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ABSTRACT

This thesis studies a population of agents facing repeatedly the same decision prob-
lem. Each agent knows the set of strategies available, but not the payoff distribution
associated with each strategy. Agents follow simple behaviour rules which have no
memory beyond what is encoded in the current “state” of the decision maker.

We consider two different frameworks: (i) Individual learning and (ii) imitation
learning. We also diétinguish rules where the “state space” of the decision maker is the
set of pure strategies, and behavior rules where it is the set of mixed strategies. The
results for these two cases differ dramatically.

In the case of individual learning, we say that a behaviour rule is maximising (ap-
proximately maximising) if asymptotiéally, for all underlying payoff distributions, the
decision maker will play with probability one (close to one) the expected payoff max-
imising strategy. We show that no behaviour rule with pure strategy state space is
(approximately) maximising. For the class of mixed strategy behaviour rules, we iden-
tify a property called monotonicity which implies approximate maximisation, provided
learning proceeds in small steps. We characterise monotone learning rules, showing
that they are closely related to the “replicator dynamics” of evolutionary game theory.

When considering imitation learning, we postulate that at each iteration agents
have the opportunity of randomly sampling another agent, observing the strategy which
this agent played and his payoff. We consider two different settings. In the first, the
behaviour of the observed population is exogenously given and constant. We show that
no pure strategy imitation rule is (approximately) maximising. For mixed strategy
behaviour rules, we characterise the set of all monotone rules, showing that monotone
rules involve imitation probabilities which are proportional to payoff differences. In
the second setup all agents in the population are allowed to adjust their behaviour
according to some imitation rule. We show that no pure strategy imitation rule is
maximising i.e. there does not exist a rule such that, if every member of the population
adopts it, asymptotically every agent plays the expected payoff maximising strategy
with probability one, regardless of the true payoff distribution. We then define and

analyse a weaker requirement, “equilibrium” imitation rules.
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Chapter 1

Motivation

1.1 Introduction

The assumption that economic agents’ behaviour is rational is central to much of eco-
nomic theory. In decisions under certainty, this assumption is usually interpreted to
mean that agents maximize some preference ordering or some utility function. In deci-
sions under uncertainty, the assumption means that agents maximize expected utility.
Finally, in games rational behaviour is interpreted by economic theory as Nash equi-
librium behaviour.

Recently, economic theorists have started to enquire into the foundations of the
rationality hypothesis. In particular, it has been asked how agents might come to make
rational choices. There are two reasons for this recent interest. One is that experimental
data, and also some real world data, suggest that the rationality hypothesis has only a
limited domain of validity, i.e. agents’ choices are sometimes, but not always, rational.
If one wants to understand when agents can be expected to be rational, and when
rational behaviour should not be expected, one needs to have some understanding of
the mechanisms which bring about rationality.

The second reason for the recent interest in the foundations of rationality is related
to the fact that strategically interactive situations, i.e. games, often have many out-
comes all of which are compatible with the rationality of all agents’ decisions. Such
outcomes are known as Nash equilibria. If games have many Nash equilibria, the ques-
tion arises whether one can make statements about which equilibria are more likely

to occur. This is known as the equilibrium refinement, or, if the goal is to single out



a unique equilibrium, as the equilibrium selection question. Progress on this question
requires that one understands how agents find their way to an equilibrium.

The literature has considered two basic ways in which agents might find their way
to equilibrium. One is through5 introspection , the other is through trial and error
learning in real time. Both have some plausibility. If agents play important games
in the real world, it can be expected that decision makers are willing to undertake a
lot of strategic reasoning, and, in some cases, this might take them towards rational
decision. In other cases, decisions might be relatively unimportant, but they have to be
made very frequently. In such cases, initial decisions might well be flawed, but it can
be hypothesized that later decisions will be rational or close to rational. In this thesis
we shall only consider trial and error learning as a mechanism to steer agents towards
rationality.

The hypothesis of trial and error learning has been formalized in a variety of ways.
Different formalizations differ with respect to the information which agents are assumed
to hold at the beginning of the learning process, with respect to the feedback infor-
mation which agents are provided during the learning process, and with respect to the
behaviour hypotheses concerning how agents respond to the information available to
them, both in terms of their behaviour, and in terms of updating their beliefs.

It has become common to distinguish two broad classes of learning models. The
first class are so-called belief-based learning models. In such models agents are aware
of the basic structure of the situation which they are facing, i.e. they know their own
and, possibly, others’ strategy sets and they know their own payoff matrix. During
the learning process agents observe other players’ strategy choices, and, possibly, the
state of nature. Agents form beliefs about their environment on this basis, and then
maximize their expected payoff.

The second class of learning models are reinforcement learning models. Reinforce-
ment learning models differ from belief-based learning models in all dimensions. Firstly,
agents are assumed to hold less information at the outset. In particular, it is not as-
sumed that agents know other players’ strategy sets, or their own payoff matrix at
the outset of the game. Secondly, during the learning process the only feedback which
agents are assumed to receive is their own payoff. They don’t necessarily observe other

players’ strategy choices, or the state of nature. Finally, agents’ choices are assumed



to be instinctive responses to payoff experiences rather than the result of explicit max-

imisation of expected payoffs.

In the current thesis we shall only be concerned with models of reinforcement learn-
ing, not with belief-based learning processes, in single person decision problems, rather
than in games. The reason for this is rather pragmatic. We restrict the scope of our

investigation so as to make the investigation tractable and feasible.

We interpret the notion of reinforcement learning broadly. In particular, we allow
for the possibility that the agent observes not only his/her own strategy choice and
payoff, but also the strategy and payoff of some other agents who finds him/herself in
the same situation. Note, however, that this other agent is not the agent with whom the
game has been played. We thus include among reinforcement learning simple models
of imitation. The reason for considering single agent learning models and imitation
models together is that they share many features.

Much of previous work in the area of reinforcement learning has considered specific
learning algorithms, and has investigated the predictions which can be derived from a
given learning algorithm in single person decision problems and games. In this thesis,
we take a different approach. We impose no particular functional forms, but allow for
a large variety of learning algorithms. We then ask which algorithms in this class have
the property that agents will learn rational choices in a variety of environments. We
provide characterizations of learning algorithms with this property.

Our characterizations focus on two properties of a learning algorithm. The first
such property is what we shall call the “state space” of the learning algorithm. The
second is the functional form. The “state space” of a learning algorithm is simply the
set of states in which the decision maker finds him/herself at any particular point in
time. Our results will indicate that this set has to be, in a sense to be made precise
below, “sufficiently big”. Otherwise, the learning algorithm will not have sufficient
memory to be able to deal with many different situations. As far as functional forms
are concerned, we shall show that in our setting only learning algorithms which are
linear in payoffs will achieve optimality in the long run. An intuitive reason for this is
that expected payoffs themselves are linear functions of payoffs.

In a sense, this thesis presents an axiomatic approach to learning algorithms. How-



ever, our work should not be interpreted as aiming to single out “desirable” learning
algorithms. Whether agents use learning algorithms which lead to rationality in a large
variety of situations is an empirical question. Our results help to interpret empirical
results regarding this question.

The remainder of this Chapter is organized as follows. In the next Section we
elaborate in some more detail why economists have become interested in the foundations
of the rationality hypothesis. In the third Section of the chapter, we briefly review some
experimental findings on learning in decisions and games. Finally, in the fourth and
last Section we review some of the theoretical literature on learning. A more detailed
overview and discussion of our findings in this thesis is postponed to Chapter 2. The
detailed discussion of the relations between our research and other authors’ work is

postponed until the main formal part of the thesis which begins with Chapter 3.

1.2 On Evidence Regarding the Rationality Hypothesis in

Economics

One reason why economists have started to enquire into the foundations of the rational-
ity hypothesis is that in some situations there is a mismatch between predictions based
on the hypothesis and experimental and field data. The simplest such cases arise not
in games, but in single person decision problems. In this section, we provide a partial
review of some of the relevant evidence, first for single person decision problems, and
then for games. The purpose of this Section is to support our earlier claim that the
experimental evidence indicates the validity of the rationality hypothesis in some, but
not in all circumstances. We therefore only quote a few selected experiments, and don’t
aim for completeness.

In decision problems under risk, experiments during the last 40 years have uncovered
a number of anomalies all of which are deviations from the predictions of the theory
of expected utility maximisation. In most of these studies, subjects are asked, possibly
repeatedly, to choose one lottery from a pair of such lotteries. The idea of using pairs
of lottery choices to elicit subject’s preferences goes back to Maurice Allais [1].

Maurice Allais also found the most famous paradox in this area. Assume that there

are three monetary prices: 2.5, 0.5 and 0 millions Euros. The subjects are confronted



with the following lottery choices. First, they have to choose either lottery Ly = (0,1, 0)
or lottery L} = (.10, .89,.01) where the numbers indicate the probability of the three
prizes in the order in which they were listed above. Next, subjects have to choose either
lottery Ly = (0,.11,.89) or lottery Lj = (.10,0,.90).

It is commonly observed that individuals strictly prefer L; over L), but that they
also strictly prefer LY, over Ly. But these choices are incompatible with expected utility
theory. The choice of Ly over L} implies that L, must be preferred over L) or the
axioms of expected utility theory are violated.!

The dissatisfaction with the empirical accuracy of expected utility theory led to
the formulation of a number of new theories of decision making under risk. Most of
these theories have a larger number of free parameters than expected utility theory
does, and therefore it is not surprising that they “explain” observed behaviour better
than expected utility theory. How should one evaluate the status of expected utility
theory in comparison to the new theories of decision making under risk? Two different
responses are represented by recent articles by Hey and Orme [28] and Harless and
Camerer [24).

Hey and Orme generate their own choice data, and then investigate whether ex-
pected utility, or alternative theories, are better explanations of the experimental data,
once it is taken into account that the alternative theories have larger numbers of free
parameters. They find that for 39% of their subjects, expected utility theory fits no
worse than the other contenders. For the other 61% of the subjects, they conclude
that the superiority of the alternative theories is not established. Therefore they argue
that “.. our study indicates that behaviour can be reasonably well modelled (...) as
expected utility plus noise. Perhaps we should now spend some time on thinking about
the noise, rather than about even more alternatives...”.([28], p.1322).

A different viewpoint is argued by Harless and Camerer [24]. They develop a sta-
tistical test which can be use to aggregate results across studies. This aggregation is
used to test the predictive utility (fit and parsimony) of the various theories of decision
making. Furthermore, it can be used to test whether deviations from the expected

utility theory are robust across studies. Although they find that there is no a single

!Denote by wuzs, uos and uo the utility values of the three monetary outcomes. Then the choice
Ly > L] implies ugs > .10u25+.8%u05 +.1ug. Adding .89(uo—uos) to both sides we get .11uos +.8%uo >
.10u2s + .9uo and therefore Lo > L5.

10



winner among theories (everyone involves a trade-off between parsimony and fit), they
argue that “... violations of expected utility theory are robust enough that modelling
of aggregate economic behaviour based on alternatives to expected utility is well worth
exploring.” ([24], p. 1286). Despite this negative view with respect to the performance
of the expected utility theory in comparison to other theories of decision making, they
recognize that their study dramatically confirms a conclusion previously observed in
other experiments, i.e. that the expected utility theory predicts well when subjects
choose between gambles which involve outcomes with positive probability, and predicts
poorly when some outcomes have probability zero (see also Conslik [12] and Camerer
(10)).

It is this second viewpoint which reinforces our argument in this thesis, that ex-
pected utility theory has not got an universal domain of validity, i.e. there are situations
in which predictions based on that theory does not confirm with observed behaviour.

Within the realm of strategically interactive situations, rational behaviour is inter-
preted as Nash equilibrium behaviour. The question whether observed behaviour in
games can always be rationalized has again a negative answer.

As an example, we shall consider experimentally observed behavior in auctions.
More specifically, we shall focus on auctions with independent private values. In the
auction literature, the independent private value model corresponds to the case in
which the valuation of each bidder is privately known and bidders’ valuations are drawn
independently from each other.

We shall consider behaviour in two different auction formats: the Vickrey auction
and the English auction. In the latter, the price is increased until one bidder remains.
This bidder gets the object and pays his bid. The Vickrey auction is a second-price
sealed bid auction. The highest bidder gets the object and pays the second-highest bid.

In the independent private value setup, bidders have a dominant strategy in both
auctions. In the English auction, the dominant strategy is to bid up to one’s true value.
In the Vickrey auction, the dominant strategy is to bid one’s true value. Moreover,
in the independent private value setup, the two auctions are strategically equivalent,
provided that bidders in the English auction follow threshold strategies of the form:
stay in the auction until the bid reaches some particular boundary. If bidders in the

English auction only consider strategies of this form, there is an isomorphism between
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the strategy sets in the two auctions, and the payoff functions are identical with respect
to this isomorphism.

The main conclusion from experiments with these auctions is that subjects do not
behave in strategically equivalent ways. Kagel et al. [30] reports bidding above the
dominant strategy price in second-price auctions, while in the English auction bidding
follows the dominant strategy. This result has been replicated in numerous experiments
so as to become an accepted fact.?

The second reason for the recent interest in the foundations of rationality is related
to the fact that games often have many Nash equilibria. If games have many Nash
equilibria, the question arises whether one can make statements about which equilibria
are more likely to occur. This is known as the equilibrium refinement problem, or, if
the goal is to single out exactly one equilibrium, as the equilibrium selection problem.

Subgame perfection is one of the most widely used refinements. However, predic-
tions based on this concept often fail to capture observed behaviour. As an example, we
shall consider experiments with sequential bargaining games. In the simplest sequential
bargaining game, the ultimatum game, a pie has to be shared by two players. Player
1, the proposer, has the first move. Player 2 receives the offer and decide whether to
accept it, in which case each player receives the proposed share, or to reject it, in which
case each player receives nothing. The subgame perfect equilibrium prediction is that
player 1 should ask for the whole pie and that player 2 should accept any proposal.

Experiments regarding this game have initially yielded contradictory results. Work
by Ochs and Roth [43] settled the dispute by using a larger experimental design. Their
results suggest that the subgame perfect equilibrium prediction fails as a predictor of
observed behaviour: the mean offer was positive and a substantial proportion of positive
offers were rejected.

On the other hand, Ochs and Roth’s experiments indicate that the observed mean
offers deviate from the perfect equilibrium prediction in a particular direction, the di-
rection of equal division. This fact has since then been replicated so as to become an

accepted fact: in the ultimatum game, there is a high concentration of equals divi-

2The breakdown of the strategic equivalence of the Vickrey and English auctions can be considered
as an analogous to the preference reversal phenomenon (equivalent ways of eliciting preferences yield
different revealed preferences). This phenomenon is described by psychologists as one of the most
robust violations of EU in decision problems.
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sion offers. This suggests that there exists an underlying behaviour mechanism which
prompts the equal division offer in the ultimatum game and that subgame perfection
is not able to capture it.

However, there are games which do not seem to be too different from the ultimatum
game for which the subgame perfection prediction does match observed behaviour. An
example is the best-shot game. In this game player 1 selects the quantity ¢; of a public
good that he is willing to supply. Player 2 observes q; and selects another quantity
¢2- The quantity of public good supplied is the maximum of ¢; and gy. Payoffs are
proportional to the quantity of the public good that is supplied minus costs of the
quantity g;.

Experimenters typically fix payoffs so that the unique subgame-perfect equilibrium
involves the choice of ¢; = 0 for player 1, so that player 1 free rides on player 2. This
equilibrium is similar to the subgame-perfect equilibrium of the ultimatum game in that
the payoff distribution in equilibrium is very extreme, and in that the player who moves
first exploits in some sense the player who moves second. Nonetheless, experiments have
shown that in this case the subgame perfect prediction captures quite well the observed
behaviour (see Prasnikar and Roth [45]).2

So far we have reviewed some selected work which evidences the inability of the
rationality hypothesis to explain observed behaviour in experiments. We shall now
review some real data analysis which also suggest that in real life situations people do
not always behave as the rationality hypothesis predicts. The first concerns the decision
on how to allocate today’s .money between consumption and saving, i.e. how much to
consume today and how much to save it to finance future consumption. The theoretical
foundations on intertemporal choice theory go back to the fifties, when the Permanent
Income Theory [20] and the Life-Cycle Theory [37] were stated. These theories state
that consumption is determined by the value of life-time resources, typically involving
current financial and human wealth.

We shall focus on the Permanent Income Theory and specifically on one prediction
whose consistency can be tested on real data, i.e. changes in consumption are related

to unpredictable changes in income. This implies that changes in consumption are un-

30ther games for which the predictions based on subgame perfection match observed behaviour are
the market game and the impunity game.

13



predictable, this statement being know as the Permanent Income Hypothesis. However,
the seminal works by Flavin [21] using aggregate data and by Hall and Masking [23]
using microeconomic data showed the failure of this hypothesis, i.e. consumption also
responds to predictable changes in income. This excess sensitivity of consumption has
since then being replicated in other studies so as to become an accepted fact.

The second real life situation we shall consider concerns field studies in common
value auctions. In common value auctions, the value of the auctioned item is the same
to all bidders. Although the bidders do not know the value of the item at the time
they are bidding, they receive signal values. Note that although all bidders obtain
unbiased estimates of the value of the item, they win in cases where they have the
highest signal value, yielding below normal or even negative profits. The systematic
failure to account for this adverse selection problem is known as the winner’s curse.
Note that this systematic failure violates the notion of economic rationality.

An example of real world common value auction is the oil lease auction. A number
of field studies in these auctions have focused on the rate of returns for these leases.
The seminal paper is [11] which claims that oil leases won by competitive bidding
yield unexpectedly low rates of return, even less than the market rate of return on
their investments, interpreting these results on a winner’s curse basis. Evidence of the
same phenomena in other kinds of auctions has since then been collected to support
that the winner’s curse is responsible for these low returns to winners. However the
debate continues as these low rates of return might have alternative interpretations.
The debate has now moved to laboratory experiments, where the winner’s curse has
been shown to be present.

In summary, we wish to argue that experimental economics and the analysis of
field data have shown that there are situations in which observed behaviour is easy
to rationalize, and that there are situations in which the observed behaviour is almost
impossible to rationalize. If one wants to understand when rational behaviour should be
expected and when agents cannot be expected to behave rationally, then it is necessary
to have some understanding of the mechanisms which bring about rationality.

Experimental evidence also suggests that in games with multiple equilibria there
some equilibria that are more likely to occur than others. However, existing refinements

of Nash equilibrium do not seem to capture well what determines which equilibria will
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occur. Again, a better understanding of this issue seems to require more insight into

how equilibria come about.

1.3 Learning and Rationality

The literature has considered two basic mechanisms that bring about rationality: (i)
rationality can emerge after a‘*‘ careful reasoning by the economic agent, and (ii) ratio-
nality can arise from trial and error learning, provided that the situation is encountered
sufficiently often.

Rational reasoning can be expected to be a sensible mechanism if the agent is
engaged in a situation in which actions can yield important consequences. In these
circumstances, it might be expected that the agent devotes a great deal of reasoning to
fully understand the strategic situation in which he is involved. In some cases, it might
be that this strategic reasoning leads the agent to behave rationally.

But it can also be the case that the agent is facing a situation which is relatively
unimportant but which calls for a decision very frequently. In this case, it may be that
initial decisions are not rational but it can be hypothesized that through a trial and
error process the agent can ultimately behave rationally or close to rational. Although
both mechanisms have some plausibility, this thesis will be only concerned with the
latter one. -

The plausibility of the learning mechanism as generator of rationality can be as-
sessed by turning our attention to experimental work and seeing how well “experienced”
agents behave when the experiment involves repetitions of the same situation. In this
section, we provide a partial review of some experimental evidence involving experi-
enced agents in different setups. The purpose of this section is to support the claim that
there are situations in which experienced agents find their way to rationality, but that
there are also situations in which even experienced agents systematically deviate from
rational behaviour. Furthermore, we wish to argue that the way in which experience
affects agents’ behaviour is different in different strategic environments.

The theory of learning has a long tradition in psychology. It was developed in the
psychological literature as a way to explain both animal and human behaviour in simple

decision problems and games. One of its main finding is an “irrational” behaviour so-
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called probability matching behaviour (Estes and Straughan [19]).

This term refers to a decision maker facing a two-action decision problem, where
each action yields binary payoffs. Suppose that strategy s yields one monetary unit
with probability u, and yields nothing with probability 1 — x. Suppose that strategy
s’ yields one monetary unit with probability 1 — 2 and yields nothing with probability
u. It is said that the decision maker’s behavior exhibits “probability matching” if the
long run frequency with which strategy s is chosen is y, and the long run frequency of
strategy s’ is 1 — p. This behaviour is “irrational” as long as u # -;-, because rationality
would imply playing the unique highest expected payoff strategy with probability one.

In experiments involving repetitions of strategic situations, it is not always the case
that agents find their way to rational behaviour as agents gain experience. Kagel et al.
[30] reported failures of strategic equivalence in second-price and English auctions with
private values. For the second-price auction, bids were above the dominant strategy.
These results have since then been replicated in independent private values both with
experienced and unexperienced agents (Harstad [25], Kagel and Levin [31]), so that
these results are now widely accepted not to be attributed to bidders’ inexperience.

In bargaining experiments, Binmore, Morgan, Shaked and Sutton [4] conducted a
series of experiments with a version of the ultimatum game with optional breakdown.
They report that in the case of experienced agents, the perfect equilibrium prediction
fits worse than in the case of unexperienced agents. This can be interpreted as a case
of “unlearning”.

So far we have presented evidence on the failure of experienced agents to achieve
rationality. We shall now review some experimental evidence to support the claim that
experienced agents achieve rationality in some situations. The first example comes
again from the literature of experimental bargaining games, more specifically from
experiments using versions of the ultimatum game. Experimental work by Harrison
and McCabe ([26] and [27]) shows that experience promotes convergence to the perfect
equilibrium prediction.

The last set of examples refer to experiments involving repetitions of a strategic
situation with more than one Nash equilibria. In this setting it is possible to study
whether experience leads players to eventually coordinate on some equilibrium, and if

equilibrium is observed, which are the properties of the selected equilibrium.
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Van Huyck, Battalio and Beil [56] report experiments with pure coordination 15-
player games. All these games have a number of Pareto ranked Nash Equilibria. By
allowing a given group of subjects to play the same game repeatedly, they were able
to observe whether individuals immediately coordinate or whether they eventually co-
ordinate on one of them. Their results show that in all the sequences, there was no
equilibria in the first period, but there was convergence towards an equilibrium as
players gained experience.

Cooper, DeJong, Forsythe and Ross [13] report experiments considering two-person
3x3 symmetric games with two strict Pareto-ranked Nash equilibria, where the third
strategy was strictly dominated. Although at early stages no equilibrium was reached,
after players have accumulated experience, the play quickly converges to one of the
pure strategy equilibria of the game.

