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ABSTRACT

Three main topics are covered in this thesis.

The first part of this thesis concerns new theoretical work on strong coupled mode 
theory for the multi waveguide nonlinear directional coupler (NLDC). The coupled 
mode equations for the general case including all the guides interacting are derived for 
the first time and expressed in the form of a new single-line matrix equation. The matrix 

form allows the physics of the NLDC to be immediately apparent. We discuss an error 
in the literature regarding the strongly coupled two guide case. Two new identities for 
the NLDC are derived. We propose an improvement on the coupled mode theory model 
by taking into account the power held in the overlap. We show for the first time 
analytical solutions for the strong coupling case, and derive a new accurate analytical 
formula for the switching power.

We numerically check our equations against other methods and against beam 
propagation method simulations for both weak and strong coupling regimes. We also 
study in detail the variation of the coefficients appearing in the equations against 
different parameters.

The second part concerns a new soliton generator based on graded nonlinearities. It is 
shown that this device leads to cleaner and more efficient single-soliton generation, and 
can be used to improve the efficiency of soliton couplers. Our device has the advantage 
that it prevents multisoliton emission effects normally associated with uniform 
nonlinear devices. It is also a linear scanner in contrast with previous uniform nonlinear 
devices which were angular scanners.

We next propose a novel three guide graded-nonlinear soliton coupler. It is simpler 
to operate and more efficient than a previous published device which used uniform 
nonlinearity. It operates solely by means of the power of the propagating optical beam, 

whereas the previous published device required an additional control beam.
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GENERAL INTRODUCTION

In the eighties dispersion was the main limitation in the exploitation of the huge 

bandwidth o f the optical fibre ( ~ 10‘̂ //z) for long distance communications. 
Dispersion resulted in distortion of the transmitted pulses, which meant that electronic 
repeaters were required for their periodic reshaping and amplification. Apart from being 
very expensive, electronic repeaters acted as an obstacle against increasing the 

transmission rate of pulses because of the limited response time of electronics. Today, 
many of the problems which initially beset all-optical transmission have been 
overcome. The introduction of erbium doped fibre amplifiers has resulted in cheap and 
fast all-optical amplification instead of expensive and slow electronic amplification. The 
employment of temporal soliton pulses has led to distortion free pulse transmission. 
The main problem which used to limit soliton transmission rate, ie the Gordon-Haus 
jitter (a frequency modulation on the lightwave caused by amplifier noise interacting 
nonlinearly with the lightwave) has now been overcome using frequency filters. All- 
optical long distance transmission exploiting most of the bandwidth of the fibre now 
seems to be within reach. The exploitation of the huge bandwidth of the optical fibre is 
still however practically of little use because once the light reaches the end of the fibre, 
it is then converted into electrical signals and then processed with electronics (which is 
slow due to capacitive delays). Therefore ways are being explored to replace electronic 
components with all-optical components for signal processing. Such all-optical 
components will make use of nonlinear materials which have intensity dependent 
refractive indices. A beam of light travelling through such a nonlinear optical device 
temporarily changes nonlinearly, the refractive index (which defines the device), and in 
turn alters the optical characteristics of the device. Therefore the nature of transmission 
for that beam of light (or also for another beam) travelling through the device is 

changed. In summary, in all-optical devices the propagation of an optical beam is 

controlled optically rather than electronically.
In the past couple of decades rapid progress has been made in the search for all- 

optical components. All-optical switches, transistors, filters, scanners, and pulse 
compressors are to name a few. Many of these components will also be used as parts of 
a future all-optical computer (to be constructed hopefully within the next few decades). 

The operational speed of these computers will be several orders of magnitude faster 

than electronic computers today.

In this thesis several new all-optical components are studied. The first is the 

nonlinear directional coupler (NLDC) which is perhaps the most useful all-optical

14



General introduction

device. For maximum generality, the strongly-coupled multiwaveguide coupler is 

considered (for the first time). By introducing matrix formalism, the full coupled mode 

equations of the general multiwaveguide case are combined into a single matrix 

equation. An improved coupled mode theory is proposed which is more consistent and 

accurate than previous attempts found in the literature. We show that a serious error 

exists in the methods of some important papers in the literature regarding the two guide 

case. In the final two chapters of the thesis, we study two novel devices: the graded 

nonlinear soliton generator and the three guide graded-nonlinear soliton coupler. The 

graded nonlinear soliton generator is capable of linear scanning, leads to single soliton 

emission, and is more efficient for switching in soliton couplers. The three guide 

graded-nonlinear soliton coupler makes use of graded nonlinearities in achieving two- 

side soliton generation. A brief overview of the thesis is now given.

Chapters 1-4 are review chapters setting the background for the rest of the thesis. 
Recent papers in the literature regarding nonlinear materials, spatial and temporal 
solitons, linear strong coupled mode theory, and nonlinear directional couplers are 
reviewed . Chapters 5-7 concern nonlinear coupled mode theory for multiwaveguide 
nonlinear couplers. In particular, chapter 5 introduces the formalism for the coefficients 
and derives new identities for the nonlinear coupler. In chapter 6 , the nonlinear coupled 
mode equations of the multiwaveguide coupler are derived. This theory is accurate for 
the cases of strong coupling, and applies to coupling between all the guides. In chapter 
7 the coupled mode equations are repackaged into an elegant single-line matrix format. 
In chapter 8 , the beam propagation method program used later in the thesis is 
explained, as well as the numerical procedure for integrating the nonlinear coupled 
mode equations using Runge-Kutta. In chapter 9, the power independent linear and 

nonlinear coefficients are calculated. The variations of these coefficients with change in 
parameters including guide separation and guide thickness are investigated. In chapter 
10, the power dependent linear and nonlinear coefficients are calculated which are then 
compared with those of chapter 9. In chapter 11 an analytical solution for the full 
nonlinear coupled mode equations is derived using elliptical functions. It is shown that 
two constants of motion can be extracted, one of which is an ellipsoid. An accurate 
formula for the critical power is also derived. In chapter 12 we compare the accuracy of 
results obtained using the critical power formula against those using the beam 
propagation method. We discuss in detail a serious flaw in the literature regarding the 
inconsistent inclusion of the overlap integral in the coupled mode equations.

In chapter 13 there is a shift in topic towards soliton devices. A novel graded

15



General introduction

nonlinear soliton scanner is studied. This scanner is capable of single soliton 
generation, and can be used for linear scanning purposes instead of angular scanning. 
Switching in these scanners is much sharper than in previous uniform nonlinear 

scanners.
In chapter 14 we propose a novel three guide soliton coupler which makes use of 

graded nonlinearity. This coupler is simpler to operate and more efficient than ones 
found in the literature which make use of uniform nonlinearities. The switching here is 
dependent entirely on the input power rather requiring an additional control beam.

Conclusions and further work are finally presented in chapter 15.
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CHAPTER 1

NONLINEAR MATERIALS

1.1 INTRODUCTION
The all-optical components studied in this thesis all make use of nonlinear materials 

with intensity dependent refractive indices (Kerr effect). In this chapter, the origin of 
the intensity dependent refractive index is discussed, starting from the ideal Kerr effect 
originating from bound-electron effects. Other effects which also lead to intensity 
dependent refractive index changes in practical materials, such as free carriers, 
bandfilling, and two photon absorption are next described, followed by a review of a 
selection of nonlinear materials including semiconductors, semiconductor doped 
glasses, active semiconductor materials, glasses, erbium doped glasses, and liquid 
crystals.

1.2 BOUND-ELECTRON NONLINEARITIES (THE KERR EFFECT)
The classical model for nonlinear effects in materials is the Lorentz forced oscillator 
model. The electric field of the light provides a driving force which drives oscillators 
consisting of electron clouds bound to their respective atomic nuclei. For this 
discussion we assume that the light is single frequency and that it propagates inside an 
isotropic dielectric medium. The electric field shifts the electron clouds from their 
equilibrium positions creating separated positive and negative charges or dipoles. At 
low light intensities, the displacement of each electron cloud varies linearly with the 
electric field. Each electron cloud therefore oscillates around its equilibrium position at 

the same frequency as the incident oscillating field. The oscillation of the dipole is 
accompanied by absorption and temporary storage of energy from the incident light as 
the displacement is increasing, and release of this energy back into medium when 
decreasing. The frequency of the radiated light is the same as the frequency of the 
oscillating dipole and the incident light. However it is phase-shifted with respect to the 
incident light because of the absorption and radiation processes. Macroscopically the 
material appears to have a refractive index which induces a phase-shift on the light 

propagating through it.
The electron clouds oscillate with larger amplitudes for higher light intensities.
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When the light intensity becomes very large, the displacement of the electron cloud 
becomes a nonlinear function of the driving field at the extremities of displacement. In 

effect the oscillation of the electron cloud resembles a sinusoidal wave with distorted 
peaks and troughs. Since the oscillation is therefore no longer purely sinusoidal it is no 

longer oscillating at a single frequency. In other words, each dipole oscillates at several 

different frequencies simultaneously and radiates all these frequencies back into the 
medium. These emitted frequencies are all phase-shifted with respect to the incident 
light. In addition to the linear contribution at the fundamental frequency (O, there is a 
nonlinear contribution at frequency œ (proportional to the intensity of the light) due to 

third-order nonlinear effects (mixing of a>, - 6), and a> field components), plus 
nonlinear contributions at dc and 2(0 due to second-order nonlinear effects, and 
components at multiples of the fundamental frequency such as 3co, 4o) etc. Normally 
only the linear and nonlinear components at the fundamental frequency O) build up 
cumulatively. The higher frequency components (which give rise to second, third 
harmonic generation etc) only build up if there is some kind of phase matching.

All m aterials exhibit third-order nonlinear effects, whereas only non- 
centrosymmetrical materials exhibit second-order effects. In centrosymmetrical 
materials such as SiOj optical fibres, where there is an inversion symmetry, an intense 
light beam distorts the oscillation of the dipoles equally in both directions that it is 
applied. This means that dc components are absent in these cases and therefore second- 
order nonlinearities, which are responsible for dc components, are also absent.

The greater the order of the nonlinearity, the smaller the nonlinear effect. Third- 
order nonlinearities which give rise to intensity dependent refractive indices are 
normally quite weak effects. Large intensities are needed to exploit them. Apparently 
this might require large powered pulsed lasers, making it seem impractical outside the 

laboratory. However optical fibres and integrated optical waveguides with thicknesses 
of the order of microns have made nonlinear optics at low powers a practical reality. 
Since the fields are confined to narrow regions, moderate powers can now produce 
very intense beams. The intensities become so high, that appreciable refractive index 
changes can be induced in the medium [1-6]. Moreover, use of waveguides allows 
diffractionless propagation for sufficient distances to allow nonlinear effects to fully 

take place.
Recently it has been shown that it may be possible for fields to travel inside a bulk 

medium without need for a waveguide. These fields ‘create’ their own waveguides in 
the nonlinear medium and are called spatial solitons. The application of spatial solitons 
for ultrafast signal processing systems still awaits the search for suitable nonlinear 
materials. At present materials do exist which support spatial solitons at low powers but
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are either too slow or lossy. Eventually suitable materials will be found opening up new 

possibilities unavailable to integrated nonlinear optics today.

1.3 DYNAMIC NONLINEARITIES
The bound electron nonlinearities so far are not associated with real exchange of energy 
between the light and the medium. The energy is only temporarily stored in the dipoles 

before being released again. Dynamic nonlinearities [7], on the other hand refer to cases 
where real exchange of energy takes place between the light and the medium as in 
absorption of light to generate free carriers.

1.3.1 Nonlinearity due to free carriers
The nonlinearities associated with the Kerr effect are weak. They can be enhanced by 
using the resonance oscillation frequencies of the dipoles. These frequencies are 
associated with large absorption. Since absorption is related to refractive index via the 
Kramers-Kronig relationship, the refractive index also increases near the resonance. As 
the frequency of the field approaches the resonance frequency, the electrons oscillate 
with greater amplitudes, and finally break off to form free carriers.

As more free carriers are produced in the material the refractive index reduces. This 
is because the increased free carriers cause the density of bound-electrons to reduce, 
and since bound electrons contribute to refractive index (as explained in section 1.2 

above), the reduced bound-electron density causes a lowering of the refractive index. 
An empirical formula for the nonlinear refractive index can be derived. Firstly the 
refractive index is calculated in terms of the free carrier density using Lorentz’ model 
(or Drude model as it is also known [8]). The free carrier density is then related to the 
absorption by considering a two level atom, and equating the rate of carrier generation 

(which is proportional to absorption of light) to the rate of carrier recombination. Once 
the number of free carriers is calculated in terms of the absorption coefficient, it can be 
substituted back into the formula for refractive index derived by the Drude model to 
derive the nonlinear refractive index in terms of absorption to give [7-9]

e aT^
=

 ̂ 2nQm*hcô £Q

where a  is the absorption, 7J the recombination time, and «2 Ihe nonlinear refractive 
index defined by the refractive index n = riQ+ n^I , where is the linear refractive 
index, and I  the light intensity. We note from the equation above that the magnitude of 
«2 is proportional to absorption and the recombination time. Also that, since ^2 is
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negative, an increase in intensity causes a reduction in the refractive index.

1.3.2 Bandfilling nonlinearities
There is another kind of nonlinearity associated with resonance. It is due to bandfilling 
and is most often encountered in semiconductors. Free carriers are generated by the 
light intensity. They fill up the lower energy levels of the conduction band and block 
the transition of further electrons. Consequently the material becomes less absorbing. 

The reduction in absorption can then be related to a reduction in refractive index via the 
nonlinear Kramers-Kronig relationships [10-11]. The reduction in absorption and 
refractive index are both proportional to intensity. At very high intensities, the 

absorption reduces so much that the material becomes transparent.

The nonlinearities associated with bandfilling are quite large, but are not strictly 
processes. Photogenerated carriers unfortunately diffuse resulting in the non-local 
nature of the nonlinearity. The nonlinearities are also accompanied by a great deal of 
loss. In addition they saturate (material becomes transparent at large intensities), and the 
nonlinearities are slow (dependent on recombination times of the order of ns io jis).

1.3.3 Exciton enhanced nonlinearities
The nonlinearity in multiquantum well (MQW) semiconductor materials is enhanced 
just below the bandgap due to excitonic effects. Excitons are formed due to the 
coulombic attraction between photogenerated electron-hole pairs. The required binding 
energy leads to a resonance peak just below the bandgap. In bulk semiconductors at 
room temperature, there is a reduction in the lifetime of the electron-hole pair, which 
leads to the exciton peak reducing and widening. Since in bulk materials the exciton 
peak is very close to the bandedge, the two edges smear into each other, and excitonic 
effects appear insignificant. MQW materials however consist of many thin layers of 

alternating bandgap materials, and the difference between the bandgaps confines the 
electrons and holes to the lower bandgap materials. The resulting localisation increases 
the lifetime of the exciton and therefore increases the binding energy which causes the 

excitonic peak to be further away from the bandedge. Consequently at room 
temperature, the exciton peak remains distinct from the bandedge.

I The exciton resonance peak can be used for nonlinear effects. Here the light 
intensity causes an increase in the photogenerated carrier density which leads to a 
reduced absorption peak. The reduction in the absorption peak occurs because the 

increased carrier density introduce fields into the medium which ‘screen’ the field 
components holding the excitons together, thereby reducing their lifetimes.
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1.4 TWO PHOTON ABSORPTION
Two photon absorption (TPA) [12-16] is a positive non-resonant nonlinearity. It occurs 
when two photons assist the virtual transition of an electron from the valence band to 

the conduction band. The first photon enables the transition from the valence band to a 
virtual level within the bandgap. The electron stays there only for a short time and if a 

second photon arrives in the intervening time, it can complete the transition of the 

electron to the conduction band. The process is dependent on the number of photons 
available, as the more photons there are the more chance that it occurs. Therefore TP A 

is an intensity dependent absorption process which can be related to the intensity 
dependent nonlinear refractive index via the nonlinear Kramers-Kronig relationships. 
The absorption is given by

a = a^+

where Œq is the linear absorption coefficient, p 2  Ihe two-photon absorption coefficient 
and I  the intensity of light. The magnitude of the nonresonant nonlinearity has a 
maximum near the TPA edge [17] at the half-bandgap. The nonlinearity at or below the 
TP A edge is positive. The nonlinearity associated with substantially above the TPA 
edge is negative in semiconductors.

Since TPA is not dependent on photogenerated carriers, it results in very little 
absorption, and consequently associated with only a small nonlinear refractive index. 
TPA is also a very fast process since it is a virtual process, not limited by the 
recombination times of photogenerated carriers or thermal effects.

1.5 NONLINEAR MATERIALS
A selection of some of the more commonly used nonlinear materials is now reviewed, 
including semiconductors, multiquantum well materials, glasses, semiconductor-doped 
glasses, erbium-doped glasses, and liquid crystals.

1.5.1 Semiconductors
Semiconductors are of interest since their properties are well-known from electronics 

and linear optics. They have giant nonlinearities near the bandgap resonance. 
Theoretical reviews can be found in [18-19].

Above the bandgap, the nonlinearity is enhanced due to bandfilling. When free 
carriers become generated, they rapidly fill the lower energy levels by exchanging 
energy with each other (electron-electron and hole-hole interactions) and with the 
lattice, on a time scale of <300fs  until they reach a quasi-equilibrium state. As the
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recombination time is quite slow, the quasi-equilibrium population of excited carriers is 

maintained by the optical excitation preventing further excitation of carriers. The 
bandfilling reduces the absorption, saturating it completely at the bandedge (resulting in 
a blue-shift in the bandedge being observed- the dynamic Moss-Burstein shift). 
Resonant (above bandgap) nonlinearities are large but they are also quite slow 
compared with nonresonant (below bandgap) nonlinearities, since the speed of the 

nonlinearity is limited by the long carrier recombination time (of the order of ns to /is).
There is also a large nonlinearity associated with heating, due to the carrier-carrier 

collisions, but the nonlinearity is slow and positive (opposite sign to the bandfilling 

nonlinearity).
Finally, there is a nonlinearity associated with the bleaching of the excitonic 

absorption peak. However this nonlinearity is negligible in bulk semiconductors at 
room temperature, and is mostly observed in MQW materials.

1.5.1.1 Below bandgap (non-resonant) nonlinearities in semiconductors
Below the bandgap the nonlinearities are mostly due to bound-electrons and TPA. TPA 
is large for photon energies above the half-bandgap, but small for photon energies 
below the half-bandgap. The peak in the nonlinear refractive index occurs exactly at the 
half-bandgap. The absorption associated with TPA deteriorates the switching of 
devices. In order to make use of the nonlinearity associated with TPA, but avoid the 
dissipation, the device should be operated just below the half-bandgap [20]. The sign 
of the nonlinearity associated with TPA is positive above the half-bandgap (and 

negative below). Bound-electron nonlinearities (the true effect) are naturally 
positive in sign.

It was found in ref. 21 that above the half-bandgap, TPA imposes severe limitations 
on the maximum phase change obtained via ultrafast nonlinearities, irrespective of the 

physical length of the device. In ref. 22 a GaAs/GaAlAs MQW waveguide was 
operated near the half-bandgap resonance to minimise TPA. Large nonlinearities were 
observed, but with low absorption. The nonlinearity was of the order of 

«2 = 9 X 10""  ̂cm^/W at \.55/im.
Nonlinear directional couplers have also been fabricated using the nonlinearity just 

below the TPA edge [23], where the nonlinearity was high («2 = 6 x 10"'® m^/W) but 
the absorption low. A \.5/im thick AlQ ^fiüQ^2 ^ s  guiding layer of length 6.25mm was 
used. The switching was fast (response time of < IOO/5) and associated with very low 

losses.
All-optical demultiplexing of 500fs  pulses has also been demonstrated in a 2cm
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length AlGaAs nonlinear coupler at 1.55fim [24].

1.5.1.2 Multi-Quantum Wells
MQW structures exhibit exciton resonances near the band-edge. The nonlinearity is 

larger than in bulk [25-26] due to the saturation of the exciton peak via coulomb 

screening of the plasma and bandfilling. Although the nonlinearities are large for the 
resonant effect, the drawbacks include losses, saturation, long recovery times, and 
thermal effects. The nonlinearity is around «2 = 10 '” -10"'^  m^/W, and loss 
coefficient a  = 12.9cm"' [27].

Nonlinear directional couplers have been modelled [28] and constructed [29-32] in 
GaAs-AlGaAs MQWs. In order to obtain large nonlinearities the wavelength was 
chosen to be close to the bandedge, but due to high absorption large losses were 

incurred. In [29-32] the losses were especially large because the nonlinearity was 
situated in all regions of the device. In order to minimise the losses but still make use of 
the enhanced bandedge nonlinearity, only the coupling region can be made nonlinear 
[33-35].

Picosecond all-optical switching using excitonic enhancement was observed by Jin 
et. al. [36] in GaAsjAlGaAs MQWs. Nearly complete switching occurred. The power 
requirement was around 10 W for a 1.2mm coupling length. A cavity dumped dye laser 
synchronously pumped by a mode-locked frequency-doubled Nd: YAG laser was used 
to generate the lOpj pulses of variable repetition rates.

1.5.2 Glasses
Although the nonlinearity in glasses is low, they can be drawn into long lengths of 
fibre. They can also be doped to allow for resonant nonlinearities (as in semiconductor 
doped glasses described below). The response time of the nonlinearity would then be 
related to the fluorescence time of the dopant. The non-resonant nonlinearity in glasses 

is very close to the ideal processes since it is of bound-electron origins. Although it 

is very small, it is also very fast (10"'^5).
The first demonstration of a NLDC capable of substantially complete all-optical 

switching at subpicoseconds was made in dual core fibre [37]. The switching power 
was 850W, and the coupler length 2.0m. NLDCs with 100/y switching times have 
also been demonstrated in a dual-core-fibre nonlinear couplers [37]. The length of the 
device was very short 0.5 cm, but required large switching powers, 32kW. A 
colliding-pulse mode locked dye laser and a copper-vapour-laser pumped dye amplifier 
system was used. The laser produced the 100fs  pulses at a wavelength of 620«m,
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amplified at an S. 6kHz repetition to 100«7. The nonlinear refractive index was 
«2 = 3.3 X 10~̂ ° m ^jW . They mentioned that the switching power could be reduced to 

much lower values by using higher nonlinearities, longer coupling lengths, and smaller 

core sizes, so that mode-locked semiconductor lasers could be used instead.
Spatial solitons have been observed in glasses [38-39], Using a gaussian field, it 

was found that spatial solitons were formed at around AQQkW. At low powers 
however, the effect of the nonlinearity was small, and the field diffracted. At much 
higher powers (around X.25MW) TPA affected the shape of the spatial soliton. Since 

TPA is an intensity dependent absorption, the peak of the soliton goes through a more 
lossy material than the sides. Therefore the peak reduces with increased input power, 

whereas the sides increase (forming a three-peaked distribution). Eventually the centre 
of the field reduces to zero, and two spatial solitons are formed on either side of the 
peak, which move away with distance or with power. The system used 15fs  pulses at 

a repetition rate of 8.6kHz and a wavelength of 620nm . A colliding-pulse mode-locked 
dye laser and copper-vapour-laser pumped dye amplifier arrangement was used to 
excite the sample. The arrangement resulted in several microjoules. The waveguide 
layer was 5. Ojj.m thick, and the nonlinearity «2 = 3.4 x 10~̂ ° cm ^jW .

1.5.3 Semiconductor-doped glasses
Semiconductor doped glasses have large nonlinearities (due to bandfilling) which are 
very fast (tens of picoseconds). The nonlinearity is of the order of «2 = 10"'^m^/W 
[40] in CdS^Se^_^ doped glasses [41-42] at a wavelength of around 0A9jiim (ie large 
bandgap). Because of long free carrier lifetimes, large quasi-equilibrium carrier 
population can be developed, which allows semiconductor doped glasses to be suitable 
as saturable absorbers in Q-switched lasers.

1.5.4 Erbium doped glasses
Erbium-doped laser amplifiers have high positive nonlinearities of the order of a 
thousand to a million times greater than those of silica [43]. The linear amplifying 
properties of erbium-doped lasers (EDL) and amplifiers (EDLA), are now reviewed 

before discussing the nonlinear effects.

1.5.4.1 Review of erbium doped fibre lasers and amplifier
The advantage of using fibres and waveguides for optical amplification is that the 
cross-sectional area of the core is very small allowing high population inversions to be 
developed for moderate pumping powers. Rare earth doping of silica leads to the 
material becoming active (reviews of general rare-earth-doped fibre lasers and
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amplifiers can be found in [44-47]).
Erbium doped lasers and amplifiers are of particular interest since they lase at two 

important wavelengths 1.54/rm and 2.1 fim. The wavelength \.5Ajim is useful for long 

distance communications, since it is situated in the low loss window of silica fibres and 
in the anomalous dispersion region for fibres where bright solitons exist. The 2.1 fim  
wavelength corresponds with the low loss window for fluoride glass. It is also a 
wavelength where laser light is strongly absorbed by water, making it suitable for 

medical applications and for eye-safe lasers (the water layer covering the eye absorbs 

the laser light before it reaches the retina).

Erbium doped lasers and amplifiers are essentially three level systems. A pump 
beam excites erbium ions to a high energy pumping level, from where they relax 
rapidly (by interacting nonradiatively with the lattice and releasing phonons) to a lower 

metastable level The lifetime of the ions at the metastable level is quite long 
(10-15m.y), and so a large quasi-equilibrium population inversion can be formed 
allowing the material to become active. (As a side-note, the long recombination 
(fluorescence) time of erbium makes this material useful for Q-switching applications 
(where the bandfilling blocks absorption [48] and makes the material transparent)).

The erbium-doped laser has a high quantum efficiency (for converting the pump 
power to the laser power), and has a very broad fluorescence spectrum (BOnm [49]), a 
very narrow lasing wavelength, and an output power which can range from milliwatts 
to more than watts depending on the pumping power.

