocabularies, the main challenge is in measuring the quality of annotations, 

i.e. how close to the unknown truth they are (Wain et al., 2002; Yandell and 

Ence, 2012).  

 

Annotations, both structural and functional, should not be taken at face value 

but rather as hypotheses (Bolger, Arsova and Usadel, 2018). It is important 

to be aware that the absence of evidence does not mean that an annotated 

sequence is an artifact (in case of structural annotation) or does not carry a 

certain function (in case of functional annotation). If no annotated sequence 

carries the function of interest, it could be that such a sequence is missing 

from a dataset due to assembling errors such as fragmentation or collapsing 

highly similar sequences into one. Similarly, the presence of annotation does 

not guarantee its biological existence or its ascribed functional annotation 

(e.g. artificial chimeric sequences due to assembler’s heuristics). Existing 

structural annotations can benefit from third generation sequencing data 

which is becoming available for more and more species (Cook et al., 2019). 

Experimental data could confirm functional annotation, yet that requires more 
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resources and the majority of annotations have not been experimentally 

verified (Alexander et al., 2010; Yandell and Ence, 2012; Richardson and 

Watson, 2013; Bolger, Arsova and Usadel, 2018).  

 

More details on genome and transcriptome annotation including extensive 

lists of data and software resources can be found in the publications cited 

throughout this section, as well as for example in Sleator (2010), Garber et 

al. (2011) and Hosmani et al. (2019). 

 

1.3 Plant assemblies 
 

Plants are staple food for herbivores and omnivores. With increasing 

demands for food production and adjustment to climate changes, they are of 

high interest to the scientific community (Bevan et al., 2017). Plant 

sequences are crucial for obtaining theoretical knowledge on evolutionary 

relationships and protein function. This knowledge can then be translated 

into agricultural and biotechnological innovations, such as accelerating the 

quest for traits, improving stress resistance, seeds and yield, and developing 

more efficient pesticides (Scheben, Yuan and Edwards, 2016; Bolger et al., 

2017; Hu, Scheben and Edwards, 2018). The value and potential benefits of 

high-quality genome and transcriptome plant data cannot be overestimated, 

yet the challenges of obtaining it cannot be underestimated. 

 

1.3.1 Current state of plant assemblies 
 

The challenge of genome assembly is particularly acute in plants. In their 

2012 review, Claros et al. report that only around 80 000 plant species out of 

more than 370 000 known plants have at least one sequence in GenBank 

(Benson et al., 2012), with Arabidopsis thaliana and Oryza sativa being of 

high quality and the rest being drafts. As of December 2019, at least 67 

annotated plant genomes have been deposited in Ensembl Plants database 

(Howe et al., 2020), 456 in NCBI (Sayers et al., 2019) and 362 in plaBiPD 
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database (Usadel lab—Jülich Research Centre/RWTH Aachen University, 

2014-2019)—only a minority of them being of good quality. The key issue is 

that plant genomes tend to be large, complex and heavily redundant 

(Carmona et al., 2015; Jiao and Schneeberger, 2017). Data from such 

genomes frequently result in fragmentary assemblies with fragments derived 

from a single gene dispersed over two or more contigs. Consequently, the 

fragments get annotated as separate shorter gene models and the gene 

counts are overestimated (Schliesky et al., 2012; Denton et al., 2014). 

Fragmentary gene models do not only lack sequence information—they have 

been shown to cause problems in downstream analyses, such as in tree 

inference (Sayyari, Whitfield and Mirarab, 2017) and orthology inference 

(Dalquen et al., 2013; Train et al., 2017), limiting biological and biotechnical 

research and innovation. 

 

A big genome size is not a problem in itself; it is the complexity of the 

genome that poses problems, as explained throughout section 1.1.3. A lot of 

difficulties are caused by repetitive sequences which can make up to 90% of 

a genome, the majority of them being transposable elements (Mehrotra and 

Goyal, 2014). Gene duplication poses difficulties to assemblers which have 

to distinguish reads coming from different genes. Some studies suggest that 

57-70% of the extant flowering plants and up to 80% of all extant plants 

could be recent polyploids18,19 (Otto, 2007; You et al., 2018) which adds 

another layer of complexity to their genome and transcriptome assembling. 

Recently formed polyploid organisms have three or more sets of homologous 

chromosomes derived from the same (autopolyploid) or different 

(allopolyploid) species (Glover, Redestig and Dessimoz, 2016; Kyriakidou et 

al., 2018; Voshall and Moriyama, 2019). In autopolyploid organisms, sets of 

                                            
18 Paleopolyploid events—polyploid events that took place more than a few millions 
years ago (Pfeil et al., 2005)—are not expected to cause assembly troubles as the 
majority of duplicated genes undergo gene silencing within a few million years 
followed by gene loss (Lynch and Conery, 2000; Adams and Wendel, 2005). A good 
example is Arabidopsis thaliana (Kaul et al., 2000). A study on soybean genome 
indicates no major troubles for whole genome assembly caused by paleopolyploidy 
(Schlueter et al., 2007). 
19 Polyploidy has also been inferred in insects, fish, amphibia, reptiles and even red 
and golden viscacha rats (Otto, 2007). 
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homologous chromosomes are the consequence of whole genome 

duplication, whereas in allopolyploids, hybridisation between two species 

was followed by genome duplication—quite challenging situations for 

assemblers. Furthermore, studies suggest that polyploidisation can increase 

levels of heterozygosity (Kyriakidou et al., 2018). In the attempt to avoid 

collapsing two similar sequence copies into one, genome assemblers might 

fail to recognise heterozygosity when all haplotypes of a diploid or polyploid 

genome are sequenced (Kelley and Salzberg, 2010; Zhang and Backström, 

2014). The same applies for transcriptome assemblies if they aim for a single 

consensus transcript sequence per locus (Ruttink et al., 2013; Stočes et al., 

2016). In transcriptome assemblies, assemblers have to distinguish reads 

coming from different transcript isoforms (Martin and Wang, 2011). 

Consequently, transcriptome assemblers have to detangle sequences of 

isoforms arising from paralogous genes, as well. The quality of the 

assemblies directly affects the quality of its annotation, as discussed in 

section 1.2. For example, for fragments derived from the same gene, protein 

domains can be correctly annotated yet the fragments typically remain 

annotated as separate gene products. On top of all this, there are also 

various low complexity repetitive sequences such as rDNA units, satellites, 

microsatellites, telomeric sequences contributing to the already highly 

intricate annotation problem (Claros et al., 2012). Even single-copy regions 

(flanked by repeated sequences) can be tricky to annotate as there is a lot of 

variation in their length (Claros et al., 2012). Correctly assembled sequences 

of expressed pseudogenes are difficult to distinguish from their parent gene, 

and thus might be annotated as a gene. Some of the assembling and 

annotation difficulties can successfully be resolved by employing paired-end 

reads, mate pair reads with long enough insert size, long reads, expression 

data and other experimental evidence, at the cost of more resources. Thus, 

many putative genomes remain in draft state (Mukherjee et al., 2017). 

 

Beside biological, there are also technical difficulties hindering plant 

sequencing and assembling (Claros et al., 2012). The first challenge is to 

extract enough high-quality genetic material from the plant which is crucial 

for sequencing library preparation. During the sequencing experiment, 
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sequences can get contaminated by the wet-lab manipulations. The resulting 

samples can also contain data from organisms living on the plant or the 

human performing the experiment. Depending on its origin and (short) read 

length, contamination might be very challenging to identify. If there is a 

reference assembly of the species  being assembled, sequencing reads that 

cannot correctly map to it could be derived from contaminants (Sangiovanni 

et al., 2019). In the absence of a reference assembly, reads can be mapped 

against databases containing reads, gene or transcript sequences derived 

from potential sources of contamination (Schmieder and Edwards, 2011). 

Analogously, indications for contamination can be detected once the 

assembly is obtained (Alkan, Sajjadian and Eichler, 2011)20. Finally, as 

already mentioned earlier, second- and third-generation sequencing 

technologies are error prone (reported ~0.1-15%, 11-38%, respectively) 

which is something assemblers and assembly pipelines have to take into 

account and not confuse with true biological differences. The capabilities and 

limitations of assemblers can play a key role when it comes to assemblies of 

novel lineage-specific genes versus misassemblies. 

 

Given all biological and technical challenges of sequencing, assembling and 

annotation, and the limited resources, it is not surprising that the majority of 

sequencing projects reach their end providing only a draft of a putative 

genome. A draft assembly can already aid research projects concerned with 

sufficiently well assembled parts of the genome. Indeed, many researchers 

are interested only in the coding regions of a genome and published draft 

assemblies can satisfy their needs (Thomma et al., 2016). However, 

researchers should be cautious of the fragmentation and its potential 

underlying reasons (described in section 1.1.3). Furthermore, non-coding 

regions of a genome tend to be quite challenging for assemblers and 

consequently, represented by fragments with gaps in between them, if 

present at all in the assembly (see section 1.1.3). Altogether, to allow for 

more accurate and convenient downstream analyses of both coding and 

                                            
20 Within-species contamination, e.g. human contamination of a human sample, is 
even more challenging to detect. Jun et al. (2012) propose analysing sequencing 
data and/or array-based genotype data.  
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non-coding regions, it is necessary to improve current sequencing and 

assembling methods. 

 

1.3.2 Bread wheat 
 

The staple food for 30% of humanity, rich in protein, carbohydrates and 

minerals, common bread wheat, Triticum aestivum, is one of the most 

important crop species accounting for more than 95% of wheat grown 

worldwide (Choulet et al., 2014; Pfeifer et al., 2014). With the ongoing 

increase in the human population and corresponding demands for better 

yields, adaptation to climate changes and increased demands for biofuels, 

scientists, breeders and growers are in need of high-quality reliable 

resources to enhance biotech innovation (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014). A good genome assembly would 

aid researchers to understand the molecular basis of phenotypic variation 

and help them identify candidate genes associated with favourable traits. 

This could then lead to the development of new cultivars with increased yield 

and improved resistance to biotic and abiotic stresses, i.e. higher bread 

wheat production (International Wheat Genome Sequencing Consortium 

(IWGSC), 2014).  

 

Bread wheat has a large, complex and redundant genome. Today’s 

allohexaploid AABBDD genome (6x=2n=42) is believed to be the result of 

three hybridization events which took place after the lineages Triticum (A) 

and Aegilops (B) diverged from a common ancestor (~6.5 million years ago) 

(Fig. 1.6) (Marcussen et al., 2014). The first hybridization event probably took 

place ~5.5 million years ago between the A and B genome lineages and led 

to the origin of the D genome lineage. The second hybridization event likely 

occurred sometime between 0.58 and 0.82 million years ago between 

Triticum urartu (AA) and an unknown close relative of Aegilops speltoides 

(BB) producing allotetraploid emmer wheat, Triticum turgidum (AABB). 

Finally, the third hybridization probably happened less than 0.4 million years 

ago between Triticum turgidum (AABB) and Aegilops tauschii (DD) 
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(Marcussen et al., 2014) giving rise to today’s AABBDD genome. The three 

putative homeologous subgenomes (A, B, D), each ~5.5 Gbp in length and 

comprised of seven pairs of chromosomes, construct the highly redundant, 

17 Gbp long putative bread wheat genome21 which is mainly (>80%) 

composed of highly repetitive transposable elements (International Wheat 

Genome Sequencing Consortium (IWGSC), 2014).  

  

                                            
21 In 2018, IWGSC estimated a mean genome size ~15.76 Gbp (International 
Wheat Genome Sequencing Consortium (IWGSC) et al., 2018) 
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Figure 1.6: Evolutionary history of Triticum aestivum (AABBDD) 

(reproduced from: Marcussen et al. (2014)22).  
Circles with numbers depict estimated times of: i) divergence of the A and B 

genome lineages from a common ancestor ~6.5 million years ago, ii) first 

hybridization event between the A and B genome lineages leading to the D 

genome lineage ~5.5 million years ago, iii) second hybridization event 

between Triticum urartu (AA) and a close relative of Aegilops speltoides (BB) 

leading to emmer wheat, Triticum turgidum (AABB), iv) third hybridization 

event between Triticum turgidum (AABB) and Aegilops tauschii (DD) leading 

to bread wheat, Triticum aestivum (AABBDD). 

 

                                            
22 From Thomas Marcussen, Simen R. Sandve, Lise Heier, Manuel Spannagl, 
Matthias Pfeifer, The International Wheat Genome Sequencing Consortium, Kjetill 
S. Jakobsen, Brande B. H. Wulff, Burkhard Steuernagel, Klaus F. X. Mayer and 
Odd-Arne Olsen, Ancient hybridizations among the ancestral genomes of bread 
wheat, Science, 345(6194), p. 1250092. Reprinted with permission from AAAS. 
Licence number 4841830781974. 
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For a long time, the size and complexity of the bread wheat genome caused 

doubts as to the possibility of sequencing and assembling it. The first 

breakthrough happened in 2008 when Paux et al. established a physical 

map of the largest chromosome, 3B, and sequenced it using BAC-by-BAC 

strategy (Choi and Wing, 2000; Lander et al., 2001). The reads coming from 

cultivar Chinese Spring were assembled into 1,036 contigs of average length 

783 kbp and N50 contig size of 602 kbp. They were anchored with 1,443 

molecular markers. The assembly was believed to represent ~82% (811 

Mbp) of the 995 Mbp long chromosome. Importantly, the study laid the 

methodological foundation for feasible sequencing and assembling of large 

and complex genomes. 

 

The first bread wheat whole genome assembly was released in 2012 

(Brenchley et al., 2012). Chinese Spring reads were obtained by whole-

genome shotgun sequencing (Messing, Crea and Seeburg, 1981) and 

assembled in two ways yielding a highly fragmented assembly. Their final 

orthologous group assembly covered 437,512,281 bp and contained 949,279 

contigs of mean length 460.89 bp and N50 of 481 bp. The low-copy-number 

sequences assembly managed to cover 3,800,325,216 bp with 5,321,847 

contigs of mean length 714.10 bp and N50 of 884 bp. With the help of 

transcriptome assembly (93,340,842 bp in total, 97,481 contigs, contig mean 

length 957.53 bp, N50 1,325 bp) they estimated the number of genes to be 

between 93,900 and 96,300. 

 

In 2014, the International Wheat Genome Sequencing Consortium (IWGSC) 

released another highly fragmented chromosome-by-chromosome shotgun 

assembly for the cultivar Chinese Spring (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014). The sequencing approach allowed 

sequencing an arm of a single chromosome copy at a time (except for 

chromosome 3B) which reduced complexity of de novo assembling Illumina 

reads and allowed obtaining haplotype-resolved assembly (Šafář et al., 

2010; Doležel et al., 2012). The assembly (version IWGSP1) was estimated 

to represent ~61% of the genome sequence covering 10,237.9 Mbp (out of 

16,938 Mbp) with 10,880,661 contigs longer than 200 bp whose N50 was 
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2,292 bp and average length 940.42 bp. Number of contigs varied across 

chromosome arms—from 88,542 on chromosome arm 6DS (N50 4,297 bp)  

to 508,239 on chromosome arm 2DL (N50 701 bp) and 546,922 on 

chromosome 3B (N50 2,655 bp). Chromosome arm 3DS had the smallest 

N50 of only 515 bp. The assembly allowed annotation of 124,201 genes with 

high confidence: 55,249 (44%) functional genes and 68,952 (56%) genes 

which seemed to be fragmented in the assembly. The latter ones were either 

structurally annotated or classified as pseudogenes and fragmented gene 

sequences.  

 

The same year, Choulet et al. (2014) published a high-quality reference 

sequence of chromosome 3B, also for the Chinese Spring cultivar. An 

individual chromosome was flow-sorted and sequenced using BAC pooling 

strategy (Steuernagel et al., 2009). The 2,808 scaffolds (N50 892 kbp) that 

were assembled represent 833 Mbp, i.e. ~94% of estimated 886 Mbp-long 

complete sequence and carry 5,326 (73%) annotated full genes and 1,938 

(27%) likely pseudogenes or gene fragments. 

 

Over subsequent years, assemblies with improved contiguity were released 

by Chapman et al. (2015), Clavijo et al. (2017) and Zimin et al. (2017).  

 

Finally, in 2018, the International Wheat Genome Sequencing Consortium 

(IWGSC) released a fully annotated reference assembly for the bread wheat 

cultivar Chinese Spring (International Wheat Genome Sequencing 

Consortium (IWGSC) et al., 2018). De novo assembly of Illumina pair-end 

and mate pair reads was complemented with additional data (Illumina paired-

end, Hi-C, Ion Torrent and Roche-454 sequencing, genetic, physical, 

radiation hybrid and Bionano optical maps). The assembly (IWGSC RefSeq 

v1.0) covered 14,547.3 Mbp—around 92% of the newly estimated genome 

size (mean size 15,764.4 Mbp) (International Wheat Genome Sequencing 

Consortium (IWGSC) et al., 2018, section 2.8 in Supplementary Materials). 

Contig N50 was 51.8 kb with L50 of 81,427 while scaffold N50 was 7.0Mb 

with L50 of 571. Contigs and scaffolds were further linked into superscaffolds 

(N50 22.8 Mbp, L50 166), with 97% of them being assigned and ordered 
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within chromosomes and covering 14.1 Gbp. Thus, ~90% of the genome 

was represented by superscaffolds, 76 superscaffolds per chromosome on 

average with the largest superscaffold spanning 166 Mbp. The annotation 

(IWGSC RefSeq v1.1) contained 107,891 highly-confident gene models, of 

which 90,919 (~84.3%) had a functional annotation as well.  

 

1.3.3 Wild olive 
 

The olive tree is an important fruit crop in the Mediterranean basin which 

holds 90% of all olive groves in the world yielding 90% of global olive oil 

production (Kole, 2011). Olive oil has been part of Mediterranean cuisine for 

thousands of years (Riley, 2002). Today it is consumed worldwide and 

appreciated for its health benefits (Estruch et al., 2013, 2018). Beside 

nutrition, olive tree products are also used in pharmacy and cosmetics. 

 

Cultivated olive tree, Olea europaea L. subsp. europaea var. europaea, is 

thought to have been domesticated from the wild olive, Olea europaea var. 

sylvestris, also called oleaster, and the domestication, diversification and 

selection of olives for cultivation is not well understood (Besnard, Terral and 

Cornille, 2018; Gros-Balthazard et al., 2019). Genomic data could help 

understand the underlying processes and their consequences, as well as 

facilitate exploiting the pool of wild genes to improve disease and stress 

resistance of new cultivars (Kole, 2011). 

 

Oleaster is a diploid species (2n=46) (Rugini et al., 2011) and, at time of 

writing, its evolutionary history is still not well understood. A group of 

researchers who sequenced its only available putative genome to date found 

indications for two (oleaster) lineage-specific whole genome duplication 

events, ∼28 million years ago and ∼59 million years ago (Unver et al., 2017). 

A more recent study (Julca et al., 2018)23 speaks of potentially three 

polyploidization events: i) allopolyploidization at the base of the Oleaceae 

                                            
23 They included the oleaster genome of Unver et al. (2017). 
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family between 33 and 72 million years ago, possibly with a non-Oleaceae 

Lamiales species, ii) allopolyploidization at the base of the Oleeae tribe 

between 14 and 33 million years ago, potentially with a relative of Jasminum 

sambac, and iii) olive-specific whole genome duplication 

(autopolyploidization) ~10 million years ago (Fig. 1.7). 

 

 
 

Figure 1.7: Newly estimated whole-genome duplications (green stars) 
and whole-genome duplications from the earlier literature (red stars) in 

Lamiales clade (reproduced from: Julca et al. (2018)24). 
 

The putative genome sequence of Olea europaea var. sylvestris became 

available in 2017 (Unver et al., 2017), thanks to the efforts of the 

International Olive (Olea europaea) Genome Consortium (IOGC). Illumina 

whole genome shotgun sequencing reads were assembled using 

SOAPdenovo (Li et al., 2010) into 1.48 Mbp long assembly25 consisting of 

11,497 contigs with N50 of 25,485 bp. Contigs were organised into 1,448 

scaffolds with N50 length 228,620 bp. The assembly allowed annotation of 

                                            
24 Used under the terms of Creative Commons Attribution International License 4.0 
(https://creativecommons.org/licenses/by/4.0). No changes were made to the 
original figure. 
25 Authors estimated genome length to be 1.46 Mbp while Loureiro et al. (2007) 
estimated it to be 1.56 Mbp. 
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50,684 protein-coding genes. The study also reported that highly repetitive 

DNA, mainly transposable elements, made up 51% of the putative genome. 

Based on their data, the authors estimated heterozygosity rate of 1.3% 

(Unver et al., 2017, Fig. S2)26.  

 

Other useful sequencing data for studying wild olive include genome 

assembly of domesticated olive tree Olea europaea L. subsp. europaea var. 

europaea cv. Farga (Cruz et al., 2016), putative repetitive sequences from 

cultivar Olea europaea L. subsp. europaea var. europaea cv. Leccino 

(Barghini et al., 2014), transcriptome data from cultivars Arbequina, Lechin 

de Sevilla, Picual and Picual x Arbequina cross (Munoz-Merida et al., 2013) 

and Olea europaea L. reproductive transcriptome database ReprOlive 

(Carmona et al., 2015), to name a few. 

 

1.3.4 Cassava 
 

Globally the most important root crop—cassava, i.e. Manihot esculenta 

Crantz—is a staple food for more than 700 million people (Sayre et al., 

2011). With a starch content between 20 and 40%, and favourable 

characteristics such as little input for big yield, high drought tolerance, 

adaptability to diverse environments and roots’ capability to be left in the 

ground for months before harvesting, cassava demonstrates high potential 

for carbohydrate production and is a desirable source for bioenergy 

production (Zainuddin et al., 2012). Unfortunately, it has low protein and 

micronutrient content. Furthermore, it is susceptible to bacterial and viral 

diseases which limits its current production (Bart and Taylor, 2017). To gain 

a better understanding of the cassava genes and accelerate development of 

desirable varieties, it is crucial to obtain and employ genetic resources such 

as high-quality reference genome and transcriptome assembly.  

 

                                            
26 heterozygosity rate = (#heterozygous loci / genome size) * 100 (personal 
correspondence with Turgay Unver) 
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Cultivated cassava, probably domesticated over 6000 years ago from the 

wild Manihot esculenta ssp. Flabellifolia (Wang et al., 2014), is another 

example of a challenging assembly problem. Bredeson et al. (2016) found 

indications that its ancestor underwent a whole-genome duplication ~35-47 

million years ago. Eighteen chromosomes form a 772 Mb long highly 

heterozygous diploid genome which contains a lot of repetitive regions, many 

of them transposable elements (Awoleye et al., 1994; Wang et al., 2014; 

Bredeson et al., 2016). For example, assembly v6.0 with v6.1 annotation is 

582.3 Mbp long, contains 299.3 Mbp of repetitive sequences, more than half 

being putative transposable elements, and the remaining unassembled ~200 

Mbp are estimated to span mainly repeats and less than 1% of putative 

genes (Bredeson et al., 2016). Not surprisingly, cassava is another example 

of long-lasting efforts to obtain a high-quality reference assembly. 

 

Although the beginnings of efforts to sequence cassava date back to 2003, 

with the first pilot project being accepted in 2006, the first genome assembly 

and annotation were publically released in late 2009 (Prochnik et al., 2012). 

Scientists from the University of Arizona, 454 Life Sciences and the US 

Department of Energy—Joint Genome Institute performed a combination of 

454-based whole genome shotgun (Margulies et al., 2005) and Sanger 

sequencing (Sanger, Nicklen and Coulson, 1977) to obtain reads from a 3rd-

generation inbred (S3) line AM560-2 developed to minimise heterozygosity, 

and hence bypass some of the assembly challenges. Sequences were 

assembled de novo with Newbler (Fryslie, no date). The contigs of assembly 

(v4.1) span a total length of 419.5 Mbp while 12,977 scaffolds span 532.5 

Mbp (N50 258.1 kbp). The assembly was estimated to cover 69% of the 

genome size containing 30,666 annotated genes which was 96% of the 

predicted protein-coding gene space (Prochnik et al., 2012). The current 

version (v6.0) (Bredeson et al., 2016)—referred to as a high-quality 

reference genome assembly—is based on Illumina reads (whole genome 

shotgun, mate pair, fosmid end, Hi-C) from AM560-2 and it was assembled 

de novo with Platanus (Kajitani et al., 2014). The total assembly is 582.3 

Mbp long with contig N50 of 27.7 kbp. Eighty-nine percent of the assembly is 

ordered into 18 chromosomal pseudomolecules with contig N50 of 29.8 kbp 
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and scaffold N50 of 28.4 Mbp. Covering approximately 75% of the estimated 

genome size, it is carrying 33,033 annotated protein-coding genes 

(annotation v6.1). Unassembled 200 Mbp of sequences are estimated to 

contain less than 1% of cassava genes. The same authors also estimated 

that the AM560-2 putative genome is homozygous over 93.6% of its length, 

in line with their expectations on S3 generation. There are ongoing efforts to 

further increase the completeness of the assembly with long PacBio reads 

(Rhoads and Au, 2015) for the repetitive regions (Goodstein, D. M. et al., 

2012; Phytozome, 2017). 

 

At the same time, Wang et al. (2014) worked on draft genome assemblies of 

wild Manihot esculenta ssp. Flabellifolia (432 Mbp long assembly—58.2% of 

the estimated 742 Mbp long genome; contig N50 43 kbp; 34,483 annotated 

genes of which 33,310 protein-coding) and domesticated Manihot esculenta 

Crantz (495 Mbp long assembly—66.7% of the estimated 742 Mbp long 

genome; contig N50 19 kbp; 38,845 annotated genes of which 37,592 

protein-coding) which were released together with transcriptome sequencing 

reads.  

 

In 2019, Kuon et al. provided annotated haplotype-resolved genome 

assemblies of Manihot esculenta cultivar TME3 (spanning 634.1 Mbp of the 

estimated 765 Mbp (82.9%); 558 scaffolds, scaffold N50 2.25 Mbp; 33,853 

annotated protein-coding genes) and cultivar 60444 (spanning 714.7 Mbp of 

the estimated 745 Mbp (95.9%); 552 scaffolds, scaffold N50 2.35 Mbp; 

34,127 annotated protein-coding genes). Since cultivar TME3 is resistant to 

the cassava mosaic disease, an issue in Africa, and 60444 is disease-

susceptible, the assemblies and annotations bear importance for studying 

the disease and developing disease-resistant cultivars. 
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1.4 Comparative genomics 
 

The field of comparative genomics is concerned with answering biological 

questions by comparing genomic features of the organisms under study 

(Ellegren, 2008). Typical studies investigate similarities and differences 

between organisms, and the evolution of genomic features of interest 

(Hardison, 2003). Features include putative genomes, genes, their location 

on chromosomes, regulatory elements and other non-coding elements; these 

can be compared within and across species (Miller et al., 2004; Ellegren, 

2008; Alföldi and Lindblad-Toh, 2013). At a time of ever-increasing amounts 

of data, comparative methods help gain new insights, as well as to propagate 

existing knowledge, to the newly obtained data (Dunn and Munro, 2016). 

 

1.4.1 Brief introduction to comparative genomics  
 

The first comparative studies appeared in the 1980s and focused on 

comparisons between putative virus genomes (Toh, Hayashida and Miyata, 

1983; Argos et al., 1984; Haseloff et al., 1984; Ahlquist et al., 1985; 

McGeoch and Davison, 1986). The first comparison between genome 

sequences of cellular organisms was performed in the mid 1990s, with the 

completion of the first bacterial genome sequencing projects (Tatusov et al., 

1996). Since then, thousands of genome sequencing projects have been 

completed and the framework of comparative genomics provides means to 

understand and interpret the obtained data (Koonin and Galperin, 2010; 

Mukherjee et al., 2019).  

 

Central to the comparative genomics approach is the assumption that the 

genomes under study have evolved from a common ancestor (Ureta-Vidal, 

Ettwiller and Birney, 2003). Thus, the present genomes can be explained as 

a result of evolutionary processes that have acted over time since the 

present genomes started diverging from one another (Ureta-Vidal, Ettwiller 

and Birney, 2003). Mutational forces introduce random mutations in the 

genome, and based on their effect on the chromosome structure, they can 
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be classified into small-scale and large-scale mutations (Lodish et al., 2000). 

Small-scale mutations affect up to 1,000 consecutive nucleotides and include 

substitutions, insertions and deletions (Lodish et al., 2000; Wright, 2003). 

Thus, they might alter a function of a single gene, if any (Lodish et al., 2000). 

Large-scale mutations include amplifications, deletions and changes in the 

location of larger genomic regions (Lodish et al., 2000). Genes, 

chromosomes and even whole genomes can duplicate (Taylor and Raes, 

2004). Deletions of larger genomic regions lead to, e.g. gene loss, loss of 

heterozygosity and formation of fusion genes (Griffiths, Miller and Suzuki, 

2000; Albalat and Cañestro, 2016). DNA segments can reverse their 

orientation within a chromosome in the process of inversion or move to a 

different chromosome in the processes of translocation and crossover 

(Griffiths, Miller and Suzuki, 2000; Kirkpatrick, 2010; Roukos, Burman and 

Misteli, 2013). Large-scale mutations can affect multiple genes, thus, leading 

to phenotypic changes and sometimes even to speciation (Lodish et al., 

2000). 

 

Mutations can be harmful (deleterious), neutral or beneficial for the organism 

(Ureta-Vidal, Ettwiller and Birney, 2003). Typically, harmful mutations are 

eliminated by negative selection, beneficial mutations become more common 

in a population thanks to the positive selection, and neutral mutations are not 

affected by selection (neutral selection) (Ureta-Vidal, Ettwiller and Birney, 

2003). However, selection is not deterministic: both beneficial and neutral 

mutations can get lost, or deleterious mutations can get fixed, via genetic 

drift—an evolutionary process by which the frequencies of gene variants in a 

population change from generation to generation due to chance (Masel, 

2011). Because of its stochastic nature, genetic drift particularly affects small 

populations or populations undergoing bottlenecks, e.g. due to dispersal or 

geographic isolation (Masel, 2011). 

 

Speciation refers to the process by which two subpopulations become 

genetically isolated from one another, leading to the emergence of distinct 

species (Coyne and Allen Orr, 2004). Roughly speaking, this can happen 

through geographic isolation (allopatric speciation), partial geographic 
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isolation or while sharing the same habitat (sympatric speciation) (Butlin, 

Galindo and Grahame, 2008; Fitzpatrick, Fordyce and Gavrilets, 2009). 

 

After speciation, it is generally assumed that each of the new species will 

evolve largely independently of the other (Wolf, Lindell and Backström, 

2010). However, genetic material can be occasionally exchanged between 

species, by mechanisms such as horizontal gene transfer or by introgression 

(Gogarten, Gogarten and Olendzenski, 2009; Twyford and Ennos, 2012; 

Suarez-Gonzalez, Lexer and Cronk, 2018).  

 

With the advent of DNA and protein sequencing from the second half of the 

twentieth century, it became apparent that, in vertebrate species and most 

multicellular eukaryotes, most molecular characters are evolving neutrally or 

near neutrally (Kimura, 1983). This implies that most substitutions observed 

in orthologous sequences between species are not the result of Darwinian 

selection, but rather the random process of random drift. This theory explains 

earlier observations of a “molecular clock”—a linear relationship between the 

rate of nucleotide substitutions between lineages and their divergence time 

as estimated from the fossil record (Zuckerkandl and Pauling, 1965). Later 

analyses, based on much larger datasets, have shown that this relationship 

is not always linear, with some sequences substantially departing from a 

molecular clock. Nevertheless, a substantial correlation between sequence 

similarity and divergence time can often be observed and thus the molecular 

clock often provides a helpful first approximation (Nei, Suzuki and Nozawa, 

2010).  

 

Sequences encoding or regulating shared features among organisms are 

typically evolutionary conserved, while sequences encoding or regulating the 

differences are typically divergent (Hardison, 2003). This reasoning allows 

the evolution of genomic sequences to be studied and, for example, 

predicting a core set of genes shared across species (even if the species are 

separated by more than 1 billion years of evolution), finding potentially 

functional DNA sequences (for species separated by 70-100 million years of 

divergence) or identifying potentially species-specific features (given the 
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dataset of species separated by ~5 million years of divergence) (Hardison, 

2003)27. 

 

Comparisons between putative genomes usually start with pairwise 

comparisons of putative gene sequences in the dataset (Wei et al., 2002). 

The aim of this initial comparison of two gene sequences is typically to 

determine whether they can be identified as putative homologs, i.e. 

sequences of genes believed to have a common ancestor. Homology is the 

key concept in comparative genomics (Dunn and Munro, 2016) and we 

discuss it in section 1.4.2 while section 1.4.3 touches upon homology 

inference. Two sequences can be compared by being aligned along their 

entire length—the technique called global alignment (using for example, 

Needleman-Wunsch algorithm (Needleman, 1970)) or only parts of the 

sequences can be investigated by exploring the local alignment (obtained by, 

e.g. Smith-Waterman algorithm (Smith and Waterman, 1981)).  

 

Putative homologs can be classified further into putative paralogs (genes 

believed to have diverged through gene duplication) and putative orthologs 

(genes believed to have diverged through gene speciation) (Fitch, 1970). 

Paralogous genes are believed to drive function innovation while orthologous 

genes tend to have more similar biological function (Tatusov, Koonin and 

Lipman, 1997; Lynch and Conery, 2000; Altenhoff et al., 2012; Gabaldón and 

Koonin, 2013). This has applications in protein function prediction (Gaudet et 

al., 2011), inferring phylogenetic species trees and studying the evolution of 

gene families (Altenhoff and Dessimoz, 2012). 

 

Relations between sequences can also be studied in a multiple-sequence 

setting, i.e. comparing three or more sequences at a time. A multiple 

sequence alignment (MSA) allows the identification of conserved regions 

among evolutionarily related sequences. The majority of tools for computing 

MSA of coding sequences implement a heuristic search called progressive 

alignment (first introduced by Hogeweg and Hesper (1984)) which starts by 

                                            
27 Estimated divergence distances 
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aligning two sequences and continues with successive alignment of the rest 

of the sequences, adding one by one. Widely cited tools employing 

variations of this approach include Clustal Omega (Sievers et al., 2011), 

MAFFT (Katoh and Standley, 2013) and T-Coffee (Notredame, Higgins and 

Heringa, 2000). Iterative methods such as MUSCLE (Edgar, 2004a, 2004b) 

and PRRN (Gotoh, 1999) work similarly to progressive methods but realign 

all sequences with inclusion of each new sequence. This allows them to 

achieve higher accuracy. Some methods incorporate phylogeny information 

to avoid mistakes caused by structural matching and provide more accurate 

alignments for evolutionary inference. Examples include PAGAN (Löytynoja, 

Vilella and Goldman, 2012), PRANK (Löytynoja, 2014) and ProGraphMSA 

(Szalkowski, 2012). Some tools rely on hidden Markov models, e.g. POA 

(Lee, Grasso and Sharlow, 2002) and SAM (Hughey and Krogh, 1996), 

which allows them to generate all possible MSAs and assign a likelihood to 

each. There are also consensus methods which attempt to find an optimal 

MSA given multiple MSAs, for example, M-Coffee (Wallace et al., 2006) and 

MergeAlign (Collingridge and Kelly, 2012).  

 

Multiple sequence alignments are also used as input for phylogenetic tree 

building methods (Yang and Rannala, 2012). They are important for studying 

relationships among entities such as genes, organisms, species, clades 

(Soltis and Soltis, 2003). In a phylogenetic tree, leaves represent the data 

that is being compared while branches depict hypothetical relationships 

among them (Whelan, Liò and Goldman, 2001). A tree can be rooted or 

unrooted. In a rooted tree, an internal node represents the most recent 

common ancestor of its descendants and the root represents a common 

ancestor of all instances in the tree (Baldauf, 2003). Paths leading from the 

root to each of the leaves depict putative evolutionary paths (Whelan, Liò 

and Goldman, 2001). Different gene families evolve under different 

evolutionary processes (Ohta, 2000). Thus, the corresponding reconstructed 

gene trees will likely differ. An estimated rooted gene tree can be compared 

to an estimated rooted species tree in order to predict which evolutionary 

processes have acted on the genes—a process called phylogeny 

reconciliation (Doyon et al., 2011). Depending on the complexity of the 
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reconciliation model, the inferred events assigned to internal nodes of the 

gene tree might include, for example, duplications and losses (DL models) or 

duplications, losses and horizontal gene transfers (DTL models) (Doyon et 

al., 2011). Reconstructed gene trees can also help reconstructing a species 

tree and estimating divergence times between species (Delsuc, Brinkmann 

and Philippe, 2005; Yang and Rannala, 2012). Methods for building 

phylogenetic trees typically fall into one of the four groups: i) maximum 

parsimony methods (implemented in tools such as PAUP (Swofford, 2000), 

MEGA (Tamura et al., 2011), TNT (Goloboff, Farris and Nixon, 2008)), ii) 

distance matrix methods (e.g. least squares (Cavalli-Sforza and Edwards, 

1967), minimum evolution (Rzhetsky and Nei, 1992; Desper and Gascuel, 

2002), neighbour joining (Saitou and Nei, 1987)), iii) Bayesian methods 

(implemented in, e.g. MrBayes (Huelsenbeck and Ronquist, 2001), BEAST 

(Drummond et al., 2006)), and iv) maximum likelihood methods 

(implemented in, e.g. FastTree (Price, Dehal and Arkin, 2010), MOLPHY 

(Adachi and Hasegawa, 1996), PAUP* 4.0 (Swofford, 2000), PhyML 

(Guindon and Gascuel, 2003), PHYLIP (Felsenstein, 2005), RAxML 

(Alexandros Stamatakis, 2014)). A summary of their strengths and 

weaknesses can be found in the aforementioned review by Yang and 

Rannala (2012). Phylogeny reconstruction and applications is a field in itself 

and we refer readers to the textbooks such as Inferring phylogenies 

(Felsenstein, 2004) and Molecular Evolution: A Statistical Approach (Yang, 

2014).  

 

1.4.2 Homology 
 

The first definition of homology in biological sciences was coined in 1843 

when Richard Owen analysed the usage of the term “homolog” in anatomy 

and proposed the following definition in the Glossary of his Hunterian 

Lectures (Owen, 1843): 

“Homologue.”—The same organ in different animals under every 

variety of form and function. 
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The rather vague formulation did not mention common ancestry—

understandably given that Darwin published On the Origin of Species in 1859 

(Darwin, 1859). In his work from 1870, Edwin Ray Lankester acknowledges 

the problem of inferring the sameness of organs from Owen’s definition and 

questions its investigation without the concept of evolution (Lankester, 1870). 

He goes on with proposing definitions in accordance with the theory of 

evolution and suggests splitting “homologues structures” into “homogenous” 

and “homoplastic structures”: 

Structures which are genetically related, in so far as they have a 

single representative in a common ancestor, may be called 

homogenous. 

Homoplasy includes all cases of close resemblance of form which are 

not traceable to homogeny, all details of agreement not homogenous, 

in structures which are broadly homogenous, as well as in structures 

having no genetic affinity. 

Although Lankester hoped to avoid confusion by introducing new terms, the 

meaning and usage of the terms “homology”, “homogeny” and “homoplasy” 

kept evolving as can be seen in the overview of Haas and Simpson (1946). 

They then (re)defined “homology” as: 

a similarity between parts, organs, or structures of different 

organisms, attributable to common ancestry,  

and “homoplasy”  

to comprise all evolutionary processes bringing about similarities 

between organisms or their parts, organs or structures, which are not 

due to common ancestry, but to independent acquisition of the similar 

characters.  

In phylogenetic systematics, its founder Willi Hennig employed the same 

concept of homology (Hennig, 1965) which still prevails in modern 

systematics. 

 

Homology can be defined at different levels or units. Owen and Lancaster 

thought of homology within the scopes of anatomy and morphology, 

speaking of homologous bones and organs (Owen, 1843; Lankester, 1870), 

while modern biology employs homologous thinking in genetics recognising 
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homologous nucleotides, amino acids, protein domains, proteins, genes, etc. 

(Fitch, 2000; Morrison, Morgan and Kelchner, 2015). In this thesis we often 

refer to homologous genes and homologous proteins. Homologous genes 

are genes that share a common ancestor. We also call this gene-level 

homology since a unit of homology is gene. Homologous genes code for 

homologous proteins, and vice versa, homologous proteins are coded by 

homologous genes. Thus, we refer to protein-level homology. A protein can 

have one or more protein domains which may or may not have the same 

evolutionary history, the latter being the consequence of gene fusion, domain 

insertion or domain deletion (Bornberg-Bauer et al., 2005). For example, 

enterokinase contains a serine protease domain, two domains homologous 

to a domain of the low-density lipoprotein receptor, a domain homologous to 

the membrane-bound metalloproteases of renal glomeruli, a domain related 

to a protein of Drosophila dorsal-ventral patterning gene tolloid, and a 

domain homologous to cysteine-rich motifs found in macrophage scavenger 

receptor (Kitamoto et al., 1994). Thus, the concept of homology may in some 

instances not apply at the protein-level while  applying at a domain-level. In 

such cases, David M. Hillis proposes a term “partial homology” (Hillis, 1994), 

also recommended by Walter M. Fitch (Fitch, 2000). 

 

It is important to distinguish “homology” from “predicted homology” 

(Patterson, 1988). “Homologous” means evolutionary related. Homologous 

structures that used to be identical evolve and diverge gradually reducing the 

similarity. However, the true sequence of changes is usually unknown. We 

are constrained to make observations and find supporting evidence for 

homology (often a certain level of similarity) studying mostly extant species. 

We might observe similarities which are not due to common ancestry but 

rather to a convergent evolution or random mutations, and it is not 

necessarily possible to tell them apart (Sanderson and Hufford, 1996). We 

might also fail to infer homologous relationships if the structures under 

examination have diverged beyond recognition of our methods (Fariselli et 

al., 2007; Pearson, 2013). Hence, the inferred homologs are not necessarily 

true homologs, nor are all homologous relationships detectable. Throughout 

this thesis we use words putative, predicted, inferred in front of homologs 
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and homologous relationships to indicate that we speak about homology 

prediction. 

 

Homology prediction often relies on sequence similarity (more in the 

following section 1.4.3) so we often speak of putative homologous DNA/RNA 

sequences or putative homologous protein sequences, or just putative 

homologous sequences. In cases of putative partial homology, the two 

corresponding protein sequences will contain sequences of domains which 

are putative homologous to each other, and those which are not. Even where 

homology holds on the gene- or protein-level, corresponding sequences of 

two homologs might not be of the same length as a consequence of 

insertions and deletions. Thus, the sequences will contain stretches of 

common sets of residues and those that are present only in one of them. 

Throughout this thesis where we make homology prediction, we refer to this 

fine-grained concept as putative subsequence-level homology or shorter 

putative subsequence homology. 

 

1.4.3 Alignment methods for homology inference 
 

Homologous genes—genes that originated from a single ancestral gene— 

evolve and diverge over time, leading to a gradual reduction in their similarity 

(Patterson, 1988). Looking at the sequencing data, if two sequences are 

more similar than expected by chance, i.e. share significant sequence 

similarity according to a chosen criteria, that could be explained as a 

consequence of common ancestry (the simplest explanation) or convergent 

evolution (a more complex explanation) (Pearson, 2013). Thus, many 

computational methods predicting homologous relationships consider higher-

than-chance sequence similarity as an indication of homology (Chen et al., 

2016). However, detecting such statistically significant sequence similarity is 

not a trivial task, and the inability to do so does not imply non-homology 

(Pearson and Sierk, 2005; Pearson, 2013). Comparison of DNA sequences 

typically allows homology detection for genes which diverged up to 200-400 

million years ago (Pearson, 2013). Since different codons can specify the 
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same amino acid, protein sequences are more conserved and can facilitate 

homology detection for genes with divergence time more than 2.5 billion 

years ago (Pearson, 2013). Protein sequence identity levels of 20-35% are 

often considered as a “twilight zone” for homology prediction (Vogt, Etzold 

and Argos, 1995)—yet protein sequences of homologous genes can share 

less than 20% identity (Pearson, 2013). Protein structure is thought to be 

often more conserved than protein sequence as it plays an important role in 

protein function (Illergård, Ardell and Elofsson, 2009). Thus, structure-based 

methods typically allow for better homology detection when sequences share 

low sequence identity (Fariselli et al., 2007). As with sequences, it is 

important to be aware that significant structure similarity is just a signal of 

homology, and that the lack of detectable signal does not imply non-

homology (Fariselli et al., 2007). Despite potentially higher sensitivity of 

methods relying on protein structure, the majority of homology inference 

methods relies on protein sequence information as it is more convenient for 

modelling and requires less resources for practical applications (Chen et al., 

2016).  

 

According to Chen et al. (2016), sequence-based homology inference 

methods can be roughly divided into three categories: i) alignment methods, 

ii) discriminative methods, and iii) ranking methods. Alignment methods look 

for indications of homology in sequence alignments or alignments of 

sequence representations (Wan and Xu, 2005). They are typically based on 

dynamic programming algorithms and their performance depends on the 

alignment algorithm and scoring function. The inference is made based on 

the alignment score which provides a better clue for homology than 

sequence identity and similarity measures (Chen et al., 2016). Discriminative 

methods attempt to classify sequences into groups of putative homologs in a 

machine learning framework (Jaakkola, Diekhans and Haussler, 2000; 

Bernardes, Carbone and Zaverucha, 2011). Being trained on both positive 

and negative samples, they tend to make fewer false positive predictions 

than alignment methods. However, they rely on representing sequences as 

feature vectors which makes them challenging to develop and apply. 

Ranking methods approach homology inference as a ranking task and 
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provide a sorted list of putative homologs based on their spatial distance to 

the query in the feature space (Weston et al., 2004; Liu, Chen and Wang, 

2015; Chen, Liu and Huang, 2016). Taking advantages of both alignment 

and discriminative methods, ranking methods can achieve better predictive 

performance28. Discriminative and ranking methods can incorporate 

additional information beside the sequence itself which can further increase 

their predictive performance (e.g. physicochemical properties of amino 

acids), yet alignment methods tend to be more straightforward and less 

computationally demanding, thus more applicable to large datasets (Chen et 

al., 2016). Methods which do not align sequences for the purposes of 

sequence comparison are referred to as alignment-free methods (Zielezinski 

et al., 2019). Depending on the heuristics they employ, they can be much 

faster than the alignment-based approaches, and thus more scalable to large 

datasets. The most popular alignment-free methods for sequence 

comparison rely on k-mer counts (Zielezinski et al., 2019). 

 

Alignment methods can be classified further based on the alignment strategy 

into: i) sequence alignment methods, ii) profile alignment methods, and iii) 

methods relying on hidden Markov models (Chen et al., 2016).  

 

Methods relying on global or local pairwise sequence alignment make 

homology inference based on the pairwise sequence alignment score (Chen 

et al., 2016). Global alignment (e.g. Needleman-Wunsch (Needleman, 1970)) 

is suitable for datasets containing sequences of similar length (Chen et al., 

2016). In other cases, especially when only parts of sequences are 

evolutionary conserved, local alignment (e.g. Smith-Waterman (Smith and 

Waterman, 1981)) is a better option (Chen et al., 2016). Homology inference 

typically starts with all-against-all protein sequence comparison where all 

pairs of sequences, within and across species, are aligned and their 

alignment score is computed (Smith and Waterman, 1981; Altschul et al., 
                                            
28 Some authors classify methods such as BLAST (Altschul et al., 1990), FASTA 
(Pearson and Lipman, 1988; Pearson, 2000) and PSI-BLAST (Altschul et al., 1997) 
into ranking methods (Liu, Chen and Wang, 2015) while others restrict to more 
complex methods which combine both alignment and discriminative approaches 
(Wan and Xu, 2005; Chen et al., 2016). 
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1997). If the alignment score is above a certain threshold and alignment 

length constraints are satisfied (Dessimoz et al., 2005; Roth, Gonnet and 

Dessimoz, 2008), a pair is called putative homologs. A standard 

implementation of Needleman-Wunsch or Smith-Waterman alignment 

algorithm takes time proportional to the product of the sequence lengths 

(Durbin et al., 1998). Since all-against-all procedure scales quadratically to 

the number of sequences compared, it rapidly becomes very costly. To 

speed up the inference, methods adopt various heuristics which come at the 

cost of lower accuracy. For example, widely used approaches like BLAST 

(Altschul et al., 1990) and FASTA (Pearson and Lipman, 1988; Pearson, 

2000) do not guarantee finding optimal alignments (Fariselli et al., 2007).   