In summary, we wish to argue that experimental economics have shown that there
are situations in which experienced agents achieve rationality and that there are situ-
ations in which they do not. In order to understand when rational behaviour should
be expected it is necessary to have some understanding of the mechanisms which bring

about rationality.

1.4 Theoretical Literature on Learning

The hypothesis of trial and error learning has been formalized in different ways. Differ-
ent formalizations differ with respect to the information the agents hold at the beginning
of the learning process, with respect to the information they receive during the learning
process and with respect to how the information available affects the agents’ behaviour.

It has become common to distinguish two broad classes of learning models: belief-
based learning models and reinforcement learning models. In belief-based learning
models, agents are aware of the basic structure of the situation in which they are inter-
acting, i.e. they know their own set of strategies and possibly their opponents’ sets of
strategies. They also know their own payoff matrix and possibly their opponents’ payoff
matrix. They form beliefs about this environment. During the learning process, they
receive information about their opponents’ strategy choices and possibly the realized

state of nature. With the information available, they update their beliefs and choose
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their strategies to maximize expected payoffs.

Reinforcement learning models differ from belief-based models in several ways.
Firstly, it is not assumed that agents know their opponents’ strategy sets or their own
payoff matrix. Secondly, during the learning process agents only receive information
about their own realized payoffs. They do not necessarily observed their opponents’
choices, or the state of nature. Finally, agents’ choices are assumed to be instinctive
responses to payoff experiences rather than the result of any explicit maximization
process.

To illustrate the distinction between these two different types of learning models, we
shall give first some examples of belief-based learning models, and then some examples
of reinforcement learning models. The Cournot adjustment model is an early example
of a learning model of belief-based learning models. In this model, n firms repeatedly
play a stage-game in discrete time. It is assumed that at the end of every stage, each
firm observes the strategies used by its opponents in that stage. In the next period, each
firm then chooses its strategy to be a best-response to the previous period’s strategy
profile.

Another example of a belief-based learning model which is widely used in game
theory is the fictitious play model. In this model, players choose their actions in each
period to maximize that period’s expected payoff, where players’ subjective beliefs
about their opponents’ behaviour in the next period equals the empirical distribution
of actions which has been observed in the past periods.

A first example of reinforcement learning model is the linear stochastic learning
model [8]. At every stage a subject is permitted to take n responses. The subject is
described by a probability distribution over responses which indicates how likely she is
to take any of the responses. After choosing a response, the subject receives a stimulus,
which can be either a reward or a punishment. When rewarded, the probability of
choosing the same response is increased in a linear fashion. If the response is not
rewarded, then the new probability is decreased in a linear way.

The second example is the Cross’ model [15]. It is a generalization of the previous
one by allowing a variety of stimuli. A subject is facing a decision problem under risk.
Suppose payoffs are normalized between zero and one. Then Cross’ rule states that

in each iteration the updated probability distribution is simply a weighted average of
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the previous probability distribution and the unit vector placing all probability on the
action just taken. The weight of the unit vector equals the payoff. Note that this rule
has the feature that all payoffs have a reinforcing, and hence positive, effect on the
probability of the action which the decision maker chose.

Regardless of the particular learning model considered, the trial and error learning
theory considers dynamic systems for describing how the behaviour of the agents evolves
over time. It usually assumes that there is a population of agents playing the same
game repeatedly and makes assumptions about the size of the population, the matching
procedure and the information gathered at the end of each round for each agent. Each
agent is endowed with a learning model to adapt her behaviour. Different learning
models give rise to different dynamic systems.

Given that the evolution of the behaviour of the population is described by a dy-
namic system, the central issue in the theory of learning is the convergence of the
dynamic system. It can be the case that the dynamic system converges to some con-
cept of equilibrium of the stage game, then it is said that the learning model succeeds
in learning that equilibrium concept, i.e. players learn to play rationally. But it is not
always the case that the dynamic system converges to some equilibrium of the stage
game.

In the fictitious play model, for example, the key concept for studying the con-
vergence of fictitious play is the empirical distribution of the opponents’ play. If the
empirical distribution converges, then the system converges to a Nash equilibrium. For
some classes of games, fictitious play is known to converge to a Nash equilibrium. These
include two player zero sum games, two player games in which each player has only two
strategies, and potential games. However, convergence is not always ensured. The first
example of a game for which empirical distributions do not converge is a game with two
players in which each player has three strategies. The example is due to Shapley [52],
who showed that fictitious play may lead to cycles in this example. Another example
is due to Jordan [29]. Jordan showed that fictitious play leads to a cycle in a simple
three-player matching pennies.

Thus, theoretical analysis of fictitious play has lead to predictions concerning the
question in which games we should expect players to learn Nash equilibria, and which

games this cannot be expected. Analysis of belief-based learning processes has, however,
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also helped to make predictions about equilibrium refinement/selection. The most
prominent examples of such an analysis are Young [57] and Kandori, Mailath and Rob
[32]. Young [57] uses a belief-based learning model with random errors to derive the
prediction that in two player coordination games in the long run the risk-dominant Nash
equilibrium will prevail. Kandori, Mailath and Rob [32] obtain a similar conclusion
using a belief-based learning model with stochastic adjustment in 2x2 symmetric games
with two strict equilibria.

Belief-based learning models are typically not of great interest in single person
decision problems, as the prediction will always be that agents will learn to make
rational decisions. The situation is different when we consider reinforcement learning
models. Consider, as an example, Cross’s model. Contrary to initial conjectures by
Cross, it has been shown that a decision maker who adopts Cross’ learning rule will
sometimes, but not always learn expected payoff maximising choices. Cross’ model
makes predictions, however, about the frequency with which this happens, which can be
subjected to experimental tests. Similarly, Bush and Mosteller’s linear model sometimes
predicts “probability matching” behaviour in single person decisions under risk, but,
in other decision problems, leads to optimization.

Much of the learning literature so far has focused on the investigation of very specific
learning rules. The work reported in this thesis will deviate from this pattern, and
attempt to consider very large classes of learning rules. There are, however, already
instances in the learning literature where, at least at first sight, more general models
are pursued. In particular, some might regard the replicator dynamics of evolutionary
game theory as a more general dynamic system.

The replicator dynamics was first motivated in the field of biology [54], although
it has received very much attention by economists in recent years.? It simply states
that the population share of a strategy performing better than average grows in the
population, the growth rate being proportional to the payoff difference with the mean.
The standard motivation for replicator dynamics has a biological flavour, appealing
to asexual reproductions, programmed strategies, inheritance of strategies, etc. When

applied to economic contexts, it is implicitly assumed that there are some learning

“See special numbers in the Journal of Economic Theory (1992) and Games and Economic Behaviour
(1993)
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and/or imitation models at individual level which lead to this particular dynamics. In
this sense, replicator dynamics is a reduced form of learning and imitation models.
However, replicator dynamics is a very specific model, as the learning and imitation
models which has been shown to lead to this particular dynamics have a very specific
functional form, i.e. they are quite “ad hoc” models (Borgers and Sarin [5] for individual
learning and Schlag [51] for imitation). This specificity prompted several papers which
develop more general dynamics of which replicator dynamics is a special case. The more
relevant generalizations are the monotonicity concept (Samuelson and Zhang [48]) and
the myopic adjustment (Swinkels [53]). A dynamic is monotonic if for pure strategy s
getting higher payoff than strategy s’ then it is true that the growth rate of the share
of the population playing s is higher than the growth rate associated to s’. A process is
myopic if holding the opponents’ play fixed, the player’s utility is not decreasing along
Our work in this thesis differs from these generalizations in one essential aspect.
These papers investigate properties defined over population dynamics, without tracing
back their results to learning rules for individual players. On the contrary, the current
thesis focuses on learning rules and, without imposing any functional form, characterises
classes of learning rules which lead the agent to behave rationally in the long run for

every decision problem.

1.5 Learning and Bounded Rationality

Before we turn to a survey of our results, we wish to take up one further point regarding
the interpretation of learning models in economic theory. Learning models of the type
described above are often accused of being “ad hoc”. This objection will be less forceful
in the context of our own analysis, since we impose fewer restrictions on functional
forms, but in a weakened form it will still apply, since there will be significant exogenous
restrictions on the class of functions that we allow. We wish to argue in the following
that one way of justifying these restrictions is to argue that they reflect the limits of the
decision maker’s abilities to conceptualize his environment, and to give full attention to
the learning problem at hand. In this section, we elaborate this point, first for belief-
based learning models and then for reinforcement learning models. It is important to

discuss this point in some detail since it implicitly underlies much of the work reported
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in this thesis.
Belief-based learning models admit an interpretation in terms of Bayesian learning,.

For example, fictitious play learning model can be interpreted as a Bayesian learning

model when roughly speaking, agents believe that their opponents’ play corresponds

to a sequence of i.i.d. random variables with a fixed but unknown distribution. If the

Bayesian agent perceives the environment as relatively complex in comparison to her

ability to conceptualize it, she can prefer to use a simplification of the environment. If

the simplification is that other agents’ choices are i.i.d. multinomial random variables

and that her prior beliefs over the unknown distribution take the form of a Dirichlet

distribution®, then Bayesian learning would reduce to fictitious play.

Reinforcement learning is harder to justify. In the classical multi-armed bandit

. problem, a fully rational player has infinite memory, holds a subjective prior over payoff
~distributions and choose her actions so as to maximise the expected discounted value
of her return over an infinite period. By using reinforcement rules, we restrict attention
to simpler behaviour rules; specifically we assume that the decision-maker forgets all
information she acquired in any previous period. We could think of it in terms of a
decision-maker who decides that the problem at hand is not important enough so as
‘to pay full attention to it. She then could find easy to use the behavioural habit that
is implicit in reinforcement learning models. An alternative explanation is that there
1is an exogenous limitation that directly affects the agent’s memory capacity. In this

situation, reinforcement learning could be a suitable learning model.

A decision-maker using some reinforcement learning rule can be therefore viewed as

a boundedly rational agent, as he departs from the fully rational paradigm in having
limited memory. Note that the current (possible stochastic) behavioural ”habit” is the
only variable that can provide the decision-maker with information about the past. This
“arises the question whether the memory constraint implicitly assumed in reinforcement

models prevents the decision-maker to achieve optimality. In this thesis, we investigate

the existence of reinforcement rules (bounded rational strategies) which lead the agent

to behave optimally in the long run.

5A random vector p has a Dirichlet distribution with parameter vector a if its density is given by

f(p) = Fafogarpm =t ... p2x~for all p > 0 such that 37, px = 1.
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Chapter 2

Optimality of Learning and

Imitation Rules: An Overview

2.1 Introduction

As has been explained in the first Chapter, the purpose of the current thesis is to
investigate the ability of trial and error learning to lead agents to achieve rationality.
Within the class of trial an error learning models proposed in the literature, we shall
only be concerned with models of reinforcement learning. Furthermore, we shall only
investigate the properties of reinforcement learning models in decision problems under
risk, not in games. The reason for these restrictions is rather pragmatic: We restrict the
theoretical framework in order to make it feasible to answer the first question addressed
in the introduction: “When can rational behaviour be expected?”

Reinforcement models have been useful in explaining learning in a variety of exper-
iments. Erev and Roth have used reinforcement learning theory to explain behaviour
in experiments in which subjects played extensive form games [46] as well as simultane-
ous move games [17]. Mookherjee and Sopher have presented experimental support for
reinforcement learning in Matching Pennies [38] and in other constant sum games [39].
These papers are related to an earlier tradition in psychology based on the mathemati-
cal learning theory initiated by Bush and Mosteller [7] and Estes [18]. Authors working
in this tradition typically used reinforcement learning theory to interpret experimental
data about behaviour in single person decision problems rather than games. The de-

cision problems considered were versions of the multi-armed bandit problem in which
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individuals repeatedly choose between strategies with unknown payoff distributions, ob-
serving at each iteration only the payoff realization. Some relevant experimental work
is surveyed in the second half of Bush and Mosteller’s 1955 book [8]. An important
paper in this literature is Estes and Straughan {19].

The experimental references which we have listed above differ from each other in one
very important respect: Some papers, such as Roth and Erev [46], use reinforcement
learning models to explain experiments in which agents’ behaviour, roughly speaking,

approaches equilibrium.!

By contrast, other papers, such as Estes and Straughan
[19], use reinforcement learning models to explain experiments in which agents’ long
run behaviour is persistently non-rational. In fact, Estes and Straughan [19] use a
reinforcement learning model to explain “probability matching”.

In the current thesis, we are not concerned with evaluating this experimental ev-
idence. Rather, we want to investigate how it can be that the same class of learning
models explains such very diverse findings. One answer to this question is implied by
Borgers and Sarin [5|. There, they show that a model of reinforcement learning due
to Cross [15] is, in the continuous time limit, identical to the replicator dynamics of
evolutionary game theory, and thus leads to long run expected payoff maximisation. A
seemingly innocuous variation of the same model was shown in Bérgers and Sarin [6] to
predict probability matching. The model in Erev and Roth [46] is similar to the model
in [5], whereas the model in Estes and Straughan [19] is similar to the model in [6)].

The most obvious difference between the model in [5] and the model in [6] is that in
[5] it is assumed that all payoffs have a positive, reinforcing effect on the agent, whereas
in [6] it is allowed that some payoffs have a negative effect on the agent, making her
less likely to choose the same action again. However, it turns out that it is not always
the case that it is the sign of payoff effects that determines whether a model predicts
optimization. In fact, in the current thesis we shall give an example of a learning
process in which some payoffs do have a negative effect on the agent, and nevertheless

the agent does learn to make expected payoff maximising choices in the long run.

Therefore, in the current thesis we address the question of which reinforcement

!Here, we are referring to Roth and Erev’s [46] discussion of the market game and the best shot game.
In these two games observed behaviour actually approached a subgame-perfect equilibrium. Roth and
Erev also discuss experiments involving the ultimatum bargaining game. In these experiments observed
behaviour did not approach a subgame-perfect equilibrium. In fact it isn’t clear whether it approached
any Nash equilibrium.
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learning rules will lead the decision maker to play in the long run the expected payoff
maximising strategy in every decision problem? In answering this question, we shall
not impose any functional form on the reinforcement learning models considered. In
this sense, our work takes a different approach from much of the existing work on
reinforcement learning, where the usual practice is to study the performance of very
specific learning models.

Furthermore, we shall also take a different approach by interpreting reinforcement
learning broadly. The usual practice is to consider that the decision maker only receives

information about her own strategy choice and payoff. We shall allow for the possibility

that the decision maker also observes the strategy choice and payoff of some other

agents who are facing the same decision problem. We impose a certain restriction
on the updating rule in order to capture the essence of imitation. This will allow
us to study the properties of simple imitation rules. We study learning and imitation
models together because they share many features. We then investigate which rules lead
the decision-maker to play the expected payoff maximising choice in the long run for
every decision problem and every initial state. Although we do not provide a complete
characterisation, we find a property that is shown to imply long run maximisation. We

furthermore characterise rules which have this property.

2.2 Individual Learning

Individual learning refers to the case of a single decision maker facing a decision problem
under risk. An agent chooses repeatedly among different actions. In each iteration, she
receives some random payoff the distribution of which depends on her action, but not
on time. Payoffs are stochastically.‘ independent between periods. The agent has no
knowledge of the payoff distributions.

The literature has modelled reinforcement learning in two different fashions. It can
be modelled using the set of pure strategies as the state space of the decision maker.
The individual enters each period with a pure strategy which is the strategy she is

currently inclined to play. She plays that strategy, receives a payoff, and then revises
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her strategy. It is possible that this strategy revision is stochastic, but all information
she is carried into the next period is the new pure strategy. These learning rules are
called pure strategy learning rules.

A different model uses the set of all mixed strategies as the state space of the decision
maker. The decision maker enters each period with a probability distribution over
strategies which indicates how likely she is to take any of her actions. She then plays
some pure strategy, receives a payoff, and then updates the probability distribution.
The new distribution only depends on the previous distribution, on the action taken,
and on the payoff received. It does not depend on any other aspect of history. The
new distribution forms the state with which she enters the next period. These learning
rules are called mized strategy learning rules.

For these two classes of learning rules we first investigate which learning rules imply
that the long run probability of the expected payoff maximising actions is one, indepen-
dent of what the true distribution of payoffs is. We call such learning rules mazimising.
We show that no pure strategy learning rule is maximising. Unfortunately, we have not
been able to settle the question of existence of maximising learning rules for the case
that the state space is the set of all mixed strategies.

We then relax the maximisation property and consider a related property called ap-
prorimate mazximisation. It means that the long run probability of the expected payoff
maximising actions can be made arbitrarily close to one, independent of what the true
distribution of payoffs is. It is for this property that the distinction between pure and
mixed strategy rules becomes crucial. We show that no pure strategy rule is approxi-
mately maximising. We then go on to partially characterize the set of approximately
maximising mixed strategy learning rules.

The property of approximate maximisation was suggested by Bérgers and Sarin [5].
They show that Cross’ learning rule tracks in finite time the trajectory of the replicator
equation provided that it moves very slowly. This is true because Cross’ rule implies
that at any point in time the expected change in the state variable of the agent is
given by the replicator equation of evolutionary game theory; as replicator dynamics
maximises expected fitness, an agent who adopts Cross’ rule and adjusts her probability

distribution only slowly, will choose in the long run with very high probability an action
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which maximises expected payoffs. This is true for all true distributions of payoffs.?

In this thesis we define a property called monotonicity and show that monotone rules
are approximately maximising provided that they move very slowly. Furthermore, we
provide a complete characterization of monotone rules. Monotonicity means that the
expected change in the probability of the expected payoff maximising action is positive.
Cross’ rule has this property because the replicator equation, which characterizes the
expected movement in Cross’ rule, has this feature. We show that a rule is monotone
if and only if it is Cross’ rule, whereby payoffs may be subjected to certain linear
transformations. As a consequence, all monotone learning rules are linear in payoff
-note that the Cross’ rule is linear in payoff- and have the feature that their expected
movement is given by some transformation of the replicator dynamics.

As we have seen, it makes a big difference for our results whether one takes the state
space of the decision maker to be the set of pure strategies or the set of mixed strategies.
The intuition is that the state space of the learning rule provides, in our framework, the
only possibility for the decision maker to store - implicitly - information about her past
experiences. The set of all pure strategies is too small to store the relevant information.

By contrast, the set of all mixed strategies is sufficiently rich.

2.3 Individual Imitation

In the following, we shall interpret reinforcement learning in a broader sense than before.
We shall allow the decision maker to adjust her state using additional information. At
each stage she will have the opportunity to observe the strategy choice and the payoff
of some other agents who face the same decision problem. This different setup will
allow us to study the properties of simple imitation rules.

We shall introduce a population of agents who find themselves in the same situation,
i.e. they all are facing an identical decision problem. (Note that these are not the agents
with whom a game will be played.) When studying which imitation rules lead the
decision maker to play rationally, it is obvious that the evolution of the population will

play a crucial role. Therefore, whether or not the decision maker behaves rationally

?In [5], which was written in a game setting, continuous time approximations are only constructed
for finite time horizons. We shall show in this thesis that the result can be extended to an infinite time
horizon for single person decision setting.
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will depend on two factors: (i) her own imitation rule and (ii) the evolution of the
population.

There are therefore many ways in which one can try to assess whether a given
imitation rule is “good”. One might be to ask whether this imitation rule will lead to
good decisions in an arbitrary environment, i.e. in an environment in which the other
agents use arbitrary behaviour or imitation rules. Another might be to ask whether this
imitation rule will lead to good decisions if it is used by everybody in the population.

Here, we shall deal with two cases. Initially, we shall focus on the case that the
decision maker interacts with a population of other individuals whose behaviour is
exogenously given and fixed. This case is our attempt at considering an environment
in which the decision maker does not rely on the evolution of all other agents towards
optimal actions, but in which also the task which the imitation rule has to solve is not
too demanding. Later, we shall then move to an environment in which all population
members use the same imitation rule.

Considering hence first the case in which the behaviour of the surrounding pop-
ulation is given and fixed, we shall impose a certain restriction on the updating rule
in order to capture the essence of imitation. Imitation is the act of copying others’
strategies. In the case of pure strategy reinforcement rules, this concept has a direct
translation: the decision maker’s next period pure strategy will be restricted to be
either the own action or the sampled one. In the case of mixed strategy reinforcement
rules, as the state of the decision maker is a probability distribution over the set of
strategies, imitation can not be defined in such a direct way. We shall assume that
the decision maker only updates the probabilities attached to the actions taken and
sampled.

Having set these restrictions, we develop a similar exercise as in the case of individ-
ual learning, by investigating which imitation rules will lead the decision maker to play
in the long run the expected payoff maximising strategy with probability arbitrarily
close to one, independent of what the true payoff distribution is and regardless of the
given and fixed population behaviour. We show that there are no approximately max-
imising pure strategy imitation rules. For the case of mixed strategy imitation rules, we
characterise the set of monotone imitation rules, showing that its basic feature is the

proportional imitation, i.e. the change of the relevant probabilities is proportional to
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the payoff difference. This implies that the probability of the currently played strategy
is increased if it gets a payoff greater than the sampled strategy’s payoff. This can be
interpreted as a reinforcement effect in which the decision maker considers the sampled
strategy’s payofl as an aspiration level. If the own strategy’s payoff is above this aspi-
ration level, the currently played strategy is reinforced. This feature of the monotone
imitation rules makes it possible to converge to the expected payoff maximising strategy
even in the case that the optimal strategy is absent in the population.

The intuition behind these results parallels the individual learning case. Even
though in this framework the decision maker can observe different strategies’ payoff
in the same round, the pure strategy set is too small to carry enough information from

round to round. However, the mixed strategy state space is sufficiently rich.

2.4 Imitation in Populations

The last chapter of the thesis takes a different approach to assess how “good” an
imitation rule is. We shall consider a finite population of agents all of whom are
facing the same two-strategy decision problem. Each agent is endowed with a pure
strategy imitation rule to adapt her behaviour. Furthermore, each agent is endowed
with a sampling rule, i.e. a probability distribution over the members of the population
which indicates how likely it is that she meets any other member. In each iteration,
after choosing a strategy and receiving a payoff, each agent samples, according to her
sampling rule, other member of the population and observes her strategy and payoff.
With this information, she adapts her behaviour according to her imitation rule.

We shall assess how “good” an imitation rule is by studying the evolution of the
population when all members use this imitation rule. An imitation rule is called maz-
imising if the population will converge in the long run to the expected payoff maximising
strategy for every decision problem and regardless of the initial population distribution.
We show that there are no maximising imitation rules.