The pumping of EDLs can be implemented using laser diodes [50] at three possible 
wavelengths 807«m, 9S0nm, and 1480«m. Unfortunately the SOlnm pump band is 
problematic due to excited-state absorption (ESA), ie. the pumping causes ions in the 
upper lasing level ) lo be promoted to still higher levels, thereby reducing the 

pumping efficiency.
Erbium doped fibre amplifiers (EDFAs) [51-52] have high single-pass gains 

(45dB) due to high population inversions resulting from the long upper-state lifetime 
and narrow optical confinement. EDFAs have polarisation independent gains [53], and 
low noise figures (near quantum limit [54]), and are associated with very little cross­
talk between signals of different wavelengths even deep in saturation. EDFAs also have 
high output power saturation [55] (greater than 0 dBm). The output power saturation is 
due to amplified spontaneous emission (ASE), resulting from the saturation of the gain 
due to depletion of the upper state. The output saturation power can be increased by 
increasing the pumping power (this causes the population inversion to be restored 

before it is depleted).
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1.5.4.2 Using erbium-doped silica in integrated optics
For some applications, it is desirable to have erbium-doped silica in integrated 
waveguide form instead of optical fibre (for example for observing bright spatial 
solitons). In these cases the distances have to be short; one does not have the luxury of 

unlimited lengths as afforded by optical fibres (eg. 10 metres as in [52]). However, 
since the lengths are so short in integrated form, the gains achieved are small unless the 

erbium concentration is increased significantly. However, in pure silica there is a 
certain limit to which the ion concentration can be increased. When there is a high 

concentration of ions, the close proximity of the ions causes them to interact. The ions 

may form microcrystals ( ‘clustering’) removing available ions for the population 
inversion. The close proximity of excited ions also causes them to interact via ‘up- 

conversion’ [56-57]. Here exchange of energy between two ions results in one ion 
being excited to a still higher state, whilst another ion relaxes down to the ground state. 
This process also leaves less ions available for population inversion.

Due to clustering and upconversion, the maximum doping concentration is limited. 
Until a few years ago it was believed that the minimum length for rare-earth doped fibre 
to achieve useful gains was around Iw, clearly unsuitable for integrated optics 
applications.

The problems have recently been resolved by use of co-dopants such as Al or P 
[58-59], and anti-clustering co-dopants [60]. Very high rare-earth concentrations have 
been demonstrated in a variety of hosts obtained by different fabrication processes [61- 
63]. Gains of around 2\dB  over 2.4cm [62] have been reported recently.

1.5.4.3 Nonlinear refractive index in erbium-doped fibres
The nonlinearity in erbium-doped laser amplifiers is quite high, of the order of a 
thousand to a million times greater than those of silica [43], but unfortunately it is 
accompanied by saturation and loss. The nonlinearity is due to changing of the relative 
population densities between the upper lasing level and the lower lasing level [43, 64- 
65]. This is achieved by altering the pumping intensity, so that the population of the 
upper lasing state is altered, thereby varying the refractive index [65] (recall there is a 
nonlinearity associated with changes in carrier density). The nonlinearity is also to a 
lesser extent due to the gain saturation, ie at high powers the stimulated emission 
depletes the upper state population reducing the gain. The reduction in gain causes an 
increase in the refractive index [64].

A theoretical calculation of the nonlinear refractive index was given in [43, 64]. A 

nonlinearity of the order of «2 = 7.0 x 10"'^ m^/W was estimated [43]. Nonlinear 
effects in erbium doped glasses have been studied here at UCL using the Finite Element
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Method in combination with Runge-Kutta [10,66].
All-optical switches have been demonstrated experimentally in erbium doped 

integrated fibres and waveguides. Optical switching in twin-core erbium-doped fibres 
was reported in ref. 67. The switching power was < \m W  using a fibre length of 

2.26m and a measured nonlinear refractive index of rij = 3.917x 1 0 " ' ^ The 
saturation power was 5mW. In ref. 68 an InGaAsP laser diode was used to pump a 
nonlinear switch using a two-mode erbium-doped fibre. The pump power was in the 
milliwatt range. In ref. 69 all-optical switching in an elliptical-core two-mode fibre was 

observed with pump powers of 1.6W with 33m long fibres. In ref. 70 the nonlinear 
refractive index of erbium-doped integrated-optical devices was estimated to be
1.4 X 10~''‘ IW  but with a slow relaxation time of 6m s .

All-optical switching has also been observed in an 8mm long Nd  -doped two-mode 
channel waveguide [73]. The switching time was around 410jis at a repetition rate of 

IkHz. The nonlinear refractive index was estimated at 10"’̂  m ^jW , with a pump power 
of around I m W . The gain of the waveguide was around l5dB  at 1064«m.

1.5.4.4 Semiconductor laser amplifiers
Semiconductor laser amplifiers exhibit instantaneous negative nonlinearities, and slow 
positive nonlinearities. The instantaneous negative nonlinearity is due to dynamic 
carrier heating (DCH) [72-79], where ‘hot’ electrons are generated from free-carrier 
absorption^ and TP A. The electrons then relax rapidly to the bottom of the conduction 
band (cooling process) and block the absorption of further electrons, so reducing the 
refractive index via Kramers-Kronig [64]. Since the processes are all either ‘virtual ‘ or 
intraband, the nonlinearity is instantaneous.

There is also a slow (interband) positive nonlinearity due to spectral hole burning, 
ie. the intense field leads to high stimulated emission rates depleting the upper state 
population and reducing the gain [80], leading to an increase in the refractive index via 
Kramers-Kronig [64]).

Typical values for nonlinearity in InGaAsP optical am plifiers, are 

nj = -3 ,x lO - '‘ mVW  ̂ [80], or ru, = -Z x lQ - '^ m ^ W  [79].

T Free carrier absorption occurs when free carriers are excited to still higher energies by 

incoming photons or by phonons to produce what are known as ‘hot carriers’ [8,81]

1.5.5 Liquid crystals
Liquid crystals have large positive nonlinearities and have been used in experiments to 
demonstrate nonlinear guided waves [82], bright spatial solitons [83-84], and for
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modelling nonlinear directional couplers [85]. The nonlinearities originate from thermal 
and orientational effects. Some of the liquid crystals which have been considered so far 

include MBB A and CS2 . Liquid crystal MBBA has a large positive nonlinearity of the 
order of 10~̂  m^jW  [82], and capable of exceptionally large index changes before 
saturation. However the nonlinearity is very slow ( - 55) and accompanied by large 
losses (loss coefficient a  = 20cm'^). MBB A has been used in experiments to 
demonstrate nonlinear guided waves [82], using powers of the order of 50mW. 
Another material, CS2  has a smaller nonlinearity than MBBA, «2 = 3.xlO"'* m}/W, but 
a much faster response time (2ps)  and has been used to demonstrate bright spatial 

solitons [83-84].

1.6 C O N C L U SIO N S
There has been rapid progress in the search for suitable nonlinear materials. However 
the search has still far to go. The materials studied so far all have trade-offs. The 
materials with the largest nonlinearities are either very lossy or slow. The ones which 
are fast and lossless have small nonlinearities and require pulsed lasers to exploit them. 
For some applications it is required that the nonlinearity should be positive in sign (for 
example to study bright spatial solitons). However many of the large nonlinearities are 

due to resonance enhancement and are negative in sign.
Liquid crystal MBBA has a large positive nonlinearity, but is not suitable for 

ultrafast signal processing since the nonlinearity is very slow. CS2  is much faster, but 
unfortunately has a small positive nonlinearity.

Erbium doped glasses look promising. They result in positive nonlinearities 
reported to be a million times greater than glass.

Recently cascaded nonlinearities [eg. 86] have been proposed where large nonlinear 
phase-shifts can be induced with very little absorptive losses. Cascaded nonlinearity is 
implemented using the second-order susceptibility in non-centrosymmetric materials 

[87] by up-converting light to its second-harmonic and then subsequently down- 
converting it back to the fundamental. Large nonlinear phase-shifts of the order of K to 

2 k  have been observed in quasi-phase-matched KTP waveguides [88].
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CHAPTER 2

SPATIAL AND TEMPORAL SOLITONS

2.1 INTRODUCTION
Solitons are pulses of light which travel unchanged for long distances. They were first 

discovered in water waves in 1838 by J. Scott Russell [1] and proposed for long 
distance fiber communications in 1973 by Hasegawa and Kodama [2].

Two main types of solitons exist: spatial and temporal. Spatial solitons are field 
shapes which maintain their shapes by balancing self-focusing with diffraction. They 
have future applications in construction of waveguideless components, eg. for 
switches, to carry light by light, to switch light using light, for lossless switching, and 

as scanners.
Temporal solitons (review in [3]) are pulses in time which maintain their shapes by 

balancing self-phase-modulation with dispersion. They can be used for pulse 
transmission for commercial long distance optical communications, in conjunction with 

erbium doped amplifiers.
Spatial and temporal solitons can be further classified into bright and dark solitons. 

Bright temporal solitons occur when the nonlinearity is positive and the group velocity 
dispersion negative (anomalous dispersion); dark temporal solitons occur when the 
nonlinearity is negative and the group velocity dispersion positive (normal dispersion).

The only material requirement for the propagation of bright spatial solitons is that 
the nonlinearity should be positive, and for dark solitons is that it should be negative. 

The sign of diffraction unfortunately cannot change unlike that of dispersion.
In this chapter the latest literature on spatial and temporal solitons is reviewed to set 

the background for later chapters.

2.2 SPATIAL SOLITONS
2.2.1 Bright spatial solitons
Fields which are not supported by waveguides broaden due to diffraction as they 
propagate. Bright solitons preserve their shapes in positive nonlinear media, by 
balancing the effects of self-focusing with diffraction. The self-focusing occurs because
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the local intensity at the peak of the field induces a greater index change than the sides 
and is consequently slowed down with respect to the sides. A curved phase-front then 

results which focuses the field inwards. In the limit when the self-focusing balances 
with diffraction a bright soliton forms.

Bright spatial solitons are unstable in three-dimensional médiat [4] because they are 

subjected to two transverse directions for diffraction. A calculation of the ‘critical’ 
power [4] needed for the existence of bright solitons in these media reveals that the 
critical power is a constant. This is clearly unstable, since if the power is increased 
slightly from the critical value, the soliton collapses uncontrollably, and if the power is 
reduced slightly from critical, the soliton diffracts uncontrollably. By limiting the 

diffraction to one transverse direction however [5], it is possible to form stable spatial 
solitons. In this case, the critical power is dependent on the width of the soliton. An 
increase of power causes the field to narrow due to self-focusing, and the narrowing 
continues until a width is reached where self-focusing balances with increased 
diffraction (the increased diffraction is because narrow fields diffract more- as in an 
aperture). Conversely if the power is reduced, the spatial soliton increases in width. 
The diffraction can be limited to one transverse direction by using a planar optical 
waveguide removing the diffraction from the other direction. Alternatively using highly 
elliptical beams makes it possible to excite spatial solitons in bulk media without the use 
of waveguides. In this case the diffraction is in one transverse direction, because it is 
negligible in the wider part of the beam.

Spatial solitons are particle-like waves. Two spatial solitons attract or repel each 
other depending on their relative phases. If the solitons are in phase, they attract. Each 
soliton provides an increasing index change away from the other soliton. Two out of 
phase solitons repel because each soliton provides a decreasing index change away 
from the other soliton. The repulsion between out of phase solitons can be exploited for 
constructing a tri-state switch [6] where a control soliton is applied to one or the other 
side of a signal soliton in order to send it to one direction or the other and be captured 

by a suitably placed waveguide.
Bright spatial solitons have been observed in photorefractive materials, liquid 

crystals, glasses, and LiNbO^.

tRecently it has been shown theoretically [7-9] and experimentally [9] that bright 
spatial solitons can exist in saturable bulk three-dimensional materials.

2.2.2 Dark spatial solitons
A dark soliton is a depression in a constant field [4], and occurs in negative nonlinear
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materials. Dark spatial solitons have an advantage over bright spatial solitons in that 
they are stable in three dimensions [10]. The fundamental dark soliton is a black 
soliton, which has a zero intensity minimum. To be a black soliton [4], the field must 

be zero at its minimum and there must be a step change in phase across the soliton (this 
phase shift can be induced by placing a glass slide to cover half the input beam).

Dark solitons can be generated experimentally by placing an object such as a notch 
or a thin wire to block parts of the beam [4].

2.2.3 Interaction between vector spatial solitons [16-17]
So far we have discussed scalar solitons with equal states of polarisation. The 
interaction of vector solitons which have different polarisations (or sometimes different 
wavelengths) produces other results [16]. The collision between vector solitons is 

inelastic. If two solitons with orthogonal linear polarisations collide, then after the 
collision each soliton picks up some energy from the other orthogonally polarised 
soliton, and their linear polarisations become elliptical, with the dominant part being the 
original polarisation. The collision is strongly dependent on the angle with which the 
solitons approach each other. If the angle is small, then the solitons merge. If the angle 
is large, then the solitons eventually separate after several rapid interactions. The 
advantage of orthogonally polarised vector solitons over scalar solitons is that the 
interaction is not dependent on phase [16]. Therefore parallel, orthogonally polarised 
vector solitons do not attract or repel each other as scalar solitons do. Vector solitons 
have been observed in photorefractive materials [18].

2.2.4 Light carrying light via cross-phase-modulation
It is possible for a high power pump soliton to form a waveguide so that a weaker 
power probe beam of a different wavelength can co-propagate by means of cross- 
phase-modulation [19]. This has been demonstrated experimentally using bright spatial 
solitons in liquid crystal CS2  (with nonlinearity = 3.xlO"'^ rn^/W, and fast response 

time of 2/75) [20-21]. The wavelength ratio governs the amount

of cross-phase-modulation [19]. The linear refractive indices «01,2 ^^0 for A, and Xj 

respectively. The ratio has to be less than or equal to V2 for the probe beam to be 
supported by the induced guide. If it is less, then the induced guide can support more 

than one mode. If the ratio is equal to V 2 , and the shapes and sizes of the probe and 
pump beams are equal (see also [22]) (irrespective of the intensities), the two beams 
maintain their widths as they propagate. In [20] the relevant wavelengths were 
A, = 1.06/im and Â  = 0.53//m, and the length of the liquid cell was 50mm. In [20-21, 
23] elliptical beams were used to approximate quasi-two dimensional bright spatial
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soliton in bulk materials.

For a nonlinear material where the nonlinearity originates from a molecular 
reorientational mechanism (like liquid crystals), if the polarisations of the pump and 

probe were parallel, then the pump carries the probe. However if the polarisations were 
orthogonal, the pump can split the probe beam [20] since the induced waveguide 
becomes antiguiding. This fact could be used to construct a polarisation beam splitter. 
In a true Kerr nonlinear material it is possible to self-focus two orthogonally polarised 

beams providing their shapes are similar [22].

Two bright spatial solitons which are orthogonally polarised have an interaction 
which is phase insensitive. In [20], it was shown how a weak signal beam could be 
captured by an orthogonally polarised strong pump soliton, by launching the two 
signals towards each other so that they collide at an angle. The capture was 
accompanied by radiation losses. Furthermore, the capture efficiency decreased with 
increasing angle. The experiment was performed in an AlGaAs waveguide, with 
photon energies ju s t below  the half-bandgap. The nonlinearity  was 
«2 = 1.3X 10“‘̂ m^/lT, and the power around 550W. The wavelength was 1.55/xm, 
and 610 fs  pulses at 16MHz were used.

It is also possible for dark solitons to form waveguides carrying other waves 
through cross-phase-modulation or photorefractive effect. These waveguides can be 
steered by applying a phase ramp across the soliton [24].

Two weak probe beams guided by dark spatial soliton guides placed in proximity 
can couple with each other [10,20].

2.2.5 Light carrying light using photorefractive materials
Photorefractive materials [25] use a combination of photoconductivity and the 
electrooptic effect to induce a refractive index change. The photoconductivity results in 
charge carriers being generated, migrating and becoming trapped at impurity sites. The 
trapped charges then produce internal electric fields which modify the refractive index 
through the electrooptic effect.

Spatial solitons have been observed in photorefractive (PR) materials recently [26- 
27] due to the balancing between self-scattering and diffraction. The sign and 
magnitude of the nonlinearity (due to self-scattering) in PR materials is determined by a 
dc field applied to the crystal. For high voltages, large amount of self-focusing occurs. 
When the voltage is reversed, the nonlinearity changes sign [26] (becomes diffracting). 
Dark solitons have been generated in (SEN:60) using dc v o lta g e s  o f
- 4 0 0 V [28].

The properties of spatial solitons in photorefractive materials are much different to
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those of Kerr solitons. They can be formed at very low powers since the efficiency of 
the self-scattering process is not dependent on the absolute light intensity [27] (eg. only 

was needed at 451nm  wavelength in [26]). As a result, these solitons are not 
affected so much by losses and gains as Kerr solitons are. They retain their shapes even 
in the presence losses and gains. Bright spatial solitons are also stable in three 
dimensions in photorefractive materials in contrast with Kerr media [26].

The nonlinearity in PR materials is very slow. A nonlinear refractive index change 
can remain unaltered for many hours or even several days in the dark unless incoherent 
light is applied which erases the nonlinearity immediately.

The slowness of the nonlinearity and the independence of the magnitude of the 
nonlinearity on the soliton power, can be utilized to form temporary waveguides. One 

remarkable result is that a weak power (microwatts) soliton at one wavelength (eg 

451nm  [28]) can guide a much h ig h e r  power probe beam (watts) at another 
wavelength where the material is photo-insensitive (eg. 633nm  ).

Photorefractive spatial solitons can also be used to construct temporary and erasable 
directional couplers.

2.2.6 Spatial soliton x-junctions and couplers
By launching two pump solitons towards each other at an angle, spatial soliton x- 
junctions and couplers can be formed [29]. Two approaches are possible. Firstly, weak 
probe beams can be linearly coupled if they are copropagated with the pump solitons. 
Secondly, using materials with optical memory (so that the change in refractive index 
can be kept after the intense beam is switched off) recorded structures can be created 
and be used as linear couplers and x-junctions. Since the collision of (scalar) solitons is 
elastic (ie the solitons recover their original form after the collision with no associated 
radiation) these devices are also lossless. Another advantage is that the lengths of these 
devices are much shorter than those of standard couplers. For equal pump and probe 
wavelengths, bright soliton couplers transfer more light as the incident angle increases, 
while dark soliton couplers are remarkable due to the fact that they couple 100% of the 

light at all angles [30]. Coupling of spatial solitons, where the solitons reside in 
different planar waveguides has also been studied [31].

2.2.7 Optical vortex solitons
Optical vortices are circular beams possessing uniform amplitudes, but with 2 k  helical 
phase ramps centred about their dark cores [32-33]. The vortex soliton forms a three- 
dimensional dark graded index fiber within the bulk material. It can be launched [34] by 
introducing an optical vortex using the ‘donut mode’ [35] from the large intracavity
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aperture of a laser. Vortex solitons have been demonstrated experimentally in PR 
materials [35].

2.2.8 Spiralling spatial solitons
Two in-phase bright solitons can be made to spiral [7] around each other in a three- 
dimensional material (using saturable nonlinearity) if they are released at skew angles 
relative to each other [7-8]. The principle is very similar to wave propagation in graded 
index fibres. In planar waveguides, the two solitons would periodically diverge and 
converge in planar fashion rather than spiralling.

Spiralling bright solitons have been demonstrated experimentally and numerically 
recently [9] in rubidium atomic vapour contained in a cylindrical Pyrex cell 200mm 
long. This was also the first demonstration of bright solitons in 3D saturable nonlinear 

materials.

2.3 TEMPORAL SOLITONS
Temporal solitons are pulses in time which use the nonlinearity of the material to 
overcome the effects of dispersion. The pulses preserve their shapes for several 
thousand kilometers and are very stable against perturbations [36-37]. They are in fact 
the only stable solution of the nonlinear Schrodinger equation. It can be shown that any 
pulse shape automatically reshapes itself into a temporal soliton as it propagates [38].

Bright temporal solitons [39] occur in the anomalous (negative) dispersion regime 
of the optical fibre, balancing the effects of dispersion with self-phase-modulation 
(SPM). The SPM introduces a frequency chirp on the pulse, which pushes the higher 
frequencies to the back and the lower frequencies to the front of the pulse. The 
frequency chirp occurs because the intensity in the steep edges of the temporal pulse is 

changing rapidly (in time) and induces a rapidly changing phase shift. Since rapidly 
varying phase-shifts are equivalent to frequency shifts, the result is that there is a 
positive frequency shift for the back of the pulse and a negative frequency shift for the 
front of the pulse. The frequency shift for the middle of the pulse is zero, since it 
corresponds with an intensity maxima (zero slope). Anomalous dispersion counteracts 
the frequency chirp by enabling the higher frequencies to travel faster than lower 

frequencies, to preserve the shape of the pulse.
Dark temporal solitons [40] are rapid intensity dips in an otherwise CW 

background. They occur in negative nonlinear materials, where the normal (positive) 
GVD balances with SPM. Experimentally, dark temporal solitons are generated by 
superimposing a rapid dip on a broad (but finite duration) bright pulse by means of a 

driving pulse.
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The interaction between two bright temporal solitons is dependent on their relative 
phases ie two in-phase solitons attract, whereas two out-of-phase solitons repel each 
other. Two dark temporal solitons on the other hand always repel.
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CHAPTERS

LINEAR STRONG COUPLED MODE THEORY

3.1 INTRODUCTION
The principles of linear strong coupled mode theory (SCMT) [1-4] are reviewed in this 
chapter. By using the word ‘strong’ it is meant that the theory is applicable to strongly 
coupled guides. However, the theory is not just limited to strong coupling. It is also 
more accurate and consistent in the weak coupling regime than prior weak coupled 

mode theories (WCMTs) (eg those of Yariv [5-6], and Kogelnik [7] etc). The 

difference between SCMT and WCMT lies in a coefficient called the ‘overlap integral’ 
which is normally neglected in WCMTs. The overlap integral is the integral of the 
product of distinct and separate modes, taken over all space. If the modes are assumed 
to be orthogonal, as in WCMTs, then these terms are neglected. However by ignoring 
the overlap integrals inconsistencies can develop, especially when the guides are 
asymmetrical. The problem is that WCMTs predict equal magnitudes for the coupling 
coefficients for these cases. However physical reasoning alone tells us that the coupling 
coefficients should be unequal. Also it can be shown that WCMTs predict inaccurate 
values for the coupling coefficients and coupling lengths in symmetrical couplers. In 
nonlinear couplers, the effect of the overlap integral would perhaps be even more 
important than in linear couplers, because there are a large number of nonlinear 
phenomena which involve interaction between different modes.

Hardy and Streifer (H-S) [1] were the first to point out that the overlap integral 
should not be neglected from the coupled mode equations. The paper was later 
subjected to much criticism (discussed in more detail in chapter 6, section 6.1). 

However these criticisms should be put in context, since the essence of H-S paper 
regarding the overlap integral was correct. Snyder and co-workers [8-10] criticised H-S 

paper for being over-convoluted, requiring radiation modes, and breaking power 
conservation. These short-comings were easily overcome in later papers with the aid of 
more elegant techniques than H-S method, ie using reciprocity (Chuang [11]), and 
variational methods (Chuang [2], Haus et. al. [3], and Huang [12]). The derivations 
using variational methods were especially elegant and simple, since all they involved 

was a derivation of a variational expression for the propagation coefficient which was 
then differentiated with respect to the mode amplitudes to obtain the coupled mode
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equations. Snyder et. al. [8] had one further criticism where they questioned the 
accuracy of including the overlap integral in vector methods when using TM modes [1- 
3, 11-12] in the presence of abnormally strong guidance. They argued that scalar 

analysis was more accurate. This point was debatable (see chapter 6) and slightly 

academic [13] since it referred to the case of abnormally large index differences (core­
cladding index ratio of >1-5). From Snyder et aTs graphs [8] it can be observed 
that for TM modes, the curve corresponding to a vector method [2-3, 11-12] was 

slightly more accurate than the one for the scalar method in normal guidance. Snyder 
and co-workers have subsequently used the overlap integral in their own work, 
renaming it the ‘interaction coefficient’ (see eg. [13] for linear couplers, and [3] for 
nonlinear couplers). In this thesis TE modes are used together with the assumption that 
the guidance is much less extreme than the case referred to by ref. 8. A vector method 
is also preferred, since it is more accurate for these cases.

There have been other (more recent) criticisms of strong coupled mode theory (eg
[14]). However one should pay careful attention to the extreme numbers used and 
geometries discussed (see chapter 6 (section 6.1) for more details).

The overlap integral is also important for linear multiwaveguide couplers [4, 11,15- 
16]. It was mentioned by Hardy et al. [17] that when the guides are non-identical the 
effect of the overlap integral is important, even for weak coupling, otherwise large 
errors in the coupling length could arise.

3.2 LINEAR STRONG COUPLED MODE THEORY
The mode of a waveguide is defined as that field which propagates unaltered along the 
propagation axis of the waveguide. The mode must satisfy Maxwell’s equations and all 

the boundary conditions imposed by that waveguide geometry. As a result of this 
definition, modes of the same waveguide, and modes of different waveguides must be 
orthogonal to each other. Modes cannot couple power with each other otherwise they 
would alter with propagation and could not be called ‘modes’.

A mode satisfies Maxwell’s equations and the boundary conditions for one specific 
waveguide geometry. If the geometry however were to be altered (or ‘perturbed’) in 
some way, then coupling between the fields would then occur. The modes of the 
unperturbed waveguide geometry would no longer remain as modes in an altered 
geometry, since they do not satisfy exactly the boundary conditions of the altered 
geometry. As they are no longer modes, they are no longer orthogonal with each other 
because of the definition of a ‘mode’ given above, and can therefore couple with each 
other.

If two waveguides are held a large distance away from each other, then the
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geometry in the proximity of each waveguide is unaltered. The regions a long distance 
away are not so important because the guided field is negligible there. The modes of the 
isolated guides ( ‘e igen m od es’t )  propagate in this two guide system without changing 

or coupling to a great extent. However, if the waveguides are brought closer to each 
other, the refractive index in the proximity of each waveguide (where the field is non- 
negligible) is altered or ‘perturbed’ due to the presence of the other guide. Because of 

this perturbation, the eigenmodes no longer remain as ‘m odes’ in the altered 
geometries. Therefore they no longer remain orthogonal with respect to each other and 

can couple with each other.

To replace the old 'eigenmodes' (which are now coupled), there now appears two 
new 'superm odes't for the composite system. The supermodes are orthogonal and 
propagate undisturbed along the system at different speeds, periodically beating with 
each other. The beating appears to the observer as periodic power transfer (with 
propagation distance) between the eigenmodes. Half the beat length appears as 
complete power transfer from eigenmode 'p' to eigenmode 'q' and is called the 

'coupling length'.

tNote: in this thesis the modes of a single guide are called ‘eigenmodes’ and the modes 
of a superstructure (two or more guides) are called ‘supermodes’.