 

Profile alignment methods represent each putative gene family with a profile 

which can be used to find more family members and updated accordingly 

(Chen et al., 2016). They tend to be more sensitive than sequence alignment 

methods because they calculate a profile based on position-specific 

information from the multiple sequence alignment (MSA) of a putative gene 

family (Gribskov, McLachlan and Eisenberg, 1987; Pearson, 2013). For the 

initial profile computation, a query sequence is searched against a set or 

database of sequences to detect sequences sharing statistically significant 

sequence identity (Chen et al., 2016). Then an MSA is built from the query 

and its matches. Finally, a profile is computed from the MSA. A profile can be 

represented as a position-specific scoring matrix (PSSM) where the rows 

represent features (typically 20 rows for 20 amino acids) and columns 

represent residue positions in the chosen columns of the MSA (Fariselli et 

al., 2007). Elements of the matrix contain or reflect the frequencies of each 

residue at each position in the alignment (Fariselli et al., 2007)29. In 

generalised profiles, an additional row with a position-specific 

insertion/deletion penalty can be added (Gribskov, McLachlan and 

Eisenberg, 1987). Some methods compute a profile for each sequence in a 

database and query the sequence of interest against the database of profiles 

                                            
29 Some approaches generate a consensus sequence corresponding to a PSSM to 
aid visualisation of pairwise alignment of the profile and a query (Gribskov, 
McLachlan and Eisenberg, 1987).  
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(Schäffer et al., 1999). Putative homology can also be inferred by comparing 

a profile to the database of profiles (Rychlewski et al., 2000; Sadreyev and 

Grishin, 2003; Margelevičius and Venclovas, 2010). All three types of 

comparisons are typically performed using standard dynamic programming 

algorithms for pairwise sequence alignment or their variants (Gribskov, 

McLachlan and Eisenberg, 1987; Edgar and Sjölander, 2004). Methods 

relying on profile-to-profile comparisons tend to outperform profile-to-

sequence and sequence-to-profile methods (Chen et al., 2016). There are 

also profile-based methods which try to improve their performance with 

secondary structure information (Tomii and Akiyama, 2004; Chen and 

Kurgan, 2007; Kelley and Sternberg, 2009; Yang et al., 2011; Gront et al., 

2012). Reliance on the MSA is also a disadvantage of the profile-based 

approaches (Pearson, 2013). The quality of the MSA will directly affect 

profile representation. Furthermore, inclusion of a non-homolog into a 

putative family can lead to more false positive predictions (Fariselli et al., 

2007; Pearson, 2013). 

 

Profile hidden Markov models (HMMs) provide a probabilistic framework for 

homology inference (Durbin et al., 1998). Like standard profiles, they capture 

position-specific information about the degree of conservation in the multiple 

sequence alignment (Krogh et al., 1994). They can represent putative 

sequences and families, and homology search can be performed by 

comparing a sequence against a database of profile HMMs, a profile HMM 

against a database of sequences and a profile HMM against a database of 

profile HMMs, the last one being the most sensitive (Choo, Tong and Zhang, 

2004; Wan and Xu, 2005; Remmert et al., 2011). Unlike standard profiles, 

profile HMMs can model insertions and deletions (Durbin et al., 1998). While 

profiles rely on observed frequencies and ad hoc scoring systems, profile 

HMMs have formal probabilistic basis and use statistical methods for 

parameter estimation (Eddy, 1998). As a consequence, a profile HMM built 

from a multiple sequence alignment of 10-20 sequences can have equivalent 

quality as a profile calculated from 40-50 aligned sequences (Rigden, 2017). 

In terms of homology prediction, methods based on profile HMMs are more 
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sensitive than sequence alignment and profile alignment methods (Choo, 

Tong and Zhang, 2004; Chen et al., 2016). 

 

A profile hidden Markov model (HMM) as a variant of HMMs for biological 

sequences has an underlying topology of a directed acyclic graph, with the 

exception of loops (a toy example depicted in Fig. 1.8) (Krogh et al., 1994; 

Choo, Tong and Zhang, 2004). An HMM has a finite number of states which 

can generate observations (Rabiner and Juang, 1986). A profile HMM 

typically has three classes of states: match, insert and delete (Krogh et al., 

1994; Yoon, 2009). The sequence of states follows a Markov chain, thus the 

probability of being in a state depends only on the previous n states, where n 

is the order of the Markov chain. The probability of moving from one state to 

another or staying at the same state is called transition probability, and it has 

to be defined for all allowed transitions in the model. Each state generates a 

symbol independently of other states and is associated with an emission 

probability distribution. The emitted symbols are observed, and in contrast to 

Markov chains, it is not possible to tell which state emitted a symbol just by 

looking at the symbol. Thus, the name hidden Markov models. Two non-

emitting dummy states can be added: the initial Begin state and the final End 

state (Krogh et al., 1994). The Begin state allows the process to move to the 

first standard state according to a non-uniform probability distribution (Krogh 

et al., 1994). The End state allows modelling the distribution of sequence 

lengths and defining a probability distribution on the sequence space (Krogh 

et al., 1994; Durbin et al., 1998). Starting from the Begin state, the process 

moves to the next state with a certain probability and a symbol is emitted 

according to the state’s emission distribution. Then the process transitions to 

the next state, the state emits a symbol, and so on, until the process reaches 

the End state marking the end of the generated sequence. Each sequence 

generated by an HMM is independent of all others (Eddy, 1996). Given an 

HMM and an observed sequence of symbols, it is possible to calculate the 

probability that the sequence was generated by the HMM (forward algorithm) 

and find the most probable state path that generated the sequence (Viterbi 

algorithm) (Rabiner and Juang, 1986; Durbin et al., 1998). When profile 

HMMs represent gene families, these probabilities help to detect putative 
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homologs (Krogh et al., 1994; Krogh, 1998). Standard implementations of 

both algorithms for a profile HMM with M states have a runtime complexity 

O(MN) for a sequence of length N, i.e. the same as dynamic programming 

algorithms for pairwise sequence alignment (Eddy, 1998). The fact that 

different state paths can yield the same observed sequence (typically with 

different probabilities) contributes to the sensitivity of profile HMMs and helps 

them to outperform standard profiles for homology search (Chen et al., 

2016).  
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Figure 1.8: A toy example of a profile hidden Markov model (HMM) 

construction for a putative gene family (reproduced from: Durbin et al. 
(1998)30).  

a) Multiple sequence alignment (MSA) of DNA sequences with x’s denoting 

columns assigned to match states (M) in the profile HMM. Column 

assignment can be done manually, heuristically or algorithmically (e.g. MAP 

match-insert assignment). The profile HMM assumes that the MSA is correct. 

b) Architecture of the profile HMM. M’s represent match states, I’s insert 

states and D’s delete states. Each match and insert state can emit one of the 

four nucleotide symbols (A, C, G, T) while delete states are “silent” and give 

rise to gaps (-). Arrows depict allowed transitions between different states or 

staying in the same state. A profile HMM of a gene family assumes that each 

homologous sequence is independently generated from the profile 

(equivalent to a star phylogeny with fixed branch lengths), and that each 

residue depends only on the underlying state (no correlation between 

residues) (Eddy and the HMMER development team, 2019). c) Counts of 

observed emissions from match and insertion states, and counts of 
                                            
30 From Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic 
Acids, Richard Durbin, Sean R. Eddy, Anders Krogh and Graeme Mitchison, 1998, 
Cambridge University Press. This publication is in copyright. Subject to statutory 
exception and to the provision of relevant collective licensing agreements, no 
reproduction of any part may take place without the written permission of 
Cambridge University Press. Reproduced with permission of Cambridge University 
Press through PLSclear. PLSclear Ref No 38316. 
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transitions between match, insert and delete states. Counts are used to 

estimate emission and transition probabilities of the model. Typically, 

weighting techniques are used to assign weights to sequences, e.g. lower 

weights to redundant sequences of closely related genes (Krogh and 

Mitchison, 1995; Karchin and Hughey, 1998). 

 

In practice, runtime of (alignment-based) methods depends on the particular 

implementation and heuristics it employs. For example, according to the 

publication of a popular profile HMM-based method HMMER3 (Eddy, 2011), 

HMMER3 required a longer runtime on the benchmarking datasets than 

widely used profile-based PSI-BLAST (Altschul et al., 1997) and sequence 

alignment-based NCBI BLAST (Camacho et al., 2009), the latter two taking 

roughly the same time for inference. Sequence alignment methods FASTA 

(Pearson and Lipman, 1988; Pearson, 2000), SSEARCH (part of FASTA 

program family) and WU BLAST (Gish, 1996-2003) required even longer 

runtime. However, running a profile HMM-based method SAM (Karplus, 

Barrett and Hughey, 1998) took the longest time. In their publications on a 

profile HMM-based method HHblits, Remmert et al., (2011) and Steinegger 

et al. (2019) reported experiments in which HHblits was faster than PSI-

BLAST which was again faster than HMMER3.31 

 

Faster homology methods with lower runtime complexity typically employ 

heuristics to avoid unnecessary pairwise sequence alignments. For example, 

CD-HIT (Li and Godzik, 2006), kClust (Hauser, Mayer and Söding, 2013), 

MMseqs (Hauser, Steinegger and Söding, 2016) and UCLUST (Edgar, 2010) 

divide input sequences into clusters (groups) of putative homologs quickly 

comparing a query and a cluster representative based on the number of 

common or high-scoring words (k-mers) in the sequences. Unfortunately, 

those algorithms are less sensitive and have problems when inferring distant 

relationships. Nevertheless, k-mer heuristics are promising. MMseqs2 

(Steinegger and Söding, 2017), a more sensitive and faster successor of 

                                            
31 In terms of sensitivity, methods employing profile hidden Markov models 
outperformed profile-based PSI-BLAST. Methods relying on sequence alignment 
identified the fewest number of putative homologs. 
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MMseq, reached the sensitivity of BLAST (Altschul et al., 1990) while being 

much faster (~36x) on the tested dataset. The tool also provides profile-to-

sequence and sequence-to-profile searches which outperformed PSI-BLAST 

(Altschul et al., 1997) in terms of sensitivity and runtime in the reported 

comparison (Steinegger and Söding, 2017). A recent study by Zielezinski et 

al. (2019) validated 24 tools for alignment-free sequence comparison. AFKS 

(Luczak, James and Girgis, 2019) and alfpy (Zielezinski et al., 2017) 

demonstrated the best ability to distinguish between putative homologs and 

non-homologs. AFKS calculates different distance/dissimilarity measures 

between sequences based on k-mer counts while alfpy also calculates 

information-theoretic, graph-based and hybrid measures. 

 

1.4.4 Comparative genomics methods to identify fragmentation in 
reconstructed protein-coding regions 
 

Assembly and annotation of a newly sequenced genome or transcriptome 

are challenging tasks as described in sections 1.1.3 and 1.2. Published 

projects typically contain many fragmented sequences, a severe problem in 

plant research as discussed in section 1.3.1. Yet, fully assembled and 

correctly annotated protein-coding regions facilitate studying gene and 

species evolution, and provide insights into biological processes in the 

organism as explained throughout sections 1.2 and 1.4.1-1.4.3.  

 

Taking into account the evolutionary conservation of genes and proteins (see 

section 1.4.1), already assembled putative gene and protein sequences can 

be used as guides in assembling homologous regions of newly sequenced 

species, for example, using reference-based assembly approaches as 

described earlier in section 1.1.2. Furthermore, putative homologous gene 

(protein) sequences can be used to guide scaffolding or, more generally, as 

a template for detecting fragments of the same gene (protein) model in a 

target assembly. Nevertheless, there is a possibility that a DNA sequence of 

a target or reference species was affected by mutations (as explained in 

section 1.4.1), and a putative sequence or annotated model from the 
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reference species could mislead resolving the problem at hand. Thus, the 

methods could introduce additional criteria and predictions could be further 

examined (computationally and/or experimentally) to acquire additional 

supporting evidence.  

 

To our knowledge, there are four approaches that employ available putative 

homologous sequences to detect fragmentation in the target assembly and 

its annotation. They are described below. 

 

ESPRIT (Dessimoz et al., 2011) uses pairwise comparisons to identify non-

overlapping pairs of putative protein-coding sequences that have a similar 

estimated evolutionary distance to putative homologs in other species. A pair 

of putative protein sequences corresponding to fragmented gene models is 

also required to consistently map together to multiple reference putative 

protein sequences. ESPRIT does not try to resolve cases where more than 

two fragments seem to belong to the same gene model or when fragments 

overlap (i.e. segments might come from the same haplotype, hence 

significantly overlap, but have not been assembled together due to 

uncertainty arising through polymorphism).  

 

SWiPS (Li and Copley, 2013) is developed with the aim of exploiting putative 

orthology to guide scaffolding. It starts with identifying contigs that contain 

putative protein-coding exons and mapping them to the predicted 

orthologous reference protein sequences. Multiple contigs are allowed to 

map to the same protein sequence and, vice versa, a contig is allowed to 

map to multiple protein sequences. The similarity scores between every pair 

of a protein sequence and an assigned contig are then computed. These 

scores are used to greedily choose the best combinations of contigs to 

scaffold. After the scaffolding step is over, the algorithm inspects contigs 

containing multiple protein sequences and tries to use this information to 

connect scaffolds into super-scaffolds. The performance of the algorithm 

depends heavily on the ability to distinguish putative orthologs from putative 

paralogs, something which could be improved. 
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The Ensembl Compara pipeline (Vilella et al., 2009; Cunningham et al., 

2019; Howe et al., 2020) infers as “gene_split” pairs of apparent paralogous 

sequences that lie within one megabase on the same strand of the same 

region of the assembly and do not overlap in the multiple sequence 

alignment of the putative gene family (EMBL-EBI, 2019b). Restricting these 

predictions to gene models annotated on the same contig greatly reduces 

the risk of false positive split gene model calling, but particularly for 

fragmented assemblies with many short contigs, this approach detects only a 

fraction of all splits. Furthermore, the pipeline cannot be easily run on custom 

genome data. 

 

PEP_scaffolder (Zhu et al., 2016) relies on high-identity matches of 

reference protein sequences to multiple contigs. Thus, like ESPRIT 

(Dessimoz et al., 2011) and SWiPS (Li and Copley, 2013), the approach 

relies on pairwise alignments. Computationally particularly efficient, it also 

has the strength of considering a maximum intron length to avoid combining 

fragments that are unrealistically far apart. 

 

Yet for all of these methods, the correct identification of split gene (protein) 

models heavily depends on their ability to distinguish fragments of the same 

putative gene (protein) sequence from fragments of paralogous sequences. 

Ensembl Compara (Vilella et al., 2009; Cunningham et al., 2019; Howe et al., 

2020) and PEP_scaffolder (Zhu et al., 2016) make no attempt to distinguish 

between the two. As for ESPRIT (Dessimoz et al., 2011) and SWiPS (Li and 

Copley, 2013), although they attempt to identify fragments that match 

reference gene (protein) sequences consistently—either by requiring 

consistent estimated evolutionary distances to the reference for all fragments 

or by requiring consistent best matches for all fragments—these 

comparisons are inherently limited by the pairwise comparison setting, which 

loses out on phylogenetic information available in a multiple-sequence and 

tree setting. 
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1.5 Research questions and overview of the thesis 

 

As we have seen throughout the previous sections, as the time and cost of 

sequencing decrease, the number of available putative genomes and 

transcriptomes rapidly increases. Yet the quality of the assemblies and 

annotations varies considerably and often remains poor, affecting 

downstream analyses (Schliesky et al., 2012; Denton et al., 2014). Many 

researchers are interested only in the protein-coding regions of a genome or 

transcriptome, or even just a single gene, and fragmented and incomplete 

assemblies and annotations might provide enough information for their 

particular studies. For example, a project aiming to identify evolutionary 

related functional genes shared across all mammals might benefit more from 

a large number of draft genome assemblies sampled across the class 

Mammalia rather than from a few high-quality assemblies (Margulies and 

Birney, 2008), particularly if the coding regions are sufficiently covered in the 

drafts (Thomma et al., 2016). Fragmented and incomplete transcriptome 

assemblies have also proven useful in proteome analyses and pathway 

reconstructions (Schliesky et al., 2012). On the other hand, many studies 

would benefit from assemblies of higher quality. For example, if a gene 

sequence is represented by fragments on separate contigs, each fragment 

might get annotated as a separate gene (as explained in sections 1.1.3 and 

1.2). Homology might get inferred between the fragments and sequences 

from other species but the fragments might be mistaken as a pair of putative 

paralogs. Hence, such assemblies and annotations might not be optimal for 

studying lineage-specific deletions and gene family expansions (Margulies 

and Birney, 2008; Schliesky et al., 2012). The fragmentation problem also 

affects non-coding regions (described in section 1.1.3), initially thought to be 

“junk”, which are becoming increasingly important for studying life style, 

adaptability and evolution of organisms (Thomma et al., 2016). 

 

The more complex the genome, the more challenging sequencing, 

assembling and annotation are, as elaborated throughout the chapter. 

Multicellular species, especially plants with large and complicated genomic 
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sequences, will typically require more efforts to obtain complete and reliable 

assemblies (Chapman et al., 2015) and consequently, annotation. 

Nonetheless, given the importance of plants for the human population and 

the need for higher yields and better plant protection, facing this challenge is 

necessary (International Wheat Genome Sequencing Consortium (IWGSC) 

et al., 2018). Unfortunately, the majority of the available putative plant 

genomes are in a draft state and there is a lot of room for improvement 

(Claros et al., 2012).  

 

The potential improvements of current putative draft genomes and 

transcriptomes could be classified into three major groups. First, they could 

be resequenced using technologies which produce longer and/or more 

accurate reads. This could be done by using the existing methods or by 

developing new ones. This approach could be rather costly. Using the 

already existing approaches (e.g. Sanger (Sanger, Nicklen and Coulson, 

1977), PacBio (Rhoads and Au, 2015), Nanopore (Feng et al., 2015)) is 

more expensive than short-read sequencing. Developing new sequencing 

technologies could be expensive due to the costs of necessary wet-lab 

experiments. Second, there is an obvious lack of de novo algorithms that 

accommodate the complexities of plant genomes. Future developments 

could take them into account. This could be challenging especially if 

complexities are not well characterized and described in the literature, or if 

the solution is computationally costly. Finally, we could avoid making 

universal assumptions which hold across all species and work on a smaller 

scale within a framework of comparative genomics. We can exploit 

information from already available assemblies and resolve some ambiguities 

relying on evolutionary patterns across closely related species.   

 

In this PhD project, we aimed to develop methods that detect fragments of 

the same gene model in an annotated assembly based on the information 

provided in already assembled and annotated putative homologous 

sequences from other species. If fragmented annotation is a consequence of 

a fragmented assembly, one could then improve the assembly as well. As 

more and more genome and transcriptome assemblies become available, 
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the average evolutionary distance between sequenced species is getting 

shorter which facilitates homology inference (Armstrong et al., 2019), and 

hopefully makes the method more applicable and successful. Since 

homology inference requires many pairwise comparisons and corresponding 

computational costs rise rapidly when using putative plant genomes (or 

proteomes) due to their large size and complexity, we also worked on 

developing an efficient and sensitive approach to fast homology inference. 

 

In the rest of the thesis, we provide a detailed description of the research 

contribution which can be divided into four research projects, and finish with 

concluding remarks.  

 

In the following chapter, Chapter 2, we present a new approach to homology 

inference. The inference often starts with all-against-all pairwise putative 

protein sequence comparisons within and across species in a dataset of 

interest. It is a computationally intensive step in which many pairs do not turn 

out to be putative homologs. We present a clustering approach which speeds 

up homology inference by avoiding some of the unnecessary comparisons. 

Alongside the description of the algorithm, we present results on the real 

data and comparison to the established methods. The speedup is particularly 

relevant to large, complex and highly redundant putative plant genomes. Yet, 

as the approach was not parallelised at the time of working on the central 

aim of the thesis—developing and applying a method for detecting 

fragmented gene models—we did not use it in the subsequent projects. 

However, the new homology approach is a promising attempt. Thus, we 

provide an extensive discussion on its potential improvements in terms of 

recall and runtime, with a parallel implementation potentially having the 

highest impact on its wider applicability.  

 

Having chosen a parallel mode of an existing homology inference method as 

a faster option to perform all-against-all comparisons, the rest of the work 

revolves around a pipeline for identifying fragmented gene models. 

Nevertheless, the all-against-all is the most time-intensive step in the 

pipeline, and putative homologs are the only source of information for 
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fragmentation inference. They thus underpin the work presented in Chapters 

3-5. 

 

In Chapter 3, we introduce two novel phylogenetic heuristics to infer non-

overlapping or partially overlapping gene models that could be parts of the 

same, longer, gene model in a genome assembly of interest. One approach 

collapses branches with low SH-like support and the other makes inference 

based on the likelihood ratio value. We extensively validate the methods and 

analyse their performance varying input parameters. Having found a set of 

parameters which yields a reasonable number of reliable predictions, we 

apply the heuristics to the fragmented putative bread wheat proteome. 

 

In Chapter 4, we explore the suitability of the heuristic approaches developed 

in Chapter 3 beyond putative bread wheat proteome. We apply them to the 

putative proteome of wild olive while providing practical guidelines to 

scrutinise their behaviour and results using no additional datasets.  

 

In the last research project described in Chapter 5, we assemble and 

annotate a putative cassava transcriptome and use it as an input for our 

phylogenetic heuristics to survey their behaviour and performance on the 

transcriptomic data. The analysis reveals transcriptome-specific challenges 

and provides clues for future developments. 

 

We conclude the thesis with a summary of the undertaken research projects 

and emphasise the importance of their outcomes. 
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Chapter 2: Speeding up homology inference 
 

2.1 Introduction 
 

As already mentioned in Chapter 1, the concept of homology plays a key role 

in computational biology studies such as protein function prediction, species 

tree reconstruction and gene family evolution. 

 

Typically when predicting homologous relationships in a dataset, all possible 

pairs of putative gene or protein sequences within species and across 

species are inspected. This is computationally expensive, especially when 

the dataset comprises large putative plant genomes or proteomes. Since 

many pairs do not turn out to be putative homologs, computational costs 

could be reduced by avoiding unnecessary comparisons. Indeed, instead of 

performing all-against-all on the whole dataset, we could do a two step 

procedure: i) cluster the data, and ii) perform the all-against-all only within 

clusters. The challenge lies in the clustering step which should be fast and 

provide a baseline for accurate homology inference.  

 

In this chapter, we describe our new approach to fast homology inference 

comprised of clustering followed by all-against-all comparisons within 

clusters. It was developed with the aim of speeding up homology inference 

adopted in OMA standalone software tool (Roth, Gonnet and Dessimoz, 

2008; Altenhoff et al., 2014; Altenhoff et al., 2019). Our approach 

distinguishes itself from most clustering methods in that it relies on clustering 

based on full dynamic programming algorithm of Smith and Waterman 

(Smith and Waterman, 1981) for pairwise alignment comparison with cluster 

representatives and allows sequences to match to several clusters while 

attempting to exploit the transitive property of homology. The algorithm does 

not employ any heuristics on k-mer analysis to further speed up the inference 

process. The clustering approach could also be adapted for or incorporated 

into other homology inference pipelines relying on all-against-all comparisons 
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within a dataset. For example, it could be used instead of BLAST (Camacho 

et al., 2009) all-against-all in the Ensembl pipeline (Zerbino et al., 2018) for 

modeling gene families not described in Ensembl’s library of HMM profiles 

(EMBL-EBI, 2019a; EMBL-EBI, 2019c). We also provide results of the 

comparisons with the current OMA approach, kClust (Hauser, Mayer and 

Söding, 2013) and UCLUST (Edgar, 2010). Finally, we discuss performance 

of the approach, its potential beyond the current framework and ways for 

improvement. 

 

2.2 Methods 
 

This section describes algorithm development of a model that takes into 

account complexities of real biological data. It also contains description of 

comparisons with the current OMA all-against-all approach (Roth, Gonnet 

and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) and fast k-

mer methods, namely kClust (Hauser, Mayer and Söding, 2013) and 

UCLUST (Edgar, 2010), and provides information on the empirical datasets 

used throughout the study.  

 

2.2.1 Building clusters of putative homologous sequences in an ideal 
theoretical framework 
 

Homology is an equivalence relation. In particular for gene-level homology 

defined on the set of all genes, that means that, for any three genes A, B and 

C, it is: 

i) reflexive: gene A is homologous to gene A,  

ii) symmetric: gene A is homologous to gene B if and only if  gene B is 

homologous to gene A,  

iii) transitive: if gene A is homologous to gene B, and gene B is homologous 

to gene C, then genes A and C are homologous.  

As an equivalence relation, it partitions the set of all genes into disjoint 

equivalence classes—sets of homologous genes or homologous clusters—
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where all genes within a homologous cluster are homologous to each other 

and there is no other gene outside the cluster that is homologous to any of 

them. A homology inference method which accurately identifies all 

homologous and non-homologous relationships among genes is, thus, an 

equivalence relation32.  

 

A corollary of transitive property of homology is that if genes A and B are 

homologous, and gene A is not homologous to gene C, then genes B and C 

are not homologous.  

 

Proof of corollary: Let S1 denote “Gene A is homologous to gene B”, S2 

“Gene B is homologous to gene C” and S3 “Gene A is homologous to gene 

C”. The transitivity of homology states that S1 ⋀ S2 ⇒ S3. By material 

implication, that is equivalent to ¬ (S1 ⋀ S2) ∨ S3. De Morgan’s law yields the 

equivalent expression (¬ S1 ∨ ¬ S2) ∨ S3 which is, due to the associativity 

and commutativity of disjunction, equivalent to (¬ S1 ∨ S3) ∨ ¬ S2. Using De 

Morgan’s law again, the expression transforms to the equivalent ¬ (S1 ⋀ ¬  

S3) ∨ ¬ S2. Finally, by material implication it is equivalent to the expression 

S1 ⋀ ¬ S3 ⇒ ¬ S2. 

■ 
 

The corollary can be exploited in methods which aim to provide evidence for 

homology from putative gene or corresponding putative protein sequences. 

More precisely, it is applicable in partitioning a set of putative gene 

sequences or a set of putative protein sequences into clusters of putative 

homologous sequences given that the method is capable of detecting every 

pair of sequences derived from homologous genes (proteins), even when the 

genes are evolutionary distant. In particular, once the pairs of sequences A 

and B, and A and C are inspected for evidence of homology, there is no 

need to look for the evidence between sequences B and C. Furthermore, for 

a cluster of putative homologous sequences, one putative gene (protein) 
                                            
32 It is probably impossible to develop such a method due to unknown and complex 
mechanisms of evolution. 
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sequence can act as a representative for the whole cluster. If a new 

sequence is putative homologous to the representative, due to transitivity of 

putative homology it is putative homologous to all other sequences in the 

cluster. Similarly, if a sequence is not putative homologous to the 

representative, it is not putative homologous to any sequence in the cluster. 

 

2.2.2 Inferring clusters of putative homologs on the available real data 
 

In practice, it can be very difficult to find evidence for homology. At a 

sequence level, evidence for homology can be found only in the common set 

of residues of the examined putative sequences. We do not know the true 

evolutionary history of genes and homology inference methods may have 

unrealistic assumptions, e.g. a chosen score or probability threshold that a 

pair of putative sequences should satisfy in order to be called putative 

homologous (more in section 1.4.3). Consequently, such a homology 

inference method defined as a relation on a set of available putative gene or 

protein sequences might not necessarily hold properties of an equivalence 

relation.  

 

In this project, we aim to construct a method that takes a set of putative 

protein sequences and classifies them into subsets of putative homologs. To 

reduce the number of comparisons, we try to use transitivity of homology and 

its corollary (see section 2.2.1), and choose a representative sequence for 

each cluster. Yet, we face two major problems. First, it can be challenging to 

find evidence for homology in putative sequences coming from very distant 

genes, i.e. we can easily miss homologous relationships when a cluster 

representative and a query are putative protein sequences of distant genes. 

Second, due to insertions, deletions, gene fusions and fissions, at a 

sequence level transitivity holds only on the common set of residues. As a 

consequence, we will miss a pair of putative homologs if the representative 

does not cover common residues of a sequence under inspection and its 

putative homolog within the set (Fig. 2.1). Also, a sequence added to the 
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cluster based on its common residues with the representative might not have 

common residues with all other sequences in the cluster.  

 

To bypass these problems, we introduce four modifications to the described 

algorithm. First, we use more than one representative per cluster to improve 

inference when the putative sequences are so diverse that one sequence is 

not a good representation of the whole cluster. Second, we allow putative 

sequences to be assigned to more than one cluster. This is beneficial for 

clusters which are fragmented due to sequences coming from highly 

diverged genes, and for multi-domain protein sequences. Third, we consider 

putative subsequence-level homology (the concept described in the end of 

section 1.4.2). In our algorithm, if an entire length of a putative sequence 

(minus 20 amino acid residues tolerance) is not covered by the 

representatives of the assigned clusters, the sequence also founds a new 

cluster and becomes its representative. Finally, once the clusters are built, 

we perform all-against-all comparisons within each cluster to eliminate false 

putative homology calls that can be detected with our criteria. 
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Figure 2.1: Diagram of potential problems with exploiting transitive 

property of homology in inference on the real data. 
a) The residues involved are not consistent, and after 

finding indications that putative sequences A and B come from homologous 

genes, but not finding indications and A and C come from homologous 

genes, one would conclude that putative sequences B and C do not come 

from homologous genes either. b) The representative sequence does not 

cover significant regions of two mutually putative homologs and the 

relationship is missed. 

 

The pseudocode of our final cluster building procedure is shown in Figure 

2.2. A set Proteomes comprises input putative proteomes ordered by their 

number of putative sequences in descending order while putative sequences 

within putative proteomes keep the same ordering as in the original database 

file. Starting with the largest putative proteome, we process sequence by 

sequence. At the onset of the process, there are no clusters and the first 

putative sequence founds a cluster and becomes its representative. Every 

subsequent sequence is aligned with the representatives of the current 

cluster(s). To compute alignment-score between two sequences, we run 

Smith-Waterman pairwise alignment (Smith and Waterman, 1981) 

implemented by Szalkowski et al. (2008) using 224 GCB scoring matrix 

(Gonnet, Cohen and Benner, 1992). If the score is above the minimum 

threshold T of 135.75, the sequence is added to the cluster. Furthermore, if 

the number of cluster representatives in the particular cluster is below the 

maximum allowed (L), the newly added sequence becomes a representative. 

We also keep track of how much the putative sequence is covered by the 

representatives of the assigned clusters. We do not introduce any restrictions 
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on the size of the clusters nor on the number of clusters that a putative 

sequence is assigned to. After exhaustive search through all cluster 

representatives, we assess whether the putative sequence was added to one 

or multiple clusters. If the full length of the putative sequence (minus a 

tolerance C of 20 amino acids) is not covered by the clusters to which the 

sequence was added, an additional cluster is created with the sequence as a 

representative. The same applies if the putative sequence was not assigned 

to any clusters.  
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Two details can be noticed in the implementation description—ordering 

putative proteomes according to the number of putative sequences and 

alignment score threshold T=135.75. They emerged from our empirical 

analysis of various clustering strategies on a small dataset comprised of 5 

random putative bacterial proteomes (Tables A.1-A.2, Fig. A.1, explanation 

in section A.1.1). Although runtime was a part of the investigation, the 

analysis focused on finding a strategy that maximises recall. 

 

2.2.3 Computing all-against-all within each cluster 
 

After assigning all putative sequences to clusters, we run all-against-all 

procedure within each cluster keeping the same criteria as in the global all-

against-all which we are trying to speedup. This way we ensure that resulting 

pairs fulfill the same criteria as the full all-against-all, and obtain pairwise 

scores often needed for downstream analyses. A side-by-side comparison of 

the new and the existing approach is shown in Figure 2.3. 
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Figure 2.3: Comparison between the current all-against-all approach 
(left) and the new approach (right).  

In the proposed approach, the putative sequences are first clustered and 

then the all-against-all is run only within clusters. Due to the clustering, the 

overall number of computations is considerably reduced, but some putative 

homologous relationships inferred by the full all-against-all approach can be 

missed using the new approach. 

 

2.2.4 Runtime complexity of the new approach 
 

If all putative homologous relationships among 𝑛 putative sequences can be 

determined this way, the approach requires roughly 𝑛𝑘 comparisons to 

classify 𝑛 sequences into 𝑘 ≤ 𝑛 clusters and roughly !
!
!
!

!
!
− 1  comparisons 

within each cluster—overall roughly 𝑛𝑘 + !(!!!)
!!²

 comparisons. Hence, the 

runtime complexity of the procedure is still 𝑂(𝑛!) as in the case of all-against-
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all approaches requiring !
!
𝑛(𝑛 − 1) comparisons. However, the new 

algorithm is more efficient than the 𝑂(𝑛!) all-against-all approaches when 

𝑛𝑘 + !(!!!)
!!²

 < !(!!!)
!

, i.e. when !(!!!!)
 

!!!
< 𝑛, 𝑘 > 1. The smaller the number of 

clusters 𝑘, the more efficient new approach will be. Particular speedup can 

be expected on the datasets where 𝑘 << 𝑛. 

 

2.2.5 Comparison with full all-against-all and other methods 
 

To evaluate the new approach, we compared its performance to the baseline 

all-against-all approach used in OMA database algorithm (Roth, Gonnet and 

Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) and fast k-mer 

clustering approaches kClust (Hauser, Mayer and Söding, 2013) and 

UCLUST (Edgar, 2010). 

  

We ran OMA algorithm (Roth, Gonnet and Dessimoz, 2008) with default 

parameters including: MinScore := 181 (pairwise alignment score 

threshold), LengthTol := 0.61 (length tolerance ratio33) and MinSeqLen 

:= 50 (sequence length threshold in amino acids). They were determined 

suitable for the real data by Roth, Gonnet and Dessimoz (2008). 

Computations were performed on a cluster.  

 

We ran the k-mer algorithms kClust (Hauser, Mayer and Söding, 2013) and 

UCLUST (Edgar, 2010) with parameters listed in Table 2.1 and considered 

only putative sequences which were at least 50 amino acids long to keep 

consistency with other prediction methods in the study. Notably, we set a 

sequence identity threshold between a query and a cluster representative to 

30% in all variants of the tested k-mer approaches which limited the number 

of putative homologous pairs that could be detected. CD-HIT (Li and Godzik, 

2006), another widely used k-mer approach, limits sequence identity to the 

minimum of 40% and is reportedly less sensitive than kClust and UCLUST 
                                            
33 If the length of the effective alignment of putative sequences s1 and s2 is less than 
LengthTol*min(length(s1),length(s2)), the pair (s1, s2) is discarded. 
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using the same identity threshold on single-domain and multidomain protein 

datasets (Hauser, Mayer and Söding, 2013). Therefore, it was omitted from 

this comparison. 

 

 

 

 kClust UCLUST 

Run 1 -s 1.12, -c 0.8 -cluster_fast, -id 0.3 

Run 2 

-s 1.12, -c 0.5 -cluster_fast, -id 0.3, 
-target_cov 0.5, -
maxaccepts 0, -
maxrejects 0 

Equipment 

Dell R910 (Intel Xeon 
E7-8837, 2.66 GHz), 32 
cores, 1TB RAM; used a 
single core 

MacBook Air(Intel Core 
i7, 1.7GHz), dual-core, 
8GB RAM 

 

Table 2.1: Parameters and equipment used for comparison with the 
k-mer approaches.  

kClust (Hauser, Mayer and Söding, 2013) parameter -s stands for a 

clustering threshold. We used the default value of 1.12 which translates into 

~30% sequence identity between a query and a cluster representative. 

Parameter -c represents alignment coverage of the longer putative 

sequence expressed as a fraction of its length. The default value was set to 

0.8. In UCLUST (Edgar, 2010), -cluster_fast runs the algorithm variant 

optimised for speed and requires setting an -id parameter—the minimum 

sequence identity of a hit expressed as a fraction of columns in the 

alignment. We chose 0.3, i.e. 30%. In the subsequent run, we additionally 

required that 50% of a target sequence is covered by a query sequence 

when they are aligned (-target_cov 0.5), and with -maxaccepts 0, -

maxrejects 0 turned on an exhaustive putative homology search 

inspecting all possibilities (by default, the algorithm stops as soon as a query 

sequence is assigned to a cluster and it inspects up to eight most likely 

clusters per query). 

 

  



 

109 
 

2.2.6 Datasets 
 

We used three datasets for evaluation. Bacteria dataset comprised 14 

putative proteomes, fungi dataset 12 putative proteomes, and diverse 

dataset consisted of putative proteomes of one bacterium, one fungus, one 

plant, one protist and two vertebrates. All the data was exported from the 

OMA database (Altenhoff et al., 2014; Altenhoff et al., 2018), March 2014 

release. More details on all datasets as well as the distribution of sequence 

lengths and the distribution of estimated evolutionary distances of OMA 

putative homologs for bacteria and fungi datasets are provided in Appendix 

A (Tables A.4-A.6, Fig. A.3-A.4). 

 

To inspect the scaling performance of the proposed approach in the number 

of input sequences, we ran its variants on subsets of different sizes. To get 

the subsets, we first sorted all putative proteomes in a dataset according to 

their number of putative sequences. For the first subset we took the central 

two putative proteomes from the list, for the second subset central four, and 

so on until all putative proteomes were included. The same procedure was 

done on both bacteria and fungi dataset. The scaling behaviour of the 

algorithm was also inspected on the diverse dataset where we performed a 

single run on the whole dataset. 

 

2.3 Results 
 

We implemented four variants of the algorithm—having one or three cluster 

representatives in combination with either taking or not taking into account 

the putative subsequence-level homology (see section 1.4.2 for definition). 

We were interested in both runtime and the ability to identify putative 

homologs. The latter was tested by taking OMA putative homologs (Roth, 

Gonnet and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) as 

a reference set. 
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2.3.1 Results in a nutshell: 2x-9x speedup and >99% accuracy 
 

In comparison to full all-against-all OMA procedure (Roth, Gonnet and 

Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) on bacteria and 

fungi datasets, all tested cluster variants showed decrease in runtime 

yielding speedup ranging from ~2x to ~9x (Fig. 2.4). The strongest speedup 

was achieved by the variant with one cluster representative which does not 

take into account putative subsequence-level homology (definition in the end 

of section 1.4.2), as expected—this variant requires the least number of 

comparisons to assign putative sequences to clusters and it assigns each 

putative sequence to exactly one cluster. Ignoring putative subsequence-

level homology seems to contribute less to the overall speedup than 

reducing the number of cluster representatives. 
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Figure 2.4: Speedup achieved by the new method.  
The proposed approach is 2-9x faster, depending on datasets and variants. 

On the fungi dataset, only the three fastest variants were computed. 

 

In terms of recall, all tested variants were able to identify >90% of putative 

homologous pairs identified by the current OMA all-against-all approach 

(Roth, Gonnet and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 

2019) on bacteria and fungi datasets (Fig. 2.5). Taking into account putative 

subsequence-level homology (definition in section 1.4.2) reduced the 

number of missed putative homologs as anticipated. Furthermore, such 

variants achieved recall values of >99.6%. Unsurprisingly, the recall 

increased when the number of cluster representatives increased from one to 

three. Since recall values for all variants were consistent across bacteria and 

fungi subsets of different sizes, we may expect to observe similar recall 

values across other datasets. 
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Figure 2.5: Fraction of OMA putative homologous pairs (Roth, Gonnet 
and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) which 

are not identified with the new approach.  
The new approach misses 0.4-6% of the pairs from the full all-against-all in 

its simple variant (1 and 3 representatives), and 0.01-0.3% taking into 

account putative subsequence homology. 

 

Putting runtime and accuracy together, the best results were obtained by 

taking into account putative subsequence-level homology (concept defined in 

section 1.4.2) using a single representative sequence, which achieved a ~4x 

speedup while maintaining >99.6% recall in both datasets. 

 

2.3.2 Robust to large putative proteomes and multidomain proteins 
 

To investigate robustness of the new approach to large putative proteome 

sizes and putative multidomain proteins, we took as input the whole diverse 

dataset (two vertebrates, one plant, three unicellular organisms) and ran the 

algorithm variant with one representative taking into account putative 

subsequence-level homology (see section 1.4.2 for concept definition). It was 

12.05 times faster than the OMA approach (Roth, Gonnet and Dessimoz, 

2008; Altenhoff et al., 2014; Altenhoff et al., 2019), and the recall was 
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99.94%. This suggests that the approach is indeed robust to large putative 

proteomes and numerous putative multidomain proteins.  

 

2.3.3 Tendency to miss lower-scoring putative homologous pairs, lower 
fraction of missed pairs in larger putative families 
 

Taking OMA all-against-all output (Roth, Gonnet and Dessimoz, 2008; 

Altenhoff et al., 2014; Altenhoff et al., 2019) as a baseline, we investigated 

the distribution of alignment scores of pairs missed by the new approach 

(Fig. 2.6). All four variants on full bacteria and fungi datasets tend to miss 

pairs with lower scores, i.e. pairs with alignment score closer to the baseline 

threshold of 181. This is the most obvious in case of the variant which 

employs one cluster representative and ignores the putative subsequence 

level homology (concept explained in section 1.4.2), where the distribution is 

heavily skewed toward lower-scoring pairs. Generally speaking, such 

outcome is favourable since pairs with lower scores are challenging to 

identify reliably and the downstream analyses take that into account. 

Comparing the fraction of missing pairs with one versus three cluster 

representatives, we observed that the decrease in the fraction of missing 

pairs occurred mainly on the lower-scoring pairs.  
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Figure 2.6: Distribution of alignments scores of missing pairs 

compared with all pairs identified by full OMA all-against-all approach 
(Roth, Gonnet and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et 

al., 2019).  
Missed putative relationships are heavily skewed toward lower-scoring pairs. 

Please note that only in the clustering step the alignment score threshold is 

135.75. Afterwards when computing all-against-all within clusters, a pair is 

called putative homologs only if its alignment score is at least 181—the same 

criterion as in the full OMA all-against-all approach. 

 

In addition, we investigated the fraction of missing putative homologous 

relationships per protein sequence. We predicted homologous relationships 

on the whole bacteria and fungi datasets using the algorithm variant with one 

representative and putative subsequence homology (explained in section 

1.4.2). The proportion of missing homologs is very low regardless of the 

putative size of protein families (measured in terms of number of putative 

homologous relationships), with a trend to be lower in larger families (Fig. 

2.7).  



 

115 
 

 
Figure 2.7: Fraction of missing putative homologous relationships 
when putative protein sequences were grouped according to the 

number of putative homologous relationships, for the full bacteria and 
fungi datasets with one representative and putative subsequence 

homology.  
 

To illustrate the nature of missing putative homologs, we provide two detailed 

descriptions of high-scoring putative homologous pairs that are missed by 

the new approach (1 representative, putative subsequence homology (see 

section 1.4.2); see section A.3). In both cases, one putative sequence is 

added to a cluster with an alignment score slightly above the threshold while 

the other is not added due to a score just below the threshold. 

 

2.3.4 Going downstream: more than 99% putative orthologs recovered 
 

To assess the impact of the new clustering approach on orthology inference, 

i.e. how missed putative homologous relationships translate into missed 

putative orthologous relationships, we ran the OMA standalone software 

(Roth, Gonnet and Dessimoz, 2008; Train et al., 2017) using our best new 

variant (1 representative, with putative subsequence homology (see section 

1.4.2)), and compared predicted orthologs to the orthologs inferred by OMA 
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following the full all-against-all. On the largest bacteria and fungi dataset, the 

proportion of putative orthologs that were recovered was 99.71% and 

99.87% respectively. This is slightly lower than the proportion of recovered 

putative homologs (99.9% and 99.94%), but remains very high. 

 

2.3.5 Datasets too small to make conclusions on asymptotic behaviour 
of the number of clusters 
 

For any given taxonomic range, adding new putative proteomes and the 

corresponding new putative sequences can only increase the number of 

clusters. However, as the number of proteomes grows, we can expect that 

an increasing proportion of the sequences will fall into one of the existing 

clusters. Thus, we should see a tapering in the number of clusters as a 

function of the number of putative sequences, which would be favourable in 

terms of runtime of the algorithm. In our datasets, we could not observe such 

tapering, and instead the growth in cluster numbers was broadly linear (Fig. 

2.8 for bacteria, Fig. 2.9 for fungi subsets). This suggests that 12-14 putative 

proteomes are too few to discern the additional asymptotic benefits of our 

new approach. 
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Figure 2.8: Growth of number of clusters on bacteria dataset.  
No tapering is observed in the growth in the number of clusters generated by 

the new method. 

 

 

 
 

Figure 2.9: Growth of number of clusters on fungi dataset.  
No tapering is observed in the growth in the number of clusters generated by 

the new method. 
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2.3.6 Skewness toward small cluster sizes 
 

To gain insights into cluster sizes, we investigated clusters obtained on full 

bacteria and fungi datasets computed, again, by the algorithm variant with 

one representative and putative subsequence homology (concept defined in 

section 1.4.2). The distribution of cluster size is heavily skewed toward very 

small clusters (Fig. 2.10). The large overlap among numerous clusters and 

the existence of many putative sequences included in multiple clusters (Fig. 

2.11) suggests improvement potential by merging some of the clusters (see 

also section 2.4.6). 

 

 
Figure 2.10: Distribution of cluster size for the full bacteria and fungi 

datasets with one representative and putative subsequence homology. 
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Figure 2.11: Histogram of the number of clusters overlapping with each 
cluster (top row) and of the number of clusters in which each putative 

sequence is involved (bottom row) for the full bacteria and fungi 
datasets with one representative and putative subsequence homology. 

 

2.3.7 Slower but more accurate than k-mer methods 
 

Although tested k-mer approaches are a lot faster than the new algorithm we 

propose (kClust (Hauser, Mayer and Söding, 2013) ~500-1,900x, UCLUST 

(Edgar, 2010) more than 6,000x; Fig. 2.12, Table A.7), they achieved low 

recall values when ran on the same bacteria and fungi datasets (kClust 6.62-

13.52%, UCLUST 3.16-10.37%; Fig. 2.13, Tables A.8-A.9). Low recall can 

be partially attributed to the requirement of at least 30% sequence identity 

between query and cluster representative sequences in the corresponding 

clustering procedures.  
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Figure 2.12: Runtime comparison of the new approach with kClust 
(Hauser, Mayer and Söding, 2013) and UCLUST (Edgar, 2010) 

algorithms.  
kClust and UCLUST are several orders of magnitude faster than full all-

against-all. Due to the low resolution, the plot shows outcomes of the kClust 

and UCLUST experiments which achieved higher recall. kClust with 

parameters -s 1.12, -c 0.8 was faster than the one depicted here while 

UCLUST with parameters -id 0.3, -target_cov 0.5, -maxaccepts 

0, -maxrejects 0 was slower than the one on the figure. Runtimes of all 

kClust and UCLUST experiments can be found in Table A.7. 
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Figure 2.13: Fraction of the OMA putative homologous pairs which are 
not identified with kClust (Hauser, Mayer and Söding, 2013) and 

UCLUST (Edgar, 2010).  
kClust and UCLUST only recover 3-14% of homologous pairs predicted by 

the full all-against-all procedure. Due to the low resolution, the plot shows 

outcomes of the kClust and UCLUST experiments which achieved higher 

recall. Their performance with other parameters can be found in Tables A.8 

(for kClust) and A.9 (for UCLUST). 

 

2.3.8 Code availability 
 

Darwin (Gonnet et al., 2000) implementation of our best variant (accounting 

for putative subsequence-level homology (defined in section 1.4.2) and using 

a single representative sequence) is available as part of the open source 

OMA standalone package (http://omabrowser.org/standalone). 

 

2.4 Discussion and outlook 
 

In the following sections we discuss scientific contribution of our work, 

explain the nature of its limitations, argue its potential beyond the current 

framework and provide ideas for further improvements. 
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2.4.1 Incorporating transitivity of homology into homology prediction 
and considering putative subsequence homology can substantially 
speed up homology inference 
 

The all-against-all phase is at the basis of many orthology inference 

algorithms but it can be a bottleneck due to its quadratic time complexity in 

terms of number of putative sequences. This work suggests that 

incorporating transitivity of homology34 can substantially speed up homology 

inference while maintaining sensitivity—provided that the inference method 

considers putative subsequence-level homology (defined in section 1.4.2).  

 

If homology always held across all domains of a protein and could be 

perfectly inferred from present-day putative sequences, each putative 

sequence would belong to one and only one cluster of putative homologs. In 

practice however, these assumptions do not hold: partial homology (see 

section 1.4.2) can result in sequences that have homologous relationships 

across multiple clusters; some homologs have diverged too far to be inferred 

as such, thus resulting in cluster fragmentation. By allowing for putative 

sequences to belong to multiple clusters, our method is robust to these 

complications. However, we observed a larger number of clusters than 

anticipated which in combination with their overlapping nature makes them 

hard to interpret. An extensive analysis of the clusters could help 

understanding how and where the transitivity breaks.  