The non-existence of maximising imitation rules means that for any fixed imitation
rule, there are decision problems for which the probability of the population ending
up playing the best strategy is strictly less than one. This feature might lead to an

individual dissatisfaction with the performance of that imitation rule. Each individual
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might wonder whether there is room for individual improvement, i.e. whether there is
an alternative imitation rule she could use and which could make her “better off” given
that all other members of the population are using the fixed imitation rule.

To formalize this issue, we shall define an appropriate payoff function. For given
population and fixed imitation rule, the payoff function for any agent using any imita-
tion rule is defined as the time average payoff that the agent receives along the path.
This payoff function will be called the asymptotic payoff. Note that in the definition
of the payoff function it is implicit the assumption that the agent does not discount
the future, i.e. an infinitely patient agent. Although it is a very restrictive assumption,
this will simplify the subsequent analysis. For given population and fixed imitation
rule, we can therefore define the set of imitation rules which are best responses to the
fixed imitation rule. An imitation rule will be called an equilibrium imitation rule if it
belongs to the set of best responses to itself. This means there is no other imitation rule
that an agent might use such that for every decision problem and initial distribution
her asymptotic payoff is at least as good, and for at least one decision problem and one
initial distribution, her asymptotic payoff is greater using the alternative rule.

Unfortunately, in the general framework the characterization of equilibrium rules
has proven to be a major problem. We show that the rule “never imitate” is an
equilibrium rule, though we have not made further progress. We shall then consider
a restricted framework in order to gain further insight. In this new framework there
are two agents and two strategies which yield binary payoffs. We identify a property
which is of relevance to the problem at hand. An imitation rule is unbiased if the
asymptotic payoff to all members of a population when all members use this imitation
rule is closer to the expected payoff of the optimal strategy than to the expected payoff
of the suboptimal strategy. We characterize the set of unbiased rules and show that
biased imitation rules are not equilibrium ones. However we have not been abie to prove
that this property is a sufficient condition for the equilibrium property. We finally show
three examples of unbiased rules which are equilibrium rules: the rules “never imitate”,
“always imitate” and “imitate if better”.

The rest of the thesis is as follows: in the third chapter we introduce the general
framework. In Chapters 4 and 5, we investigate pure and mixed strategy learning

rules respectively. Chapters 6 and 7 consider pure and mixed strategy imitation rules
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respectively. The analysis of equilibrium imitation rules is undertaken in Chapter 8.

Finally, Chapter 9 concludes.
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Chapter 3

Formal Framework

This Chapter lists those ingredients of our model which will be common to all subse-
quent Chapters.

Let W be a finite population (or set) of #W decision makers, with #W > 2. Every
decision maker repeatedly faces the same decision problem. Every decision maker has
to choose from the same finite set of strategies S which has at least two elements.
We assume that every decision maker knows S. We denote by A(S) the set of all
probability distributions over S, and we denote by A(S) the relative interior of A(S).
Each strategy in S has a payoff distribution attached to it. We normalize payoffs to be

between zero and one. This motivates the following definition:

Definition 1 An environment E is a collection (ug)ses of probability measures each
having finite support in the interval (0,1). For given environment E we define for every
seS: = fol xdug, i.e. 74 is the expected payoff associated with strategy s. We denote
by S* the set of expected payoff mazimising strategies, i.e.: S* = {3 € S| 7y > my for
all 8’ € S}.

As every member of the population is facing the same decision problem, a crucial
issue is how payoffs across iterations and across different decision makers are correlated.
Let E be the set of states of Nature. The payoff to decision maker w at a given iteration
is then a function 7, : S X E — (0,1). We shall assume that realizations of the state

of Nature are independent across iterations. This motivates the following definitions:

Definition 2 Common Events Condition: For each iteration n € Ny, the state of

Nature is realized. This state of Nature is common to every decision maker.
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Definition 3 Independent Events Condition: For each n € N, the state of Nature is

independently realized across decision makers.

Let W4 denote the set of individuals belonging to the population who are allowed
to adjust their behaviour. Let WP denote the set W\ W4, Every member of W2 is
programmed to play some pure strategy s € S. Formally speaking, there is a function
C : WP _ S which assigns a strategy to every member of W2, Thus, individual
w' € WP is programmed to play pure strategy C(w').

When available, between stages, every w € W samples another agent from the
population W and observes both the strategy used and the payoff received by the
sampled agent in that stage. For each individual w € W the sampling occurs following
some sampling rule, i.e. some exogenously given probability distribution e, € A(W '\

{w}) where e, (w') is the probability that individual w samples individual w'.
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Chapter 4

Pure Strategy Rules for

Individual Learning

4.1 Introduction

Individual learning refers to a situation in which there is a single decision maker facing
repeatedly a decision problem. In this Chapter, we investigate, without postulating
any specific functional form, which properties characterise reinforcement learning rules
which predict that in the long run the decision maker makes expected payoff maximising
choices.

A decision maker chooses repeatedly among different actions. In each iteration, she
receives some random payoff the distribution of which depends on her action, but not
on time. Payoffs are stochastically independent between periods. The decision-maker
has no knowledge of the underlying payoff distributions.

The reinforcement learning rules to be considered in this Chapter are modeled
as follows: the decision maker enters each period with a pure strategy which is the
strategy which she is currently inclined to play. She plays that strategy, receives some
stochastic payoff and then revises her strategy. It is possible that the strategy revision
is stochastic, but all the information which is carried into the next period is the new
pure strategy. Note that the state space of these learning rules is the set of all pure

strategies. They are therefore named as pure strategy learning rules. Karandikar et al.
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[33] for example, propose a reinforcement learning model of this type.!

A learning rule which makes the decision maker play in the long run the expected
payoff maximising strategy independent of what the underlying true payoff distribution
is, is called mazimising. A learning rule such that the asymptotic probability of choosing
the expected payoff maximising choice is arbitrarily close to 1 is named approzimately
mazimising. We show that no pure strategy learning rule is approximately maximising.

The intuition behind this result is that the state space of the learning rule provides
the only possibility for the decision maker to implicitly store information about his past
experiences. The set of all pure strategies is too small to store all relevant information.

The rest of the Chapter is organised as follows. Section 2 contains the formal
framework and Section 3 states the main definitions. Section 4 shows that approximate

payoff maximisation is impossible to achieve. Finally, Section 5 concludes.
4.2 Formal Framework
This Chapter refers to the case in which the set W4 is a singleton, i.e. WA = {w} and

in which sampling is not allowed. Individual w is referred to as the decision maker.

4.3 Definitions

We begin formally defining learning rules which have the set of all pure strategies as
its state space. In the following definition, and in subsequent definitions, we prefer, in

fact, the neutral expression behaviour rule over the expression learning rule.

Definition 4 A pure strategy behaviour rule B is a function: B : Sx(0,1)xS — [0,1]
such that for all s € S,z € (0,1): Y g B(s,z,5') =1.

The intuitive interpretation of a pure strategy behaviour rule B is this: B(s,z, ¢)
is the probability with which strategy s’ is chosen in iteration n + 1 if strategy s was

chosen in iteration n, and the payoff received was z.

'Karandikar et al. model [33] has, however, in addition an endogenous aspiration level which can
take values in a continuum as a state variable.
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Definition 5 The transition matrix T' corresponding to an environment E and a pure
strategy behaviour rule B is a #S X #S matriz whereby the entry in the row corre-

sponding to strategy s, and the column corresponding to strategy s', is:

1
t,,ar=/0 B(s,z,s')du,.

Definition 6 The behaviour process corresponding to an environment E, a behaviour
rule B, and an initial probability distribution 8y € A(S) is the Markov chain {sp }neN,
with the initial distribution 89 and with the transition matriz T defined in Definition 5.

For every n € Ng we denote by 6, € A(S) the marginal distribution of s,,.
We can now introduce the first property which we analyze in this Chapter:

Definition 7 A pure strategy behaviour rule B is maximising if for every environment

E and every initial distribution & € A(S):
lim 8,(S*)=1.
n—o0
Proposition 1 No pure strategy behaviour rule is mazimising.

This result is almost obvious. Therefore, we do not provide a formal proof. Instead
we briefly sketch the argument. Note first that any rule with B(s,z,s) < 1 for some
s € S and z € (0,1) cannot be maximising. This is because for every s € S and every
z € (0,1) there are environments E in which s is the only expected payoff maximising
action, and s yields payoff z.2 In such environments, if B(s,z,s) were less than one,
the agent would switch away from the expected payoff maximising action with positive
probability, and therefore the asymptotic probability of playing that action could not
be one. But now suppose that B(s,z,s) = 1 for all s € S and = € (0, 15. Then the
decision maker sticks forever with the strategy which she chose initially. Clearly, this

is not maximising.

2Recall that the set of possible payoffs is (0,1). Note that 0 is not included in this set.
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4.4 Approximate Payoff Maximisation

Proposition 1 leads us to seek behaviour rules which are approrimately mazimising.
Roughly speaking, we mean by this behaviour rules for which limy_, o, 8,(S*) is close to
1 in all environments F and for all interior initial distributions §y. More specifically, we
shall ask whether there is a family of behaviour rules, parametrized by some parameter
v, such that in all environments E the asymptotic probability of choosing an optimal
action converges to 1 as v tends to infinity. Thus, by choosing a sufficiently large v the

probability of choosing an optimal action can be made arbitrarily close to 1.

Definition 8 A sequence of pure strategy behaviour rules {B"},eN is approximately
maximising if for every environment E, every initial distribution 6o € A(S) and every
v € N the limit limp,_,o 65,(S*) (where for every n € Ny 6%, is the marginal distribution
of sy if the initial distribution is 8¢ and if the behaviour rule is B” ) exists, and we have:

lim lim 63(S*) =1.

V—00 n— 00

The following proposition states that no pure strategy behaviour rule is approxi-

mately maximising.

Proposition 2 No sequence of pure strategy behaviour rules is approrimately maz-

imising.

Proof of Proposition 2. The proof is indirect. Suppose {B"},en is a sequence of
pure strategy behaviour rules which is approximately maximising.

Step 1: For all s € S and z € (0, 1) there is some 7 € N such that for all v > o:
0 < BY(s,z,s) <1

Proof: (i) We first show that there is some # € N such that v > ¥ implies
BY(s,z,s) > 0. The proof is indirect. Suppose for every ¥ € N there were some
v > ¥ such that BY(s,z,s) = 0. Consider an environment such that p,(z) =1 and, for
some y < z, py(y) =1 for all s’ # s. For every v such that BY(s,z,s) = 0 we have:

on(s) €1 —6%_4(s) for all n € N. Therefore, if 6%(s) converges for n — oo, its limit
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cannot be more than 0.5. We have thus obtained a contradiction to the approximate
maximisation property of {B"},cn.

(if) Next, we show that there is some 7 € N such that v > T implies BY(s,z, s) <
1. The proof is indirect. Suppose for every v there were some v > ¥ such that
B¥(s,z,s) = 1. Consider an environment E such that p,(z) = 1 and, for some y > z,
pg(y) = 1 for all 8 # s. If the decision maker begins with an initial distribution
6o which attaches positive probability to the strategy s, and adopts a behaviour rule
BY such that B¥(s,z,s) = 1, then for all n € N: §3(S\ {s}) < 1 — 6o(s). Hence, if
87(S \ {s}) converges for n — 00, its limit must be less than 1 — §¢(s) < 1. We have
thus obtained a contradiction to the approximate maximisation property {B"},en.

(iii) The result now holds if we take I to be the maximum of the two ¥s referred to
in parts (i) and (ii) of the proof.

Step 2: For any environment E and any initial distribution g € A(S) there exists
some ¥ such that for v > ¥ the behaviour process {s, }nen is an irreducible and aperiodic
Markov chain.

Proof: Consider a given and fixed environment F and initial distribution ég. It
follows immediately from Step 1 that the behaviour process {sn}nen is aperiodic for
sufficiently large v. It therefore only remains to show that it is for sufficiently large v
also irreducible.

We hence have to show there is some 7 such that for v > ¥ the transition matrix
T has the’ property that all states communicate, i.e. for every pair of strategies s,s’
there is some N(s, s') such that the probability of moving from s to s’ in N(s, s') steps
is positive.

The proof is indirect. Suppose there is some pair s, s’ € S such that for every U there
is some v > ¥ such that the probability of moving from s to s’ in any finite number of
steps is zero. Step 1 shows that it must be that s’ # s. Now, for all relevant v and for
allm € N: 67(s') <1—60(s). Hence, if 6%(s') converges for n — oo, its limit will not be
more than 1 — §p(s). Observe that this is true independent of the payoff distribution
attached to s’. In particular, it is true if s’ is the unique expected utility maximising

strategy. Thus, we have obtained a contradiction to the approximate maximisation

property {B"},eN-
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Remark: By standard results in the theory of Markov chains?, Step 2 implies that for
any given environment E there is some € N such that v > ¥ implies that the sequence
{6% }nen converges, and that its limit is a stationary distribution of the transition matrix
TV and is independent of the initial value §p. In the following, we will denote this limit
by 8%.

Step 3: For all 5,5’ € S with s # s’ and for all z,y € (0,1) withy > =:

BY(s,y,s')

=0
v2pp—00 1 — BY(s,z,8')

where  is such that for all v > ¥ we have: BY(s',z,s') < 1.4

Proof: Consider an environment E such that p(y) = 1and py(z) =1forall s’ € S,
§' # s. Choose 7 € N such that Step 1 applies to payoff z and all strategies s’ # s, and
such that Step 2 applies to the environment E. Because 67 is a stationary distribution

of T%, I have for all s’ # s and v > :

8 (s') = 6%, (s") B (s, z,s') + 6%, (s)B"(s,y,5') + Z &Y (s")B*(s",z,s)

83,8

= 83,(8') = 65 (5') B (8', 2, 8') + 65, (s) B* (5,9, 5')

8(s) o _ B(5,3,9)

et 8% (s) — 1-Bv(s,z,4)

The approximate maximisation property of the sequence {B"},cn implies that the
left hand side of the above inequality tends to zero as ¥ — oo. Then also the right
hand side of the above inequality must tend to zero as v — oo.

Step 4: Suppose z,y,z € (0,1) and T < z < y. Consider an environment E such
that py(z) > 0 and p,(y) > 0 for some s € S, and py(z) =1 for all s € S with §' # s.
Then

lim 6%,(s)=0

v20,v—00

where v is such that for » > U Step 2 applies, and hence the distribution 6%, is well-

defined.

3See, for example, p.214 of Grimmett and Stirzaker [22].
*Recall that by Step 1 such a I exists.
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Proof; Choose 7 € N such that Step 1 applies to payoff z and strategy s, and such

that Step 2 applies to the environment E. For any v > ¥ the distribution &% is a

stationary distribution of the transition matrix 7%. This implies:

8%5(8) = 85 (8)(14(z) B” (5,7, 8) + s (¥) B* (5,9, 8)) + Y 6%() B (5, 2, )
s'#s
Zs'#s 6:o(sl)BV(3,1 z, 3)
ps(z)(1 — BY(s,y,5)) + s (y)(1 — B* (s, x, 5))
6%.(s) _ Zs’;és %By(sly z,s)
1-65(s)  pe(x)(1 = B¥(s,9,5)) + ps(y)(1 — B*(s,,5))

60 (9) 1 b(s’) _BY(¢,2,9)
T=8%(s) = m@) f;, 1-65,(s)1 = B¥(s,,5)

&8 (s)=

=

=

8%.(s) 1 B¥(¢, z,s)
=@ S i) 22 1= B¥(e,5,9)

By Step 3 for every s’ # s:

lim B¥(d,z,s)
v2v,v—00 1 — BY(s,zx, s) -
This implies:
vl
lim B¥(s',z,s) 0

— BV -
v2V,v—00 v e 1-B (S, z, 8)

Thus we can deduce:
650(8)

il T (s) 0

This implies:
lim 65,(s)=0

v2v,v—00

Step 5: The sequence {B"},en is not approximately maximising.

Proof: Consider an environment F as described in Step 4 with the additional prop-
erty that s maximises expected payoff. The result in Step 4 applies in this case. Hence
limy>p,p— 00 8o (8) = 0. This contradicts the approximate maximisation property of the
sequence {B"},en. B

Proposition 2 shows that no pure strategy behaviour rule can achieve approximate

payoff maximisation. The intuition behind this result is that the memory store provided
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by a pure strategy state space is too small to deal with a large variety of environments.

4.5 Conclusion

The main result of this Chapter is the non-existence of approximately boundedly ratio-
nal strategies for multi-armed bandit problems within the framework of pure strategy
reinforcement rules. These behaviour rules have no memory beyond what is encoded in
the state of the decision maker. In fact, the decision maker’s state space provides the
only possibility for the decision-maker to store information about her past experiences.
But the memory store provided by a pure strategy state space is too small to deal with
a large variety of environments, even if we ask only for approrimate maximisation.

A number of papers in the economics literature have investigated pure strategy
reinforcement rules, although mainly using aspiration-based models. Once the agent has
played an action and received a payoff, she switches with positive probability from the
action played if the achieved payoff falls below the aspiration level. Bendor, Mookherjee
and Ray (3] and Karandikar, Mookherjee, Ray and Vega-Redondo [33] use aspiration-
based models to study the behaviour in two-players games. In (3], the aspiration level
is kept fixed whereas in [33] it evolves on the basis of the agent’s own experienced
payoffs. Other papers like Palomino and Vega-Redondo [44] apply these models to
a large-population context with the common aspiration level evolving on the basis of

social experience.
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Chapter 5

Mixed Strategy Rules for

Individual Learning

5.1 Introduction

Individual learning refers to a situation in which there is a single decision maker facing
repeatedly a decision problem. We investigate, without postulating any specific func-
tional form, which properties characterise reinforcement learning rules which predict
that in the long run the decision maker makes expected payoff maximising choices.

A decision maker chooses repeatedly among different actions. In each iteration, she
receives some random payoff the distribution of which depends on her action, but not
on time. Payoffs are stochastically independent between periods. The decision maker
has no knowledge of the payoff distributions.

In this Chapter we model reinforcement learning in a different fashion from the
previous Chapter, i.e. at any point in time the decision maker is described by a prob-
ability distribution over actions which indicates how likely she is to take any of her
actions. The decision maker then takes a randomly determined action, receives a pay-
off, and then updates the probability distribution. The new distribution only depends
on the previous distribution, on the action taken, and on the payoff received. It does
not depend on any other aspect of history. Reinforcement learning rules are therefore
formulated using the set of all mixed strategies as the state space.

An example of a simple rule of this kind is the one considered by Cross [15] to

which we referred in Chapter 1. Suppose payoffs are normalized between zero and one.
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Then Cross’ rule states that in each iteration the updated probability distribution is
simply a weighted average of the previous probability distribution and the unit vector
placing all probability on the action just taken. The weight of the unit vector equals
the payoff. Note that this rule has the feature that all payoffs have a reinforcing, and
hence positive, effect on the probability of the action which the decision maker chose.

A simple calculation shows that Cross’ rule implies that at any point in time the
expected change in the state variable of the decision maker is given by the replicator
equation of evolutionary game theory if this equation is specialized to the case of a
single person decision problem. In Borgers and Sarin [5] it was shown that this im-
plies that Cross’ learning rule tracks the trajectory of the replicator equation provided
that it moves very slowly. Because evolution, as modelled by the replicator equation,
maximises expected fitness, an agent who adopts Cross’ learning rule and adjusts her
probability distribution only slowly, will choose in the long run with very high proba-
bility an action which maximises expected payoffs. This is true for all true distributions
of payoffs.!

In this Chapter we investigate which other reinforcement learning rules share with
the slow moving Cross rule the feature that the long run probability of expected payoff
maximising actions is close to one independent of what the true distribution of payoffs
is. We call such rules approzimately mazimising. We do not obtain a complete charac-
terization of such rules, but we define a property of learning rules called monotonicity
which is of immediate relevance to our problem, and we obtain a complete characteri-
zation of monotone learning rules.

Monotonicity means that the expected change in the probability of the expected
payoff maximising action is positive. Cross’ rule has this property because the replicator
equation, which characterizes the expected movement in Cross’ rule, has this feature.
Monotonicity matters because, as we show in this Chapter, all monotone learning rules
are approximately maximising, provided that they move slowly.

We will show that a rule is monotone if and only if it is Cross’ rule, whereby
payoffs may be subjected to certain linear transformations. As a consequence, all

monotone learning rules have the feature that their expected movement is given by

Un [5], which was written in a game setting, continuous time approximations are only constructed
for finite time horizons. We shall show in this Chapter for the single person decision setting that the
result can be extended to an infinite time horizon.
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some transformation of the replicator dynamics.

The rest of the Chapter is organized as follows. Section 2 contains the formal
framework. Section 3 sets up the framework for mixed strategy learning rules. Section
4 introduces the monotonicity property and its implications. Section 5 provides a
characterization of monotone learning rules. Section 6 contains the proof of the main
proposition of the Chapter: the monotonicity characterization.. And finally, Section 7

concludes.

5.2 Formal Framework

This chapter refers to the case in which the set W4 is a singleton, i.e. WA = {w} and

in which sampling is not allowed. Individual w is referred to as the decision maker.

5.3 Definitions

We begin formally defining learning rules which have the set of all mixed strategies as
its state space. In the following definition, and in subsequent definitions, we prefer, in

fact, the neutral expression behaviour rule over the expression learning rule.

Definition 9 A mixed strategy behaviour rule B is a function: B : A(S)xSx(0,1) —
A(S).2

The intuitive interpretation of a mixed strategy behaviour rule B is this: At each
iteration n the decision maker’s behaviour is described by a probability distribution
on € A(S) which specifies for each pure strategy s how likely it is that the decision
maker chooses s at iteration n. We shall also refer to o, as the state of the decision
maker at iteration n. The distribution B(o,,s,z) is then the state of the decision
maker at iteration n + 1 if her state at iteration n was o, the pure strategy which she
chose at iteration n was s, and the payoff which she received was z. For every s’ € §
we denote by B(op,s,z)(s') the probability which B(o,, s, z) assigns to s'.

Throughout this Chapter we shall focus on behaviour rules which satisfy the fol-

lowing assumption:

2Note that we use, for simplicity, the same symbel B as in the previous Chapter to denote mixed
strategy behaviour rules.
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Assumption 1. For any s € S the mized strategy behaviour rule B is continuously
differentiable in (op, ) and the derivative of B with respect to (o, z) is bounded from
above and from below.

This assumption allows us in Section 4 to appeal to well-known theorems regarding
the approximation of slow moving stochastic processes by the solution of deterministic
differential equations.

We denote by B(A(S)) the set of all Borel subsets of A(S).

Definition 10 The stochastic kernel K corresponding to an environment E and a

mized strategy behaviour rule B is a function K : A(S) x B(A(S)) — [0,1] such that

K(o,Q) = Z () - ps(z)

(s,z)e{s€S,zc(0,1)| B(o,s,x)EN}

Jor every o € A(S) and Q € B(A(S)).