3.3 COUPLED MODE EQUATIONS
There are many ways to calculate the coupled mode equations, and as long as no terms 
are neglected, all these methods lead to the same equations. The main idea is this: an 
isolated waveguide labelled ‘p ’ embedded in its surrounding medium is taken as the 

unperturbed system (see Fig. 3.1b below). The waveguide supports a single 
eigenmode (ie its guiding mode) which travels undisturbed along the guide and is 
orthogonal to eigenmodes belonging to other waveguides. This system is perturbed in 
such a way that another guide 'q' appears alongside the first guide. Coupling between 
the eigenmodes of guides 'p' and 'q' (Fig. 3.1a) occurs only because the permittivity of 
guide 'q' acts as a perturbation to guide 'p' (Fig. 3.1c). Due to the very presence of 
guide ‘q’, the permittivity of the surrounding medium to guide 'p' is increased. This 
increase in the permittivity (a ‘perturbation’) changes the conditions necessary for 

eigenmode 'p' to propagate unaltered (the unperturbed system was necessary for this). 
The result is that eigenmode 'p' no longer remains the mode and no longer remains 
orthogonal to eigenmode 'q'. In summary, the two guiding modes are now coupled 
together.
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guide 'p' guide 'q' (a)

Perturbed System

.(p)
’P’ (b)

Unperturbed System

Perturbation (c)

Fig. 3.1 a-c Illustrating the permittivity profiles for the unperturbed and perturbed 
systems, together with the perturbation which is responsible for the coupling between 
the waveguides

3.3.1 Strong coupled mode equations
One elegant way to calculate the coupled mode equations is to insert the fields for 
eigenmode ‘p ’ (the unperturbed system) and the field for the composite system (guides 
‘p’ and ‘q’), together with the respective permittivity functions into Lorentz reciprocity 
theorem (see Appendix 4, eqn A4.9) and derive one coupled mode equation (see 
Chuang [2] for more details and chapter 6 for extension to nonlinear couplers). The 
same procedure can then be applied to guide ‘q’ to derive a second coupled mode 

equation (which mirrors the first derived equation).

The eigenmodes used to construct the total field for the composite system are 
assumed to each carry the full power in the coupler. To approximate the actual local 
field, the relevant eigenmode has to be scaled accordingly using a normalised 
amplitude. For example the field in the region of guide ‘p ’ is approximately the 
eigenmode of guide ‘p’ multiplied by a (complex) scahng amplitude a^, and the field in 

guide ‘q’ is approximately the eigenmode of guide ‘q’ multiplied by another scaling
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amplitude (the amplitudes are normalised such that 0 < < 1). The sum of these

scaled eigenmodes approximates to the total field in the composite (perturbed) system.
In the end, the following coupled mode equations are derived irrespective of 

whether reciprocity [2], variational methods [2-3], H-S method [1] or weak coupled 

mode theories [5-7] are used (as long as terms are not neglected yet).

^ = K + + K p , + ( 3 - 1 )  

j c , .  + ( c , A + ( 3 - 2 )

It is assumed that convention is used for the fields, and p^ are the

propagation coefficients for the modes and are inversely proportional to the mode 

velocities. and are the coupling coefficients and describe the coupling between 
the fields. The arrow on top of the coupling coefficient implies the direction of power 
flow, ie from the scaled eigenmode associated with the right hand subscript to that 

associated with the left hand subscript, and are modification coefficients which 
increase the value of the (uncoupled) propagation coefficients. The overlap integrals are 
given as and and are symmetrical so that . These terms are neglected

in WCMTs and are the main difference between WCMTs and SCMTs, but since the 
eigenmodes are coupled, they cannot be zero. The definitions for the overlap integral
[2] and the coupling coefficients are

+ (3.3)

^-0 = ((e -  e*'” )^!” • l i" ’ ) (3 4)

where and are the transverse parts of the electric and magnetic

fields for eigenmodes ‘p’ and ‘q’ respectively. £ is the total permittivity, the 
permittivity of guide 'p' embedded in its surrounding medium (see Fig. 3.1b), and Eq 
the permittivity of free space. It should be pointed out that the total permittivity is not 

the sum of and ie since and contain the permittivity of
the surrounding medium in their definitions. The correct form for e (for the two guide 

case) is £ = + ^ E - j  where is the unperturbed system, and j is the
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perturbation.

Since the coupled 'eigenmodes' are no longer orthogonal to each other, there is a 

joint interaction between them, and this joint interaction can carry power. The overlap 
integral measures the degree of overlap between the eigenmodes, and can therefore 

be loosely described as a normalised Poynting theorem for spatially separated electric 

and magnetic fields. This is a similar situation to the electric and magnetic fields of an 

EM  wave which carry power as a result of being coupled together (Poynting theorem). 
The overlap integral is a dimensionless quantity, normalised to 1 if the eigenmodes are 
overlapping completely, ie = 1. In a single EM  wave, the overlap integral is

1. If the electric and magnetic fields for this wave are now separated, the overlap 
between them would carry less power, and therefore the overlap integral would become 

less than 1. Eventually when the fields are well separated, almost no power is carried 
by the overlap, and then the overlap integral becomes zero.

It should also be noted that the overlap integral is an integral over all space, whereas 
the coupling coefficient is an integral over the perturbation region only.

The reason for the 4P  normalisation in the denominator of the definition for 

(eqn. 3.3) can be seen by considering the total power P given by the Poynting theorem

p  = \ ] \  (e!'’’ x  « ! '’>) = (3.5)
2 _oo 2-00

If p = q in the definition for (eqn. 3.3), the num erator becom es
+ 00

z jj X z d x d y  which is 4P  (using the definition for P  above). Therefore

there is a 4P  in the denominator of to cancel with the numerator, in order for 

= Q , = 1 to be true.

3.3.2 Weak coupled mode equations
By neglecting the overlap integrals from eqn. 3.1 and 3.2 one arrives at the 

following (well-known) coupled mode equations.

= + (3.7)

However these equations are inaccurate and also inconsistent in certain cases. A
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power conservation treatment of this equation reveals that the coupling coefficients 
must have equal magnitudes and be complex conjugates of each other (see section 3.8). 

But as explained in the following section, this cannot be the case if the guides are 
asymmetrical. Therefore eqns. 3.6 and 3.7 are inconsistent in this case.

3.4 PH Y SIC A L CONSEQUENCES OF TH E O V ERLA P IN TEG RA LS

Using reciprocity, it can be shown [2] that the quantity PpC^^ + is symmetric.

QP pqr'q (3.8)

This fact requires further attention. Eqn 3.8 can be rearranged to give

(3.9)

It can be seen from eqn 3.9 that the coupling coefficients are not equal to each other in 
general as thought by prior theories (eg. Kogelnik [7]). They are only equal if the 
guides are symmetrical (ie =Pg) or if the guides are very weakly coupled, ie

—> 0. The physical reasoning for this is as follows.

If the guides are identical (as in Fig. 3.2 below), then eigenmode 'p' overlaps 
waveguide 'q' by the same amount that eigenmode 'q' overlaps waveguide 'p'. 
Therefore the magnitude of the eigenmodes over the respective perturbations are the 
same, leading to equal coupling coefficients. However, if eigenmode ‘p ’ is guided 
more strongly than eigenmode ‘q’ (P^ > p^), as in Fig. 3.3 below, then eigenmode 'p' 

overlaps less with the perturbation than eigenmode ‘q ’. Therefore one expects the 
coupling coefficients to be different. More specifically, according to our earlier 

definition for one expects .

’P’ •q’
P d -  P a

Fig. 3.2 Symmetrical guides
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P' /
Mode 'q' is 
overlapping more with 
guide 'p'

q'

Fig. 3.3 Asymmetrical guides

In summary the asymmetry between the guides leads to unequal coupling coefficients. 
The inequality also depends on how strongly the guides are coupled. If the guides are 
very weakly coupled, then the overlap integral tends to zero, and as can be seen 

from eqn. 3.9 this leads to equal coupling coefficients, predicted by prior theories. In 
this case the fact that one eigenmode overlaps with its perturbation slightly more than 

the other eigenmode, does not make too much difference since the magnitude of each 
eigenmode over the perturbation region is small.

Weakly
Coupled Guides 

•p’ q'

Fig. 3.4 Asymmetrical weakly coupled guides

3.5 MULTIWAVEGUIDE CASE
3.5.1 Comparison between different notations
After considerable manipulation much of which was unnecessary and conceptually in 
error according to Snyder et. al. [8-10] (see reply in [13]), Hardy and Streifer derived 
the following coupled mode equation [4,16].

q = \

for p = \ , " 'N (3.10)
q = \

where is the (complex) amplitude of the eigenmode in guide 'q', and is the 

propagation constant for eigenmode 'p'.

The coupling between the guiding modes is described by the coupling coefficient
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[4,16] The arrow implies that power is being transferred from guide 'p' (the left 
subscript) to guide 'q' (the right subscript) due to the presence of guide ‘q ’. The 

perturbation is therefore removing power from guide 'p'. This is defined quantitatively
as

where e is the total permittivity, the permittivity of guide 'p' embedded in its 
surrounding medium (see Fig. 3.1b), and £q is the permittivity of free space.

Later Haus [3] using the variational principle, and Chuang [2,11] using both 

reciprocity and variational principle, derived the following equation

N r in  ^

= + (3-12)
q = \ UZ

The definition for was given in eqn. 3.4.

The differences between the two notations should be highlighted:

1- The definition of the coupling coefficient (eqn 3.11) contains (e -  which is 

the perturbation to eigenmode 'p', whereas that of (eqn 3.4) contains (e -

2- The Hardy and Streifer coupled mode equations (eqn 3.10) contains the propagation 

coefficient whereas Haus' contains /?^.(eqn 3.12)

As explained by Hardy and Streifer [4], the two formulations are exactly the same. The 
following will attempt to explain the differences

is defined as the transfer of power from eigenmode 'p' to eigenmode 'q' due to 

the perturbation resulting from the presence of guide 'q' (ie (e -

(note the reversed subscripts) is defined exactly the same as (ie the transfer 
of power from the eigenmode 'p' to eigenmode 'q' due to the perturbation resulting 

from the presence of guide 'q' (ie. The perturbation is again removing

power from eigenmode 'p'. Therefore is the transpose of k^^
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le (3.13)

where the 'T' superscript implies transpose.

Starting from eqn 3.10, eqn 3.12 will now be derived. Substituting eqn 3.13 into 
eqn 3.10 gives

q=\
(3.14)

q=\

But as proved in several papers [2-4], and also in section 5.8.3, is
symmetrical. Therefore eqn 3.14 becomes

(3.15)
<7 =  1

which is the form that Haus and Chuang derived (eqn 3.12). It can be noticed that we 
have dropped the arrow indicating the power transfer from but it is implied that 

power is transferring from the eigenmode associated with the right-hand subscript to 
the left. If many waveguides [3,11] are considered (eg. N  guides), then all of these 
terms could be put in matrix form.

le (3.16)

where the notation of small letter underlined is used for column vectors, small letter 
double underlined for diagonal matrices, and capital letters for square matrices. The 
definitions are as follows

q =  col[a ,̂a2,--'Ci/q], P = diag[P,,p2r-pM] (3.18)

' q , C.3 • • C ^^\N ^ 1 2 Kn •-

Qi C 2 2 C 2 3 • ^21 ^22 ^23 . . .

c = Q. Q 2 C 3 3
• K  = ^ 3. ^32 ^33 • • •

^N2 ŷv3 ^N2 (̂V3 ^NN J
(3.18)
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Hardy and Streifer's expression similarly becomes [11,15-16],

- j C - ^  = ^pC+L^q  (3.19)

Of the two coupled mode equations (eqns 3.16 and 3.19), we prefer Haus' notation 
(with the K  matrix) since the differential equation can be solved more easily. For 

example, if we pre-multiply both sides of eqns 3.16 and 3.19 by C~\ then we have

- j ^  = [P + C-'K)a  (Haus, Chuang) (3.20)

- j ^  = {c - 'p c+ C ~ 'L )a  (Hardy and Streifer) (3.21)
dz  ̂ ’

Clearly eqn 3.20 is much easier to work with. Therefore from now on, the K  notation 
will be used.

3.6 T H E  ’M O D IFIC A TIO N  C O E FFIC IE N T '
The diagonal elements of the K  matrix (defined in the last section) have different 
physical origins from the off-diagonal elements. As explained above, the 

terms are the coupling coefficients and lead to coupling between the eigenmodes. 
However theÆ̂ ^̂ , terms are ‘modification coefficients’ which modify the propagation 

coefficients of the eigenmodes. The modification is easily observed with the aid of an 
example using a non-guiding perturbation (see Fig. 3.5 below), since there are no 
coupling effects to complicate the issue. It can be seen that the evanescent tail of the 
otherwise unperturbed eigenmode travels through the high index perturbation which 
slows it down, and this retardation leads to an increase in the propagation coefficient of 

the eigenmode. For a waveguide perturbation (Fig. 3.6) exactly the same effect occurs 

but there is also some coupling.
We notice that in both notations, and are exactly the same,

4.,, = ( ( e -  • £<'’>) dxdy (3.22)
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’P'

Non-guiding
Perturbation

’q'
Fig 3.5

■p’ 'q' K 9tO
PP

K ?tO
P9

Fig. 3.6

Figs 3.5 and 3.6 Illustrating the effect of the modification coefficient

3.5 RELATIVE MAGNITUDES OF AND
From the definition of the modification coefficient (eqn. 3.22), it is observed that 

the integral is evaluated over the perturbation region, which in Fig. 3.6 is guide 'q'. 
The modification coefficient is the product of the square of the eigenmode of guide 

‘p ’ multiplied by the perturbation situated in guide ‘q ’ (a different guide). Since the
magnitude of the eigenmode of one guide over the region of another guide is small
(Figs 3.5 and 3.6), the modification coefficient is a small term.

The definition for the coupling coefficient however (eqn 3.22) contains the 

product of eigenmode ’q’ with the perturbation situated in guide ‘q’ (the same guide). 
Consequently, the coupling coefficient is large compared with the modification 

coefficient In summary where p.

3.8 LOSSLESS SYSTEM
The symmetry condition of eqn. 3.8 can be derived using reciprocity for a general case 

which could possibly include losses (see Chapter 5). However, for the case, where 
total power is conserved, a similar equation can be derived simply using power 
conservation. The coupled mode equation in matrix form (see eqn. 3.16) is given by

(3.23)
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Taking the adjoint operation (superscript of eqn 3.23, noting that since C is a real 
symmetric matrix and p  a real diagonal matrix (lossless system), results in C = C  ̂ and 

P = P ^ have

da^
dz

C = - ja*[pc  + K*) (3.24)

The total time averaged power as calculated in Appendix 6 is given by q^Ca (see 
comments following eqn A6.16). As the total power is conserved in a lossless system, 
its variation with propagation distance is zero [3], therefore

dz dz dz

Substituting eqns 3.23 and 3.24 into eqn 3.25, gives

= - jq * [ lC  + K*)a + ja * [c p  + K]a

= } Q * { c p - p C  + { K -K * ))a  = Q 

Rearranging the term in brackets on the RHS of eqn 3.26 gives 

[ K - K ^ ^  = p C - C p  ^ 0  unless C is diagonal

(3.25)

(3.26)

(3.27)

This is a similar equation to eqn 3.9 discussed before. In prior weak coupled mode 
theories [5-7] it was thought that the coupling coefficients were complex conjugates of 
each other, ie (or in matrix form K  = K^). But if C is not a diagonal matrix,
(which it is not if the guides are strongly coupled), then Cp ^  pC ,  so that K  ^  

results as seen from eqn 3.27. For weak coupling, the off-diagonal elements of C 
disappear to give

fCu 0 0 • • 0  ^

0 C 22 0  • .

c  = 0 0 C 33 •

. 0 0 0  •

= /  (the identity matrix) (3.28)
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where C becomes the identity matrix. In this case the coupling coefficients become 

co)mpIex conjugates of each other.

3 . 9  P R I O R  W E A K  C O U P L E D  M O D E  T H E O R I E S  I N  H I N D S I G H T

The weak coupled mode equations of prior theories can now be re-examined with the 
benefit of hindsight, ie

- 7' ( C ) ^  = {{C)P +  X'ja where C = / (3.29)

Therefore the overlap integrals are actually present in the ‘prior’ models but take the 
form of identity matrices. These equations are just the weak coupling limit of strong 
coupled mode theory.

3 . 1 0  S O L U T I O N  O F  C O U P L E D  M O D E  E Q U A T I O N S

The coupled mode equations (eqn. 3.20) can be solved very easily in terms of the mode 
amplitudes. For the two guide case eqn. 3.20 becomes

. d
A 0

k O A y
+

r 1 - C . Y K , .  K.

1-c,12 V” 2̂1 1 V̂ 21 K.22 J

(3.30)

Eqn. 3.30 can now be expanded and expressed in the following forms

• 7 ^ ^  = A '^ « ,« + A 'T 'û 2 W  dz

- 7 ^ ^  = A"“'« 2 (z )+ A 7 '« ,W  dz

(3.31)

(3.32)

where the modified propagation coefficients and , and coupling coefficients

andA:;^' are defined as

A"““'= A + 7 ^ ( A , - c , 2A i)  . A"“' = A + 7- ^ f e - A , A 2) (3-33)
1 L|2 1 Cj2
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/Vi2 = - ^ ( ^ , 2  -  , K T  = 7 - ^ ( ^ 2 i  -  Q ,K „) (3.34)
1 C,2 1 C,2

It can be noticed from these definitions that the effect of the overlap integral is to 

modify the propagation coefficients and the coupling coefficients. To solve eqns. 3.31- 
3.32 for a,(z), a second order differential equation must be formed in terms of a,(z) 
only. The problem is that if eqn. 3.31 is differentiated wrt z, and eqn. 3.32 substituted, 

the resulting equation still contains üjiz), (ie the second order differential equation will 
not be in terms of a,(z) only). One way to eliminate this unwanted term is to initially 

make the following substitutions before forming the second order differential equation

a, (z) = A , a ^ iz ) -  A^{z)e'^^ ' (3.35)

where A,(z) and A2(z) are effectively slow varying amplitudes. Therefore eqns 3.31 
and 3.32 become

(3.36)
dz

- j  (3.37)
dz

Omod    Omod

where —  describes the asymmetry between the guides.

Differentiating eqn 3.36 wrt z, and substituting eqn 3.37 now gives

^ A M - 2 j ô " ^ ^ ^ ‘̂  + K ^ K ^ ‘‘A,{z) = 0 (3.38)
dz dz

which can be solved easily using Laplace Transforms to give

5 ^ A | [ s )  — j A ,  ( 0 )  — A ] ( 0 )  

-275~ “'(M ,(i)-A ,(0 } ) = 0 (3.39)

where A, (j) is the Laplace Transform of A, (z). Rearranging eqn 3.39 in terms of A, (j)
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leads to

-  j K ^ M O )  ,3  4 0 .
( , - ;5 " » ') ' + p ”»-" ( , _ j S "-“) ' + P " - ' - j ô " ^ ) % P '- ' '  '  ' ^

where . Taking the inverse Laplace Transform of eqn. 3.40
and rearranging now gives

A (̂ ) — 1 A(o)
Qmod

C o s p ' ^ ' ^ z - j - ^ S m p ’-^z + •^(0)
ĵ mod

J ^ S i n p - ^ Z (3.41)

A^iz) can be found either by symmetry, ie by replacing with in eqn. 3.41 
and switching around the 1 and 2 indices, or by differentiating A (^) eqn 3.41 wrt z 
and inserting it into eqn. 3.36 reaching

Smod
Cosp’'"“z + j ^ S i n p ' ^ z + A, (0)

l̂ mod
• JJ ^ S i n p - ^ z (3.42)

.Substituting eqns 3.35 into eqns 3.41 and 3.42 allows us to express the solutions in 
terms of a,(z) and

om od

C o sp -‘' z - j ^ S m p - ' “zm od. + ^2(0 )
ĵ mod

J - ^ S i n p " " ^ Z

(3.43)

C2(z) = m ( 0 )
om od

Cosp’̂ z ^ j ^ S i n p ’-^z.m o d . + fli(0)
ĵ mod i{pr'+pr’̂ )

(3.44)

If guide 1 is initially excited, then ^2(0 ) = 0. Eqn. 3.44 therefore becomes

K.mod

(3.45)

W e note that . Therefore for the symmetrical case (where

^mod _  Q ^mod _  complete coupling occurs. In this case eqn. 3.45 becomes
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|o2(z)|' = \a,{0)fsin^K; ẑ (3.46)

The coupling length can now be derived. Using eqn 3.46 complete coupling occurs 
when

 ̂= = (3.47)

From eqn 3.34 we see that for weak coupling, as C,2 -> 0 , ^ 12» therefore
from eqn. 3.47 the coupling length becomes the well known . For the case

of C,2 ^ 0  then > A,2, and the effect of the overlap integral is to reduce the 
coupling length. For asymmetrical coupling, eqn. 3.45 becomes

I---------------
k ( z ) |  =  ( 3 . 4 8 )

Ô + A ,2 A2,

Which leads to incomplete coupling since + A .T 'A ;;"'.

3 . 1 1  C O N C L U S I O N S

In summary, the overlap integral measures the degree to which the two eigenmodes 
overlap each other. Assuming a two guide coupler for the moment, the total power is 
the sum of the power carried by the individual fields, plus the power carried by the 
overlap. If the power in the overlap is ignored, then in order to satisfy power 

conservation (for the lossless case), the coupling coefficients have to be complex 
conjugates of each other. Physically, if the power in the overlap does not exist, the 
power flowing out of the field of one guide must be equal the power flowing into the 
field of the other guide, otherwise power conservation is violated. Therefore the 

coupling coefficients have to be equal. With the overlap integral present, some of the 
power flowing out of one mode can flow into the overlap instead. Consequently the 
power flowing out of one mode does not necessarily have to equal the power flowing 
into the other mode, and so the coupling coefficients can be different. By including the

overlap integral one has the freedom to make the coupling coefficients different for
asymmetrical guides.

A more subtle effect of the overlap integral, as we saw was to modify the coupling 
coefficient, and thereby reduce the coupling length. Although this effect is minimal for 
linear couplers, it becomes important for nonlinear couplers even for symmetrical 
configurations.
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Finally 100% coupling, albeit with shorter coupling lengths, is possible in strongly 

coupled waveguides so long as the guides are perfectly symmetrical = 0 ) 
Otherwise incomplete coupling occurs.
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CHAPTER 4

THE NONLINEAR DIRECTIONAL COUPLER; REVIEW 
OF THE LITERATURE

4 . 1  I N T R O D U C T I O N

The nonlinear directional coupler (NLDC) will be an important component for future 
all-optical signal processing systems [1-2]. It will be used for many all-optical 
applications including all-optical switches [1], all-optical filters [3], pulse compressors

[4], all-optical transistors [5], and all-optical logic functions [6-7].
Many aspects of the nonlinear directional coupler have been investigated in the 

recent literature. The purpose of this chapter is to review and summarize the main 
results. The topics reviewed include theoretical papers on the operation of the NLDC, 
the study of deleterious effects such as losses, saturation of the nonlinearity, and the 
slow response time of the nonlinearity; the improvement in switching obtained using 
asymmetric nonlinearities, asymmetric gains, and multiwaveguides; the pulsed 
operation of the NLDC, especially the important case of soliton pulse transmission, and 
pulse transmission in combination with the effects of gains, losses and saturation. 
Finally some issues regarding practical NLDCs are discussed.

4 . 2  T H E  N O N L I N E A R  D I R E C T I O N A L  C O U P L E R :  T H E  B A S I C S  A N D  

G E N E R A L  R E V I E W  O F  T H E  L I T E R A T U R E

The NLDC [1] consists of two waveguides situated in close proximity embedded in a 
nonlinear material possessing an intensity dependent refractive index. Coupling 
between the guides occurs as a result of the evanescent overlap of the modes with 
neighbouring waveguides and the nonlinear media. At low powers the device behaves 
almost like a linear directional coupler. Assuming the length corresponds with one 
linear coupling length with one guide initially excited, full transfer of power from the 
feed guide to the second guide occurs. At very high input powers the guides become so 
mismatched that the power remains in the feed guide. There is an intermediate power 
called the ‘critical’ or ‘switching’ power where the power emerges equally from both 
guides. The critical power is unstable. Slightly below it and the power switches to the
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second guide, and slightly above it and the power stays in the feed guide. This 
instability can be used for switching in a number of ways. If the feed guide is excited 
with a power just below critical, with an additional small signal inserted into either the 
feed or the second guide, then switching of the large power can be controlled by 

changing the amplitude and/or phase of the smaller signal [5]. As the phase of the small 
signal here is controlling the switching of a much larger power, the device is effectively 

an all-optical transistor. For fast nonlinearities, the nonlinearity is local in space and 
time, and several pulses propagate simultaneously and independently in the device in 
serial fashion [1]. Since the device processes all the pulses simultaneously, the 
switching time is limited only by the nonlinear response time, and not by the transit 
time.

The NLDC can be studied analytically using either the beam propagation method 
(BPM) [5] which is a numerical approach, or coupled mode theory, an analytical 
approach. Although BPM is an accurate method, the fact that it is numerical in nature 
means that it is not useful for identifying different physical mechanisms responsible for 
the coupling, or to study stability and chaos in a phase-space graphical approach.