 

  

                                            
34 In our method, transitivity is incorporated only for the triples (sequence 1, 
sequence 2, cluster representative) where putative homology can be detected for 
pairs (sequence 1, representative) and (sequence 2, representative). 
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2.4.2 Substantial speedup with runtime complexity possibly 
subquadratic in the number of species 
 

The speedup we observed with the new approach is substantial. But 

because the number of clusters increased roughly linearly with the number of 

proteomes in our datasets of up to 14 putative proteomes, the overall time 

complexity still grows quadratically in this range. However, as rarefaction 

curves show (e.g. Mira et al., 2010), the growth in the number of clusters 

typically tapers off. Thus, it is possible that the asymptotic complexity of the 

new procedure is subquadratic in the number of species. This will need to be 

confirmed in future work.   

 

2.4.3 Good ability to find evidence for homology in sequences coming 
from evolutionary distant gene pairs 
 

The datasets used in this study are challenging, with estimated median 

distance of 146 PAM (1.46 substitution per site on average) in the bacteria 

dataset and 149 PAM in the fungi dataset (Fig. A.4). This implies that half of 

putative homologous pairs have less than 35% sequence identity (Dayhoff, 

Schwartz and Orcutt, 1978). At such high levels of divergence, k-mer based 

methods perform poorly compared to all-against-all dynamic programming 

alignment. Admittedly, to maximise recall, we could have tried even more 

permissible settings for kClust (Hauser, Mayer and Söding, 2013) and 

UCLUST (Edgar, 2010). kClust could have been applied requiring, e.g. 20% 

sequence identity as it reportedly demonstrated good performance at 

pairwise sequence identities of 20% and 30%. As for the UCLUST, its 

manual (Edgar, no date) states: 

UCLUST is effective at identities of ~50% and above for proteins and 

~75% and above for nucleotides. At lower identities, this type of 

method is questionable because (i) alignment quality degrades and (ii) 

homology cannot be reliably determined from an alignment. 
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On the datasets considered in our study, our approach performed well. It is 

likely to perform even better on evolutionarily closer sets of taxa, such as 

vertebrate species or flowering plant species. 

 

2.4.4 Trade-offs and applicability of the approach 
 

In developing the algorithm presented in this chapter, we explored a number 

of alternatives, described section A.1. The process was more focused on 

maximising the recall (summary in Table A.2) although we considered and 

measured the runtime as well (Fig. A.1). While the new algorithm avoids 

performing unnecessary pairwise comparisons, i.e. comparisons of putative 

non-homologs, it also introduces clustering-related computations. However, 

the clustering step should ensure the overall reduction of computations and, 

importantly, allow for recovering >99% (ideally 100%) of putative homologs 

identified by the full all-against-all approach.  

 

The backbone of the new approach is an attempt to incorporate transitivity of 

homology. Yet in practice, the homology inference method is not transitive. 

To overcome modelling limitations and improve the sensitivity of the method, 

we increased the number of cluster representatives, allowed assigning 

sequences to multiple clusters and considered putative subsequence-level 

homology, i.e. introduced coverage criteria—all at the cost of a longer 

runtime. The resulting clusters also contain putative non-homologous pairs 

and an all-against-all procedure within clusters is required to compute a final 

set of putative homologs. Compared to the established full all-against-all 

procedure which we intended to speed up, the new approach performs fewer 

pairwise comparisons but also infers fewer putative homologs.  

 

The recall is directly affected by the choice of cluster representatives. In the 

current setting, representatives depend on the order in which sequences are 

processed—they are the founding sequences of clusters and they do not 

change as the cluster content changes. Furthermore, the number of 

representatives per cluster is fixed and the same for all clusters regardless of 
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the cluster content, i.e. the diversity of putative sequences within a cluster, 

and thus, regardless of the diversity of putative sequences that should be 

assigned to the cluster. Although it reduces the number of computations and 

it worked well on the tested datasets, such a naive approach is probably not 

optimal for many datasets.  

 

There are also further problems with assigning putative sequences to the 

clusters. A sequence is aligned only to the cluster representative(s) and their 

pairwise score is compared to an arbitrarily chosen and fixed threshold 

(137.5). The scoring matrix—224 GCB (Gonnet, Cohen and Benner, 1992)—

is optimised for comparing pairs of sequences being 224 PAM units apart. 

Pairwise alignments for sequences derived from closer genes might not be 

optimal but are anticipated to score above 181 in case of putative homologs 

(according to Roth, Gonnet and Dessimoz (2008)). On the other hand, the 

dataset might contain more distant putative homologs and they might be 

missed due to the scoring matrix. Furthermore, the score threshold is the 

same for all clusters although not all homologous genes and families evolve 

at the same evolutionary rate. By avoiding additional computations to 

determine optimal cluster thresholds some homologous relationships are 

missed due to the suboptimal cluster assignment. Similarly, the coverage 

criteria is also fixed and the same for all clusters causing missed 

relationships when a sequence does not found a cluster and does not 

become a representative of any cluster. In addition, information on sequence 

assignment is not used to perhaps merge clusters which could increase both 

recall and speedup nor it is used in any way to exploit sequence divergence 

within clusters towards achieving higher recall. 

 

Despite all drawbacks, the new approach performed well on the considered 

datasets. To be specific, it achieved a ~2-5x shorter runtime at the cost of 

missing <0.4% putative homologs on selected bacteria and fungi datasets 

(section 2.3.1), and most notably 12.05x speedup while missing 0.06% 

putative homologs in a diverse dataset (section 2.3.2). Based on our 

experiments, the faster the variant, the lower the recall (Fig. 2.14). 
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Figure 2.14: The trade-off between speedup and recall of tested 
algorithm variants.  

Ordering based on the results presented in section 2.3.1. 

 

One of the major drawbacks of the new algorithm compared with the 

standard all-against-all is the lack of parallelism. As such, it is not convenient 

for homology inference on larger datasets, particularly at a database level.  

 

The proposed approach did not face any memory-related problems on rather 

small datasets used in the study (described in section 2.2.6). However, we 

are aware that memory will likely be an issue for a parallelised algorithm 

applied to a larger dataset. Thus, the way to keep only the minimum amount 

of information needed and preferably only temporarily in appropriate data 

structures should be addressed in the design of a parallel algorithm. 

 

The approach can aid studies already in its current form. For example in 

projects where the gain in terms of runtime is of higher importance than 

higher sensitivity. It could be used as one of the methods when a union of 

predictions obtained by multiple homology inference methods is considered 

(potentially missed homologous pairs could still be inferred by another 

method). Speedup could be even higher on datasets comprising more similar 

putative proteomes such as in population genomics studies. 

 

On the other hand, the method can miss meaningful homologous 

relationships and affect downstream analyses. A low percentage of missed 

putative homologs can translate into a large number in a dataset containing 

thousands of putative sequences. Missed putative homologs lead to missed 

putative orthologs, the lack of evidence in the process of structural and 



 

127 
 

functional genome and transcriptome annotation, smaller putative gene and 

protein families, less information in the multiple sequence alignments and 

phylogenetic trees, for example. Finally, missed homologous relationships 

can limit detection of fragmented gene models in genome annotation as will 

be discussed in section 3.4.3.   

 

Conceptually, the algorithm is parallelisable, but implementing a scalable and 

robust parallelised approach would require a substantial amount of work. A 

parallel implementation would increase its applicability and further speed up 

homology inference. We believe it should take priority over other potential 

improvements in future work35.  

 

2.4.5 Potential beyond the current framework 
 

Though the present method focuses on Smith-Waterman dynamic 

programming alignments (Smith and Waterman, 1981), a similar clustering 

approach would be possible with the faster but less sensitive BLAST 

(Altschul et al., 1997). One complication with BLAST is that the sequence 

database needs to be re-indexed whenever a sequence is added. To 

mitigate this, one could add new representative sequences in batches, with 

the additional complication that sequences within each batch would also 

need to be aligned to one another. 

 

A further advantage of the clustering approach is that it also works well in the 

context of “semi-curated” databases, such as in COGs (Tatusov et al., 2003), 

PANTHER (Thomas et al., 2003) or Pfam (Finn et al., 2014). Indeed, it is 

conceptually straightforward to let curators optimise particular clusters of 

putative homologs by fine-tuning representative sequences, coverage and 

score thresholds on a cluster-by-cluster basis. 

 

                                            
35 The decision  not to pursue a parallel implementation in the rest of the thesis is 
not inconsistent with this observation. It merely reflects prioritisation of a distinct (but 
complementary) line of investigation. 
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2.4.6 Further improvements 
 

Although recall is high, above 99% in most of our runs, even a small fraction 

translates into many missed putative homologs when working with huge 

datasets or databases. Hence, further improvement is desirable. Several 

ideas could be explored.  

 

One of the most obvious potential modifications is tuning the alignment score 

threshold for cluster assignment. In our preliminary studies we tried out only 

two thresholds (181 as in the full all-against-all algorithm and 

¾*181=135.75—an arbitrarily chosen fraction of 181). The smaller the 

threshold, the bigger the clusters and possibly the fewer missed putative 

homologous pairs. Yet, some previously identified pairs might get missed as 

some sequences would not found clusters and hence, would not be 

compared to the sequences processed after them. One could also consider 

adapting the threshold to the particular family as different families evolve at 

different evolutionary rates. For example, an initial threshold could be set to 

135.75 as it is now. As the sequences are processed, pairwise alignment 

scores between cluster representatives and query sequences could be 

memorised, even for pairs which do not end up in the same cluster. If a 

cluster tends to contain sequences with scores closer to the threshold, the 

threshold could be lowered. Furthermore, previously compared but not 

included sequences that satisfy the new criteria could be added to the 

cluster. This would introduce more bookkeeping and require more memory, 

the resulting clusters would be larger and require longer runtime in the all-

against-all step, but the procedure could yield higher recall. However, it 

remains unclear how scalable such an approach would be.  

 

The alignment score is calculated using 224 GCB matrix (Gonnet, Cohen 

and Benner, 1992) which is expected to serve well when comparing 

sequences being up to 224 PAM units apart, as elaborated in section 2.4.4. 

To be able to find indications for homology among even more distant 

sequences, other matrices could be used instead. However, the choice of 

scoring matrix should take into account the whole dataset and not just pairs 
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having a certain estimated evolutionary distance. Hence, rather than picking 

a matrix which could help detecting even more distant pairs (e.g. 400 GCB 

matrix), it would be better to estimate the optimal GCB matrix for a particular 

dataset, as did Roth, Gonnet and Dessimoz (2008) for a general case. 

 

When considering subsequence-level homology, we tolerate up to 20 AA of 

a putative sequence not being covered by a cluster representative. Lowering 

the tolerance might help to increase the recall, yet at the cost of creating 

more clusters. Similarly as the threshold for pairwise alignment score, the 

coverage tolerance could also change depending on a putative family. 

 

Another promising avenue could be improving the choice of cluster 

representatives. Indeed, the current strategy of selecting the first putative 

sequence (or the first three putative sequences) added to the cluster is likely 

to be suboptimal in most instances. Instead, a better choice of representative 

would be to try to select a putative sequence with estimated minimal average 

distance to all cluster members (a “centroid” sequence). Calculating a 

consensus sequence of all sequences in a cluster and setting it as a 

representative could increase the size of clusters but we anticipate that the 

algorithm would show similar behaviour to the variant with the longest 

sequence as a cluster representative (section A.1.1)—as the consensus 

sequence becomes longer, the cluster content will likely diverge more from 

the founding sequence(s). As opposed to the longest sequence, we did not 

investigate the possibility of taking the shortest sequence as a cluster 

representative. Due to the coverage criteria, it could lead to the creation of a 

large number of clusters. Although the assignment of representatives would 

be dynamic, the risk of divergence from the founding sequences might be 

lower due to the short length of representatives (given the same pairwise 

alignment score threshold as it is now).  

 

Another idea would be to vary the number of representatives depending on 

the particular needs of each cluster. For example, the number of 

representatives could be increased if the distribution of pairwise alignment 

scores between representatives and sequences in the corresponding cluster 
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is skewed or multimodal. A less computationally demanding option could be 

to add a new member as a representative if its similarity score with the 

existing representative(s) is below a certain threshold. Also, instead of 

creating new clusters when all representatives exceed the coverage 

tolerance with a query sequence, a new sequence could be added to the set 

of cluster representatives. Adding more representatives instead of creating 

new clusters would lead to bigger clusters and lower number of clusters, 

hopefully increasing the recall of the method. Since it would require more all-

against-all computations within clusters, it would be good to get a good grasp 

on the trade-off between sensitivity and runtime for a chosen algorithm 

modification prior to its applications to large datasets. 

 

The choice of cluster representatives depends on the ordering of processed 

putative proteomes and their sequences. In the current version, input 

putative proteomes are sorted by the number of putative protein sequences 

and processed starting with the largest proteome first (in terms of sequence 

numbers)—a decision made based on application on a single small dataset 

(section A.1). This could be further explored as well as the effect of ordering 

protein sequences within putative proteomes. For example, protein 

sequences within putative proteomes could be sorted by their length and 

processed in descending order with the hope that this would yield longer 

cluster representatives and a smaller number of clusters. Furthermore, all 

sequences in the dataset could be sorted according to their length and 

processed starting with the longest regardless of the putative proteome they 

belong to. Putative proteomes could also be processed in the order 

determined by estimated evolutionary distances between species. For 

example, we could start with the closest two in the dataset and continue by 

moving to the next closest species until all putative proteomes are 

processed. Moreover, we could also increase the number of cluster 

representatives as we move to the more distant species. This could yield 

higher recall at the cost of moderately higher runtime. One more idea is to 

sort putative proteomes by their quality in terms of (estimated) coverage and 

completeness, and process starting with the best one. Again, the number of 

cluster representatives could be increased as the data quality decreases. 
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This approach could yield more accurate homology inference among higher 

quality putative proteomes as it would not be challenged by the lower quality 

data. It could also ease homology inference for the low-quality sequences 

given the choice of representatives.  

 

Crucially, an empirical analysis of true homologs and their pairwise alignment 

scores could provide insights for better clustering including the choice of 

cluster representatives, thresholds for cluster assignment and coverage 

requirements. However, a dataset containing only experimentally validated 

protein families (e.g. Higgins (1992), Nakanishi (1992), Jacoby et al. (2006)) 

might be too small to extrapolate conclusions across the tree of life. A more 

comprehensive investigation could include manually curated datasets (e.g. 

Byrne and Wolfe (2005), Boeckmann et al. (2011), Trachana et al. (2011), 

Gray et al. (2016)) but the generality of conclusions is also not clear. Another 

way to perhaps gain meaningful insights could be through a simulation study. 

Proteome sequences could be simulated using, for example, Artificial Life 

Framework (Dalquen et al., 2012) which also outputs protein families. That 

would enable investigating a wider variety of evolutionary ranges and 

sequence lengths, but artificially ones. Based on these analyses, the users 

could be provided with parameter recommendations. Yet, the applicability 

and scalability of these suggestions remain uncertain.  

 

Perhaps the problem of selecting cluster representatives could be easier if 

each cluster represented a single feature, such as a protein domain. As in 

the current algorithm, each sequence could belong to multiple clusters at the 

cost of creating a large number of clusters but with the potential advantage of 

higher sensitivity. Furthermore, the runtime could be improved with a 

strategy on merging clusters (discussed later in the section). Since a shared 

domain does not necessarily imply homology at a gene level, an all-against-

all step within clusters would be of particular importance. Putative homologs 

could also be assessed using approaches that attempt to distinguish putative 

homologs from sequences that just share a putative domain (e.g. see Song 

et al. (2008)). Other examples of features include GC-content, sequence 
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length and, generally speaking, any statistical sequence features or their 

combination which could characterise a putative family (Brendel et al., 1992). 

 

The procedure could also merge clusters to attempt to recover some of the 

missed putative homologs. Candidates for merging could be those having a 

high proportion of members in common. Merging could also be considered 

based on high pairwise alignment score or protein domains shared across 

representatives of different clusters. Instead of comparing cluster 

representatives, consensus sequences for the clusters could be examined as 

well. 

 

We also see potential to further improve the speed of the new approach.  

 

First, merging clusters can lead to a speed improvement because the cost of 

assigning putative sequences to clusters grows linearly in the number of 

clusters. This needs to be done carefully, because excessive merging—the 

merging of clusters containing a substantial number of putative non-

homologous pairs—can reduce the efficiency of the within-cluster all-against-

all, whose time complexity grows quadratically in the number of sequences.  

 

Second, it may be possible to optimise the assignment of putative sequences 

to clusters by identifying clusters that are so different to one another that they 

are practically mutually exclusive and thus inclusion into one implies 

exclusion from the other. An empirical way of establishing such mutual 

exclusivity would be to keep track of the number or proportion of sequences 

belonging to both clusters. After processing a certain large number of 

putative sequences, mutual exclusivity could be deemed, yet at the risk of 

having unprocessed putative protein sequences of fusion genes and more 

generally, putative protein sequences belonging to both clusters given the 

thresholds. 

 

Third, a bottom-up tree-guided modification of the clustering approach could 

also be considered. Leaves of a reconstructed species tree could contain 

putative proteomes, each processed with the current clustering method. A 
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parental node of two leaves could hold all their clusters, some of them 

merged. For merging clusters in an internal node, cluster representatives 

from the left child could be compared to the cluster representatives from the 

right child, and merged based on their pairwise alignment score. More than 

two clusters could be merged into a single one. The resulting cluster could 

keep all old cluster representatives as its own representatives to increase the 

sensitivity. Given that once at the level of internal nodes, only cluster 

representatives are mutually compared, the amount of computations should 

be feasible despite the increased number of cluster representatives. Using 

the bottom-up strategy, internal nodes should be processed until reaching 

the root which will contain a final set of clusters. This is just an idea that has 

yet to be tested to get a better overview of its behaviour in terms of the 

runtime and, importantly, recall. 

 

Finally, the current approach could be parallelised. One way of parallelising 

the assignment of putative sequences to clusters would be to use a 

Publisher-Subscriber model (Eugster et al., 2003): a “master” process would 

start the analysis of a new putative sequence by distributing it to a set of 

“workers”, each responsible to compare the sequence to a subset of all 

existing clusters. Each worker would thus align the new sequence to its 

designated subset of clusters and report back significant matches and their 

associate sequence ranges (subsequence-level coverage). Once the master 

process has received this information from all workers, it would ensure that 

the new sequence is fully covered by matches to existing clusters, and else it 

would generate a new cluster with that sequence as a representative. As for 

the within-cluster all-against-all comparisons, they could be straightforwardly 

parallelised thanks to the lack of dependency among all pairs. However, it is 

not clear how scalable the model will be in practice because of the 

communication between the master process and the set of workers. 

Furthermore, the algorithm might face memory issues if the bookkeeping is 

poorly optimised in terms of the amount of information memorised, its 

timespan and the choice of data structures.  
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2.4.7 Potential improvements through profile and profile HMM cluster 
representations 
 

As an alternative to representative sequences, the clusters could be 

represented by profiles or profile hidden Markov models (HMMs) (concepts 

described in section 1.4.3). Accounting for information from multiple 

sequences and being concerned with position-specific modeling, such 

approaches are likely to be more sensitive than pairwise alignment with a 

single representative sequence which is of particular interest for detecting 

more distant homologs having sequence identity between 20 and 35% 

(Pearson, 2013; Chen et al., 2016). However, the lack of information in the 

data, information from wrongly assigned cluster members and compromises 

made in the modelling procedure affect profiles and profile HMMs. Thus, they 

can have an adverse effect on the remaining clustering assignment. That 

could lead to false positive assignments of putative sequences to the clusters 

as well as to the false negative assignments. For those reasons, we would 

still allow sequence assignment to multiple clusters and perform the all-

against-all comparisons within clusters. 

 

Profiles representing clusters could be built along the lines of the PSI-BLAST 

approach (Altschul et al., 1997), for example. The first two or several cluster 

members could be determined as in the current algorithm and used to 

calculate corresponding cluster position-specific score matrix (PSSM). When 

the next putative sequence is inspected for potential cluster membership, the 

score would be computed using the PSSM instead of pairwise alignment to 

the cluster representatives using position-independent 224 GCB scoring 

matrix (Gonnet, Cohen and Benner, 1992). With each new cluster member, 

the PSSM could be recalculated to account for information from all cluster 

members. This would require a lot of additional computations, so perhaps 

under the assumption that after a while the newly added sequences would 

contribute less and less information, the PSSM could be recalculated after 

several new putative sequences are added to the cluster. Nevertheless, the 

risk of wrongly assigning or not assigning sequences to the clusters would be 

higher than when recalculating the PSSM with each new cluster member. A 
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decision on updating the PSSM could also be made based on the score of 

the newly added sequence with the cluster profile, i.e. updating the PSSM if 

the score is below a certain threshold. With PSSM recalculations, the 

approach could have longer runtime than the current one but with potentially 

higher recall (could be anticipated based on, e.g. Altschul et al. (1997), 

Pearson (2013)). However, the additional runtime is not the only issue here; 

extracting a part of the cluster multiple sequence alignment that will be used 

for calculating a PSSM, assigning weights to the involved truncated 

sequences (the more close relatives in the set, the lower the weight of a 

putative sequence), building a context-specific profile (taking into account 

neighbouring residues of a position) or not, treatment of gaps (fixed or 

position-specific gap costs), choosing a method for calculating matrices and 

setting score thresholds for cluster assignments—all bring in more 

optimisation problems some of which have to be tackled on a per cluster 

basis. Furthermore, inclusion of non-homologs into the putative family 

directly affects the PSSM and further cluster assignments (Pearson, 2013). 

The runtime could be reduced by, e.g. starting from the PSSMs available at 

the NCBI CDD Database (Marchler-Bauer et al., 2016). Since profiles can 

also represent putative protein domains, they could facilitate grouping 

together putative sequences sharing a particular putative domain, i.e. 

creating clusters representing a single feature. PSSMs for conserved protein 

domain detection could also be downloaded from the NCBI CDD Database. 

Depending on the known and represented domains, domain-based 

clustering could further increase the recall, as already mentioned in section 

2.4.6, but that would also require more comparisons to the cluster profiles in 

the clustering step and more comparisons in the all-against-all step.  

 

Analogous but a more sensitive approach than generating profiles could be 

to represent each cluster by a profile hidden Markov model (HMM) like in, for 

example, HMMER3 (Eddy, 2011), SAM-T98 (Karplus, Barrett and Hughey, 

1998) or HHblits (Remmert et al., 2011). A profile HMM could be created 

from a single cluster founding sequence or after more sequences have been 

clustered together using the existing method. If the 
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 is above a certain threshold, 

the putative sequence would be assigned to the corresponding cluster. 

Alternatively, a query sequence could also be represented by a profile HMM 

and compared to the cluster profile HMMs. If the distance between the 

HMMs (e.g. Kullback-Leibler divergence (Falkhausen, Reininger and Wolf, 

1995)) is below a chosen threshold, the sequence could be added to the 

corresponding cluster. Again, a profile HMM could be updated with each new 

putative sequence added to the cluster or periodically at the risk of missing 

some putative homologs. As with cluster profiles above, profile HMM 

representation comes with its advantages and disadvantages. It could yield 

higher recall (Chen et al., 2016), and even higher recall is anticipated for 

HMM-HMM comparisons (Remmert et al., 2011), yet at the cost of more 

computations, i.e. longer runtime. Each profile HMM would require model 

construction, parameter estimation on the training data and setting a log-

odds (or distance) threshold for cluster inclusion of new members (Durbin et 

al., 1998). To speed up the procedure, precomputed profile HMMs could be 

downloaded from established sources, such as those of InterPro Consortium 

(EMBL-EBI, 2017), and used as a starting point for clustering the dataset 

under investigation. Profile HMMs can also represent protein domains and 

provide a backbone for a domain-based clustering. Again, relying on already 

available profile HMMs (e.g. from InterPro Consortium) would speed up the 

clustering procedure and yield recall dependent on the represented domains.  

 

Unlike the current algorithm, a conventional clustering procedures with profile 

and profile hidden Markov model (HMM) cluster representations would not 

consider putative subsequence homology (the term explained in section 

1.4.2). Consider multi-domain proteins: if profile HMMs are constructed over 

the full putative protein length, such as in the PANTHER database (Mi et al., 

2019), the model might not align well with putative sequences that only share 

a subset of the domains. As a result, some of these pairs, which might still be 

classified as putative homologs in a pairwise context (given typical alignment 

length tolerance parameters) might not fit to the same profile HMM model. 

Alternatively, it might be possible to build profile HMM models at the level of 
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domains, such as in Pfam (Finn et al., 2014), but going from domain-level 

homology inference to gene-level homology inference would not be 

straightforward, and might result in quite different homolog predictions than 

the conventional all-against-all alignment procedure which we have used as 

baseline in this chapter. 

 

Overall, replacing cluster representatives with cluster profiles or profile 

hidden Markov models (HMMs) might help detecting a higher number of 

putative homologs but at the cost of solving more optimisation problems and 

perhaps even longer runtime of the approach. An algorithm modification with 

profile HMMs might yield higher recall than a modification with profiles while 

the latter one might be faster, as mentioned for already existing tools in 

section 1.4.3. However, both recall and runtime will depend on a particular 

algorithm, its parameters and additional resources (training datasets, 

precomputed profiles or profile HMMs), if used. For example, all putative 

sequences in a dataset could be compared against publically available 

profiles or profile HMMs without updating the models. Some sequences 

would get assigned to clusters and some would not. Then only for those 

unclustered sequences, profiles or profile HMMs could be constructed. 

Although it might be less computationally intensive, such an approach could 

still be quite challenging in terms of model building. 
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Chapter 3: Phylogenetic heuristics to identify 
fragments of the same gene model in low-quality 
putative genomes, with application to the putative 
wheat genome 

 

3.1 Introduction 
 

As already elaborated in Chapter 1, one problem in low-quality genome 

assemblies is that fragments derived from the same gene can be annotated 

as distinct entries in genome databases and affect later analyses and 

applications. However, it is possible to use putative homologous proteins 

conserved in other species to detect fragments that are likely to be part of 

the same gene model, i.e. sequence fragments derived from the same gene.  

 

To address this problem, we present two complementary heuristic 

phylogenetic methods to identify non-overlapping or slightly overlapping 

fragments of the same gene model that exploit inferred evolutionary 

relationships across putative gene families. The first one exploits SH-like 

branch support (Shimodaira and Hasegawa, 1999; Guindon et al., 2010) and 

the second one relies on a likelihood ratio value (Edwards, 1972). We 

evaluate their performance on an artificially fragmented annotation of the 

bread wheat chromosome 3B reference sequence assembly (as of 2014-

2018). We also compare the two methods and ECOMB, a meta-approach 

combining the two methods with ESPRIT (Dessimoz et al., 2011), to the 

Ensembl Compara pipeline (Vilella et al., 2009; Cunningham et al., 2019; 

Howe et al., 2020) and ESPRIT. Finally, we apply new phylogeny-based 

heuristic methods to the early, highly fragmented, draft release of the entire 

putative bread wheat genome and identify 1,221 pairs of split gene models. 
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3.2 Methods 
 

We first introduce our heuristic phylogenetic tests of split gene models 

providing the fine implementations details, then proceed to describe the 

datasets analysed and the evaluation methods.  

 

3.2.1 Reasoning behind the tests 
 

Given a genome assembly with a large number of annotated contigs, the 

task we face is to figure out which annotated gene sequences are actually 

derived from the same gene, but have been misannotated to separate genes 

due to annotation mistakes or the failure of the assembler to concatenate 

collinear contigs. Consider therefore two non-overlapping fragments of the 

same gene model. If we perform a multiple sequence alignment of the two 

fragments together with full-length putative homologous sequences from 

other species, we can expect that the two fragments align to different regions 

of the multiple sequence alignment. If we infer a phylogenetic tree based on 

the alignment, these fragments will almost never be inferred as sister leaves 

(adjacent tips; also known as “cherries”) although both fragments started 

diverging from their homologous counterparts at exactly the same moment, 

hence in the biologically true tree they should branch off at exactly the same 

place. The reason for getting different estimated branching off points for the 

fragments is that since they have no character in common, they cannot be 

directly compared to each other, only to the rest of the putative sequences. 

Thus, there is no phylogenetic information available to infer the relationship 

between them, only to the rest of the tree. The location of the split between 

the two sequences is therefore undetermined. Furthermore, recall that 

evolution is modelled as a stochastic process on a tree, with each column in 

the alignment being a realisation of the process. The two fragments will 

almost certainly consist of different realisations. Therefore, in the maximum 

likelihood estimate of the tree, the two fragments’ terminal branches will 

almost never attach to the exact same place on the tree. Under a model of 

evolution where sites are independent and identically distributed, such as 
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those that are commonly used in phylogenetic inference (e.g. 

LG+I+Gamma36), if the two fragments originate from the same gene, we can 

expect that both estimated branching off points will be within the estimation 

error, so insignificantly distant from the true branch point, and also 

insignificantly distant from one another. 

 

Hence, for two non-overlapping fragments of the same gene model, we can 

expect that they: i) align to different regions of the multiple sequence 

alignment, and ii) generally sit close to one another separated by insignificant 

branches in a gene tree inferred from the fragments and their putative 

homologs. 

 

3.2.2 Test #1: Collapsing insignificant branches 
 

Consider a maximum likelihood tree for a set of putative homologous gene 

sequences containing fragments of the same gene sequence. As explained 

thoroughly in section 3.2.1, the fragments’ terminal branches are likely 

attached close to one another on the tree but very rarely at the exact same 

place. Yet, if the tree is built under a model of evolution with sites being 

independent and identically distributed, the attachment points should be 

separated by insignificant internal branches. Hence, collapsing insignificant 

branches should result in fragments becoming sister leaves.  

 

Tree branch support measures are commonly used to gauge the reliability of 

a branch. Thus, we propose a heuristic test that, for a given threshold, 

collapses all branches below that threshold and infers as fragments of the 

same gene model all candidates that are sister leaves (example in Fig. 3.1). 

Note, however, that paralogous genes can also code for sufficiently similar 

sequences that can end up being placed on sister leaves in the collapsed 

tree. Hence, being on sister leaves can only indicate that fragments could be 

                                            
36 LG amino acid substitution matrix (Le and Gascuel, 2008); invariant + gamma 
model of rate heterogeneity (Yang, 1994; Gu, Fu and Li, 1995) 
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derived from the same gene but does not provide evidence for it being the 

true scenario.  

 

 

 
Figure 3.1: An example of application of the collapsing approach with 

collapsing threshold of 0.65.  
Given an MSA (depicted at the top of the figure), we would like to test if blue 

and purple wheat gene models are fragments of a single gene model. After 

building a gene tree for the corresponding putative gene family and 

collapsing tree branches with SH-like support lower than the chosen 

threshold, leaves corresponding to the fragments under investigation 

become sister leaves. Hence, according to the collapsing heuristic method, a 

split gene model is inferred. 

 

3.2.3 Test #2: Likelihood ratio heuristic (LRH) 
 

The second test we propose to infer fragments derived from the same gene 

is a likelihood ratio heuristic (LRH) defined as follows. Our null hypothesis 

(labelled “s” for split) is that fragments are parts of a single (longer) gene 

model, and can thus be concatenated and annotated as such. The 
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alternative hypothesis (called “p” for paralogs) is that the two non-

overlapping sequences are coded by paralogous genes.  

 

Hs: n-1 gene models (split gene model) 

Hp: n gene models (gene models on sequences coming from paralogous 

genes) 

The likelihood ratio value is defined as 𝑇 = 2𝑙𝑛 !( !" )
!(!!)

 , where L() denotes the 

maximum estimator under each hypothesis (Fig. 3.2).  

 

Likelihood ratio heuristic: 

 select Hs if T < c; 

     otherwise, 

 select Hp, 

where the critical value c is such that P(reject Hs|Hs is true) = α for a chosen 

test significance level α.  

 

Equivalently, the test can be performed using the p-value approach: 

 select Hp if p ≤ α;  

    otherwise, 

 select Hs, 

for the same α as above in the critical value approach. 

 

Hence, if the gene models under examination are compatible with the 

hypothesis that they are derived from the same gene (Hs), we select the 

hypothesis. Otherwise, we select the alternative hypothesis (Hp) that they are 

derived from paralogous genes. Selecting the Hs does not mean it is true, nor 

does it mean that the Hp is not true, since putative paralogs can be arbitrarily 

close and sometimes they are even identical at the protein sequence level. 

Furthermore, when selecting the Hs, we do not investigate the distribution of 

the likelihood ratio value under the Hp—we do not select the Hp only based 

on the fact that the sequences tested are compatible with the Hs under the 

Hs. 
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Thus, the test is a heuristic which only allows an indication that fragments 

might be from a single gene to be found, but cannot provide evidence for the 

truth. 

 

 

  

Figure 3.2: Conceptual overview of the likelihood ratio heuristic.  
The null hypothesis is that the two putative sequences come from the same 

gene and thus, a single gene model should encompass them (Hs) while the 

alternative hypothesis is that the two putative sequences come from 

paralogous genes and thus, associated gene models should remain distinct 

(Hp). This setup is motivated by the fact that the split gene model hypothesis 

has fewer parameters. Unlike the statistical hypothesis testing, failure to 

reject the null hypothesis leads here to a prediction, but furthermore the 

rejection of the null hypothesis leads to inference of a relationship among 

gene models under investigation. 
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Given the test definition, a practical question emerges—how to calculate the 

p-value? In a typical setting of the likelihood ratio test, the null model is a 

special case of the alternative model and the test statistic (analog here is the 

ratio of likelihoods T) is chi-square distributed (Wilks, 1938). Since our 

models are not nested, the distribution of the ratio of likelihoods under the 

assumption that Hs is true is unknown. This problem can generally be 

bypassed by estimating the empirical distribution under the null hypothesis 

using bootstrapping (Efron and Tibshirani, 1993; Goldman, 1993). Hence, for 

a particular sample, we could: 

1. Compute the ratio of likelihoods; let’s denote it by T0 

2. Since we have no prior knowledge on the distribution of the ratio of 

likelihoods under the null hypothesis, we could estimate the 

distribution using non-parametric bootstrapping. First, from the 

multiple sequence alignment used under the Hs we could generate n 

artificial alignments of the same length, i.e. n bootstrap samples by 

sampling columns with replacement. Second, we could create 

alignments to be used under the Hp by splitting a target full-length 

gene model (i.e. the one made up of two candidate fragments) at the 

same position as in the original alignment. Finally, we could compute 

the ratio of likelihoods for each of the n samples; let’s denote them by 

T1
*, T2

*, …, Tn
*. 

If the sampling is correct, the distribution of Ti
*, i = 1, 2,…, n will 

converge to the true distribution of the ratio of likelihoods when n → ∞. 

Hence, if repeated many times, the distribution of the bootstrap 

sample ratio of likelihood values will  approximate the distribution of 

the unknown ratio of likelihoods.  

3. Compute bootstrap p-value as the proportion of samples with 

likelihood equal or above that of the input data: 𝑝! =  # !" !!
∗ ! !!  ! !
! ! !

 . 

 

The problem with the above described procedure again lies in its assumption 

that the two putative sequences under examination are derived from the 

same gene. If the sequences are derived from two paralogous genes, 

concatenating them for the purpose of computing a tree under the Hs 
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produces a sequence and a tree that do not exist in reality. Furthermore, if 

the sequences are from different genes, the bootstrapped candidate 

fragments will also represent mixtures of the two locations for the paralogous 

genes on the phylogenetic tree and will not correspond to a set of positions 

corresponding to a single location for a single real gene. Again, the 

phylogenetic tree construction will be constructing a tree for a situation that 

does not exist. No matter the number of bootstrap samples, the distribution 

of the ratio of likelihoods for the null hypothesis will not be approximated.  

 

A similar scenario would happen even if the hypotheses were reversed, i.e. if 

the working assumption was that the fragments had been derived from 

paralogous genes. Again, concatenating fragments derived from paralogs 

into a single putative sequence (Hs) yields a sequence that might not exist 

while bootstrap sampling produces fragments which are mixtures of the two 

locations on the tree. The latter could be bypassed by breaking the 

alignment into two parts corresponding to the regions spanned by each 

fragment and sampling from each side separately. Yet, what if the fragments 

indeed capture different parts of the same gene? 

 

Nonetheless, we show below that when implementing the heuristic as 

described above—using the defined test criteria, assuming that candidates 

are parts of the same gene model, following the outlined steps 1.-3. for 

calculating p-value—the approach is able to detect fragments coded by the 

same gene.  

 

3.2.4 Implementation of the tests 
 

As input candidate pairs, we identified, among all the putative protein 

sequences of gene models in a putative target genome, those that belonged 

to the same putative protein family—either established by Ensembl Compara 

(Vilella et al., 2009; Cunningham et al., 2019; Howe et al., 2020) or defined 

as deepest (top-level) hierarchical orthologous groups as inferred by OMA 

(Altenhoff et al., 2013). We further required fragments to be non-overlapping, 
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or overlapping with less than 10% residues of both fragments being aligned 

in the same alignment column, using Mafft v7.164b (Katoh and Standley, 

2013). In other words, we required that 𝑎 !" < 0.1 ∗ 𝑙 ! 𝐴𝑁𝐷 𝑎 !" < 0.1 ∗ 𝑙 !, 

where 𝑙 ! and 𝑙 ! are the number of residues in the two fragments, and 𝑎 !" is 

the number of these residues that are aligned in the same column. Thus, for 

each inferred protein family, we aligned the sequences, enumerated all 

possible pairs of sequences belonging to the putative target proteome, and 

retained as candidate pairs those that satisfy the aforementioned overlap 

requirement.  

 

The collapsing approach relies on the branch supports calculated for a 

reconstructed phylogenetic tree. Tree building tools used in this project 

calculated local support values with the Shimodaira-Hasegawa test 

(Shimodaira and Hasegawa, 1999) as described in Guindon et al. (2010). 

Like Guindon et al. we also refer to them as SH-like branch supports. 

 

Our likelihood ratio heuristic requires computing maximum likelihood 

estimates, i.e. finding an optimal tree under both Hs and Hp. Under the Hs 

hypothesis, fragments are part of the same gene model. Hence, the input 

putative gene family has one sequence fewer than the input family for the Hp 

model. Consequently, the number of terminal branches (leaves) in resulting 

trees differs by one. 

 

To get an input dataset in which putative protein sequences corresponding to 

candidate gene model fragments are part of the same putative protein 

sequence, we aligned a putative protein family and then replaced the two 

fragments with a newly created sequence containing residues from both 

fragments and gaps at the remaining positions. In case of non-overlapping 

sequences, this was straightforward. If sequences overlapped, we first 

determined the middle of the overlap and edited the sequences as follows. In 

the sequence on the left, we kept all positions the same up to the middle and 

replaced the remaining residues with X’s. Similarly, in the sequence on the 

right, we edited the beginning of the sequence by replacing all residues up to 

the middle with X’s and kept all remaining residues as they were. This way 
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we got two fragments with non-overlapping known residues in the alignment. 

They were used as such in both tests (Fig. 3.3). 

 

 
Figure 3.3: Dealing with slightly overlapping candidate sequences.  

We first determine the middle point of the overlapping region in the multiple 

sequence alignment. Then we trim the ends of sequences following or 

preceding the middle point in order to get non-overlapping input sequences. 

 

To correct for at least some cases when a tree-building method gives a 

suboptimal tree, which may result in the estimated T0 < 0 (impossible in 

theory; see section B.1), we performed two tree searches under the Hp 

model; a tree search without providing an input topology, and a tree search 

with an input topology. For the input topology, we modified the best tree 

under the Hs model. We bifurcated a terminal branch of the putative protein 

sequence corresponding to the candidate gene model, set new branches’ 

lengths to 0 and the support of a branch leading to fragments’ parental node 

to 0.5 (Fig. 3.4). Having performed both tree searches, we proceeded with 

the output tree with higher likelihood. Note that this tree search procedure 

does not guarantee to find true maximum likelihood tree under the Hp model; 

it only expands the search for it37. Also, since the goal of our method is to 

infer split gene models, in which case the maximum likelihood under Hp is 

only moderately higher than under the Hs, putting more effort into maximising 

the likelihood under the Hp is conservative (if not “fair”).   

                                            
37 We could do more to get closer to the true maximum likelihood tree under both 
models by using more exhaustive optimal tree search (e.g. by changing settings of 
a chosen tree building tool, changing random seed, trying various input topologies, 
using different tree building tools, etc.). For the time being, our method sets a 
baseline. 
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Figure 3.4: Input topology for the likelihood ratio heuristic.  
Left: Maximum likelihood tree under the Hs. Right: Modified tree to be used 

as an input tree in the Hp model. 

 

Throughout this project we set the number of bootstrap samples (n) to 100 

unless otherwise stated. 

 

3.2.5 Resolving multiple predictions and predictions with gaps 
 

Some gene models might be involved in multiple predictions, i.e. in more 

than one pair of fragments of a split gene model (explained at the protein-

sequence level in Fig. 3.5). If all these multiple predictions span different 

parts of the target gene model, we conclude that the gene model is split in 

more than two pieces and consider these predictions as unambiguous (Fig. 

3.5a and 3.5d). If, by contrast, more than one prediction spans over a 

common part of the model (which might be the case if fragments are derived 

from very closely related paralogs, or if alternative splicing variants of the 

same gene are erroneously annotated as separate genes), we report the 

predictions as ambiguous (Fig. 3.5b-c).  

 

When taken as a union, fragments involved in prediction(s) of a target gene 

model do not necessarily span the whole reference gene model length (Fig. 

3.5d). This could be due to insertions in corresponding reference genes, 

deletions in the target gene or missing data. If unambiguous, we accept such 

predictions without investigating further reasons for gaps. 
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Figure 3.5: Resolving multiple predictions and gapped predictions.  

All four panels depict multiple sequence alignment (MSA) of putative protein 

sequences corresponding to the fragmented gene models involved in 

predictions (black lines) and putative proteins of reference gene models 

(grey lines). a) Unambiguous predictions. Predictions (fragment 1, fragment 

2), (fragment 2, fragment 3) and (fragment 1, fragment 3) are unambiguous 

because fragment 1, fragment 2 and fragment 3 span different parts of 

reference sequences. b) Ambiguous predictions. Predictions (fragment 1, 

fragment 2) and (fragment 1, fragment 3) are ambiguous because fragment 2 

and fragment 3 span the same part of reference sequences. c) An example 

where we classify a prediction as ambiguous due to ambiguities in a different 

part of the MSA. Let’s assume that the following pairs are predicted: 

(fragment 1, fragment 3), (fragment 2, fragment 3) and (fragment 3, fragment 

4). Since fragments 1 and 2 span the same part of the alignment, we classify 

all three predictions as ambiguous although there is no ambiguity about 

prediction (fragment 3, fragment 4). It is due to our criterion that all fragments 

involved in multiple predictions have to span different regions of the MSA. d) 

Predictions with gapps. Let’s assume that the full-length putative protein of 

the target gene model spans the whole alignment length. Having predicted 

(fragment 1, fragment 2) and (fragment 1, fragment 3) as splits, we can 

observe that when taken as a union, fragments 1, 2 and 3 do not span the 

whole MSA. However, we proceed with accepting the predictions and 

classify them as unambiguous. 
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3.2.6 Datasets 
 

As a test case for evaluation and application of the methods, we used 

putative protein sequences of gene models constructed on the genome 

assembly of bread wheat, i.e. Triticum aestivum cv. Chinese Spring. A highly 

fragmented chromosome-by-chromosome survey sequence (IWGSP1 

assembly, 2013-11-MIPS gene models) (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014) and a high-quality reference 

sequence of chromosome 3B (Choulet et al., 2014) provide a good basis to 

evaluate our methodology on a challenging dataset. Each putative gene was 

represented by one putative protein sequence in the proteome datasets. 

Putative wheat proteome contained  90,895 protein sequences of which 

5,609 were assigned to chromosome 3B while the high-quality 3B dataset 

contained 6,033 putative protein sequences (please see section 1.3.2 for 

more information on the assemblies and annotation). 

 

3.2.7 Recall on artificially fragmented datasets 
 

To determine the recall of the methods, i.e. the proportion of fragmented 

gene models that the methods can identify (3.1) (Kent et al., 1955), we 

simulated fragmentation on putative protein sequences of gene models 

assigned to a high-quality assembly of bread wheat chromosome 3B (3B 

reference sequence) (Choulet et al., 2014).  

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  #!"#$ !"#$%$&' !"#$%&'%()* (!")
#!"#$ !"#$%$&' !"#$%&'%()* (!") ! #!"#$% !"#$%&'" !"#$%&'%()* (!")

 (3.1) 

 

All putative protein sequences and their putative families were obtained from 

Ensembl Plants (Cunningham et al., 2019; Howe et al., 2020), release 31. 

We randomly chose one hundred sequences, each at least 100 amino acids 

long, and split them at a random position such that both fragments were at 

least 50 amino acids long (Fig. 3.6). All alignments were performed using 

Mafft v7.164b (Katoh and Standley, 2013) with default parameters. Protein 



 

151 
 

trees were built by FastTree v2.1.8 (Price, Dehal and Arkin, 2010), also with 

a default set of parameters. Obtained predictions correspond to the number 

of True Positive predictions (TP) while the ones we did not manage to 

recover represent the number of False Negative predictions (here: #𝐹𝑁 =

 100− #𝑇𝑃) in formula (3.1). 

 

In addition, we simulated fragmentation in a more challenging setting, i.e. on 

small putative protein families typically containing only sequences from 

evolutionarily very close paralogs (according to estimations). As a source of 

putative homologous groups, we used top-level hierarchical orthologous 

groups (HOGs). They were computed by the GETHOGs algorithm (Altenhoff 

et al., 2013) with a default set of parameters on the input dataset comprised 

of putative proteomes of thirteen plants: bread wheat and twelve flowering 

plants exported from OMA Browser (Altenhoff et al., 2014; Altenhoff et al., 

2018) (Table B.1). 
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Figure 3.6: Simulating fragmentation—fragments coming from the 
same gene model. 

First, we aligned corresponding putative protein families using Mafft v7.164b 

(Katoh and Standley, 2013) with default settings. Then we chose a random 

position n in the alignment such that the protein sequence of the target gene 

model, i.e. the one we want to fragment, contains at least 50 amino acids in 

the first n positions of the alignment and at least 50 amino acids right of the 

chosen position. First n positions of the aligned target protein sequence 

extended by alignment_length-n gaps form one fragment, while the second 

fragment is formed from n gaps extended by the rest of aligned target 

sequence. The original target sequence is then replaced with newly formed 

fragments while the rest of the putative family is kept the same. 
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3.2.8 Precision on artificially fragmented datasets 
 

Precision is another common measure of the quality of methods. It penalises 

for erroneous predictions by measuring the proportion of correct predictions 

among all predictions that are made (3.2) (Kent et al., 1955).  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  #!"#$ !"#$%$&' !"#$%&'%()* (!")
#!"#$ !"#$%$&' !"#$%&'%()* (!") ! #!"#$% !"#$%$&' !"#$%&'%()* (!")

 (3.2) 

 

Thus, here it measures the proportion of predictions that are indeed 

fragmented gene models.  

 

To inspect cases where the methods incorrectly predict split gene models, 

we simulated fragments from pairs of putative paralogs assigned to the 

bread wheat 3B reference sequence (Choulet et al., 2014) using the same 

datasets as above. We chose putative protein sequences of one hundred 

pairs of same-species gene models inferred as paralogous, cut them at a 

random position and took two complementary fragments (one from each 

initial sequence) each being at least 50 amino acids long  (Fig. 3.7). Again, 

MSAs were obtained by Mafft v7.164b (default parameters) (Katoh and 

Standley, 2013) and protein trees by FastTree v2.1.8 (default parameters) 

(Price, Dehal and Arkin, 2010). Predictions obtained on these paralogous 

candidate fragments are False Positive predictions (FP) in formula (3.2). For 

the number of True Positive predictions (TP), we used the one obtained 

previously as explained in section 3.2.7. 

 

Similarly as in section 3.2.7, we also simulated more challenging cases of 

fragmentation. We used the same set of HOGs as in the previous section.  
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Figure 3.7: Simulating fragmentation—fragments coming from inferred 
paralogs.  

We aligned putative protein families using Mafft v7.164b (Katoh and 

Standley, 2013) with default settings. Putative protein sequences of a 

randomly chosen pair of putative paralogs were assigned to sequence 1 and 

sequence 2 at random. Then we chose a random n such that the first n 

positions of sequence 1 and last alignment_length-n positions of sequence 2 

each contain at least 50 amino acids. These two subsequences form the 

basis of simulated fragments, one extended by gaps on its right end and the 

other extended by gaps at its left end. If there was no such n, the pair was 

discarded.  