Intuitively, the stochastic kernel is the analog of a transition matrix for a Markov

process with continuum size state space.

Definition 11 The behaviour process corresponding to an environment E, a mized
strategy behaviour rule B, and an initial state oo € A(S) is the Markov process
{on}nem, with the initial distribution which assigns probability 1 to oo, and with the

stochastic kernel K described in Definition 10.

Definition 12 A mired strategy behaviour rule B is maximising if for every environ-
ment E and every initial state oo € A(S) the probability of the event “on(S*) — 17 is
1.

We have not been able to settle the following, intriguing question:
Open Question Do mized strategy behaviour rules which are maximising exist?
Although we have to leave this question unanswered, we do have interesting results
concerning a class of approrimately mazimising behaviour rules. Here, the concept of

approximate maximisation is defined in the same way as in Chapter 4.

Definition 13 A sequence of mized strategy behaviour rules {B"},epv is approxi-

mately maximising if for every environment E and every initial state oo € A(S) the
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probability of the event “o¥%(S*) — 1” converges to 1 as v — oo. Here, {0} }nem, de-

notes the behaviour process corresponding to the behaviour rule BY and the initial state

9.

5.4 Monotone Behaviour Rules

For any mixed strategy behaviour rule B and environment E, we define a function f
which assigns to every possible state of the decision maker ¢, and every pure strategy s,
the expected change in the probability attached to s if the current state is . Formally,
f : A(S) x S — R is defined by:

1
fo,8) =3 os) / B(o,s,2)(s) — o(s)du
s'es 0
for all ¢ € A(S) and s € S. For § C S, we define
f(e,8) = Zf(a, s).
se§

Finally, we denote by f(o) the vector:

f(oe) ={f(o,5)}ses-
Definition 14 A mized strategy behaviour rule B is called monotone if
(1) o € A(S), s € S and z € (0,1) imply B(o, s,z) € A(S)
(2) for all environments E with S* # S and all states o € A(S): f(s,5*) > 0.

Condition (1) guarantees that the behaviour process stays in the interior of the
mixed strategy simplex provided that it starts in the interior. This makes it easier for
us to appeal to continuous time approximations later in this Section. The main point is
condition (2). It is this condition which motivates the label monotonicity. It says that,
in expected terms, the decision maker will approach the expected payoff maximising
choice in a monotonically increasing way.

In the following, we shall simplify terminology, and we shall call monotone mixed

strategy behaviour rules simply “monotone behaviour rules”. In the remainder of this
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Section we present some propositions which motivate our interest in monotone behav-

iour rules,

Proposition 3 Suppose that B is a monotone behaviour rule, and that E is an envi-

ronment. Then for any initial state oo € A(S) the event
“on(S*) = 0 or o,(S*) - 17

has probability 1.

Proof of Proposition 3. By the definition of monotone behaviour rules the stochas-
tic process {on(S*)}neN, is a submartingale which is bounded from below by 0 and
from above by 1. Therefore, by the Martingale Convergence Theorem (Grimmett and
Stirzaker [22], p. 454), {on(S*)}nen, converges almost surely to a limit random variable
Ooo-

It remains to show that 0,,(S*) = 0 or 1 with probability 1. This follows if we can
show that for every pair o, € (0,1) with a < 8 the probability of o,(S*) € [a, f]
is zero. Let a,bsatisfy: 0 <a<a < <b< 1 Foreveryn € Nand n > 0 let &}
denote the event “o,(S*) € [a,b] and | op(S*) — 0n-1(S*) |< n for all n > 7", Clearly,
for every 7 > 0 the event o € [a, (] is contained in the event UﬁeNQ:’T, and therefore
it suffices to show that for some 7 > 0 the probability of Uzen®3 is zero. This follows
if we show that for some 17 > 0 the probability of ® is zero for every 7 € N.

Fix 7. For every n > 7t we denote by V3, the event “,(S*) € [a,}] and | 02 (S*) —
on-1(S*) |< n”. Write Pr(¥3) for the probability of ¥l and write Pr(¥] , | ¥3) for
the probability of ¥} +1 conditional on ¥;l. Then the probability of @) can be written
as: Pr(¥}) - Pr(¥1,, | ¥3) - Pr(¥1,, | ¥2,,) - Pr(¥2,5 | ¥7,,) - .... Suppose we
can show that there is some ¢ with 0 < ¢ < 1such that for all n € N the conditional
probability Pr(¥}, , | ¥3) is bounded from above by ¢. Then the above infinite product
converges to zero, and therefore the proof is complete.

Consider the expected value of 0,41(S*) — 0,(S*) conditional on ¥j. This is
bounded from below by £ = mingca(s) and o(5*)efas) f(0, S*). Because B is monotone,
€ > 0. Now consider the probability that on11(S*) — 04(S*) < §, conditional on W3,

Intuitively, for the ezpected change to be at least £, the probability that the actual
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change is less than gmust not be too large. In fact, a trivial calculation shows that it
cannot be more than 5—&

Now set 7 = % Then the preceding paragraph implies that Pr(¥} ., | ¥3) is
bounded from above by 75_5 Thus we have found a uniform upper bound for Pr(¥] 11 |
U7) which is less than one, and the proof is complete. B

This result is similar to Proposition 2 in Bérgers and Sarin [5]. Borgers and Sarin’s
result refers, however, only to one special example of a monotone behaviour rule, namely
Cross’ rule which is Example 1 in the next Section. Bérgers and Sarin prove their result
using Theorem 2.3 in Norman [41] which applies to a larger class of learning models.
However, Norman’s result does not seem to apply in our context, and the proof of
Proposition 3 does not rely on Norman’s result, and is different from his proof.

For given behaviour rule B and given environment E we define a function g which
assigns to every state gg € A(S) the probability g(op) of the event ,(S*) — 1 if the

initial state is oy.

Proposition 4 Suppose that B is a monotone behaviour rule, and that E is an envi-

ronment such that S # S*. Then, for any og € A(S), g(oo) > 0o(S*).

Proof of Proposition 4. Because B is monotone, the unconditional expected values
satisfy: E(on(S*)) < E(on+1(S*)) for all n € Ng. Hence: limy,_, 00 E(on(S*)) > 00(S*).
Proposition 3 implies: limp_,oc E(0%(S*)) = g(oo). Thus, we can conclude: g(o¢) >
oo(S*). B

This proposition describes a very weak, but certainly desirable property of monotone
behaviour rules: in all non-trivial environments the probability with which the deci-
sion maker ends up playing an expected payoff maximising strategy is larger than the
probability with which the decision maker played some such strategy initially.

Stronger results can be proved for monotone behaviour rules which move in small
steps. We shall present two propositions which apply to this case. For any given
monotone behaviour rule B we define for every € € (0,1) a new behaviour rule B* by
setting

B#(o,s,z) — 0 = ¢(B(0, s,z) — 0).

Intuitively, B¢ describes a behaviour process which moves into the same direction as

B, but at speed e. We are interested in limit properties of the behaviour process
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corresponding to B® for fixed environment, and fixed initial state, where the limit
which we wish to take is: £ — 0.

For our first result we introduce a continuous time variable ¢ > 0, and we adapt the
behaviour process introduced in Definition 11 so that it is a continuous time behaviour
process. If the behaviour rule is B®, we assume that the amount of “real time” which
passes between two iterations of the decision problem equals €. In the time interval
which passes between two iterations of the decision problem the state of the decision

maker remains constant. This motivates the following definition:

Definition 15 The continuous time behaviour process corresponding to an environ-
ment E, a mized strategy behaviour rule B, and an initial state oo € A(S) is the
stochastic process {6§}:>0 whose initial distribution assigns probability 1 to oo, and
which satisfies for any t > 0:3

Gt = oy
where {o% }eN, 15 the (discrete time) behaviour process corresponding to BE.
n 1]

This definition of the continuous time behaviour process has the following desirable
feature. If one investigates the behaviour process in the case that ¢ is close to zero, but
fix some time interval [0, ¢], then, as ¢ is reduced, the number of iterations over which
we keep track of the decision maker’s behaviour is correspondingly increased. If one
didn’t increase the number of iterations, but instead kept it fixed, then, if € were close
to zero, almost no change in the decision maker’s behaviour would be observed.

To characterise the limit as € — 0 we introduce a deterministic dynamic process
which starts in g, and which moves into the direction of the ezxpected movement of B®.
Formally, we define for the behaviour process introduced in Definition 15 a correspond-
ing deterministic continuous time process {6¢}:>, by setting 69 = o9, and, for every
t>0,6;= &ffl if ﬁ is not an integer, and 6§ = &&]_1 + f“"(oﬁ]_l) otherwise. Here, f*

is the function that describes the expected movement of the behaviour rule B€.

Proposition 5 Suppose that B is a monotone behaviour rule, that E is an environ-

ment, and that g € A(S) Then for anyt >0, § >0 and p € [0,1) there is an& > 0

3For z € R we denote by [z] the largest integer smaller or equal to z.
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such that € < & implies that the probability of the event

[13 ~& — ~E < e
fax |57 — 67| < 6

is at least p.

This proposition shows that over any finite time horizon the stochastic behaviour
process {&% }+>0 stays with high probability close to the deterministic process {%}:+>o0,
provided that e is close to zero. Standard results in numerical mathematics show
moreover that over any finite time horizon the deterministic process {6¢ }+>0 stays close
to the solution of the differential equation

de

E = f(6t)v

provided that ¢ is close to zero.* Thus we can conclude that over finite time intervals
and for small € the solution of the differential equation constitutes a good approximation
to the behaviour process.

We omit the proof of Proposition 5. The result is very closely related to Proposition
1 in Borgers and Sarin [5). Boérgers and Sarin’s result applies only to the special case
of Cross’ rule. However, the general case is not different. In Brgers and Sarin, but
also in general, the result can be proved using Theorem 1.1 in Chapter 8 of Norman
[42]. A technical point is that Norman’s result applies only to particular points in time,
t, whereas in Proposition 5 we refer to a time interval [0,¢]. The extension to time
intervals can be derived along the lines indicated in Corradi and Sarin [14].

Notice that the deterministic process to which Proposition 5 refers has the property:
s ~E( Q¥ __
tlirgo o:(87) =1

provided that the initial state is interior. Thus, Proposition 5 comes very close to
asserting that for small £ the behaviour rule B¢ is approximately maximising. However,
Proposition 5 considers only finite time intervals [0,¢]. Therefore, we provide a further

result which concerns the asymptotics for t — oo of the decision maker’s behaviour.

4See, for example, Theorem 203A in Butcher [9].
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Proposition 6 Suppose that B is a monotone behaviour rule, and that F is an envi-

ronment. Then for all oo € A(S):
lim g*(0) = 1.

Here, the function g° assigns to every initial state oo the probability of the event

“0t(S*) — 1” if the behaviour rule is B®.

Proof of Proposition 6. Consider a given and fixed initial state og € A(S). Recall
that this implies: lim¢—,o0 65(S*) = 1. Therefore for every § > 0 there will be a ¢t > 0
such that 65(S*) > 1 — 6. By Proposition 5 there will then be for every § > 0 and
p€[0,1) at > 0 and an € > 0 such that ¢ < & implies that the probability of the
event “G5(S*) > 1—6" is at least p. Now recall from Proposition 4 that, conditional on
“G5(S*) = 1 — &” the probability of “G; — 1” is at least 1 — 8. Thus we can conclude
that for every § > 0 and p € [0,1) there will be an > 0 such that ¢ < & implies that

the probability of the event “Gf — 1” is at least p(1 — é). This implies the claim. B

5.5 Characterisation of Monotone Behaviour Rules

In this Section we characterise all monotone behaviour rules. First, we provide an
example. Then we show that all monotone behaviour rules share certain features of

this example.

Example 1 (Cross [15].) For all o € A(S), s,s' € S with s # s/, and = € (0,1):
B(o,s,z)(s) = o(s) + (1 — o(s))z

B(o,s,z)(s) = o(s) — o(s)z

Notice that this behaviour rule has the somewhat counterintuitive feature that the
decision maker always increases the probability of the action which he actually played,

even if the payoff was very low.
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It is obvious that Cross’ rule satisfies condition (1) in Definition 14. The expected

movement for Cross’ behaviour rule is given by:

f(oy8) = a(s)lms = Y _ (o(s) )]
s'es
for all o € A(S) and all s € S. Notice that the expression on the right hand side
appears also on the right hand side of the replicator equation of evolutionary game
theory. It is clear from this expression that Cross’ rule has the property required by
part (2) of Definitign 14.

The next result shows that a behaviour rule is monotone if and only if the decision
maker first submits her payoff to a linear and increasing transformation (where the
coeflicients may depend on the current state of the decision maker, on the strategy
which she has played, and on the strategy the probability of which she is adjusting),

and then applies Cross’ rule:

Proposition 7 A mized strategy behaviour rule B is monotone if and only if there are
functions A : A(S) x S xS — R and B : A(S) x S x § — Rsq such that for every
(0,s,2) € A(S) x S x (0,1):

(1) B(o,s,z)(s) =0o(s) +(1 — a(s))(A(a,s, s) + B(a, s,s)z:)
(2) B(o,d,z)(s) =0o(s) —o(s) (A(a, ¢',s)+ B(o, s, s)a:) for all & # s
and, for every o € A(S) and s € S:

(3) A(o,s5,8) = yeg0(s)A(o, 5, s)
(4) B(a,s,3) = Zs'es 0‘(3')3(0’, s’vs)

Conditions (1) and (2) in Proposition 7 show that all monotone rules are like Cross’
rule with linearly transformed payoffs. Conditions (3) and (4) place an unbiasedness
condition on the coefficients of the linear payoff transformation. They say that the
coefficients have to be such that expected motion is zero whenever all strategies yield
the same expected payoff. The proof of Proposition 7 shows why this condition is a

necessary condition for monotonicity, and why (3) and (4) ensure that it is met.
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The following remark shows that the formula for the expected movement of monotone
behaviour rules has the same structure as the formula for the expected movement of
Cross’ rule. Of course, allowance must be made for the fact that payoffs may be sub-
mitted to linear increasing transformations. But, once this is taken care of, expected
movement of any monotone behaviour rule is the same as the movement of evolution-
ary replicator dynamics. By Proposition 6 this implies in particular that slow moving
monotone behaviour rules will stay with high probability close to the deterministic

trajectory of replicator dynamics.

Remark 1 Let B be a monotone behaviour rule, and let E be an environment. Then
for every o € A(S) and every s € S the expected movement of the probability of s is
given by:

f(o,8) = a(s)[B(o,s,s)ms — Z(a(s')B(a, s, 8)me)]

s'es
We conclude this Section with two further examples of monotone behaviour rules.
The proofs of monotonicity for these two behaviour rules are straightforward and there-

fore omitted.

Example 2 Let any a with 0 < a < 1 be given. Using the notation of Proposition 7

we can then define a monotone behaviour rule by setting for all o € A(S), 8,8 € S with

s#s':

Ao, s,5) = =a(s) Y_[(o(s)*(1 - o(s))a

8'#£s

B(o,s,5) = +0(s) ) _[(o(s)*(1 ~ o(s")]
8'#s

A(o,5',8) = (1 = o(')(1 - o(s))(s') o (s)x
B(o,s',s) = +(1 = o(s'))(1 - o(s))o(s")o(s)

According to this behaviour rule, if strategy s was played in iteration n, the decision
maker increases (resp. decreases) in period n + 1 the probability assigned to s if the
payoff z which the decision maker received in iteration n was above (resp. below) a.

Intuitively, a thus plays the role of an “aspiration level.” If the probability assigned
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to s is increased (resp. decreased), the probability of all other strategies is decreased

(resp. increased).

Remark 2 An alternative model of reinforcement learning with an aspiration level was
investigated in Borgers and Sarin [6]. The model of that paper postulates that a payoff
which is an amount of T below the aspiration level leads to the probability of the action
Jjust played to be multiplied by = and all other probabilities to be increased proportionally.
If the payoff is above the aspiration level, then the Cross rule is applied.

This model appears plausible, however, it fails to satisfy conditions (8) and (4) of
Proposition 7. These conditions ensure that expected movement in probabilities is zero
when all actions have identical expected payoffs. If the above rule is applied, and some
particular action has probability close to one, and has a positive probability of receiving
negative payoff, the expected change in this actions probability is negative, independent

of the expected payoff of all other actions.

Example 3 Suppose that S = {1,2,...,#S}. For any given strategy s € S we define
two strategies s @ 1 and s © 1 both of which are also contained in S. In general,
s®l=s+1and s©1=s— 1. But there are two cases in which this is not well-
defined, and in these cases we set:#S @1 =1, and 1 ® 1 = #S. Using the notation of
Proposition 7 we can then define a monotone behaviour rule by setting for all o € A(S)

and s € S:

A(o,s,s®1) = H o(s')

'#£s,301

B(o,s,s®1)=1- A(o,s,sD1)

Afo,s,s01) = — H a(s')

s'#s,501
B(o,s,s01) =1+ A(r,s,s01)
and, fors' #s01,s®1:
A(o,s,8)=0
B(o,s,s') =1
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Hence, if strategy s is played in iteration n, the probability of this action is increased
in the same way as it is increased in Cross’ behaviour rule. The probability of strategy
8 © 1, however, is reduced by more than it would be the case in Cross’ rule, and the
probability of strategy s @1 is reduced by less than in Cross’ rule. In fact, if the payoff
x was very low, the probability of s @ 1 may be increased rather than decreased. The
probability Qf actions s’ ¢ {s©1,s,s®1} is reduced in the same way as in Cross’ rule.
A behaviour rule of this type might capture the intuitive idea that strategy s®1 is “the
opposite” of s, whereas strategy s © 1 is “similar” to s. Notice, however, that these

relations are not transitive in the example.

5.6 Proof of Proposition 7

To see that every behaviour rule which has the properties listed in Proposition 7 is
monotone note first that condition (1) in the definition of monotonicity is trivially
satisfied. Moreover, as noted in Remark 1, for every o € A(S) and every s € S the

expected movement of the probability of s is given by:

f(o,8) =o(s)[B(o, s, 5)ms — 2(0(3’)3(‘7’ s, 8)my)]

s'eS

Using condition (4) in Proposition 7 we can re-write this as:

f(o,5)=0(s) Y _(o(s)Blo, s, 5)(ms — 7))
s'#s

If 7y > g for all ' # s, this is non-negative, and if the inequality is strict for some s’
then this expression is positive. This implies that B is monotone.

In the remainder of the proof we consider some given monotone behaviour rule B,
and we show tﬁat B has to have the properties listed in Proposition 7. We proceed in
five steps.

Step 1: Consider an environment in which S* = S. Then for every o € A(S) and
every s € S: f(o,s) =0.

Proof: Suppose there were an environment with S* = S, a ¢ € A(S), and an

s € S such that f(o,s) # 0. Then there has to be some s € S such that f(o,s) < 0.
Now suppose that we change payoffs slightly, so that s becomes the unique expected
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payoff maximising action. Because of the continuity of the behaviour rule, the expected
movement in the probability of s will remain negative, contradicting monotonicity.

Step 2: There are functions A:A(S)xSxS —Rand B: A(S) x 8 xS — R such
that for every (o, s,z) € A(S) x § x (0,1)

(1) B(o,s,x)(s) = A(o,s,s) + B(o, s, s)x
(2) B(o,s,z)(s) = A(o,s,s") — B(o,s,8)x

Proof: Let a,b,c € (0,1), and suppose a < b < ¢. Let 5 € S, and consider two
environments, E and E, both of which have the property that all strategies have the
same expected payoff, i.e. in both environments S* = S. Suppose also that the payoff
distributions of any strategy s € S with s # § is the same in E and in E. Finally,
suppose that in environment E strategy s yields payoff a with probability p and payoff
¢ with probability 1 — p, whereas in environment E strategy § yields payoff b with

c—b
c—a

certainty. Here, p is given by: p = . This ensures that the expected payoff of § is

the same in the two environments.
Denote by f(o,s) (resp. f (¢,8)) the expected change in the probability of any
strategy s € S in the environment E (resp. E). Step 1 implies for all s € S:

f(o,8) = f(o,8) =0=>
f(cr,s) —f(U,S) =0
pB(,5,a)(s) + (1 - p)B(,5,)(s) = B(c,5,5)(s)
Replacing p by ffg and re-arranging yields:
(c—a)(B(0,5,b)(s) — B(0,5,a)(s)) = (b — a)(B(a,3, c)(s) — B(0,5,a)(s))
This implies that either
B(0,5,a)(s) = B(e,5,b)(s) = B(a,5,6)(s)

B(0,5,b)(s) — B(o,5,a)(s) _b-a
B(o,s,¢)(s) — B(0,5,a)(s) c—a
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As this must be true for all a,b, ¢ with a < b < ¢, it follows that B(o, 3, z)(s) must be
linear in z, as asserted.