The first coupled mode analysis of the NLDC was carried out by Jensen [1]. This 
was done by deriving two differential equations (coupled mode equations), and solving 
for the mode amplitudes in terms of elliptical functions. Formulae for the critical power 
and the coupling length were also derived. A much more elegant method was proposed 
in [8], where the mode amplitudes were formulated in terms of Stoke’s parameters and 
inserted into the coupled mode equations. Two constants of motion were then derived 
(a Poincaré sphere and a parabola), and the intersection between the two resulted in the 
trajectories of motion depicting the evolution of the amplitudes and phases with 
distance. These trajectories were represented simultaneously (for all possible input 
conditions) on a Poincaré sphere. The trajectories resembled those encountered in 
nonlinear dynamics, where the centre of concentric circles is a stable point, and the col 
of a separatrix an unstable point. The authors also studied (in another paper [9]) the 
asymmetrical NLDC and showed that the asymmetrical NLDC is nonreciprocal, since if 
the power is inserted into the guide with the lower propagation coefficient, coupling is 
improved because the power reduces the mismatch, whereas if the power is inserted 
into the guide with the higher propagation coefficient, the coupling worsens because the 

power increases the mismatch.
There have been efforts to summarize the physics of the NLDC succinctly using 

graphical methods (phase-space portraits) [10-11]. Perhaps the most useful approach 
came from Snyder and co-workers [10]. The principle was based on the observation 
that the evolution of power in a nonlinear directional coupler is similar to that of a linear
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coupler but with axial refractive index changes [12] (it was suggested by the same 
authors in another paper [12] that by freezing in these refractive index changes, the 
critical power can be reduced). It was then suggested that all the physics of nonlinear 
couplers could be understood by studying the coupling in linear asymmetric couplers. 
By superimposing the characteristics of the even and odd modes of linear asymmetric 
couplers together with the critical power characteristics on one portrait, defining stable 

and unstable regions, and establishing several rules for reading where power maxima 
or minima are situated (details in [10]), many of the operational characteristics of the 
nonlinear coupler can be read straight from the portrait, and several applications 

predicted [10, 13]. It was also shown that the portraits could be extended to non-Kerr 

materials including saturation.
There have been a series of papers aimed at improving the accuracy of coupled 

mode theory with respect to BPM. Fraile Pelaez and Assanto [14] first made the 
observation that Jensen’s coupled mode equations were inconsistent. The equations 
incorporated some second order terms (nonlinear cross-coefficients) but did not include 
several others of the same magnitude. Fraile-Pelaez and Assanto showed that the 
inconsistency caused a big difference in the results. This inconsistency has also been 
pointed out for the three-guide NLDC [15]. Comparison between coupled mode theory 
and BPM still showed much difference, and some researchers at the time even doubted 
the applicability of coupled mode theory for NLDCs. The main reason for the 
difference was that the power dependency of the mode shapes had not been 
incorporated in coupled mode theory papers [eg. 8, 16-18] until that period. This point 
was briefly mentioned in [19] in the context of the sign of the nonlinearity, and later in 
detail by Meng and Okamoto [20]. However, the coupled mode equations were still not 
accurate for strongly coupled nonlinear couplers. Ankiewicz and Peng [21] 
incorporated the power dependence, and in an effort to allow the equations to be 
applicable for strong coupling included the overlap integral (or ‘interaction coefficient’) 
but did not include nonlinear cross-coefficient terms. This was inconsistent and lead to 
serious errors in their results. As the overlap integral and the nonlinear cross­
coefficients are interdependent, great care was needed when including the overlap 
integral for strongly coupled nonlinear couplers (more so in fact than in weak coupling 
or linear couplers). The overlap integral and the nonlinear cross-coefficients must either 

be present or absent together.
The critical power in a symmetric nonlinear directional coupler has been calculated 

using nonlinear supermodes [22]. In that paper it was claimed that the supermode 
approach was more accurate than the eigenmode approach. Unfortunately however.
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although only a very weakly coupled device was chosen (where all methods would in 
principle have lead to similar results) their results were highly inaccurate. In addition, it 
was found in a recent paper [23] that the (power dependent) nonlinear even mode is 
unstable [23] above a certain bifurcation power, and the odd mode absent above 
another higher power, so it is not certain whether this approach can work.

4 . 3  P U L S E D  O P E R A T I O N  O F  N O N L I N E A R  D I R E C T I O N A L  

C O U P L E R S

The pulsed operation of the NLDC has also been studied. In ideal nonlinear materials, 
eg. glasses, the response time of the nonlinearity is almost instantaneous. Therefore if 
the pulse shape is much longer than the response time of the nonlinearity, each part of 
the pulse travels through the NLDC as though it were a CW case. This means that for 
gaussian pulses, for example, the pulse undergoes break-up. The peak of the pulse 
remains in the first guide, and the low intensity sides are coupled into the second guide. 
This pulse break-up could be exploited for pulse compression [4], but overall is 
undesirable since it prevents the cascading of such devices. One way to ensure that 
pulse break-up does not occur is to use square pulses [24]. But this approach has its 
drawbacks since it requires a relatively complex pulse-shaping process, leading to 
severe dispersive distortion of the steep pulse edges for ultrashort pulses. Another 
approach is to use temporal solitons. It has been found that temporal solitons switch 
through nonlinear couplers without break-up, ie as a single entity (this was shown 
numerically in [25] and analytically using a variational method [26]). Solitons do not 
break up since they possess a uniform nonlinear phase-shift across the whole pulse
[27] (the single phase-shift is evident in the basic formula for the soliton derived from 
the nonlinear Schrodinger equation [eg. 28]), therefore virtually complete coupling can 
be achieved [25]. As the soliton pulse couples from one guide to the other, its 
amplitude decreases and the pulse becomes wider, whereas the amplitude of the pulse 
in the other guide increases and the pulse becomes narrower. The switching transition 

is as sharp as the CW case.
Two different modes of operation for the pulsed NLDC exist [29-30]. The first is 

known as self-switching. By changing the power of the input soliton itself, the soliton 
can be switched from one output guide to the other. The second method involves the 
signal soliton acting as a pump in one input guide, and a much weaker pulse [31] (or 
even CW beam) enabling the switching depending on the phase. All optical switching 
of pulses due to variation of the phase of a seeded input has been shown experimentally 
in fibre rocking filters [32]. Here, the input is a soliton pulse of one polarisation, and a 
fraction of the power is used as seed for the other polarisation. By varying the phase of

68



Chapter 4 The nonlm ear directional coupler

the seed pulse all-optical switching was achieved. The critical power was 750W and 
30ps pulses were used. The coupling length was around 1.21 m.

4.4 INCORPORATION OF OTHER EFFECTS
The effects of gains, losses, saturation of nonlinearity, and asymmetry of nonlinearity 
have been studied for the CW and pulse cases.

4.4.1 Diffusion
The effect of diffusion of the nonlinearity on the operation of the NLDC was studied in
[33] using BPM. It was found that the effect of diffusion was to homogenize the 
nonlinear refractive index profile over distances of the order of the diffusion length 
resulting in a reduction in the peak refractive index. It was found that the longer the 
diffusion length, the more the switching deteriorated (since the nonlinearly induced 
mismatch between the propagation constants of the two guides was reduced), and 
eventually resulted in the coupling becoming linear.

4.4.2 Saturation
Saturation deteriorates the switching characteristics of nonlinear couplers [34-38]. At 
very high powers, the refractive indices of the guides reach their maximum values and 
the NLDC behaves as a linear coupler.

4.4.3 Asymmetric nonlinearities/waveguides
The effect of asymmetrical nonlinearities in NLDCs has been studied using a super­
mode approach [39] (but the analysis did not include power dependence of the mode 

shapes). It was found that NLDCs with asymmetrical nonlinearity have lower critical 
powers providing that the nonlinearity in the output guide is greater than that in the feed 
guide [39-40]. The asymmetric coupler has also been studied using the eigenmode 
approach incorporating the overlap integral [41]. It was found that inclusion of the 
overlap lead to a reduction in the critical power. The results of this paper are however 
rather dubious since apart from not including power dependent fields, it was 
inconsistent in including the overlap integral but ignoring the nonlinear cross­

coefficients, the same error as was made in [16].
The case of one guide linear and the other nonlinear has been studied [38]. It was 

found that the switching was sharper for when the feed guide was nonlinear. The 
saturable nonlinearity caused reduced transfer of power. For weak saturation it was 
found that linear guide excitation was preferable, but for large saturations nonlinear

69



Chapter 4 The nonlinear directional coupler

guide excitation was preferable. However, the analysis did not include either power 
dependent fields or the overlap integral, and so applied for the weakly coupled case 
only. Also only the specific combination of a linear and a nonlinear guide was studied, 
and the analysis was was not extended to other cases. The asymmetric nonlinearity 
using CW, as well as picosecond and femtosecond solitons was studied in [6]. It was 
shown that ultrafast logic gates such as NOT, AND, OR, and XOR could be 
implemented by appropriate choice of parameters.

It was shown by Farjady and Wilson [3] that asymmetric guides can also be used to 
construct all-optical filters. This was achieved by employing different guide widths in 
order to introduce waveguide dispersion. The nonlinear filter was tunable using the 
intensity of the light, and the bandwidth narrowed with intensity (an intensity 
dependent filter has also been experimentally demonstrated in biréfringent fiber rocking 
filters [67], but the integrated optic filter [3] has the added advantage that it can also be 
intensity tuned with the bandwidth remaining constant).

4.4.4 Incorporation of gains and losses
Strategically placed gains and losses can lead to improvement in the switching 
characteristics. Gains are useful in any case because they can be used to overcome the 
degradation due to inevitable losses in the system.

The effect of introducing gain into the NLDC was studied in [42-43]. An empirical 
formula for the switching power was derived in [42], which agreed well with numerical 
simulations, for different coupling lengths. It was observed that for the CW case, gain 
reduced the switching power and resulted in the switching being much sharper. 
However, for large gains the switching characteristics were deteriorated. One solution 
to overcome the degradation was to use gain in the feed core, and loss in the second 
core [44]. It was found that as the magnitude of the loss/gain (imaginary parts of the 

propagation coefficient) reached values comparable to the coupling coefficient the 
critical power reduced significantly. The reduction in critical power was also 
accompanied by an increase in device length. However, this increase happened to be 
less than would have occurred for a lossless NLDC, assuming the same reduction in 
critical power. It was also found that the critical power can be reduced by a further 
factor of 2.5 times if the gain medium has a positive nonlinearity, and the loss medium 
a negative nonlinearity. It was mentioned that the coupler with gain in one guide and 
equal amount of loss in the other was acutely sensitive to the difference in the real parts 

of the refractive index between the guides.
The use of losses to improve the switching characteristics was avoided in [42] by
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using solitons. Soliton switching resulted in better switching characteristics for high 

gains. The calculations initially assumed that the gain bandwidth was pseudo-infinite, 
but a limited bandwidth was subsequently taken into account. Finally, the device was 
modelled using the irregular bandwidth of erbium-doped fibre, resulting in a 
degradation in the switching characteristics.

In [43] it was suggested that the presence of different gains in the waveguides can 

improve the switching characteristics and the tolerance towards degradation due to 
saturation (saturation is inevitable when high nonlinearities are present, and affects 
active couplers more than passive couplers). The oscillations in the switching 

characteristics at low powers (below switching power) can be improved [43] using 
saturation in the input guide and no saturation in the second guide, eg with input guide 
nonlinear and output guide linear. The oscillations above the switching power can be 
reduced by allowing the nonlinear saturation in the two guides to be as similar as 
possible.

4.4.5 Multiwaveguide nonlinear directional couplers
Multiwaveguide nonlinear couplers have been studied using coupled mode theory and 
BPM. It has been suggested that the use of multiple waveguides could result in sharper 
switching between the outer waveguides (the intermediate guides are parasitic in this 
case) [45]. The improved switching is at the expense of slightly larger critical powers, 

and slightly longer lengths (L = ^J{N where L̂. is the coupling length for the
two guide linear coupler, and N  the number of guides). Increasing the length in the two 
guide coupler though results in large oscillations in the low input power region of the 
switching characteristics.

Attempts have been made to derive analytical solutions for the coupled mode 
equations of the three guide nonlinear coupler. Two constants of motion can be 
extracted (which are the total power and the Hamiltonian) [46-48]. The exact solution 
for the centre waveguide excitation case was calculated in [47]. The solution for the 
side-excitation case is considerably more difficult to derive, and has not been derived so 
far. However a power-portrait approach [49] has been used to study phase-controlled 

switching [49].
The pulsed operation of three-guide nonlinear couplers was studied in [23]. The 

effect of gain in three-guide nonlinear couplers was studied in [50]. It was shown that 
gain allowed full switching between all three ports, but strategically positioned gains 
and losses did not improve the switching as in two-guide couplers.

Finally, Chaos has been shown to occur in three-guide nonlinear couplers [47,51].
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4.4.6 Nonparallel nonlinear directional couplers
The NLDCs considered so far have all involved parallel guides. Nonparallel guides are 

of practical interest since they are easier to fabricate. In contrast to parallel couplers they 
do not have strict requirements on their lengths. One example is the nonlinear bent 

coupler [52-53], which consists of two fibre cores with a separation which starts off as 
large, reduces to a minimum distance, and increases again. The switching in this type 
of coupler is asymptotic. As with the parallel NLDC, varying the phase of a seed signal 
in one input guide can enable the switching of a much larger power in the other guide.

4.5 PRACTICAL NONLINEAR DIRECTIONAL COUPLERS
Practical NLDCs have been constructed using a variety of materials, but the most 
successful so far have been in semiconductors and glasses. The nonlinearity in 
semiconductors is very large due to resonance enhancement. NLDCs have been 
constructed in GaAs/AlGaAs MQWs using the nonlinearity near the bandedge [54-57] 
exploiting the excitonic enhancement [58]. However these devices were very lossy. 
NLDCs have also been constructed in the low absorption region just below the half- 
bandgap [59]. Other materials have been considered as well. For example parallel [60- 
61] and nonparallel [62] nonlinear directional couplers based on the photorefractive 
effect of LiNbOj ( ‘optical damage’).

There are several approaches [29] to implementing the NLDC in fibres. The physics 
for all of them is identical [63]. The first method, perhaps the most obvious one, is to 
switch, using the evanescent overlap of the modes, between the cores of a twin-core 
fibre [64]. The second approach is to make use of a single-core biréfringent fibre [65], 
with coupling occurring between the circular polarisations. A right-handed circular 
polarisation is switched to left-handed circular below the critical power, but not above. 
At the critical power the output is linearly polarised (equal amounts of left-hand and 

right-hand polarisations present).
The third approach employs a polarisation-rocking rotator/filter [65-66]. In this 

device the principal axes of the fibre are periodically twisted by a small angle and 
twisted back after a short distance. By using the correct length for each twisted section, 
it is possible to rotate the linear polarisation by an angle which is twice the angle of the 
twist. By using several of these sections in succession, a linearly polarised light can be 
made to rotate over 90 degrees. Thus the device can be used as a polarisation rotator, 
and in combination with a polariser, as a filter. The nonlinear filter can also be used as a 
switch, since if the power is just above critical, the polarisation is unchanged, whereas 
if it is just below the polarisation is rotated by 90 degrees.
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CHAPTER 5

NEW FORMALISM AND IDENTITIES FOR THE 
NONLINEAR COUPLED MODE EQUATIONS

5.1 INTRODUCTION
We start off the work in this thesis, by studying in detail the nonlinear directional 
coupler (NLDC). In this chapter the nonlinear coefficients appearing in the nonlinear 
coupled mode equations are reformulated, and some new identities derived. The 

purpose of the reformulation is in order to structure the full coupled mode equations for 
the NLDC which in the literature often look very complicated (much more complicated 
than linear coupled mode equations). This is expected because in nonlinear media the 
polarisation response of the medium becomes a nonlinear function of the electric field, 
and the expansion of the nonlinear polarisation (which is proportional to the triple 
product of the sum of eigenmodes) leads to an enormous number of additional 
nonlinear terms (see chapter 6). The number of terms is large even for the two guide 
[1-2] and three guide [3] cases. Since the nonlinear coefficients are not defined in a 
systematic way in the literature, it is very difficult to keep track of all the terms, and 
quite cumbersome to manipulate the equations even for the simple two guide case. The 
best option is to reformulate the equations into a matrix formalism just as can be done 
for the linear coupled mode equations [4-5], so that one can immediately assign the 
origins of each term to a particular matrix. In this chapter, the nonlinear coefficients are 
first reformulated more systematically so that the nonlinear interactions are then 
represented in a form which can be compared more directly to the linear coupling and 
modification coefficients. Using only three definitions, all the nonlinear interactions in 
the multiwaveguide nonlinear coupler are then represented. These coefficients are used 
in the derivation of the multiwaveguide nonlinear equations in chapter 6 .

Later in the chapter two new identities are derived for the nonlinear directional 
coupler, which together with a well-known identity for the linear coupler [7], form a 

complete set of identities. The three identities are exact so long as power dependent 
mode shapes are used in their derivations. In the low power/nonlinearity regime each 
identity is derivable from the other two. These identities can be used to show clearly the 
physical relationships between different nonlinear mechanisms, and enable quick 
proofs of various parameters. For example they can be used to calculate the nonlinear
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propagation coefficient, to check orders of magnitude between nonlinear coefficients, 
and to check numerical accuracies of coefficients in computer programs. We also show 
in chapter 6 that the identities can be used to relate the coupled mode equations of 
Fraile-Pelaez and Assanto [2] and Meng and Okamoto [1], which were each derived 
using different unperturbed systems.

5.2 DEFINITION OF THE NONLINEAR COEFFICIENTS
As explained above, the nonlinear coefficients found in the literature are defined in a 
non-systematic way which does not allow them to be easily related to each other. For 
example, Jensen [8] used Q̂ , Q^, formalism. Mapalagama and Deck [3] used

K ’ Kn±i^ Qn.n±\’ K.n±\^ L±u^ ^n.n±\.n-\ wMch is eveu more complicated, and 
Meng and Okamoto [1] chose Q , k^, k̂ ., k̂ , which although an improvement, is 
still not systematic enough.

Before explaining our approach we first discuss the definition for the nonlinearity. 
The nonlinearity is usually defined in terms of the nonlinear (intensity dependent) 
refractive index with units of rn^/W, so that n = (where n is the total
refractive index, Hq the linear refractive index, and I  the intensity). It is often
convenient, as is here, to use another version for the nonlinearity in terms of the 
nonlinear permittivity (x{x,y) (units of rn^/V^) defined as

e( JC, y,z) = £un {x, y) + a{x, y)|E(x, y, z ) f  (5.1)

where (x,y) are the transverse coordinates, and z is the direction of propagation. 

^iin{x>y) describes the linear permittivity for the whole system, E{x,y,z)  specifies the 
total field for the system, and a[x, y) the nonlinearity. The nonlinearity can have any 
magnitude, sign, or distribution in the cross-section of the system.

It can be shown (see Appendix 1) that the nonlinear refractive index the 

nonlinear permittivity a ,  and the third order susceptibility %^^^can be related as follows

g
a  = e^nlcn^ = (5.2)

where is the permittivity of free space, Hq the linear refractive index, and c the speed 
of light.

In order to redefine the coefficients, we first note that the definition for all the 
nonlinear coefficients found in papers in the literature (eg eqns 3b-3d in [2], and eqns 
10-15 in [1]) involve the interaction of four fields. Using a similar idea to an
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explanation given in four wave mixing papers [6] where two frequencies beat to 
produce an index grating, which causes diffraction of a third field, it can be argued that 
two of the fields contribute to the nonlinear refractive index change, which causes 
coupling between the other two.

The nonlinear coefficients can therefore be written down in the form of and the 
formalism as follows

(5,3)

=
4 P

where a  is the nonlinearity for the whole system and the nonlinearity of
(«)  
pqwaveguide 'q\ The terms in the square brackets are the nonlinear perturbations. Q

formalism is such that the superscript of refers to the field which induces the 

nonlinear permittivity across the whole system in this case), and the 'p' and 'q' 
subscripts refer to the fields which are coupled by this perturbation. The formalism for 
the is similar to except the nonlinear perturbation is assumed to occur 

everywhere except in guide 'q\ Since the eigenmode ‘q ’ induces the nonlinear 
perturbation, and the perturbation is outside guide ‘q’, is a smaller term than 

The reason why the two formalisms above simplify the analysis is that for both cases, 
the subscripts of and are similar to the subscripts of the linear coupling and 

modification coefficients. For example , and both belong to the same family as 
the coupling coefficient and all have a similar effect to the

modification coefficient .
We should note the symmetry of the subscripts in . The ‘p ’ and subscripts 

can be interchanged without affecting the integral, but we also note that this symmetry 
does not apply to the relationship between the superscript and one of the subscripts.

The magnitude of the different nonlinear coefficients depend on the induced nonlinear 
perturbation as well as the magnitude of the fields interacting with the perturbation.

The individual nonlinear coefficients are now discussed, assuming for now that the 
waveguides are identical and the nonlinearities are situated within the film regions.
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(i) is the largest nonlinear coefficient. From eqn. 5.3 is defined as

= 1 7 ! "  (5.5)

Since its effect is to increase the propagation constant, it has a similar role as the linear 
modification coefficient. The term is large because both the nonlinear perturbation

and the fields which interact with this perturbation belong to the guide 'a'. 
Meng and Okamoto called ô l?  the 'self-phase-modulation' term, but more accurately 
the self-phase-modulation term is given by
(ii) (a 7  ̂b) is the next most important term (ignored completely by Jensen). From 
eqn. 5.3 is defined as

(5.6)

Fraile Pelaez and Assanto [2] stated that this term is of the same order as term, but 
evidently it is larger in magnitude than (for weak coupling), because one of the 
fields is the eigenmode of guide ‘a’ which interacts with the large nonlinear perturbation 
in the vicinity of guide 'a'. Since describes the nonlinear coupling between the 

fields and due to the nonlinear perturbation inside guide 'a', it is related to the 
coupling coefficient. For convenience this term is called the ‘larger cross-phase- 

modulation’ term in this thesis.

(iii) QII  ̂ {a b) is related to the modification coefficient , but is widely known as 
'the cross-phase-modulation’ term [1,8]. From eqn. 5.3 is defined as

(5.7)

Jensen (among others) gave it far too much emphasis. It is actually a small term (in 
weak coupling), because it involves the interaction of the small tail of eigenmode ‘b ’ 
overlapping the nonlinear perturbation situated in a different guide 'a'.

(iv) Qlf [ a ^ b ^ c )  terms are extremely small, and defined as
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(5.8)

They are small because the small tails of different eigenmodes and are 
interacting with the nonlinear perturbation (which occurs in the vicinity of a different 
guide 'a'). For convenience this term is henceforth called the four wave mixing (FWM) 
term.

(v) is a coupling coefficient, and has a similar role to and From eqn. 5.4 
is defined as

and causes nonlinear coupling between guide 'a' and guide 'b', due to the nonlinear 

perturbation situated in guide 'b' induced by the tail of . This term is a much 
smaller term than , because the perturbation is induced nonlinearly rather than 
linearly. The nonlinear perturbation is also very small (compared to linear 
perturbations) since it is induced by the small 'tail' of eigenmode ‘a’ rather than its main 
part. This term is henceforth called the 'nonlinear coupling coefficient'.

(vi) is another coefficient which is the nonlinear analogue of the 'modification 
coefficient'. From eqn. 5.4 is defined as,

This term can be called the ‘nonlinear modification coefficient'. involves the 

interaction of the small tails of and fields with the nonlinear perturbation 

caused by the small tail of . Therefore it is even smaller than the term (at least 

the latter contains the main body of the field in the region of the perturbation.

Finally it should be noted that although ^  Q̂pq = Q̂ p , the subscripts for the
nonlinear coupling coefficients cannot be interchanged, ie ^
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5.3 POWER DEPENDENT COEFFICIENTS
So far, it has been assumed that the shapes of the eigenmodes are independent of 

power. However, this assumption is only accurate for low powers or low 
nonlinearities. For higher powers, the field shapes are power dependent, and the 
integrals of these fields (ie all the linear and nonlinear coefficients) are also power 
dependent [1]. If coupled mode theory is to be accurate it is necessary to include this 
power dependency [1,9]. As shown by Meng and Okamoto [1], this power 
dependency is the most important parameter in the accuracy of the coupled mode 
equations.

The effect of the power dependence on the field is different depending on the 
location of the nonlinearity. If the nonlinearity is positive and located in the film region 

(as in Fig. 5.1), the field narrows and focuses within the film, leading to less overlap 
with the other guide and reduced magnitude of coupling coefficient. If the nonlinearity 
is in the middle coupling region however, the effect is for the field to be skewed 
towards that region (as in Fig. 5.2), leading to an increase in the overlap and the 
coupling coefficients.

High powers High powers

Field Profiles

Fig. 5.1 
Nonlinear film region

Fig. 5.1, 5.2 Power dependent mode shapes

Fig. 5.2 
Nonlinear coupling region

5.4 DERIVATION OF NEW IDENTITIES
In linear strong coupled mode theory, it is well-known that a simple identity exists 
which shows the relationship between the asymmetrical coupling coefficients (see 
chapter 3). This derivation has been carried out using power conservation for the 
lossless case, and Lorentz’ reciprocity theorem for the general case. As shown in this 
chapter, similar identities are derivable for the nonlinear case.

5.4.1 Lorentz reciprocity theorem
Lorentz' reciprocity theorem is frequently used in derivations involving linear reciprocal
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media [4,7]. The theorem (in its right form) is also applicable for non-reciprocal media 
such as the grating coupler (see Griffel and Hardy [10]) and the nonlinear directional 

coupler (Meng and Okamoto [1]). The theorem is defined as follows: if and

are two sets of fields which satisfy Maxwell's equations and all the boundary 
conditions for their respective systems (ie are the modes of their respective systems), 
then they satisfy the following Lorentz equation exactly (full derivation of Lorentz 
equation is in Appendix 4)

Lorentz’ Reciprocity Theorem

y l f  [ë P  X K?'' -  X a<‘>)• i  dxdy= ya)£o|f (e'"’ -  dxdy

(5.11)

The theorem, in the form above, is applicable for nonreciprocal media because the d/dz  
derivative in the LHS of the equation implies that in the derivation of this equation, the 
volume of integration is taken as an infinitesimally thin thickness Az of an infinitely 
large radius cylinder surrounding the waveguide (see Appendix 4). Since the section is 
so thin, the permittivity is approximately z-invariant within that section, and the system 

behaves similarly to a reciprocal medium within that section.
Meng and Okamoto [1] were the first to use the reciprocity theorem for the two- 

guide nonlinear directional coupler. However their conjugated form of the reciprocity 
formula only applied to the lossless case. The version in eqn. 5.11 is the non­
conjugated form and therefore applies for the general lossy case also. Another 

difference between the reciprocity formula in [1] and eqn. 5.11 is that the RHS of the 

formula in [1] is in terms of the polarisation response, whereas ours (and Chuang’s
[7]) is in terms of permittivities. The two versions are identical in other respects.

5.4.2 Derivation of new identities
As mentioned in the previous section, the reciprocity theorem is satisfied exactly as 

long as the fields and are the modes of the respective systems (ie

satisfy the boundary conditions and Maxwell's equations exactly for their respective 
systems). If the guides in systems <1> and <2> are nonlinear, then in order for the 
fields to satisfy Maxwell's equations and the boundary conditions exactly, their shapes 

must be dependent on power.
In the next few sections we will derive three identities for the nonlinear directional
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coupler. These identities will be exact as long as power dependent mode shapes are 

used in their derivations. Throughout, real TE fields are assumed, and 
convention used for forward travelling fields.