 

3.2.9 Validation on low-quality assembly of bread wheat chromosome 
3B 
 

To assess predictions on the real data containing fragmented gene models, 

we applied our approaches to the putative protein sequences of 2013-11-

MIPS gene models on the IWGSP1 low-quality assembly of bread wheat 

chromosome 3B—”3B survey sequence” (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014), and compared the predictions with 
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the putative protein sequences of gene models on high-quality assembly of 

chromosome 3B (“3B reference sequence”) (Choulet et al., 2014) 

downloaded from URGI platform (URGI, 2009). As gold standard, we 

mapped sequences between the two assemblies using BLAST+ v2.2.30 

(Camacho et al., 2009).  

 

For the predictions, we used the same reference species as in the 

simulations on HOGs (see sections 3.2.7-3.2.8) and the data was again 

exported from OMA Browser (Altenhoff et al., 2014; Altenhoff et al., 2018) 

(Table B.238). We computed protein families using the GETHOGs algorithm 

(Altenhoff et al., 2013) with a default set of parameters. We generated 500 

bootstrap samples for each top-level HOG and performed both tests on 

fragments overlapping less than 10% in the corresponding multiple sequence 

alignment. Sequences were aligned with Mafft v7.164b (default parameters) 

(Katoh and Standley, 2013) and trees built with FastTree v2.1.8 (default 

parameters) (Price, Dehal and Arkin, 2010) as above. 

 

Since the GETHOGs algorithm (Altenhoff et al., 2013) was not developed for 

the purpose of surveying genome assemblies and annotations, its default 

parameters might not be optimal for this purpose. In particular, a set of 

default parameters might be too conservative so we also computed HOGs 

with a different set of parameters (MinScore := 150, LengthTol := 

0.4, ReachabilityCutoff := 0.3) which yielded bigger putative 

protein families and hence more candidates to test. We performed the tests 

with the same parameters as above on the deepest hierarchical orthologous 

groups. 

 

For the assessment, the mapping of sequences between the survey and 

high-quality putative proteomes was not straightforward because the two 

differ not only in the degree of fragmentation, but also in some of the 

                                            
38 The OMA Browser (Altenhoff et al., 2014; Altenhoff et al., 2018) release 
containing 3B survey sequence is older than the one containing 3B reference 
sequence. Hence, assemblies and annotations for some reference species differ 
between the releases as can be noticed in Tables B.1-B.2.  
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sequences themselves due to sequencing error, contamination, etc. To allow 

for a bit of tolerance while still maintaining unambiguous mapping between 

the two, we required hits to cover at least 95% of the corresponding query, 

the percentage identity in these matching regions to be at least 95%, and the 

hit to be unambiguous. As a stringent control, we performed a validation 

where, in addition to these two requirements, we only allowed mismatches to 

occur at the ends of a query sequence. The details for both assessments are 

provided in section B.3. 

 

Since the set of fragmented gene models in the low-quality assembly is 

unknown and the assessment is further challenged by the outlined 

differences between the assemblies, it was not possible to calculate absolute 

recall rates for the tests. So we assessed the methods using the following 

values: 

1) The number of predictions that could be mapped and verified as 

correct—as outlined above. 

2) Precision of the tests based on the aforementioned mapping and 

verification.  

3) Recall on the subset of gene models for which there is an indication 

that could be split. More details on the procedure are provided in 

Appendix B, section B.6.1. 

 

3.2.10 Comparison to established methods 
 

As a point of comparison, we employed the Ensembl Compara pipeline 

(Vilella et al., 2009; Cunningham et al., 2019; Howe et al., 2020) and 

ESPRIT (Dessimoz et al., 2011) on the same 3B survey sequence as above 

(International Wheat Genome Sequencing Consortium (IWGSC), 2014). 

Again, the obtained predictions from each method were mapped to the 3B 

reference sequence (Choulet et al., 2014) by BLAST+ v2.2.30 (Camacho et 

al., 2009) to inspect if predicted pairs belong to the same gene model or not, 

requiring both coverage and percentage identity to be at least 95%. 

Validated predictions were compared to the results from validation 
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experiment on 3B survey sequence with the same BLAST+ criteria 

(described in section 3.2.9).  

 

To obtain a comparable set of predictions on the 3B survey sequence 

(International Wheat Genome Sequencing Consortium (IWGSC), 2014) 

using public results available from the Ensembl Compara pipeline (Vilella et 

al., 2009; Cunningham et al., 2019; Howe et al., 2020), we filtered 

“gene_split” pairs from their homologies file (release 21). We took only pairs 

where both putative protein sequences of gene models were at least 50 

amino acids long and such that, when corresponding putative protein family 

was aligned with Mafft v7.164b (Katoh and Standley, 2013), candidates 

overlapped for less than 10%. We also included cases where more than two 

gene models were inferred as a part of the same gene model given that no 

two putative protein sequences involved overlapped for 10% or more. Since 

some of the putative sequences could not be found in the OMA Browser 

(Altenhoff et al., 2014; Altenhoff et al., 2018) dataset used for validating the 

collapsing and LRH approach, we classified Ensembl predictions into two 

groups: those that could be found in the OMA Browser dataset, and hence, 

included in the comparison, and those that could not.  

 

Another set of predictions was obtained by running ESPRIT (Dessimoz et al., 

2011) on the same 3B survey sequence data (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014) using twelve reference putative 

plants (the same dataset as in the section 3.2.9, Table B.2) keeping all 

default parameters but increasing the required length of the putative protein 

sequences of candidate gene models to be at least 50 amino acids 

(MinSeqLenContig := 50). We only considered a confident unambiguous 

set of predictions (hits.txt file). 
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3.2.11 ECOMB  
 

We also considered a meta-approach ECOMB—encompassing ESPRIT 

(Dessimoz et al., 2011) and the new combined approach. It takes the union 

of predictions made by ESPRIT and our joint method (collapsing branches 

with support lower than 0.95 and LRH with significance of 0.01). 

 

𝐸𝐶𝑂𝑀𝐵 =  𝐸𝑆𝑃𝑅𝐼𝑇 ∪ (𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑖𝑛𝑔 @ 0.95 ∩ 𝐿𝑅𝐻 @ 0.01) 

 

3.2.12 Application to putative bread wheat genome 
 

Finally, we employed the tests to infer fragmented gene models in the first 

draft release of the whole putative bread wheat genome Triticum aestivum 

cv. Chinese Spring (IWGSP1, 2013-11-MIPS) (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014). We considered only candidate 

fragments assigned to the same chromosome and the same chromosome 

arm. We used the same reference putative proteomes as in the previous 

analyses with HOGs in section 3.2.9. Based on simulations and validation on 

3B survey sequence, we determined a set of parameters used for 

predictions. In particular, we ran GETHOGs (Altenhoff et al., 2013) with 

default parameters and allow candidate fragments to mutually overlap less 

than 10% in the corresponding MSA of the top-level HOG. We used Mafft 

v7.164b (Katoh and Standley, 2013) to get alignments and FastTree v2.1.8 

(Price, Dehal and Arkin, 2010) to construct trees, both with their default set of 

parameters. Finally, we chose 0.95 as a threshold for collapsing and set the 

significance of the LRH to 0.01. 
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3.2.13 Beyond the FastTree default settings  
 

To explore the effect of tree reconstruction tools and their parameters to the 

outcomes of phylogenetic heuristics, we employed FastTree v2.1.7 default 

installation (Price, Dehal and Arkin, 2010), FastTree v2.1.10 double-precision 

installation and RAxML v8.2.12 (Alexandros Stamatakis, 2014). FastTree 

double-precision installation aims to resolve short branch lengths more 

accurately which is beneficial for families containing nearly-identical putative 

sequences. RAxML is widely used in the community39 and performs more 

exhaustive tree search than FastTree. It could provide more reliable trees 

and it could be a preferable tree building tool of the potential users. Thus, it is 

important to quantify its effect on split gene model predictions made by our 

heuristics. All parameters of the tools used in the analysis are specified 

below. 

  

FastTree default installation (Price, Dehal and Arkin, 2010): 

● -pseudo: recommended for datasets with many fragmented 

sequences 

●  -mlacc 2 -slownni: more rounds of maximum-likelihood 

nearest-neighbor interchanges (NNIs) in a tree search 

● -spr 4: more rounds of minimum-evolution subtree-prune-regraft 

(SPR) moves in a tree search 

● -mlacc 2 -slownni -spr 4 

● -wag:  WAG (Whelan and Goldman, 2001) instead of default JTT 

model of amino acid evolution (Jones, Taylor and Thornton, 1992) 

● -gamma: when a tree is reconstructed, rescale it to optimise the 

likelihood under gamma model with 20 rate categories (Yang, 1994) 

 

FastTree double-precision installation (Price, Dehal and Arkin, 2010): 

                                            
39 As of 7 December 2019, RAxML-VI-HPC (Alexandros Stamatakis, 2006) was 
cited 13,449 times and RAxML v8 (A. Stamatakis, 2014) 11,520 times according to 
Google Scholar (Google, 2004). In comparison, FastTree (Price, Dehal and Arkin, 
2009, 2010) was cited 6,630 times in total. 
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● default: CAT model of rate heterogeneity (A. Stamatakis, 2006; 

Stamatakis, 2016)40 with 20 rate categories, JTT substitution model 

(Jones, Taylor and Thornton, 1992) 

● -lg41: LG (Le and Gascuel, 2008) instead of default JTT model of 

amino acid evolution 

● -pseudo  

● -mlacc 2 -slownni 

● -spr 4 

● -mlacc 2 -slownni -spr 4 

● -wag 

● -gamma 

● -pseudo -mlacc 2 -slownni -spr 4  

Last 7 settings have the same parameter interpretation as in the default 

installation version of the tool (see above). 

 

RAxML (Alexandros Stamatakis, 2014): 

● -m PROTCATJTT -c 20: CAT model of rate heterogeneity (A. 

Stamatakis, 2006; Stamatakis, 2016)42 with 20 rate categories, JTT 

substitution model—as default FastTree parameters 

● -m PROTCATLG -c 20: CAT model of rate heterogeneity with 20 

rate categories, LG substitution model (Le and Gascuel, 2008) 

● -m PROTGAMMAAUTO: gamma model of rate heterogeneity (Yang, 

1994, 1996), RAxML determines the best substitution model for the 

data among twenty of them 

● -m PROTGAMMAGTR: gamma model of rate heterogeneity, GTR 

substitution model (Rodríguez et al., 1990) 

 

Other steps in the pipeline remained the same as described in sections 

3.2.7-3.2.8. Furthermore, we used the same input dataset with 200 putative 

wheat sequences assigned to chromosome 3B, artificially fragmented and 
                                            
40 Note that this is not a CAT model of Lartillot and Philippe (2004). 
41 The option was not available in the FastTree default installation used in this 
study. 
42 Note that this is not a CAT model of Lartillot and Philippe (2004). 
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placed in putative homologous protein families with twelve other putative 

plant proteomes (Table B.1) using GETHOGs algorithm (Altenhoff et al., 

2013).  

 

Note that due to the change of computational resources, here we employed 

different releases of FastTree (Price, Dehal and Arkin, 2010) than in the rest 

of the chapter where FastTree v2.1.8 was used. For computations with 

default installation, here we used FastTree v2.1.7 which does not differ from 

v2.1.8 in terms of tree reconstruction algorithms (Arkin Lab, 2008; Dehal et 

al., 2010). FastTree v2.1.10 double-precision release provides an option -lg 

not available in v2.1.7 and v2.1.8 but no methodological changes affecting 

the computations of our interest were introduced in the meantime. 

 

3.3 Results 
 

Recall that we aim to identify fragments derived from the same gene but 

wrongly annotated as separate gene models in a putative genome of 

interest, leveraging putative genomes of related species (or more precisely, 

corresponding putative proteomes). In the previous section (3.2), we 

introduced two heuristic phylogenetic methods: a heuristic relying on 

collapsing branches with low SH-like support and likelihood ratio heuristic 

(LRH). To evaluate the heuristics and determine parameters for predictions 

on the putative bread wheat genome, we took three approaches. First, we 

simulated fragmentation on the real data to calculate recall and precision. 

Then we applied both methods to the bread wheat chromosome 3B survey 

sequence (IWGSP1, 2013-11-MIPS) (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014) and validated predictions with 

respect to the 3B reference sequence (Choulet et al., 2014). We used the 

same wheat data and validation approach to compare the predictions to the 

ones obtained by established methods, namely Ensembl Compara pipeline 

(Vilella et al., 2009; Cunningham et al., 2019; Howe et al., 2020) and 

ESPRIT (Dessimoz et al., 2011). Finally, based on the best parameters 
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obtained from these analyses, we applied the method to infer split gene 

models in other 20 putative chromosomes of the survey wheat IWGSP1 

assembly and its 2013-11-MIPS annotation.  

 

3.3.1 Simulated fragmentation: moderate recall of the collapsing 
heuristic, LRH more successful  
 

To assess the recall of the methods, we retrieved putative protein families 

inferred by Ensembl Compara (Vilella et al., 2009; Cunningham et al., 2019; 

Howe et al., 2020), simulated fragmentation in 100 putative protein 

sequences identified on the high-quality wheat 3B reference assembly 

(Choulet et al., 2014) and tried to recover these pairs. On these challenging 

simulations, the collapsing approach yielded moderate recall ranging from 

0.20 to 0.58, while the LRH demonstrated ability to recover split gene models 

with recall between 0.81 and 0.99 (Fig. 3.8a, Table B.3). We also evaluated 

an approach that combines the two methods. A split gene model was 

inferred if both methods were in agreement. As expected, this approach 

resembled the recall of the collapsing approach with the same threshold.  
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Figure 3.8: Precision and recall of the methods on artificially 
fragmented putative protein sequences of gene models constructed on 

high-quality putative wheat chromosome 3B (Choulet et al., 2014).  
a) Simulated fragmentation on Ensembl putative protein families (Vilella et 

al., 2009; Cunningham et al., 2019; Howe et al., 2020), b) Simulated 

fragmentation on HOGs with default settings in GETHOGs algorithm 

(Altenhoff et al., 2013). We performed the collapsing approach with a set of 

thresholds {0.65, 0.75, 0.85, 0.9, 0.95}, likelihood ratio heuristics (LRH) with 

a set of significance levels {0.2, 0.15, 0.1, 0.5, 0.01}, and the combination of 

the collapsing approach (threshold 0.95) and LRH (thresholds {0.2, 0.15, 0.1, 

0.5, 0.01}). The collapsing approach yielded moderate recall, lower than the 

LRH, while its precision was higher than that of the LRH. 

 

As a control, we performed another set of simulations using a different set of 

input putative homologs—deepest OMA hierarchical orthologous groups 

(HOGs) (Altenhoff et al., 2013) containing putative protein sequences from 

thirteen plants including wheat. Recall of the collapsing approach varied 

between 0.30 and 0.78 and the recall of the LRH was between 0.51 and 0.89 

(Fig. 3.8b, Table B.4). The combined approach, unsurprisingly, resembles 

the collapsing approach with the same threshold. 
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Supplementary files with gene model IDs, cut positions and outcomes of the 

heuristic inference for all cases can be downloaded from 

https://doi.org/10.6084/m9.figshare.11734467.v1. 

 

3.3.2 Simulated fragmentation: moderate precision of the LRH, the 
collapsing approach attains higher 

 

To compute precision of the heuristics, in addition to one hundred 

fragmented gene models, we also included one hundred pairs of non-

overlapping fragments generated from putative paralogs—which can be very 

difficult negative cases if the paralogs are near-identical at the protein 

sequence level. On the data coming from Ensembl (Vilella et al., 2009; 

Cunningham et al., 2019; Howe et al., 2020), collapsing yielded precision 

ranging from 0.85 to 0.88, while the LRH yielded precision in the interval 

between 0.56 and 0.64 (Fig. 3.8a, Table B.3). An approach combining two 

methods demonstrated slightly higher precision than the collapsing 

approach.  

 

In the control experiments on the OMA HOGs (Altenhoff et al., 2013), 

precision with the collapsing method was between 0.73 and 0.81, while 

precision with the LRH scored between 0.70 and 0.75 (Fig. 3.8b, Table B.4). 

The combined approach was equally or slightly more precise than the 

collapsing approach with the same threshold for collapsing branches. 

 

Supplementary files with gene model IDs, cut positions and outcomes of the 

heuristic inference for all cases are available at 

https://doi.org/10.6084/m9.figshare.11734467.v1. 
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3.3.3 Low-quality fragmented data: methods perform with higher 
precision, ability to identify fragmentation remains consistent  
 

To further assess the approaches and identify suitable parameters, we 

applied our methods to the chromosome 3B of the bread wheat survey 

genome (IWGSP1, 2013-11-MIPS) (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014). This is the one chromosome for 

which a high-quality reference was available (Choulet et al., 2014) but which 

was not used for creating the draft whole-genome assembly. 

 

Overall, the methods achieved higher precision than when applied to 

simulated fragmentation (Fig. 3.9a, Table B.5). The analysis showed 

particularly high precision of the collapsing approach. The absolute recall 

rate could not be easily assessed on these real data as not every gene 

model from the putative survey genome could be uniquely mapped (or 

mapped at all) to a gene model in the putative reference genome. So we 

considered 1) the number of predictions that could be mapped and verified 

as correct (Fig. 3.9), and 2) recall on the subset of gene models for which we 

found indications that could be split (Fig. 3.10). Obtained results were 

consistent with the simulations (Fig. 3.9, Fig. 3.10a-c). 

 

One challenge with this setup was the fact that the draft survey sequence 

assembly contains other types of problems, such as sequencing errors or 

~10% contamination from other chromosomes. If we only consider fragments 

that can be perfectly mapped between gene models on the draft whole-

genome assembly and the reference assembly (no mismatch in their central 

part, see section B.3.2), the number of predictions that could be validated 

diminishes, but on the remaining set, our approaches showed even higher 

precision (Fig. 3.9c, Table B.6), indicating that the performance reported in 

Figure 3.9a is conservative. 

 

The control experiments also gave consistent results (Fig. 3.9b, Fig. 3.9.d, 

Tables B.7-B.8). Due to relaxed parameters in HOGs inference (Altenhoff et 

al., 2013), the putative protein families were larger and provided more 
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candidates for heuristic inference. However they contained putative 

sequences coming from more distant genes43, some of which were wrongly 

assigned to families, making it a more challenging  setting for phylogenetic 

inference. As expected, the number of predicted split gene models 

increased, but at a cost of lower precision. 

 

The approximations to recall values obtained on the cases subjected to 

heuristic inference (Fig. 3.10a-c, Tables B.10-B.13) were consistent with 

recall on simulated fragmentation experiments (Fig. 3.8). Generally speaking, 

we obtained higher estimated recall values with relaxed parameters in the 

GETHOGs algorithm (Altenhoff et al., 2013) combined with stringent 

BLAST+ (Camacho et al., 2009) pair mapping. This is because, as explained 

above, these starting families contained more candidate pairs. The 

downsides of working with larger and more challenging putative families 

were at least partially balanced out by considering only stringent mappings 

between putative sequences. A similar trend is observable when starting 

from the smaller families obtained with default GETHOGs settings: there too, 

more stringent mapping led to higher recall estimates. 

 

Next, we sought to better understand the source of false negative 

predictions. Surprisingly, we found that the main issue was upstream of our 

tests: only ~11.5-28.3% of the pairs with common best mapping were 

subjected to our heuristics (Table B.9). Some pairs did not meet our criteria 

to qualify as candidate pairs because fragments were too short (< 50 AA) or 

had long mutual overlap (≥ 10% of their lengths) in the multiple sequence 

alignment. But the main reason, strikingly, was that most pairs were not 

found in the same input family (~67-88.3% of cases not subjected to the 

heuristics). This happened because the GETHOGs method (Altenhoff et al., 

2013) which we used to compute the input putative homologous groups was 

designed to cluster putative sequences for which indications of homology 

can be found over most of their length—and that was not the case here 

                                            
43 According to estimation in HOGs pipeline (Altenhoff et al., 2013) 
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(section B.6.3). Consequently, when the number of predicted splits was 

divided by the number of all pairs where both putative sequences had 

common mapping, the result was quite low (Fig. 3.10d-f). This motivated us 

to merge HOGs containing potential fragments of the same gene model and 

proceed with testing (section B.6.4). The heuristics found indications for 

more fragmented gene models (Tables B.15-B.16) yet many pairs remained 

unexamined because the putative sequences could not be found in any HOG 

as they were discarded by GETHOGs algorithm. 
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Figure 3.9: Validation on gene models of low-quality bread wheat 

chromosome 3B assembly (International Wheat Genome Sequencing 
Consortium (IWGSC), 2014).  

a) Split gene models inferred on the low-quality (“survey”) putative wheat 

chromosome 3B using HOGs with default parameters in GETHOGs 

algorithm (Altenhoff et al., 2013), and validated against putative high-quality 

wheat 3B (Choulet et al., 2014) using BLAST+ (Camacho et al., 2009) with 

less stringent criteria. The figure also includes comparison with three other 

approaches (Ensembl Compara (Vilella et al., 2009; Cunningham et al., 

2019; Howe et al., 2020), ESPRIT (Dessimoz et al., 2011) and ECOMB). 

ECOMB combines ESPRIT’s and the predictions inferred when combining 

the collapsing approach (threshold 0.95) and LRH (significance 0.01).  b) 

Validation on 3B survey sequence using HOGs with relaxed parameters in 
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GETHOGs algorithm, less stringent BLAST+ validation, c) Validation on 3B 

survey sequence using HOGs with default settings in GETHOGs algorithm, 

more stringent BLAST+ validation, d) Validation on 3B survey sequence 

using HOGs with relaxed parameters in GETHOGs algorithm, more stringent 

BLAST+ validation. We performed the collapsing approach with a set of 

thresholds {0.65, 0.75, 0.85, 0.9, 0.95}, likelihood ratio heuristics (LRH) with 

a set of significance levels {0.2, 0.15, 0.1, 0.5, 0.01, 0.008, 0.006, 0.004, 

0.002}, and the combination of the collapsing approach (threshold 0.95) and 

LRH (thresholds {0.2, 0.15, 0.1, 0.5, 0.01, 0.008, 0.006, 0.004, 0.002}). 

Overall, the approaches showed higher precision than on the simulated 

fragmentation (Fig. 3.8). The recall could not be established so we used the 

number of correct predictions as a surrogate. 
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Figure 3.10: Validation on gene models of low-quality bread wheat 

chromosome 3B assembly (International Wheat Genome Sequencing 
Consortium (IWGSC), 2014) for which there is an indication that could 

be fragmented—approximation to recall values.  
a) Recall of the collapsing approach on the cases subjected to the heuristic 

inference44. b) Recall of the likelihood ratio heuristic (LRH) on the cases 

subjected to the inference. c) Recall of the combined approach (collapsing 

with threshold 0.95 + LRH) on the cases subjected to the heuristic inference. 

d) Recall of the collapsing approach on all cases for which we found 

indications that could be fragments. e) Recall of the LRH on all cases for 

which we found indications that could be fragments. f) Recall of the 

combined approach (collapsing with threshold 0.95 + LRH) on all cases for 

which we found indications that could be fragments. Input protein families 

were obtained using HOGs with default (HOGs def) and relaxed parameters 

(HOGs rel) in GETHOGs algorithm (Altenhoff et al., 2013), and validated 

against high-quality wheat 3B data (Choulet et al., 2014) using BLAST+ 

                                            
44 Some cases were not scrutinised by the heuristics as candidates were not found 
in the same HOG, were too short or overlapped too much in the corresponding 
multiple sequence alignment. 
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(Camacho et al., 2009) with less (BLAST ls) and more stringent (BLAST ms) 

criteria.  

 

Gene model IDs for predictions summarised in Figure 3.9 can be 

downloaded from https://doi.org/10.6084/m9.figshare.11733597.v1, while 

those depicted in Figure 3.10 are available at 

https://doi.org/10.6084/m9.figshare.11733609.v1. 

 

3.3.4 Established methods show high precision and recall 
 

To gain further insights into the performance of the proposed approaches, 

we compared them to two existing methods, namely Ensembl Compara 

pipeline (which however cannot easily run on custom genome data) (Vilella 

et al., 2009;Cunningham et al., 2019; Howe et al., 2020) and ESPRIT 

(Dessimoz et al., 2011). Both methods were applied to the 3B survey 

sequence (IWGSP1 assembly, 2013-11-MIPS gene models) (International 

Wheat Genome Sequencing Consortium (IWGSC), 2014) and then validated 

against the 3B reference sequence (Choulet et al., 2014) using BLAST+ 

(Camacho et al., 2009). In terms of the number of correct predictions, 

Ensembl Compara and ESPRIT performed equally well or better than our 

approaches displaying high precision (Fig. 3.9a and Table 3.1). Further 

analysis showed that predictions from different methods are rather 

complementary and worthwhile taking into account (Fig. 3.11). 
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Summary of predictions on the data that can be found in OMA 

 
#total 

#could not 
validate #correct #wrong Precision 

Ensembl 
Compara 86 47 33 6 0.85 
ESPRIT 204 146 55 3 0.95 

Summary of all Ensembl's unambiguous predictions 

 
Ensembl 
Compara 

#total 
#could not 

validate #correct #wrong Precision 

106 57 43 6 0.88 
 

Table 3.1: Performance of Ensembl Compara (Vilella et al., 2009; 
Cunningham et al., 2019; Howe et al., 2020) and ESPRIT (Dessimoz et 

al., 2011).  
Summary. 

 

 

 
Figure 3.11: Comparison to Ensembl Compara (Vilella et al., 2009; 

Cunningham et al., 2019; Howe et al., 2020) and ESPRIT (Dessimoz et 
al., 2011).  

“New approach” denotes a combination of the collapsing approach (threshold 

0.95) and LRH (significance 0.01). a) The number of predictions inferred by 

each method on 3B survey sequence (IWGSP1 assembly, 2013-11-MIPS 

gene models) (International Wheat Genome Sequencing Consortium 

(IWGSC), 2014), b) The number of predictions on 3B survey sequence 
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classified as correct in the less stringent BLAST+ validation (Camacho et al., 

2009). The three methods yielded mainly complementary predictions. 

 

Gene model IDs involved in predictions alongside results of the validation 

can be retrieved from https://doi.org/10.6084/m9.figshare.11704266.v1. 

 

3.3.5 Meta-approach: obtaining more predictions and with higher 
confidence 
 

Given the complementarity of the predictions made by different methods 

(Fig. 3.11), we also considered a meta-approach, which we call ECOMB, 

comprising a union of predictions made by ESPRIT (Dessimoz et al., 2011) 

and predictions resulting from a combination (intersection) of the collapsing 

approach (threshold 0.95) and LRH (significance 0.01). ECOMB inferred the 

biggest number of correct predictions with high precision (Fig. 3.9a and 

Table 3.2). 

 

Summary of predictions on the data that can be found in OMA 

 
#total 

#could not 
validate #correct #wrong Precision 

ECOMB 242 166 73 3 0.96 
 

Table 3.2: Performance of ECOMB = ESPRIT ∪ (collapsing @ 0.95 ∩ 

LRH @ 0.01). 
Summary. 

 

3.3.6 1,221 unambiguous predictions on the putative wheat genome 
 

Finally, we applied our heuristics to infer split gene models on the rest of the 

putative bread wheat genome (IWGSP1 assembly, 2013-11-MIPS gene 

models) (International Wheat Genome Sequencing Consortium (IWGSC), 

2014), i.e. all chromosomes other than 3B. Based on the analyses on 
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simulated fragmentation and between two assemblies (see sections 3.3.1-

3.3.3), we determined parameters for the heuristics. For each putative 

chromosome arm, we obtained putative protein families by running OMA 

GETHOGs (Altenhoff et al., 2013) with default parameters. In the collapsing 

approach, we collapsed all branches with SH-like support less than 0.95, and 

we applied the likelihood ratio heuristic with a significance level of 0.01. The 

intersection of predictions identified 1,442 pairs in total: 1,221 unambiguous 

and 221 ambiguous cases. The distribution of the number of predictions per 

chromosome is shown in Figure 3.12 (see also Table B.17) while fragment 

IDs can be downloaded from https://doi.org/10.6084/m9.figshare.11704257. 
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Figure 3.12: Inferred gene model splits on the putative bread wheat 
genome (IWGSP1 assembly, 2013-11-MIPS gene models) (International 

Wheat Genome Sequencing Consortium (IWGSC), 2014).  
Allohexaploid genome (AABBDD; 6x=2n=42) is depicted in 3 parts, each 

representing one homeologous subgenome (see section 1.3.2 for more 

details). Each putative chromosome arm is plotted in size proportional to the 

number of (previously) annotated gene models in the input dataset (90,895 

gene models in total). Numbers on chromosomes represent the number of 

our predictions. a) Number of unambiguous predictions for each putative 

chromosome arm. b) Number of ambiguous predictions (i.e. for which there 

is more than two candidate fragments for a single juncture). Pairs of 
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fragments were inferred separately for each putative chromosome arm of 

flow-sorted Triticum aestivum cv. Chinese Spring, except chromosome 3B, 

for which the analysis was performed on the entire putative chromosome. 

We identified a total of 1,221 unambiguous and 221 ambiguous cases. 

 

3.3.7 On different tree reconstruction methods 
 

Tree reconstructions with FastTree v2.1.7 default installation (Price, Dehal 

and Arkin, 2010), FastTree v2.1.10 double-precision installation and RAxML 

v8.2.12 (Alexandros Stamatakis, 2014) on 200 artificially fragmented putative 

protein sequences of wheat gene models annotated on chromosome 3B 

(Choulet et al., 2014) and assigned to putative protein families with putative 

protein sequences from twelve other plants (Table B.1) using GETHOGs 

algorithm (Altenhoff et al., 2013) with default settings—the same data as in 

sections 3.2.7 and 3.2.8—provided consistent results across different runs 

(Fig. 3.8b, Fig. 3.13-3.15, Table 3.3, Tables B.18-B.20). 

 

Heuristics performed on trees computed with FastTree double-precision 

installation (Price, Dehal and Arkin, 2010) slightly outperformed heuristics on 

trees computed with FastTree default installation (Fig. 3.13-3.14, Table 3.3, 

Tables B.18-B.19) which was expected given the input putative protein 

families and the fact that double-precision version aims to calculate short 

branch lengths more accurately. While recall of the heuristics on FastTree 

default installation trees ranged from 0.3 to 0.92, it was between 0.35 and 

0.92 when double-precision output trees were used. Similarly, precision of 

the heuristics on the FastTree default installation outputs was between 0.67 

and 0.83 while it was between 0.68 and 0.86 using double-precision output 

trees. Based on the results of the combined approach where a threshold for 

the collapsing approach was set to 0.95 and likelihood ratio heuristic to 0.01, 

we would like to highlight the following FastTree options and corresponding 

results: 
● -pseudo 
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Computations with this option provided trees which yielded the highest 

precision—0.747 among runs using FastTree default installation 

(corresponding recall 0.74) and 0.755 among runs using FastTree 

double-precision installation (corresponding recall 0.8).  
● -mlacc 2 -slownni 

Runs with this option provided trees which led to the highest recall of 

the tests in the pipeline relying on the FastTree default installation—

0.76 (corresponding precision 0.738). It also scored the second best 

recall in the setting where double-precision installation was 

employed—of 0.81 (and precision 0.75). Interestingly, combining this 

option with -spr 4  or -pseudo -spr 4 did not further improve 

neither recall nor precision on this particular dataset. 
● -lg 

Reconstructed trees enabled the highest recall of the tests in the 

setting with double-precision FastTree installation—0.84 (precision 

0.74). Unfortunately, the option was not available in the FastTree 

default installation used in this study.  
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Figure 3.13: Exploring the effect of different FastTree parameters 

(default installation, v2.1.7) (Price, Dehal and Arkin, 2010): Precision 
and recall of the heuristics.  

Artificially fragmented putative protein sequences constructed on putative 

high-quality assembly of wheat chromosome 3B (Choulet et al., 2014), 

HOGs with default settings in GETHOGs algorithm (Altenhoff et al., 2013) on 

the data listed in Table B.1. FastTree parameters: a) -pseudo, b) -mlacc 
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2 -slownni, c) -spr 4, d) -mlacc 2 -slownni -spr 4, e) -wag, f) -

gamma. Just as before, we performed the collapsing approach with a set of 

thresholds {0.65, 0.75, 0.85, 0.9, 0.95}, likelihood ratio heuristics (LRH) with 

a set of significance levels {0.2, 0.15, 0.1, 0.5, 0.01}, and the combination of 

the collapsing approach (threshold 0.95) and LRH (thresholds {0.2, 0.15, 0.1, 

0.5, 0.01}). We observed consistent outcomes of the heuristics across 

chosen parameters. The outcomes were also consistent with the 

performance of the heuristics on trees reconstructed using default 

parameters shown in Fig. 3.8b, and consistent with the performance of the 

heuristics when trees were reconstructed with FastTree double-precision 

(Fig. 3.14) or RAxML (Alexandros Stamatakis, 2014) (Fig. 3.15).  
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Figure 3.14: Exploring the effect of different FastTree parameters 

(double-precision installation, v2.1.10) (Price, Dehal and Arkin, 2010): 
Precision and recall of the tests.  

Artificially fragmented putative protein sequences constructed on putative 

high-quality wheat chromosome 3B (Choulet et al., 2014), HOGs with default 

settings in GETHOGs algorithm (Altenhoff et al., 2013) on the data listed in 

Table B.1. FastTree parameters: a) default, b) -lg, c) -pseudo, d) -mlacc 
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2 -slownni, e) -spr 4, f) -mlacc 2 -slownni -spr 4, g) -wag, h) -

gamma, i) -pseudo -mlacc 2 -slownni -spr 4. Again, we performed 

the collapsing approach with a set of thresholds {0.65, 0.75, 0.85, 0.9, 0.95}, 

the likelihood ratio heuristics (LRH) with a set of significance levels {0.2, 

0.15, 0.1, 0.5, 0.01}, and the combination of the collapsing approach 

(threshold 0.95) and LRH (thresholds {0.2, 0.15, 0.1, 0.5, 0.01}). We 

observed consistent outcomes of the heuristics regardless of the choice of 

parameters, FastTree installation (default installation led to performance 

depicted in Fig. 3.8b and Fig. 3.13) and a choice of tree-reconstruction tool 

(Fig. 3.15 for heuristics on RAxML (Alexandros Stamatakis, 2014) trees).  

 

On this particular dataset with a given set of tested installations and 

parameters for FastTree (Price, Dehal and Arkin, 2010) and RAxML 

(Alexandros Stamatakis, 2014), trees reconstructed by RAxML led to the 

heuristics performance comparable with the performance when the trees 

were reconstructed by FastTree default installation, and was slightly 

outperformed by the outcomes of the pipeline employing FastTree double-

precision installation (Fig. 3.13-3.15, Table 3.3, Tables B.18-B.20). Recall of 

the heuristics performed on RAxML output trees was between 0.23 and 0.9 

while precision scored between 0.7 and 0.8. Among tested options, -m 

PROTGAMMAGTR and -m PROTCATJTT -c 20 (as default FastTree parameters45) 

generally led to the highest precision and recall of the heuristics. The 

combined approach with collapsing threshold of 0.95 and likelihood ratio 

heuristic at 0.01 achieved the highest recall and precision on the trees from -

m PROTGAMMAGTR run—0.81 and 0.77 respectively.  

 

                                            
45 FastTree uses the same “CAT” model (A. Stamatakis, 2006). 
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Figure 3.15: Exploring the effect of different RAxML v8.2.12 parameters 

(Alexandros Stamatakis, 2014): Precision and recall of the tests.  
Artificially fragmented putative protein sequences constructed on putative 

high-quality wheat chromosome 3B (Choulet et al., 2014), HOGs with default 

settings in GETHOGs algorithm (Altenhoff et al., 2013) on the data listed in 

Table B.1. RAxML parameters: a) -m PROTCATJTT -c 20, b) -m 

PROTCATLG -c 20, c) -m PROTGAMMAAUTO, d) -m PROTGAMMAGTR. Like 

in the previous analyses, we performed the collapsing approach with a set of 

thresholds {0.65, 0.75, 0.85, 0.9, 0.95}, the likelihood ratio heuristics (LRH) 

with a set of significance levels {0.2, 0.15, 0.1, 0.5, 0.01}, and the 

combination of the collapsing approach (threshold 0.95) and LRH (thresholds 

{0.2, 0.15, 0.1, 0.5, 0.01}). We again observed consistent outcomes of the 

tests across trees built with different RAxML parameters. The results were 
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also consistent with the performance of the tests on trees built with FastTree 

(Price, Dehal and Arkin, 2010)) (Fig. 3.8b, Fig. 3.13-3.14).   

 

 Recall range Precision range 

coll LRH comb coll LRH comb 

FastTree 

default 
v2.1.7 

[0.30, 

0.80] 

[0.51, 

0.92] 

[0.43, 

0.76] 

[0.72, 

0.83] 

[0.67, 

0.78] 

[0.72, 

0.78] 

FastTree 

double- 

precision 

v2.1.10 

[0.35, 

0.87] 

[0.53, 

0.92] 

[0.51, 

0.84] 

[0.73, 

0.86] 

[0.68, 

0.78] 

[0.72, 

0.79] 

RAxML 

v8.2.12 

[0.23, 

0.83] 

[0.48, 

0.90] 

[0.46, 

0.81] 

[0.72, 

0.85] 

[0.70, 

0.77] 

[0.71, 

0.80] 

 
Table 3.3: Brief summary of the results shown in Fig. 3.13-3.15: Recall 

and precision range for all three tests (collapsing (coll), LRH, combined 
(comb)) using various settings for two FastTree (Price, Dehal and Arkin, 

2010) and one RAxML installation (Alexandros Stamatakis, 2014). 
 

Supplementary files with prediction IDs for all tools and parameters tested 

can be downloaded from https://doi.org/10.6084/m9.figshare.11733510.v1.  

 

3.3.8 Source code availability 
 

All computer code for heuristics is available for reuse as a user-friendly 

package ESPRIT 2. It can be downloaded from 

https://github.com/DessimozLab/esprit2 together with instructions for use. 

Output files include results of heuristic inference and lists of unambiguous 

and ambiguous predictions. If an input GFF file is specified, the tool will 

update it with inferred unambiguous predictions. 
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3.4 Discussion and outlook 
 

We start this section with a brief overview of the results and the importance 

of our work. Then we  discuss the limitations of the proposed heuristics and 

outline potential improvements. 

 

3.4.1 Evolutionary inference across species can improve annotation of 
a target genome assembly 
 

Despite technological and algorithmic advances, genome assembly and 

annotation remain a challenge, especially for large polyploid genomes with 

complex evolutionary histories. Putative gene sequences often remain 

fragmented and fragments get annotated as separate genes. Our work 

demonstrates that using available assemblies and annotation of related 

species can provide indications to recognise some of those cases and obtain 

full-length gene models. 

 

We developed two heuristic approaches and showcase their good 

performance on a challenging putative proteome of hexaploid bread wheat 

(Triticum aestivum cv. Chinese Spring). In simulations and validation, both of 

which were performed on the real data taking into account all its 

complexities, an approach relying on collapsing protein tree branches 

showed lower recall and higher precision than the likelihood ratio heuristic 

(Fig. 3.8-3.10). We propose accepting predictions for which both approaches 

are in agreement, i.e. taking an intersection of predictions obtained by the 

heuristics as we did in the quest for fragmented gene models in the wheat 

survey sequence dataset. The performance is even better when we combine 

the new phylogeny-based combined heuristic with the established pairwise 

approach ESPRIT (Dessimoz et al., 2011). 

 

Our approaches reveal the power of fine-grained evolutionary inferences 

across multiple species to improving the quality of genomic data. We hope 
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they will help make phylogeny-based detection of split gene models a routine 

step in genome assembly and annotation. 

 

3.4.2 Biological challenges: close paralogs and variable evolutionary 
rates 
 

The two main inherent challenges of in silico split gene model inference are 

the effect of close paralogs and the variation in the rate of evolution along 

the sequences.  

 

Indeed, sometimes fragments are derived from closely related or slowly 

evolving paralogs which code for identical or nearly identical protein 

sequences, and there is not enough information to distinguish fragments of 

one gene from another. Hence, we are more likely to make a false positive 

prediction (Fig. 3.16). This is due to the definitions of our heuristics—they 

make a prediction if the examined sequences are compatible with the 

hypothesis that they are derived from the same gene, yet that does not mean 

the sequences are not derived from paralogs as explained in sections 3.2.2-

3.2.3. 
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Figure 3.16: The relationship between paralog distance (expected 
number of changes per site; information exported from Ensembl Plants 

(Vilella et al., 2009)) and p-value for the LRH when applied to random 
fragments derived from putative paralogs. 

 
As for evolutionary rate heterogeneity across the protein length, this can 

pose a problem because fragments of the same protein sequence can 

wrongly appear to be coming from distinct sequences. Consider for instance 

a protein composed of two domains—one slowly evolving and one fast 

evolving. If we consider each domain as a distinct sequence and look at their 

position in an inferred protein tree including full-length putative homologous 

counterparts, the branch lengths connecting these fragments to the rest of 

the tree may have markedly different lengths. As a consequence, the 

increase in likelihood obtained by having distinct branches for each fragment 

may be sufficiently large for our heuristic to erroneously infer that the 

fragments come from distinct protein sequences (see example below; Table 

3.4 and Fig 3.17). It may be possible to address this problem by more 

explicitly modelling variation of rate among sites.  
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Gene model: TRAES3BF091400260CFD 

● p-value: 0.02 

● #references in the MSA: 3 

● Length of the MSA: 355 

● Length of the putative protein sequence: 244 

● Length of fragment 1: 92 

● Length of fragment 2: 152 

● Results from the collapsing approach: split gene model 

Reference gene model: TRIUR3_21111 

● PAM distance (reference, fragment 1): 43.06 

● PAM distance (reference, fragment 2): 734 

 

Table 3.4: Information on a case where the likelihood ratio heuristic 
does not recognise fragments of the same gene model.  

Putative protein sequence TRAES3BF091400260CFD_t1 was split at a 

random position. Corresponding putative protein family was obtained from 

Ensembl Plants (Cunningham et al., 2019; Howe et al., 2020), release 31, 

alignments performed by Mafft v7.164b (Katoh and Standley, 2013) and 

trees built with FastTree v2.1.8 (Fig. 3.17) (Price, Dehal and Arkin, 2010). 

The p-value of the likelihood ratio heuristic is probably low, i.e. in favour of 

the hypothesis that fragments are coded by paralogous genes, due to 

dissimilar evolutionary rates. The collapsing approach correctly infers them 

as fragments from the same gene when used with any of the thresholds 

{0.65, 0.75, 0.85, 0.9, 0.95}. 
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a) 

 
b) 

 
c) 

 
Figure 3.17: Multiple sequence alignment and reconstructed protein 

tree containing fragments of a putative protein sequence 
TRAES3BF091400260CFD_t1.  

a) Multiple sequence alignment of the putative protein family containing 

the putative protein (drawn with AliView (Larsson, 2014)), b) 

Reconstructed protein tree with SH-like branch supports (drawn with 

Phylo.io (Robinson, Dylus and Dessimoz, 2016)), c) Reconstructed 

protein tree with branch lengths (drawn with Phylo.io). 
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Again, the scenario above was to expect given the definitions of our 

heuristics. The heuristics do not find enough evidence for the sequences 

being derived from the same gene and automatically accept the hypothesis 

that they are derived by paralogs as pointed out in sections 3.2.2-3.2.3. 

 

3.4.3 Technical challenges: selection of test parameters and external 
tools 
 

On a practical level, predictions heavily depend on the choice of two 

parameters: a threshold for collapsing branches and a significance level for 

the likelihood ratio heuristics (LRH). Lower, more stringent thresholds for 

collapsing yield more confident predictions, while higher, less conserved 

thresholds will produce more, but less confident, predictions. Similarly, a 

higher significance of the LRH will result in fewer, but more confident, 

predictions. Obtaining more predictions can be achieved by lowering the 

significance of the heuristic at the cost of their lower confidence. Overall, it is 

important to choose thresholds depending on the application. For example, a 

higher number of predictions can be favourable for comparison with other 

data. 

 

Predictions also depend on the input putative protein families. Bigger 

putative families facilitate more predictions (Fig. 3.9a v Fig 3.9b, Fig. 3.9c v 

Fig 3.9d) but also result in more ambiguous calls, i.e. cases where a 

fragment is involved in multiple predictions (Tables B.5-B.8). We observed 

fewer false positive predictions when we simulated fragmentation on bigger 

putative protein families, where we were more likely to randomly split a pair 

of putative sequences from more distant paralogs, in comparison to small 

putative protein families which are more likely to contain only very close 

putative paralogs (Fig. 3.8a v Fig 3.8b). However, the validation results 

indicate that the heuristics are still able to identify a reasonable number of 

split gene models with sufficiently high precision for downstream 

experimental validation, even when small putative protein families are used 

(Fig. 3.9). Our attempt to approximate recall values on the low-quality data 
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confirmed observations on the simulated fragmentation (Fig. 3.8 v Fig. 3.10a-

c). More importantly, it also revealed that better and larger putative families 

could contribute to even better performance of the tests (Fig. 3.10d-f, section 

B.6). In the four settings analysed, only the minority of potentially fragmented 

cases (according to the pipeline with BLAST+ mapping) was actually 

subjected to the heuristics as the fragments were assigned to different 

putative homologous groups, if assigned at all. So the homology inference 

algorithm, as well as the putative protein sequences of reference gene 

models (especially if they are also fragmented), might affect the final 

predictions even more than we initially thought.  

 

Throughout this project, we fixed some of the parameters. First, we 

considered only putative protein sequences of gene models at least 50 

amino acids long. Shorter putative sequences contain less information thus 

making phylogeny reconstruction more challenging; at the same time, the 

benefit of putting together short fragments is also more limited. Second, we 

required candidate fragments to overlap less than 10%. Increasing the 

overlap increases the number of candidate pairs and, consequently, the 

number of predictions including false positive and ambiguous predictions. 

 

Finally, in the experiments described in sections 3.2.7-3.2.9, 3.2.11-3.2.12 

we used Mafft v7.164b (Katoh and Standley, 2013) to align putative protein 

families and FastTree v2.1.8 (Price, Dehal and Arkin, 2010) to reconstruct 

protein trees, both with their default parameters due to their convenience and 

speed. Exploring their parameter space or using more suitable tools for the 

dataset of interest could contribute to higher precision and recall of the 

heuristics as indicates our examination of FastTree (Price, Dehal and Arkin, 

2010) and RAxML (Alexandros Stamatakis, 2014) installations and options 

(sections 3.2.13 and 3.3.7).  

 

Performing tree reconstruction with different installation versions of FastTree 

(default v2.1.7, double-precision v2.1.10) (Price, Dehal and Arkin, 2010) and 

RAxML v8.2.12 (Alexandros Stamatakis, 2014) provided us with both 

expected and interesting insights. Most importantly, we got consistent results 
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across the tools and choice of their parameters. Heuristics relying on 

FastTree double-precision trees were generally slightly more precise and 

capable to identify fragmentation than the heuristics relying on default 

installation (Fig. 3.13-3.14, Table 3.3, Tables B.18-B.19). That was indeed 

what we expected as the double-precision version is recommended for 

datasets containing nearly-identical sequences (Arkin Lab, 2008) which was 

the case here. RAxML tree search is more exhaustive than FastTree tree 

search, hence more likely to find trees closer to the true trees. Thus, we 

expected an increase in the recall and precision which we observed only in 

some instances (Fig. 3.13-3.15, Table 3.3, Tables B.18-B.20). Generally 

speaking, the pipeline employing FastTree double-precision installation 

outperformed the one with RAxML which we did not anticipate. We 

acknowledge the small number of cases examined and testing fewer RAxML 

options than FastTree options mainly due to two reasons: i) author’s 

recommendation not to use his CAT model of rate heterogeneity (A. 

Stamatakis, 2006; Stamatakis, 2016) on putative families with less than 50 

taxa, and ii) computational and time resources needed. However, we 

included two tree reconstructions with CAT model as well as  reconstruction 

with -m PROTGAMMAAUTO option where RAxML uses gamma model of rate 

heterogeneity (Yang, 1994, 1996) and determines the best substitution 

model for the data among twenty of them. Further exploration of RAxML 

parameter space could lead to even better performance of the heuristics 

while an investigation of predictions on RAxML trees could reveal more 

stumbling blocks for the heuristics, and perhaps even the ways to overcome 

these. A larger study including more cases for heuristic inference, cases from 

different target species, more tree building methods and their settings would 

be beneficial for more general statements and stronger indications of 

robustness of the heuristics to the choice of tools and their parameters. 