Step 3: For every o € A(S) and all 5,5’ € S:
B(o,s,s') >0

Proof: Consider any o € A(S). We prove the claim first for the case s # &. The
proof is indirect. Suppose there were s,s' € S with s # s' such that B(o,s,s') < 0.
Consider an environment E such that pg(z) =1, u,(z — ) =1 and pg(x —€) =1 for
all s” # s,s'. Suppose 8§, > 0. Then:

flo,s') = a(s’)(ﬂ(a, s &)+ Ig’(a, §,d)x)
+0’(8)(A(0’, S, 3’) - B~(Ga 8, 3,)(3" - 6))

+ Z o(s")(A(o,s",s') — B(o,s",s')(x — €))

8''#s,8’'
—a(s')
= o(¢)(A(o,s,s) +B(o,s,s)z)
+Y " 0(3)(A(0,5,8') — B(0,5,5')z)

S#s

—~a(s')

+o(s)B(c,s,5')6 + Z o(s")B(o,s",¢')e

P

By Step 1, the first three lines of this sum add up to zero. Therefore:

f(o,s') =0(s)B(o,,8)6+ Y o(s")B(0,s",5)e

a''#£s,s'

If B(o,s,s') <0, then this term becomes negative for sufficiently small €, contradicting
monotonicity.
It remains to prove the claim for the case s = s'. Since for every (o, s,z) € A(S) x

S x (0,1) B(e, s,x) is a probability vector, we must have:

Y B(o,s,z)(s) =1

s'es
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A(c,s,s) + B(o, s, s)z + Z A(o,s,s') — Z B(o,s,s)z =1

s'#s s'eS

This can be true for every z € (0,1) only if:

B(o,s,s) — Z B(o,s,s") =0

a'#s
B(o,s,s) = Z B(o,s,s)
8'#s
We have already shown that all the terms on the right hand side are positive. Therefore,
the left hand side has to be positive as well.
Step 4: For every o € A(S)and s € S:

(1) Tyes0(s)A(a,s',8) = a(s)
(2) Ty zs0(s)B(0,,5) = a(s)Blo, s, 5)
Proof: Consider an environment E such that all actions give the same, deterministic

payoff, i.e. forsome z: pu,(x) =1foralls € S. By Step 1, forevery s € Sand o € A(S),
f(o,s) =0. By Step 2:

f(o,s) = Z o(s)A(o,s',s) — o(s) + z[o(s)B(a, s, s) — Z o(s")B(o,s',s)] =0

s'es 8'#s

This can be true for all z only if Step 4 is true.
Step 5: To complete the proof we define the functions A and B by setting for all
o€ A(S) and 5,5’ € S with s # 5"

A(U’ 5, S) - (T(S)

Ao, s,5) = =22 =
A(o, o, 5) = 2. —;(15;,, o, 5)
B(o,s,5) = ?_(Z:Ts))
B(o,s',s) = B(o,s',s)

a(s)

By Step 3 B(o,s,s) > 0 and B(o, s, s') > 0. Step 2 implies that with these definitions

58



A and B satisfy conditions (1) and (2) of Proposition 7. Finally, Step 4 implies that .4
and B also satisfy conditions (3) and (4) of Proposition 7. B

5.7 Conclusion

This Chapter has investigated the existence of mixed strategy reinforcement learning

rules which are approximately rational strategies for multi-armed bandit problems.
- Although the goal was the characterisation of all learning rules that are approximately
maximising, i.e. rules that lead the decision-maker to play in the long run the expected
payoff maximising choice with probability arbitrarily close to one, the complexity of the
- problem has prevented us from fulfilling it. However, we have defined a property called
- monotonicity and shown that monotone behaviour rules are approximately maximising.
- Monotonicity means that the expected change in the probability of the expected payoff
maximising action is always positive for every state of the decision-maker and evefy
decision problem. We have characterised all monotone behaviour rules, showing that
a rule is monotone if and only if it is Cross’ rule, whereby payoffs may be subjected
to certain linear transformation. Furthermore we have shown that there is a close link
between monotonicity and replicator dynamics, as monotone rules keep track of the
replicator equation as long as the learning is slow.

The continuous differentiability assumption has played an important role as it has
allowed us to approximate slow moving stochastic processes by the solution of deter-
ministic differential equations. Beside this technical use, it has restricted the extent to
which the decision maker can use her state space as a device for encoding information
about her past payoff experiences. The decision maker could achieve approximate max-
imisation by keeping a record of her payoff experiences by manipulating appropriately
those digits in the decimal expansion of her strategy which are far behind the deci-
mal point. The earlier digits, which are more relevant to the actual behaviour, could
then be used to induce initially an appropriate amount of experimentation, and later
a choice which maximises the observed average payoff. But this sort of rules would
not been continuous and therefore have been rule out. A formal analysis of this sort
of construction seems interesting but would have taken us far from the main purpose

of this thesis, i.e. the use of simple learning rules as bounded rationality strategies for
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multi-armed bandit problems.

Another important issue to be investigated in future research is the relationship
between monotonicity and absolute expediency. The latter property seems more ap-
pealing as it is concerned with expected payoffs. However the results in the literature
about absolutely expedient rules are less general than our results on monotone rules.
Moreover, the examples of monotone rules provided in Section 5 happen to be ab-
solutely expedient rules. We have been unable to draw the exact relationship between
these two properties.

There is a large and diverse set of references which address issues related to those
covered in this Chapter. There are several related results in the economics literature.
The first of these is in Samuelson and Zhang [48], who show that a selection dynamic
satisfies a condition called aggregate monotonicity if and only if it is a multiple of
the replicator dynamics. Selection dynamics describe the evolution of a population of
players. Samuelson and Zhang do not trace back their result to behaviour rules for indi-
vidual players. Unlike monotonicity as defined in this Chapter, aggregate monotonicity
concerns not just the frequency of the best action, but also of other actions. Samuelson
and Zhang obtain their result considering just one single environment. By contrast, it
is essential for our result that a behaviour rule must operate in multiple environments.

More closely related to our work are two recent papers by Rustichini [47] and Easley
and Rustichini [16]. Both papers, like this Chapter, consider a repeated individual
decision under risk, and then axiomatize behaviour rules which move like replicator
dynamics. Easley and Rustichini’s [16] work differs, however, in two important ways
from our study. Firstly, they take only the decision maker’s ordinal ranking of outcomes,
but not his von Neumann Morgenstern payoff as exogenously given. Moreover, they
have a different informational assumption: In each period, the decision maker observes
the outcome not only for the action which she took, but for all actions. Easley and
Rustichini then axiomatize behaviour rules which move as if the decision maker had
a given and fixed von Neumann Morgenstern utility function, and adjusted her choice
probabilities in the style of replicator dynamics.

Our analysis differs from that of Easley and Rustichini in that it operates with only
one axiom, monotonicity, and correspondingly obtains a more general functional form

for the learning process.
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Rustichini [47] covers both the informational assumption which we made in this
Chapter, and the informational assumption which is made in Easley and Rustichini
[16]. Rustichini introduces axioms concerning the expected motion of a learning process
which then yield a replicator type process. He shows how stochastic approximation
results might lead to a long run identity of expected and actual motion. However,
he does not translate his results concerning expected motion into results concerning
the individual’s behaviour rule. Moreover, he invokes a number of axioms such as
symmetry, and linearity in payoffs, which have no analog in this Chapter.

The literature which is most closely related to the analysis in Sections 4 and 5
is a branch of the machine learning literature which is concerned with the learning
behaviour of stochastic automata. The concept of a stochastic automaton is similar to
our concept of a mixed strategy behaviour rule. A useful overview of the literature on
stochastic automata and learning has been provided by Narendra and Thathachar [40].

Particularly closely related to our work is Toyama and Kimura [55]. They, too,
investigate monotone behaviour rules. They show that monotonicity implies approxi-
mate maximisation if the process moves in small increments (their Corollary 1), and
they provide a characterization of monotone behaviour rules (their Theorem 1). They
allow a larger class of environments than we do, by allowing payoffs which are not
i.i.d., but they restrict attention to a smaller class of algorithms, by assuming linearity
in payoffs. They do not consider pure strategy rules. They pay less attention than
we do to technical assumptions some of which, like differentiability, we think to be of
conceptual importance as well.

Other papers in this literature have investigated a property which has some sim-
ilarity to monotonicity, and which is called absolute erpediency. This property was
originally defined by Lakshmivarahan and Thathachar [34]. Absolute expediency re-
quires that in all environments, conditional on all possible states of the automaton,
the expected payoff in the next period is larger than it is in the current period. This
property thus differs from the monotonicity property investigated in this Chapter in
that it refers to payoffs rather than the probability of the expected payoff maximising
actions.

The machine learning literature has found a number of characterizations of absolute

expediency if additional restrictions are imposed on either the set of possible environ-
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ments or the set of possible behaviour rules. Under these restrictions it has also found
that absolute expediency implies approximate maximisation® if the process moves in
small increments. A selection of relevant papers is: Aso and Kimura [2], Meybodi
and Lakshmivarahan [36], and Lakshmivarahan and Thathachar [35]. However, to our
knowledge, no result has been proved in this literature that would hold at the same
level of generality as our result in this Chapter.

Absolute expediency has also been investigated by Sarin [49] and Schlag [50]. Sarin
combines absolute expediency with other axioms and obtains a learning process which
moves like replicator dynamics. Schlag obtains a similar result assuming linearity of

the learning rule in probabilities.

®In this literature, the approximate maximisation property is referred to as e-optimality.
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Chapter 6
Pure Strategy Imitation Rules

6.1 Introduction

Imitation is one of the mechanisms by which patterns of behaviour spread throughout a
population. Imitation processes are similar to evolitionary processes, and the analysis
of imitation helps to link evolutionary theory to economic contexts. In this Chapter
we develop a model of reinforcement learning by imitation. To this end, besides the
individual decision maker, we introduce a population of agents who find themselves
in the same situation, i.e. they all are facing an identical decision problem. In each
iteration, the decision maker has to choose from a finite set of strategies, each of which
yields an uncertain payoff. After playing a strategy and receiving a payoff, the decision
maker has the opportunity to observe the action and the payoff of a member of a
population. Then she revises her strategy.

In this Chapter we shall focus on the case that the decision maker is endowed with a
pure strategy learning rule. The strategy revision is allowed to be stochastic, but all the
information which is carried into the next period is the new pure strategy. Furthermore,
to capture the essence of imitation, the decision maker’s next period new pure strategy
is restricted to be either the own action or the sampled one. Pure strategy learning
rules which satisfy this condition will be called pure strategy imitation rules.

We shall investigate whether pure strategy imitation rules are able to generate
optimality in the long run. Quite obviously, the ability of imitation rules to lead the
decision maker towards optimal actions will depend on the evolution of the population

behaviour. Therefore, there are many ways in which we can try to assess whether a
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given imitation rule is “good”. One possibility is to investigate the performance of this
imitation in an arbitrary environment, i.e. in an environment in which the population
behaviour is given and fixed. Another possibility is to investigate the performance
of this imitation rule when all other agents use this rule. In this Chapter we shall
investigate the first possibility. The second possibility will be investigated in Chapter
8. The case considered in this Chapter is our attempt at studying an environment in
which the decision maker does not rely on the evolution of all other agents towards
optimal actions.

Similarly as in Chapter 4, we are lead to investigate which pure strategy imitation
rules are approzimately mazximising, i.e. lead the decision maker to play in the long
run the expected payoff maximising strategy with probability arbitrarily close to one,
independent of what the true payoff distribution is and regardless of the given and
fixed population behaviour. We show that no approximately maximising imitation
rule exists. This negative result parallels that of Chapter 4. Note that in comparison
to that situation, in this framework the decision maker has more knowledge of the
environment - because she observes other agents - but is constrained in the way she
can adjust his behaviour - because she is restricted to either stick to her own action
or to imitate the other agent’s action. The intuition for our result in this Chapter is
similar to the intuition for the analogous result in Chapter 4: a pure strategy state
space is not rich enough to store all the relevant information to achieve approximate
payoff maximisation.

The rest of the chapter is as follows. Section 2 states the formal framework and
Section 3 contains the definitions. Section 4 studies approximate payoff maximisation

and section 5 concludes.

6.2 Formal Framework

This Chapter refers to the case in which the set W4 is a singleton, i.e. W4 = {w} and
in which sampling is allowed. Individual w is referred to as the decision maker.

Each member of the population WP is programmed to play a pure strategy s € S.
Formally speaking, there is a function C : WP — S which assigns a strategy to every

member of WP, Thus, individual w' € WP is programmed to play pure strategy C(w').
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A sampling rule for the decision maker is a probability distribution e € A(WP),

where e(w') is the probability that the decision maker samples individual w'.}

6.3 Payoff Maximisation
A pure strategy learning rule is formally defined as follows:

Definition 16 A pure strategy learning rule B is a function? B : Sx(0,1) xS x(0,1) x
S — [0,1], such that for all s,s' € S, and z,y € (0,1) : Y ucsg B(s,z,¢,y,8") =1

The interpretation of a pure strategy learning rule is as follows: B (s,z,s,y,s")
is the probability of choosing strategy s’ at iteration n + 1 after choosing strategy s
at iteration n, getting a payoff  and sampling an individual choosing strategy s’ and
receiving a payoff y.

Throughout this Chapter we focus on learning rules which satisfy the following
assumption.
Assumption 2: B(s,z,¢,y,s") =0 for all " # s, and all z,y € (0,1).

Assumption 2 is intended to capture the essence of imitation learning. The learning
rules which satisfy this assumption are therefore called imitation rules.

The function C and the decision maker’s sampling rule e induce a probability dis-
tribution y(-) over S, where y(s) is the probability that the decision-maker samples
strategy s € S. It is formally given by

y(s)= Y e(w)I(C),s)
w'ewD
where I(C(w'), s) is an indicator function which takes the value 1 if C(w') = s.
Definition 17 The transition matrix T corresponding to an environment E, a func-

tion C, a sampling rule e and a pure strategy imitation rule B is a #S X #S matriz

whereby the entry in the row corresponding to strategy s, and the column corresponding

!We do not specify the sampling rules for w' € WP because they are not allowed to revise their
behaviour and therefore their sampling rules are irrelevant.

2Note that we use, for simplicity, the same symbol B as in previous Chapters to denote pure strategy
imitation rules.
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to strategy s', is:3

1 1
ot = / / y(s")B(s,z,8 ,y,8 )dF (g, py).
0o Jo

Definition 18 The imitation process corresponding to an environment E, a func-
tion C, a sampling rule e, an imitation rule B, and an initial probability distribution
b0 € A(S) is the Markov chain {sp}nen, with the initial distribution 8¢ and with the
transition matriz T defined in previous definition. For every n € Ny we denote by

6y € A(S) the marginal distribution of s,.

We now formally define a first property of pure strategy imitation rules. It refers to

a rule which leads the decision maker to learn the expected payoff maximising strategy.

Definition 19 A pure strategy imitation rule B is maximising if for every environment
E, every function C, every sampling rule e and every initial distribution & € A(S)
such that 6o(s*) > 0 for at least one s* € S* and y(s*) > 0 for at least one s* € S* the
following is true:

lim 6,(S*)=1.

n—00

Note the difference between this definition and definition 7. This definition is weaker
that definition 7, in the sense that it only requires long run optimality when the prob-
ability of sampling an expected payoff maximising strategy is strictly positive.

Despite this qualification, the next proposition shows the non existence of maximis-

ing pure strategy imitation rules.
Proposition 8 No pure strategy imitation rule is maximising.

This result is almost obvious. The sketch of the proof is as follows. Note that an
imitation rule with B(s,z,s,y,s') > 0 for some s,s' € S and z,y € (0,1) cannot be
maximising. Take some function C, some sampling rule e, and some environment F
such that p,(z) > 0 and py(y) > 0, S* = {s} and y(s') > 0. Then B(s,z,s,y,s') >0
implies that the decision maker would switch away from the expected payoff maximis-

ing action with strictly positive probability. Therefore, the asymptotic probability of

3This is a slight abuse of notation. It is writen in this way to encompass common as well as
independent events condition.

66



playing the expected payoff maximising strategy would be less than one. Thus max-
imisation requires B(s,z, s',y,s') = 0 for all 5,8’ € S and z,y € (0,1). But clearly that
is not maximising either.

Proposition 8 leads us to seek imitation rules which are approrimately mazrimising.
Roughly speaking, we mean by this imitation rules for which limy_, o 6,(S*) is close to
1 for all environments E, all functions C, all sampling rules e and all initial distributions
8o which satisfy the conditions of Proposition 8. More specifically, we shall ask whether
there is a family of imitation rules, parametrized by some parameter v, such that in all
environments the asymptotic probability of choosing an optimal action converges to 1
as v tends to infinity, provided that the conditions of Proposition 8 hold. If this is true,
then, by choosing a sufficiently large v, the probability of choosing an optimal action

can be made arbitrarily close to 1.

6.4 Approximate Payoff Maximisation

In this Section, we look for imitation rules which generate approximately rational behav-
iour in the long run. It is shown that no pure strategy imitation rule is approximately

maximising.

Definition 20 A sequence of pure strategy imitation rules {B"},en is approximately
maximising if for every environment E, every function C and every sampling rule e(-)
such that y(s*) > 0 for at least one s* € S*, every initial distribution 6o € A(S) such
that 8o(s*) > 0 for at least one s* € S*, and every v € N the limit limp,_,, 65,(S*)
(where for every n € Ng 8% is the marginal distribution of s, if the initial distribution
is 8o and if the imitation rule is BY) exists, and we have:
: : VQFy _
S, Jim, 6a(57) = 1.
Proposition 9 No sequence of pure strategy imitation rules is approrimately maximis-

ing.

Proof of Proposition 9. The proof is indirect. Suppose that {B"},. is a sequence

of pure strategy imitation rules which is approximately maximising.
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Step 1: For all s,s' € S and z,y € (0,1) with z < y, there is some T € N such that
for all v > T:

BY (s,z,5,y,5) > 0.

Remark: Step 1 says that for v large enough, the imitation rule has to imitate
better payoff strategies.

Proof: The proof is indirect. Suppose for every U € N there were some v > T
such that BY(s,z,s,y,8') = 0. Consider an environment E such that p,(z) = 1
and, for some y > z, uy(y) = 1 for all s # s. Consider some function C and some
sampling rule e such that y(s”) = 0 for all s” # s,s'. If the decision maker begins
with an initial distribution 6p which attaches positive probability to the strategy s,
and adopts an imitation rule BY such that BV (s,z,s’,y,s') = 0, then for all n € N:
67(S\ {s}) € 1 — 6. Hence if 8,(S\{s}) converges for n — o0, its limit must be
less than 1 — 89 < 1. We have thus obtained a contradiction to the approximate
maximisation property of {B'},cn-

Step 2: For all 5,5’ € S and z,y € (0,1) with z > y, there is some T € N such that
for all v > T:

BY (s,z,¢,y,8') < 1.

Remark: Step 2 says that for v large enough, the imitation rule can not imitate a
lower payoff strategy with probability one.

Proof: The proof is indirect. Suppose for every T € N there were some v > U such
that BY(s,z,s',y,s) = 1. Consider an environment E such that u,(z) = 1 and, for
some y < z, uy(y) = 1 for all 8’ # s. Consider some function C and some sampling
rule e such that y(s) = y(s') = 3 and y(s”) = 0 for all s” # s,5". For every v such
that BY (s,,s',y,s') = 1 we have: §%(s) < 36%_,(s) + 1 (1 —6%_,(s)) for all n € N.
Here, the first term on the right hand side corresponds to the case that the decision
maker played s in period n — 1, and sampled strategy s. The second term corresponds
to the case that the decision maker played any s’ # s in period n — 1, and sampled
strategy s. Obviously, the right hand simplifies to -;— Therefore, if 6}, (s) converges for
n — 00, its limit can not be more than -;— We have thus obtained a contradiction to

the approximate maximisation property of {B'}, . y-
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Step 3: Suppose z,€ € (0,1) with 1 — e > x> 2¢ > 0. Consider an environment E
such that 1 > pu,(z+€) >0and 1> u(z —¢€) > 0 for some s € S, py(z) =1 for some
& € S with &' # s and pgn(z —2¢) =1 for s” # s,s'. Consider some function C and
some sampling rule e such that y(s),y(s') > 0 and y(s”) = 0 for s" # s,s’. Then there
is some U € N such that for v > T the imitation process {sn}, .y is a Markov chain
with the unique irreducible class {s, s'}. Moreover, this class is aperiodic.

Proof: Choose T such that the result of Step 1 is true for all strategies in S. We
first show that {s, s’} is an irreducible and aperiodic class and then we show that is the
unique irreducible class.

(i) By step 1, states s and s’ intercommunicate; moreover, the probability of moving
away from the set {s,s'} is zero because y(s") = 0 for s” # s,s. This implies that
{s, s’} is an irreducible class. It is aperiodic because 0 < y(s),y(s') < 1.

(ii) Note that by step 1, state s is accessible from any state s” # s,s’, because
y(s') > 0, i.e. the probability of moving from s” to s in one step is positive. But state
s is not accessible from {s, s'}. This implies that states s” # s, s’ are transient.

Remark: By standard results in the theory of Markov chains, Step 3 implies that for
environment £ and v > T, the investigation of the properties of the imitation process
{sn},en reduces to the investigation of the Markov chain whose states are {s,s'}. Let
T" denote the transition matrix of the latter chain. As this chain is irreducible and
aperiodic, the sequence {65 },en converges and its limit is a stationary distribution
of the transition matrix 7% and is independent of the initial distribution 6p. In the
following, we shall denote this limit by 8%.

Step 4: Suppose z,y € (0,1) with z < y. Consider an environment E such that
ps(y) =1, pg(z) = 1 pe(3) = 1 for 8" # s,5'. Consider some function C and some
sampling rule e such that y(s),y(s') = 3 and y(s") = 0 for s” # s,s’. Then there exists

some U € N such that:
BV (s,y,§,1,s')

v !
v3® BY(s',1,s,y,5)

=0

Proof: The proof is indirect. Suppose it is not true. Choose v such that the result
of Step 1 is true for all strategies in S. Then it follows that for finite v
BY (s,y,§',z,8') > 0. This implies, as in step 3, that the imitation process {sn},cn

is a Markov chain with the unique irreducible class {s,s'}. Moreover, this class is
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aperiodic. Then it follows that the sequence {6%,},.n converges and its limit is a
stationary distribution of the transition matrix T and is independent of the initial
distribution 8g. Let 6%, denote this limit. Then it is true that

8% (s) . BY(s,y,¢,z,5')

li =1 >0
%0 8,(s") 3% BY(s,7,5,9,9)

and we have found a contradiction to the approximate maximisation property of { BV},cn-
Step 5: Consider an environment E as described in Step 3. Let u,(z + €¢) = p. Let
y(s) = y(s') = 3. Then it is true that

L) p o BY(mstes)
y—300 & (s') 1 — p v BY (s,z —¢, s, z,5)

14

Take U to be the maximum of the two Us referred to in Steps 2 and 3. Because &5

is a stationary distribution of T%, we have that 6% (s) equals

31+
Bs) = 8(s) +
1[uBY (s,z+¢,8,1,5) + (1 — p)B” (s, — €, ¢, 7, 5)]
1o
() 2
+3 [uB” (s',z,5,z +€,8) + (1 — p) BY (¢, 2,8, — €, 5))
=4
8%,(s) _ BB (s'yz,8,z+¢,8)+ (1 —p)BY(s,z,8,T —¢,s)
8%.(s") uBY (s,z+¢€,8,z,8) + (1 —p)BY (s,z — ¢, s, z,8)

To simplify the exposition, we change notation

A = BY(d,z,5,z+¢,s)
B = BY(d,z,s,z—¢,s)
C = B’(s,x+¢,9,1,3)
D = BY(s,z—¢d,1,5)

Then the above expression is re-written

boo(s) _pA+(1-p)B
6o(s')  nC+(1—p)D
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By rearranging we get:

1
— +
) G T E TR
Then it follows that
&7 1
li 650(5? = - s —+
ve0 v (s') 11m,,;§%° i+ llm,,u_z.%oz
1
lxm ¢ +lim D
u—voo B V—00 B

v2U

By step 4, we know that lim, % =0 and lim,_, o % = 0. Then
v>T v>T

14 v !
lim Je(8) _ p A p o BY(,3,8,24¢5)

im
v / — —_ v —_ / /
V‘E%odw(s) 1 ,uu—»ooD 1—pv=eo BY(s,z —€¢,7,9)

as asserted.

Step 6: The sequence {B"}, is not approximately maximising.

Proof: The proof is divided in two parts.