5.4.2.1 ‘Nonlinear-nonlinear’ identitv
The first identity to be derived shows the relationship between the fields of two 
nonlinear waveguides. One nonlinear waveguide is perturbed in such a way that the 
waveguide disappears and another is formed at a different location. The approach is 
similar to the linear coupled mode theory derivation, but in this case, the ‘perturbed 

system’ is exact, since single waveguides are used where it is possible to find the exact 
power dependent field. Coupled mode theory however is not exact, since the perturbed 
system consists of two guides, and the total field is approximated by the scaled sum of 
the eigenmodes (ie is not exact).

To calculate the identity two nonlinear systems are considered (which are illustrated 
in Fig. 5.3). The nonlinear guide 'p' is taken as the unperturbed system. The 
perturbation causes it to disappear and a nonlinear guide 'q' forms at a different 
location. The perturbed system is therefore the nonlinear guide 'q'.

guide ’q'
Single nonlinear guide 'q' 
(Perturbed System)

,(2)
guide 'p'

Single nonlinear guide 'p' 
(Unperturbed System)

Fig. 5.3 Perturbing a nonlinear guide to form another nonlinear guide 

The first set of solutions refers to a forward travelling wave in guide 'q'

g(l) _ (5.12)
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(5.13)

where describes the linear permittivity of guide 'q' embedded in its linear 

surrounding medium, is the nonlinearity inside guide 'q' only. It should also be 

noted that and are all power dependent.
The second set of solutions is for a wave travelling in the backward direction in 

guide 'p'. Z-reversal symmetry (eqns 5.14-5.15 below) is used to transform the -z 
travelling transverse and longitudinal fields into +z travelling fields. Therefore the 
following transformations are made (see Appendix 3 for full details)

(5-14)

^  ^ ^  (5.15)

Using eqns 5.14 and 5.15, the second set of solutions then becomes

= é '^ \x ,y )  + (5.16)

£(2) ^  ^(2) ^  (5.17)

where and are power dependent, and is the nonlinearity inside
guide 'p'. It must be noted that and p^ are the nonlinear propagation constants for 

the isolated guides. Substituting the two sets of solutions (ie eqns. 5.12-5.13 and 5.16- 
5.17) into Lorentz' equation (eqn 5.11), making using of the definition for (eqn 

3.3) results in

{Pr  - P , )  Cp, =  ) ] £ “  ■ El^^dxdy

(5.18)

Recalling the definitions for andÆ^^ (eqns. 3.4, 5.3, and 5.4 respectively)

and noting that all these coefficients together with are power dependent since they 

all include power dependent eigenmodes, eqn 5.18 reduces to

{ P „  -  P ,  ) C„ = -  O  + (e“  -  ) (5.19)
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which can be re-arranged to give the ‘nonlinear-nonlinear’ identity

Nonlinear-nonlinear identity

P , C„ + + C  -  Ql:' = C J . + + c  - (5.20)

which is an identity relating the field of nonlinear guide 'p' to a nonlinear guide 'q'. It 
should be noted that this identity is exact as long as power dependent fields are used .

5.4.2.2 The ‘linear-nonlinear’ identitv
In a similar approach to section 5.8.2 a linear guide ‘p’ can be perturbed to form a 
nonlinear guide ‘q’. This time only one set of fields is power dependent: that belonging 
to guide ‘q’.

guide 'q
Single nonlinear guide ’q' 
(Perturbed System)

guide ’p'

Single linear guide 'p' 
(Unperturbed System)

Fig. 5.4 Illustrating the unperturbed and the perturbed systems 

The perturbed system, system <1> is defined as follows 

g(i) _  y )  -I-

£{i) =

(5.21)

(5.22)

where and are power dependent, and is the nonlinear propagation
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coefficient for guide 'q'.

The unperturbed system, system <2> is as follows:

= e ‘ (5. 23)

je”-''’' '  (5.24)

The overhead bars refer to linearity. Thus is the linear propagation coefficient for 
eigenmode 'p', and is the nonlinear propagation coefficient for eigenmode 'q'. 

Substituting these two sets of solutions into Lorentz' equation gives

= + (5.25)

The linear and nonlinear coefficients this time include one set of power dependent
eigenmodes ‘q’, and one set of power independent eigenmodes ’p’. The coefficients are 
defined as

+ (5-26)

(5.27)

E \ " ' ' d x d y  (5.28)

(5.29)

where C-^, K-^, . and are all power dependent as they all involve the 'q'th

eigenmode which is power dependent.
Now incorporating eqns 5.26-5.29 into eqn 5.25, eqn 5.25 reduces to the Tinear- 

nonlinear’ identity.
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Linear-nonlinear identity

C - B + K -  = K C - + K  - (5.30)
w   ̂ M w  w  n  <ip

This identity is used in section 5.4.2.4 to derive the nonlinear propagation coefficient 
and to prove that the overlap integral and the nonlinear cross-coefficients are related.

5.4.2.3 ‘Linear-linear’ identitv
Finally the derivation of a well-known identity for the linear coupler [7] is derived. 
Reciprocity is used here for the derivation, but power conservation could also have 
been used (but then it would then have only applied for the lossless case). Therefore 
this time two linear systems are considered (see Fig. 5.5). System <2> is taken as the 
initial 'unperturbed state', and consists of the permittivity of waveguide '/?' together 

with its surrounding medium By perturbing this system (e '̂  ̂-  system <2> 

can be transformed to system <1> with permittivity profile Both systems <1> and 
<2> are linear. Therefore the fields for both systems are the linear eigenmodes, and 

independent of power.
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,<i)
guide 'q'

Single linear guide q' 
(Perturbed System)

guide 'p'

Single linear guide 'p’ 
(Unperturbed System)

Perturbations

Fig. 5.5 Perturbing one linear waveguide to form another

The permittivity and the fields for system <1> are defined as follows

g(l) _

£(1) =

(5.31)

(5.32)

The permittivity and fields for the second system are defined as follows:

g(2) _  £ip)(^x,y) (5.33)

(5.34)

where (5 and p  are the linear propagation constants for eigenmodes 'p' and 'q'. All
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the fields are assumed to be power independent (linear). Substituting these two sets of 
solutions into Lorentz' equation results in the following identity

Linear-linear identity

(5.35)

where C - and K-- are also power independent (linear). This equation is well-known 

and a physical explanation is given in detail in chapter 3. It effectively shows that the 
linear coupling coefficients are not equal for asymmetrical guides. Equality is achieved 
only if the two guides are identical or are very weakly coupled (ie O - —> 0 ).

C - and K— are defined as followspi/ pq

{W^><W + W^W)-idxdy (5.36)

CÙ8,

5.4.2.4 Applications of the identities
The linear-nonlinear identity (eqn. 5.30) can be used to calculate the power dependent 
nonlinear propagation coefficient. Substituting 'q' for 'p' in the linear-nonlinear identity 

leads to

_  gi") -  K-'-
P ,= P ,+  "  (5.38)

which is a formula for the nonlinear propagation constant taking into account the
dependence of the field shapes on intensity. If the low power limit is assumed so that
the mode shapes are approximately linear, eqn. 5.38 approximates as

( 3 , = ^  + Q“ - C  (5.39)

where is the 'self-phase modulation term'. We note that the overhead bars
are removed from the fields because there is very little difference between the mode
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shapes of the linear and nonlinear fields. Inserting the definitions given in eqns 5.5 and 

eqn 5.10 into results in

e“ - C = ^ î î dxdy (5.40)
AP _

and eqn. 5.39 becomes p^ + Ap^^{P)P  (5.41)

Using eqns. 5.39-5.41, A^^^{P) can be written down as

P  4P"
dxdy (5.42)

which compares well with that derived using a different technique by Stegeman et al 
(eqn. 3 in [11]). Continuing with the low power limit assumption, and rearranging the 
linear-nonlinear identity (eqn. 5.30) in terms of results in an alternative formula for 

the propagation coefficient as follows

_  (k  - K  ]
P =R  ^ ----- ^  + ^  (5.43)r'ej p c  c' r'

p(] p<i pq

The linear-linear identity from eqn. 5.35 is given by

(5.44)
pq

which when inserted into eqn. 5.43 leads to

r NL Q[q)
+ ^  (5.45)

pq pq

which compares with the formula for obtained in eqn 5.39. Equating these two 

equations results in
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e “ - C  = c,„(G“ - C )  (5.46)

The resemblance between this equation and the linear-linear identity (eqn. 5.35) is 
enlightening. The left-hand side of the equation is the difference between nonlinear 
coupling coefficients, and the right-hand-side is the difference between coefficients 
which are related to the propagation coefficient. From this equation one can observe 

clearly that if the nonlinear coupling coefficients and are ignored from the left 

hand side of the equation, the overlap integral must be zero, otherwise an 

inconsistency occurs.

5.4.2.5 Relationship between the three identities
In the low power regime, it can be shown that the three identities derived in the 
previous section are inter-related. For example, transposing the linear-nonlinear identity 
(eqn. 5.30), subtracting the result from the linear-nonlinear identity (eqn. 5.30), and 
substituting the linear-linear identity (eqn. 5.35) into the result, leads to the nonlinear- 
nonlinear identity (eqn. 5.20). Hence only two of the identities are needed to derive the 
third.

5.5 CONCLUSIONS
The main nonlinear coefficients were explained, and two new identities derived. In the 
low power regime it was shown that the three identities were inter-derivable. These 
identities were used to calculate the nonlinear propagation coefficient, and to prove that 
the overlap integral and the nonlinear cross-coefficients are related. In chapter 6 it will 
also be shown that the identities can relate the coupled mode equations of Meng and 

Okamoto [1] and Fraile-Pelaez and Assanto [2].
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CHAPTER 6

STRONG COUPLED MODE THEORY FOR THE 
MULTI WAVE GUIDE NONLINEAR DIRECTIONAL  
COUPLER

This chapter discusses for the first time to our knowledge strong coupling in 
multiwaveguide nonlinear directional couplers. The complete coupled mode equations 
with all the terms kept in the equations are derived (see sections 6.2 and 6.3). The two 

guide case is compared with some papers in the literature (section 6.4). The all guide 

interaction case is studied in section 6.7.

6.1 I N T R O D U C T I O N

The case of strong coupling in nonlinear couplers has not been studied satisfactorily in 
the literature even for the simple two guide case. Many papers cut out terms from the 
nonlinear coupled mode equations for mathematical convenience. However the most 
correct and accurate form of the equations is with all the terms included. Terms are 
often ignored from the equations without careful consideration of the implications, and 
this sometimes leads to inconsistencies. For example, Jensen [1] kept some terms in his 
equations but ignored others of greater magnitude (as pointed out by Fraile-Pelaez and 
Assanto (FP-A) [2]). Also the overlap integral and the nonlinear cross-coefficients do 
not always appear (or disappear) together in coupled mode equations, whereas they 

should because they are linked (this was also briefly mentioned in FP-A [2]). For 
example Ankiewicz and Peng [3], and Ankiewicz [4-5] incorporated the overlap 
integral, but ignored many terms which depended on the cross-interaction between 

different fields. In the case of the first paper [3], as shown in chapter 12, the 
consequences were rather dire since the inclusion of the overlap integral not only did 
not improve their results, it actually worsened them from the simple case where the 
overlap integral was not present (therefore not achieving the objective of that paper). A 
less severe inconsistency is to include the nonlinear cross-coefficients but to ignore the 
overlap integral eg as in Meng and Okamoto [7] (however since a weakly coupled 
geometry was considered- where the nonlinear cross-coefficients and the overlap 
integral were small in magnitude-the accuracy of the results did not suffer too much).
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Meng and Okamoto (M-O) [7] were the first to incorporate power dependent mode 
shapes in their equations. This power dependency happens to be the most important 

parameter in the accuracy of the coupled mode equations, especially for small guide 

separations, and has naturally not been incorporated in many important papers before 
M-O (eg Chen [8]).

Many of the works on three guide nonlinear couplers are also inaccurate for the 

same reasons as for two guide couplers. The equations are usually inconsistent, 

because sometimes the cross-phase-modulation term (see eqn 5.7) is included without 

the inclusion of the larger-cross-phase-modulation terms (see eqn 5.6) (Schmidt- 

Hattenberger et. al. [9]). Usually the overlap integral is ignored although the nonlinear 

cross-coefficients are present [9-10]. It was mentioned by Hardy et. al. [11] that the 

overlap integral cannot be neglected in the analysis of linear multiwaveguide couplers 
even in very weak coupling (one should note that the overlap integral affects nonlinear 

couplers to a greater extent than linear couplers). The power dependence of the fields is 
also often not incorporated [9-10] and practical values for the coefficients relating to 

real geometries are sometimes not used [9].
In addition, papers on three guide nonlinear couplers usually do not consider linear 

and nonlinear interactions between non-adjacent guides [9-10]. In the aligned 

geometries of the guides (see Fig. 6.1) it is easily possible for non-adjacent guides to 
interact. For example later on, in chapter 12, the case of two guides with 0.5jjm film 
thickness separated by 1.5^m is studied. It is shown there that the critical power is 
sensitive to variation of guide separation ranging up to 8.0/vm. Therefore over this 
distance at least 5 such waveguides with separations of 1.5/i/7? would all be able to 

interact linearly and nonlinearly with each other. It is not sufficient to just assume 
interaction between adjacent guides in this case. In non-aligned geometries (Fig 6.1) it 

is also easily possible for all the guides to interact with each other.

z

Aligned y Non-aligned
waveguideswaveguides

Fig. 6.1 illustrating the aligned and non-aligned waveguide geometries.
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In this chapter the general coupled mode equations for the multiwaveguide nonlinear 

coupler are derived. The multiwaveguide case is studied here in order to generalise the 
equations for an arbitrary set of parallel waveguides, instead of tailoring for specific 
geometries. In addition, the equations are derived in their unmodified forms with all the 

terms present, including the overlap integral. This ensures that the equations are free 
from inconsistencies, and apply for strong coupling. The derivation uses an approach 
where the total field of the coupler is constructed from the scaled sum of the power 
dependent eigenmodes. Furthermore maximum generality is maintained by allowing the 

guides to be unequal (unlike the usual adjacent guide assumptions in papers in the 
literature on three guide couplers), and the nonlinearity can be situated anywhere in the 
cross-section of the system. In addition the equations apply to lossy cases as well as the 

lossless cases of [7,12].
In the second part of this chapter, and for the first time to our knowledge, all the 

guides are allowed to interact linearly and nonlinearly with each other for a general 
formation of the guides. In chapter 7 the equations are re-packaged and reduced to a 
one-line matrix equation.

There has been some debate regarding the accuracy of linear strong coupled mode 
theory in the past decade, and some of these should be addressed before applying the 
theory to nonlinear couplers. Hardy and Streifer (H-S) [13] pointed out that the overlap 
integral which occurs in the derivation of the linear coupled mode equations should be 
kept in the equations in order to avoid the inconsistencies which appeared in prior 
theories regarding the coupling coefficients. H-S theory was later criticised by Snyder 
et. al. [14-15]. Their main criticism was however rather academic since unrealistic 
numbers and geometries were used. For example Snyder et al [14] mentioned that the 
theory is fundamentally in error for TM modes when vector methods such as H-S 
theory are used in the case of abnormally large refractive index changes for the guides 
(core-cladding index ratios of n^Jn^i > 1.5). On the other hand the graphs of Snyder et. 

al. (and later Haus et. al.) [14, 16] showed that for less extreme guidance cases the 
vector methods of [13, 17-18] were in fact slightly more accurate than scalar methods
[15]. Other criticisms concerning H-S theory by the same authors [14-15] (regarding 
power conservation, and radiation modes) were easily dealt with in other papers soon 

after (Chuang [17], and Haus et. al. [18]). Vassallo [19] later compared carefully the 
different formulations and found that vector theories were more accurate than scalar 
theories for moderate guidance. He also found that although the accuracy of vector 
methods becomes less with increasing guidance, it does not break down as dramatically 
as claimed by Snyder et. al. [14]. Streifer [20] also later showed that the actual values
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of the propagation coefficients of the supermodes using the H-S theory were in fact 

more accurate than those of prior theories, even for the large guidance of n^Jn^i >1.5. 
Only the difference in the propagation coefficients of the prior theories happened to be 
accurate for these cases. Haus et. al. [16] finally showed that the vector theories can be 
adjusted for very strong guidance by correcting for polarisation effects.

The debate above is irrelevant to the work in this thesis, since real TE fields are 
used throughout here, and the index differences are assumed to be much less than the 
extreme cases referred to in [14] where discrepancies might arise. Moreover a vector 
approach is used in this thesis since there seems to be general agreement that they are 
more accurate than scalar methods for moderate guidance geometries.

There have been other papers recently claiming inaccuracy of the strong coupled 
mode theory in strong coupling [21], and corrections have been proposed using the 
singular perturbation technique [21-23]. However these papers are not very 
convincing, since in [22] where numerical proof was actually given, it can be seen that 
strong coupled mode theory [13,18] diverges from exact only for an extreme 
(academic) case of small guide separation {O.ljim) and guide thickness (0.1/xm). It 
should be noted that there is a certain minimum separation that is possible anyway in 
nonlinear coupled mode theory using nonlinear eigenmode approach. The guide 
separations cannot be too small, otherwise the nonlinearity of the adjacent guide would 
cause the isolated guide eigenmode shape approximation to be inaccurate.

To determine the accuracy, applicability, and range of applicability of strong 
coupled mode theory in the case of nonlinear couplers, it is not sufficient to use 
theoretical arguments only because these could be vague, subjective, and may only 
apply to extreme cases. It is necessary to check the accuracy of the equations 
numerically for different geometries and different parameters against independent and 
accurate methods such as BPM. Unfortunately this has not done in many papers for 

nonlinear couplers, eg. Ankiewicz and Peng [3], Meng and Okamoto [7], and Chen
[8]. Comparisons with BPM have been carried out only in two papers to our 
knowledge [12,24] and in both cases very weakly coupled geometries were studied.

Finally, an alternative method to the eigenmode approach is to employ power 
dependent supermodes (note that using linear supermodes would not be accurate 
because the field shapes in actual couplers are power dependent not linear), thus 
avoiding the approximation of constructing the total field from the eigenmodes. 
However this analysis has been tried in [24], and the results were inaccurate compared 
with BPM (as evident from their Fig 4). This was for the case of very weak coupling 
where one would expect all methods to give approximately the same results. Moreover 
in a recent paper [25] it was found that the even supermode is unstable above a
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bifurcation power, and the odd supermode unstable above a certain power above that, 
so there are still question marks regarding this approach.

6.2 DERIVATION OF THE NONLINEAR COUPLED MODE 
EQUATIONS
To derive the nonlinear coupled mode equations, we start from an isolated guide 
(unperturbed system), and add perturbations to transform it into the nonlinear 
multiwaveguide (perturbed) system. The isolated guide (unperturbed system) can be 
chosen as linear or nonlinear (see Fig. 6.2) and the choice is purely a matter of 
convenience. Fraile-Pelaez and Assanto (FP-A) [2] used the linear guide, and Meng 
and Okamoto (M-O) [7] used the nonlinear guide as the unperturbed system. It seems 
that if power dependent mode shapes are used, as in M-O [7], it is more convenient to 
use the nonlinear waveguide as the unperturbed system, because then all the fields in 
the coefficients will be power dependent, instead of there being a mixture of power 
dependent and power independent fields. If power dependence is not at issue then it 
may be more convenient to start from the linear guide as the unperturbed system as in 
FP-A [2]. Starting with a linear isolated guide leads to equations which include the 
linear propagation constant, whereas starting from the nonlinear guide leads to 
equations involving the nonlinear propagation constant. At low powers, the resulting 
coupled mode equations can be related via the identities derived in chapter 5, as shown 
in section 6.4.2 below.
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 ___

Fig. 6.2 Constructing the perturbed system from the choice of either a linear or 
nonlinear isolated waveguide for the unperturbed system.

6.3 DESCRIPTION OF THE MULTIWAVEGUIDE SYSTEM UNDER 
CONSIDERATION
The multiwaveguide system under consideration consists of N  parallel waveguides 
embedded in their surrounding media (see Fig. 6.3). The waveguides are positioned in 
an aligned or quasi-aligned formation so that only adjacent guides are interacting (this 

constraint will be removed in section 6.6 so that all the guides will be able to interact 
with each other). The nonlinearity can be located anywhere in the cross-sectional plane 
of the system. For example, it could be situated in one or more film regions and/or their 
surrounding media. The whole system is invariant in the z-direction, and the 
waveguides can be unequal, and with arbitrary shapes (therefore applies to fibres as 

well as planar guides).
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System <1> (perturbed system)
Multiwaveguide System

System <2> (unperturbed system)
Single Nonlinear waveguide

Fig. 6.3 Showing the perturbed and the unperturbed systems

The permittivity for system <1> (the perturbed system) is given by

= e{x, y, z) = y) + Ae'^^\x, y) + cÀE{ 1 ) 1 (6 .1)

where is the permittivity for the whole system, (which includes all the 

nonlinear/linear waveguides, as well as their nonlinear/linear surroundings), 
the linear permittivity for guide 'p' together with its (linear) surrounding medium. 

Ae^^'\x, y) includes the linear perturbations to guide 'p': ie the linear perturbation due 

to the other waveguides. is the nonlinear permittivity change for the system

(where a{x, y) describes the nonlinearity of the whole system). and are the 
total fields for the system, constructed from the scaled sum of the power dependent 
eigenmodes of the individual nonlinear waveguides ie

q = \
= + (6.2)

q = \

The second system consists of a single nonlinear waveguide 'p\

(6.3)

where is the nonlinearity of guide 'p\ is the nonlinear permittivity

caused by the eigenmode of guide 'p\ Ê '̂̂  and correspond with the exact
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nonlinear (power dependent) eigenmode of the isolated waveguide

^(2) ^  ^(2) = (6.4)

is the nonlinear propagation coefficient of the isolated nonlinear guide ‘p ’.

Inserting eqns. 6.1-6.4 into Lorentz’ reciprocity (eqn 5.11) gives

=  + 7^11  • £ < ' > )
c/=l q=\  e

(6.5)
where C and are defined in chapter 3 (eqns. 3.3 and 3.4 respectively) and P is 

the total power. Inserting eqns 6.1-6.4 into the nonlinear part of eqn 6.5 and 
expanding, results in eqn 6.6 below (see Appendix 5 for further explanations). We note 
that the complex conjugates of the transverse fields in eqn 6.6 are specifically shown in 
the equations for the moment (even though the fields are known to be real).

- Æ  (6.6a)
q=I  q = \

dxdy (6.6c)
J

^  ft)£,
4Pf  j j  I X s i ”’ -  S„,)̂ d̂ dy

(6.6d)

4P

VI. f  , . ..6    , AG)6o
4P

J J  dxdy (6.6f)

where ^ = 1,---A and m = 1,--*A. It should be noted that had a linear waveguide 'p ' 
been chosen as the unperturbed system, the final line 6.6f would have disappeared
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from  the equations. Also, if the multiwaveguide system were linear instead of 
nonlinear, then lines 6.6b-6.6f would have disappeared leaving only the first line 6.6a.

An approximation is now made. It is assumed that coupling only occurs between 

adjacent guides (all the multiwaveguide NLDC papers [eg. 9] make this assumption, 
but this constraint will be removed in section 6.6 of this chapter). Therefore expanding 
over £ = p  + l, p, p - l ,  and m = p + l, p , p - \ ,  and substituting eqns. 5.3 and 5.4 (ie 
definitions for and respectively) into eqn 6.6a-f leads to

- J ^ - J  I  YlP,C^^+^n> + K " + h f Q p r - Q i r \
r = p - \ , p + \  r = p - \ , p , p + \

r = p - \ , p + \  r = p - \ , p + \  r = p - \ , p + \

+2(a,*,+ia„ap-i + ( 6 - 7 )  

where ^  notation implies summing over r = /? +1 and p -  \ (and not p)
r = p - \ , p + l

Using eqn. 5.20 and replacing subscript 'q '  with ‘r ’, the nonlinear-nonlinear 

relationship becomes

“  -  qW  = C J ,  + + /*:;'• -  G<:» (6.8)

and substituting this identity into eqn 6.7 leads to

f = p - ]  p + \  OZ , - - p - \  p p+\

+ S  )ô r“  +  ( 2 « r K f  +  +  { ' ^ “ 2 p - r h f  +  ^ ^ 2  p - p ) Q 2 p - r. P
r = p - l , p + \

+2(ap.,«„«„-i + (6-9)

which is one of N  differential equations for the A-guide coupler. Each differential 
equation is signified by a value for p  which is a number between 1 to A. The beautiful 
symmetry in eqn. 6.9 should be examined. It seems likely that some kind of matrix 

formulation must be possible (see chapter 7).
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6.4 THE TWO GUIDE CASE
The equation above (eqn. 6.9) is now expanded for the two guide case, and compared 
with the coupled mode equations derived in the literature. In particular M-O [7] used an 
approach similar to the one here, ie a nonlinear isolated guide as the unperturbed 
system, whereas FP-A [2] used the isolated linear guide as the unperturbed system. 
The two sets of equations look different at first sight, so it is important to compare them 

with each other, as well as with our equations. Using eqn. 6.9 and expanding for the 

two guide case

p = i case becomes

“ 7̂ 11 “ 7^ “  7^12 = (^11A +^11+ ^iT  + ki I  Qu ~ 8 ? )^ ]dz dz  ̂ '

+ (c ,,A  + -ô ,'2 ’)« 2+ (2a ,K f + «2V)ô^2’+ (2û 2h r + a^2)ô2l*
(6. 10)

and p  = 2 becomes

-7C,2 = + 1<J, f  e ll ' -  e l f  )a,
dz dz  ̂ '

+ ( 8 2 / ^ 2  ^ 2 2  ^ 2 2 ^  + 1 ^ 2 !  8 2 2 ^  “ 1 2 2 2 ^ ) ^ 2  ■ ' ■ ( 2 ^ 2 h i  I +  ^ 2  + ( 2 « i  ̂ 2 1 +  « 2 ^ 1
(6. 11)

6.4.1 Comparison with Meng And Okamoto (M-O)
Our formulation is more accurate and general than those of M-O [7]. In this section it is 
shown that eqns 6.10 and 6.11 can compare with those of M-O for the lossless case. 