 

The runtime of the heuristics depends heavily on the runtime of tree 

reconstruction. Time required for tree reconstruction depends on the dataset, 

method, number of bootstrap samples for the likelihood ratio heuristic and 

available computational resources. For example, we encountered putative 

homologous families for which FastTree (Price, Dehal and Arkin, 2010) built 
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a maximum-likelihood tree with SH-like branch supports in less than 20 

seconds. Trees for different families, as well as trees for bootstrap samples 

of the same family, can be computed in parallel. Given two tree searches—

with and without an input topology—in the best scenario, it takes less than 40 

seconds to calculate all the trees in the aforementioned examples. However, 

we also encountered families for which RAxML (Alexandros Stamatakis, 

2014) took 2-3 hours per tree reconstruction. Yet, once the trees are built, 

the heuristic decision making is performed within single-digit seconds per 

case.  

 

Some users will have to establish putative protein families in their dataset 

prior to employing heuristics. That will increase the overall runtime. If the 

reference proteomes are exported from OMA Browser (Altenhoff et al., 2014; 

Altenhoff et al., 2018) and OMA algorithm (GETHOGs) (Roth, Gonnet and 

Dessimoz, 2008; Altenhoff et al., 2013; Train et al., 2017) is chosen to build 

putative families, precomputed OMA all-against-all scores can also be 

downloaded to reduce the amount of computations. Once the target 

proteome is added to the dataset, reference sequences can be compared 

only to the target proteome to compute missing pairwise scores and OMA 

can proceed with homology inference.  

 

3.4.4 Potential improvements 
 

As the large number of detected split gene models in the putative wheat 

genome illustrates, our heuristic approaches in their present form are already 

highly useful. However, as often with new approaches, there is still room for 

improvement. 

 

Currently, when performing the likelihood ratio heuristic, we compute the 

distribution of the likelihood ratios empirically, via resampling. We computed 

up to five hundred samples per examined case which, given the simulations 

and validation, seems to be enough here. Increasing the number of samples 

might lead to a significantly better approximation of the distribution for cases 
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where Hs is indeed true, and thus yield more accurate results. In addition, 

parametrising the distribution of the likelihood ratios would reduce 

computational time and memory usage. As our preliminary analysis suggests 

(section B.10), this could be a project itself. Further analyses could also more 

thoroughly investigate if the range of distribution could indicate putative 

paralogy and could, perhaps, quantiles indicate risk of misclassification. 

 

We are aware that not all cases subjected to the heuristics are derived from 

the same gene, which is in contradiction with the assumption of our likelihood 

ratio heuristic. That partially explains the low precision of the heuristic. A 

potential improvement could be a heuristic approach consisting of two 

likelihood ratio heuristics for each candidate pair—one where the hypotheses 

are as they are now, and one with the reversed hypotheses—which makes 

inference if both heuristics are in agreement (as suggested for non-nested 

hypothesis testing in for example Pesaran and Weeks (1999), Lewis, Butler 

and Gilbert (2011)). An idea is outlined in section B.11. 

 

Since both collapsing and likelihood ratio heuristics rely on evolutionary 

relationships, some of the mistakes could be avoided by implementing a 

more realistic evolutionary model. This is of particular importance for cases 

which are missed due to differences in evolutionary rates across the 

sequence length. 

 

Some cases of fragmentation are detected but discarded due to ambiguities 

that arise in other parts of a target gene model (Fig. 3.5c). Looking on a pair-

by-pair basis rather than a target gene model-by-target gene model basis, 

some of the cases could be kept and existing gene models extended. 

However, due to ambiguities along other regions, the gene model would still 

remain in the fragmented state (given the evidence at hand).  

 

For datasets with relatively close levels of divergence, using nucleotide 

instead of amino acid sequences as input might help in correctly 

distinguishing fragmented gene models from gene models on close paralogs. 
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It may also be possible to exploit transcriptome data as an additional source 

of information (Zhang, Zhuo and Hahn, 2016). 

 

To further improve the performance, one could try to find optimal parameters 

for the dataset of interest and application in question. Different strategies 

could be used to obtain input putative families, which is one of the key pre-

testing steps affecting the predictions, and it might be crucial to consider 

putative subsequence homology. Alternative tools for alignments and 

methods with more exhaustive optimal tree search could be also explored. In 

theory, for a chosen tool or even a set of tools, assuming that they provide 

trees with comparable likelihoods, the most optimal tree could be chosen 

among all maximum-likelihood trees reconstructed using multiple starting 

states (with or without input topology, different input topologies, different 

random seeds), different substitution matrices, evolutionary models and 

other tool settings. This would be computationally costly and probably not 

feasible in practice. 

 

In the current setting, whenever calculating a tree under the Hp, we 

reconstruct a tree with and without an input topology—roughly doubling the 

time and computational resources needed for this step. To check whether 

this could be avoided, we investigated the results of six experiments and 

present how often a tree search with an input topology yielded more optimal 

tree, differences between likelihoods (likelihood of the tree starting from an 

input topology - likelihood of the tree without an input topology) and how the 

more exhaustive search affected the ratio of likelihoods (section B.12). 

Although brief, the outcomes of the analysis support performing a more 

exhaustive tree search and including a computation with an input topology. 

This might not be the case with other tools and their parameter settings. 
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3.4.5 Recommendations for users 
 

In the current version, we recommend performing both heuristics and taking 

the intersection of their predictions to increase the reliability of predictions. 

However, if the goal is to obtain as many plausible pairs as possible, then a 

union of predictions is more suitable. If due to limited resources only one 

approach has to be chosen, based on our analyses on wheat, we 

recommend using the collapsing approach, if higher precision is desired, or 

the likelihood ratio heuristic (LRH) to obtain more pairs but at a cost of lower 

precision. In our experiments, a set of predictions obtained by the collapsing 

approach is a better approximation of the predictions obtained by the 

combined approach than it is the LRH. Performing LRH might be 

computationally costly but it can reveal fragmentation unrecognised by the 

collapsing approach. No matter how small or large the number of predictions 

unique to LRH is, they can turn out to be of particular interest, especially if 

they come from a target gene or putative gene family of interest. 

 

In terms of parameters, the higher the collapsing threshold, the more 

predictions, and the lower the significance level of LRH, the more 

predictions. However, based on our work so far, the increase in the number 

of predictions comes at the cost of decreasing precision. If the intersection of 

predictions is taken, we would recommend running the collapsing approach 

with the threshold 0.95 and LRH with significance α=0.01. Although these 

parameters will yield higher number of predictions with lower precision 

(compared to smaller collapsing thresholds and larger α’s), requiring that a 

split has to be confirmed by both methods will eliminate at least some of the 

incorrect predictions. 

 

The majority of our applications of LRH was carried out  generating 100 

bootstrap samples for each examined case. We recommend performing 

preliminary analyses with 100 bootstrap samples and increasing the number 

if needed. 
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3.5 Addendum 
 

The majority of the work presented in this chapter was carried out prior to the 

release of Triticum aestivum cv. Chinese Spring reference genome assembly 

and its annotation in August 2018 (International Wheat Genome Sequencing 

Consortium (IWGSC) et al., 2018). Our predictions (section 3.3.6), inferred 

on an earlier dataset (section 3.2.6) were peer-reviewed and published 

online in September 2018 (https://doi.org/10.1093/bioinformatics/bty772). 

Indeed, they could be validated against the reference annotation.  
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Chapter 4: Detecting fragmented gene models in the 
putative genome of wild olive, with step-by-step 
assessments  
 

4.1 Introduction 
 

In Chapter 3 we tackled the problem of fragmentation in annotated genome 

assemblies by developing new phylogenetic heuristics for identifying 

potential fragments of the same gene model. A special circumstance of 

having two versions of assembly and annotation for bread wheat 

chromosome 3B contributed to the evaluation and better understanding of 

the performance of the approaches. Yet, typically there is only a single 

assembly and annotation available, perhaps even produced by the same 

group of researchers who wish to proceed with downstream analyses which 

could benefit from improved data quality.  

 

In this chapter, we build upon the work presented in Chapter 3 by using the 

developed tool ESPRIT 2 (Chapter 3; Piližota et al., 2019) on the only 

available putative genome of the wild olive at the start of this study (Unver et 

al., 2017). We provide practical guidance in assessing the method’s 

behaviour on a chosen dataset before embarking on improving the target 

genome annotation quality. After the method is applied and a set of 

predictions obtained, we showcase how to assess the results to assure their 

plausibility. None of the assessments presented here required other sources 

of data or parameter fine-tuning. This work provides further evidence of the 

applicability and usefulness of the approach beyond the putative bread 

wheat genome. 
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4.2 Methods 
 

The section points out the tool and underlying approaches developed and 

described in Chapter 3, and the datasets used in this study. Given the 

absence of a higher-quality genome assembly and annotation of the wild 

olive genome that could be used as a reference, we assessed the 

performance of the inference method on artificially fragmented gene models 

and by manual inspection of predictions on the real unaltered data—the 

methodological details of which are described here as well.  

 

4.2.1 Dataset 
 

In this study we focused on identifying fragmented gene models in the 

putative genome of the wild olive tree, Olea europaea var. sylvestris (Unver 

et al., 2017) for which 50,684 putative protein sequences were established 

(more on the data can be found in section 1.3.3). Each of the putative protein 

sequences was annotated as a product of a different putative gene. Ten 

plant reference putative proteomes (Table C.1) were exported from OMA 

Browser, Dec 2018 release (Altenhoff et al., 2018) and putative protein 

families constructed with GETHOGs algorithm (top-level HOGs) (Altenhoff et 

al., 2013) with a default set of parameters.  

 

4.2.2 Does it make sense to run the pipeline on the selected dataset? 
 

At the time of writing, this was the only available assembly and annotation for 

the chosen target species. Thus, to gain insights on the behaviour and 

performance of ESPRIT 2 (Chapter 3; Piližota et al., 2019) on selected data, 

we first ran the tool on a dataset comprised of 400 artificially fragmented 

cases derived from the putative wild olive genome (Unver et al., 2017)—200 

cases with two fragments derived from a putative protein sequence of the 

same gene model and 200 cases derived from putative protein sequences of 

the putative paralogous gene models. Fragmentation was introduced as 
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earlier described in Chapter 3, sections 3.2.7-3.2.8. In short, putative protein 

sequences of randomly chosen gene models (or pairs of gene models in the 

case of putative paralogs) were cut at a random position so that the resulting 

non-overlapping fragments were at least 50 AA long.  

 

The inference procedure of ESPRIT 2 (Piližota et al., 2019) combines the 

two heuristics presented in Chapter 3—the collapsing approach and the 

likelihood ratio heuristic (LRH), and takes the intersection of their predictions. 

We applied the heuristics with their default, recommended, parameters: 

collapsing threshold 0.95 and LRH significance level 0.01 getting an 

empirical distribution from 100 bootstrap samples (section 3.4.5). Throughout 

the chapter, we also refer to the inference procedure as “the combined 

approach”, “the combined heuristic” or “the heuristic”.  

 

Multiple sequence alignments were obtained by Mafft v7.164b (Katoh and 

Standley, 2013), using its default settings while the phylogenetic trees and 

SH-like branch supports (Shimodaira and Hasegawa, 1999; Guindon et al., 

2010) were computed with FastTree v2.1.7 (Price, Dehal and Arkin, 2010) 

taking its default set of parameters as well. 

 

After obtaining a set of predictions, we calculated recall and precision for the 

approach following the same formulas (3.1, 3.2) as in sections 3.2.7-3.2.8: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  #!"#$ !"#$%$&' !"#$%&'%()* (!")
#!"#$ !"#$%$&' !"#$%&'%()* (!") ! #!"#$% !"#$%&'" !"#$%&'%()* (!")

   

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)

#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)  +  #𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝐹𝑃)
. 

 

 

To supplement information from point estimates, we also modelled recall and 

precision in a Bayesian framework following the method of Goutte and 

Gaussier (2005). From a probabilistic point of view, recall can be interpreted 

as the probability that the heuristic infers fragmentation given that the 
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examined cases were derived from the same sequence while precision can 

be defined as the probability that the fragments were derived from the same 

sequence given that the heuristic inferred fragmentation. In the probabilistic 

framework, the data (here: true and false positive and negative counts) D = 

(TP, FP, FN, TN) comes from a model with parameters recall and precision (r 

and p from now on) and the values obtained from the formulas above are just 

estimates of r and p. Assuming i) the observed counts of TP, FP, FN, TN 

follow a multinomial distribution D |𝜋 ~ M(n;𝜋), 𝜋 ≡ (𝜋TP, 𝜋FP, 𝜋FN, 𝜋TN), 𝜋TP + 𝜋FP 

+ 𝜋FN + 𝜋TN = 1, ii) symmetric beta prior distribution for r, i.e. r ~ Beta(𝜆, 𝜆), 𝜆 > 

0, and iii) symmetric beta prior distribution for  p, i.e. p ~ Beta(𝜆, 𝜆), 𝜆 > 0, 

Goutte and Gaussier showed that posterior distributions for r and p are also 

beta distributions: 

r |D ~ Beta(TP + 𝜆 , FN + 𝜆 ) 

p |D ~ Beta(TP + 𝜆 , FP + 𝜆 ). 

We chose 𝜆 =½ and 𝜆 =1 as they yield commonly used Jeffreys’ non-

informative prior and the uniform prior respectively (Gelman et al., 2003). For 

posterior distributions of r and p, we provide their means (posterior 

expectation of recall and precision), modes (the most likely values of recall 

and precision given the data and the model), standard deviations, skewness 

and 95% credible intervals. 

 

The aforementioned approach involves three assumptions and results with 

perhaps non-intuitive distributions. For the assumption on multinomial 

distribution, we first note that our heuristic inference partitions pairs of 

fragments into four disjoint sets: cases with true positive outcome, cases with 

false positive outcome, cases with false negative outcome and cases with 

true negative outcome. Then we interpret the TP, FP, FN and TN counts as 

the result of a multinomial experiment in which elements were randomly and 

independently drawn from all cases. Second, we assume symmetric beta 

prior distribution for r. Assuming the aforementioned multinomial distribution, 

it can be shown (Goutte and Gaussier, 2005) that the number of true positive 

predictions (TP) given the number of fragmented sequences (TP+FN) follows 

a binomial distribution with parameters TP + FN and r. Beta distributions are 
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commonly used as a prior distribution for a parameter of a binomial model as 

they are their conjugate priors which simplifies calculations and 

interpretation. Furthermore, a symmetric beta prior does not favour neither 

high nor low recall. Due to the binomial distribution  

P(D | r) ∝ rTP(1-r)FN  

and according to the Bayes’ rule  

P(r | D) ∝ P(D | r) P(r).  

Since r ~ Beta(𝜆 , 𝜆 ), 𝜆 >0,  

P(r | D) ∝ rTP(1-r)FNr 𝜆-1(1-r)𝜆-1, i.e.  

P(r | D) ∝ rTP+ 𝜆 -1(1-r)FN+ 𝜆 -1.  

Thus, the posterior distribution of r is Beta(TP + 𝜆 , FN + 𝜆 ). A similar line of 

reasoning leads to the third assumption. Again, assuming the specified 

multinomial distribution for observed counts, it can be shown (Goutte and 

Gaussier, 2005) that the number of true positive predictions (TP) given the 

number of predictions (TP+FP) follows a binomial distribution with 

parameters TP + FP and p. Following the same reasoning as earlier without 

favouring high or low values of p, a  Beta(𝜆 , 𝜆 ), 𝜆  > 0 can be chosen as a 

prior distribution of p. Similarly as above, since  

P(D | p) ∝ pTP(1-p)FP and P(p| D) ∝ P(D | p) P(p),  

then p |D ~ Beta(TP + 𝜆 , FP + 𝜆 ).  

Parameter 𝜆 , 𝜆 >0 does not have to be the same for prior distributions of r 

and p. 

 

4.2.3 Application to the target putative genome  
 

To detect potential fragmentation in the annotation of the selected wild olive 

putative genome, we used the combined heuristic of the collapsing approach 

(with collapsing threshold 0.95) and the likelihood ratio heuristic (with 

significance level 0.01). The pipeline was run in the same way as on the 

artificial fragments described above in section 4.2.2. We considered only 

pairs of putative protein sequences (each sequence being at least 50 AA 
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long) which overlapped for less than 10% of their length in the corresponding 

multiple sequence alignment. 

 

4.2.4 Assessment of predictions 
 

Being aware that artificial fragmentation does not necessarily capture well 

fragmentation in the genome annotation and corresponding input putative 

proteome of interest, and thus, might misguide interpretation of predictions 

made on the target putative proteome, we also manually inspected 10 

randomly chosen predictions on putative wild olive proteome. They can be 

divided into two groups of 5. The inferred fragments from the first group each 

belonged to a putative protein family with up to 10 candidate pairs for 

heuristic inference. The remaining 5 cases were members of more 

challenging putative protein families—having more than 10 candidates and 

thus, probably being more fragmented or having higher rates of gene 

duplication than those in the first group. For each of the 10 cases, we 

inspected multiple sequence alignment of the corresponding putative protein 

family and reconstructed protein tree. 

 

4.3 Results 
 

We first present results on artificially introduced fragmentation in a subset of 

wild olive data. These results encouraged us to apply the method to the 

whole putative genome and facilitated better understanding of the outcomes. 

The results of the study are presented in the subsequent subsection. Finally, 

we describe 10 randomly selected predictions and assess their validity. 
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4.3.1 Simulated fragmentation in wild olive: recall and precision 
 

To gain better understanding of the behaviour of the combined heuristic on 

the putative wild olive genome (Unver et al., 2017), we calculated recall and 

precision on artificially fragmented putative protein sequences of randomly 

chosen gene models as described above in section 4.2.2.  

 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  #!"#$ !"#$%$&' !"#$%&'%()* (!")
#!"#$ !"#$%$&' !"#$%&'%()* (!") ! #!"#$% !"#$%&'" !"#$%&'%()* (!")

 =  !"#
!""

 =  0.75   

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)

#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)  +  #𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝐹𝑃)
 =  

150
204

 

=  0.735 

 

In this particular study, all fragments subjected to the method were at least 

50 AA long (Fig. 4.1). Increasing the length threshold and considering only a 

subset where both fragments were at least 75 or 100 AA long, yielded even 

higher recall and precision rates (Table 4.1).  
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a) 

 
b) 

 
Figure 4.1: Lengths of simulated fragments and outcomes of the 

combined heuristic.  
a) Fragments of the same putative sequence, b) Fragments from putative 

paralogous sequences. 
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 Recall Precision 

All pairs 0.75 0.74 

Pairs where both fragments at 

least 75 AA long 

0.75 0.77 

Pairs where both fragments at 

least 100 AA long 

0.76 0.81 

 
Table 4.1: Recall and precision on artificially fragmented putative 

protein sequences of gene models depending on the length of putative 
sequences subjected to examination. 

 

For the same set of simulations we also checked trends in recall and 

precision depending on the numbers of putative sequences (Fig. 4.2). We 

observed that as the size of putative homologous families increased, recall 

also increased but at the cost of lower precision (Table 4.2). Using the 

heuristic on input families with lower proportions of olive sequences, i.e. 

higher proportion of reference sequences from related species, yielded both 

higher recall and higher precision (Table 4.3). 
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a) 

 
b)

 
Figure 4.2: Outcomes of the combined heuristic on simulated 

fragments plotted against the size of putative families (x-axis) and the 
number of putative olive sequences in the family (y-axis).  

a) Fragments of the same putative sequence, b) Fragments from putative 

paralogous sequences. 
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 Recall Precision 

All pairs 0.75 0.74 

Pairs from putative families with up 

to 100 members 

0.75 0.76 

Pairs from putative families with up 

to 50 members 

0.73 0.8 

Pairs from putative families with up 

to 20 members 

0.71 0.83 

 
Table 4.2: Recall and precision on artificially fragmented putative 
protein sequences of gene models depending on the size of input 

putative protein families. 
 

#𝒘𝒊𝒍𝒅 𝒐𝒍𝒊𝒗𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒔
#𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆𝒔 𝒊𝒏 𝒕𝒐𝒕𝒂𝒍  Recall Precision 

All pairs 0.75 0.74 

≤ 0.75 0.76 0.81 

≤ 0.5 0.76 0.83 

≤ 0.3 0.77 0.84 

 
Table 4.3: Recall and precision on artificially fragmented putative 

protein sequences of gene models depending on the fraction of wild 
olive sequences assigned to a putative protein family. 

 
We also checked outcomes of the combined heuristic on the set of fragments 

derived from putative paralogs with respect to the percent identity among 

putative sequences the fragments were derived from. As Figure 4.3 and 
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Table 4.4 reveal, the mistakes were more frequent among pairs obtained 

from putative paralogs with higher percent identity. This makes sense, 

because, as previously pointed out in the context of the wheat genome 

analysis (section 3.4.2), fragments coded by close paralogs and fragments 

coded by the same gene become indistinguishable (without additional 

contextual information).  

 

 

 

 
Figure 4.3: Outcomes of the combined heuristic on simulated 

fragments derived from putative paralogous sequences.  
Numbers on the axes represent percent identity among starting putative 

protein sequences prior to fragmentation.   



 

209 
 

 

 Precision 

All pairs 0.74 

Pairs where both fragments were 

derived from putative paralogs 

having protein sequence identity up 

to 90% 

0.79 

Pairs where both fragments were 

derived from putative paralogs 

having protein sequence identity up 

to 85% 

0.83 

 
Table 4.4: Precision on artificially fragmented putative protein 

sequences of gene models depending on the percent identity of 
starting putative paralogous sequences.  

 

 

In addition, to get a better picture on the variability of recall and precision, we 

estimated their probability distributions in a Bayesian framework (Table 4.5, 

Fig. 4.4). We used non-informative prior distributions to “let the data speak 

for themselves”. Posterior expectations and modes for both recall and 

precision did not differ much from their point estimates obtained above—

recall ~0.75, precision ~0.735. Standard deviation was ~0.03 for all posterior 

distributions derived. Importantly, 95% of posterior distributions for recall was 

approximately within interval [0.69, 0.81] and [0.67, 0.79] for precision (more 

precise numbers in Table 4.5). Small change in the prior distribution 

parameter (𝜆 ) had a small effect on the posterior distribution. 
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#TP = 150, #FN = 50, 

#FP = 54 

𝜆 =½ 𝜆 =1 

r ~ Beta(𝜆 , 𝜆 ) Beta(½, ½) Beta(1,1) ~ U(0,1) 

r |D ~ Beta(TP + 𝜆 , FN + 𝜆 ) r |D ~ Beta(150.5, 50.5) r |D ~ Beta(151, 51) 

E(r |D) 0.749 0.748 

mode(r|D) 0.751 0.75 

s(r|D) 0.031 0.030 

skewness -0.161 -0.159 

95% credible interval [0.687, 0.806] [0.686, 0.805] 

p ~ Beta(𝜆 , 𝜆 ) Beta(½, ½) Beta(1,1) ~ U(0,1) 

p |D ~ Beta(TP + 𝜆 , FP + 𝜆) p |D ~ Beta(150.5, 54.5) p |D ~ Beta(151, 55) 

E(p|D) 0.734 0.733 

mode(p|D) 0.736 0.735 

s(p|D) 0.031 0.031 

skewness -0.147 -0.146 

95% credible interval [0.672, 0.792] [0.671, 0.791] 

 
Table 4.5: Summary of derived posterior distributions for recall and 

precision.  
When 𝜆 =1, formulas for mode of a beta distribution yield: mode(r|D) 

= #!"
#!"!#!"

 and mode(p|D) = #!"
#!"!#!"

. Thus, the points in which probability 

density functions of (unimodal) distributions r|D and p|D achieve their 

maximum values correspond to definitions of point estimates for recall and 

precision (formulas 3.1 and 3.2).  
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Figure 4.4: Estimated probability density functions from Table 4.5. 

Recall: Beta(150.5, 50.5) and Beta(151, 51) (the two “overlapping” on the 

right), precision: Beta(150.5, 54.5) and Beta(151, 55) (the two “overlapping” 

on the left).46 

 

Supplementary files with information on the putative protein sequences, 

corresponding putative homologous families and outcomes of the heuristic 

inference for all cases can be downloaded from 

https://doi.org/10.6084/m9.figshare.11702427.v1. 

 

4.3.2 Application to the putative wild olive genome 
 

Phylogenetic heuristics for detecting fragmentation (Chapter 3) were applied 

to the putative genome of wild olive, Olea europaea var. sylvestris (Unver et 

al., 2017), as described in sections 4.2.1 and 4.2.3. In putative protein 

families containing wild olive and 10 reference plant species (Table C.1), our 

pipeline identified 2,533 pairs of putative olive sequences that could be 

subjected to heuristic examination for fragmentation. On closer inspection, 

we observed that 1,688 candidate pairs were members of a single putative 

                                            
46 Source code for the plot (Stephens, 2017) was released under the Creative 
Commons Attribution International License 4.0 
(https://creativecommons.org/licenses/by/4.0). I changed parameters, legend and 
axis labels in the original code. 



 

212 
 

protein family having 96 putative wild olive sequences out of 386 putative 

sequences in total. Due to ambiguities arising from such a large number of 

combinations of sequences, potentially high level of fragmentation and 

potentially high rates of gene duplication in the particular family, we 

proceeded with investigating only the remaining 845 cases spread across 

other putative protein families. 

 

The phylogenetic heuristics indicated a fair number of fragmented gene 

models: collapsing with threshold 0.95 found indications that 168 pairs of 

input gene models were actually parts of the same, longer, model while the 

likelihood ratio heuristic with significance level 0.01 found indications for 485 

pairs. The two heuristics had 166 predictions in common. Some putative 

sequences were involved in multiple predictions, i.e. the heuristics indicate 

that some gene models could be fragmented into more than two pieces. If all 

our inferred fragments spanned different regions of the potential full-length 

model, we considered corresponding predictions to be unambiguous; 

otherwise ambiguous (more details in section 3.2.5). Taking into account 

ambiguities, 166 predictions could be classified into 102 unambiguous and 

64 ambiguous predictions.  

 

Although the majority of examined pairs—488 out of 845—belonged to 

putative protein families with more than 10 candidate pairs (10 families in 

total), the heuristics found indications for fragmentation in only 2 

unambiguous and 20 ambiguous cases (Fig. 4.5). The remaining 357 

investigated pairs from putative families containing 10 or fewer cases of 

potential fragmentation (198 families in total) yielded 100 unambiguous and 

44 ambiguous predictions. 
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Figure 4.5: Predictions of fragmented gene models with respect to the 

number of putative protein sequences in the input putative 
homologous protein family (x-axis) and the number of tested cases in 

the family (y-axis).  
Some points represent multiple predictions. There is only one point on the 

plot (139,9) which represents both unambiguous and ambiguous predictions 

(one of each). 

 

For a fixed size of putative protein family, we typically observed 

unambiguous predictions in families with fewer wild olive putative sequences 

and ambiguous predictions appearing in those containing more wild olive 

sequences (Fig. 4.6). We observed a similar trend when we fixed the number 

of putative wild olive sequences per putative family with respect to the 

number of pairs subjected to testing—typically the combined heuristic yielded 

ambiguous predictions as the number of candidate pairs increased (Fig. 4.7). 
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Figure 4.6: Predictions of fragmented gene models with respect to the 

number of putative protein sequences in the input putative 
homologous protein family (x-axis) and the number of putative wild 

olive sequences in the family (y-axis).  
Some points represent multiple predictions. Some points represent both 

unambiguous and ambiguous predictions: (16, 5), (17, 4), (19, 4), (20, 4), 

(23, 7), (139, 20).  
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Figure 4.7: Predictions of fragmented gene models with respect to the 
number of putative wild olive protein sequences in the input putative 
homologous protein family (x-axis) and the number of cases in the 

family that were subjected to the heuristic (y-axis).  
Some points represent multiple predictions. Some points represent both 

unambiguous and ambiguous predictions: (4, 2), (5, 3), (7, 3), (10, 2), (11, 4), 

(20, 9). 
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Ambiguous and unambiguous predictions were spread evenly with respect to 

lengths of the corresponding candidate putative protein sequences (Fig. 4.8).  

 

 
Figure 4.8: Predictions of fragmented gene models in the putative wild 

olive genome and lengths of fragments of corresponding putative 
protein sequences.  

 

Supplementary file with details on the predictions and corresponding putative 

protein families is available at 

https://doi.org/10.6084/m9.figshare.11702436.v1. 

 

4.3.3 Manual inspection of ten predictions 
 

We manually inspected 10 randomly selected predictions of fragmented 

gene models in the annotation of the target wild olive genome assembly 

(section 4.3.2). Five predictions—3 unambiguous and 2 ambiguous—were 

selected from putative protein families with up to 10 candidate pairs that 

could be fragments coded by the same gene model (Table 4.6). The other 

five selected cases—all ambiguous—were in putative protein families with 

more than 10 candidate pairs (Table 4.7). All three unambiguous predictions 

seemed plausible while none of the ambiguous predictions seemed 
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implausible. Based on the information at hand, it was hard to exclude the 

scenario that the putative sequences involved in ambiguous predictions were 

not derived from paralogs. 

 

In the rest of the section, we comment on each case, corresponding multiple 

sequence alignment and reconstructed phylogenetic tree. All alignments and 

trees can be downloaded from 

https://doi.org/10.6084/m9.figshare.11702430. Some of them are depicted in 

Appendix C and referred to in this section. Sometimes we briefly mention 

other predictions from the same putative family if the family was small or if 

the putative sequences were placed close to each other in the reconstructed 

tree of a larger family.  

  



 

218 
 

 

Fragment 1 Fragment 2 Len 

(fr 1) 

Len 

(fr 2) 

#seq 

in 

total 

#ol- 

ive 

seq 

#𝒐𝒍𝒊𝒗𝒆 𝒔𝒆𝒒
#𝒔𝒆𝒒 𝒊𝒏 𝒕𝒐𝒕𝒂𝒍

 Type 

of 

pre-

dic- 

tion 

Oeu002269.1 Oeu041302.1 650 344 17 4 0.24 A 

Oeu010989.1 Oeu058850.1 147 437 16 5 0.31 A 

Oeu055052.1 Oeu055056.1 237 258 15 3 0.20 U 

Oeu003579.1 Oeu046712.1 113 236 33 10 0.30 U 

Oeu026692.1 Oeu041610.1 307 94 31 9 0.29 U 

 
Table 4.6: Selected pairs of putative protein sequences assigned to 

putative protein families with up to 10 candidate pairs for examination. 
Last column represents the type of prediction–A for ambiguous and U for 

unambiguous. Sequence lengths in the number of amino acids (Len(fr 1), 

Len(fr 2)), size of putative protein families (#seq in total) and fraction of 

reconstructructed wild olive protein sequences in corresponding putative 

homologous families (#olive seq/#seq in total) go in favour of the reliability of 

predictions given the heuristic outcomes on simulated fragmentation (Tables 

4.1-4.3).  

 
 

The ambiguous fragmentation prediction (Oeu002269.1, Oeu041302.1) was 

inferred based on the input putative protein family consisting of 17 putative 

protein sequences out of which 4 were from wild olive putative proteome. 

Two pairs were subjected to the combined heuristic approach and the 

outcomes classified as ambiguous predictions (the other pair being 

(Oeu041302.1, Oeu035109.1); sequence lengths 344 AA and 1,832 AA). 

Based on the multiple sequence alignment (MSA) (Fig. C.1) and 

reconstructed phylogenetic tree (Fig. C.2), both predictions make sense. The 
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MSA from position 3113 to position 3367 is spanned by sequences 

Oeu002269.1 and Oeu035109.1 with 96.46% identical residues in the 

specified region. Thus, the sequences could be derived from paralogs and it 

is not surprising that the heuristic made two predictions—(Oeu002269.1, 

Oeu041302.1) and (Oeu041302.1, Oeu035109.1). They could be further 

experimentally validated. 

 

The ambiguous prediction (Oeu010989.1, Oeu058850.1) was yielded on the 

input putative protein family containing 16 putative protein sequences out of 

which 5 were from wild olive putative proteome. Two more pairs from the 

family, (Oeu010989.1, Oeu017491.1) and (Oeu010989.1, Oeu010988.1) 

(sequence lengths (147 AA, 525 AA), (147 AA, 130 AA) respectively), were 

also examined and all three pairs were inferred as potential fragments 

corresponding to the same gene model—as they all have sequence 

Oeu010989.1 in common. Based on the multiple sequence alignment (MSA) 

and reconstructed phylogenetic tree, these predictions make sense. 

However, the three sequences—Oeu058850.1, Oeu017491.1 and 

Oeu010988.1— are similar in the MSA region spanning from position 516 to 

position 63847 and the heuristic is not capable of making a single 

unambiguous prediction. Nonetheless, the three ambiguous predictions 

seem to be good candidates for further examination. 

 

An unambiguous call was made on a pair (Oeu055052.1, Oeu055056.1) 

assigned to the putative protein family with 15 putative protein sequences, 3 

of them being from wild olive. No other pair from the same family was 

examined. Based on the multiple sequence alignment (Fig. C.3) and 

reconstructed phylogenetic tree (Fig. C.4), this prediction looks plausible. 
 
Another unambiguous prediction (Oeu003579.1, Oeu046712.1) was made 

based on the input putative protein family having 33 putative protein 

sequences out of which 10 were from wild olive putative proteome. One 

more pair of sequences, (Oeu046712.1, Oeu048697.1), was investigated but 

                                            
47 Percent identities in the specified region: (Oeu058850.1, Oeu017491.1) 82.79,  
(Oeu058850.1, Oeu010988.1) 83.61, (Oeu017491.1, Oeu010988.1) 88.52 
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not predicted as derived from the same gene. Based on the multiple 

sequence alignment and reconstructed phylogenetic tree, the prediction 

looks plausible as well. 

 

The unambiguous prediction (Oeu026692.1, Oeu041610.1) was inferred with 

the help of information contained in the putative protein family with 31 

putative sequences out of which 9 were from wild olive. No other candidate 

pairs were identified in this family. Based on the multiple sequence alignment 

and reconstructed phylogenetic tree, this prediction also looks plausible. 

 

Fragment 1 Fragment 2 Len 

(fr 1) 

Len 

(fr 2) 

#seq 

in 

total 

#ol- 

ive 

seq 

#𝒐𝒍𝒊𝒗𝒆 𝒔𝒆𝒒
#𝒔𝒆𝒒 𝒊𝒏 𝒕𝒐𝒕𝒂𝒍

 

Oeu001063.1  Oeu014565.1 167 127 67 59 0.88 

Oeu009938.1 Oeu042193.1 145 90 146 49 0.34 

Oeu009938.1 Oeu048795.1 145 153 146 49 0.34 

Oeu042193.1 Oeu054591.1 90 153 146 49 0.34 

Oeu014093.1 Oeu061551.1 399 270 175 78 0.45 

 
Table 4.7: Selected pairs of putative protein sequences assigned to 
putative homologous protein families with more than 10 candidate 

pairs for examination. 
All of them were predicted as ambiguous. Although bigger families (#seq in 

total) facilitate higher number of predictions, that can come with higher 

number of false positive predictions (Table 4.2). The fraction of putative wild 

olive sequences in corresponding putative protein families (#olive seq/#seq 

in total) can further challenge inference (Table 4.3). However, given their 

lengths (Len(fr 1), Len(fr 2) in the number of amino acids), sequence 

information could aid making true positive and true negative predictions 

(Table 4.1). 
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A pair of putative sequences (Oeu001063.1, Oeu014565.1) indicated an 

ambiguous split gene model with the help of the data in the corresponding 

putative protein family containing 67 putative sequences out of which 59 

were from wild olive putative proteome. The inference was not only 

challenged by a high fraction of putative olive sequences but with their 

possible fragmentation as well—25 pairs of olive sequences were identified 

as candidates for heuristic trial. The selected pair was one of the two that 

were actually confirmed as a split by the combined heuristic (the other one 

was (Oeu057720.1, Oeu014565.1) with 111 AA and 127 AA long fragments). 

Although there were only 8 reference sequences from other species, they 

were all placed in the vicinity of the two predictions in the reconstructed 

phylogenetic tree (Fig. C.7). Taking into account multiple sequence 

alignment (MSA) (Fig. C.5), in particular aligned wild olive putative 

sequences (Fig. C.6), there are indications of high duplication rate in the wild 

olive gene family the sequences are derived from. As we can see on the first 

MSA extract in Figure C.6, the (fragmented) olive sequences tend to span 

the whole region shown while the coverage is rather sparse on the second 

extract. This discrepancy in coverage also indicates that there might be 

some data missing—somewhere along the reads processing, assembling, 

annotation, putative protein family inference, the data spanning those blank 

regions was filtered out. To conclude this case, the corresponding MSA and 

tree, in particular placement of putative sequences from reference species 

relative to the fragments subjected to investigation, indicate that both 

predictions make sense but it is hard to further detangle the situation with 

this data at hand. Given the very challenging setting, the outcome indicating 

two potential scenarios can direct future attempts in resolving the 

fragmentation and potentially reduce necessary efforts.  

 

The fragmentation predictions (Oeu009938.1, Oeu042193.1), (Oeu009938.1, 

Oeu048795.1) and (Oeu042193.1, Oeu054591.1) were derived on the 

putative protein family with 146 putative sequences, 49 of them being 

assigned to wild olive proteome. Overall, 141 pairs were trialed yielding 6 

ambiguous predictions—the aforementioned three and (Oeu033029.1, 

Oeu048795.1), (Oeu048795.1, Oeu054591.1), (Oeu033029.1, 
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Oeu042193.1) with sequence lengths (155 AA, 153 AA), (153 AA, 153 AA) 

and (155 AA, 90 AA) respectively. All wild olive putative sequences were 

placed within a larger subtree in the reconstructed phylogenetic tree with a 

branch leading to the subtree having SH-like support of 1.0. An even smaller 

subtree (again with a branch leading to it having an SH-like support of 1.0) 

contains sequences involved in all 6 predictions. Similarly as in the 

previously analysed case, the tree and multiple sequence alignment indicate 

possible high gene duplication rate in corresponding wild olive gene family as 

well as perhaps missing data. Given the data at hand, the predictions do not 

seem implausible but we cannot claim they are plausible. 

 

The last ambiguous prediction we scrutinised was based on the pair of 

putative protein sequences (Oeu014093.1, Oeu061551.1). It was found in a 

putative protein family having 175 putative sequences, 78 of them from 

putative wild olive proteome. This too was a challenging family, with a total of 

75 pairs of putative olive sequences subjected to the heuristic examination. 

Together with the reconstructed protein tree, the evidence at hand suggests 

gene duplication in the wild olive. The combined heuristic found indications 

for fragmentation in 5 more pairs. Similarly as in the previous ambiguous 

cases, it is hard to tell whether these are true or false positive predictions. 

Judging by the MSA and computed protein tree, they do not seem 

implausible.  

 

4.3.4 New ESPRIT 2 output file  
 

To facilitate more convenient exploration of the data and inference 

outcomes, we extended the output of ESPRIT 2 (Piližota et al., 2019) with a 

file details_predictions.txt where we provide the following information for 

each prediction: putative protein fragments’ lengths, type of prediction 

(ambiguous or unambiguous), putative homologous protein family ID, size of 

the putative family, number of target species putative sequences in the 

putative family, number of examined pairs in the putative family and number 
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of predictions in the putative family. This will hopefully shed some light on the 

data under investigation and help to validate provided predictions. 

 

4.4 Discussion 
 

In this section we provide a brief reminder of the setting of the study, 

examine behaviour of the prediction method on artificially fragmented 

putative protein sequences coded by randomly selected gene models, 

discuss outcomes of the application to the putative genome of wild olive and 

argue the importance of putting predictions in the context of their 

corresponding putative protein families. 

 

4.4.1 On the approach 
 

In this study, a set of predictions was obtained using the tool ESPRIT 2 

(Chapter 3; Piližota et al., 2019) with its default, recommended parameters 

(section 3.4.5): 0.95 as a threshold for the collapsing approach and 0.01 as a 

significance level of the likelihood ratio heuristic. External tools (GETHOGs 

(Altenhoff et al., 2013), Mafft (Katoh and Standley, 2013), FastTree (Price, 

Dehal and Arkin, 2010)) were also used with their default settings. No 

parameter fitting was involved at any step of the pipeline. The input dataset 

comprised of target and reference species putative proteomes was selected 

prior to running the pipeline and was not modified later, i.e. no putative 

proteome was added, removed or altered in any way to tune the results. 

Taking into account the extensive analyses and validation on the putative 

wheat genome (Chapter 3), we believe that the outcomes of the study are 

representative of the tool’s performance.  

 

We would still advise a cautious approach to the set of predictions. The 

following sections discuss ways to examine input putative homologous 

protein families and potentially fragmented gene models identified by the 

pipeline.  
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4.4.2 Simulated fragmentation as a decision-making step 
 

When applied to artificially introduced fragmentation in wild olive putative 

proteome, the approach yielded moderate recall 0.75 and precision 0.74, 

both consistent with recall and precision from analogous experiment on 

wheat (0.72 and 0.73 respectively, sections 3.3.1 and 3.3.2). Further look 

into the input data and outcomes of the heuristic trial did not reveal 

unexpected stumbling blocks for heuristic inference. The approach yielded 

higher recall and higher precision as the lengths of fragments increased—

expected given that longer putative sequences are more likely to contain 

more information which then aids inference. With the increase of the size of 

input putative homologous families, the recall increased at the cost of lower 

precision. On one hand, more sequences can potentially provide more useful 

information but on the other, they might confound  the inference, especially if 

they are fragmented. Indeed, when we inspected behaviour of recall and 

precision based on the proportion of putative wild olive sequences in a 

putative homologous family, both recall and precision increased as the 

fraction of olive sequences decreased. Finally, we checked false positive 

predictions for fragments derived from putative paralogs and observed that 

the frequency of mistakes increased with the increase of percent identity 

among corresponding starting unaltered putative sequences.  

 

Given the observed outcomes of the inference method, we also estimated 

(posterior) probability distributions for recall and precision. For both recall 

and precision, the mean and mode of the corresponding distributions were 

less than 0.01 away from- or equal to the earlier discussed point estimates, 

standard deviation was 0.03 and 95% credible intervals were roughly 

between 0.67 and 0.81. Assuming the sample was a good representative for 

real fragmentation in the wild olive putative genome and the Bayesian 

modelling of recall and precision was based on reasonable assumptions, 

these results show great promise. 

 

Overall, the experiments on simulated splits yielded the anticipated 

behaviour of the combined heuristic approach. Although fragmentation was 
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artificially introduced, the outcomes suggest that application of the pipeline to 

the whole wild olive putative genome is a reasonable attempt in identifying 

fragments of the same gene models.  

 

4.4.3 Application to the putative wild olive genome: detecting and 
scrutinising detected fragmentation 
 

The aim of the study was identification of fragments of the same gene model 

in the putative genome of the wild olive tree, Olea europaea var. sylvestris 

(Unver et al., 2017).  

 

We applied our heuristic approach to 845 cases and found indications for 

fragmentation in 166 of them (102 unambiguous, 64 ambiguous). Although 

the majority of cases (488/845) was assigned to putative protein families 

where more than 10 candidate pairs were trialed, they yielded only the 

minority of predictions (2 unambiguous, 20 ambiguous). This indicates that 

the number of predictions does not merely depend on the number of 

candidate cases but also on the information contained in corresponding 

putative protein families. In fact, a rather low number of fragmentation 

predictions, but reliable predictions, is favourable if the family is highly 

duplicated or fragmented—both challenges present in the olive dataset and 

likely in these putative families. For a fixed size of putative homologous 

protein family, we typically observed that unambiguous predictions occurred 

in the families with fewer putative wild olive sequences and ambiguous 

predictions in the families with more wild olive sequences. Similarly, by fixing 

the number of putative wild olive sequences per putative family, we observed 

that unambiguous predictions were obtained when the number of candidates 

was lower and as it increased, ambiguous predictions appeared. Both 

observations are anticipated and support the idea of getting reasonable 

outcomes by running the pipeline on this particular dataset. 

 

We manually inspected 10 randomly selected cases and none of them 

seemed implausible (section 4.3.3). More precisely, 3 unambiguous 
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predictions looked plausible while the remaining 7 ambiguous cases could be 

coded by paralogous genes as well as by the same gene. Five cases (3 

unambiguous, 2 ambiguous) were chosen from putative homologous protein 

families with no more than 10 pairs subjected to heuristic examination of 

fragmentation. The remaining five ambiguous cases were selected from 

putative families with more than 10 tested pairs. Former cases belonged to 

smaller and more conserved putative families which led to better resolved 

reconstructed phylogenetic trees (higher internal SH-like branch support 

values). In inspected reconstructed phylogenetic trees putative olive protein 

sequences were usually placed within olive-only subtrees, i.e. subtrees 

containing no putative sequences from other species. Furthermore, usually 

the branch attaching the subtree to the rest of the tree had high SH-like 

support, higher than 0.95. When this branch had support higher than the 

collapsing threshold (here 0.95), only cases within the subtree could 

potentially be identified as fragments which causes missing out predictions if 

one of the fragments is outside the subtree. Potential polyploidization events 

that led to the extant wild olive genome and estimated high heterozygosity 

rate (section 1.3.3) also pose biological challenges for the test. Yet, taking 

into account the list of predictions and having in mind that there were not 

many predictions on families with >10 candidate cases (section 4.3.2), we 

have reasons to believe that our heuristic approach was capable of dealing 

with these issues on this particular dataset with external tools and 

corresponding settings used along the pipeline.  

 

We encountered a putative protein family containing 386 reconstructed 

sequences out of which 96 were derived from wild olive forming 1,688 

candidate pairs for heuristic examination. The matter was further complicated 

with 108 Glycine max and 160 Zea mays sequences (<10 putative 

sequences per other reference species). As we had not done any approach 

validation on the data with that extent of fragmentation and potentially high 

rates of gene duplication and heterozygosity, we refrained from making any 

predictions. Although our approaches attempt to resolve challenging cases 

which remained fragmented despite extensive assembling and annotation 

efforts prior to genome release (and often accompanying peer-reviewed 



 

227 
 

paper), we thought that this putative homologous family could be too 

challenging to reliably disentangle 1688 cases.  

 

4.4.4 Final remarks on quantifications 
 

Throughout this chapter, especially in sections 4.3 and 4.4, we extensively 

classified and quantified the input data, predictions, types of predictions. 

These numbers can be a handy sanity check and immediately direct users to 

the peculiarities of the dataset or dubious performance of the fragmentation 

detection approach(es). We encourage users to put their predictions in the 

context of putative protein family size, number of target species putative 

protein sequences within a putative family, number of candidates for heuristic 

examination within a putative family and length of putative protein sequence 

fragments. It might be possible to filter out some candidates if the numbers 

suggest a very challenging scenario, e.g. not many reference putative 

sequences or too many potentially fragmented candidate pairs within a single 

family. For already inferred predictions, these numbers can help deciding 

which ones could be more or less reliable—the more challenging the 

scenario, the less reliable the predictions48. We hope that a new output file of 

our tool ESPRIT 2 (Chapter 3; Piližota et al., 2019) will be useful in that 

regard. An even better picture can be obtained if multiple sequence 

alignment and reconstructed protein tree are also considered but we are 

aware that requires substantial manual work and may only be practical for a 

small number of cases.      

 

Creating a universal framework for validation of predictions is a complex task 

when identifying fragmentation in annotation of de novo assemblies which 

represent the best attempt in reconstructing gene space of species under 

investigation. We do not know the truth and we try to infer it with our limited 

knowledge. We do know some factors that affect inference, yet it is hard to 

quantify their effect, especially as they might vary from case to case. For 

                                            
48 This is a generalisation which may not hold true for particular cases. Also, a user 
might make misjudgements on the situation under investigation.  
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example, consider assigning a confidence score to each prediction. Ideally, it 

would reflect the evolutionary history (relationships and distances among 

species in the dataset, species-specific evolutionary events, rates of 

evolution), quality of the data (sequencing, assembling, annotation, putative 

gene/protein family inference, multiple sequence alignments, phylogenetic 

tree reconstruction) and the capability of our approach to deal with them. It is 

reasonable to assume that the higher the data quality, the higher the 

probability of correct inference, yet the question is how to quantify the data 

quality, its impact on the outcome of our approaches and its interplay with 

other factors. Does the whole genome duplication within the target species 

introduce more challenges than fragmentation within a reference species? 