(i) Consider the environment of step 5 with 0 < p < % For this environment,
S* = {s'}. Therefore it has to be that

0]
Jm )

vy

=0

which implies
. BY(sz,s,z+¢s)
lim

u—»ooB”(s Tz —¢ 8, z,5) =0

(ii) Consider the environment of step 5 with 1 > p > -;— For this environment,

S* = {s}. But part (i) implies

o O(s) _ . G5(s)
ul—»oo &Y (8’) vl—»oo 1-67 (s) =0

Hence limy> 5,100 000 (s) = 0. This contradicts the approximate maximisation property

of the sequence {B"},cn. B
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Note that although proposition 2 and proposition 9 yield qualitatively similar re-
sults, the frameworks are quite different. In this Chapter, the decision maker is provided
with more information about the environment -because she observes others agents- al-
~ though she is constrained in the way she can adjust her behaviour -because she is
assume to either stick or to switch to the observed action-. However, the intuition is
similar to that of Proposition 2: the memory store provided by a pure strategy state

space is too small to deal with a large variety of environments.

6.5 Conclusion

In this Chapter we have investigated the ability of pure strategy reinforcement imitation
rules for leading the decision maker towards optimality without relying on the evolution
of the population behaviour. It is shown that no pure strategy imitation rule can
achieve approximately payoff maximisation. The intuition behind this result is that a
pure strategy state space is too small to store all the relevant information about the
environment.

This result helps to interpret the relationship between our analysis in this Chap-
ter and a paper by Schlag [51]. In this article, Schlag considers social learning in a
framework in which individuals can observe others’ actions and payoffs, and thus their
learning rules can contain an element of imitation. Schlag introduces a desirable prop-
erty of learning rules which, roughly speaking, says that in all environments and all
current states of the population the expected average payoff in the population is in-
creasing from round to round. Schlag shows that the dynamics of a large, randomly
matched population in which all individuals adopt a rule with this property can be ap-
proximated by the replicator dynamics. This means that this rule will lead the entire
population to achieve rationality in the long because, as replicator dynamics maximises
expected fitness, the population will choose in the long run with very high probability
the action which maximises expected payoffs.

Thus the key for Schlag’s result is the fact that the population behaviour is evolv-
ing over time. Whereas according to our Propositions 8 and 9 an isolated individual
adopting a pure strategy imitation rule cannot achieve long run payoff maximisation

for given and fired population behaviour, a large group of individuals adjusting their
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behaviour can. The intuition is that the group composition provides an additional state
space in which information about the environment can be accumulated.

Recall that Chapter 4 showed that a pure strategy state space is too small to achieve
(approximately) payoff maximisation when the decision maker adjusts her behaviour
according to her own experience. In this Chapter, a similar analysis to Chapter 4
has been done although in a different framework as we have provided the decision
maker with additional information about the environment by allowing her to observe
other agents who find themselves in the same situation. As in Chapter 4, we have
shown the non-existence of (approximately) maximising pure strategy imitation rules
(as defined in Assumption 2). One might then conclude that a pure strategy state space
is too small to deal with a variety of environments even if the decision maker can use
others’ experience to adjust her behaviour. We do not wish to draw this conclusion.
It might be the case that the non-existence of maximising rules is due to the presence
of Assumption 2. Further research should investigate the existence of (approximately)

maximising behaviour rules in this framework but without imposing Assumption 2.
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Chapter 7

Mixed Strategy Imitation Rules

7.1 Introduction

In this Chapter we continue exploring the approach we took in Chapter 6 to assess
“how good” an imitation rule is, although now we shall assume that the decision maker
adjusts her behaviour using a mixed strategy imitation rule instead of a pure strategy
rule. In this approach, the decision maker has the opportunity to observe a member of
a population of agents all of whom are facing the same decision problem. We evaluate
the performance of an imitation rule by assuming that the behaviour of this population
is exogenously given and fixed. We hence look for mixed strategy imitation rules
which lead the decision maker to play optimally without relying on the evolution of the
behaviour of a population .

The decision maker is characterized by a probability distribution which shows how
likely it is that she chooses any of her actions. After choosing an action and receiving a
stochastic payoff, she samples a member of a population who is facing a similar decision
problem. After observing the action and the payoff received by the sampled member,
the decision maker updates her probability distribution. The new distribution only
depends on the previous distribution, on the actions taken and sampled and on the
payoffs received and sampled. It does not depend on any other aspect of the history.
Note that this sort of learning rules is a generalization of the mixed strategy behaviour
rules considered in Chapter 5.

In the framework of mixed strategy rules, we shall use the following formalization

of what it means to imitate: We shall assume that the decision maker only updates
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the probabilities associated to the actions taken and sampled, all others probabilities
are left unchanged. Learning rules which satisfy this condition will be called mized
strategy imitation rules. As in the previous Chapter, our goal is not to compare the
performance of mixed strategy imitation rules versus mixed strategy behaviour rules,
but to investigate if imitative learning is able to generate optimality in the long run.
We shall follow a similar structure as in Chapter 5.

To this end, we define a property called maximisation. An imitation rule is max-
imising if the long run probability of the expected payoff maximising action is one
independent of what the true distribution of payoffs is. We have not been able to settle
the question of the existence of maximising imitation rules.

As in Chapter 5, we do not provide a complete characterisation of approximately
maximising rules. We define a property called monotonicity and we show this property
implies approximate maximisation. Monotonicity means that the expected change in
the probability of the expected payoff maximising action is positive. We obtain a
complete characterization of monotone rules for the common events condition and for
the independent events condition. We show that both characterisations are the same.

The basic feature of monotone imitation rules is proportional imitation, meaning
that the change in the probability attached to the taken action is proportional to the
payoff difference. Note that this implies that the probability associated to the taken
action is increased if its payoff is greater than the sampled one. This can be interpreted
as a reinforcement effect in which the decision maker considers the sampled strategy’s
payoff as an aspiration level, i.e. if the own strategy’s payoff is above this aspiration
level, the currently played strategy is reinforced. This feature of the monotone imitation
rules makes it possible to converge to the expected payoff maximising strategy even in
the case that the optimal strategy is absent in the population.

The rest of the Chapter is as follows. Section 2 introduces the formal framework
and Section 3 states the main definitions. Section 4 characterizes monotone imitation

rules. Finally Section 5 concludes.
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7.2 Formal Framework

This Chapter refers to the case in which the set W4 is a singleton, i.e. WA = {w} and
in which sampling is allowed. Individual w is referred to as the decision maker.

Each agent of the population W2 is programmed to play a pure strategy s € S.
Formally speaking, there is a function C : WP — S which assigns a strategy to every
member of WP. Thus, individual w' € WP is programmed to play pure strategy C(w').

A sampling rule for the decision maker is a probability distribution e € A(WP),

where e(w') is the probability that the decision maker samples agent w'.!

7.3 Definitions
We next define reinforcement rules with mixed strategy state space.

Definition 21 A mixed strategy learning rule B is a function
B: A(S) xS x(0,1) x S x (0,1) — A(S)

The interpretation of a mixed strategy learning rule is as follows: At each iteration
n the decision maker behaviour is described by a probability distribution o, € A(S)
which specifies for each pure strategy s how likely it is that she chooses strategy s at
iteration n. We shall refer to o, as the state of the decision maker at iteration n. The
distribution B(op, s, z, s, y) is then the state of the decision maker at iteration n+1 if
her state at iteration n was o, the pure strategy which she chose at iteration n was s,
the payoff received was z, the sampled member’s pure strategy was s’ and the sampled
member’s payoff received was y. For every s’ € S, we denote by B(o,,s,z,d,y)(s")
the probability which B(oy, s, z, s',y) assigns to s”.

Throughout this Chapter, we focus on mixed strategy learning rules which satisfy
the following assumption.
Assumption 3. B(op,s,z,s,y)(s") = on(s") for all " # s,s' and all z,y € (0,1).

This assumption is intended to capture the essence of imitative learning. It states

that the probabilities attached to non-observed strategies are not updated. The learning

1We do not specify the sampling rules for w' € WP because they are not allowed to revise their
behaviour and therefore their sampling rules are irrelevant.
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rules satisfying assumption 3 are called imitation rules.

Throughout this Chapter we focus on imitation rules which satisfy the following
assumption:

Assumption 4. For any s € S the mixed strategy imitation rule B is continuously
differentiable in (o, z,y) and the derivative of B with respect to (oy,z,y) is bounded
from above and from below.

This is a technical assumption which will allow us to appeal to well-known theorems
regarding the approximation of slow moving stochastic processes by the solution of
deterministic differential equations.

The function C and the decision maker’s sampling rule e induce a probability dis-
tribution y(-) over S, where y(s) is the probability that the decision maker samples
strategy s € S. This probability distribution will be called strategy sampling rule. It is
formally given by

y(s)= D e()I(C(w'),s)

w'ewD
where I(C(w'), s) is an indicator function which takes the value 1 if C(w') = s.

We denote by B(A(S)) the set of all Borel subsets of A(S).

Definition 22 The stochastic kernel K corresponding to an environment E, a function

C, a sampling rule e and a mized strategy imitation rule B is a function K : A(S) x

B(A(S)) — [0,1] such that
K(o,Q) = Z o(s)- y(sl) “ps(z) - 1o (y)
(s,x,8',y)e{s,8'€S,z,y€(0,1)| B(o,s,z,8',y) €N}
for every o € A(S) and 2 € B(A(S)).

Intuitively, the stochastic kernel is the analog of a transition matrix for a Markov

process with continuum size state space.

Definition 23 The imitation process corresponding to an environment E, a function
C, a sampling rule e, a mized strategy imitation rule B and an initial state o9 € A(S)
is the Markov process {0y}, N with the initial distribution which assigns probability 1

to oo and with the stochastic kernel K described in previous definition.
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Definition 24 A mized strategy imitation rule B is maximising if for every environ-
ment E, every function C, every sampling rule e and every initial state oo € A(S) the
probability of the event “o,(S*) — 1" is 1.

We have not been able to settle the following question:
Open Question Do mized strategy imitation rules which are mazximising exist?
However, we do have interesting results concerning a class of approzimately maz-
imising imitation rules. Here, the concept of approrimate mazimisation is defined in

the same way as in Chapter 5.

Definition 25 A sequence of mized strategy imitation rules {B"}, . s approximately
maximising if for every environment E, every function C, every sampling rule e and
every initial state oo € A(S) the probability of the event ”¢%(S®) — 17 converges to 1
as v— 00. Here, {0y}, denotes the imitation process corresponding to the imitation

rule BY and the initial state oyp.

The next section will explore a particular class of approximately maximising mixed

strategy imitation rules.

7.4 Monotone Imitation Rules

For any mixed strategy imitation rule B, environment E, function C and sampling rule
e, we define a function f which assigns to every possible state of the decision maker o,
and every pure strategy s, the expected change in the probability attached to s if the
current state is o. Formally, f : A(S) xS — R is defined by:

1 rl
f(O’, 3) = Z U(sl) Z y(s’,)A -/0 [B(d, 311 z, 3”1 y)(s) - 0’(8)] dF(/J‘s”p's")

s'eS s"eS

for all o € A(s) and s € S. For S C S, we define

f(a’,?) =Z f(aas)

seS
Finally, we denote by f(o) the vector
f(o) ={f(0,9)}ses
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Definition 26 A mized strategy imitation rule B is monotone if

1. 0 € A(S),s€ 8,8 €S and «,y € (0,1) imply B(o,s,z,5,y) € A(S)

2. for all environments E with S* # S, all functions C, all sampling rules e and all
states o € A(S): f(0,5%) >0

The second condition of the above definition is what motivates the label monotonic-
ity. It says that the probability attached to the expected payoff maximising strategy
increases in expected terms from round to round.

The following proposition fully characterizes monotone imitation rules under com-

mon events condition as well as independent events condition.

Proposition 10 A mized strategy imitation rule is monotone if and only if there exists
a function B : A(S) x S x S — Rsg such that for every (0,s,2,8,y) € A(S) x S x
(0,1) x S x (0,1) with &' # s:

1. B(o,s,z,8,y)(s) = o(s) +E(a,s, §)(z—y)

Proof of Proposition 10. We divide the proof in two parts. Part (i) deals with the
common events condition and part (ii) deals with the independent events condition.

(i) For the Common Events Condition: To see that every imitation rule which has

property (1) in proposition 10 is monotone note that condition (1) in the definition of
monotonicity is trivially satisfied. Moreover, for every o € A(S ) and every s € S, the

expected movement of the probability of s is given by:

f(o,8)=0(s) séa y(s) Jo [B(0,5,2,,y) (s) — o(s)] du,+

) 2 0 )y 1B(,5,2,2,) () — o (s))
8'#s
By using property (1) we can rewrite this as

f(a,s) =Z (71'3 - 77”) [y(s)cr(s')g (0,5, 5) +y(s")o(s)B (0,3, s')]

s'#s

If 78 > 7 for all s’ # s, this expression is non-negative, and if the inequality is

strict for some §’, then it is positive. This implies that the imitation rule is monotone.
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In the remainder of the proof, we consider some given monotone imitation rule and
we show that the imitation rule has to have property (1) of proposition 10. We proceed
in five steps.

Step 1: Consider an environment E in which S* = S. Then, for every function C,
every sampling rule e, every o € A(S) and every s € S: f(o,s) =0.

Proof: Suppose there were an environment E in which S* = S, a function C, a
sampling rule e, a o € A(S) and a s € S such that f(o,s) # 0. Then there has to be
some s € S such that f(o,s) < 0. Now suppose that we change payoffs slightly, so that
S* = {s}. Because of the continuity of the imitation rule, the expected movement in
the probability of s will remain negative, contradicting monotonicity.

Step 2: B(0,s,7,5',z) (s) = o(s) for all z € (0,1),0 € A(S).

Proof: Consider environment E such that strategies s and s’ yield payoff b with
certainty. Consider some function C and sampling rule e. For this environment $* = S.

The expected movement of strategy s is given by:

f(o,8) = y(s) [o(s)[B(o,s,b,3,b)(s) — o(s)] +o(s') [B(, ', b,3,b)(s) — o(s)]] +
y() [o(s) [B(0,5,b,5',b)(s) — o(s)] +(s) [Blo, &', b,¢', b)(s) — a(s)]]

Step 1 implies f(o,s) = 0 for every function C and every sampling rule e, i.e. for every

strategy sampling rule y(-). Then it follows that:
o(s) [B(o,s,b,s',b)(s) — o(s)] + o(s') [B(, ', b,5",b)(s) —o(s)] =0

Recall that Assumption 3 states that B(o,s',b,s',b)(s) = o(s). Then it follows that
B(o,s,b,s',b)(s) = o(s) as asserted.
Step 3: There is function B : A(S) x S x § — R such that for all s’ # s:

B(o,s,z,5,y) (s) = a(s) + E(U, 5,8') (z —v)

Proof: Let a,b,c € (0,1), and suppose a < b < ¢. Consider environment E such
that strategy s yields payoff a with probability p and payoff ¢ with probability 1 — p,
whereas strategy s’ # s yields payoff b with certainty. Let p denote the value of p such
that S* = S, i.e. pis given by <=2, Let E denote the environment E such that p=7.

c—a
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The expected movement of the probability of s is given by:

[(@:0)=0(s) 3 y(s) o 1B(2:9,,5,9) (s) ~ o(s) syt
+y(s) ; o (s') fy [B (0,1, 3,y) (s) — o(s)] dpsy
8'#s
Step 1 implies fol [B(0,s,z,5,y)(s) — o(s)] dus = 0 for every environment such
that S = S*. In particular, for environment E this condition reduces to:
7B (0,s,0,8,b) (s) —o(s)] + (1 —D) [B(o,s,¢,8,b) (s) — o(s)] =0

Replacing p by f:—z and rearranging terms yields:

B(o,s,c,¢,b)(s) —o(s) _c—b
B(o,s,a,s',b)(s) —o(s) a-—b

At this must be true for all a, b, c with a < b < ¢ it follows that B (o, s,¢, §',b) (s) —
o(s) must be proportional to payoff difference, as asserted.

Step 4: For every o € A(S), B(o,s,s') > 0.

Proof; Consider any o € A(S). The proof is indirect. Suppose there were 3,8’ € S
with s’ # s such that B (,s,s') < 0. Consider environment E defined by u, (a) =1,
pge(d) = 1 for all ' # s and a strategy sampling rule such that y(s') = 1, where
a,b € (0,1) with a > b. Note that S* = {s}. Then

f(0,8)=0a(s)B(0,3,5) (a—b)

But B (0,s,s') <0 implies f (o,s) < 0 contradicting monotonicity.

(ii) For the Independent Events Condition: To see that every imitation rule which has

property (1) in proposition 10 is monotone, note that condition (1) in the definition of
monotonicity is trivially satisfied. Moreover, for every o € A(S) and every s € S, the

expected movement of the probability of s is given by:

1 1
fo5)= 2 o) X v [ [ (B2 5)(5) = o) diyit

s'eS s'"esS
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We can decompose this expression in four terms:

flo,8) = o(s) () [B (0,5,2,5,y) (s) — o(s)] du,dpy +
S [

+y (s / / (0,8,z,5,y) (s) — o(s)] dp,dpy +
3’;&3

+ Z Y (-9,) a (5’) A -/0 [B (U: sl’xv s',y) (s) - O'(S)] dpgdpg +

s'eS

1 1
+ Z Z o () y(s") /0 /0 [B (0,¢,2,5",y) (s) — 0(s)] dpgdpgn

8'#£s 8'"'#s,8'

Note than assumption 3 implies that both the third and the fourth line equal zero.

Therefore, the above expression reduces to:

flo,s) = o(s) Z y(s’)/ / cr,s z,s ,y) () — a(s)du dpy +

s'#s

+y(s) Y o (s) / / (0,8 2,8,9) (s) — o(s)dp,dpg+

s'#£s

Using property (1) the above expression can be rewritten:

10 = o0 S o) B(orsd) [ [ o~ [ vans] -

1#8

-y () Z o (s') B (0’, s',s) [/01 Tdpg — /: ydp,]

s'#s

Rearranging terms:

f(o,s) =Z (71'3 - 71"9,) [y(s)a(s’)g (0,5,5) +y(s')o(s)B (0,8, s’)]
s'£s
If 7° > #n* for all s’ # s, this expression is non-negative, and if the inequality is
strict for some s', then it is positive. This implies that the imitation rule is monotone.
In the remainder of the proof, we consider some given monotone imitation rule and
we show that the imitation rule has to have property (1) of proposition 10. We proceed
in 4 steps.

Step 1: Consider an environment F in which S* = S. Then, for every o € A(S)

82



and every s € S : f(o,8) =0.
Proof: As step 1 of part (i).
Step 2: B(o,s,z,s',z)(s) =0for all z € (0,1),0 € A(S) and ¢ # s.

Proof: As step 2 of part (i).
Step 3: There is function B : A(.S') x § x § — R such that for all 5,8’ € S with
s #s:

1. B(o,s,z,5,y) (s) = o(s) + B(0,s,¢) (z — v)

Proof: Let a,b,c € (0,1), and suppose a < b < c¢. Consider environment E such
that strategy s yields payoff a with probability p and payoff ¢ with probability 1 — p,
whereas strategy s’ # s yields payoff b with certainty. Let p denote the value of p such
that S* = S, i.e. pis given by ﬁ. Let E denote the environment E such that p=p.

The expected movement of the probability of s in environment E is given by:

f@a)=a) & () S LB (o,8,2,8',9) (s) — o(s) | dpydpy+

+y(s) § a(s) Jo Jo [B(0,,%,3,9) () — o(s)l dugdp,

As any strategy s’ # s yields payoff b with certainty, the above expression can be

written as:

f(o) =) > u(e) Jo 1B (o,5,2,8',b) (s) — 0(s) | d,+

() 3 o (#) fo 1B (0, #,0:5,9) (5) = o (o)l s,
8'#s
Step 1 implies fol [B(c,s,z,5,b)(s) — o(s) | du, in every environment such that

S = §*. In particular for environment E this equation reduces to:

ff[B(a,s, a; s, b)(s) - 0’(8)] +(1-p) [B(U’ 56 s',b)(s) - U(s)] =0

At this must be true for all a, b, c with a < b < c it follows that B (o, s, ¢, §',b) (s) —o(s)
must be proportional to payoff difference, as asserted.

Step 4: For every o € A(S), B(o,s,s') > 0.

Proof: As step 4 of part (i).
|
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This proposition shows that monotonicity implies that the change in the rele-
vant probabilities is proportional to the payoff difference. Note that this means that
monotonicity incorporates a reinforcement component, the sampled payoff being an
aspiration level. A realized payoff bigger than the sampled payoff reinforces the strat-
egy taken, otherwise its probability is decreased. This reinforcement effect makes it
possible to learn the expected payoff maximizing strategy even though this strategy is
not present in the population.

Note that condition (1) fully characterizes monotonicity under both the common
and the independent events condition. This is a direct consequence of assumption 3.
Note that this assumption implies no change in the decision maker’s state as long as the
sampled and taken actions are the same to each other, regardless of payoff realizations.

‘We now outline the relationship between monotonicity and approximate maximisa-
tion. We do not provide a formal analysis as it is similar to that on Chapter 5. The key
result for linking these two properties is the fact that for a monotone imitation rule,
the probability attached to the expected payoff maximising strategy follows a stochas-
tic process which is a submartingale. This allows us to conclude that the probability
attached to the event “0,(S*) — 1” is always higher than o¢(S*). This property just
says that the probability of being trapped into the expected payoff maximising action
is always greater than the probability with which it is initially played. Note that this
is a lower bound for this asymptotic probability.

To study approximate maximisation, we need a sequence of imitation rules derived
from the imitation rule B. The starting point is therefore to generate a sequence of
imitation rules indexed by a parameter € € (0,1). Any member of this family is defined
as follows

B%(g,s,z,8,y) —0c=¢ [B(a,s,:v,s',y) - ‘7]

Note that B® describes a behaviour process which moves into the same direction as
B, but at speed . Notice also that if B is monotone, every member of the sequence
is also monotone. We are interested in limit properties of the behaviour process cor-
responding to B¢ for fixed environment, fixed function C, fixed sampling procedure e,
and fixed initial state, where the limit which we wish to take is: ¢ — 0.

After introducing a continuous time variable £ > 0 and following similar steps as in

Chapter 5, the behaviour process B¢ when € — 0 can be approximated by the solution
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of the following differential equation
do, —
& =@

where f(-) describes the expected movement of imitation rule B. Note that the solution
of the differential equation satisfies lim¢_,o0¢ = 1.

But recall that this is a “good” approximation only for finite time intervals and
that we are interested in the asymptotics of the process. To overcome this difficulty
we use the fact that for monotone imitation rules, o¢(S*) is a lower bound for the
probability of the event “o,(S*) — 1”. This is enough because for large enough finite
time intervals, the behaviour process corresponding to o5(S*) when € — 0 is close to 1,
which is to say (using that lower bound) that the probability of the event “o5(S*) — 17

is close to 1.