Considering p = \ case, ie using eqn. 6.10 and rearranging it results in

- j ^ -  jCn ^  = (A + (6 .12a)

-t

(a,al + a X ) ô ^ 2* + K r ( 22f  - 0 ,2’) - e f 2’C,2(«,«l + Û2ai*)]«2 (6-12b)

K r(ôM  - 0 i‘I’) + ("i“2 + « 2A )ô ff - G i f c ,2(a,al +a^a')Y, (6 .12c)
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which can be compared to M-O’s equation by substituting their notation, ie

= (6.13a)

(6.13b)

K  ^  Gn" = QS* K  ^  G22' = G,? (6.13c)

^ Gfj’ = Gfj’ (6.13d)

^ah ~ 6’i2 = 6 2̂] (6.13e)

There are several differences between our equation (eqn. 6.12) and M -O’s (their eqns. 
7a and 7b). Firstly, it is noticed that the overlap integral is only present on the left hand 
side of their equations. Terms which are multiplied by this overlap integral in lines 
6.12b and 6.12c are therefore neglected from their equations. It may be argued that 

QI2 Ci2  in line 6 .12b is negligible anyway, but the same cannot be said of 0 n’̂ C,2 in line 
6.12c since it is of the same order as Qj2  and should not be neglected as M-O have 
done. Therefore M-O’s equations really only apply for very weakly coupled geometries 

which they studied. Secondly, the power conservation formula + {̂ 2 ^ = 1 is used 
in their equations, whereas if the overlap integral is present it should be 

f  + 1(̂ 2^ + 6̂ 12 (^*^2 + ^ 2̂ 1) = 1 (see eqn. A 6 .17). F u rth erm o re  the 

^ 2^ (02^ “  Q n )  Isrm is neglected from their equations. ^ 2 \ ~ ^ 2  occurs only if the 

nonlinearities in the two guides are exactly equal. If they are different, then ^

For example if is positive and the nonlinearities in the two guides are equal in

magnitude, but opposite in sign, then the 1̂ 2 -  GiT) term becomes the not so

negligible 2 ^ ^

6.4.2 Comparison with Fraile-Pelaez (FP-A)
Our equations (eg. eqn. 6.10) are similar to those of M-O (eg. eqn 6.12) because the 
isolated nonlinear guide was chosen as the unperturbed system. However FP-A [2] 
chose the isolated linear guide as the unperturbed system instead. The two sets of 
equations could in theory be shown to be similar using a rigorous proof. However, 
here we show using a simple method, by considering the low power limit where the 
field shapes are approximately linear, that the two sets of equations can be related via
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the identities derived in chapter 5. By applying the nonlinear-nonlinear identity (eqn 
5.20 with ‘q’ replaced by ‘r ’) to eqn. 6.9 followed by the linear-nonlinear identity (eqn 

5.30 with ‘q ’ replaced by ‘r ’, and the ‘p ’ and ‘r ’ indices interchanged) eqn. 6.9 
becomes

- A - v  I
O c  r = p - \ , p , p  + \

Z  + (2 û rK f + + {'^‘h p - r h f  +
y—\ , p+\

)Q'p‘’X p- i (6-14)

Equation 6.14 can now be used to derive the equations for the two guide case.

When p = l ,  eqn. 6.14 becomes

-jc, , ^  - 7C„ ̂  = (c„Â + + kI"Q,';>)a, +(c„Â + K,, + \a,f Q,<?)a,

-f-^2^] j (2:22̂ 1̂ 11 (6.15)

when p = 2

- jC n  ^  -  7'Q , ^  = (C ,Æ  + K,, + \a, |" f ig ’ )a, + { c , J , + K , , +  |a, f  Q ÿ  )a,

-i-|2a2|fl]| + ofa2^Q,22 {2â ^Ü2\ -H j(2iV (6.16)

According to FP-A, Jensen [1] made several inconsistencies here. In the p  = 1 case 

above (eqn. 6.15) for example, Jensen kept only the self-phase-modulation gY  the 

cross-phase-modulation terms Q ÿ , but did not include the larger-cross-phase- 

modulation terms and çt^ 2  • Furthermore Jensen neglected the ala\ terms but kept 

the 2fl, 1̂ 2 f  terms even though both were multiplied by the same coefficient Q2 2  • Fqns. 
6.15 and 6.16 can be converted into FP-A's notation, by assuming that the overlap 
integrals disappear (ie C,2 —> 0 ), and substituting the following coefficients
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6 5  = 2™ = 2 2 1 ’ = Qu = Qn (6.17a)

2 , ^ 2,'," = 2g' ' (6.17b)

2 4  ^2,?’ = 2 2̂’ (6.17c)

a = â  b = Ü2 (6.17d)

However, the cross-phase-modulation terms Q2 2 , 0 2 ,̂ and should not have 
appeared in FP-A’s equations either, since they disappear also with Q 2, as Cj2 —> 0.
Therefore at weak coupling the nonlinear coupling equations should become

- j  1  +  h i  I Qn ) ^ i  + ^ 1 2 ^ 2  ( 6- 18a )

- j ^  = K,,a^+[W, + K ^  + h r 2 2 ’)«2 (6.18b)

6.5 THREE WAVEGUIDES
The coupled mode equations for the three-guide coupler can be written down using 

eqn. 6.9.

For p = l

- j ^  -  JCu ^ = (c„A + Ku+T f.r+ h r 2 ,'|’ -  2 ,‘!>k+(c,2A + 7f,2+ -  Qi l %
dz dz  ̂  ̂ '

-l-(2a,|<32p + ala*"^Q22+{2a2\a^f +afal^Q.2^^ (6.19)

p = 2 becomes

- 7  -  7 C 2 ,  ^  -  jc ,,  ^  =  k , A + ^ 2 , +  + | a ,  f  -  Qÿ  ) û ,

dz dz dz  ̂ '

+ ^̂ 22 + + |«2 r  2 2̂’ -  2̂ 2* )«2 +(C23A + ^23 + + K  |' 2 ^ ' '  21:' )«3

{la^\a,f + a^al^(^^’’+{2a^\ajf + ala^'^Q^+{2a,\a^f +

+
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+̂ 2(331̂ 21̂  + +l2a^\a^f + +{2a^\a^^f + +2{^ala2a  ̂ +a^a^Ü2 + )(23?̂

(6 .20)

and p = 3 becomes

- 7 ^ -  JC,2 ^  = [ c , A  + K,, + + \a , fQ ^  - +[ c„P,  + K„  + K^,‘- + -  Q^>)a,

+^2ag|a2| + (32(3̂  6̂22  ̂ 1̂ 31 (6 .21)

Equations 6.19-6.21 should be compared with eqns 7.29-7.31 which assumes 
interactions between all the waveguides.

6.6 N > 3  GUIDES (4-GUIDE C O U PLER  FO R  EXAM PLE)
The coupled mode equation for the 4-guide coupler (third waveguide) can be written 
down using eqn 6.9, as follows:

p  = 3

- j ^ -  jC , 2  ^  - ;C,4 ^  = [ c , A  + Kn  + “ QS’U
dz dz dz  ̂ '

+ ( ^ 3 ^  + ^33 + ^3^ + 1̂ 3! “  033^)^3+(Q4/^4 + ^34 + ^3^ + K | 6 ]^  ~ ôS^)^4

-h|2fl31̂ 2f  + «2^3)022^+(2^31̂ 4f  +«4<33)044  ̂ +{la2\a^f -h «3^2)023^

+{la^\a2^ -h 0 ^ 6 2 4 + ( 2^4|o2|̂  + a^al^Qlf +{2a2\a^f +

+2[ala^a2 + -I- a3<3̂ <32 (6.22)

6.7 ASSUMING INTERACTION BETWEEN ALL THE WAVEGUIDES
The adjacent guide interaction case which was assumed in the previous section, really 
applies to a set of weakly-coupled guides positioned in an aligned geometry. If the 
guides are non-aligned (as in multi-core fibres), or closely spaced, then interaction 
between many guides is possible.
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For the derivation of all-guide interactions, we follow the same model, and 
procedure up to eqn. 6.6. This time, instead of expanding over p - l , p , a n d  p  + l ,  as 
was done in eqn. 6.7, the following coefficients are substituted directly.

[a E f]E \< ’''-E^:''>dxdy (6.23a)

ma
= gW  (6.23b)

ma
( « g "  E M E l" (6.23c)

^re very small terms, even smaller than the term of eqn 5.8, because at least 

contained .
The nonlinear-nonlinear identity of eqn 5.20 is now applied to derive the following 

coupled mode equations for the all-guide interaction case

Rll-guide in t e r a c t i o n  c a s e

= S [  q - A  + + C  -  e “ ]a, + 2 l « , I | a „ r G ; ; ' ( l  -  S J
q q I m

+ %  X  ( l -  ^ Im  ) + X  X  X  ^ Im  )(l ~  ^ I n  ~  ^m n  ) (6 .2 4 )
£ m £ m n

which describes all-guide interaction between any number of guides. Eqn. 6.24 is one 
of N  differential equations. These equations are reformulated into a single line matrix 

equation in chapter 7 (section 7.3).
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6.8 CONCLUSIONS
In this chapter we derived (for the first time to our knowledge) the full coupled mode 
equations for the multiwaveguide nonlinear directional coupler. Initially it was assumed 

that the interaction was between adjacent guides, but later on all-guide interaction was 
considered. The equations were expanded out for several cases. The two guide case 
was compared and contrasted with those in papers in the literature.
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CHAPTER?

IN MATRIX FORM

7.1 INTRODUCTION
In this chapter, the coupled mode equations derived in chapter 6 are transformed into 
matrices. This type of matrix representation is new for multiwaveguide nonlinear 
couplers in the literature, although the linear versions are well-known [1-3].

In section 7.2 the adjacent guide interactions case is examined, and in section 7.3 
the all-guide interaction case is studied. The resulting single-line matrix equation is used 
in section 7.4 to check power conservation for the lossless case. It is found that the 
inconsistencies inherent in many coupled mode equations in the literature sometimes 
lead to violation of conservation of power.

7.2 ADJACENT GUIDE INTERACTIONS 
7.2.1 The formulation
The matrix form for the adjacent guide interaction case is derived in this section. The 
nonlinear coupled mode equations for this case was derived in chapter 6 (eqn. 6.9), and 

is repeated here

r=p-], /; ,p+l

+ 2  (2 « ,,k f  +«'«,* + ( 2 a ,K f  + + (2C2„-rkr + kkp-rjG ip-r;,

+ 2(k+ ,ûpV i + k - i V i “ /. + (2.1)

This equation can be written in matrix form almost by inspection. For the 'p 'th  guide it 

becomes the following
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Adjacent guide interactions- matrix form

- j c {p)

dz
,{P) (7.2)

where  ̂ and  ̂ are the adjoint and transpose operators respectively. The matrix 
definitions are given in eqns. 7.5-7.16 below, and the notation for the vectors and 

matrices is the same as in chapter 3 (see comments which follow eqn 3.16).
The derivation of the first five terms on the RHS of eqn 7.2 is fairly 

straightforward. The derivation of the last three terms seem slightly more complicated, 
but in fact not so if one recalls the following rule for representing quadratic forms in 

terms of matrices (eg see [4]).

X|i Xj2

V̂ 21 2̂2 J
(7.3)le. Cl̂  j "f" 2 (%2̂ ]"̂21 ^2^22 — (̂ 1 ^2)

We note that for a linear coupler, all the nonlinear terms in eqn 7.2 disappear to give

(7.4)

The definitions of the matrices for the inner waveguides are slightly different to the 
outer waveguides, because the inner guides are adjacent to two waveguides, whereas 

the outer guides are adjacent to one guide only.

Inner Waveguides p or N  
The definitions for the matrices are

(7.5)
0 0 ^

^p = 0 % 0

I 0 0
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g"" = (GiT'l QÏ'l C i î )  Ç"" = ( c , C „  C „ „ ) (7.7)

is the diagonal matrix

^A -, 0 0  ^

/? < '’* = 0 A 0

«
0 Pp+\j

^  0 ^p+\ « PA‘"> = p̂+[ 0
« P - .

« P - 1
0

=

0
QiP)

^p + \.p

(P)
p - \ , pQ';-
0

a (p)
p + i . p

q W ,,., (note a '" = a '") = 0)

a (p)
p + \ , p + \

0
(7.8)

(7.9)

The terms are very small, because they contain the tiny terms p-\

For outer waveguides t p = l or N^
The derivation for the outer waveguides follow directly from those of the inner guides. 

For example the definition for above is  ̂ f^p,p+\ ) • If the guide

under consideration is an outer guide, eg. if p  = 1, then the term does not exist

since the {p -  l ) ’th eigenmode (referred to in the subscript of does not exist.

Therefore becomes  ̂ ^p,p+\)' Similar argument can be also applied to

the other definitions.

=

=

"a,"
g(^) = ^N-1

V y

A 0
V ® A y

e " ’ =(Gf;’ Ql?) 

C‘'’ =(C„ c„)

= (A, Az)

x<"> =
0

n( N) f PN- \
= [ o  p j

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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ÙlNL ~ \ ^ n.n-[ ^ nn) (7.16)

7.3 MATRIX FORM ASSUMING INTERACTION BETWEEN ALL THE 
GUIDES
Using the same procedure as in section 7.2.1, the following one line matrix formulation 
can be written down almost by inspection of eqn 6.24.

AU-guide interaction- matrix form

- j C ^  = |c #  + Æ + + e lg f - o '  +  2 ^ X a  +  q * X a  + a*A^a (7.17)

Where the matrix definitions are

\ci\ — ClCl a  =

' «1 0 0 . . .  Q ^

Ü.2 0 «2 0 . . .  Q

a. a = 0 0 «3
. . .  Q

. . .  Q

\ ^ n ) . 0 0 0 0

(7.18)

y

=

'  0 e : '  • ■ e i r i
ôt'2’ 0 QlS era' ■• QÏV

Q^S 0 e : '  • ■ q IT
0 ■ -

,QpM o<“> .^pN 0 a

(7.19)

(Ku ^ 1 2 Kn ' 'aT e,T eg’ • • e/g’l
^ 2 1 K22 2̂3 • . el'/ eir eg’ ■•

K = 3̂. 3̂2 3̂3 • Q = el/ eg’ eg’ • .

K,2 N̂3 N̂N ̂ .eii; eg/ eg/ • • egg’a

(7.20)
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^11 ^12 ^13

^21 ^22 ^23 .
j^NLA.3, A 32 ^33 .

t̂ NL
^ N 2

j^NL
^NN J

(7.21)

P =

(P. 0 0 ... 0 ^ r c „ Cn C.3 • . c  \
0 A 0 ... 0 C21 C22 C23 .
0 0 A ... 0 c= C„ Q 2 C33 .

... 0 ... .
vO 0 0 0 S'N\ ^N2 ^N3 . ĉ

nnJ

 ̂ 0 4" 4 ” • A/v
A<̂ ' 0 4 '  •

A = A'^' A<"> = Â |’> 4 ’ 0 . .

.4':' 4 ' ■ 0 V

(7.22)

(7.23)

-  X  ~  ^  in )(l “  ^m n  )(l “  ̂ tm  ) (7.24)

The A vector is very small (because it depends on the terms) and can be 
neglected. The definitions for A (eqn. 7.23) and X  (eqn. 7.19) require further 
explanation. A and X  are column vectors, where each element of the vector is an 
N x N  matrix. The terms 2q^Xa*a, a^Xaq,  and q^Aq  in eqn. 7.17 must be 
expanded out with care: one should note that the q and a type matrices are treated as 
scalars by the X  and A  vectors (ie the whole vectors q and matrices a matrix multiply 
each element of X  and A). Thus the first element of 2q^Xa*q  in eqn. 7.17 is 
2q ‘̂ X̂ "̂’a a,  and the rest of the elements are

2a^Xa a = 2a^

' 2/ V a ' a '
Iq^X^^^a'a

: q q = :

2 / V " ’a ‘a

(7.25)

Eqn 7.25 is dimensionally correct since the result (the RHS) gives an A^xl column 
vector- referring to N  coupled mode equations. Therefore dimensionally, the pre-
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multiplied and the post-multiplied parts of eqn 7.25 become

~NxN~ "(lx7V)x7VxA^x(Nx77)(/7xl)"

(1x77)
N x N

{ N x N ) { N x l )  =
(1X A )̂ X X TV X (A^ X N){N x  1)

_ Nx N_ (lxTV)xTVxTVx(TVxTV)(TVxl)

= [7Vxl] (7.26)

7.3.1 Two guide coupler
The two guide case can now be written down by substituting p  = l and p = 2 into eqn. 
7.17.

When p = l

~ J ~ ^ ~  = +hl Q u - Q n ) ^ i

( 1 )•12-|-(C,2^2 + ^12 + ^ iT  + K | Ol? ~ Q\i )^2 + <̂2̂1* )Q\?
(7.27)

when p  = 2

7Q1 = (Q iA  + ^21 + ^ 2\ + h I  Q ÿ  ~dz

+(C22^2 + ^ 2 2  + ^ 2 2  + |̂ 21 ~ Qn )^2 + [ ^ ^ 2 1̂ 11 + ^ 2  )Qn |«21 + ^ 2 ^\ )Q'
(7.28)

, ( 2 )
21

Note that = ^22 eqns. 7.27 and 7.28. These two equations can be compared 
with those derived in chapter 6 (ie eqns 6.10 and 6.11).

7.3.2 The three guide coupler
Similarly the three guide coupler can be written as (where no term has been neglected)

“7̂1 ] -  7Q2 ~  7̂13 -  (^1 lA + ̂ 11+^iT+ki I Q u  ~  GiY)̂
dz dz

118



Chapter 7 In m atrix form

+^2a, |6%2| + û!2̂ j +^2fl, [flgl + j(2n^+|2fl2|^l| + ^ 1̂^2)012^

2̂(32 +^2a-^\a^f + af +^2 a^\ü2 f  + +2 {̂ a*a2 a  ̂+ a^a^a^ + <23 <3̂ <22)5̂ 23

( 7 . 2 9 )

- J ^ 2 l  -  7Q2 ~  7Q3 -  (QiA + ̂ 21 + ̂ 1 \ + hi I 021̂ -  021̂ )̂ !

+(C22A + ;;:22 + + k |'(2 g )  -  6^2^)^ +(C23A + ^23 + "  (2^3^)^

+̂2(3j 1̂ 2! + ĵ 2?̂  ~*”(̂ 2̂h] I + ^2 ̂ 622  ̂ +̂2(33 hi I + a fc i2 '^ Q 2 2

+|2<3, |<33|̂  + aja*^Q^  +^2^2 hsl^ + +(2^^3h2f + +2(a,*fl2^3 + ^2 ̂ ,^3 + <33<3,<32)5,

( 7 . 3 0 )

- ) Q |  - 7 ^ -  7 Q 2 -  7 Q 3 - f '  = (Q i A + ^3! + ^sT + hi I -  Ôaf )«]az dz dz  ̂ ’

(C32A  + ;̂ 32 + + h z re j'^  -  632^)^2 +((^33A + ^33 + + k l 'O B  -  X

^2a,|<32|" + (32 <3*̂ 63^^+^2(32hi r +^f^2*)ô32  ̂ +̂ 2(33 |a,|^ +afü^^Qÿ

( 2 )
1 2 3

+

+^2(3, h 3p + fl3<3j*jô3^^+^2fl2h3f + ^3(32)632^+(^(^3h 2|̂  + ^2^3)633  ̂ +2(ai*(32<33 + a2«,<33 + (3361,(32

( 7 . 3 1 )

These equations can be compared with the adjacent guide interaction case of eqns 6.19- 
6 . 2 1 .

7 . 4  L O S S L E S S  C A S E :  V I O L A T I O N  O F  C O N S E R V A T I O N  O F  P O W E R  

I N  K E Y  P A P E R S

In chapter 5 it was shown using reciprocity that the overlap integral must be removed 
from the equations in cases where the nonlinear coupling coefficients are not present 
(see explanations following eqn. 5.46). In this section we show that the equations of 
some key papers [5-12] which include this inconsistency may be breaking conservation
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of power in the lossless case.
The proof is as follows. For a lossless coupler, the total time-averaged power is 

constant with distance (and proportional to q^Ca)  (see Appendix 6, and [13-14]) . 
Therefore differentiating q^Cq with distance gives

-^{q^Cq)  = Cq + q^C - ^  = 0
dz dz dz

Eqn 7.17 can be written down as

= j^l^cp + K  + K'^‘- + Q\af - Q ' ) a  + 2 l  + m + n 

where m , and n are column vectors such that

1 =

q^X^^^q*q
q^X^^^q*q

m =

q^X'^ '̂^qq
q^X^^^qq

n =

q^’A^^^q
q^A^^^q

q^X^^^qq

It should be noted that the elements of I ,  m,  and n are scalars. 

Taking the adjoint operation of eqn. 7.33 gives 

da
dz

C = - j \ a *  {^C + K* + K^‘-' + |gp Q * -Q ^  + 2 t  + m*+n'

Substituting eqns 7.33 and 7.35 into eqn 7.32 gives

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

= Jâ [{cp -pc) + { K - K ^ )  + ) + [Q\af -  \af Q^) + { Q - Q ^ )

I -  t a ] + j [ q " m  -  m" a] +j[a^n -  a]

(7.37)
(7.38)

For weak coupling c p  = p C , ie C must be a diagonal matrix (the identity matrix). In 

eqn. 7.37 Q \ ^  occurs only as Q ^ Q  . Therefore this proves that the off-
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diagonal elements of the Q matrix also disappear when the overlap integral is not 
present. In other words the nonlinear cross-phase-modulation terms (non-diagonal 

elements of  Q) and the overlap integral are linked. To conserve power, the following 
can also be observed from lines 7.36-7.38.

K  = K* K^'- = K"‘-* (7.39)

Q - ^ Q  (7.40)

where g = d i a g { Q l \ \ Q ^ \ Q ^ , - Q i " J  ] (7.41)

a'^l = £'^a q^n = rÇa q^m = m^a (7.42)

From line 7.42, it can be seen that q^£, q'^m, and q^n must be real, which proves that 

X  and must be zero. The proof for the last sentence is as follows: For example, 
noting the definition for £ from line 7.34, we observe that q^£ is a scalar (since q^ is a 
row vector, and ^ is a column vector containing scalar elements). Therefore the first 
element of q ^ i  becomes

= ala^X^'^a'a (7.43)

can be written as

(7.44)

But a q on the LHS of eqn. 7.44 can be written as a q ,  and q^q  on the RHS as ^ a  . 

Therefore eqn 7.44 becomes

al^X'^^^aq = q ^ q * a ^  (7.45)

Both sides are post-multiplied (ignoring scalars for the moment) by q , and pre­

multiplied by q ^ . Therefore ignoring these, eqn. 7.45 becomes

alx^'^ q = q X ^ ' ^ \ ,  (7.46)

For eqn 7.46 to be true, a minimum prerequisite would be for to be diagonal, but
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from the definition for (in section 7.3), we see that the diagonal elements are zero. 

Therefore must be zero. Similarly and should
also be zero.

Therefore the coupled mode equation, eqn. 7.33 for weak coupling becomes

- ; ' ^ = ( g + ^ + + e j s r  -  g ,)g  (7.47)

Papers which insist on including the other nonlinear terms in weak coupled mode 
theory are breaking power conservation.

7.5 C O N C L U SIO N S
The coupled mode equations derived in chapter 6 were reformulated in matrix form in 
this chapter. Both the all-guide and adjacent guide interaction cases were presented. It 
was also shown using power conservation arguments that it is inconsistent to include 
the nonlinear cross-coefficients without the overlap integral (and vice-versa).
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CHAPTER 8

BEAM PROPAGATION METHOD AND COUPLED MODE 
THEORY PROGRAMS

8.1 INTRODUCTION
In this chapter the numerical methods used in the rest of the thesis are discussed. In 
particular the beam propagation method (BPM) algorithm is explained in section 8.2. 
BPM will be used to check the accuracy of the nonlinear coupled mode equations 

(developed in chapters 6 and 7), as well to study the stability of nonlinear guided waves 
in chapter 10, and soliton emission and couplers in chapter 13. In section 8.3 the full 
form of the two guide nonlinear coupled mode equations are prepared in a form which 
allows them to be numerically solved using Runge-Kutta integration.

8.2 BEAM PROPAGATION METHOD ALGORITHM
8.2.1 Introduction
The beam propagation method (BPM) [1-6] is a numerical tool used to study wave 
propagation in optical devices. In addition to being very accurate, it is also convenient 
because it aids the visualisation of wave propagation in complicated structures without 
resorting to involved mathematics. BPM was first proposed by Feit and Fleck [1-5,7], 
and later applied to nonlinear directional couplers (NLDCs) by Thylen [8-10]. It is used 
in this thesis mainly to check the accuracy of the nonlinear coupled mode equations. 
Useful reviews of BPM can be found in [6,9,11-12].

The idea behind BPM is as follows: a beam of light propagating through an optical 
structure (eg a waveguide) is subject to two effects. The first is due to diffraction which 
occurs because of the wave nature of light. The second is focusing and is due to parts 
of the field propagating through high index media (eg film regions of waveguides). 
These parts of the field become phase-shifted with respect to the other parts. A curved 

phase-front then develops across the field in the high index regions, leading to focusing 
of the field in those regions. High index regions therefore act as local lenses for the 
field. The two effects of diffraction and focusing should, in practical devices, act 
simultaneously and continuously on the field throughout the propagation. However, in 
order to model the real case in a computer simulation, it is necessary to separate the 
effects and apply them sequentially. The device is therefore divided (computationally) 
into many longitudinal sections. Throughout each section the field propagates as though
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diffraction were the only effect occurring. The lens effect is only introduced at one 
point in the middle of each section (as an infinitely thin sheet). This procedure is 
repeated for all the other sections sequentially. If the section lengths are reduced to 
small values, the diffraction and lens effects appear to occur continuously throughout 
the length of the device just as in real life.

Mathematically, the wave equation is numerically integrated in such a way that the 
diffraction and lens effects are integrated separately. One approach is the Feit and Fleck 
method [1-5,7], which is more accurate than paraxial methods [1,13]. In both cases the 
diffraction step can be calculated using the fast fourier transform (FFT)./Finite 
difference (FD) methods are slightly less accurate than FFT but much faster (with 
parallel processing the calculations can be speeded up even further [14-16]).

In this thesis the Feit and Fleck method is chosen because of its ease of 
implementation, high speed, and reasonably good accuracy.