Can variable evolutionary rates along the target gene sequence get 

recognised with enough high-quality data from reference species? When and 

to what extent? How do external tools in the pipeline affect predictions? We 

saw in Chapter 3 that many pairs of potential fragments could not be found in 

the same putative protein family (sections 3.3.3 and B.6). How do the 

heuristics behave on a particular dataset, on a particular test case? For 

example, from the wheat study it does not seem that empirical distribution of 

the likelihood ratio heuristic can be easily generalised (sections 3.4.4 and 

B.10). Thus, relying on a researcher’s expertise in the species within a 

dataset, especially in target species, and its ability to judge based on the 

observed properties of the dataset and prediction outcomes, might be the 

most pragmatic approach to assure that predictions are plausible, to get a 

sense of prediction confidence and to make decisions on further, more 

extensive and laborious, validation.   
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Chapter 5: Identifying fragments of the same 
transcript model in transcriptome datasets, with 
putative cassava transcriptome as a test case 

 

5.1 Introduction 
 

As already mentioned in Chapter 1, one of the common features of genome 

and transcriptome assemblies is that both often suffer from fragmentation. A 

certain degree of it arises from the incapability of the current scientific 

methods to deal with the same biological features present in both 

transcriptome and genome data, e.g. gene duplication, ploidy, repetitive 

regions. However, there are also differences between the two. Typically the 

aim of transcriptome assembly is to obtain representation of expressed 

transcripts in a sample rather than obtaining one continuous sequence 

representation per chromosome like in genome assembly. Yet, transcriptome 

assembly is not an easy task. It deals with reconstructing different types of 

RNA molecules, pervasively transcribed regions, alternatively spliced 

transcripts of the same gene and transcripts expressed at low levels which 

could even be discarded as assembling artifacts if assembled at all. Hence, 

methods developed for genome assemblies can be a good starting point for 

transcriptome assemblies but will require certain modifications to deal with 

transcriptome data. 

 

Transcriptome assemblies are not spared from misannotations analogous to 

the ones observed in genome assemblies. In particular, fragments coming 

from the same transcript are often annotated as multiple separate transcripts 

from a single or multiple genes. In this type of data, as well, some of the 

fragmented models could be detected with the help of (putative) homologous 

genes from related species. 
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In this chapter, we assemble and annotate a putative transcriptome of 

cassava, Manihot esculenta cv. 98/0581, and explore the ability of previously 

developed phylogenetic heuristics (described in Chapter 3) and ESPRIT 

(Dessimoz et al., 2011) to detect non-overlapping or slightly overlapping 

fragments of the same transcript model. Then we validate our predictions 

against publicly available reference putative cassava proteome and discuss 

their nature. The annotation of input de novo transcriptome assembly likely 

contains fragmented transcript models while the high-quality reference 

proteome facilitates the classification of predictions into true positives and 

false positives. Given the limited time frame of the project, the results are not 

yet conclusive but we hope that our suggestions for future work will aid 

gaining better understanding of the underlying causes and provide insights 

for future developments. 

 

5.2 Methods 
 

In this section, we briefly summarize heuristics for detecting fragmented 

gene models that were used in the study, explain the process of obtaining 

the input data and describe validation of acquired predictions.  

 

5.2.1 Approaches for detecting fragmentation 
 

To infer fragmented transcript models, we used two phylogenetic heuristics 

developed and described in Chapter 3, and an established software package 

ESPRIT (Dessimoz et al., 2011). The first phylogenetic approach collapses 

low-support internal branches of a reconstructed phylogenetic tree with the 

expectation that putative protein-coding sequences of fragments derived 

from the same transcript will become sister leaves after collapsing. In the 

second approach, we performed a likelihood ratio heuristic (LRH) with the 

null hypothesis being that the two models under examination come from the 

same transcript. We also investigated predictions of a complementary tool 

ESPRIT which exploits putative pairwise relationships among putative 
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proteins from related species. Furthermore, we performed a meta-approach 

ESPRIT+LRH where we took a union of predictions obtained by ESPRIT and 

the LRH. 

 

5.2.2 Cassava: from raw reads to coding regions within transcript 
models 
 

As a test case for the study, we used a putative cassava transcriptome which 

we assembled de novo from raw sequencing reads and then annotated. On 

such a transcriptome assembly which is not further improved by additional 

sources of data or manual curation, we expect the presence of fragmented 

putative (protein-coding) transcripts—putative transcripts that could be 

identified by our heuristics. 

 

We downloaded Illumina RNA-Seq paired-end reads from NCBI (NCBI 

Resource Coordinators, 2017). According to the sample description, the RNA 

samples had been collected from leaves of 7-week-old Manihot esculenta cv. 

98/0581, purified using Illumina Ribo-Zero magnetic kit49, prepared for 

sequencing using Illumina TruSeq Stranded mRNA preparation kit with 

poly(A)+ selection protocol, and then sequenced on Illumina HiSeq 2500 

machine. Sequencing reads had been deposited in NCBI’s (NCBI Resource 

Coordinators, 2017) public repository under the BioProject PRJNA282938 

(ARC-OVI, 2015). The dataset, SRR4019554_1.fastq and 

SRR4019554_2.fastq, contained 12,509,296 pairs of raw reads.  

 

Preprocessing and cleaning of the reads was performed according to the 

tutorial on best practices for transcriptome assembly with Trinity (Grabherr et 

al., 2011; Freedman, 2016) depicted in Figure 5.1. First, we examined quality 

metrics for the raw reads using FastQC (Andrews, 2010). Then we cleaned 

the data in four steps. Erroneous k-mers which could impact assembly were 

identified and removed with Rcorrector (Song and Florea, 2015), low 

complexity reads and reads containing significant number of unknown 
                                            
49 Removes cytoplasmic, mitochondrial and chloroplast rRNA (Illumina, Inc., 2020). 
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residues were removed with a Python script provided in the tutorial, and Trim 

Galore! (Krueger, no date) was used to remove adapter contamination and 

low quality bases in reads. Finally, despite using poly(A)+ selection in the 

library preparation for sequencing, some reads in the dataset might be 

coming from rRNA. To identify and remove them, we mapped the data 

against the SILVA database of rRNA reads (Glöckner et al., 2017) using 

Bowtie 2 (Langmead and Salzberg, 2012). Reads which did not align to the 

rRNA database were checked for quality, again using FastQC and used as 

input for Trinity. All tool parameters were kept the same as in the tutorial, 

except for the time and memory requirements which depend on the size of 

the dataset and available resources on the computer clusters employed for 

computations. Stranding protocol in RNA-seq library preparation kit was also 

taken into account. 

 

To assess the quality of the assembly, we checked basic assembly metrics 

with TransRate (Smith-Unna et al., 2016), quantified read support, i.e. the 

percentage of reads where both ends align to the same contig, using Bowtie 

2 (Langmead and Salzberg, 2012), and finally, assessed completeness of 

the assembly with BUSCO (Simão et al., 2015) using their dataset of putative 

near-universal single-copy orthologous genes in plants. 

 

 



 

233 
 

 
Figure 5.1: Preprocessing and data cleaning procedure as suggested 

by Freedman (2016).  
 

Finally, since all approaches require putative proteome input data, we 

predicted and translated protein-coding regions on the contigs obtained by 

Trinity (Grabherr et al., 2011). We used TransDecoder (Haas and 

Papanicolaou, 2016) and included homology search with Pfam (Finn et al., 

2014) as open reading frame retention criteria. Completeness of the putative 

gene set was again assessed with BUSCO’s plants reference set (Simão et 

al., 2015). 

 

5.2.3 Improving cassava transcriptome: identifying fragments from the 
same gene transcript 
 

All three approaches—the two phylogenetic heuristics and ESPRIT 

(Dessimoz et al., 2011)—were applied on a dataset comprised of predicted 

cassava peptide sequences (see 5.2.2 above) and five reference plant 

proteomes downloaded from OMA Browser (Altenhoff et al., 2014; Altenhoff 

et al., 2018), March 2017 release (Table D.1). We also considered a union of 

predictions from ESPRIT and the likelihood ratio heuristic with a significance 

level of 0.01. 
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To get candidate fragments and corresponding putative protein families for 

the heuristics, we followed the procedure outlined in Chapter 3. To obtain 

putative protein families, we ran the ‘bottom-up’ variant of GETHOGs 

algorithm (Train et al., 2017) with default parameters, and used the inferred 

root-level Hierarchical Orthologous Groups (HOGs) as input for the 

heuristics. In this process, the GETHOGs algorithm retains only one putative 

isoform sequence per putative gene—the one with the highest number of 

significant matches in other species during the all-against-all step in the 

homology inference, thus showing the potential to have the highest number 

of inferred evolutionary relationships across species in the dataset (Altenhoff 

et al., 2010). For the candidate pairs, we considered putative sequences 

which were each at least 50 AA long and which mutually overlapped less 

than 10% in the multiple sequence alignment of the corresponding putative 

protein family. Again, we used Mafft v7.164b (Katoh and Standley, 2013) to 

align putative protein families and FastTree v2.1.8 (Price, Dehal and Arkin, 

2010) to reconstruct protein trees and obtain SH-like branch supports 

(Shimodaira and Hasegawa, 1999; Guindon et al., 2010). We ran both tools 

with their default sets of parameters.  

 

We applied three methods for detecting split gene models: i) we collapsed 

tree branches with SH-like support less than 0.95; ii) performed the likelihood 

ratio heuristic (LRH) with significance levels of 0.2, 0.15, 0.1, 0.05 and 0.01 

using 100 bootstrap samples, and iii) ran ESPRIT (Dessimoz et al., 2011) 

with default parameters. Note that ESPRIT does not try to discard any 

putative protein isoforms and treats them all as independent models. This 

can potentially translate into many ambiguous predictions. As already 

pointed out in section 3.2.5, some fragments might be involved in multiple 

predictions made by the same heuristic. For such predictions, we inspect 

corresponding multiple sequence alignments and resolve ambiguities where 

possible. More precisely, when fragments from conflicting predictions span 

different regions of the alignment, we unambiguously accept all predictions. 

ESPRIT does not try to resolve ambiguous predictions and all pairs having a 

fragment in common are considered ambiguous. Finally, we also considered 
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an approach which takes advantage of both pairwise and phylogenetic 

settings. More precisely, we took union of predictions inferred by ESPRIT 

and the LRH with a significance level of 0.01.  

 

5.2.4 Validation of predictions 
 

To assess the performance of the heuristics, we validated predictions against 

the putative high-quality reference proteome of cassava, Manihot esculenta 

cv. AM560-2 (Bredeson et al., 2016), using the same approach as in Chapter 

3 (described in 3.2.9 and B.3.1). The putative reference genome (assembly 

v6.0, annotation v6.1, downloaded from Phytozome (Goodstein, D. M. et al., 

2012; Phytozome, 2017)) contained  33,033 annotated protein-coding 

genes—more than 99% of the estimated number of genes (more on the data 

quality and completeness in section 1.2.4), and we used the corresponding 

putative proteome containing one putative protein sequence per putative 

gene. All putative sequences involved in predictions obtained by heuristics 

and all sequences involved in ESPRIT’s (Dessimoz et al., 2011) 

unambiguous predictions were queried against the putative reference 

proteome using  BLAST+ v2.2.30 (Camacho et al., 2009). Accounting for 

differences between our transcriptome and the reference proteome arising 

from sequencing data and different assembly and annotation pipelines for 

different cultivars, we required a query coverage of at least 95% having at 

least 95% identical residuals in the matching regions of a query and the 

corresponding hit. 
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5.3 Results 
 

5.3.1 Reasonably good cassava transcriptome assembly 
 

As already detailed in Methods (see section 5.2.2), Illumina paired-end reads 

were first subjected to quality assessment, cleaning and then again quality 

assessment prior to assembling. This reduced the initial set of 12,509,296 

pairs of raw reads to the set of 10,679,994 pairs of reads. All starting reads 

were 100 bp long while after processing lengths varied from 36 to 100 bp. 

FastQC (Andrews, 2010) analysed per base sequence quality, per sequence 

quality scores, per base sequence content, per sequence GC content, per 

base N content, sequence length distribution, sequence duplication levels, 

overrepresented sequences, adapter content and k-mer content of the reads. 

In the assessment of the final set of reads, it reported “FAIL” status only for 

“Per base sequence content” and “Kmer content” which was expected and 

acceptable. More precisely, due to the bias in the random selection of 

sequencing primers, nearly all RNA-Seq libraries fail the “Per base sequence 

content” module (Babraham Institute Bioinformatics Group, no date). The 

problem cannot be fixed by processing but importantly, biased choice of 

primers does not mean individually biased sequencing reads. Furthermore, 

such a library will almost always fail the “Kmer content” module (Babraham 

Institute Bioinformatics Group, no date). 

 

The final set of processed reads was assembled de novo using Trinity 

(Grabherr et al., 2011). The resulting 80,917 contigs, including all putative 

isoform sequences recognised by Trinity, had N50 of 1,799 bp. The shortest 

contig was 201 bp long (Trinity retains only contigs ≥ 200 bp) and the longest 

15,670 bp with mean length of 1211.38264 bp. Almost half of the contigs 

(39,138; ~48.37%) were longer than 1,000 bp and 17 contigs were longer 

than 10,000 bp. Considering only the longest putative isoform sequence per 

(Trinity) ‘gene’ yielded N50 of 1,702 bp. Out of all paired-end reads provided 

as input for Trinity, 66.56% could be mapped to the resulting contigs so that 
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both ends align to the same contig. BUSCO (Simão et al., 2015) identified 

1,231 out of 1,440 (85.5%) models of complete putative near-universal 

single-copy orthologous genes, while further 72 gene models (5%) were 

classified as fragmented and 137 models (9.5%) could not be found in the 

assembly. Despite performing only de novo assembling, the resulting 

assembly was fairly complete with regard to annotated putative near-

universal single-copy orthologous genes. 

  

Trinity (Grabherr et al., 2011) contigs were used as input for TransDecoder 

(Haas and Papanicolaou, 2016) which predicted 57,252 protein-coding 

regions including isoforms. Protein-level BUSCO assessment (Simão et al., 

2015) revealed 1,212 (84.1%) complete, 75 (5.2%) fragmented and 153 

(10.7%) missing BUSCO gene models—a discrepancy caused by limitations 

of the models used by TransDecoder. We proceeded with inferring 

fragmentation on the dataset of all 57,252 TransDecoder putative protein-

coding sequences. The dataset can be downloaded from 

https://doi.org/10.5281/zenodo.3628622. 

 

5.3.2 Phylogenetic heuristics: few candidates, high proportion of 
ambiguous predictions  
 

In order to investigate the performance of the phylogenetic heuristics on the 

transcriptome data, we applied them to the set of putative cassava protein-

coding sequences identified by TransDecoder (Haas and Papanicolaou, 

2016) including reference putative protein sequences from Arabidopsis 

thaliana and four other putative plant proteomes. We ran the ‘bottom-up’ 

variant of the GETHOGs algorithm (Train et al., 2017) with default settings 

and obtained 21,412 input putative protein families for the heuristics. Relying 

on TransDecoder annotation, the GETHOGs algorithm retained only one 

putative isoform of each putative cassava gene. We applied the collapsing 

heuristic with a threshold of 0.95, and the likelihood ratio heuristic with 

significance levels of 0.2, 0.15, 0.1, 0.05 and 0.01. Predictions, both 

unambiguous and ambiguous, were validated against the reference putative 
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proteome of Manihot esculenta cv. AM560-2 (Bredeson et al., 2016) using 

BLAST+ v2.2.30 (Camacho et al., 2009).  

 

On this particular input data, the collapsing approach did not manage to 

detect any fragmentation, while the likelihood ratio heuristic (LRH) detected a 

fair number of split putative transcripts ranging from 26 to 57 (Table 5.1) but 

only one prediction was unambiguous regardless of the heuristic significance 

level. Only one pair of fragments could be confirmed as a correct prediction. 

Consequently, the precision of the LRH (formula 3.2) on this dataset was 

unacceptably low: between 0.029 and 0.053 depending on the significance 

level of the heuristic. 
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61 cases #splits 

couldn't 

validate 

could 

validate correct wrong precision 

Collapsing 

0.95 0 0 0 0 0 NA 

LRH 

0.2 26 7 19 1 18 0.053 

0.15 32 11 21 1 20 0.048 

0.1 39 12 27 1 26 0.037 

0.05 49 19 30 1 29 0.033 

0.01 57 23 34 1 33 0.029 

 

Table 5.1: Number of predictions obtained by the heuristics classified 
by the outcome of the BLAST+ (Camacho et al., 2009) validation against 

reference putative cassava proteome (Bredeson et al., 2016).  
Collapsing branches with SH-like support less than 0.95 did not yield any 

predictions. In the consecutive experiment, we performed the likelihood ratio 

heuristic with significance levels of 0.2, 0.15, 0.1, 0.05 and 0.01. While the 

number of predictions was satisfactory given the number of cases subjected 

to the heuristics, the precision of the heuristic was very low. 
 

One of the barriers to the higher number of reliable predictions was that out 

of 61 pairs subjected to heuristics, 59 belonged to the same putative 

hierarchical orthologous group (HOG (Train et al., 2017)). Furthermore, the 

putative protein family contained 272 (45 cassava) putative sequences from 

cassava and five reference plants which indicates high fragmentation or 

gene duplication rate. The remaining two candidates were found in two 

distinct HOGs; one comprising 88 (31 cassava) and the other 548 (11 

cassava) putative protein sequences. Putative cassava protein sequences in 

the latter two might not appear as fragmented as in the previously mentioned 

HOG, yet given the number of putative sequences from each species, it 

might be challenging to reject the possibility that fragments are not derived 
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from paralogous genes or from different isoforms of the same gene. Given its 

conservative performance on the wheat and wild olive data (sections 3.3, 

4.3), it is little surprising that the collapsing approach did not yield any 

predictions. The redundancy in the input family also affected performance of 

the likelihood ratio heuristic which could not make more predictions (if there 

are more bona fide split transcripts).  

 

The list of predictions for each approach and the choice of parameters can 

be downloaded from https://doi.org/10.6084/m9.figshare.11734293.v1. 
 

5.3.3 ESPRIT and ESPRIT+LRH: more predictions, more ambiguous hits 
 

In the study on bread wheat genome data (see Chapter 3) ESPRIT 

(Dessimoz et al., 2011) yielded mainly complementary predictions to the 

ones obtained in the phylogenetic framework (section 3.3.4). Assuming 

similar behaviour on transcriptome data, we ran the software with default 

parameters on the same set of cassava and reference putative protein 

sequences as used for the collapsing heuristic and the likelihood ratio 

heuristic. 

 

ESPRIT (Dessimoz et al., 2011) unambiguously identified 456 pairs coming 

from the same transcript as well as 816,527 ambiguous predictions. The tool 

does not discard any putative isoform sequences and treats them as being 

coded by separate genes. Hence, some predictions included two putative 

isoform sequences (already) assigned to the same putative gene. 

Furthermore, as TransDecoder (Haas and Papanicolaou, 2016) sometimes 

predicts and annotates multiple coding sequences within a single Trinity 

isoform (Grabherr et al., 2011), ESPRIT considered such cases for testing, 

too (our phylogenetics methods did not), and reported at least some of 

them50 as fragments of the same putative transcript model. Regardless of 

their location (same isoform or not), we validated (BLAST+ v2.2.30 

                                            
50 We did not investigate ESPRIT’s recall (Dessimoz et al., 2011) on such cases as 
it was beyond the scope of the project. 
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(Camacho et al., 2009)) all unambiguous predictions against the reference 

Manihot esculenta cv. AM560-2 putative proteome (Bredeson et al., 2016). A 

breakdown of the predictions according to their Trinity annotation is shown in 

Table 5.2. Considering all 456 unambiguous predictions yielded high 

precision (formula 3.2)—0.842, while restricting only to the 235 pairs of 

sequences previously annotated as isoforms of different genes lowered 

precision to 0.715. A complete list of predictions IDs is available at 

https://doi.org/10.6084/m9.figshare.11734341.v1.  

 

Finally, we assessed a meta-approach ESPRIT+LRH that takes a union of 

unambiguous predictions by ESPRIT (default parameters) (Dessimoz et al., 

2011) and the likelihood ratio heuristic (LRH) (significance level of 0.01). 

Again, we validated predictions the same way as for other approaches. By its 

definition, the approach has better ability to detect fragmentation than any of 

the two approaches alone and it identified 513 pairs of fragments, 292 of 

them representing isoforms of different putative genes. There were no 

predictions confirmed by both ESPRIT and LRH. Given the very low 

precision of the LRH approach, the precision of ESPRIT+LRH (calculated by 

formula 3.2) was lower than that of ESPRIT alone—0.752 and 0.584 

depending whether all predicted pairs or just pairs coming from putative 

isoforms of different putative genes were considered. 
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ESPRIT 

Same putative isoform51 Different putative 

isoforms of the same 

putative gene 

Different putative genes 

145 76 235 

Correct Wrong Cannot 

verify 

Correct Wrong Cannot 

verify 

Correct Wrong Cannot 

verify 

106 0 39 21 2 53 103 41 91 

ESPRIT + LRH (α=0.01) 

Same putative isoform51 Different putative 

isoforms of the same 

putative gene 

Different putative genes 

145 76 292 

Correct Wrong Cannot 

verify 

Correct Wrong Cannot 

verify 

Correct Wrong Cannot 

verify 

106 0 39 21 2 53 104 74 114 

 

Table 5.2: The number of split transcript models unambiguously 
inferred by ESPRIT (Dessimoz et al., 2011) and an approach combining 

ESPRIT with LRH.  
Breakdown. 

 

 

 

                                            
51 Two distinct protein-coding sequences annotated by TransDecoder (Haas and 
Papanicolaou, 2016) within the same Trinity isoform model (Grabherr et al., 2011)  
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5.4 Discussion and future work 
 

In the following sections we briefly discuss the main outcomes of the tested 

approaches and provide an outlook on future work that has to be carried out 

in order to tailor our heuristics for use in improving fragmented transcriptome 

assemblies and their annotations. 

 

5.4.1 Phylogenetic heuristics: marginal number of predictions 
 

The pipeline developed for genome assemblies and annotations—inference 

of putative homologous families by GETHOGs (Train et al., 2017), 

phylogenetic heuristics, methodology for evaluation of predictions—in its 

current state does not seem to be capable to deal with the challenges of the 

cassava transcriptome data. The dataset was not an easy one—cassava is a 

highly heterozygous diploid species which has likely undergone a whole 

genome duplication (section 1.3.4), and we used only five reference species 

for the inference which were estimated to have the shortest evolutionary 

distance to cassava among the available ones in the OMA Browser (Table 

D.1).  

 

Recent comparative studies show that Trinity (Grabherr et al., 2011) 

outperforms other de novo transcriptome assemblers, yet it still creates 

fragmented putative transcript sequences and outputs unrealistically high 

number of putative transcripts (Wang and Gribskov, 2017; Voshall and 

Moriyama, 2018; Hölzer and Marz, 2019). Also, some putative transcripts 

might be completely missing from the assembly (Voshall and Moriyama, 

2018). Misassembled chimeric sequences tend to be created but to a lesser 

extent than in assemblies built from other evaluated de novo assemblers 

(Wang and Gribskov, 2017). The presence of fragmented putative transcript 

sequences, chimeric sequences, inversions, rearrangements, missing 

sequences and other artifacts in our cassava transcriptome assembly was 

reflected in 33.44% of paired-end input reads which could not be aligned to 

the assembly such that both ends align to the same contig. Although 
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assembly fragmentation is only one of the reasons for unaligned reads, we 

anticipated a larger number of predictions on corresponding fragmented 

putative protein-coding regions. 

 

One of the key reasons for low number of predictions could be that in the 

process of computing putative input families for the heuristics, GETHOGs 

algorithm (Train et al., 2017) chose only one putative protein isoform per 

putative gene and filtered out all others. This drastically reduced the overall 

theoretical number of all possible cases for heuristic investigation and the 

number of cases where the two isoform models were actually fragments of 

the same isoform model. Favourably, the chosen protein isoform model is 

the one for which GETHOGs finds indications that could have the highest 

number of putative evolutionary relationships within the dataset. Thus, such 

isoform models could potentially be more informative and provide more 

reliable information for the  heuristics. So, the number of predictions might 

also indicate that the heuristics take a cautious approach toward making 

predictions to avoid suggesting unrealistic chimeric models. 

 

Out of all 26-57 predictions made by the likelihood ratio heuristic, only one 

was unambiguous and validated as wrong. Among ambiguous predictions 

that could be validated, only one was classified as correct. This also 

potentially reveals some of the weaknesses of the validation process. First, a 

genome annotation might lack models of alternatively spliced variants, 

variants with alternative transcription start and alternative polyadenylation 

site (Grabherr et al., 2011) which can prevent validation of some predictions. 

That could be the case here—in the putative cassava genome used for 

validation, each gene was represented by a single gene model, and a single 

putative protein sequence in the corresponding putative proteome. (On the 

other hand, if multiple reference isoforms are catalogued, models involved in 

predictions might have multiple equally good mappings which again does not 

allow for their validation in the current setting.) Second, some predictions 

involving fragments derived from heterozygous regions could be indeed 

wrong but they were maybe classified as wrong or not even validated if they 

were not sufficiently similar to the putative protein sequence predicted on the 
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region representation in the haploid-like reference genome assembly and 

annotation. Third, cassava is believed to have undergone a whole-genome 

duplication (WGD) (Bredeson et al., 2016) and the heuristics do not seem to 

be capable to differentiate putative species-specific paralogous gene models 

from fragments of a single gene model (Piližota et al., 2019)52. That probably 

led to some of the predictions validated as wrong. Yet, WGD maybe 

prevented validation of some pairs if the models under investigation mapped 

equally well to multiple protein models from duplicated genes. Finally, due to 

poly(A)+ selection protocol in transcriptome sequencing, it could be that 

some transcript models correspond to incompletely spliced pre-mRNA 

transcripts (see section 1.1.3). At their current state, the heuristics are not 

capable of differentiating between transcript models on the data derived from 

spurious pre-mRNA transcripts and transcript models on the data derived 

from mRNA transcripts. Indeed, a prediction combining the two is wrong. 

However, a transcript model stemming from pre-mRNA data might not have 

had a matching gene model in the putative cassava genome (Ingolia, 2014; 

Zhang et al., 2015) and thus, the prediction could not be validated nor 

classified as wrong. Furthermore, a prediction involving a transcript model on 

a sequence from pre-mRNA and a transcript model on a sequence from 

mRNA could cause other correct predictions to be classified as ambiguous if 

they have a model in common. This is particularly problematic for correctly 

inferred fragmentation involving two transcript models derived from mRNA 

data which might be interpreted as less reliable just due to the ambiguity. 

 

In terms of the absolute number of predictions and precision, ESPRIT 

(Dessimoz et al., 2011) was more successful in this setting. It considered all 

cassava putative protein isoforms which provides a larger search space for 

                                            
52 In Piližota et al. (2019), random fragments were derived from 200 cassava gene 
models (“split gene models”) and 200 pairs of putative paralogous cassava gene 
models (“paralogous gene models”) from cassava assembly v4.1 downloaded from 
Phytozome v7 (Goodstein et al., 2012). 75% of fragmented putative paralogs were 
species-specific, i.e. not shared by other 16 species in the dataset. The precision of 
the combined approach (collapsing@0.95 ∩ LRH@0.01) was 40%. When the pairs 
derived from species-specific putative paralogous gene models were excluded, the 
precision increased to 65%.  
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fragmented models. That led to only 0.06% of predictions classified as 

unambiguous. Also, as it relies on pairwise relationships, it is more resistant 

to partial or conflicting signals from multiple sequences and spurious signals 

from assembling artifacts which contributes to better performance in terms of 

precision. However, there is still a risk of making predictions involving 

fragments derived from different isoforms.  

 

With respect to the validation of all methods, perhaps more pairs might have 

been validated and confirmed as correct if the reference assembly had been 

of the same cassava cultivar and less fragmented. 

 

5.4.2 Directions for future work using this dataset 
 

Given the outcome of collapsing approach and precision of the likelihood 

ratio heuristic on this dataset, the pipeline requires thorough investigation 

and probably major modifications to yield reliable predictions on the 

transcriptome data. The heuristics are indeed the key step in the inference, 

yet the confounding effect of pre-testing process should not be neglected as 

results depend on the evolutionary information contained in the 

corresponding putative protein families and on the putative sequences 

subjected to the heuristics (or not subjected to the heuristics as seen in 

section B.6 for the wheat data). Here we provide guidelines for future work 

that tackle all stages of the inference process—from predicting protein-

coding regions on contigs to subjecting to phylogenetic heuristics. We hope 

they can shed light on how the input data responds to each of the building 

blocks in the pipeline and yield solutions for improvement. 

 

One could start by mapping all Trinity (Grabherr et al., 2011) contigs to the 

putative cassava reference genome (Bredeson et al., 2016). Here one of the 

following scenarios can happen: i) whole contig maps to the putative genome 

and seems to contain only full length putative transcript sequences—a case 

which cannot be further improved by the heuristics; ii) a contig seems to 

contain a fragment of a putative transcript sequence—if other fragment(s) 
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can be found in the dataset, they should all be monitored along the pipeline; 

iii) a contig or its part(s) cannot be mapped to the putative reference 

genome—a case of uninformative (sub)sequences for this purpose.  

 

The next step in the current setting involves running TransDecoder (Haas 

and Papanicolaou, 2016) which may fail to recognise some of the protein-

coding sequences. This might mean omitting putative sequences which are 

indeed fragments. The performance of TransDecoder could be improved 

(e.g. by including BLAST homology search (Camacho et al., 2009) as open 

reading frame retention criteria) or a more optimal tool could be used for the 

same purpose.   

 

In order to consider a pair of putative sequences for heuristic examination, 

they first have to be assigned to the same top-level hierarchical orthologous 

group. The GETHOGs pipeline (Train et al., 2017) was not specifically 

adapted for dealing with fragmented data and some of the potential pairs will 

be separated across different hierarchical groups. Bigger HOGs can be 

constructed by modifying parameters of the GETHOGs algorithm. The only 

risk is, which was observed in the wheat study (sections 3.2.9 and 3.3.3), 

that this might increase the number of ambiguous predictions. For some 

studies that might be even more favourable, especially if there is additional 

data or expertise to resolve ambiguities. 

 

Another criteria that a pair of putative protein sequences has to satisfy prior 

to heuristic examination is the length of their overlap in the multiple sequence 

alignment of the corresponding HOG (Train et al., 2017). If their overlap is 

even slightly longer than the threshold (here 10% of their lengths), they will 

be discarded. In this particular dataset, input putative families for the 

phylogenetic heuristics contained 6,492 within-family pairs of putative 

cassava sequences, yet only 61 pairs passed the overlap criteria and were 

subjected to heuristics. Intuitively, this seems rather small number for a de 

novo putative plant transcriptome. This indicates that choosing an optimal 

overlap parameter—the one that retains a fair number of pairs, yet does not 
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induce too many ambiguous predictions—might be quite important for 

sensitivity of the heuristics.  

 

Working with putative plant transcriptomes—i.e. having multiple putative 

isoforms, including those from paralogous genes, expressed at various levels 

from all homologous copies of chromosomes in the dataset—can become 

very challenging for the heuristics to untangle pairwise relationships among 

fragments and reconstruct full-length sequences. Attempting to handle these 

phenomena while reconstructing isofom sequences, assemblers make 

mistakes which were here already reflected in the fraction of BUSCO gene 

models (Simão et al., 2015) found in multiple copies—37.3% on the Trinity 

(Grabherr et al., 2011) contigs and 33.1% in the output of TransDecoder 

(Haas and Papanicolaou, 2016)53. Thus, isoforms could be additionally 

inferred and confirmed with other tools before proceeding with the rest of the 

pipeline. In the phylogenetic heuristics, we considered only one putative 

protein isoform sequence per putative gene chosen by GETHOGs algorithm 

(Train et al., 2017). This substantially reduced the search space for 

fragmented transcript models. But even in the setup where a single putative 

protein isoform sequence per putative gene was considered, we can observe 

room for improvement. As already pointed out above, 59 out of 61 candidate 

pairs in this study were found in a single putative protein family. We believe 

that some of these sequences are indeed fragments derived from the same 

or paralogous genes. Furthermore, if they are derived from the same gene, 

they could be fragments of the same or different isoforms. Thus, the genome 

annotation problem of “being fragments of the same gene model”, can be 

further decomposed here into i) being fragments of the same isoform model, 

and ii) being fragments of two isoform models of the same gene model. One 

way to approach this problem at this stage could be to correct some of the 

mistakes using evolutionary context by incorporating the possibility that 

fragments come from different isoforms of the same gene. More precisely, 

when in doubt whether putative sequences are from isoforms or paralogs, 

putative paralogy could be concluded if it is shared by other species in the 
                                            
53 Also observed for Trinity in a cross-species comparison of assemblers by Hölzer 
and Marz (2019)  
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reference dataset. We could also consider all assembled and annotated 

isoform sequences and examine them separately two by two. First, all 

putative isoform sequences could be assigned to putative protein families. 

Then, prior to testing, all putative isoform sequences expressed by the same 

putative genes as sequences under examination could be filtered from the 

putative protein family in order to reduce harming redundancy. Further 

improvement could be achieved by merging isoform models into a single 

gene model. An appropriate way of doing this is a topic in itself. 

 

Finally, it is important to evaluate obtained predictions. In the current setting, 

validation is limited by the quality of the particular haploid-like cassava 

genome assembly (Bredeson et al., 2016). Perhaps, additional data could be 

obtained such as gene models assigned to heterozygous regions, models of 

all reconstructed isoforms or an updated genome assembly and annotation. 

Upcoming research projects might even generate a reference assembly of 

the same cultivar (98/0581). Predictions could be validated using other 

computational and experimental methods but that might be out of scope of 

the project. 

 

The suggestions outlined above might require a lot of work given the size of 

the dataset. Therefore, one could consider to start with a preliminary study 

on a small subset of cases. The output of BUSCO assessment (Simão et al., 

2015) provides a good source of instances, in particular a list of fragmented 

transcript models and a list of duplicated models. Being predicted as near-

universal single copy putative orthologs by definition, fragmented BUSCOs 

are our primary targets for the phylogenetic heuristics. At the time of writing, 

it is not well understood what happens with them along the pipeline. Are 

complementary fragments of fragmented transcript models present in the 

dataset? Are they all translated with TransDecoder? Does the GETHOGs 

algorithm (Train et al., 2017) retain these putative isoform sequences or 

perhaps shorter ones? If complementary fragments are there, are they 

clustered in the same putative protein family? If yes, how much do they 

overlap? Does there appear to be a full-length reference sequence? If yes, 

are the fragments approximately equally evolutionary distant from the 
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reference? Is the corresponding protein tree well resolved? The second 

group of informative BUSCOs—the duplicated ones—are likely misannotated 

isoforms of the single-copy genes and could be crucial for developing coping 

mechanisms for that phenomena. We are positive that a careful case-by-

case analysis of both fragmented and duplicated transcript models indicated 

by BUSCO could already provide meaningful insights for pipeline 

improvements.  

 

5.4.3 Directions for future work using a higher quality dataset 
 

With this project, we aimed to make a contribution towards improving 

transcriptome annotation as well as towards facilitating crops, in particular 

cassava, research. As it turns out, it might be more fruitful to address one 

problem at a time starting with adjusting the heuristics to the transcriptome 

data.  

 

One idea could be to take a well annotated high-quality transcriptome 

assembly and use it as a test case for developmental purposes. To avoid 

tackling two problems at the time—transcriptome data and low-quality data—

the heuristics could be first employed to identify fragmentation in the high-

quality target. Although this could provide insights into the behaviour of the 

heuristics on the transcriptome data, the experiment might as well yield too 

few predictions to make valid conclusions. However, the results might be 

useful in a larger analysis described as follows. A dataset of high-depth RNA 

sequencing reads coming from the same species (and ideally the same 

study that provided the high-quality assembly) could be subsampled at 

various lower depths. Then each subsample could be assembled, annotated, 

translated and subjected to the heuristics (e.g. as described in sections 

5.2.2-5.2.3). Predictions could be validated against putative high-quality 

genome or proteome (like in section 5.2.4). The study could help 

understanding the behaviour of the heuristics depending on the sequencing 

depth and data fragmentation, and reveal necessary adjustments to the 

transcriptome data.  
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A good test case target species for the heuristics development could be 

Arabidopsis thaliana—the best annotated plant according to Bolger, Arsova 

and Usadel (2018). It is a small flowering plant with a small ~135 Mbp long 

diploid genome organised into five chromosomes. Its reference genome 

assembly (Lamesch et al., 2011) omitting any redundant regions is 

119,146,348 bp long (Phoenix Bioinformatics Corporation, 2010) of which 

118,960,704 bp are ungapped (EMBL-EBI, 2020). The assembly contains 

only 100 contigs (N50 11,194,537 bp) organised into 5 scaffolds (N50 

23,459,830 bp) (EMBL-EBI, 2020). There are 27,655 annotated protein-

coding genes (Cheng et al., 2017) with a reference dataset of 74,194 non-

redundant putative transcripts (Zhang et al., 2017). The datasets comprise 

comprehensively annotated data of high quality and thus, could facilitate the 

investigation and improvement of the heuristics. 
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Chapter 6: Conclusion 
 

Genome and transcriptome sequencing and assembling have become 

integral parts of biological research—from a source of supporting evidence in 

basic research to key datasets in cutting-edge technological innovations. 

Despite their wide application and development in the past decades, 

assembling approaches still usually yield draft assemblies which are 

subsequently annotated with many fragmented gene models (Schliesky et 

al., 2012; Denton et al., 2014; Richards, 2018). In this PhD thesis, we aimed 

to establish a new framework for detecting fragments of the same gene or 

transcript model based on phylogenetic inference across closely related 

species. We assume that the minority of predictions is due to mistakes in 

annotation. For the majority of predictions, we anticipate that fragmentation 

already existed in the corresponding assembly (possible reasons described 

in section 1.1.3). Thus, the predictions can facilitate improving the assembly 

quality as well. 

 

Homology, the key concept in comparative genomics, is fundamental for 

phylogeny reconstruction (section 1.4). The process of identifying putative 

homologs typically starts with comparing all-against-all putative protein 

sequences within and across species in a dataset of interest, as described in 

section 1.4.3. As this scales quadratically in terms of the number of 

sequences analysed, this step can become a bottleneck, thus limiting the 

number of putative proteomes that can be simultaneously analysed. 

Therefore, our first research contribution was towards developing a new, 

faster method for homology inference (Chapter 2). In this project, we 

explored ways of speeding up the all-against-all step while maintaining its 

sensitivity (Wittwer et al., 2014). Aiming to implement transitivity of homology 

and, crucially, incorporating the concept of putative subsequence homology 

(concept described in section 1.4.2), our proof-of-concept resulted in a 4x 

speedup while recovering >99.6% of all putative homologs identified by the 

full all-against-all procedure on the sets of putative protein sequences.  
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Despite already providing a significant speedup with only a slight decrease in 

recall, the new method for homology inference could still be further improved. 

Unidentified putative homologous relationships translate into missed putative 

orthologous relationships, both bearing importance in downstream analyses, 

as indicated throughout section 1.4. Since putative homologs are missed due 

to putative sequences being placed in different clusters, future projects could 

investigate ways of merging clusters, choosing better cluster representatives 

and even consider representing clusters with, for example, profiles or hidden 

Markov model profiles. Further improvements in recall could be achieved by 

optimising alignment score and coverage thresholds, using a different 

substitution matrix, processing putative proteomes and protein sequences in 

a different order or clustering putative protein sequences based on sequence 

features. A lower number of clusters would decrease the time required to 

assign a new sequence to the existing clusters. Clusters could be merged 

based on members in common, or a modified clustering approach could be 

implemented which clusters only sequences within a species, and then 

merges clusters across species following a bottom-up traversal of the 

species tree. In cases where there are indications that two clusters could be 

evolutionary very distant, it might be worth to take a risk and conclude that 

inclusion in one cluster automatically implies omission from the other cluster, 

and avoid some computations. Finally, our work lays the foundation for 

further speedup that can be achieved by parallel implementation of the 

algorithm, which is currently work in progress by other lab members. 

Reducing the computational time, either with a serial or parallel 

implementation of the algorithm, is of particular importance for large datasets 

where the time to process all-against-all comparisons among all putative 

protein sequences within and across species can now be done in a fraction 

of the time, cutting down on other accompanying costs as well.  

 

In the subsequent project, the centrepiece of the thesis, we tackled the 

problem of the fragmented annotation of plant genome assemblies (Chapter 

3). We developed two phylogenetic heuristics—one that collapses branches 

having SH-like support below a chosen threshold, and another that exploits a 

likelihood ratio value. Assuming reliable full-length reference gene models 
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and corresponding putative protein sequences, the heuristics attempt to 

distinguish fragments derived from the same gene, as opposed to fragments 

derived from paralogous genes. We extensively validated these methods by 

1) introducing and recovering fragmentation on the putative protein 

sequences of gene models assigned to bread wheat, Triticum aestivum cv. 

Chinese Spring, putative chromosome 3B (Choulet et al., 2014); 2) by 

applying the methods to the putative protein sequences of gene models 

assigned to low-quality 3B assembly (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014) and validating predictions against 

the putative proteome constructed on the high-quality 3B assembly (Choulet 

et al., 2014); and 3) by comparing the performance of the proposed methods 

to the performance of existing methods, namely Ensembl Compara (Vilella et 

al., 2009; Cunningham et al., 2019; Howe et al., 2020) and ESPRIT 

(Dessimoz et al., 2011). We suggest applying both heuristics to the data of 

interest and taking the intersection of their predictions as two lines of 

evidence that indicate fragmentation. Regarding the choice of phylogenetic 

reconstruction tool and its parameters, the heuristics demonstrated 

robustness to the tested settings of selected tools (FastTree v2.1.7 default 

installation (Price, Dehal and Arkin, 2010), FastTree v2.1.10 double-precision 

installation and RAxML v8.2.12 (Alexandros Stamatakis, 2014)). 

 

Nevertheless, it is important to keep in mind the limitations of our approaches 

for detecting fragmentation, notably difficulties in dealing with fragments 

derived from close paralogs and difficulties with fragments derived from the 

same gene, yet from parts that have evolved at different evolutionary rates. 

In the first case, putative protein fragments often do not contain enough 

information to be distinguished as putative paralogs and the heuristics 

suggest merging corresponding gene models into a single one. Although 

biologically wrong, such gene models can still be informative in some 

applications, especially if two paralogs are identical at the protein sequence 

level. In the second case, due to the discrepancy in the evolutionary rates, 

the heuristics do not recognize fragments as parts of the same gene model. 

Here, an implementation of a more realistic evolutionary model would enable 

recovering some of the missed cases. Finally, the approaches depend on the 
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input putative protein families, multiple sequence alignment and tree building 

tools, and their parameters, all of which could be further explored and fine-

tuned for a dataset under investigation. 

 

Having evaluated and analysed the performance of the developed 

phylogenetic heuristics, we chose a set of parameters for application to the 

putative protein sequences of gene models constructed on a draft shotgun 

assembly of the entire bread wheat genome (International Wheat Genome 

Sequencing Consortium (IWGSC), 2014). Aiming for higher confidence of 

predictions, we considered only hits confirmed by both heuristics. The 

application revealed 1,221 unambiguous pairs of gene models which are, 

according to the heuristics, likely to be fragments of the same gene model. 

We hope their inclusion in the future studies will aid wheat and crop 

research, as well as wider comparative genomics community. We would also 

like to acknowledge that the availability of the reference bread wheat 

genome (International Wheat Genome Sequencing Consortium (IWGSC) et 

al., 2018) now allows validation of our predictions and could facilitate further 

improvements of the heuristics. 

 

In the subsequent project we examined the performance of the heuristics on 

a different dataset where only a single genome assembly and annotation 

were available for the target species (Chapter 4). More precisely, we 

attempted to shed light on fragmented annotation of the genome assembly of 

wild olive, Olea europaea var. sylvestris (Unver et al., 2017), employing the 

developed heuristics with their default set of parameters. Considering only 

cases where both heuristics were in agreement, 102 unambiguous pairs of 

gene models could be merged into longer models.  

 

Beside improving genome annotation of the wild olive assembly, the study 

was important for two methodological reasons. First, we provide readers with 

a step-by-step assessment of the data and methods. Namely, given a 

dataset of putative target proteome and reference proteomes, we showcase 

how to 1) investigate the behaviour of the heuristics on the dataset and 

decide whether to pursue detecting fragmentation with our approaches, 2) 
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decide which putative protein families could be too challenging for the 

inference methods, and 3) assess the plausibility of the predictions. We 

acknowledge limitations of the proposed examinations as they consider only 

limited information. Nonetheless, they can evidently help in dismissing some 

of the very challenging cases to prevent false positive predictions, as well as 

bring more evidence to support the credibility of inferred predictions. The 

process involves decision-making on the user side, yet considering all known 

and unknown biological and technical complexities involved, there is still a lot 

to be learnt before creating a unique automated framework for assessments, 

if possible at all. Second, the work supports applicability of the approaches 

beyond putative genome of bread wheat. Moreover, it proves its usefulness 

in circumstances where only a single genome assembly and annotation are 

available for the species of interest.  

 

Although motivated by fragmentation in plant genomes, our phylogenetic 

heuristics are not plant-specific and can be applied to any species of interest. 

To ease and encourage their use, we provide the source code for the 

approaches allowing users to modify parameters as discussed in the study. 

The tool also outputs additional information related to the fragments and 

putative protein families involved in predictions which can facilitate examining 

the behaviour of the heuristics on a particular dataset and the assessment of 

predictions. If a GFF file for the target annotation is provided, it is updated 

with respect to the obtained predictions. The tool will hopefully become even 

more user-friendly in its future releases.  

 

In the last research project, we tackled the problem of fragmented annotation 

of transcriptome assemblies (Chapter 5). Transcriptomes contain transcripts 

expressed at different levels, in different cells and at different developmental 

stages of an organism which challenges the assembly process and 

subsequently affects structural annotation, as seen in sections 1.1.3 and 1.2. 

However, having analogous problems on different types of data encouraged 

us to explore the behaviour of the heuristics developed for genomic data in 

the transcriptome landscape. We were primarily interested in the extent of 

their applicability to the annotated transcriptome assemblies and ways to 
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adapt them to deal with peculiarities of the transcriptome data. As a test case 

for the study, we assembled de novo a reasonably good transcriptome of 

Manihot esculenta cv. 98/0581 using Trinity (Grabherr et al., 2011) and 

constructed putative peptide sequences with TransDecoder (Haas and 

Papanicolaou, 2016). We applied both phylogenetic heuristics and validated 

the obtained predictions against the reference set of Manihot esculenta cv. 

AM560-2 putative protein sequences (Bredeson et al., 2016). Unfortunately, 

the heuristics did not rise to the challenge of transcriptome data; collapsing 

could not identify any split transcript models, while the likelihood ratio 

heuristic could (26-57 depending on the significance level) but with 

surprisingly low precision ranging from 0.029 to 0.053. Again as in the 

previous project, we compared these approaches to the pairwise approach 

ESPRIT (Dessimoz et al., 2011) whose predictions were validated the same 

way as for the phylogenetic heuristics. ESPRIT made 456 unambiguous 

predictions with precision of 0.842 proving its pairwise-based inference 

superior to the phylogenetic heuristics on this particular dataset. 

 

Unfortunately, due to the time constraints of the project, the outcomes of the 

transcriptome study are limited and not conclusive. We believe that the 

performance of the phylogenetic approaches cannot be explained only 

through their limitations observed on the genome data. Clearly, it seems that 

they require an in-depth investigation and major improvements before being 

reliably applicable to the transcriptome data. Perhaps the biggest challenge 

in the transcriptome setting is the appropriate treatment of putative isoforms 

as their redundancy poses challenges in inferring pairwise relationships 

among sequences. It can be particularly hard to correctly distinguish 

fragments derived from different isoforms of paralogous genes. Although the 

heuristics themselves are the backbone of the pipeline employed for 

identifying split transcript models, their sensitivity and precision depend on 

the input putative protein data. Therefore, we strongly encourage gaining a 

better understanding of all building blocks of the pipeline. For more details 

please see sections 5.4.2 and 5.4.3 where we attempted to provide well 

founded suggestions for future analyses that could tackle each step in the 
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pipeline and help reveal ways to improve the inference of fragmented 

transcript models in transcriptome assemblies.  

 

With this thesis we contribute to the development of phylogenetic methods 

for detecting fragmented gene and transcript models in annotated genome 

and transcriptome assemblies respectively. We developed two phylogenetic 

heuristics which yielded 1,221 unambiguous predictions on the putative 

bread wheat genome and 102 unambiguous predictions on the putative wild 

olive genome. We provide the source code which can be used on the 

researcher’s species of interest. We started exploring the capability of the 

heuristics on the annotation of cassava transcriptome which we assembled 

de novo with Trinity (Grabherr et al., 2011) and annotated using 

TransDecoder (Haas and Papanicolaou, 2016). Despite their theoretical 

nature, we hope that our suggestions for future work provide a good starting 

point towards adjustments of the heuristics to the transcriptome data. As the 

approaches rely on putative homologous relationships, we also contributed 

to the project on speeding up homology inference by involving transitivity of 

putative subsequence-level homology (concept explained in section 1.4.2) 

which yielded 4x speedup and achieved >99% accuracy on the empirical 

datasets. 

 

We hope that the outcomes of this research are a stepping stone towards the 

routine application of phylogenetic approaches in improving fragmented 

assemblies and their annotation. 
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Appendix A 
 
Speeding up homology inference 

A.1 Clustering strategy development 
 

A.1.1 Examination of various clustering strategies 
 

Table A.1: Randomly chosen putative bacteria proteomes used in 
preliminary analysis of various clustering strategies.  