7.5 Conclusion

In this Chapter we have focused on imitative behaviour, specifically on mixed strat-
egy imitation rules. Although a complete analysis of the imitation rules which lead
the agent to behave optimally in the long run has not been provided, we have stated
" a property called monotonicity which implies that any imitation rule satisfying this
property can achieve optimality provided they evolve in small steps.

X

We have furthermore characterized all monotone imitation rules. Its basic com-
ponent is that the change in the decision maker’s state is proportional to the payoff
difference. A related proportional imitation component is found in Schlag [51] although
in a quite different framework. In [51] Schlag considers pure strategy imitation rules in
an evolving population whereas our characterization concerns mized strategy imitation
rules concerning one single decision maker. In addition, Schlag axiomatizes strictly im-
proving rules, a property concerned with the evolution of the whole population, whereas
in our setting we focus on a property concerned with the behaviour of a single individ-
ual while the behaviour of the population remain fixed. Improving rules imitate higher
payoff strategies with a probability which is proportional to the payoff difference. In

our setting monotonicity implies that the change in the decision maker’s state is pro-
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portional to the payoff difference, although monotonicity incorporates a reinforcement
component, the sampled payoff being an aspiration level, i.e. the probability attached
to the own action is increased if it gets a higher payoff than the observed action, other-
‘wise is decreased. This component makes it possible to achieve optimality even if the

expected payoff maximising strategy is not present in the population.
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Chapter 8

Imitation and Equilibrium in

Populations

8.1 Introduction

This Chapter differs from the previous ones in one basic aspect: It focuses on the
behaviour of an entire population of agents all of whom change their behaviour using
some imitation rule, whereas in the previous two Chapters only one individual changed
her behaviour through imitation, with all other individuals’ behaviour remaining fixed.
We shall study the evolution of a population of agents, all of whom face the same
two-strategy decision problem. As in the two preceding Chapters, note that the agents
of the population are not playing any game against each other. All members of the
population are endowed with a pure strategy imitation rule to adapt their behaviour
and have the opportunity to observe the strategy and the payoff of one other member
of the population. To define this sampling procedure, all members of the population
are endowed with a (possibly different) sampling rule, i.e. a probability distribution
defined over the population (except herself) which indicates how likely it is that an
agent observes any other agent.

In each iteration, after choosing a strategy and receiving a payoff, each agent sam-
ples, according to her sampling rule, some other member of the population and observes
her strategy and payoff. With this information, she adapts her behaviour according to
her imitation rule.

The first property which we investigate refers to the evolution of a population
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when all members use the same imitation rule. An imitation rule is mazimising if all
members of the population will end up playing the expected payoff maximising strategy
independent of what the true payoff distribution is and regardless of the initial state of
the population. We show that there are no such maximising imitation rules.

If a maximising rule existed, and if all agents cared only about their asymptotic
payoff, then it would be obvious that it would be in their interest to adopt such a rule. In
the absence of a maximising rule, individual agents’ incentives to adopt any particular
rule need to be investigated more carefully. To formalize this issue, we shall begin by
defining an appropriate payoff function. For given population and fixed imitation rule,
the payoff function for any agent using any imitation rule is defined as the time average
payoff that the agent receives along the path. This payoff function will be called the
asymptotic payoff. Note that in the definition of the payoff function the assumption is
implicit that the agent does not discount the future, i.e. we deal with infinitely patient
agents. This is a very restrictive assumption. It will simplify the subsequent analysis.

For given population and fixed imitation rule, we can then define the set of imitation
rules which are best responses to the fixed imitation rule. An imitation rule will be
called an equilibrium imitation rule if it belongs to the set of best responses to itself.
This means that there is no other imitation rule that an agent might use such that for
every decision problem and initial distribution her asymptotic payoff is at least as good,
and for at least some decision problem and some initial distribution, her asymptotic
payoff is greater using the alternative rule.

Unfortunately, the investigation of equilibrium rules in the general framework has
turned out to be very complex. We have only been able to find an example of an
equilibrium imitation rule. Somewhat paradoxically, it is “never imitate”. This can be
understood in light of the result of Chapter 6. If all members of the population use
the rule “never imitate”, then an agent wondering about using an alternative rule finds
herself in the situation analyzed in Chapter 6, where the behaviour of the rest of the
population is fixed. Note that the rule “never imitate” yields, for every environment,
the maximum asymptotic payoff to those agents who starts playing the optimal strategy.
Then, by definition, a better reply should also yield this maximum asymptotic payoff
to those agents. But note that any alternative rule should prescribe switching to the

sampled strategy for at least one payoff realization. Then for any alternative rule, we
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can always find an environment in which this alternative rule implies switching with
positive probability from strategy s to strategy s’ and also from strategy s’ to strategy
s. But note that this rule makes an agent who plays the optimal strategy initially
switch away from it with positive probability as long as she samples an agent playing
the suboptimal strategy. Note that even if the agent eventually switches back to the
optimal strategy, this sampling event always happens because the population behaviour
is fixed. Therefore, the asymptotic payoff to that agent is necessarily lower than the
maximum asymptotic payoff.

In order to gain further insights, we shall consider a more restricted domain of
analysis. The new framework will consider a two-strategy decision problem with binary
payoffs, and a population of only two agents. We identify a property which is of
relevance to the problem at hand. An imitation rule is unbiased if the asymptotic
payoff to all members of a population when all members use this imitation rule is
closer to the expected payoff of the optimal strategy than to the expected payoff of the
suboptimal strategy. We characterize the set of unbiased rules and show that biased
imitation rules are not equilibrium ones. A rule is biased if the probability with which
it switches to lower payoff strategies is strictly higher than the probability with which
it switches to higher payoff strategies. Unfortunately, we have not been able to prove
that this property is also a sufficient condition for the equilibrium property. However,
we show two examples of unbiased rules which are equilibrium rules: “always imitate”
and “imitate if better”. Note that in this setting, the proportional imitation rule,
investigated by Schlag [51], would reduce to “imitate if better”, and therefore it is very
tempting to reach the conclusion that the proportional imitation rule is an equilibrium
rule. However, this conclusion is too premature and should not be inferred from this
Chapter.

Schlag’s paper uses a similar framework to ours. He introduces a property of learning
rules which says that in all environments and all current states of the population, the
expected average payoff of the population increases from round to round. He shows
that the proportional imitation rule satisfies this property and that the dynamics of
a large, randomly matched population in which all members of the population adopt
this rule can be approximated by the replicator dynamics. This means that with high

probability, this rule will yield optimality in the long run. But this also means that
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for fixed population size, there are environments in which there is a strictly positive
probability that the population will choose in the long run a strategy which does not
maximize expected payoff. This means that the proportional imitation rule is not
a maximising rule and, as we have argued before, that this fact calls for a careful
analysis of the incentives that individual members of the population have to stick to
the proportional imitation rule.

Schlag’s attempt to analyze this is to interpret his property from an individual-
oriented perspective. He assumes that if in every round, some members of the popu-
lation are replaced by new born members who do not know ex-ante which particular
members they are to replace. It is then in the interest of the new members to adopt
the proportional imitation rule as long as they have a uniform prior. This is so because
in this case, the change of their expected payoff will be positive for all environments
and for all states of the population.

This argumentation does not seem to us very convincing. It has a population-
oriented evolutionary flavour that is linked to the individual’s point of view by assuming
new-born agents replacing existing ones. We really believe that the basic analysis piece
should be the individual rather than the population evolution; moreover we prefer to
consider that the individuals in the population are to face the decision problem forever.
Agents are modelled as boundedly rational by assuming that they use simple behaviour
rules with limited memory to adjust their behaviour. Given the rules uéed by the rest of
the population, an agent chooses the rule that maximises her asymptotic payoff.

The rest of the Chapter is as follows. Sections 2 and 3 will state the formal frame-
work and the main definitions, respectively. Section 4 explores the existence of max-

imising rules. The equilibrium issue is taken up in Sections 5 and 6. Section 7 concludes.

8.2 Formal Framework

This Chapter refers to the case in which the decision problem has two strategies, i.e. S =
{s1,82}, every agent of the population is allowed to adjust her behaviour, i.e. WA =W,
and in which sampling is allowed. For each individual w € W the sampling occurs
following some sampling rule, i.e. some exogenously given probability distribution

ew € A(W\ {w}) where e,,(w') is the probability that individual w samples individual
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v # w.

8.3 Definitions

Every agent w € W is characterized by a pure strategy tmitation rule, which is formally

stated in the following definition.

Definition 27 A pure strategy imitation rule for individual w € W is a function Ay :
S % (0,1) x S x (0,1) — [0,1].

The interpretation of a pure strategy imitation rule is the following: Ay (s,z,s,y)
is the probability that individual w chooses strategy s’ at iteration n+ 1 after choosing
strategy s at iteration n, getting a payoff z and sampling an agent choosing strategy ¢
and receiving a payoff y.

Throughout this Chapter, we focus on learning rules which satisfy the following
assumption.

Assumption 5. For every individual w € W, Ay, (81, %, $2,y) = Ay (82,7, 81,%) for all
z,y € (0,1).

This assumption means that the imitation rule only depends on payoffs and not on

the identity of particular strategies. This assumption motivates the following definition

which simplifies terminology.

Definition 28 A switching function for individual w € W is e function Fy, : (0,1) X
(0,1) — [0,1] such that Fy, (z,y) = Aw (s, z,8',y) for allz,y € (0,1).

Let F denote the set of all possible switching functions.

Because, unlike in the previous two Chapters, in this Chapter all members of the
population are allowed to adjust their behaviour through imitation, we now have to
introduce for all members w of the population a sampling rule, e, : W — [0, 1], which
indicates how likely is that this agent meets the other agents. Obviously, we shall

assume that e, (w) =0 for all w € W.
Definition 29 A sampling rule for individual w is complete if

ew(w') >0 for all w' € W\ {w}
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Throughout this Chapter, we focus on sampling rules which satisfy the following
assumption.
Assumption 6. For every individual w € W, ¢, is complete.

This assumption means that every agent is sampled by each other agent with strictly
positive probability.

A population is thus described by a 3-tuple (#W,{Fu}yew » {€w twew)-

8.4 Payoff Maximisation

This Chapter investigates the performance of a given imitation rule F' by focusing on
the behaviour of a population of agents, all of whom use this imitation rule. We will
refer to these population as F-monomorphic. For given imitation rule F, the behaviour
of the monomorphic population (#VV, F,{ew }wew) will evolve over time. We will next
define formally the population process.

Consider the #W-dimensional vector which has a 0 in the entry corresponding to
individual w, if this individual has chosen strategy s; at iteration n and which has a
1 in that entry otherwise. Read this state as the binary expansion of some number.
We shall denote that number as 8,,. We refer to 6,, as the state of the population at
iteration n. Let ©= {0, 1,2,.., ff:vg 2"} denote the set of all possible states of the
population. For the sake of clarity, rename states 0 and Z:Q;o 2% as states S1 and 52
respectively. Let © be defined as ©\ {S1,52}. Let ©* denote the state in which all
agents play the expected payoff maximising strategy.

Definition 30 The transition matrix P corresponding to a monomorphic population
(#VV,F, {ew}wew) and an environment E is a #0 X #0O mairiz where the entry in

the row corresponding to state i, and the column corresponding to state j,
pij =prob(@ (n+1)=3|6(n) =)

is determined by the matching and imitation process described in the text.

Definition 31 The population process corresponding to a monomorphic population
(#W,F,{ew}wew), an environment E and an initial distribution & € A(O) is the

Markov chain {On}, N, With the initial distribution 6o and with the transition matriz
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P defined in definition 80. For every n € Ng we denote by 6, € A(O) the marginal

distribution of 0,,.
We can now introduce the first property which we analyze in this Chapter.

Definition 32 An imitation rule is maximising if for every monomorphic population

(#W, F,{ew}wew), every environment E and every initial distribution 8o € A (@):
nh_'rgxo 6n(0*) =1

This property means that all members of the population will end up playing the
expected payoff maximising strategy. Note that this definition only refers to initial
distributions QMCh place probability zero on states S1 and S2. This is so because as
the agents are restricted to play either the actual strategy or the sampled strategy, these
two states are absorbing. The next proposition shows that there are no maximising

equilibrium rules.
Proposition 11 No imitation rule is mazimising.

Proof of Proposition 11. The proof is indirect. Let F be a maximising rule. We
divide the proof in two parts. The first part deals with a population of two members
and the second part deals with a population of more than two members.

Part (ii). Fix #W = 2. Note that in this case, the sampling rules are trivial. Note
that the initial state of the population is one agent playing strategy s; and the other
agent playing strategy s;.

Step 1. Maximisation implies “Imitate a lower payoff strategy with probability strictly
less than 1”.

Proof: The proof is indirect. Let F' be a maximising rule such that for some zg, ¥y €
(0,1) with 2o > yo, F(zo,%0) = 1. Consider environment E defined by p,, (zo) = 1
and p,,(yo) = 1. For this environment, ©®* = S1. Note that in this environment, the
agent playing the optimal strategy will sample with probability one strategy ss and will
switch away with probability one. This means that the probability of the population
getting absorbed in state ©* is zero. We have then found a contradiction.

Step 2. Maximisation implies “Imitate a higher payoff strategy with strictly positive

probability”.
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Proof: The proof is indirect. Let F be a maximising rule such that for some zp,y0 €

(0,1) with zo < yo, F(zo,y0) = 0. Consider environment E defined by p,, (xo) =1 and
s, (y0) = 1. For this environment, ©* = 52. Note that in this environment, the agent
playing strategy s; will sample with probability one strategy s; and will stick with
probability one. This means that the probability of the population getting absorbed in
state ©* is zero. We have then found a contradiction.
Step 3. Consider environment E defined by P, (o) = pg,(¥0) = p and p, (yo) =
Bs,(zo) = 1 — pu with o > yo and u € (0,1). For this environment, with positive
probability, the agent playing strategy s; will get payoff zp and the agent playing
strategy s will get payoff yo. With positive probability, the agent playing s; sticks
(step 1) and the agent playing sp switches (Step 2). This means that with positive
probability the population gets absorbed in state S1. But this event is independent of
the particular value of pu. Take environment E with u> -% This implies ©* = §2. We
have then found a contradiction to the payoff maximisation of F'.
Part (ii). Fix #W > 2 and fix {ew},cw-
Step 1. Maximisation implies “never switch to a lower payoff strategy”.
Proof: The proof is indirect. Let F' be a maximising rule such that for some xg,y0 €
(0,1) with z¢ > yo, F(zo,%0) > 0. Consider environment E defined by s, (To) = 1
and p,,(yo) = 1. For this environment, ©* = S1. Moreover as F'(zo,yo) > 0, an agent
will switch away with positive probability from the optimal strategy when she samples
strategy sy. If one can show that for this environment there is at least one state § € ©
such that p,(,gv > 0, this would imply that the rule is not maximising, as with positive
probability the population is trapped in state S2.

For state @ € ©, let ®,(0) denote the subset of the population W playing strategy
s € S when the population state is §. Consider any state § € © such that #®,,(6) > 1.
With positive probability, every w € ®;(0) samples a member of $,(#) and with positive
probability they will switch to strategy se. Furthermore, with positive probability every
w € $y(6) samples a member of $5(#) and therefore they will continue playing strategy
s9. This means that there is a positive probability of transition from @ to S2 in one

step, i.e. P(‘)T.%z > 0. We have thus found a contradiction to the maximisation property

of F.

Step 2. Maximisation implies “switch with positive probability to a better payoff strat-
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egy”.
Proof. The proof is indirect. Let F' be a maximising rule such that for some xg,yo €
(0,1) with zo > yo, F(yo, o) = 0. Consider environment F defined by p,, (xo) = 1 and
ts,(¥0) = 1. For this environment, ©* = S1. By Step 1, we know that F(xo,yo) = 0.
This implies that for this environment, the imitation rule F' becomes “never imitate”.
But this is clearly non-maximising,.
Step 3. Consider environment E defined by B, (Zo) = pg,(yo) = p and p, (o) =
s, (To) = 1 — p with o > yo and u € (0,1). For this environment, an agent playing
strategy s; and sampling strategy s; will switch with positive probability. Then it is
true that for any state @ € © such that #®;(0) > 1, ,S‘g, > 0. We have then found a
contradiction to the maximisation property of F. B

Proposition 11 shows that there are no imitation rules which lead to optimality
for every environment and every initial distribution. The next section will investigate

whether one individual might improve by using an alternative imitation rule.

8.5 Equilibrium Rules

The last section has suggested the possibility of individual improvement via the use of
an alternative imitation rule due to the fact that there are no imitation rules which
lead to optimality in all situations. In this Section we develop a framework in which to
address this issue. The starting point is a population of agents described by a 3-tuple
(#W’, {Fuw}wew » {ew}wew). For given environment E, given initial distribution 8o €
A (@) and given sampling rules {ewy},,cy, the evolution of the population is described
by a Markov chain where the transition probabilities depend upon the imitation rules
used by the agents of the population. Note that without loss of generality we can
assume that the initial distribution puts probability zero on states S1 and S2. Recall
that these states are absorbing independent of what the imitation rules are and therefore
the possible improvement is not to take place when the population starts out in one of
these states.

Our first step is to define a payoff function

My FXF—R
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such that 7y (f, F) € R is the payoff to agent w when he uses imitation rule f and all
other members of the population use the rule F. For given state € ©, let ¥(w, 8) be
the strategy that agent w plays at state 0. Let ©,, 5, and ©,, s,define a partition of ©,
where Oy, = {# € © | ¥(w,0) = s}. Startingout at state 8, let V; 5(n) be the number
of visits to state §' before round n, i.e. Vj4(n) = Z:;é Iy, —o'y, where Ity _gy is an
indicator function which takes the value 1 when 8, = €' and 0 otherwise. Obviously,
Vp ¢ (n) is a random variable. By standard results about finite Markov chains, it is true

\ 7% . oys o sy e
that —"'%L"—) converges with probability one to some limit, i.e.

Vo o
Prob | lim Voo ()

n—oo n

exists] =1

Denote this limit by ¢, ,,, and note that it is a random variable. Denote its expected
value by cg g
For given environment E, given initial state # € O, and given sampling rules

{ew}wew the asymptotic payoff to agent w is:

T D GwtTa DL G

0'€8y s, 0'€Ou,e,

o

The expected value of this random variable is:

Ty E cﬁ,“;,+7r.‘,2 E ce,o,

0'€6u,s; 6'€By, sy

Note that in the definition of the asymptotic payoff, we have made use of the Law of
Large Numbers for payoffs. Conditional to the visits to a particular state & € (—-9',‘,,.,‘.,
the decision maker receives a time average payoff which converges with probability one
to the expected payoff 75, by the Law of Large Numbers.!

If the initial distribution §p € A (@) is non-trivial, we still have to take expected

!Recall that payoff realizations are assumed to be stochastically independent across iterations and
that in a given iteration, each strategy s has a payoff distribution attached to it that does not change
over time.
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values over initial states. Thus, we arrive at this formula for the asymptotic payoff:

mw(FF)=) 60(0) [msy D Cptmsy D Cp

1) 9'6‘61,,,,1 9’6610,52
We can now state the main property of this section.

Definition 33 Let W be a monomorphic population with sampling rules {ew},cy- An
imitation rule f is a better response than an imitation rule g for individual w to the

population rule F' if

1. For every environment F and every initial distribution §p € A (9_), 7w(f, F) 2
Tw (g ) F )

2. There exists environment E and initial distribution 8g € A (©) with my(f, F) >
Tw(g, F)

Definition 34 An imitation rule f is a best response to a population rule F if there
is no better response. Let BR,,(F) denote the set of best responses to the population
rule F for individual w e W,

Definition 35 An imitation rule F is an equilibrium rule if for every individual w €

W, F € BR,(F).

Note that a monomorphic population using an equilibrium rule can be said to be
stable, i.e. in this class of monomorphic populations there are no individual incentives
to deviate and use an alternative rule.

Unfortunately, we have not been able to characterise the set of equilibrium rules for
given population W and given sampling procedure. We have only been able to produce

a single example of equilibrium rule that paradoxically is “never imitate”.
Proposition 12 “Never imitate” is an equilibrium rule.

Proof of Proposition 12. Let F be the rule “never imitate”, i.e. F(z,y) = 0 for all
z,y € (0,1). The asymptotic payoff to agent w using the rule F' is given by

mw(FF)= Y 600, + Y o(0)7s,

0€6y, 4, 0€6u,a,
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Note that in this case, every state of the Markov chain is an absorbing state. Let f be
an alternative imitation rule. We shall prove that for every alternative rule f there is
at least one environment and one initial state for which m, (f, F) < my, (F, F). Note
that this would mean that there is no better reply than F' to the population rule F’ and
therefore that F' is an imitation rule.

Given that f # F , it follows that there exists at least one pair (z,y) such that
f(z,y) > 0. Consider an environment E defined by sy (%) = s, (¥) = p and py, (y) =
P, (x) =1 —p with u € (0,1). Note that agent w will switch away from both strategy
81 and s with strictly positive probability because f(x,y) > 0. Consider that the
initial distribution puts probability one in one particular state, and that agent w is the
only agent playing the optimal strategy in that state. Without loss of generality, let
8; be the expected payoff maximising strategy. By using the rule F, agent w gets an
asymptotic payoff #°*. By using the alternative rule f, there is a positive probability
that agent w switches away from strategy s; to strategy s2.2 This means that there is
probability one that the population is trapped in the absorbing state S2, yielding an
asymptotic payoff 792 < 7*1. R

The intuition of this result comes from the fact that the population behaviour is
fixed. Note that it is always possible to find an environment in which an alternative rule
to “never imitate” makes an agent who plays the optimal strategy to switch away from it
with positive probability by starting the process in an state in which there is at least an
agent playing the suboptimal strategy. Note that even if the agent eventually switches
back to the optimal strategy, the event of switching away from the optimal strategy
always happens because the population behaviour is fixed. This is what motivates that
“never imitate” is an equilibrium rule.3

In order to get more insights into the features of equilibrium rules, the next Section

will consider a more restricted framework.

2Note than then all the members of the population will be playing strategy s.
3Note that the equilibrium property of the rule “never imitate” is robust to the introduction of a
discount factor in the definition of payoffs.
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8.6 The Binary Payoff 2x2 Decision Problem

In this section we shall restrict the domain of our analysis to get further insight into
the equilibrium property. We shall consider the case of a population with two agents,
each of whom is facing the same two-strategy decision problem with binary payoff, i.e.
with probability u strategy s yields payoff one and strategy sy yields payoff zero; and
with probability 1 — u strategy s; yields payoff zero and strategy sy yields payoff one.
Let 75, = u denote the expected payoff of strategy s; and let m,, = 1 — 1 denote the
expected payoff of strategy ss.