8.2.2 The beam propagation method algorithm
The method used in this section follows that of Feit and Fleck [7]. The wave equation, 
assuming no variation of the field in the y-direction is

^  + ^  + ^ « ^ £  = 0 (8.1)
dx dz c

where n is the refractive index, and E  the electric field. The equation can be simplified 
by using the operators P and Q [7,14] defined as

2

and Q = \ v l + ^ n ^  
dz [ c

(8 .2)

where ~ eqn. 8.1 can be shortened to = 0,  which can

be factorised in the following way [14]

[(p + jQ){P -  jQ) + j{PQ  -  QP)]E = 0 (8.3)

Provided that there are no sudden variations in the refractive index along the z- 
direction, one can assume that PQ = QP in eqn. 8.3 [7]. Substituting the definition for 

P  from eqn. 8.2 and solving eqn. 8.3 gives
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E{x, Az) = e
±j Az

(8.4)

In eqn 8.4 the exponential term is an operator acting on the input field E(x,0) to a 
section (of length Az), to transform it into the output field E(x,Az).  It carries the 
information regarding the diffraction and lens effects. To split the two effects, the 
exponent of the operator can be rearranged with the aid of the following exact identity 
[17]

l + (l + ^ ) 1/2 (8.5)

which when used in eqn 8.4 leads to

± J A z

E(x, Az) = e

2 2 -\l/2

E(x,0) (8 .6)

The first term in the exponent of the exponential in eqn. 8.6 includes only the refractive 
index, and so describes the lens action. The second term contains and refers to 
diffraction. To keep this second term as entirely diffractive, the material is assumed to 
be homogeneous. Therefore n is replaced with a constant ( ‘background’) refractive 
index «q (ie. the refractive index of the cladding at negligible intensity). It should also 
be noted that paraxial methods diverge here from Feit and Fleck method by neglecting 

from the denominator of this second term. The first term in the exponent in eqn. 
8.6 can be expressed as conic = k-\- k(njnQ - 1), where k = (ûn^jc. Therefore eqn. 8.6 

becomes

± j A z

E{x, Az) = e
k+k\  — 1 +

k+(k^+W] \l/2

E{x,0) (8.7)

which is in a form where the lens and diffraction effects are separated. The exponent 
can now be simplified still further. The first term in the exponent (ie. k)  can be 
removed by substituting E{x, Az) = E{x, Az)e^'^^, and the second term condensed to % 
where % = k[njnQ - 1). Moreover if forward travelling waves are considered only (ie. 

'+' sign), eqn. 8.7 then becomes
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E(%, Az) = e
x+-

E(%,0) (8 .8)

Eqn. 8.8 can be written in the symmetrised split-operator form to second order in Az 
[2 ,8]

£(x, Az) = exp^
k + { e + v i ) 1/2 e x p ( j A z x ) e x p \ j ^ 2 \l/2k + [ e + v i )

£ ( a:,0)

(8.9)
In conclusion the single exponential operator of eqn. 8.8 has been split here into three 
operators. The operators act from right to left on T,(x,0). The input field is taken 
through a diffraction step for half a section Az/2 . The lens effect (the middle operator) 
is then inserted as a single sheet. The lens sheet incorporates information regarding the 
waveguides and the nonlinearities. Finally the field is taken through another half­
section diffraction step (the left hand operator in eqn 8.9).

Computational implementation of the lens step is straightforward- it is just a 
multiplication term. However, the diffraction steps contain the operator, and are 
therefore not yet in a computable form. Ignoring the lens step in eqn. 8.9 for now, the 

diffraction for a length Az/2 is

Œ:\ x , ^ \  = exp ,Az
k + { e + v i p

‘E{x,0) (8. 10)

2 J
the output fieldwhere ‘E{x, 0) is the input field to the half section, and £

\
from the half-section. To allow the operator to be computable one can work in the 

fourier domain. Therefore substituting

N / 2

'E{x.z)= Y , ‘̂ S z )exp[ iK„x\
m=-W/2+l

(8. 11)

where £^ (z) is the field amplitude in the fourier domain, and N  the number of points, 
with defined as = 2mnjL^ where is the length of the window in the 

transverse %-direction. Eqn. 8.10 becomes
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.Az= exp^ - y —
J 2

E .(0) (8.12)

This equation can now be used to calculate the output field.

8.2.3 The computer model
The BPM program was written in Fortran. The calculation part of the program is 
outlined in Fig. 8.1. As can be seen from the figure, the optical structure is divided into 
many longitudinal sections of length Az (shown here to be separated by vertical dotted 
lines). In the middle of each section the lens effect due to the waveguides and 

nonlinearities is inserted (shown by the vertical solid lines). When two sections meet 
back to back, it can be seen that two half-section diffraction steps join together to form 
a full-section diffraction step. Therefore the half-step diffraction sections in eqn. 8.9 are 
more important in theory than in practice. Only the first and last diffraction steps are 
needed to be half-sections. The other steps are in practice full-sections.

A window size of length is chosen. The input field is discretised in the x-  
direction into N  sections. To propagate the field for the first half-section diffraction 
step, eqn. 8.12 is used. The input field is first transformed to the fourier domain, using 
FFT. It is then multiplied by the exponential in eqn. 8.12 (care must be taken in the 
definition of since the FFT transformation (NAG routine C06FCF) rearranges the 
field in the Fourier domain). Finally an inverse FFT reverts the output field back into 
the spatial domain. The lens action is next applied using the exp{jAzx)  operator (noting 
that the refractive index is intensity dependent in %). This procedure is repeated for all 
the sections, with the full-section diffraction steps, using Az  instead of Azj2  in eqn. 
8 . 12 .

Input 
field “

Half-step
Free-space
Propagation

I 1----
A z / 2

Lensfô Full-step
T ------ ►

i 2! 3: 4 1 n \ -1 Output
field

Fig. 8.1 Illustrating the BPM algorithm
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8.2.4 O ptim ising  the BPM  prog ram

The window size is first optimised. The window should be large enough to allow room 

for all the interactions to occur, ie the window edges should be situated where the field 
is negligible. However the window size cannot be too large because the reduced density 
of the nodes would lead to a reduced accuracy. Increasing the number of nodes at this 

point to restore the density, would slow the computation time down. In our program 
we chose a window size consisting of the length of the structure in the %-direction plus 
8.0/im leeway on either side.

The number of nodes N  is chosen such that the results are not altered when N  is 
changed (note that N  has to be a power of 2 for the FFT routine to be efficient). It was 
found by experimentation that for a window size of around 25fim, N  = 256, 
512,1024, 2048 etc gave similar results independent of the value for N . Below 256 
points, the results could not be trusted because they depended on the value of N.  

N  = 1024 was chosen as a safe measure.
The longitudinal section lengths (step size) was found in a similar way. The correct 

step size should be in the range such that the results are not altered by changing the step 
size. For a directional coupler, step sizes below gave similar results, whereas in
the case of soliton generation smaller section lengths, eg 0. l^m , were necessary.

The program runs reasonably fast. One run of 20000 sections takes approximately 
14 minutes on our computer.

8.2.5 The in p u t field to NLDC
In order to use the BPM program to study the coupling mechanism in the NLDC, any 
change in the field shape must be due to the coupling, and not due to its non-modal 
nature. Therefore it is necessary to excite the NLDC with the exact nonlinear (intensity 
dependent) eigenmode. To generate the nonlinear eigenmode two choices seem 

available. One is to calculate the nonlinear mode analytically using the method of 
chapter 10. Another is to connect a lead-in guide to the NLDC and excite it with a linear 
TEq mode (see chapter 9). The idea is for the lead-in guide to convert the linear mode to 

a nonlinear mode before it reaches the NLDC.
The feasibility of the lead-in guide approach for mode generation was tested first of 

all. A linear TEq mode was used to excite a nonlinear waveguide composed of a linear 
film and nonlinear cladding on one side. However, a stable and stationary mode did not 
arise even after large propagation distances (see Fig. 8.2). The field wobbled as it 

propagated, even at low powers.
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4 7 9 .8
4 1 9 .8
3 5 9 .8
2 9 9 .8
2 3 9 .8
1 7 9 .8
1 1 9 .8

N
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Ô
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0)

X (m ic r o n s )

¥\g. 8.2. Exciting the guide with a non-modal field shape (linear TE mode) (input 

power=70 Watts/m).

As the power was increased we observed that solitons were generated from the film 

into the nonlinear cladding (see Fig. 8.3).

95 .8
83 .8
7 1 .8
59 .8
47 .8
35 .8
23 .8
11 .8

n n

N

I
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o
3
0)

-20 20
X (m icro n s)

Fig. 8.3 Multisoliton generation occurs at high powers(300 Watts/m)
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In conclusion a stable and stationary nonlinear eigenmode could not be generated for 

the NLDC by using a lead-in guide (unless the lead-in guide has graded nonlinearity- 

see chapter 13). Using the method outlined in chapter 10, we calculated the exact 
nonlinear eigenmode and used it to excite the isolated guide. We observed that the field 

remained steady and there were no wobbles or soliton generation, even at high input 
powers, (see Fig. 8.4)

83.
71.
59.
47.
35.
23.

-20 20
X (microns)

N
3
o'
o
3
(0

Fig. 8.4 Exciting the guide with the correct nonlinear TE mode (input power= 300 
Watts/m)

8.2.6 A bsorbing edges
At high powers there might be some radiated energy formed which then travel to the 

edges of the windows. There, instead of moving out of the window edges, as would 

occur in real life, these radiation are either reflected from the window edges or move 
out of one window edge, only to appear from the other window edge. These radiation 

then accumulate within the window boundaries and start to interfere with the 
propagating wave. Similar problems occur when solitons are generated. One way to 

avoid the problem (see Marcuse [12]), is to insert thin absorbing layers on the edges of 
the windows, so that waves reaching the windows would not be able to reenter the 

region within the window boundaries. The absorbing layers can be implemented by 

adding a small positive imaginary part to the refractive index in these regions. The exact 

value for this imaginary part is important and was found by trial and error. We found

131



Chapter 8 Num erical m ethods

that if the absorption was too high, then there was no improvement and the soliton was 
reflected from the absorption layer. If the value for the absorption was too small 
however, the soliton was not attenuated enough, and still reflected from the side of the 
window. By trial and error, we found that the value for the imaginary refractive index 

was around 3.5 x  10"  ̂7 .

8.3 RUNGE-KUTTA SOLUTION OF COUPLED MODE EQUATIONS
8.3.1 Introduction
The coupled mode equations of chapter 7, can either be solved analytically or 
numerically. The analytical solution is considerably more difficult than the numerical 
solution especially if the overlap integral is included (see chapter 11). In order to solve 
the equations numerically, a similar approach to the BPM approach can be taken. Here 
the NLDC is divided into short longitudinal sections (we found 300 was adequate). The 
material is assumed to be linear in each section, so that the linear coupled mode 
equations can be solved using Runge-Kutta. The nonlinearity is introduced between the 
sections, and the propagation and coupling coefficients adjusted accordingly. The 
coupled mode equations first need to be transformed into a form which can be solved 
via Runge-Kutta. Studying eqn. 7.17, it can be seen that one problem is the overlap 
integral on the LHS of the equation making things difficult. Therefore pre-multiplying 
both sides of eqn. 7.17 by C“' and expanding out for the two waveguide case, using 

the matrix definitions in eqns 7.18-7.24.
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It can be seen from eqn 8.14 that the terms in the leading diagonal contribute to the 
nonlinear propagation coefficient and the off-diagonal elements contribute to the
nonlinear coupling coefficient So, the coupled mode equations can be expressed

as

_ j d a ^  = A“ (z)«i (z) + K,f (z )ih(z )  
dz

■ i  ( z ) « 2  ( z )  +  ^ 2?  ( z ) « l  ( z )dz

(8.15)

(8.16)

where , and are defined as

= ^ ' + i - r r  (^ ..-^ ■ 2 -^ 2 ,)+ . * ( A r - C ,2 g 2 ? ) + . J ^ ^ ^  (e ,T -C ,2G |',')
i C-12̂ 21  ̂ 1̂2̂ 21  ̂ ^12̂ 21

-1
(a'," -  C.2Ô, ?' )+ -  c „G ii')+ 7 ^ i ? ^ ( ô , ' l ’ -  c ,2Ôii’)

(&17)
I - C 12C21 12'-21 "12'̂ 21
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^ i = , _  ' _  f e - Q . g , i ) + . _ ‘ ( g , f - c „ g , r ) + - J ÿ  M ','-Q ,G ,T )+
1 (-̂ i2MI  ̂ ^I2M1  ̂ ^12̂ 21

~ i _ r  r  ~ Q i G i Y ) + . _ - ^ - i - ( G 22^- + (Ô22 - Q ,6 ,T )
1 ^i2M1  ̂ '̂ I2'̂ 21  ̂ ^12M1

(8.20)

noting that and ^2 refer to the nonlinear propagation coefficients for the isolated 
guides. It is interesting to note here that although the nonlinear propagation coefficients 
(eqns. 8.17 and 8.18) are complex quantities, the two differential equations (8.15 and 
8.17) still satisfy power conservation (see chapter 7).

To solve eqns. 8.15 and 8.16 using Runge-Kutta, we have to first eliminate 

and p 2 ^Ü2  terms (to decouple the equations), ie substitute a^{z) = A^{z)e'^' and 

<32(z) = A2 {z)e-’̂  ̂ where A,(z) and A2(z) are complex amplitudes.
In addition the Runge-Kutta (R-K) method (NAG routine D02BBF) requires 

everything to be in terms of real functions. Therefore A,(z) and A2(z) can be split into 

real modulus and phase form as follows

A,(z) = A,Xzy^'^'^ A2(z) = (8.21)

where A,^(z), A^Xz), Ç>i(z), and ç>2(z) are all real quantities. Substituting

(3](z) = and 02(z) = into eqns. 8.15 and 8.16
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and simplifying gives

dz
d ç M )

dz dz
(8 .22)

and

dz ' \  dz dz J
(8.23)

Eqns. 8.22 and 8.23 still contain complex terms. Therefore taking the real and 
imaginary parts, results in four equations, which can be solved using R-K method.

Ar(z)

i [<P2 ( z ) - ( P t { z )  + { P 2 ^  ( z ) - P ^ ' ‘- i z ) ) z ]
(8.24)

-  Re{K:'Az))K{z)Im
i[(P2 (z)-iPi {z) + [P2̂  ( z ) - )3 r  (z))z]

Im(K,f{z))A^,{z)Re (8.25)

dz
/[<Pi(z)-<P2{z)+()3/^^(z)-y3^'^(z))z]

[(Pi { z ) - < P 2  { z )  +  { Pi ^ ^  { z ) - P 2 ^ { z ) ) z \ (8.26)

= z A , X z ) I m ( ^ S Ç ^ ] - R e ( K A { z ) ) A A z ) I >
dz \  dz J

/[?>l(z)-'iI>2(z)+(/Jr̂ (z)-̂ 2̂ (̂z))z]

Im{KA{z))AAz)Re
/[<Pi(z)-iP2(z)+(^r(z)-/3f^(z))z]

(8.27)

Eqns 8.24-8.27 were solved using NAG, Runge Kutta (fourth order). At the end of
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each section, the propagation coefficients, and coupling coefficients were adjusted 

using eqns 8.17-8.20. For guide 1 excitation initial values for the parameters were
(0) = 0.0, (p2 {0 ) = 0 . 0 , Aj^(O) = 1.0, and A2XO) = 0.0
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CHAPTER 9

POWER INDEPENDENT COEFFICIENTS

9.1 IN T R O D U C TIO N
In this chapter, the linear and nonlinear coefficients which appeared in the nonlinear 
coupled mode equations of chapters 6-8 are calculated. It is assumed that the mode 
shapes are power independent. In practice however, the local intensity of the field in the 
nonlinear medium alters the local refractive index, and so alters the refractive index 
cross-section defining the waveguide. This means that the linear TEq mode ceases to 
remain the mode of the nonlinear waveguide at high powers. Nonlinear (power 
dependent) modes therefore have to be used (see chapter 10). The results of this chapter 
will be used to compare against those of chapter 10.

9.2 TH E SLAB W AVEGUIDE
The mode of an isolated planar waveguide is first calculated. The structure under 
consideration [1] is illustrated in Fig. 9.1. The film region has a refractive index n^, 
thickness d  and is deposited on a substrate with refractive index n-̂ . The region above 
the film has a refractive index n ,. If n, = «3, the structure is considered symmetric, and 
if n, asymmetric. The planar waveguide is extended to infinity in the y-direction. 
There are two boundaries at jc = 0, and x = -<i. To find the fields, the wave equation 
has to be solved in each of the regions. It must be ensured that the transverse 
components of the electric and magnetic fields in neighbouring regions match at the 

boundaries.

-d

Ml
z

M3

Fig. 9.1 The slab waveguide arrangement
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Using M axwell's equations, and assuming TE propagation E  = and

H  = the following wave equation can be derived (see eqn. A2.4).

= - [ k l e  - p'^)Ey (9.1)

where k] = cô jI qEq and assuming that E^ has dependence (where p  is the 

propagation coefficient), so that d^E^.Jdz^ becomes -p^E^.  Eqn. 9.1 is a second order 

differential equation which has to be solved for each of the three regions. The solutions 
then involve four unknown, three of which can be eliminated by matching the 
transverse electric and magnetic fields (E^ and respectively) at the two boundaries 

% = 0, and x = - d .  The field solutions are

E=Ae~^ ^  x > 0  (9.2)

A\ CosKx -  — SinKx \ - d < x < 0  (9.3)

= A

K

(  à \CosKd H— SinKd
V ^  y

(9.4)

These solutions involve the amplitude coefficient A , which will be related to power in 
section 9.4.

9.2.1 E igenvalue eq u ation
The boundary conditions also lead [1] to the asymmetrical and symmetrical forms of the 

eigenvalue equation

tan Kd = ^  (and tan Kd = , for symmetric) (9.5)
- y Ô  k: -  5^

where K is the cut-off coefficient, and y  and 8  are the decay coefficients. The 

definitions for K, 8 , a n d / are,

= n^kQ 8 '̂  =p^  -  nfkl  = [n^ -  nf )k^ -  (9.6)

y^ =P^ -  nlkl  = («2 -  n] )kl -  (9.7)
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9.3 CALCULATING THE PROPAGATION COEFFICIENT
The eigenvalue equation for the symmetrical structure (eqn. 9.5) can be used to 
calculate K, ô ,  and y  in eqns. 9.2-9.4 [1], as well as the propagation coefficient p.  
Using the double angle formula for tangents, eqn. 9.5 becomes tan Kd/l = 0 / k ,  which 
can be solved for P . For example substituting u= Kd, and inserting the definition for 

8  in terms of K (see eqn. 9.6) gives

tan m/ 2  =

2,2 ->1/2
(9.8)

Solving eqn. 9.8 for u results in determination of the values for x:, 8  and p  (with the 
aid of eqns. 9.6-9.7). The usual approach is to plot the functions of both sides of eqn. 
9.8 and find the intersection [1].

9.4 RELATING A  TO TOTAL POWER [1]
The amplitude coefficient A in eqns. 9.2-9.4, is the only unknown and is related to the 
total power carried by the field. The time-averaged power per unit area (or intensity or 
irradiance) is given by the Poynting vector. The total power P can be determined by 
integrating the Poynting vector over infinite cross-sectional area (in the x-y plane) (see 
eqn. A6.14)

P = ^ R e ] \  {E,xH:, )- zdxdy  (9.9)

where E, and H,  are the transverse components of the electric and magnetic fields 
respectively. For a TE mode, E^ can be substituted for E,, and for One of the 

integrals in eqn. 9.9 can be neglected (over y) since a slab guide is being considered 
and the fields are uniform in the y-direction. Therefore dealing in terms of power per 

unit length (in the y-direction) P , instead of the total power P , eqn. 9.9 becomes

p \ \ e , \ cU  (9.10)
\P \

Note that p/\P\ is used in eqn. 9.10 so that the sign of the propagation coefficient 
specifies the direction of the power flow. Substituting eqns. 9.2-9.4 into eqn. 9.10 and 

integrating results in
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\P \

1 \ d  S^d
—r  H------ 1----- 1----- ;

2 /  2 2%-̂

+A^Sin KdCos Kd 1 0  ̂ ô ]
2 k  2 k  ̂ y k ^

+A^Sin^Kd
2 y

(9.11)

Substituting for SinKd and CosKd from eqns. A2.5 into eqn. 9.11 and after lengthy 
manipulations we arrive at

A" =  -------- ( a n d A ^ = -------- l ^ E > ^ ^ f o r t h = symmetric case)

(9.12)
Eqns 9.12 relate the amplitude A to the power per unit length T . It can be seen that A 
is directly proportional to the full power P . The formula for A can now used in the 
field definitions (eqns. 9.2-9.4).

9.5 TW O W AVEGUIDES
Now that the linear mode profile for one waveguide is calculated, it is a simple matter to 
calculate the mode profile for a second waveguide placed a distance w away. The first 
waveguide is labelled 'p', and the second waveguide 'q' (see Fig. 9.2)

-(d+w)
Nonlinear region

-(2 d+w)

Fig. 9.2 Parallel slab directional coupler 

The field for guide 'p' can be written down as (see eqns. 9.2-9.4)
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x >0  (9.13)

=A CosKx Sinicx] - d < x <0  (9.14)
K" J

A\ CosKd + — SinKd 
V K

Exchanging S  for y  in eqns. 9.13-9.15 and shifting x  by {d + w) gives eigenmode 'q' 

£W=^g-r(«(</+«-)) x > - { d  + w) (9.16)

4- {d + —— SifiKyx + {d + tv))l —(2d -t- w) ^  x ^  —(d 4- w)

(9.17)

= A\CosKd + ^ S m K d \^ ^ ‘*̂ ‘‘*“'> x < ~ { 2d + w) (9.18)

We note that the fields in guides 'p' and 'q' have amplitude A (note also that A should 
not be confused with fl,, A » A  eg. section 3.10, which are normalised scaling 
amplitudes).

9.6 CALCULATING THE LINEAR COEFFICIENTS
Now that the equations for the modes of the two guides are calculated, it is possible to 
calculate analytical solutions for the linear and nonlinear coefficients.

9.6.1 Overlap integral
The overlap integral was defined in eqn. 3.3. Relating and via eqn. A2.2 the 

overlap integral becomes

p

Inserting the fields from eqns. 9.13-9.18, integrating and substituting for from eqn. 
9.12, followed by much rearrangement, a solution for the overlap integral can be 
derived.
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=
-S w

\I5\[k  ̂ +  0^)[ d  + -

25

H—  Sin Kd 
K

+w (  dCosKd-\— SinKd
\  K )

(  S ^ 2 Ô K l l - e  ^CosKd) + lK^ -  ô^)e ‘̂̂ SinKd
+ CosKd-\— SinKd ---------------------- T—%---- ---------------------

I K J K[0^ +  K^)

/  r. \2
CosKd-\— SinKd

+ K
28

(9.20)
The variation of the overlap integral with guide separation (using eqn. 9.20) is shown 
in Fig. 9.3 for various guide thicknesses. We used the NLDC structure studied by 
Meng and Okamoto (M-O) [2] and Seaton et. al. [3] ie n, = «3 = «5 = 1.55, 
^2 = «4 = 1.57, A = 1.064/im. It can be observed from Fig. 9.3 that the overlap integral 
is a function of both guide separation and guide thickness. The overlap integral 
increases with reduction in guide thickness d  because the modes spread out more and 
overlap to a greater extent. The overlap integral also increases with reduction in guide 
separation, because the modes are brought physically closer together (and overlap 
more). From Fig. 9.3 it can be observed that the overlap integral for d = 2fim, 
vy = 2.4jj,m is around 0.0577. This tells us that the structure studied by M-O [2] was 
very weakly coupled. In chapter 12, a thinner guide is considered (d  = 0.5/xm), which 
leads to a much larger value for the overlap integral (of around 0.58 for the same 
separation- ie a 10 x increase in the strength of the coupling).

We stress that the overlap integrals calculated here only incorporate linear (power- 

independent) modes. The variation of the overlap integral with guide thickness and 
separation would be different with nonlinear modes (see chapter 10).
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0.8

0.6
C d  :: 1.0 ^ inpq

0 .4
d  =: 2.

0.2

0 .5  1 .0  1 .5  2  2 .5  3

Guide Separation (microns)

Fig. 9.3 Variation of the overlap integral with guide width d  and separation w 
/Î, = 7Î3 = «5 = 1.55, ri2=n^ = 1.57, «3̂  ̂ = 10“̂ m^ / W

9.6.2 The coupling coefficient
The coupling coefficient was defined in eqn. 3.4. Since the perturbation is over guide 
'p', the integral is also taken over that region. Therefore

K (9.21)
- d

If the modes of the two guides (eqn. 9.14 and 9.16) are inserted into eqn. 9.21 and the 
integral solved (substituting for from eqn. 9.12) we have

K^kl[e^- £-̂ )e ( n  k{ k^+ y5)e^‘̂ SinKd->ir['Y-5)(e' ‘̂̂ CosKd-\)

\P\{K^+S^)\d + U ^

For symmetrical geometries (where y  = 0),  eqn. 9.22 reduces to

(9.22)

K k^{e^-e ,)e
pq

- S w

SinKd (9.23)

Eqn. 9.23 shows that there is an exponential decrease (e ^ )  of the coupling coefficient 

with guide separation w. This can be observed in Fig. 9.4.
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9.6.3 The modification coefficient
The modification coefficient was defined in eqn. 3.22. Integrating over the perturbation 
region (over guide 'q').

-((J + w)
j ( e , - e , ) E f d x (9.24)

~ ( 2 d+ w )

Inserting for from eqn. 9.17, and substituting for from eqn. 9.12 gives

—  rCoiKrf + -S m K rfl (l - e -"")
o  , c2\l J . 1 V K J2 ô\P\[k '̂  + 5^) <7 + —

(9.37)

We can see that this time that there is a much sharper exponential decrease (e than

for the coupling coefficient in eqn. 9.23
The variation of the coupling and modification coefficients is drawn in Fig. 9.4.

20000

c  1 5 0 0 0

E 10000

5 0 0 0

1 .5  2  2 .5  30 .5  1

Guide separation (microns)

Fig. 9.4 Variation of the coupling and modification coefficient with guide 

separation. «, = «3 = «5 = 1.55, «2 = «4 = 1.57, «3̂ .̂ ~ 10"  ̂ / W

9.7 CALCULATING THE NONLINEAR COEFFICIENTS
9.7.1 The self-phase-modulation (SPM)
The self-phase-modulation term, being the largest nonlinear coefficient, is calculated 

first. We use eqn. 5.5 and integrate over the nonlinear region.