The data was downloaded from OMA database (Altenhoff et al., 2014; 

Altenhoff et al., 2018), March 2014 release. 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

CORAD 583355 Coraliomargari

ta akajimensis 

(strain DSM 

45221 / IAM 

15411 / JCM 

23193 / KCTC 

12865) 

Genome 

Reviews 

07-JUN-2011 

(Rel. 130, Last 

updated, 

Version 7) 

ECOLX 1040638 Escherichia 

coli 

NCBI AFOB0200010

9.1 

GI:340738205 

MYCMS 272632 Mycoplasma 

mycoides 

subsp. 

mycoides SC 

(strain PG1) 

Genome 

Reviews 

11-SEP-2007 

(Rel. 80, Last 

updated, 

Version 74) 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

THEM4 391009 Thermosipho 

melanesiensis 

(strain BI429 / 

DSM 12029) 

Genome 

Reviews 

05-FEB-2008 

(Rel. 86, Last 

updated, 

Version 2) 

THET1 525904 Thermobaculu

m terrenum 

(strain ATCC 

BAA-798 / 

YNP1) 

Genome 

Reviews 

15-JUN-2010 

(Rel. 122, Last 

updated, 

Version 6) 

 

 

Table A.2: Preliminary analysis of various clustering strategies.  
As a strategy was tested, new ideas were driven by its results. All strategies 

were tested on a dataset comprised of putative proteomes listed in Table 

A.1. Runtime and recall for all strategies is shown in Figure A.1. 

Strategy Description Recall (%) 

a) Full OMA all-against-all (baseline) (Roth, Gonnet 

and Dessimoz, 2008; Altenhoff et al., 2014; 

Altenhoff et al., 2019) 

100 

b) Cluster founding sequence is a cluster 

representative. Assign a putative sequence to only 

one cluster—first found such that alignment-

score(sequence, representative) > 181 (181 is a 

threshold in the existing OMA pipeline). 

87.16 

 

 

 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

Strategy Description Recall (%) 

c) Sort putative proteomes according to the number 

of putative protein sequences. Process the largest 

putative proteome first. Cluster founding sequence 

is a cluster representative. Assign a sequence to 

all clusters where alignment-score(sequence, 

representative) > 181. 

96.94 

d) Cluster founding sequence is the initial cluster 

representative. Assign a putative sequence to all 

clusters where alignment-score(sequence, 

representative) > 181; always keep the longest 

putative sequence in the cluster as a 

representative. 

 

We did not investigate reasons for low recall 

compared to other strategies but a possible 

explanation could lie in changing cluster 

representative in this manner as it could cause 

cluster content to diverge from the putative 

sequence that introduced the cluster. Hence, 

similar putative sequences might not end up in the 

same cluster. 

89.19 

e) Sort putative proteomes according to the number 

of putative protein sequences. Process the 

smallest putative proteome first. Cluster founding 

sequence is a cluster representative. Assign a 

putative sequence to all clusters where alignment-

score(sequence, representative) > 181. 

94.91 

 

 

 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

Strategy Description Recall (%) 

f) Sort putative proteomes according to the number 

of putative protein sequences. Process the largest 

putative proteome first. First three putative 

sequences in the cluster are cluster 

representatives. Assign a putative sequence to all 

clusters where alignment-score(sequence, 

representative) > 181 for at least one 

representative. 

99.53 

g) Same as f) but with keeping track of alignment 

scores for already computed pairs. Hence, when a 

pair (sequence, cluster representative) is found in 

multiple clusters, its alignment score is computed 

only once. 

99.53 

h) Sort putative proteomes according to the number 

of putative protein sequences. Process the largest 

putative proteome first. First three putative 

sequences in the cluster are cluster 

representatives. Assign a putative sequence to all 

clusters where alignment-score(sequence, 

representative) > 135.75 for at least one 

representative. 

 

Smaller alignment score threshold yields bigger 

clusters as well as lower number of clusters since 

more sequences get assigned to already existing 

clusters.  

99.25 

 

 

 

 

 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

Strategy Description Recall (%) 

i) Sort putative proteomes according to the number 

of putative protein sequences. Process the largest 

putative proteome first. Cluster founding putative 

sequence is a cluster representative. Assign a 

putative sequence to all clusters where alignment-

score(sequence, representative) > 135.75. If an 

entire length of a sequence (minus 20 amino acid 

residues tolerance) is not covered by any 

representative of the assigned clusters, found a 

new cluster with the sequence under examination 

as its cluster representative. 

99.70 

j) Sort putative proteomes according to the number 

of putative protein sequences. Process the largest 

putative proteome first. First three putative 

sequences in the cluster are cluster 

representatives. Assign a putative sequence to all 

clusters where alignment-score(sequence, 

representative) > 135.75 for at least one 

representative. If an entire length of a sequence 

(minus 20 amino acid residues tolerance) is not 

covered by any representative of the assigned 

clusters, found a new cluster with the sequence 

under examination as its cluster representative. 

99.97 

 

Since cluster content depends on its representative(s), and cluster 

representatives depend on the species and sequence order within the 

putative proteomes, we tried clustering on a dataset where putative 

proteomes are ordered according to the number of putative sequences while 

putative sequences within putative proteomes keep the same ordering as in 

the original database file. We tried two simple ideas using ordered 

proteomes—starting with a putative proteome with the highest number of 

putative protein sequences (Table A.2 c)) and starting with a putative 

proteome with the smallest number of putative protein sequences (Table A.2 
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e)). In both cases we assigned one representative per cluster and we 

assigned putative sequences to all clusters where alignment-

score(sequence, representative) > 181—the same alignment score threshold 

as in the full all-against-all OMA approach (Roth, Gonnet and Dessimoz, 

2008; Altenhoff et al., 2014; Altenhoff et al., 2019). The variant where we 

started with processing the largest putative proteome first achieved higher 

recall (96.94% vs. 94.91%). Being aware that this is just an indication of 

algorithm behaviour which also depends on the particular dataset, we 

proceeded with implementing sorting and starting with processing the largest 

putative proteome first into our final pipeline.  

 

The majority of our preliminary analyses used the OMA (Roth, Gonnet and 

Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 2019) alignment 

score threshold of 181 but we also explored what happens in the case of 

lower threshold. The reasoning behind those experiments was that lower 

threshold could yield bigger clusters (as more putative sequences get 

included) and possibly smaller number of clusters (as fewer putative 

sequences would not be assigned to any clusters and hence, would found a 

new cluster). Thus, perhaps fewer putative homologs would be missed, i.e. 

the recall would increase. We compared cluster variants with alignment 

score threshold 181 (Table A.2 f)) and 135.75 (=¾ * 181; arbitrarily chosen) 

(Table A.2 h)). In both cases we ordered putative proteomes according to the 

number of putative sequences and processed them starting with the largest, 

used 3 cluster representatives and assigned sequences to all clusters where 

the score criterion was satisfied. At first surprisingly, the variant with lower 

threshold yielded lower recall on this dataset (99.25% vs. 99.53%). Further 

analysis of the pairs it missed (section A.1.2 below) revielded that with 

incorporating sequence coverage as an additional criterion for creating new 

clusters, the recall increased to 99.97% (Table A.2 j)) or 99.70% if only one 

cluster representative was used (Table A.2 i)). 
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Figure A.1: Runtime and recall of various clustering strategies.  
Runtime of the all-against-all phase is depicted in blue while runtime of the 

clustering phase is depicted in red. The orange line marks (minimum) OMA 

(Roth, Gonnet and Dessimoz, 2008; Altenhoff et al., 2014; Altenhoff et al., 

2019) runtime to calculate only pairwise alignments of all OMA putative 

homologs. a) OMA (baseline), b) 1 cluster representative, 1 cluster per 

putative sequence, c) process putative proteomes in descending order of the 

number of their putative proteins, 1 cluster representative, multiple clusters 

per putative protein sequence, d) cluster representative is the longest 

sequence in the cluster, multiple clusters per putative sequence, e) process 

putative proteomes in ascending order of the number of their putative protein 

sequences, 1 cluster representative, multiple clusters per putative sequence, 

f) same as c) but with 3 cluster representatives, g) same as f) but with 

keeping track of already computed pairwise alignments, h) same as f) but 

with lower alignment score threshold, i) process putative proteomes in 

descending order of the number of their putative protein sequences, 1 cluster 

representative, multiple clusters per sequence, lower alignment score 

threshold, coverage, j) same as i) but with 3 cluster representatives. More 

details on each strategy can be found in Table A.2.  
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A.1.2 Analysis of putative homologs missed by clustering strategy h) 
(Table A.2) 
 

Implementation h) (order putative proteomes by the number of putative 

protein sequences, process putative proteomes in descending order of the 

number of their putative protein sequences, 3 cluster representatives, 

multiple clusters per sequence allowed, alignment score threshold 135.75) 

achieved recall of 99.25% and missed 247 putative homologs inferred by full 

OMA all-against-all approach (Roth, Gonnet and Dessimoz, 2008; Altenhoff 

et al., 2014; Altenhoff et al., 2019). We had a look at 10 missed pairs (Table 

A.3). 

 

Table A.3: Ten putative homologs missed by a clustering strategy on 
sorted putative proteomes (processing the largest putative proteome 

first) using 3 cluster representatives and assigning putative sequences 
to all clusters where they satisfy lower alignment score threshold 

(135.75). 

Sequence 1 ID Sequence 2 ID Alignment 

score 

Comments 

MYCMS17 ECOLX2886 344.540 ECOLX2886 in cluster 739; MYCMS17 

does not pass alignment score criterion 

to join any cluster 

MYCMS277 ECOLX3049 184.044 ECOLX3049 in cluster 230; 

MYCMS277 does not pass alignment 

score criterion to join any cluster 

MYCMS78 ECOLX2984 245.633 ECOLX2984 in cluster 1275; 

MYCMS78 does not pass alignment 

score criterion to join any cluster 

MYCMS171 MYCMS618 2351.883 MYCMS171 in cluster 143; MYCMS618 

does not pass alignment score criterion 

to join any cluster 

(table continues on the next page) 
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(table continues from the previous page) 

Sequence 1 ID Sequence 2 ID Alignment 

score 

Comments 

MYCMS751 MYCMS753 872.977 MYCMS751 in clusters 6326 and 6329; 

MYCMS753 does not pass alignment 

score criterion to join any cluster 

MYCMS945 MYCMS947 248.777 MYCMS945 in clusters 1027, 3851 and 

4922; MYCMS947 does not pass 

alignment score criterion to join any 

cluster 

MYCMS105 MYCMS897 3005.401 MYCMS105 in cluster 2056; 

MYCMS897 does not pass alignment 

score criterion to join any cluster 

MYCMS300 MYCMS854 330.991 MYCMS300 in clusters 84, 330, 1196, 

1457, 1708 and 5831; MYCMS854 

does not pass alignment score criterion 

to join any cluster 

MYCMS760 ECOLX2984 192.502 MYCMS760 in clusters 6309 and 6556; 

ECOLX2984 in cluster 1275 

MYCMS103 MYCMS912 874.091 MYCMS103 in cluster 587; MYCMS912 

in cluster 6321 

 

Eight out of ten pairs (first 8 in Table A.3) were missed due to low alignment 

score with cluster representatives at the time. In each case, one putative 

sequence was already assigned to clusters (not a cluster representative) and 

the other ended up founding a new cluster.  

 

In one case (MYCMS760, ECOLX2984), reversing the ordering of 

processing putative proteomes could possibly lead to putting putative 

sequences to the same cluster (here we processed the putative proteome of 

Escherichia coli before the putative proteome of Mycoplasma mycoides 

subsp. mycoides SC (strain PG1)).  
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The most important insight came from the pair of putative sequences 

(MYCMS103, MYCMS912) and their MSA with representatives of cluster 587 

(Fig. A.2). Sequence MYCMS103 and cluster representative CORAD1158 

have a pairwise alignment score of 138.925. Thus, MYCMS103 becomes a 

member of cluster 587. However, the majority of its residues are different 

than those in the representatives. Sequence MYCMS912 spans the 

beginning of the alignment where it aligns well with MYCMS103 but not with 

cluster representatives. For example,  

alignment-score(MYCMS912, MYCMS103) = 874.091,  

alignment-score(MYCMS912, CORAD1158) = 34.438.  

Sequence MYCMS912 does not become a member of the cluster and the 

pair (MYCMS103, MYCMS912) is missed. With introducing the coverage 

criterion (entire length of a putative sequence (minus 20 amino acid residues 

tolerance) covered by at least one representative), MYCMS103 would 

become a member of cluster 587 but would also found a new cluster. 

Sequence MYCMS912 would become a member of the new cluster as its 

alignment score with MYCMS103 is larger than 135.75. 
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Figure A.2: MSA of MYCMS103, MYCMS912 and representatives of 

cluster 587.  
Alignment drawn with JalView (Waterhouse et al., 2009). 
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A.2 Datasets 
 

Table A.4: Bacteria dataset. 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

ACIC5 240015 Acidobacteriu

m capsulatum 

(strain ATCC 

51196 / DSM 

11244 / JCM 

7670) 

Genome 

Reviews 

16-JUN-2009 

(Rel. 107, Last 

updated, 

Version 1) 

CATAD 479433 Catenulispora 

acidiphila 

(strain DSM 

44928 / NRRL 

B-24433 / 

NBRC 102108 

/ JCM 14897) 

Genome 

Reviews 

09-FEB-2010 

(Rel. 117, Last 

updated, 

Version 5) 

CHIPD 485918 Chitinophaga 

pinensis 

(strain ATCC 

43595 / DSM 

2588 / NCIB 

11800 / UQM 

2034) 

Genome 

Reviews 

09-FEB-2010 

(Rel. 117, Last 

updated, 

Version 5) 

CORAD 583355 Coraliomargari

ta akajimensis 

(strain DSM 

45221 / IAM 

15411 / JCM 

23193 / KCTC 

12865) 

Genome 

Reviews 

07-JUN-2011 

(Rel. 130, Last 

updated, 

Version 7) 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

ECOLX 1040638 Escherichia 

coli 

NCBI AFOB0200010

9.1 

GI:340738205 

MYCMS 272632 Mycoplasma 

mycoides 

subsp. 

mycoides SC 

(strain PG1) 

Genome 

Reviews 

11-SEP-2007 

(Rel. 80, Last 

updated, 

Version 74) 

NAKMY 479431 Nakamurella 

multipartita 

(strain ATCC 

700099 / DSM 

44233 / JCM 

9543 / Y-104) 

Genome 

Reviews 

10-AUG-2010 

(Rel. 124, Last 

updated, 

Version 11) 

ROTMD 680646 Rothia 

mucilaginosa 

(strain DY-18) 

Genome 

Reviews 

10-AUG-2010 

(Rel. 124, Last 

updated, 

Version 5) 

RHOSR 101510 Rhodococcus 

sp. (strain 

RHA1) 

Genome 

Reviews 

11-SEP-2007 

(Rel. 80, Last 

updated, 

Version 20) 

SALNS 423368 Salmonella 

newport (strain 

SL254) 

Genome 

Reviews 

25-NOV-2008 

(Rel. 99, Last 

updated, 

Version 2) 

 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

SALTO 369723 Salinispora 

tropica (strain 

ATCC BAA-

916 / DSM 

44818 / CNB-

440) 

Genome 

Reviews 

18-MAR-2008 

(Rel. 88, Last 

updated, 

Version 1) 

STRRD 479432 Streptosporan

gium roseum 

(strain ATCC 

12428 / DSM 

43021 / JCM 

3005 / NI 

9100) 

Genome 

Reviews 

25-MAY-2010 

(Rel. 121, Last 

updated, 

Version 4) 

THEM4 391009 Thermosipho 

melanesiensis 

(strain BI429 / 

DSM 12029) 

Genome 

Reviews 

05-FEB-2008 

(Rel. 86, Last 

updated, 

Version 2) 

THET1 525904 Thermobaculu

m terrenum 

(strain ATCC 

BAA-798 / 

YNP1) 

Genome 

Reviews 

15-JUN-2010 

(Rel. 122, Last 

updated, 

Version 6) 
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Table A.5: Fungi dataset. 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

ASPCL 344612 Aspergillus 

clavatus 

(strain ATCC 

1007 / CBS 

513.65 / DSM 

816 / NCTC 

3887 / NRRL 

1) 

EnsemblGeno

mes 

Ensembl 

Fungi 16; 

CADRE; 19-

OCT-2012 

ASPFU 330879 Neosartorya 

fumigata 

(strain ATCC 

MYA-4609 / 

Af293 / CBS 

101355 / 

FGSC A1100) 

EBI 27-JUL-2005 

(Rel. 84, Last 

updated, 

Version 2) 

CANAW 294748 Candida 

albicans 

(strain WO-1) 

EBI 12-JUN-2009 

(Rel. 101, Last 

updated, 

Version 5) 

EMENI 227321 Emericella 

nidulans 

(strain FGSC 

A4 / ATCC 

38163 / CBS 

112.46 / NRRL 

194 / M139) 

EnsemblGeno

mes 

Ensembl 

Fungi v4; 

Eurofung Sep 

2006; 17-FEB-

2010 

EURHE 41413 Eurotium 

herbariorum 

JGI JGI; Eurhe1; 

12-MAR-2012 

 

 

 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

NEUCR 367110 Neurospora 

crassa (strain 

ATCC 24698 / 

74-OR23-1A / 

CBS 708.71 / 

DSM 1257 / 

FGSC 987) 

EnsemblGeno

mes 

Ensembl 

Fungi 4; EF 1; 

17-FEB-2010 

PENCH 5076 Penicillium 

chrysogenum 

JGI JGI; Pench1; 

07-MAR-2012 

PENCW 500485 Penicillium 

chrysogenum 

(strain ATCC 

28089 / DSM 

1075 / 

Wisconsin 54-

1255) 

NCBI NS_000201.1 

GI:256353024 

SCHPO 284812 Schizosacchar

omyces 

pombe (strain 

972 / ATCC 

24843) 

EnsemblGeno

mes 

Ensembl 

Fungi 4; 

GeneDB EF 1; 

17-FEB-2010 

SPAPN 619300 Spathaspora 

passalidarum 

(strain NRRL 

Y-27907 / 11-

Y1) 

JGI JGI; Spapa3; 

07-MAR-2012 

WALSE 148960 Wallemia sebi JGI JGI; Walse1; 

07-MAR-2012 

 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon ID Species 

name 

Source Release 

YEAST 559292 Saccharomyce

s cerevisiae 

(strain ATCC 

204508 / 

S288c) 

Ensembl Ensembl 73; 

EF4; 23-AUG-

2013 

 
Table A.6: Mixed dataset. 

OMA 5-letter 
code 

Taxon 
ID 

Species name Source Release 

ARATH 3702 Arabidopsis thaliana EnsemblGeno

mes 

Ensembl 

Plants 20; 

TAIR10; 2-

SEP-2013 

BACSU 224308 Bacillus subtilis 

(strain 168) 

Genome 

Reviews 

12-SEP-2005 

(Rel. 35, Last 

updated, 

Version 40) 

HUMAN 9606 Homo sapiens Ensembl Ensembl 73; 

GRCh37; 24-

AUG-2013 

PLAF7 36329 Plasmodium 

falciparum (isolate 

3D7) 

EnsemblGeno

mes 

Ensembl 

Protists 

release 2; 

PlasmoDB_5.5

; 22-JUL-2009 

XENTR 8364 Xenopus tropicalis Ensembl Ensembl 73; 

JGI_4.2; 23-

AUG-2013 

(table continues on the next page) 
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(table continues from the previous page) 

OMA 5-letter 

code 

Taxon 

ID 

Species name Source Release 

YEAST 559292 Saccharomyces 

cerevisiae (strain 

ATCC 204508 / 

S288c) 

Ensembl Ensembl 73; 

EF4; 23-AUG-

2013 

 

 

 

 

 
Figure A.3: Distribution of the sequence length (in number of amino 

acids) in bacteria and fungi datasets. 
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Figure A.4: Distribution of the estimated evolutionary distances (in 

PAM units) among putative homologous pairs inferred by full OMA all-
against-all procedure (Roth, Gonnet and Dessimoz, 2008; Altenhoff et 

al., 2014) in bacteria and fungi datasets. 

 

A.3 Case studies of two missing putative homologous pairs 
 

A.3.1 Example #1 (from bacteria dataset) 
 
Putative sequences CHIPD1706 and CHIPD2153 (OMA IDs) have an 

alignment score of  2238.183 (estimated PAM distance: 40.3). CHIPD1706 is 

a member of a cluster with CHIPD533 (OMA ID) as a representative because 

the score 141.248 is above the threshold (137.75). CHIPD2153 however is 

not part of the cluster because the alignment score with the representative is 

117.317 only and thus below the threshold. Figure A.5 depicts a multiple 

sequence alignment of these three putative sequences, and additionally 

three other cluster members. Figure A.6 depicts a phylogenetic tree of the 

sequences and confirms that the terminal branch of CHIPD2153 (outside) is 

slightly longer than that of CHIPD1706 (inside). 
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Figure A.5: Example #1: Multiple sequence alignment of the cluster to 
which CHIPD2153 should be included to recover the missing putative 

homologous pair CHIPD1706-CHIPD2153.  
Alignment drawn with JalView (Waterhouse et al., 2009)  
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Figure A.6: Example #1: Estimated distance tree of the cluster and the 

missing putative sequence (CHIPD2153).  
The corresponding MSA is provided in Figure A.5. 

 
 

A.3.2 Example #2 (from fungi dataset) 
 
Putative homology between putative sequences PENCW2854 (OMA ID) and 

PENCH3349 (OMA ID) is missed despite them being nearly identical 

(alignment score of 5,606.4 and estimated distance of 0.38 PAM units). 

PENCH2854 is a member of two clusters—the first cluster with 

representative PENCH2329 (OMA ID; score 138.9) and the second cluster 

with representative PENCW2605 (OMA ID; score 146.6). The alignment 

scores of PENCH3349 with the two representatives are below the threshold 

(124.6 and 128.9 respectively). Figures A.7 and A.8 provide representative 

subsets of the multiple sequence alignments for the two clusters. 

 

We note that both clusters are very large: each contains >1000 putative 

sequences but only a small fraction of all member pairs are significant (7.8% 

and 26.96%). As mentioned in section 2.4.6, establishing mutually exclusive 

clusters might yield multiple smaller clusters instead and reduce the number 

of all-against-all comparisons. 
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Figure A.7: Example #2: Representative extract of the multiple 
sequence alignment of the first cluster to which PENCH3349 should be 
included to recover the missing putative homologous pair PENCW2854-

PENCH3349.  
Alignment drawn with JalView (Waterhouse et al., 2009). 
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Figure A.8: Example #2: Representative extract of the multiple 
sequence alignment of the second cluster to which PENCH3349 should 

be included to recover the missing putative homologous pair 
PENCW2854-PENCH3349. 

Alignments drawn with JalView (Waterhouse et al., 2009).  
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A.4 Performance of the k-mer approaches 
 

Table A.7: Runtimes in seconds for kClust (Hauser, Mayer and Söding, 
2013) and UCLUST (Edgar, 2010) on the bacteria dataset (Table A.4) and 

fungi dataset (Table A.5). 

 kClust 
-s 1.12,  

-c 0.8 

kClust 
-s 1.12,  

-c 0.5 

UCLUST 
-id 0.3 

UCLUST 
-id 0.3,  

-target_cov 

0.5,  

-maxaccepts 

0,  

-maxrejects 

0 

Bacteria 

Run 1 26.20 26.53 3 12 

Run 2 73.49 83.52 6 25 

Run 3 124.79 133.87 11 68 

Run 4 177.76 174.58 17 116 

Run 5 343.36 310.16 39 186 

Run 6 527.43 424.10 47 223 

Fungi 

Run 1 146.1 317.18 9 54 

Run 2 298.61 497.83 16 96 

Run 3 512.43 804.16 22 157 

Run 4 709.97 1138.86 28 190 

Run 5 870.15 1274.76 34 276 

Run 6 1075.51 1611.49 40 314 
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Table A.8: kClust (Hauser, Mayer and Söding, 2013): Recall for default 
settings (-s 1.12 -c 0.8) on the bacteria dataset (Table A.4) and 

fungi dataset (Table A.5). 

 All-

against-

all 

All-

against-

all  

only 

All-

against-

all  

and 

kClust 

kClust only kClust 

Match 

length < 
50 AA 

Match 

length ≥ 
50 AA 

Bacteria 

Run 1 12742 11906 

(93.44%) 

836 

(6.56%) 

2 442 1280 

Run 2 61391 54739 

(89.16%) 

6652 

(10.84%) 

29 1068 7749 

Run 3 139766 129181 

(92.43%) 

10585 

(7.57%) 

40 2111 12736 

Run 4 318112 300606 

(94.50%) 

17506 

(5.50%) 

55 3714 21275 

Run 5 909863 867961 

(95.39%) 

41902 

(4.61%) 

92 6920 48914 

Run 6 1254733 1192481 

(95.04%) 

62252 

(4.96%) 

132 7571 69955 

Fungi 

Run 1 58716 55460 

(94.45%) 

3256 

(5.55%) 

0 658 3914 

Run 2 222788 205557 

(92.27%) 

17231 

(7.73%) 

3 2025 19259 

Run 3 497128 456215 

(91.77%) 

40913 

(8.23%) 

4 2982 43899 

(table continues on the next page) 
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(table continues from the previous page) 

 All-

against-

all 

All-

against-

all  

only 

All-

against-

all  

and 

kClust 

kClust only kClust 

Match 

length < 

50 AA 

Match 

length ≥ 

50 AA 

Run 4 920323 845476 

(91.87%) 

74847 

(8.13%) 

6 3642 78495 

Run 5 1479326 1362942 

(92.13%) 

116384 

(7.87%) 

22 4630 121036 

Run 6 2192589 2016956 

(91.99%) 

175633 

(8.01%) 

31 6189 181853 

 

Table A.9: UCLUST (Edgar, 2010): Recall with parameters -id 0.3, -

target_cov 0.5, -maxaccepts 0, -maxrejects 0 on the bacteria 

dataset (Table A.4) and fungi dataset (Table A.5). 

 All-against- 

all 

All-against- 

all only 

All-against- 

all 

and 

UCLUST 

UCLUST 

only 

UCLUST 

Bacteria 

Run 1 12742 12252 

(96.15%) 

490 (3.85%) 270 760 

 

Run 2 61391 56214 

(91.57%) 

5177 (8.43%) 807 5984 

Run 3 139766 132412 

(94.74%) 

7354 (5.26%) 1353 8707 

 

(table continues on the next page) 
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(table continues from the previous page) 

 All-against- 

all 

All-against- 

all only 

All-against- 

all 
and 

UCLUST 

UCLUST 

only 

UCLUST 

Run 5 909863 880522 

(96.78%) 

29341 

(3.22%) 

5227 34568 

Run 6 1254733 1208408 

(96.31%) 

46325 

(3.69%) 

6066 52391 

Fungi 

Run 1 58716 54844 

(93.41%) 

3872 (6.59%) 530 4402 

Run 2 222788 201089 

(90.26%) 

21699 

(9.74%) 

2082 23781 

Run 3 497128 447431 

(90.00%) 

49697 

(10.00%) 

3186 52883 

Run 4 920323 828514 

(90.02%) 

91809 

(9.98%) 

4199 96008 

Run 5 1479326 1337459 

(90.41%) 

141867 

(9.59%) 

5427 147294 

Run 6 2192589 1977766 

(90.20%) 

214823 

(9.80%) 

7663 222486 
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Appendix B 
 
Phylogenetic heuristics to identify fragments of the 
same gene model in low-quality putative genomes, 
with application to the putative wheat genome 
 

B.1 Non-negativity of the likelihood ratio value 𝑻 
 

Statement: In the following setting   

Hs: n-1 gene models (split gene model) 

Hp: n gene models (gene models on sequences coming from 

paralogous genes)  

𝑇 = 2𝑙𝑛 !( !" )
!(!!)

 , where L() denotes the maximum estimator under each 

hypothesis  

The likelihood ratio value is non-negative (𝑇 ≥ 0). 

 

Proof of statement: We can demonstrate this by contradiction.  

Assume that 𝑇 < 0, i.e. 2𝑙𝑛 !( !" )
!(!!)

< 0. This implies 𝑙𝑛 !( !" )
!(!!)

< 0 ⇒ !( !" )
!(!!)

< 1 ⇒

𝐿(𝐻!) < 𝐿(𝐻!), i.e. that the maximum likelihood estimate (MLE) under 𝐻! is 

greater than the MLE under 𝐻!. But in this case, we can take the maximum 

likelihood (ML) tree under 𝐻!, and add two terminal branches of length 0 at 

the leaf corresponding to the split gene model (depicted in Fig. 3.4 on the 

right). Under 𝐻!, we can then assign each of the putative paralogous 

fragments to each of the new tips, and keep the remaining sequences 

identical. Now, consider that gaps are treated as missing data (the standard 

treatment in ML tree inference software), and thus the likelihood is obtained 

by integrating over every possible state for each gap character. As a result, 

with that tree, the likelihood under 𝐻! should be identical to that under 𝐻!, i.e. 
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𝐿(𝐻!) = 𝐿(𝐻!). So 𝑇 = 2𝑙𝑛 !( !" )
!(!!)

= 2𝑙𝑛1 = 2 ∗ 0 = 0, which contradicts the 

premise.  

 

(Normally, the extra degrees of freedom afforded by decoupling the two 

fragments result in a higher likelihood of the ML tree under 𝐻!, yielding a 

positive 𝑇.) 
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B.2 Datasets for simulations and validation 

 

 

 

 

Table B.1: Putative proteomes exported from OMA Browser (Altenhoff 
et al., 2014; Altenhoff et al., 2018) and used as input data for GETHOGs 

algorithm (Altenhoff et al., 2013) in simulations.  
The second column contains information on the database release that OMA 

Browser retrieved an assembly and annotation from.  

Species Database 

Aegilops tauschii Ensembl Plants 21 

Arabidopsis thaliana  Ensembl Plants 20 

Brachypodium distachyon Ensembl Plants 21 

Hordeum vulgare var. distichum Ensembl Plants 16 

Oryza brachyantha Ensembl Plants 21 

Oryza glaberrima  Ensembl Plants 21 

Oryza sativa subsp. indica Ensembl Plants 21 

Oryza sativa subsp. japonica Ensembl Plants v7 

Setaria italica Ensembl Plants 21 

Sorghum bicolor Sbi1_4 

Triticum aestivum cv. Chinese Spring Ensembl Plants 26 

Triticum urartu Ensembl Plants 19 

Zea mays Ensembl Plants v8 
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Table B.2: Putative proteomes exported from OMA Browser (Altenhoff 
et al., 2014; Altenhoff et al., 2018) and used as input data for GETHOGs 
algorithm (Altenhoff et al., 2013) in validation on Triticum aestivum cv. 

Chinese Spring chromosome 3B. 
The second column contains information on the database release that OMA 

Browser retrieved an assembly and annotation from. 

Species Database 

Aegilops tauschii Ensembl Plants 21 

Arabidopsis thaliana  Ensembl Plants 20 

Brachypodium distachyon Ensembl Plants 21 

Hordeum vulgare var. distichum Ensembl Plants 16 

Oryza brachyantha Ensembl Plants 21 

Oryza glaberrima  Ensembl Plants 21 

Oryza sativa subsp. indica Ensembl Plants 21 

Oryza sativa subsp. japonica Ensembl Plants 27 

Setaria italica Ensembl Plants 21 

Sorghum bicolor Sbi1_4 

Triticum aestivum cv. Chinese Spring Ensembl Plants 21 

Triticum urartu Ensembl Plants 19 

Zea mays Ensembl Plants 27 
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B.3 Validation on 3B survey assembly 
 

B.3.1 Less stringent validation 
 
For each unambiguous or ambiguous prediction we: 

1. Take the initial non-modified putative sequences of both fragments 

and BLAST+ (Camacho et al., 2009) them against the high-quality 

putative sequences assigned to chromosome 3B (-evalue 0.001) 

(Choulet et al. 2014). 

2. For each query sequence, identify BLAST+ hit(s) with the highest 

bitscore (bitscore). Keep only hit(s) with qcovs ≥ 95 and pident ≥ 

95, if any. If there are no such hits for any of the queries, the pair 

cannot be validated. 

3. For each query and its hits from 2., keep only hits with the highest 

qcovs. If there are multiple hits per query that satisfy the criteria, then 

filter out all hits with pident lower than the highest present. If there 

are still multiple hits for any of the queries, we consider that an 

ambiguous mapping and do not validate the pair.  

4. If both queries have the same best hit, the prediction is considered to 

be correct. Otherwise, we consider it wrong. 

 

B.3.2 More stringent validation 
 
All steps are the same as in B.3.1 Less stringent validation except the step 2. 

Here, in addition to qcovs ≥ 95 and pident ≥ 95, we require all mismatches 

between a query and a hit to be at the ends of a query sequence.  

 

Let’s say that our tolerance length is M. Suppose that first N1 and last N2 

positions of a query are not covered by a hit. If N1 > M or N2 > M, then the hit 

does not pass the criteria. For a given query and a hit such that 0  ≤ N1,  
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N2  ≤  M, consider their BLAST+ alignment (Camacho et al., 2009). We allow 

mismatches to be only in the query’s first M-N1 or last M-N2 aligned 

positions, and we set M=5. 
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B.4 Results of simulations 
 

Table B.3: Results of simulations on putative protein families inferred 
by Ensembl pipeline (Vilella et al., 2009; Cunningham et al., 2019; Howe 

et al., 2020). 

 #true positive  #false positive 

Collapsing 

0.65 19 2 

0.75 28 3 

0.85 45 7 

0.9 52 7 

0.95 57 8 

LRH 

0.2 80 45 

0.15 85 51 

0.1 89 62 

0.05 94 71 

0.01 98 78 

Combination 

Coll 0.95 + LRH 0.2 49 6 

Coll 0.95 + LRH 0.15 51 6 

Coll 0.95 + LRH 0.1 54 7 

Coll 0.95 + LRH 0.05 56 8 

Coll 0.95 + LRH 0.01 57 8 
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Table B.4: Results of simulations on the top-level HOGs (Altenhoff et 
al., 2013). 

 #true positive  #false positive 

Collapsing 

0.65 30 7 

0.75 36 10 

0.85 53 18 

0.9 67 24 

0.95 78 29 

LRH 

0.2 51 17 

0.15 59 20 

0.1 72 27 

0.05 79 32 

0.01 89 39 

Combination 

Coll 0.95 + LRH 0.2 43 14 

Coll 0.95 + LRH 0.15 50 15 

Coll 0.95 + LRH 0.1 59 20 

Coll 0.95 + LRH 0.05 63 23 

Coll 0.95 + LRH 0.01 72 26 
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B.5 Results of validation 
 

Table B.5: Validation on annotated low-quality assembly of bread wheat 
chromosome 3B (GETHOGs (Altenhoff et al., 2013) default settings, 

less stringent BLAST+ (Camacho et al., 2009) validation). 

GETHOGs default settings 

BLAST+ pident 95; qcovs 95 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Collapsing 

0.65 14 8 6 6 0 

0.75 19 10 9 9 0 

0.85 37 21 16 16 0 

0.9 54 31 23 23 0 

0.95 73 39 34 31 3 

LRH 

0.2 59 29 30 25 5 

0.15 69 33 36 30 6 

0.1 81 39 42 36 6 

0.05 94 46 48 41 7 

0.01 106 54 52 43 9 

0.008 107 55 52 43 9 

0.006 107 55 52 43 9 

0.004 107 55 52 43 9 

0.002 111 59 52 43 9 

Combined 

Coll 0.95 + LRH 0.2 47 25 22 20 2 

Coll 0.95 + LRH 0.15 52 26 26 23 3 

Coll 0.95 + LRH 0.1 57 27 30 27 3 

Coll 0.95 + LRH 0.05 62 29 33 30 3 

(table continues on the next page) 
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(table continues from the previous page) 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Coll 0.95 + LRH 0.01 66 33 33 30 3 

Coll 0.95 + LRH 

0.008 66 33 33 30 3 

Coll 0.95 + LRH 

0.006 66 33 33 30 3 

Coll 0.95 + LRH 

0.004 66 33 33 30 3 

Coll 0.95 + LRH 

0.002 69 36 33 30 3 

 

 
Table B.6: Validation on annotated low-quality assembly of bread wheat 

chromosome 3B (GETHOGs (Altenhoff et al., 2013) default settings, 
more stringent BLAST+ (Camacho et al., 2009) validation).	

GETHOGs default settings 

BLAST+ pident 95; qcovs 95; ends 5 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Collapsing 

0.65 14 10 4 4 0 

0.75 19 13 6 6 0 

0.85 37 25 12 12 0 

0.9 54 37 17 17 0 

0.95 73 49 24 24 0 

LRH 

0.2 59 39 20 18 2 

0.15 69 45 24 22 2 

0.1 81 53 28 26 2 

(table continues on the next page) 
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(table continues from the previous page) 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

0.05 94 61 33 30 3 

0.01 106 69 37 32 5 

0.008 107 70 37 32 5 

0.006 107 70 37 32 5 

0.004 107 70 37 32 5 

0.002 111 74 37 32 5 

Combined 

Coll 0.95 + LRH 0.2 47 31 16 16 0 

Coll 0.95 + LRH 0.15 52 34 18 18 0 

Coll 0.95 + LRH 0.1 57 36 21 21 0 

Coll 0.95 + LRH 0.05 62 38 24 24 0 

Coll 0.95 + LRH 0.01 66 42 24 24 0 

Coll 0.95 + LRH 

0.008 66 42 24 24 0 

Coll 0.95 + LRH 

0.006 66 42 24 24 0 

Coll 0.95 + LRH 

0.004 66 42 24 24 0 

Coll 0.95 + LRH 

0.002 69 45 24 24 0 
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Table B.7: Validation on annotated low-quality assembly of bread wheat 
chromosome 3B (GETHOGs (Altenhoff et al., 2013) relaxed settings, 

less stringent BLAST+ (Camacho et al., 2009) validation).	

GETHOGs default settings except MinScore = 150; LengthTol = 0.4; 
ReachabilityCutoff = 0.3 

BLAST+ pident 95; qcovs 95 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Collapsing 

0.65 24 15 9 7 2 

0.75 40 24 16 13 3 

0.85 75 45 30 25 5 

0.9 107 60 47 39 8 

0.95 139 78 61 49 12 

LRH 

0.2 168 96 72 45 27 

0.15 187 107 80 51 29 

0.1 213 120 93 55 38 

0.05 250 143 107 64 43 

0.01 287 165 122 72 50 

0.008 290 167 123 72 51 

0.006 292 167 125 72 53 

0.004 296 169 127 73 54 

0.002 301 172 129 75 54 

Combined 

Coll 0.95 + LRH 0.2 86 45 41 31 10 

Coll 0.95 + LRH 0.15 95 49 46 35 11 

Coll 0.95 + LRH 0.1 105 55 50 38 12 

Coll 0.95 + LRH 0.05 124 67 57 45 12 

Coll 0.95 + LRH 0.01 133 74 59 47 12 

(table continues on the next page) 
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(table continues from the previous page) 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Coll 0.95 + LRH 

0.008 134 75 59 47 12 

Coll 0.95 + LRH 

0.006 134 75 59 47 12 

Coll 0.95 + LRH 

0.004 135 75 60 48 12 

Coll 0.95 + LRH 

0.002 136 75 61 49 12 

 

Table B.8: Validation on annotated low-quality assembly of bread wheat 
chromosome 3B (GETHOGs (Altenhoff et al., 2013) relaxed settings, 

more stringent BLAST+ (Camacho et al., 2009) validation).	

GETHOGs default settings except MinScore = 150; LengthTol = 0.4; 
ReachabilityCutoff = 0.3 

BLAST+ pident 95; qcovs 95; ends 5 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

Collapsing 

0.65 24 17 7 6 1 

0.75 40 27 13 11 2 

0.85 75 51 24 20 4 

0.9 107 72 35 30 5 

0.95 139 93 46 38 8 

LRH 

0.2 168 121 47 33 14 

0.15 187 134 53 38 15 

0.1 213 152 61 41 20 

0.05 250 182 68 46 22 

0.01 287 213 74 51 23 

(table continues on the next page) 
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(table continues from the previous page) 

 #splits 

couldn't 

validate 

could 

validate correct wrong 

0.008 290 215 75 51 24 

0.006 292 215 77 51 26 

0.004 296 217 79 52 27 

0.002 301 221 80 53 27 

Combined 

Coll 0.95 + LRH 0.2 86 55 31 25 6 

Coll 0.95 + LRH 0.15 95 59 36 29 7 

Coll 0.95 + LRH 0.1 105 66 39 31 8 

Coll 0.95 + LRH 0.05 124 81 43 35 8 

Coll 0.95 + LRH 0.01 133 88 45 37 8 

Coll 0.95 + LRH 

0.008 134 89 45 37 8 

Coll 0.95 + LRH 

0.006 134 89 45 37 8 

Coll 0.95 + LRH 

0.004 135 89 46 38 8 

Coll 0.95 + LRH 

0.002 136 90 46 38 8 
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B.6 Approximation to recall values 
 

B.6.1 Procedure 
 

1. BLAST+ v2.2.30 (Camacho et al., 2009) all putative protein 

sequences of gene models on the low-quality genome assembly of 

chromosome 3B (International Wheat Genome Sequencing 

Consortium (IWGSC), 2014) against putative protein sequences of 

predicted genes on the high-quality genome assembly of chromosome 

3B (-evalue 0.001) (Choulet et al., 2014). 

2. For every annotated protein sequence on the low-quality assembly 

obtain the best mapping using the chosen procedure—either less or 

more stringent as described above in sections B.3.1-B.3.2 (steps 2 

and 3). 

3. If two low-quality putative sequences have the same best mapping, 

we consider this as an indication of a split gene model. Hence, check 

if the pair was subjected to testing. Check outcomes of the tests, if 

any (Fig. B.1). 

4. Calculate approximation to recall values: 

4.1. Considering only tested cases: 

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑡𝑒𝑠𝑡𝑒𝑑) =  
#𝐼𝑛𝑓𝑒𝑟𝑟𝑒𝑑 𝑠𝑝𝑙𝑖𝑡𝑠
#𝑇𝑒𝑠𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠   

4.2. Considering all pairs of sequences that have common best 

mapping: 

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑎𝑙𝑙) =  
#𝐼𝑛𝑓𝑒𝑟𝑟𝑒𝑑 𝑠𝑝𝑙𝑖𝑡𝑠

#𝑃𝑎𝑖𝑟𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑚𝑚𝑜𝑛 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 

 

Combinations of BLAST+ (Camacho et al., 2009) mapping and putative 

protein families used: 

● BLAST+ with less stringent criteria, HOGs with default GETHOGs 

settings (Altenhoff et al., 2013) on input data listed in Table B.2  

● BLAST+ with more stringent criteria, HOGs with default GETHOGs 

settings on input data listed in Table B.2  
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● BLAST+ with less stringent criteria, HOGs with relaxed GETHOGs 

settings (MinScore := 150, LengthTol := 0.4, 

ReachabilityCutoff := 0.3) on input data listed in Table B.2  

● BLAST+ with more stringent criteria, HOGs with relaxed GETHOGs 

settings (MinScore := 150, LengthTol := 0.4, 

ReachabilityCutoff := 0.3) on input data listed in Table B.2  

 

We required that candidate putative sequences had a minimum length of 50 

AA and mutually overlap less than 10% in the corresponding multiple 

sequence alignment. Each application of likelihood ratio heuristics used 500 

bootstrap samples. As before, we ran Mafft v7.164b with default parameters 

(Katoh and Standley, 2013) to align families and FastTree v2.1.8 with default 

parameters (Price, Dehal and Arkin, 2010) to reconstruct phylogenetic trees. 
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Figure B.1: Approximation to recall values.  

For every pair of putative protein sequences corresponding to the low-quality 

assembly (International Wheat Genome Sequencing Consortium (IWGSC), 

2014) that map to the same putative protein sequence corresponding to the 

high-quality assembly (Choulet et al., 2014), we checked if they passed our 

pre-testing criteria (same putative protein family, length, overlap), and if yes, 

the outcomes of the tests. Approximations to recall values were then 

calculated by dividing the number of predictions by either the number of 

tested cases or the total number of pairs that map to the same high-quality 

putative sequence. 

 

B.6.2 Results 
 
Recall approximation on cases subjected to heuristics (Fig. 3.10a-c, Tables 

B.10-B.13, prediction IDs available at 

https://doi.org/10.6084/m9.figshare.11733609.v1) was consistent with recall 

on simulated fragmentation (Fig. 3.8, Table B.4). Yet, the fraction of 

subjected cases was low (~11.5-28.3%) (Table B.9) which led to low recall 

when all cases were considered (Fig. 3.10d-f, Tables B.10-B.13). Probably 

not all cases were indeed cases of fragmented gene models—some of them 

were perhaps paralogous, maybe even mapping to the same region of the 

corresponding high-quality reference model. However, given such a large 
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fraction of pairs not subjected to the heuristic inference, we decided to 

investigate this further. 

 

A pair of putative protein sequences will not be considered for our heuristics 

if the two putative sequences are assigned to different putative protein 

families, if one or both sequences are shorter than 50 AA or if they overlap 

for ≥10% of their sequence length in the multiple sequence alignment of their 

putative protein family. In our experiments, only ~1.95-5.22% of cases not 

examined by heuristics were excluded due to short sequence(s) length 

(Table B.9). Further ~9.74-29.62% of unexamined cases were eliminated 

due to long mutual overlap in the alignment. Unexpectedly, ~66.98-88.31% 

of unexamined cases were left out from heuristic inference because the two 

putative sequences were not members of the same putative protein families. 

To gain better understanding why fragments were found in different HOGs 

(Altenhoff et al., 2013), we performed a case-by-case analysis of randomly 

selected cases. Furthermore, to investigate the potential in applying 

heuristics to discarded cases, we ran our heuristics in the setting where 

putative protein families were obtained by running GETHOGs algorithm with 

default settings and merged HOGs for candidate putative sequences found 

in different ones. We checked predictions on the target cases obtained with 

both BLAST+ (Camacho et al., 2009) less and more stringent mappings. 
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Table B.9: Counting the pairs that were and were not subjected to the 
heuristics.  

Strikingly, the majority of cases were not tested due to putative sequences 

being placed in different putative protein families (HOGs) (Altenhoff et al., 

2013). 

BLAST LESS STRINGENT, HOGs default BLAST MORE STRINGENT, HOGs 
default 

Total number of draft pairs that map to the 

same reference putative protein 

Total number of draft pairs that map to the 

same reference putative protein 

400 187 

Tested Not tested Tested Not tested 

46 

(11.5%) 

354 (88.5%) 33 

(17.65%) 

154 (82.35%) 

Different 

HOGs 

Too 

short  

Long 

overlap 

Different 

HOGs 

Too 

short 

Long 

overlap 

285 

(80.51 

%) 

7 

(1.98%) 

62 

(17.51%) 

136 

(88.31 

%) 

3 

(1.95%) 

15 

(9.74%)  

BLAST LESS STRINGENT, HOGs relaxed BLAST MORE STRINGENT, HOGs 
relaxed 

Total number of draft pairs that map to the 
same reference putative protein 

Total number of draft pairs that map to the 
same reference putative protein 

400 187 

Tested Not tested Tested Not tested 

76 (19%) 324 (81%) 53 
(28.34%) 

134 (71.66%) 

Different 
HOGs 

Too 
short 

Long 
overlap 

Different 
HOGs 

Too 
short 

Long 
overlap 

217 
(66.98 

%) 

11 
(3.4%) 

96 
(29.62%) 

97 
(72.39 

%) 

7 
(5.22%) 

30 
(22.39 

%) 
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Table B.10: Approximation to recall values on annotated low-quality 
assembly of bread wheat chromosome 3B (less stringent BLAST+ 
(Camacho et al., 2009) mapping, GETHOGs (Altenhoff et al., 2013) 

default settings). 