Note that for a population of two agents, the sampling rules are trivial, i.e. e,(w') =
1 for w # w',and w, w = 1, 2. In this restricted environment, an imitation rule for agent
w is a collection of four switching probabilities, i.e. Fy(0,0), F,,(0,1), F,,(1,0) and
F,(1,1). In order to further simplify the setup, we shall also assume that whenever
a strategy yields payoff one, the other strategy yields payoff 0. This restriction will
allow us to just consider two switching probabilities, Fy,(0,1) and Fy,(1,0). To simplify
notation, let a,, = F,,(1,0) and 3,, = F,(0,1). An imitation rule F will be denoted by
the pair (o, 0).

The evolution of the population is a 4-state Markov chain with transition matrix:

(s1,51) (s1,82) (s2,51) (s2,52)

(s1,%1) 1 0 0 0
(51,82) pm P22 P23 P24
(s2,81)  pa1 Pa2 P33 Paa
(s2, 82) 0 0 0 1

where
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p1=p(l-a)Br+(1-p)(Q—pB1)
pe=p(l-a1)1=08)+(1—p)(1-05)(1—a2)
P23 = paify + (1 — p) Broe

p2a = po1 (1 —By) + (1 — p) B1 (1 — a2)
pa1=p(l~0a2) By +(1—p)(1—PBy)m

P32 = pogPy + (1 — p) Byen

pz=p(l —az) (1= By) + (1 — ) (1 — By) (1 — 1)
paa=paz(l=5)+ 1 —p) B (1)

and where the state (s;,s;) is interpreted as agent 1 playing strategy s; and agent 2
playing strategy s;.

Note that in this restricted framework, the set © has only two elements, i.e. © =
{(s1,82), (s2,51)}. Hence, the population process will heavily depend on the charac-
terization of these two states. The next proposition classifies them in terms of the

imitation rules used by the agents.

Proposition 13 Fiz u € (0,1). Then the state space of the Markov chain can be

classified according to the following characterization:

1. If there ezists at least some o; or B; € (0,1), then (s1,s2) and (32, 51) are transient

states.
2. For oy, B; € {0,1} then
(a) If a; = B; =0 fori=1,2, then (s1,s2) and (sq, 81) are absorbing states.

(b) If at least some a; or B; equals 1 and

i. oz =B, fori# j,4,5=1,2 then{(s1, s2),(s2,51)} is a positive recurrent

closed class.

. o # B, for somei# j, 1,5 = 1,2, then (s1,s2) and (s2, s1) are transient

states.

Proof of Proposition 13. The following straightforward equivalencies will be useful:

(i)p21 > 0 pu>0
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(1) pa > 0 p31 >0
(i) ppr = 0 p3=0
((v)p2a = 0> p31=0

(v)pas > 0& p3r>0

Part 1. Note that as long as the above probabilities are positive, states (si,32)
and (sg, s1) will be transient states because each of them would communicate with an
absorbing state. First, let a; € (0,1). If 8, = 0 then (ii) applies. If 8, = 1 then (i)
applies. Second, let 3; € (0,1). If ay = 0 then (ii) applies. If @ = 1 then (i) applies.
Third, let az € (0,1). If B; = 0 then (i) applies. If 8, = 1 then (ii) applies. And
finally, let 8, € (0,1). If a3 = 0 then (i) applies. If a3 = 1 then (ii) applies.

Part 2.a. Note that if a;, 3; = 0 for ¢ = 1,2, then py = p33 = 1 and therefore
states (81, s2) and (sg,s1) are absorbing states.

Part 2.b.i. Firstly, let oy = 85 =1 and let either ag = B, =0oraz = f; = 1.
Then it is true that py; = pesy = 0 and by (iii) and (iv), p3;1 = p34 = 0, and it is true
that pe3 > 0 that implies p32 > 0 by (v). This means that states (s;, 32) and (s2,s;)
intercommunicate and do not communicate to either states (s1,s;) and (s2, s2), i.e.
states (s1,s2) and (s2,s;) form a closed recurrent class. The proof for the case ag =
B1 =1 is similar.

Part 2.b.ii. First, consider the case a1 # (5. There are two subcases, either oy =1
and B9 = 0 or a3 = 0 and B, = 1. In the first subcase, it is the case that pas > 0 which
implies p3; > 0 by (ii) and the conclusion holds. In the second subcase, it is the case
that py; > 0 which implies p34 > 0 by (i) and the conclusion holds. Second, consider
the case as # (3;. There are two subcases, either ap = 1 and 3; = 0 or a2 = 0 and
B, = 1. In the first subcase, it is the case that py; > 0 which implies p34 > 0 by (i) and
the conclusion holds. In the second subcase, it is the case that pyq > 0 which implies

p31 > 0 by (ii) and the conclusion holds.

Remark 3 For the cases in which p = 0 or u =1 a similar analysis can be done. It

will be done if necessary.

For given imitation rules Fy, and F, if states (s1,s2) and (sg,s;) happen to be

transient then the long run behaviour of the Markov chain is described by the following
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asymptotic distribution. Let X denote the probability of the population being trapped
in state (s1,s1) conditional on being at state (s1,s2). Let Y denote the probability
of the population being trapped in state (s1,s1) conditional on being at state (s3, s1).

Then it follows that:

X = po1+peX+paY

Y = p31+p3X +paY

The solution of this equations system is:

P (1 — p33) + p23pa1
(1 — pas) (1 — p22) — p3z2pas

y = P31 (1 — p22) + p3apa
(1 — p33) (1 — p22) — paz2p23

Note that in this case, the expected values of the random variables ¢, 4 are the

following;:

= IxX+0x(1-X)=X

C(‘l 182):(81.81)

= OxX+1x(1-X)=1-X

C(¢1 182):(82,82)

= 1xY+0x(1-Y)=Y

c(s'z »81):(81,81)

OXY+1x(1-Y)=1-Y

c(‘? 181):(2,32)

Thus the asymptotic payoff to agent 1 is given by:

T1(Fuy Fur) = 60(s1, 52) [X7s; + (1 — X)ms,] + So(s2, 51) [Y7sy + (1 — Y)g,)
and the asymptotic payoff to agent 2 is given by:

mo(Fuy Fuw) = 80(s1, 82) [Y e, + (1 — Y)ms,] + S0(s2, 81) [X s, + (1 — X)s,]

Note that for a monomorphic population, i.e. Fy, = F, it is true that ps; = pa1,

P22 = P33, P23 = P32 and poy = p34.This implies that X =Y and therefore

7T1(Fw, Fw’) = WZ(Fw’, Fw) = X7r31 + (1 - X)7T52
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for every initial distribution 8o € A ().

The following definition will be relevant for the analysis of equilibrium rules.

Definition 36 An imitation rule F is unbiased if for every environment E and every

initial distribution 8o € A (@), mw(F, F) > W—’*‘%ﬁl forw=1,2.

This property means that every agent in a monomorphic population gets an asymp-
totic payoff closer to the maximising expected payoff. The next proposition character-

izes the set of unbiased imitation rules
Proposition 14 An imitation rule F = (a, 8) # (0,0) is unbiased if and only if a < .

Proof of Proposition 14. The proof is divided in two steps. The first step deals with
the imitation rule F' = (1,1). The second step deals with imitation rules F # (1,1).
Step 1. Consider the imitation rule F' = (1,1). In this case, the set {(s1,s2), (s2,51)}
is a recurrent periodic closed class of states. This means that for any environment and
every initial distribution, the variables ¢4 o are no longer random. With probability one,
these variables take the value cg ¢+ which can be interpreted as the long run proportion
of time spent by the Markov chain in each of these two states. For this case, it is clear
that they equal %, yielding a payoff % and the claim follows.

Step 2. Let F' # (1,1). Then by Proposition 13, states (s1, s2) and (s2, s1) are transient.
The asymptotic payoffs are given by the asymptotic distribution. Recall that for any
monomorphic population X =Y. Therefore, for every environment E and every initial

distribution 6g € A (@), the asymptotic payoff to individual w is:
7w (F, F) = [X7s, + (1 — X)7g,)

Then it follows that:

s1 + s 1
Ww(RF)_%z (X"'E) (7r31 "71'.92)

Straightforward calculations show that:

x_l__(B-a)@u-1)
2 2(1-PA)+B(1-a)]
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Noting that my, — ms, = 21 — 1, we get:

My + Mgy (2u - 1)2

e BT FT ) E (=) R

and therefore our claim follows because?*

sign (m,,(F, F) - -7%‘-;&) = sign (0 — a)
]
Note that the rule F = (0, 0) is not included in the definition of unbiased imitation
rules. The reason is that it is the only rule with o = 3 which is biased.
The next proposition shows that an imitation rule F = (a, §) with & > 3 is not a

best reply to itself, i.e. it is not an equilibrium rule.

Proposition 15 Let F = (a,3) be an imitation rule such that a > . Then the rule
f = (B,a) is a better response than the rule F for individual w to the population rule
F.

Proof of Proposition 15. We first deal with the rule F = (1,0). In this case, the
asymptotic payoff to each agent is given by 7, (F, F) = (1 — p) 75, +pums,. If individual
1 uses the alternative rule f = (0, 1), then states (s, s2) and (s2, s1) form a recurrent
closed class of states with stationary distribution (u,1 — g). Then the asymptotic
payoff to individual one is 7y, (f, F) = pums, + (1 — u) 75,and therefore it follows that
mw(f, F) > mw(F, F), with strict inequality for p # % The analysis for individual 2 is
similar.

We now turn to the case in which F # (1,0). We first prove that for these rules,
the asymptotic payoff to every agent for every initial distribution and every environ-
ment is given by m,(f, F) = E#—Q Note that F # (1,0) implies that states (sl,sé)
and (sg, s1) are transient and therefore that the asymptotic payoff to agent w will be
characterized by the asymptotic distribution. Straightforward calculations show that
X=Y= % Then the asymptotic payoff to each agent is given by m |

Hence, for every F = (a,3) and f = (8, a), it is true that m,(f, F) = E%z for

every agent w, every environment and every initial distribution.

4Note that the denominator is strictly positive.
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We shall next prove that f is better response than F' to the population rule F. To
this end, note that:

Tu(F, F) = molf, F) = mu(F, F) - 21T
But by Proposition 14, we know that
sy + s (2u —1)2
Tw F', F) — 1 21 —-—a
B = = aaa-p+pa-a] ¥~

Therefore for environment u # 1 it follows that 7y (f, F) > my(F, F) and for environ-
ment g = 1 it follows that 7y (f, F) = my(F, F). B

Proposition 15 leads us to look for imitation rules among the set of unbiased rules.
We have been unable to prove that every unbiased rule is an equilibrium one. In the

remainder of this section, we shall show some examples of unbiased equilibrium rules.
Proposition 16 The rule “Always imitate” is an equilibrium rule.

Proof of Proposition 16: This rule is represented by the pair F' = (1,1). If both
agents use this rule, then the set {(s1,32),(s2,81)} is a recurrent closed class of states.
This means that for every initial distribution §g € A (@), the asymptotic payoff is given
by:

Tw(F, F) = Xpms, + (1 — XF) s, for w=1,2.

where Xp = %

We shall prove that there are no better responses than F' to F' by focusing on the
asymptotic payoff to agent 1 for initial distribution &g (s1, s2) = 1.

We shall divide the set of alternative imitation rules in two groups. The first group
is composed of the rule f = (0,0). If agent 1 uses thfs rule, then her asymptotic payoff
is given by m(f, F) = m,,. But it is clear that my(f, F) < m1(F, F) for environments
in which sy is the expected payoff maximizing strategy. This implies that the rule
f =(0,0) is not a better response that F to the population rule F.

We shall investigate now alternative rules f = (o, 8) # (0,0) . In this case, from
Proposition 13, states {(s1,32),(s2,81)} are transient and the asymptotic payoff to
agent 1 is given by:

mi(f, F) = Xgms, + (1 — Xj)msy
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where

pl-a)+(1—p)1-5)

X = T B+ a(l = @I - ) B+ ozl

Note that Xy is a function of u. To emphasize this, we change notation and write
Xy (). We shall now prove that X (1) # X7 (}) implies that f is not better response
than F to the population rule F. We shall prove it by finding an environment in which
m1(f, F) —m(F, F) <0.

First, consider the case X (%) > Xp (%) Consider a new environment defined by
p = } — ¢, where € > 0. By continuity it is true that X (3 —¢) > Xr (3 —¢). But
this implies that

m(F, F)—m(f, F) = [Xp (-;- —s) — X, (% —e)] (oy — ay) =

m(F, F)—mi(f, F) = [Xp (%—s)—xf (%—s)](—26)=>
m(F,F)=m(f,F) > 0

Then it follows that the rule f is not a better response than the rule F to the population
rule F. On the other hand, for the case X (—%—) < Xfr % — €) a similar argument runs
for the environment defined by pu = % +e

We are therefore left with those rules f such that X (1) = 1. But we shall show
that there are no such rules. Note that this condition reduces to

(a+,3)2+4(1-—a—-ﬂ)=0

Let G(a, 8) = (a + 8)2+4 (1 — a — 8). We shall show that for every f with , 8 € [0,1],
G(a, 8) > 0. To prove this, note that %g- = g—g =2(a+ p)—4 < Oforeverya, 3 € [0,1).
As G(1,1) = 0, it follows that G(a,3) > 0 for every pair o, 3 € [0,1). B

We shall conclude this section by showing that the rule “Imitate if better” is also

an equilibrium rule.
Proposition 17 The rule “Imitate if better” is an equilibrium rule.

Proof of Proposition 17: This rule is the pair F' = (0,1). If agent 1 uses this rule,
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then her asymptotic payoff for every initial distribution is given by:
mi(F, F) = Xpms, + (1 — XFp) 75,

where X = p.

In the following, we shall focus on the asymptotic payoff to individual 1 for initial
distribution 8¢ (81, s2) = 1.

We shall divide the set of alternative rules f in two groups. The first group is
composed of the imitation rule “Imitate of worse”, i.e. f = (1,0). Consider environment
defined by g = 0. Then m1(f, F) =0 < 1 = my(F, F). It follows that f is not a better
response than F' to the population rule F.

The second group is composed of the imitation rules f = (a,8) # (1,0). By
Proposition 13, states {(s1,s2), (s2,81)} are transient and the asymptotic payoff to
agent 1 is given by:

T (f, F) = Xsms, + (1 — Xy)7g,

where

X, — p(l—a)[l —p(-pB)] +apbu
=@ -B-0-p) Q-8 -a@-u)op

Using a similar argument as in the proof of Proposition 16, we only need to focus on

rules such that X; (u = 3) = Xr (1 = 3). This equation reduces to

_1+f-a 1
(1+8)° - 2
The solution to this equation is a + = 1.

We have then found a continuum of rules f = (a, 8) which are candidates to be
better responses than F' = (0,1) to the population rule FF = (0,1). We shall show
that all the rules characterized by a + § = 1 are not better responses than F' to the
population rule F. We shall do it by showing that =, (F,F) = m,(f, F) for every
environment, every initial distribution and w =1, 2.

For any rule f = (a, 8) with a + 8 =1 it is true that:

¥, — #l-a)(1-pa)+a(l—a)pu’
T - -weall —pa] a2 (1 - p)p
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By rearranging we get:

p(l-a)
x=t=0 =

Furthermore, for any rule f = (e, §) with a + 8 =1 it is true that:

v, o Bl=0)(1-(1-po)+al-a)u(l-p)
IS T A-(-wall-pd-?1-wa

By rearranging we get:

(1-a)
s era

Then it follows that X; = Yy, that implies that the asymptotic payoff to agent w is
given by
Tw(f, F) = Xfms + (1 — Xyg) sy

where Xy = p.

Recall that for any monomorphic population it is true that X =Y. Therefore, the
asymptotic payoff to individual w for any environment and every initial distribution is
given by

7w(F, F) = Xpms, + (1 — XFp) 75,

where Xr = pu.

We have then found that Xy = Xp. As this is true for every environment and every
initial distribution, it follows that 7 (F, F) = 7y (f, F). B

The above proof shows a counterintuitive fact. If an agent is facing another in-
dividual who uses the rule “Imitate is better”, then the agent is indifferent between
using the rule “Imitate is better” or using another rule f = (a,3) with a+ 3 =1 and
a > 0. Note that this includes unbiased rules such that for example f = (.0,.1). The
indifference between these two rules seems striking to us. We have no intuition for this
result.

Note that if one applies Schlag’s proportional imitation rule [51] to this setting,
it reduces to “imitate if better”. Hence it is very tempting to conclude that propor-
tional imitation is an equilibrium rule. However we are aware that it is not a sensible
conclusion because this setting is very restrictive. Additional work needs to be done
to assess whether there are no individual incentives to deviate from the proportional

imitation rule. Note that a result of this sort would reinforce the replicator dynamics
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axiomatization based on this rule in [51].

8.7 Conclusion

In this Chapter we have investigated the ability of pure strategy imitation rules to lead
an entire population of agents towards rationality when all members of the population
use the same imitation rule. We have shown that there are no imitation rules such
that all members of the population will end up playing the expected payoff maximising
strategy independent of what the true payoff distribution is and regardless of the initial
state of the population. We then have investigated the existence of equilibrium rules
once an appropriate payoff function is defined. However this question has shown to
be complex. We have shown a single example of imitation rule which paradoxically is
“never imitate”.

The restrictive setting of two-strategy binary payoff decision problems with a pop-
ulation of two agents has allowed us to get some further insights into this question. We
have shown that some well-known imitation rules like “always imitate” and “imitate if
better” are equilibrium rules. Note that the latter is the translation of the proportional
imitation rule [51] into this setting. Thus it is very tempting to reach the conclusion
that the proportional imitation rule is an equilibrium rule. This would reinforce the
replicator dynamics axiomatization based on this rule. We leave an open door for
further research in this direction.

The equilibrium analysis undertaken in this Chapter is our attempt to investigate
individual incentives to adhere to a particular imitation rule in population contexts.
As the basic analysis piece should be the individual, and given that agents are not
replaced, individual members of the population evaluate the performance of different

- behaviour rules given the rules used by the remaining members of the population and
| choose the rule which maximises her asymptotic payoff. Once every single member of

| the population uses an equilibrium rule profile, no agent will have incentives to deviate.
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Chapter 9

Conclusions

In recent years, economic theorists have started to enquire into the foundations of the
rationality hypothesis. The current thesis has joined this line of thought as it has
tried to answer to following question: when should rational behaviour be expected.
Within the different mechanisms proposed by the economics literature to bring about
rationality, this thesis has focused on reinforcement learning as a mechanism to bring
about rationality in decision problems,

" Reinforcement learning models describe decision makers as simple stimulus-response
machines, without attributing any beliefs to them, in sharp contrast with belief-based
learning models, such as fictitious play, with which economists are typically more fa-
miliar. In this thesis, reinforcement learning has been interpreted in a broad sense, by
allowing the decision maker to observe not only her own strategy choice and payoff,
but also the strategy and payoff of some other agents who finds themselves in the same
situation. In this way we have been able to also consider learning by imitation.

In this framework, we have studied the ability of reinforcement learning to lead
the decision maker to play in the long run the expected payoff maximising strategy.
In investigating this ability, we have considered a large class of reinforcement models,
without postulating any functional form. This approach has allowed us to identify some
features which characterize those reinforcement rules which steer the agent towards
rationality in all decision problems.

Our characterizations focus on two properties of a learning model. The first property
concerns the state space of the decision maker, i.e. the set of states in which the decision

maker finds herself at any particular point in time. It has been shown that if the state
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space of the learning model is the set of pure strategies, then there are no reinforcement
learning rules which lead to optimality. However, if the state space is taken to be the
set of all mixed strategies, then there are rules which lead the decision maker to learn
the optimal strategy. This difference arises because the state space provides the only
possibility for the decision maker to store information about her past experiences and
the memory store provided by a pure strategy state space is too small to deal with a
large variety of environments. However, the set of all mixed strategies is sufficiently
large. For this case, we have identified a property called monotonicity which has been
shown to achieve optimality provided the learning rule evolves in small steps. A rule is
monotone if the expected change in the probability of the expected payoff maximising
action is positive.

The second property refers to the functional form which characterizes monotone
learning rules: linearity in payoffs. An intuitive reason for this is that expected payoffs
themselves are linear functions of payoffs. Obviously, this property has different impli-
cations for the different frameworks in which reinforcement learning has been considered
in this thesis. Monotone learning rules are linear in payoffs and the expected movement
of the decision maker’s state is closely related to replicator dynamics. Monotone imi-
tation rules are linear in payoff difference, displaying a reinforcement component with
the observed payoff being an aspiration level.

The final Chapter of the thesis should be viewed as a different exercise. In a
populati‘on context in which the members of the population are allowed to adjust their
behaviour using simple imitation rules, we have investigated individual incentives to
adhere to a particular imitation rule by using an equilibrium analysis. Each individual
chooses her imitation rule so as to maximise her asymptotic payoff taken as given
and fixed the rules used by the remaining members of the population. Once the non-
existence of individuals incentives to deviate is assured the analysis of the aggregate

. evolution of the population can be safely done.

In a sense, this thesis is an axiomatic approach to learning models. However, our
. approach is not free of drawbacks. . We shall point out two of them which are related

to our interpretation of bounded rational decision-makers.
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First, we have characterised a class of learning rules that lead the decision-maker
to play in the long run the expected payoff maximising choice in any circumstance.
Thus a fully rational decision-maker who does not discount the future would find these -
decision rules optimal. This seems a serious limitation. We model boundedly rational

r

decision makers as being infinitely patient. We do not wish to argue that this is a
realistic assumption. A more satisfactory analysis should incorporate a discount factor ‘
strictly less than one, and focus on transitional payoffs rather than exclusively focusing '
on asymptotic payoffs. Our naive assumption, which leads to a simpler analysis, should '
be seen as a starting point to a complete analysis of reinforcement learning rules as .
describing boundedly rational decision makers. '
And second, a fully rational decision maker could find many strategies other than
those discussed in this thesis which achieve asymptotic expected payoff maximisation. '
In this thesis we have focused on decision rules which have no memory. Thus, the
current (possibly stochastic) behavioral “habit” is the only variable which can provide |
the decision-maker with information about the past. Note that this memory constraint
is implicitly included in the reinforcement learning rules, i.e. there is no explicit con-
sideration of it. It therefore seems worthwhile to build the analysis on a more explicit
model of memory constraints.
And finally, as a final word, let us say that our work should not be interpreted as
. aiming to single out "desirable” learning models. Whether agents use learning models
. which lead to optimality in a large variety of situations is an empirical question. We

hope our characterisation of monotone behaviour rules will help to interpret empirical

results regarding this question.
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