BLAST LESS STRINGENT, HOGs default  

(BLAST+ pident 95, qcovs 95; GETHOGs default settings) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics 

Recall on all 

Collapsing 

0.65 6 40 0.130 0.015 

0.75 9 37 0.196 0.023 

0.85 16 30 0.348 0.040 

0.9 23 23 0.500 0.058 

0.95 31 15 0.674 0.078 

LRH 

0.2 25 21 0.543 0.063 

0.15 30 16 0.652 0.075 

0.1 36 10 0.783 0.090 

0.05 41 5 0.891 0.103 

0.01 43 3 0.935 0.108 

0.008 43 3 0.935 0.108 

0.006 43 3 0.935 0.108 

0.004 43 3 0.935 0.108 

0.002 43 3 0.935 0.108 

(table continues on the next page) 
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(table continues from the previous page) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics 

Recall on all 

Combined 

Coll 0.95 + LRH 0.2 20 26 0.435 0.050 

Coll 0.95 + LRH 0.15 23 23 0.500 0.058 

Coll 0.95 + LRH 0.1 27 19 0.587 0.068 

Coll 0.95 + LRH 0.05 30 16 0.652 0.075 

Coll 0.95 + LRH 0.01 30 16 0.652 0.075 

Coll 0.95 + LRH 

0.008 

30 16 0.652 0.075 

Coll 0.95 + LRH 

0.006 

30 16 0.652 0.075 

Coll 0.95 + LRH 

0.004 

30 16 0.652 0.075 

Coll 0.95 + LRH 

0.002 

30 16 0.652 0.075 
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Table B.11: Approximation to recall values on annotated low-quality 
assembly of bread wheat chromosome 3B (more stringent BLAST+ 
(Camacho et al., 2009) mapping, GETHOGs (Altenhoff et al., 2013) 

default settings). 

BLAST MORE STRINGENT, HOGs default  

(BLAST+ pident 95, qcovs 95, ends 5; GETHOGs default settings) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics 

Recall on all 

Collapsing 

0.65 4 29 0.121 0.021 

0.75 6 27 0.182 0.032 

0.85 12 21 0.364 0.064 

0.9 17 16 0.515 0.091 

0.95 24 9 0.727 0.128 

LRH 

0.2 18 15 0.545 0.096 

0.15 22 11 0.667 0.118 

0.1 26 7 0.788 0.139 

0.05 30 3 0.909 0.160 

0.01 32 1 0.970 0.171 

0.008 32 1 0.970 0.171 

0.006 32 1 0.970 0.171 

0.004 32 1 0.970 0.171 

0.002 32 1 0.970 0.171 

(table continues on the next page) 
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(table continues from the previous page) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics 

Recall on all 

Combined 

Coll 0.95 + LRH 0.2 16 17 0.485 0.086 

Coll 0.95 + LRH 0.15 18 15 0.545 0.096 

Coll 0.95 + LRH 0.1 21 12 0.636 0.112 

Coll 0.95 + LRH 0.05 24 9 0.727 0.128 

Coll 0.95 + LRH 0.01 24 9 0.727 0.128 

Coll 0.95 + LRH 

0.008 

24 9 0.727 0.128 

Coll 0.95 + LRH 

0.006 

24 9 0.727 0.128 

Coll 0.95 + LRH 

0.004 

24 9 0.727 0.128 

Coll 0.95 + LRH 

0.002 

24 9 0.727 0.128 
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Table B.12: Approximation to recall values on annotated low-quality 
assembly of bread wheat chromosome 3B (less stringent BLAST+ 
(Camacho et al., 2009) mapping, GETHOGs (Altenhoff et al., 2013) 

relaxed settings). 

BLAST LESS STRINGENT, HOGs relaxed 

(BLAST+ pident 95, qcovs 95; GETHOGs default settings except MinScore = 

150; LengthTol = 0.4; ReachabilityCutoff = 0.3) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics  

Recall on all 

Collapsing 

0.65 7 69 0.092 0.018 

0.75 13 63 0.171 0.033 

0.85 25 51 0.329 0.063 

0.9 39 37 0.513 0.098 

0.95 49 27 0.645 0.123 

LRH 

0.2 45 31 0.592 0.113 

0.15 51 25 0.671 0.128 

0.1 55 21 0.724 0.138 

0.05 64 12 0.842 0.160 

0.01 72 4 0.947 0.180 

0.008 72 4 0.947 0.180 

0.006 72 4 0.947 0.180 

0.004 73 3 0.961 0.183 

0.002 75 1 0.987 0.188 

(table continues on the next page) 
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(table continues from the previous page) 

  
  

Split (TP) Paralogs 
(FN) 

Recall on cases 
subjected to the 

heuristics  

Recall on all 

Combined 

Coll 0.95 + LRH 0.2 31 45 0.408 0.078 

Coll 0.95 + LRH 0.15 35 41 0.461 0.088 

Coll 0.95 + LRH 0.1 38 38 0.500 0.095 

Coll 0.95 + LRH 0.05 45 31 0.592 0.113 

Coll 0.95 + LRH 0.01 47 29 0.618 0.118 

Coll 0.95 + LRH 

0.008 

47 29 0.618 0.118 

Coll 0.95 + LRH 

0.006 

47 29 0.618 0.118 

Coll 0.95 + LRH 

0.004 

48 28 0.632 0.120 

Coll 0.95 + LRH 

0.002 

49 27 0.645 0.123 
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Table B.13: Approximation to recall values on annotated low-quality 
assembly of bread wheat chromosome 3B (more stringent BLAST+ 
(Camacho et al., 2009) mapping, GETHOGs (Altenhoff et al., 2013) 

relaxed settings). 

BLAST MORE STRINGENT, HOGs relaxed  

(BLAST+ pident 95, qcovs 95, ends 5; GETHOGs default settings except 

MinScore = 150; LengthTol = 0.4; ReachabilityCutoff = 0.3) 

  

  

Split (TP) Paralogs 

(FN) 

Recall on cases 

subjected to the 

heuristics 

Recall on all 

Collapsing 

0.65 6 47 0.113 0.032 

0.75 11 42 0.208 0.059 

0.85 20 33 0.377 0.107 

0.9 30 23 0.566 0.160 

0.95 38 15 0.717 0.203 

LRH 

0.2 33 20 0.623 0.176 

0.15 38 15 0.717 0.203 

0.1 41 12 0.774 0.219 

0.05 46 7 0.868 0.246 

0.01 51 2 0.962 0.273 

0.008 51 2 0.962 0.273 

0.006 51 2 0.962 0.273 

0.004 52 1 0.981 0.278 

0.002 53 0 1.000 0.283 

(table continues on the next page) 



 

312 
 

(table continues from the previous page) 

  
  

Split (TP) Paralogs 
(FN) 

Recall on cases 
subjected to the 

heuristics 

Recall on all 

Combined 

Coll 0.95 + LRH 0.2 25 28 0.472 0.134 

Coll 0.95 + LRH 0.15 29 24 0.547 0.155 

Coll 0.95 + LRH 0.1 31 22 0.585 0.166 

Coll 0.95 + LRH 0.05 35 18 0.660 0.187 

Coll 0.95 + LRH 0.01 

37 16 

 

0.698  0.198 

Coll 0.95 + LRH 

0.008 

37 16 0.698 0.198 

Coll 0.95 + LRH 

0.006 

37 16 0.698 0.198 

Coll 0.95 + LRH 

0.004 

38 15 0.717  0.203 

Coll 0.95 + LRH 

0.002 

38 15 0.717 0.203 
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B.6.3 Case-by-case analysis of randomly selected pairs with putative 
sequences found in different putative protein families  
 

We investigated 8 randomly chosen pairs that were not subjected to 

heuristics (Table B.14) because the putative protein sequences were placed 

in different putative protein families (GETHOGs algorithm (Altenhoff et al., 

2013) with default set of parameters on the input data listed in Table B.2): 

● 1 pair with a putative protein sequence shorter than 50 AA which 

would have predicted fragmented gene model by our heuristics (if 

examined) 

● 1 pair with a putative protein sequence shorter than 50 AA which 

would have not predicted fragmented gene model by our heuristics 

● 1 pair with mutual overlap of the putative protein sequences in the 

MSA of merged corresponding HOGs ≥10% which would have 

predicted fragmented gene model by our heuristics 

● 1 pair with mutual overlap of the putative protein sequences in the 

MSA of merged corresponding HOGs ≥10% which would have not 

predicted fragmented gene model by our heuristics 

● 2 pairs that would be subjected to heuristics if corresponding HOGs 

were merged and would have predicted fragmented gene models 

● 2 pairs that would be subjected to heuristics if corresponding HOGs 

were merged and would have not predicted fragmented gene models 

 

Both less and more stringent BLAST+ (Camacho et al., 2009) mappings 

found indications that gene models involved in these 8 cases could be 

fragments of a longer gene model.  
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Table B.14: Randomly selected (previously) not tested cases and 
outcomes of our heuristics. 

Sequence 1 ID; 

length; 

HOG ID (#sequences 

in HOG) 

Sequence 2 ID; 

length; 

HOG ID (#sequences 

in HOG) 

Not tested due to Outcomes  

 

Coll 0.95; 

LRH 0.01 (p-

value); 

combined 

Traes_3B_163FC6BE5 

47 AA  

HOG27481 (2) 

Traes_3B_D1A0C478F 

48 AA 

HOG3516 (26) 

Different HOGs;  

in addition putative 

sequences too short 

yes 

yes (0.81) 

yes 

Traes_3B_DEB6C5A5C 

77 AA 

HOG16006 (11) 

Traes_3B_53E723173 

38 AA 

HOG22410 (6) 

Different HOGs; 

in addition one 

putative sequence too 

short 

no 

yes (0.21) 

no 

Traes_3B_6BEA473F3 

210 AA 

HOG23413 (3) 

Traes_3B_9ED6CC72

5 

342 AA 

HOG1381 (4) 

Different HOGs; 

in addition long 

overlap (0.9976; 

0.7186) 

yes 

yes (0.31) 

yes 

Traes_3B_01F0A66DF 

346 AA 

HOG22410 (6) 

Traes_3B_E3185192A 

268 AA 

HOG22409 (4) 

Different HOGs; 

in addition long 

overlap (1.0; 0.7967) 

no 

no (0.0099) 

no 

Traes_3B_EAE6A3943 

106 AA 

HOG9677 (2) 

Traes_3B_CEEF8E71

A 

181 AA 

HOG9689 (25) 

Different HOGs yes 

yes (0.64) 

yes 

Traes_3B_98DDEDC49 

311 AA 

HOG18118 (5) 

Traes_3B_E1776A6B6 

787 AA 

HOG18117 (21) 

Different HOGs yes 

yes (0.96) 

yes 

Traes_3B_1235C7C8A 

64 AA 

HOG25507 (12) 

Traes_3B_854157B07 

90 AA 

HOG19583 (20) 

Different HOGs no 

yes (0.98) 

no 

 

(table continues on the next page) 
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(table continues from the previous page) 

Sequence 1 ID; 

length; 

HOG ID (#sequences 

in HOG) 

Sequence 2 ID; 

length; 

HOG ID (#sequences 

in HOG) 

Not tested due to Outcomes  

 

Coll 0.95; 

LRH 0.01 (p-

value); 

combined 

Traes_3B_DEB6C5A5C 

77 AA 

HOG16006 (11) 

Traes_3B_01F0A66DF 

346 AA 

HOG22410 (6) 

Different HOGs no 

yes (0.14) 

no 

 
 
For each case we had a look at multiple sequence alignment of merged 

HOGs and performed heuristic inference (collapsing with threshold 0.95, 

likelihood ratio heuristic with significance 0.01 and combination of the two). 

 

In all cases except (Traes_3B_01F0A66DF, Traes_3B_E3185192A) (Fig. 

B.2), at least one HOG contained domains/regions not present in the other 

HOG (examples in Fig. B.3-B.5). This is to be expected since by its definition 

GETHOGs algorithm (Altenhoff et al., 2013) would not group together 

putative protein sequences with significantly different54 putative domain 

composition, i.e. putative sequences where indications of homology could 

not be found along most of their length. They would have been grouped 

together if the algorithm considered putative subsequence homology or 

putative subsequence orthology. In the case of (Traes_3B_01F0A66DF, 

Traes_3B_E3185192A)—the only selected case where neither of our 

heuristics would infer fragmentation—the picture is different (Fig. B.2). It is 

dubious whether to merge HOGs or not, and if yes, how to interpret the 

resulting set of putative sequences.  

 

 

 

                                            
54 “significantly different” defined by Altenhoff et al. (2013) based on shared putative 
domains and their lengths 
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Figure B.2: Multiple sequence alignment of merged HOGs 22410 and 

22409 (separated by black line).  
Case under investigation: (Traes_3B_01F0A66DF, Traes_3B_E3185192A). 

Alignment drawn with AliView (Larsson, 2014). 
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(figure continues on the next page) 
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(figure continues from the previous page) 

 
 

Figure B.3: Multiple sequence alignment of merged HOGs 27481 and 
3516 (separated by black line).  

Case under investigation: (Traes_3B_163FC6BE5, Traes_3B_D1A0C478F). 
Alignment drawn with AliView (Larsson, 2014). 
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(figure continues on the next page) 
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(figure continues from the previous page)

 

 
(figure continues on the next page) 
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(figure continues from the previous page)

 

 

 (figure continues on the next page) 
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(figure continues from the previous page) 

 
Figure B.4: Multiple sequence alignment of merged HOGs 18118 and 

18117 (separated by black line).  
Case under investigation: (Traes_3B_98DDEDC49, Traes_3B_E1776A6B6). 

Alignment drawn with AliView (Larsson, 2014). 

 

 

 
(figure continues on the next page) 
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(figure continues from the previous page) 

 
(figure continues on the next page) 
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(figure continues from the previous page) 

 
Figure B.5: Multiple sequence alignment of merged HOGs 25507 and 

9583 (separated by black line).  
Case under investigation: (Traes_3B_1235C7C8A, Traes_3B_854157B07). 

Alignment drawn with AliView (Larsson, 2014). 

 

This case-by-case analysis with rather small HOGs indicates that bigger 

putative homologous families, especially those considering putative 

subsequence homology could improve performance of the heuristics already 

by providing them with more candidates. In addition, bigger putative families 

could perhaps contain enough information to make correct inference even 

when they included fragmented putative reference sequences.  

 

B.6.4 Heuristic inference on previously discarded cases 
 

To further explore the potential in merging putative homologous groups, and 

in general applying heuristics on pairs discarded earlier in the pipeline, we 

decided to apply our heuristics (collapsing with threshold 0.95, likelihood 

ratio heuristics with significance 0.01 and combination of the two) to the 

potentially fragmented cases identified with BLAST+ (Camacho et al., 2009) 

less and more stringent mapping using input families calculated by 

GETHOGs (Altenhoff et al., 2013) with default set of parameters on the input 

data listed in Table B.2.  

 

As already elaborated, these previously not examined cases could be 

divided into 3 subgroups: 
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1) Not subjected to heuristics because at least one putative protein 

sequence was shorter than 50 AA 

2) Not subjected to heuristics because putative protein sequences 

mutually overlap ≥10% of their sequence length in the MSA of 

corresponding putative protein family 

3) Not subjected to heuristics because putative protein sequences were 

not assigned to the same putative protein family. There were also 

instances of short putative sequences and long overlap among 

them—we considered all of them for testing.  

To obtain input putative families for heuristics where putative sequences 

were assigned to different HOGs, we merged corresponding HOGs, if 

possible. Surprisingly, only for a minority of cases we could find both putative 

sequences placed in a HOG (Tables B.15-B.16)—28/285 and 17/136 in 

BLAST+ (Camacho et al., 2009) less and more stringently mapped cases 

respectively. This is due to GETHOGs algorithm (Altenhoff et al., 2013) 

which discards putative sequences and relationships among putative 

sequences along its pipeline if they do not pass certain thresholds (in 

particular the length, pairwise score, number of putative orthologous 

relationships to merge putative subfamilies). 

 

Both collapsing and likelihood ratio heuristics were usually able to identify 

more than 50% of split gene models on these previously discarded cases for 

which BLAST+ (Camacho et al., 2009) mapping indicated fragmentation 

(Tables B.15-B.16).  

 

As the number of cases subjected to heuristics was low, the fraction of 

fragmented cases confirmed by our tests might not be the best measure of 

heuristics’ performance. Also, if putative homologous families are being 

merged, it might be better to examine their content first to avoid dubious 

mergings like in the case of (Traes_3B_01F0A66DF, Traes_3B_E3185192A) 

(Fig. B.2). Merging could be improved by requiring certain similarity levels or 

estimated evolutionary distances between putative homologous families. 

More than two families could also be merged into a single one. 
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Table B.15: Predictions on previously discarded cases identified with 

BLAST+ (Camacho et al., 2009) less stringent mapping. 

BLAST+ less stringent mapping 

 Short 

putative 

protein 

sequence(s) 
 

(7 cases) 

Long 

overlap 

 

 
 

(62 cases) 

Different putative protein family 

(285; could test 28) 

Short 

putative 

protein 

sequence(s) 

 

(3 cases)  

Long overlap 

 

 

 

 

(17 cases) 

≥ 50AA,  

< 10% ovlp 

 

 

 

(8 cases) 

Coll 0.95 6 

(0.857) 

46 

 (0.742) 

1 

(0.333) 

9 

(0.530) 

3 

(0.375) 

LRH 0.01 7  

(1.000) 

61 

(0.984) 

2 

(0.667) 

12 

(0.706) 

8 

(1.000) 

Coll 0.95 + 

LRH 0.01 

6  

(0.857) 

46 

(0.742) 

1 

(0.333) 

8 

(0.471) 

3 

(0.375) 
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Table B.16: Predictions on previously dicarded cases identified with 
BLAST+ (Camacho et al., 2009) more stringent mapping. 

BLAST+ more stringent mapping 

 Short 

putative 

protein 

sequence(s) 

 

(3 cases) 

Long 

overlap 

 

 

 

(15 cases) 

Different putative protein family 

(136; could test 17) 

Short 

putative 

protein 

sequence(s) 

 

(3 cases)  

Long overlap 

 

 

 

 

(7 cases) 

≥ 50AA, 

 < 10% ovlp 

 

 

 

(7 cases) 

Coll 0.95 3 

(1.000) 

11 

(0.733) 

1 

(0.333) 

4 

(0.571) 

3 

(0.429) 

LRH 0.01 3 

(1.000) 

15 

(1.000) 

2 

(0.667) 

5 

(0.714) 

7 

(1.000) 

Coll 0.95 + 

LRH 0.01 

3 

(1.000) 

11 

(0.733) 

1 

(0.333) 

4 

(0.571) 

3 

(0.429) 
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B.7 Predictions on the putative bread wheat genome 
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B.8 Exploring the FastTree parameters 
 

Table B.18: Results of the simulations on the top-level HOGs (Altenhoff 
et al., 2013) when FastTree default installation v2.1.7 (Price, Dehal and 

Arkin, 2010) was employed for tree reconstruction. 

 -pseudo -mlacc 2 

-slownni 

-spr 4 -mlacc 2 

-slownni 

-spr 4 

-wag -gamma 

#TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP 

Collapsing 

0.65 31 7 30 6 30 7 30 6 30 8 30 7 

0.75 36 10 35 10 36 10 35 10 35 11 36 10 

0.85 52 17 53 18 53 18 53 18 49 19 53 18 

0.9 66 23 67 23 67 24 67 23 66 24 67 24 

0.95 78 28 80 29 78 29 80 29 78 30 78 29 

LRH 

0.2 56 16 52 18 57 18 52 18 57 17 57 17 

0.15 62 19 59 20 62 22 59 20 65 22 60 22 

0.1 73 26 73 28 76 29 73 28 70 29 76 29 

0.05 82 33 80 35 83 33 80 35 80 35 83 33 

0.01 92 42 92 42 92 43 92 42 91 45 92 42 

Combination (Coll 0.95 + LRH) 

0.2 47 13 46 15 49 15 46 15 48 15 49 14 

0.15 51 14 50 16 51 17 50 16 55 18 50 17 

(table continues on the next page) 
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(table continues from the previous page) 

 -pseudo -mlacc 2 

-slownni 

-spr 4 -mlacc 2 

-slownni 

-spr 4 

-wag -gamma 

#TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP 

0.1 59 19 61 21 61 21 61 21 58 23 61 21 

0.05 66 23 67 24 67 23 67 24 65 25 67 23 

0.01 74 25 76 27 74 26 76 27 74 29 74 26 

 
Table B.19: Results of the simulations on the top-level HOGs (Altenhoff 
et al., 2013) when FastTree double-precision installation v2.1.10 (Price, 

Dehal and Arkin, 2010) was employed for tree reconstruction. 
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Collapsing 

0.65 35 7 36 7 36 7 35 7 36 7 36 7 37 6 35 7 36 8 

0.75 43 10 43 10 43 11 44 10 44 11 44 11 43 10 43 10 45 11 

0.85 61 18 62 18 60 20 61 18 60 20 61 20 57 21 61 18 57 18 

0.9 78 21 78 22 76 22 78 21 76 22 76 22 73 24 78 21 71 25 

0.95 84 29 84 29 85 29 84 29 85 29 85 29 84 30 84 29 87 30 

 

 

(table continues on the next page) 
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(table continues from the previous page) 
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LRH 

0.2 57 16 57 16 53 17 57 16 54 19 53 19 58 17 57 16 58 20 

0.15 63 22 63 22 60 23 63 22 61 23 61 22 64 23 63 22 64 21 

0.1 73 27 74 27 74 28 74 27 74 28 74 28 69 32 73 27 72 27 

0.05 83 31 83 32 82 34 83 31 82 34 82 35 81 36 83 31 81 36 

0.01 92 43 92 42 92 43 92 43 92 44 92 43 91 43 92 43 92 44 

Combination (Coll 0.95 + LRH) 

0.2 54 14 54 14 51 14 54 14 52 15 51 15 53 15 54 14 55 17 

0.15 58 17 57 17 56 19 58 17 56 19 56 17 59 20 58 17 60 18 

0.1 67 21 67 21 67 22 68 21 67 22 67 22 62 24 67 21 68 23 

0.05 74 23 74 24 74 24 74 23 74 24 74 25 72 27 74 23 74 27 

0.01 80 27 80 26 81 27 80 27 81 27 81 27 79 29 80 27 84 29 
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B.9 Exploring the RAxML parameters 
 

Table B.20: Results of the simulations on the top-level HOGs (Altenhoff 
et al., 2013) when RAxML v8.2.12 (Alexandros Stamatakis, 2014) was 

employed for tree reconstruction. 

 -m PROTCATJTT 

-c 20 

-m PROTCATLG 

-c 20 

-m 

PROTGAMMAAUTO 

-m 

PROTGAMMAGTR 

#TP #FP #TP #FP #TP #FP #TP #FP 

Collapsing 

0.65 26 5 27 5 21 6 24 6 

0.75 33 6 35 9 29 8 32 8 

0.85 50 14 50 17 50 15 55 12 

0.9 67 18 64 22 67 22 64 17 

0.95 77 28 78 26 74 29 74 23 

LRH 

0.2 49 16 45 16 45 16 49 16 

0.15 53 17 56 17 52 17 57 17 

0.1 65 20 67 20 57 19 64 21 

0.05 79 28 77 26 74 26 73 26 

0.01 82 34 83 36 80 33 81 34 

Combination (Coll 0.95 + LRH) 

0.2 46 15 44 15 42 15 47 13 

0.15 50 16 53 16 49 16 55 14 

0.1 58 19 60 18 53 18 60 17 

(table continues on the next page) 
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(table continues from the previous page) 

 -m PROTCATJTT 

-c 20 

-m PROTCATLG 

-c 20 

-m 

PROTGAMMAAUTO 

-m 

PROTGAMMAGTR 

#TP #FP #TP #FP #TP #FP #TP #FP 

0.05 68 24 68 22 65 22 67 20 

0.01 70 26 72 25 69 28 73 22 

#pairs 

tested* 

94 99 94 99 91 94 90 98 

* Some pairs had to be excluded from the analysis either because RAxML 

requires at least four putative sequences in a dataset or because RAxML ran 

into dataset-dependent numerical problems during optimization and crashed. 

 

B.10 Preliminary investigation of empirical distributions 
 

Thorough investigation of empirical distributions of the likelihood ratio value 

could reveal insights on the predictive power of the likelihood ratio heuristic, 

its risk of misclassification and potential ways of parametrising the 

distribution or normalizing the likelihood ratio values to make them 

comparable across examined cases. Being out of the scope of the project, 

we only investigated a few random cases to see if there was maybe a self-

revealing pattern. 

 

We investigated 12 randomly chosen empirical distributions of the likelihood 

ratio value: 

● 6 distributions from experiment on 100 artificially fragmented putative 

protein sequences, HOGs input data (Altenhoff et al., 2013), FastTree 

v2.1.8 (Price, Dehal and Arkin, 2010) tree reconstruction with default 

settings (described in section 3.2.7) 

○ 3 distributions where the heuristic made correct prediction 

○ 3 distributions where the heuristic made wrong prediction 
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In the rest of the section, we sometimes refer to them as same gene 

cases. 

● 6 distributions from experiment on 100 candidate pairs derived by 

artificial fragmentation of putative paralogous protein sequences, 

HOGs data, FastTree tree reconstruction with default settings 

(described in section 3.2.8) 

○ 3 distributions where the heuristic made correct prediction 

○ 3 distributions where the heuristic made wrong prediction 

In the rest of the section, we sometimes refer to them as putative 

paralogous cases. 

No two cases were from the same HOG, i.e. all cases were from different 

input putative protein families. Files with likelihood ratio values for selected 

cases are available at https://doi.org/10.6084/m9.figshare.11733975.v1.   

 

We plotted each of the empirical distributions (with corresponding likelihood 

ratio value) (Fig. B.6), their histograms (Fig. B.7-B.8), checked measures of 

centrality and dispersion (Table B.21), and tried to fit four distributions: 𝜒2 

(Abbe, 1863), gamma (Laplace, 1836), Weibull (Weibull, 1951) and log-

normal (Weber, 1834) to the obtained empirical values greater than zero 

(Table B.22-B.25).  

 

Looking at the descriptive statistics (Table B.21), it seems that mean and 

median of the empirical distributions for putative paralogous cases were 

higher than for the same gene cases. This could be due to the modelling 

under the assumption that does not hold (fragments of the same gene 

model) but actually, it is indeed what we expect to see even under correct 

working assumption—because for fragments derived from paralogs, the ratio 

of likelihoods should be greater than for fragments derived from the same 

gene. The same argument is valid for the spread of distributions, i.e. explains 

why we expected to see and observed here distributions for putative 

paralogous cases having wider range than those for split gene cases (Table 

B.21, Fig. B.6-B.8). However, we have to keep in mind that for example close 

paralogs can yield distributions similar to the ones of split genes or 

inadequate modelling can lead to high likelihood ratios for truly fragmented 
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cases. As for the negative values of likelihood ratio, these were bootstrap 

samples for which reconstructed trees were suboptimal. All selected 

empirical distributions were unimodal and positively (right) skewed. There 

were outliers in both same gene and putative paralogous cases distributions 

regardless of the accuracy of the heuristic outcome. This could be attributed 

to the (software) modelling, perhaps getting stuck in a local optimum.  

 

At first glance, four density curves strike from Figure B.6: f4 from panel a) 

and f1 , f4 and f5 from panel b), only b) f1 depicting correct prediction. In all 

four cases, a large proportion of the data was within relatively small range 

right of the 0. This could indicate higher risk of misclassification. Although 

such distributions could be generated by fragments of the same gene model 

(f4 on panel a)), they could also appear due to close paralogous 

relationships.  

 

Overall, we have too few cases to make any general conclusions but there 

might be already two directions for future research. First, it might be worth 

comparing more exhaustively the spread of empirical distributions—for split 

gene cases verus paralogous gene cases as there are indications that larger 

range could be due to paralogy. Second, investigating quantiles of the 

empirical distributions as they could indicate risk of misclassification. 
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Figure B.6: Randomly chosen empirical distributions of the likelihood 

ratio value and corresponding values of the likelihood ratio.  
In a) Same gene model, candidate input fragments were derived from a 

putative protein sequence of a single gene model while in b) Putative 

paralogs, we artificially fragmented pairs of putative protein sequences of 

putative paralogous gene models and subjected them to the heuristic. 

Distributions and T values in red depict cases where the likelihood ratio 

heuristic made correct inference while the blue cases depict cases of wrong 

inference. 
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Figure B.7: Histograms of empirical (bootstrap) likelihood ratio values 

for randomly chosen cases derived from a putative protein sequence of 
the same gene model (same cases as in Fig. B.6a).  

In cases 1-3, the likelihood ratio heuristic made correct inference while for 

cases 4-6 it was wrong. 
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Figure B.8: Histograms of empirical (bootstrap) likelihood ratio values 

for randomly chosen cases derived from pairs of putative protein 
sequences of putative paralogous gene models (same cases as in Fig. 

B.6b).  
In cases 1-3, the likelihood ratio heuristic made correct inference while for 

cases 4-6 it was wrong. 
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Table B.21: Descriptive statistics for randomly selected cases (same 

cases as in Fig. B.6-B.8). 

 Centrality Dispersion 

Mean Median Range IQR 

Same gene model 

Correct 

Case 1 1.896 1.673    13.128 2.237 

Case 2 2.898 2.489    92.82 3.192 

Case 3 6.029 4.210    57.72  7.262 

Wrong 

Case 4 0.7696 0.3340   4.256  1.124 

Case 5 3.9110 2.4070  20.878 4.8425 

Case 6 3.0670 2.4250    28 4.1675 

Putative paralogous gene models 

Correct 

Case 1 3.055 2.146    29.658 3.112 

Case 2 6.797 6.608     398 16.612 

Case 3 38.8100 35.8400    461.2 68.5735 

Wrong 

Case 4 3.894 2.068    50.48 4.494 

Case 5 6.000  4.907   81.96 8.407 

Case 6 21.9600 15.2100  164.99 38.3205 
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We also tried to fit four distributions to the selected empirical data: 𝜒2 (Abbe, 

1863), gamma (Laplace, 1836), Weibull (Weibull, 1951) and log-normal 

(Weber, 1834) (Table B.22-B.25). No obvious parameterisation emerged as 

a unique solution and this might be a challenging problem to tackle. 

 

Table B.22: Fitting distributions—cases derived from the same gene 
model and correctly inferred as fragments (same data as in Fig. B.6-B.7, 

Table B.21).  

Four distributions (𝜒2, gamma, Weibull and log-normal) were fitted to each 

case using R library fitdistrplus (Delignette-Muller, Dutang and Others, 2015; 

R Core Team, 2017) followed by Kolmogorov-Smirnov goodness-of-fit test 

(Kolmogorov, 1933; Smirnov, 1948). 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 

 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 1 2.429 

(0.192) 

1.335  

(0.183) 

 

0.576  

(0.095) 

1.225  

(0.103)   

 

2.473  

(0.227) 

0.422 

(0.122)    

 

1.136  

(0.086) 

0.670 0.671 0.871 0.060 

 

(table continues on the next page) 
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(table continues from the previous page) 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 
 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 2 2.836  

(0.201) 

 

 

0.966 

(0.121) 

 

0.277  

(0.045) 

0.947 

(0.070)    

 

3.399  

(0.382) 

0.650 

(0.131)    

 

1.292  

(0.092) 

0.589 0.660 0.458 0.032 

Case 3 4.584  

(0.278) 

 

 

0.960 

(0.122) 

 

0.145  

(0.024) 

0.967 

(0.077)    

 

6.537  

(0.731) 

1.289 

(0.130)    

 

1.269   

(0.092) 

< 2.2e-16 0.990 0.997 0.389 
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Table B.23: Fitting distributions—cases derived from the same gene 
model but inferred as fragments of putative paralogous gene models 

(same data as in Fig. B.6-B.7, Table B.21).  

Four distributions (𝜒 2, gamma, Weibull and log-normal) were fitted to each 

case using R library fitdistrplus (Delignette-Muller, Dutang and Others, 2015; 

R Core Team, 2017) followed by Kolmogorov-Smirnov goodness-of-fit test 

(Kolmogorov, 1933; Smirnov, 1948). 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 

 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 4 0.946  

(0.087) 

0.534 

(0.064) 

 

0.673  

(0.123) 

0.661 

(0.055)    

 

0.616  

(0.099) 

-1.409  

(0.207)    

 

2.037  

(0.146) 

0.945 0.813 0.635 0.143 

Case 5 3.177 

(0.223) 

 

 

0.901 

(0.115) 

 

0.210  

(0.035) 

0.940 

(0.077)    

 

4.180  

(0.485) 

0.810  

(0.143)   

 

1.381  

(0.101) 

0.019 0.997 0.998 0.2814 

(table continues on the next page) 
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(table continues from the previous page) 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 
 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 6 3.205  

(0.237) 

 

 

0.980    

(0.134) 

 

0.239  

(0.042) 

1.040 

(0.093)    

 

4.162  

(0.459) 

0.822 

(0.167)     

 

1.525  

(0.118) 

0.100 0.671 0.876 0.045 
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Table B.24: Fitting distributions—cases derived from putative 
paralogous gene models and correctly inferred as such (same data as 

in Fig. B.6, B.8, Table B.21).  

Four distributions (𝜒 2, gamma, Weibull and log-normal) were fitted to each 

case using R library fitdistrplus (Delignette-Muller, Dutang and Others, 2015; 

R Core Team, 2017) followed by Kolmogorov-Smirnov goodness-of-fit test 

(Kolmogorov, 1933; Smirnov, 1948). 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 

 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 1 2.948  

(0.213) 

1.099 

(0.144) 

 

0.323  

(0.053) 

1.034 

(0.080)    

 

3.453  

(0.367) 

0.705 

(0.127)    

 

1.214  

(0.090) 

0.698 0.808 0.674 0.390 

Case 2 10.788  

(0.505) 

 

 

0.719 

(0.099) 

 

0.032 

(0.006) 

0.780 

(0.066)    

 

19.166  

(2.969) 

2.283 

(0.154)    

 

1.349  

(0.109) 

8.66e-05 0.103 0.273 0.937 

(table continues on the next page) 
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(table continues from the previous page) 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 
 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 3 42.713  

(1.062) 

 

 

1.347 

(0.200) 

 

0.021  

(0.004) 

1.193 

(0.106)    

 

67.158  

(6.894) 

3.731 

(0.123)     

 

1.055  

(0.087) 

4.792e-09 0.399 0.450 0.039 
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Table B.25: Fitting distributions—cases derived from putative 
paralogous gene models and incorrectly inferred as fragments of the 

same gene model (same data as in Fig. B.6, B.8, Table B.21).  

Four distributions (𝜒 2, gamma, Weibull and log-normal) were fitted to each 

case using R library fitdistrplus (Delignette-Muller, Dutang and Others, 2015; 

R Core Team, 2017) followed by Kolmogorov-Smirnov goodness-of-fit test 

(Kolmogorov, 1933; Smirnov, 1948). 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 

 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 

 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 4 3.113 

(0.226) 

 

 

0.769 

(0.100) 

 

0.162  

(0.029) 

0.831 

(0.067)    

 

4.261  

(0.577) 

0.780 

(0.155)     

 

1.458  

(0.110) 

0.031 0.401 0.577 0.245 

Case 5 5.634 

(0.327) 

 

 

1.111 

(0.149) 

 

0.142 

(0.024) 

1.065 

(0.088)    

 

7.996  

(0.843) 

1.541 

(0.126)    

 

1.183  

(0.089) 

0.009 0.995 0.998 0.249 

(table continues on the next page) 
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(table continues from the previous page) 

 𝜒 2 

 

Estimated 

degrees of 

freedom 

(Estimated 

standard error) 

gamma 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated rate 

parameter 

(Estimated 

standard error) 

Weibull 
 

Estimated 

shape 

parameter 

(Estimated 

standard error) 

 

Estimated scale 

parameter 

(Estimated 

standard error) 

log-normal 
 

Estimated µ 

(Estimated 

standard error) 

 

Estimated σ  

(Estimated 

standard error) 

K-S test p-value K-S test p-value K-S test p-value K-S test p-value 

Case 6 16.538  

(0.632) 

 

 

0.845  

(0.117) 

 

0.0271  

(0.005) 

0.921  

(0.085)    

 

30.161  

(3.891) 

2.744 

(0.167)    

 

1.466  

(0.117) 

8.133e-13 0.085 0.521 0.071 
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B.11 Double likelihood ratio heuristic 
 

Let the heuristic hypotheses be: 

Heuristic 1:    Heuristic 2: 

H0: Hs    H0: Hp  

H1: Hp    H1: Hs 

with the likelihood ratio value, in each heuristic, defined as 𝑇 = 2𝑙𝑛 !(!1)
!(!0)

 , L() 

denoting the maximum estimator under each hypothesis.  

 

Bootstrap sampling in Heuristic 1 could be kept as it is while in Heuristic 2 it 

could be performed in two steps: 

1. Break the multiple sequence alignment into two parts, let’s call them 

left (first n1 residues) and right (remaining n2 residues) for simplicity, 

each spanning one candidate fragment.  

2. Derive first n1 residues of a sample from the left and the remaining n2 

residues of a sample from the right. Concatenate the subsamples. 

 

There are four possible outcomes of these two heuristics: 

1. H0 selected by Heuristic 1, H1 selected by Heuristic 2. We suggest this 

indicates that fragments were derived from the same gene.  

2. H1 selected by Heuristic 1, H0 selected by Heuristic 2. We suggest this 

indicates that fragments were derived from paralogous genes. 

3. H0 selected by both heuristics. No discrimination between the models 

is possible which could happen if fragments were derived from very 

close paralogs or more generally, if there is too little information at 

hand to discriminate between the two hypotheses.  

4. H1 selected by both heuristics. This indicates that neither model is 

appropriate. It could happen if the evolutionary process is not tree-like 

(e.g. if there is recombination or gene fusion) or if some of the 

assumptions of the evolutionary model are violated. Furthermore, it 

could be due to the data quality, tools and their settings used in the 

pipeline or perhaps the putative sequences are indeed fully 

assembled and happen to be that short due to deletion.  



 

350 
 

However, we are aware that, again, in at least one of the heuristics we 

suggest working under the assumption which is not satisfied, i.e. performing 

the Heuristic 1 for fragments derived from paralogs, performing the Heuristic 

2 when fragments were indeed derived from the same gene (and even 

performing both heuristics when sequences were derived from unrelated 

genes but the homology inference method misclassified them into the same 

putative gene (protein) family). 

 

B.12 Investigation of likelihoods of reconstructed trees with 
and without using input topology 
 

When reconstructing a tree under the Hp, we performed two tree searches—

one without an input topology and one providing an input topology, as 

explained in section 3.2.4. To gain better understanding of its effects, we 

chose six experiments and investigated likelihoods of obtained trees and 

their ratios.  

 

Chosen experiments: 

● 100 artificially fragmented putative protein sequences, Ensembl 

putative protein families (Vilella et al., 2009; Cunningham et al., 2019; 

Howe et al., 2020), FastTree v2.1.8 (Price, Dehal and Arkin, 2010) 

reconstruction with default settings (described in section 3.2.7) 

● 100 artificially fragmented putative protein sequences, HOGs 

(Altenhoff et al., 2013), FastTree v2.1.8 reconstruction with default 

settings (described in section 3.2.7) 

● 100 artificially fragmented putative protein sequences, HOGs, RAxML 

v8.2.12 (Alexandros Stamatakis, 2014) reconstruction with settings 

equivalent to FastTree default settings (described in section 3.2.13) 

● 100 candidate pairs derived by artificial fragmentation of putative 

paralogous protein sequences, Ensembl putative protein families, 

FastTree reconstruction with default settings (described in section 

3.2.8) 
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● 100 candidate pairs derived by artificial fragmentation of putative 

paralogous protein sequences, HOGs, FastTree reconstruction with 

default settings (described in section 3.2.8) 

● 100 candidate pairs derived by artificial fragmentation of putative 

paralogous protein sequences, HOGs, RAxML v8.2.12 reconstruction 

with settings equivalent to FastTree default settings (described in 

section 3.2.13) 

 

Likelihoods of all reconstructed trees can be downloaded from 

https://doi.org/10.6084/m9.figshare.11733672.v1. 

 

For each of the experiments above, we: 

1. Counted the number of times when a reconstructed tree without 

providing an input topology had higher likelihood than a tree 

reconstructed considering an input topology, the number of times 

when a reconstructed tree without providing an input topology had 

equal likelihood as a tree reconstructed considering an input topology, 

and the number of times when a reconstructed tree using an input 

topology had higher likelihood than a tree reconstructed with no input 

topology. As can be seen in Table B.26, in two experiments a tree 

search with an input topology reported a better tree for the majority of 

examined cases while in every experiment it was helpful for at least 

~¼ of the cases under investigation. This suggests that considering 

an input topology can be beneficial.  

2. Plotted a histogram of the differences between the likelihoods: 

likelihood of the ML tree starting from an input topology - 

likelihood of the ML tree without an input topology. 

As can be seen from Figure B.9 and as expected given the counts in 

Table B.26, the differences were usually ≥ 0. The differences changed 

depending on a dataset (Fig. B.9a v Fig. B.9c, Fig. B.9b v Fig. B.9d) 

and a tree building tool (Fig. B.9c v Fig. B.9e, Fig. B.9d v Fig. B.9f). 

This could indicate the need to choose a tool and adjust its 

parameters to the dataset under examination. However, given the 
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outcomes of our investigation on different phylogenetic tools and their 

parameters (sections 3.2.13, 3.3.7), it could also be that this double 

tree search helps to even out downsides of the chosen phylogenetic 

tool and its parameters. Further analysis could provide more insights.   

3. To see how this more exhaustive search affects the ratio of 

likelihoods, we plotted the distribution of ratios as it is in the current 

pipeline (taking the higher value) and the distribution of ratios 

considering only a tree search without an input topology (Fig. B.10). 

Considering an input topology had the greatest effect when the trees 

were reconstructed for Ensembl putative protein families by FastTree 

(Fig. B.10a-b). The effect was lower when FastTree was applied to 

HOGs (Fig. B.10c-d) indicating that default FastTree parameters 

might be more suitable for HOGs than for Ensembl families, and that 

the parameters should be investigated in order to improve tree search 

(for both Ensembl and HOGs data but for Ensembl data in particular). 

Considering an input topology had the lowest effect when trees were 

reconstructed from HOGs using RAxML (Fig. B.10e-f). That was 

expected since the RAxML tree search is more exhaustive than the 

tree search by FastTree. Overall, this emphasises the importance of 

exhaustive tree search and the need for choosing appropriate tree 

building methods and their parameters. Similarly as above under point 

2., it could be that the double tree search mitigates shortcomings of 

tree-reconstruction algorithm to the extent meaningful for the 

likelihood ratio heuristic. 

 

Taking into account all outcomes of this analysis, we would advise 

performing tree search under the Hp with and without including a starting 

topology. It could be beneficial for at least part of the cases under 

investigation. Furthermore, maybe it is the key of the robustness of the 

likelihood ratio heuristic observed in the experiments described in section 

3.2.13 (results in section 3.3.7). 
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Table B.26: Counting the number of times when each of the tree 
searches under the Hp (with an input topology, without an input 

topology) found a more optimal tree. 

 100 (FastTree) or 94 

(RAxML) artificially 
fragmented putative 

protein sequences* 

100 (FastTree) or 99 

(RAxML) pairs from 
artificially fragmented 

putative paralogous 

protein sequences* 

W 

INPUT 

= W/O 

INPUT 

W 

INPUT 

= W/O 

INPUT 

FastTree, default 

parameters 

(Ensembl) 

57 6 37 55 3 42 

FastTree, default 

parameters 

(HOGs) 

29 33 38 49 12 39 

RAxML, parameters as 

in FastTree default 

(HOGs) 

45 27 22 24 17 58 

 

* Some pairs had to be excluded from the analysis either because RAxML 

requires at least four putative sequences in a dataset or because RAxML ran 

into dataset-dependent numerical problems during optimization and crashed. 
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Figure B.9: Difference in likelihoods:  

likelihood of the ML tree starting from an input topology - 
likelihood of the ML tree without an input topology.  

Cases depicted in the left column were derived from the same gene 

model while those depicted in the column on the right were derived 

from putative paralogous gene models.  
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Figure B.10: Distributions of the ratio of likelihoods value.  

Cases depicted in the left column were derived from the same gene model 

while those depicted in the column on the right were derived from putative 

paralogous gene models.  
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Appendix C 
 

Detecting fragmented gene models in the putative 
genome of wild olive, with step-by-step assessments 

 

C.1 Dataset 
 

Table C.1: Putative proteomes exported from OMA Browser (Altenhoff 
et al., 2018) and used as input data for GETHOGs algorithm (Altenhoff 

et al., 2013) in the study on Olea europaea var. sylvestris. 
The second column contains information on the database release that OMA 

Browser retrieved an assembly and annotation from. 

Species Database 

Amborella trichopoda Ensembl Plants 23 

Arabidopsis thaliana Ensembl Plants 38 

Glycine max Ensembl Plants 19 

Helianthus annuus Ensembl Plants 39 

Oryza sativa subsp. japonica Ensembl Plants 27 

Populus trichocarpa Ensembl Plants 15 

Solanum lycopersicum Ensembl Plants 27 

Solanum tuberosum Ensembl Plants 21 

Vitis vinifera Ensembl Plants v9 

Zea mays Ensembl Plants 40 
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C.2 Inspection of selected predictions 
 

 

 

 

 

 

 

 

 
Figure C.1: Parts of 3,783 positions long multiple sequence alignment 
of a putative protein family yielding an ambiguous prediction for gene 

models coding putative protein sequences (Oeu002269.1, Oeu041302.1) 
(drawn with AliView (Larsson, 2014)).  

Annotated protein sequences Oeu002269.1 and Oeu041302.1 are depicted 

in the first two rows while the third row depicts annotated sequence 

Oeu035109.1 involved in an ambiguous prediction (Oeu041302.1, 

Oeu035109.1). 
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Figure C.2: Reconstructed protein tree with SH-like branch supports for 
multiple sequence alignment depicted in Figure C.1 (drawn with 

Phylo.io (Robinson, Dylus and Dessimoz, 2016)).  
Black rectangles mark placement of putative protein sequences involved in 

an ambiguous prediction (Oeu002269.1, Oeu041302.1). Another ambiguous 

prediction from this putative family was (Oeu041302.1, Oeu035109.1). 
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Figure C.3: Parts of 1,280 positions long multiple sequence alignment 

of a putative protein family yielding an unambiguous prediction for 
gene models coding putative protein sequences (Oeu055052.1, 

Oeu055056.1) (drawn with AliView (Larsson, 2014)). 
 

 
Figure C.4: Reconstructed protein tree with SH-like branch supports for 

multiple sequence alignment depicted in Figure C.3 (drawn with 
Phylo.io (Robinson, Dylus and Dessimoz, 2016)).  

Black rectangles mark placement of putative protein sequences involved in 

an unambiguous prediction (Oeu055052.1, Oeu055056.1). 
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Figure C.5: Parts of 600 positions long multiple sequence alignment of 

a putative protein family yielding an ambiguous prediction for gene 
models coding putative protein sequences (Oeu001063.1, Oeu014565.1) 

(drawn with AliView (Larsson, 2014)).  
Putative protein sequences Oeu001063.1 and Oeu014565.1 are depicted in 

the first two rows while the third row depicts annotated protein sequence 

Oeu057720.1 involved in an ambiguous prediction (Oeu057720.1, 

Oeu014565.1). 
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Figure C.6: Parts of 600 positions long multiple sequence alignment of 
a putative protein family providing an ambiguous prediction for gene 

models coding putative protein sequences (Oeu001063.1, 
Oeu014565.1)—wild olive putative sequences only (drawn with AliView 

(Larsson, 2014)).  
Possible high duplication rate of the gene family coupled with potentially high 

heterozygosity rate and missing data. 
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Figure C.7: Reconstructed protein tree with SH-like branch supports for 
multiple sequence alignment depicted in Figures C.5-C.6 (drawn with 

Phylo.io (Robinson, Dylus and Dessimoz, 2016)).  
Black rectangles mark placement of putative proteins involved in an 

ambiguous prediction (Oeu001063.1, Oeu014565.1). Twenty four more 

cases from this putative family were examined and a pair of putative proteins 

(Oeu057720.1, Oeu014565.1) indicated another ambiguous split gene 

model. 
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Appendix D  
 
Identifying fragments of the same transcript model in 
transcriptome datasets, with putative cassava 
transcriptome as a test case 

 

D.1 Dataset  
 

Table D.1: Putative proteomes exported from OMA Browser (Altenhoff 
et al., 2014; Altenhoff et al., 2018), March 2017 release and used as a set 

of references in the study.  
They were five closest species to Manihot esculenta available in the 

database55. The second column contains information on the database 

release that OMA Browser retrieved an assembly and annotation from.  
 

Species Database 

Arabidopsis thaliana  Ensembl Plants 20 

Lotus japonicus The Baylor College of Medicine—Human 

Genome Sequencing Center56 

Medicago truncatula Ensembl Plants 18 

Populus trichocarpa Ensembl Plants 15 

Glycine max Ensembl Plants 19 

 
 

                                            
55 As depicted in the reconstructed phylogenetic tree in OMA Browser 
56 The center also sequences species other than human. This putative proteome 
(Lotus japonicus v3.0) is no longer available for download from their website but can 
be downloaded from, e.g. Lotus Base (Mun et al., 2016). 
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