^(p) _
pp 4  p

- ( d + w )

dx (9.25)
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Using eqn. 9.15 for and integrating, and substituting for from eqn. 9.12

(9.26)

It is noticed from eqn. 9.26 that Q[’’J  is directly proportional to power T .  It can also be

noticed that for zero separation w = 0, = 0. This is expected because there is no

nonlinearity for zero separation, and hence no Of-Jp. As the separation increases, 

also increases, until at large separations 0, and reaches a maximum. For
large separations the field is so small that any increase in separation would not increase

significantly.
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rp

0.5 1 1.5 2 2.5 3
Guide Separation (microns)

Fig. 9.5 The variation of with increasing guide separation for different input
powers {T -  1, 2, and 3 W/m) n^=n^=n^ = 1.55, n2 ~n^ = 1.57, = 10 / W

9.7.2 The larger-cross-phase-modulation (larger-XPM) coefficient
The larger-XPM term is the next coefficient to be determined. Since a symmetrical 

structure is being assumed, the bracketed indices can be interchanged, ie.
(Naturally the non-bracketed indices 'p' and 'q' can be interchanged regardless). From 

eqn 5.6

- C O  - ( i l  + W)

prip)̂  pM dx (9.27)

Once again, substituting the fields from eqns 9.13-9.18, and from eqn. 9.12
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r îp) _  + ÔjKSinKdf e ^  |-̂
clo|2/_2 . 02\2/ , . , c\\2

.-2&V (9.28)

This equation should be compared with eqn. 9.26. We notice that there is an 

e~ ^( \  -  factor. This means that for zero separation is zero. This is expected 

because at zero separation, there is no nonlinearity, and hence no As the

separation is increased, there is more nonlinearity, and increases becausepq

( l - e  factor increases. For large separations, the modes overlap less, leading to a 

decrease in Q['’\  We can observe this in eqn. 9.28, where factor dominates for

large w. We also notice that is directly proportional to power T  as was the case

for e “ -

0.5 1 1.5 2 2.5
Guide Separation (microns)

Fig. 9.6 The variation of with increasing guide separation for different input

powers (T  -  1, 2, and 3 W/m). n^=n^=n^ = 1.55, ri2 =n^ = 1.57, = 10 / W

9.7.3 The cross-phase-m oduiation  te rm  (XPM )

We used the definition of eqn. 5.7, and integrated it over the nonlinear separation 

region.

- ( d + w )

(9.29)

Making use of eqns. 9.16 and 9.17 for the fields in eqn. 9.29, substituting for from 

eqn. 9.12 gives
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<q) _ 4kQa^K"^T[CosKd + S lK SinK dfw e  

(oê \P\\K̂ + Ŝ f(d + (2/5)f
-2ÔW

(9.30)

Here we notice that there is a we factor in . Therefore for small separations 
is directly proportional to the guide separation since w is dominating. As w is increased

the e takes over, and Q ^’ starts to decrease. As with and Q]^’ is directly(p) \ (p)
pp 'pq -pp

proportional to input power T . Eqn. 9.30 is plotted for different guide separations, and 
input powers.
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0.5 1 1.5 2 2.5 3
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Fig. 9.7 The variation of with guide separation for different input powers 
(îP = 1, 2, and 3 W/m)

9.8 C O M PA RISO N  B ETW EEN  TH E NONLINEAR C O E FFIC IE N T S
It is interesting to compare the three coefficients on one graph to observe the relative 
magnitudes (see Fig. 9.8). It can be seen that for large guide separations, the SPM term

{d^pp) dominates. As the guide separation is reduced, the two XPM terms and

increase and become comparable to the SPM curve. The two XPM curves are

( p )

similar in magnitude for all separations. At very small guide separations, all three 

coefficients become exactly the same.
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Fig. 9.8 The variation of and with increasing guide separation,
w ith  T  = l .O W /m ,  and d = 2.0fim, = 1.55, n2 =n^ = \.51 ,

In the next graph, the guide thicknesses are reduced to We observe that as a
result of the reduction in guide thickness, the XPM terms have become larger. The 
SPM coefficient is also larger because the mode is extended to a greater extent into the 
nonlinear region.
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(g 200

I 1 5 0
E% 100

(p )

5 0

0 .5  1 1 .5  2 2 .5  3

d =

Guide Separation (microns)

Fig. 9.9 The variation of and with increasing guide separation.(?)-pp -pq pp

w ith  îP = 1.0W /m , 
= 10‘^m V W

and d = \.Ofim, «j = «3 = «5 = 1.55, ^2=724 = 1.57,

•"iN L

In the next graph, the coefficients are plotted against total input power T .
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F ig . 9.10 The variation of Qll’, and with total input power T ,'tip) (?)
'PP -pq PP

n, = n. = = 1.55, = ^ 4  = 1-57, =10 / W

It can be seen that all three coefficients are linearly proportional to 2 ,̂ as expected from 
eqns. 9.26, 9.28, and 9.30.

9.9 C O N C L U SIO N S
The linear and nonlinear coefficients were calculated in this chapter, assuming power 
independent mode shapes. Some numerical results for the variation of these coefficients 
with different parameters were given.
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CHAPTER 10

COEFFICIENTS INCORPORATING NONLINEAR TE 
MODES

10.1 INTRODUCTION
In this chapter the nonlinear modes used to excite the nonlinear directional coupler 
(NLDC) are calculated. Nonlinear modes have power dependent shapes, unlike linear 
modes. Since nonlinear modes satisfy M axwell’s equations and the boundary 
conditions they are true modes, and therefore do not change with propagation distance 
(assuming the structure is z-invariant). Nonlinear modes are often called nonlinear 
guided waves (NLGWs) in the literature.

In the first part of this chapter, the literature on NLGWs is surveyed. The nonlinear 
modes of planar guides with nonlinear cladding(s) are next calculated. In the latter part 
of the chapter, some new results are presented on the variation of the nonlinear 
coefficients with power, guide width and separation.

10.2 NONLINEAR GUIDED WAVES- LITERATURE SURVEY
Theoretical work on NLGWs started with the single nonlinear interface [1-3] (good 
reviews can be found in [4-6]), which is an interface between a linear and a nonlinear 
medium. This type of interface supports a guided wave provided that at least one of the 
media has a positive (self-focusing) nonlinearity, and the power of the wave is above a 
minimum threshold. The work on nonlinear interfaces led naturally to the study of 
NLGWs in nonlinear waveguides. Initially, waveguides with one [7-8], and both 

claddings nonlinear [9-11], were studied. Later, nonlinear films [12-15] were 
investigated. Nonlinear films are more complicated to analyse than claddings, because 
they support standing waves. In the linear regime, this means that the field solutions are 
in terms of sines and cosines. In the nonlinear regime however the solutions are in 
terms of the elliptical sine and cosine functions. Most papers on NLGWs concentrate 
on positive (self-focusing) nonlinearities because they appear to give more interesting 
results, however negative (self-defocusing) nonlinearities in waveguides have also been 

looked at (eg. ref. 8).
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The stability of NLGWs has been examined both numerically [16-20] and 
analytically [4,21-22]. The numerical investigation has been mainly with the aid of the 
beam propagation method (BPM). The stability is determined by studying the 

propagation of the field: if it stays attached to the waveguide and does not oscillate 
laterally (wobble) within the waveguide, then the field is termed as stable; if it does not 
remain attached to the guide, then it is termed unstable. Sometimes a field may appear 

stable over short distances, but in fact is weakly unstable and the instability starts to 
appear later on. Therefore care must be taken to ensure that the propagation distance is 
long enough in studying the instability.

Stability of nonlinear guided waves has also been studied analytically. Kolokolov 
[23] suggested that on a dispersion diagram, where input power {T)  is drawn against 
propagation coefficient (/3), the regions where the slope is positive (ie. d T /d ^  > 0 )  
correspond with stable modes, and those where the slope is negative with unstable 
modes. This argument applies only for TE waves supported by guides with one  
nonlinear cladding. For example, it was shown in [17] that for the case of a linear film 
with equal nonlinear claddings on both sides, d P ld T > 0  is not necessarily the 
condition for a stable mode.

The symmetrical nonlinearity case (equal nonlinearities on both sides of the linear 
film) has been studied theoretically [16, 24-25]. In [16] it was found that in this case 
the dispersion curve bifurcates into two surface wave branches, where the lower one is 
stable for d(P/dp > 0, and the upper one unstable. The modes on this unstable level can 
be shown in a BPM simulation to be two surface modes emerging symmetrically from 
the film region into the cladding regions. As these modes are unstable, after a certain 
propagation distance the spatial symmetry breaks down, and only one surface mode 

remains, corresponding with the lower level on the dispersion curve.
For asymmetrical nonlinearities the dispersion curves become even more complex 

[16], with three power levels being present. Positive slopes on the bottom two levels 

correspond with stable modes. The top level is unstable regardless of the sign of the 
slope. On a BPM diagram one can see that solitons are emitted into the cladding with 

the larger nonlinearity.
So far the nonlinear claddings have been assumed to be spatially semi-infinite in 

extent. The dispersion characteristics for a linear waveguide with limited width of 
nonlinear-bounding layers have been examined recently [26]. It was found that the 
device exhibited hysteresis characteristics similar to those of the nonlinear Fabry-Pérot 
étalon. As the thickness of the bounding layers increased both the critical power (at 
which point the peak of the field emerges into the cladding) and the hysteresis were
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reduced.

An elegant method to determine the stability of the branches of a dispersion diagram 
for a particular geometry has been described by Mitchell and Snyder [21]. The 
dispersion curve is first subdivided into different branches using bifurcation points. A 
known stable branch on the dispersion diagram is found using the basic physical 
parameters of the waveguide under study, and this branch is numbered 0. The 
immediately adjacent branch is then numbered according to its stability. The numbering 
is according to whether the next branch continues from the previous branch or whether, 
it separates from or converges to a fork type bifurcation point. The positive slope 

curves are temporarily labelled ‘possibly stable’. The numbering strategy is such that if 
the next branch is ‘possibly stable’ then the branch is numbered one point above the 
previous neighbouring branch and if unstable one point less. When all of the branches 
have been numbered, the branches labelled zero are known for certain to be stable. This 
is because they can be related to the initial branch which was also numbered zero and 
known to be stable.

10.2.1 Miscellaneous NLGWs
In addition to TE NLGWs, TM NLGWs [4,28-30] have also been studied. These 
modes are more complicated to calculate than TE modes because two fields are 
involved. However, they exhibit essentially the same phenomena as TE modes. Mixed 
TE-TM  modes have also been studied [4,31], and these have no counterparts in linear 
optics. These fields are neither TE nor T M . One polarisation is able to provide a 
channel for the other polarisation.

The nonlinear supermodes for slab and channel nonlinear couplers have been 
calculated from a variational approach [32]. It was found that the symmetric 

supermodes were stable only if the power was less than a bifurcation power. Above 
this power until a second higher power, the asymmetric mode is stable, but the 
symmetric mode collapses. The device can therefore be used as a switch, since if a 
small amount of the asymmetric mode (eg. 1%) is added to the symmetric mode in this 
regime, then the symmetric mode transfers all its energy into either guide, depending on 
the phase of the asymmetric mode. Above the second power, both the symmetric and 

asymmetric modes are unstable.

10.2.2 Practical NLGWS
10.2.2.1 Launching requirements
Practical requirements for launching a nonlinear mode are not too strict. For example, if 
the nonlinear waveguide is excited with a field which corresponds approximately to the
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nonlinear mode (eg. a gaussian field [33-35] with approximately the right width, and 
centre position), then it will evolve into the nonlinear field after a short distance.

10.2.2.2 Effect of losses, saturation, and diffusion
So far the nonlinearity has been assumed to be local (ie not diffusive) and lossless. The 

effect of diffusive nonlinearities on NLGWs was studied in [36], and losses in [35, 37- 
39]. It was found that attenuation becomes a function of power in NLGWs [37]. For 
example as the power was increased the TE^ field shifted towards the cladding, and 
consequently travelled through more loss. The ‘dispersion characteristics’ for the 
variation of the absorption with power [37] are very similar to the dispersion 
characteristics for the propagation coefficient with power. For example at low powers, 
where film-guided modes exist (ie. the peak of the field is inside the film), the 
attenuation is power independent.

The effect of absorption on NLGWs [38] is also dependent upon whether the 
absorption is greater in the film or the cladding. If the cladding is more absorbing, the 
NLGW tends to become focused in the film, since the part propagating through the 
cladding dissipates away due to absorption. If the film is more absorbing however, the 
field shifts towards the cladding and may even be emitted as a soliton.

Experimentally, nonlinear guided waves have been observed using liquid crystal 
MBBA as the nonlinear cladding [35]. The losses were so great that only 1% 
transmission was observed. Both TE^ and TÊ  modes were examined. There was an 
associated saturation of the transmitted power observed at high powers for both modes. 
The TEj mode also exhibited this saturation. In addition, the transmitted power/input 
power curve for the TÊ  mode showed hysteresis behaviour between increasing the 
input power, and then reducing it. This has obvious applications in bistability.

10.2.2.3 Nonlinear mode along a curved interface
Nonlinear wave propagation along a curved or angled interface was studied in ref. 40. 
It was found that surface waves cannot propagate along a single nonlinear interface bent 

toward the nonlinear medium.

10.2.3 Soliton interaction with nonlinear interfaces and waveguides
The interaction of a soliton with a nonlinear interface is a useful case to study, because 
it helps to explain some interesting phenomena associated with soliton emission from 

nonlinear waveguides later on.
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The behaviour of a soliton as it approaches the interface between two different 
nonlinear media can be studied analytically using equivalent particle theory (EPT) [41- 

43]. One example is the case where the soliton crosses the interface from a lower 
nonlinearity to a higher nonlinearity medium. In EPT the soliton is treated as a particle, 
and the interface as a potential barrier. The soliton crosses the interface depending on its 
power as well as the incident angle relative to the interface. At glancing angles to the 
interface, the soliton is reflected. As the angle is increased, the soliton penetrates further 

into the interface each time before being reflected, analogous to a Goos-Hanchen shift. 
At larger angles, the soliton penetrates completely through the interface and refracts. 
The refraction follows a nonlinear version of Snell’s law because it depends on the 
soliton power as well as the incident angle. The greater the power, the less the soliton 
deviates from its original course. Once the soliton crosses the interface, it changes 
shape to become a soliton of the new medium. In general, transmission through the 
interface can occur if the mismatch in the nonlinearity at the interface is small, less than 
around 40% change. In this worst-case scenario there is around 11% radiation, but for 
smaller mismatches, there is only a very small amount of radiation. The power 
dependent refraction of the soliton can give rise to an all-optical spatial scanner [44], 
where the soliton refracts through different angles depending on the input power.

Finally the case o f  an > 1 1 soliton crossing the interface has also been considered 
[41-43]. In this case the soliton breaks up into several fundamental solitons and some 
radiation results.

t  an A > 1 soliton has the same shape as the fundamental soliton, except with N  times 
the amplitude.

10.2.4 Soliton emission from nonlinear waveguides
The linear core/one nonlinear cladding waveguide can lead to soliton emission [24,45] 
providing the power is higher than a certain threshold. The waveguide emits solitons 
when it no longer can carry all the power, and has to shed the extra energy. Therefore 
these nonlinear waveguides can be used as soliton generators [45]. The threshold 
power required for soliton generation suggests that nonlinear waveguides could be used 
as optical limiters [45]. As the input power is increased further, multisoliton emission is 
possible [45]. The released soliton(s) can be captured by another waveguide situated 
close by. This suggests a further application as a soliton coupler [46].

The emission of spatial solitons from linear waveguides with nonlinearity on one 
side can be viewed as an unbalanced force on the linear TE mode, which accelerates the

157



C hapter 10 C oefficients incorporating nonlinear TE m odes

field towards the nonlinear region [47]. A soliton then breaks off from the waveguide, 

and launches into the cladding, leaving behind some residual power in the waveguide. 
The angle of emission of the soliton is dependent on the input power. This is because 
the unbalanced lateral force on the TE mode is dependent on the input power. The 
higher the power becomes, the greater the lateral momentum before the soliton is 
launched, and the larger the angle of emission. The power dependent angle of emission 

of the soliton suggests a potential use of such nonlinear waveguides as optical scanners 
[45].

As the input power is increased past the threshold, more and more residual power is 
left behind in the waveguide, until the residual power becomes high enough for another 
soliton to be emitted. Another way to view this is that if the input power is much higher 
than that of the threshold soliton, multisoliton emission occurs because this case is 
similar to the case of the multi-order soliton crossing a nonlinear interface [47]: ie. the 

soliton breaks up. The behaviour is strongly dependent on the width of the waveguide 
and the wavelength. For the case where the width is equal to the wavelength, a potential 
energy diagram (potential energy vs. position of centre of gravity of the beam in terms 
of lateral distance away from waveguide centre) shows a minima where the stable mode 
occurs. There is a potential barrier to prevent it from going into the cladding. As the 
power is increased the potential barrier reduces so that the soliton is eventually released 
into the cladding. For the case of the guide width equalling twice the wavelength, the 
potential barrier is much less, and soliton emission occurs much more readily above a 
threshold power.

10.2.5 Spatial soliton emission from tapered waveguides
The effect of tapering the guide has been investigated [48]. At very low powers, the 
tapering causes the TEq field to evolve adiabatically from initially that of thick film to 

that of the thin film. At higher powers, as the tapered guide narrows, the guided mode 
suddenly becomes a surface wave radiating some energy in the process. At much 
higher powers, the tapered guide loses the excess energy in the form of a soliton. If 
both sides of the tapered guide are nonlinear, the direction in which the soliton is 
emitted can be controlled by adding a small amount of TE, mode at the input and 

varying its phase.

10.2.6 Gain
The effect of gain on soliton emission from the linear film with symmetrical 
nonlinearities has been observed [49]. It was found that for low gains, the reshaping of
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the field was adiabatic, but where the power reached above the peak of the N-shaped 
dispersion curve (see Fig. 10.4), multiple spatial solitons were emitted periodically 
from both sides of the film.

10.3 THE NONLINEAR SLAB WAVEGUIDE
To model the nonlinear directional coupler (NLDC) consisting of two linear film 
regions separated by a nonlinear medium, the modes of the isolated nonlinear guides 
are calculated in this section.

Since symmetry is assumed, the mode shapes of the two guides are mirror images 

of each other. Therefore once one of the modes is determined, the other can be found 
very easily by taking the mirror image.

guide I

Fig. lO.I The nonlinear directional coupler

Each guide is taken in isolation, where it consists of a linear film, with semi-infinite 
linear cladding region on one side and semi-infinite nonlinear cladding on the other.

The mode satisfies M axwell’s equation in each of the three regions of the 
waveguides as well as the boundary conditions at the interfaces. Initially it is assumed 
that both claddings are nonlinear. Therefore the field shape of a homogeneous nonlinear 
medium is first calculated using Maxwell’s equations, and these field shapes are joined 

at the interfaces to the field shape of the linear film region such that boundary 
conditions are satisfied. Finally, one of the claddings then becomes linear, resulting in 

the desired mode shape.

10.3.1 Nonlinear waves in a self-focusing nonlinear medium
Using Maxwell's equations, the following wave equation for TE propagation can be 

derived (see eqn. A2.4).
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^  = { P ^ -k le )E ,  ( 10.1)

where is the free-space wave-vector, p  the propagation coefficient, e the
_ I |2 _

permittivity (nonlinear in this chapter), such that e = e + cc\E\ , where £ is the linear 

permittivity of the material. the complex electric field, and a  the nonlinearity (which 

is local in space and time- nonlocality implies processes such as diffusion). Self- 
focusing nonlinearities are assumed so that a > 0 .  Also S is defined such that 
0~ = -  k^e. Substituting for e and P into eqn 10.1 gives

d^E  i2
- ^ - 0 ^ E ^ .  + e,a\E^\ E^.=0 (10.2)

Since Ey is complex, it can be split it into a modulus (E),  and phase (0 ) notation [4], 

where E,  and (j) are real, ie Ey = E[p, Cù, . Therefore the real part of eqn 10.2

becomes

dx^ " \.dx_

and the imaginary part becomes

&  + 2 ÿ ÿ  = 0 (10.4)
O X  ox ox

Equation 10.4 can be integrated to give

(10.5)
dx E

where AT is a constant of integration. Substituting eqn. 10.5 into eqn. 10.3 and 

assuming the field becomes very small at large distances from the waveguide, so that 

one can say that as % ^  ±°°, E - ^ 0  [10], causes ^  = 0. Therefore

^ E
dx

+ k ^ a E ^ -5 ^ E  = 0 (10.6)2 ' '̂ 0
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which after integrating and factorising becomes

V dx
k la

dx )
=  0 (10.7)

Eqn 10.7 can be solved to give

E  — — —Scchô{x ~ ^o)
a

( 10.8)

We note that had the nonlinearity been self-defocusing a  < 0 , the solution would have 
been Sinh~^ instead of Sech (ie CoshT^) [8,10]. Also Xq is a constant of integration 

[10], giving the location of the field maximum. One can prove this as follows: the field 
maximum (E^^^) occurs when (dEldx) = 0 . Therefore inserting this substitution into 
eqn. 10.7, and solving for E  results in

E (10.9)

Now exactly the same result for E^^  can be derived from eqn. 10.8 by inserting 
X = Xq . Therefore x = Xq must be the location of the field maximum in the nonlinear 

medium.

10.3.2 Linear core with nonlinear cladding on both sides
The field solution for the nonlinear medium can now be incorporated into the nonlinear 

region of the waveguides.

nonlinear

^nonlinear
/ y  y  /  /  /  /  / / / .

Fig. 10.2 Illustrating linear core with nonlinear claddings.
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We consider a general asymmetric waveguide composed of a linear core with 
asymmetric cladding (ie. different linear and nonlinear indices on either side) (see Fig. 
10.2).

To write down the fields for the three regions, we make use of eqn. 10.8 for 
regions 1 and 3, and assume oscillatory fields for the linear core (region 2). Therefore 
the fields in the three regions can be written down as [10]

(%) = ^ (a: — Xqi )j % < 0 (10.10)

E 2 (x) = Aexp(jKx) +Bexp(-Jfoc) 0 < x < d  (10.11)

E^(x) = ^ x ^ d  (10.12)

where Xq, and Xq̂ ^^e the positions of the field maxima in regions 1 and 3 respectively. 
If either Xq, or jCq3 are situated within their respective nonlinear regions (1 and 3 
respectively), then the field maximum is situated in that region (the field would then be 
defined as a surface mode). If neither Xq, nor Xq̂ are in their respective regions, then 
the field maximum is in the linear core, and only the tails are in the nonlinear regions. 
For example if Xq̂ > d  (see Fig. 10.2), then there is a field maximum inside region 3 
(at X = X03), followed by an exponential decay as x is increased to infinity. If Xq3 < d  
then the field maximum does not appear in region 3 and only the exponential decay 
does. If region 3 were linear then Xq3 would be at minus infinity. The same type of 
argument could be applied to Xqj and region 1. <5,3 and K are defined as (cf. eqns. 9.6 

and 9.7)

= K = [ k l e , - f i ^ p  (10.13)

Matching the transverse electric field E  at x = 0 (eqns. 10.10 and 10.11) and at x = <7 

(eqns. 10.11 and 10.12) results in

A + 5 =  [Co5/z5iXo,1 ' (10.14)
\ a ^ c û

\Aexp{iKd) + Bexp{-jKd)  = (10.15)
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Now matching the transverse component of the magnetic field at the two 

boundaries. Therefore matching (proportional to dEjdx-SQQ eqn. A6.2) at % = 0 
(using eqns. 10.10 and 10.11), and at x = (using eqns. A6.2, 10.11, and 10.12)

gives

J k { A  - B ) =  J — ^ ^ S e c h S j X o j T a n h S i X Q , (10.16)

-  Be = J —  SechS^x^^TanhSjXQ^ (10.17)

Eqns. 10.14-10.17 are four equations which can be used to solve for A, B,  
SechS^XQj, and SechS^XQJ. Using eqns. 10.14 and 10.16, we first determine A and B,

A = 1 -  J —  TanhSjXQj^ (10.18)

B =
Û)

V
1 -I- j  —  Tanhô^XQ̂ (10.19)

Substituting for A and B from eqns. 10.18 and 10.19 into eqns 10.15 gives

I— ôr̂ Sechô-̂ XQ̂  —
«3

Sj — Sechô^XQ^
V V y

CosKd + —  Tanhô^XQ^SinKd ( 10.20)

Substituting for A and B (eqns. 10.18 and 10.19) into eqns 10.17 gives

2 0^I   Sechô.Xn̂ TanhÔ-,Xr.. =
«3 K

V
— SechÔ̂ XQ̂  
(X\ J

-TanhÔ^XQ^CosKd -  SinKd
\ y K  J

( 10.21)

It is useful to introduce the following parameters [10]

^ o ( f t^ )= ^ iW L = o ( 10.22)
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^03) = (10.23)
Y \Xj

where is the field amplitude at % = 0, is the field amplitude dX x = d .  

Substituting Eq and E^ into eqns. 10.20 and 10.21 respectively gives

^ Ô ^Cos Kd + —  Tanhô^ Sin Kd
\  K J

Ô f  Ô ^
—  E.TanhÔ.Xn^ = E» — Tanhô,Xf,,CosKd -  SinKd

(10.24)

(10.25)

Eliminating Eq and E^ from eqns. 10.24 and 10.25 leads to the nonlinear eigenvalue 
equation [3,10,17]

j , , ^ ^ ^ <pTanhô,x,,-5,TanhS,x,,)  (m .26)
K +  ô^ô^Tanha^XQ^TanhÔ^XQ^

This equation is the nonlinear version of eqn. 9.5 (see chapter 9) which was for the 
linear case. We note that here we have ÔyTanhÔ^x^^ and -Ô^Tanhô^XQj^ in place of ô 
and 7 of eqn. 9.5. It is encouraging to note that eqn. 9.5 can be derived exactly using 
eqn. 10.26 if we let Xq, -> °o , and Xq̂ (ie. when both claddings are linear),

TanKd = ^  (10.27)
k^ - 0 ,5 ,

Substituting for A and B  from eqns. 10.18 and 10.19 and Eq from eqn. 10.22 into 

eqns 10.10-10.12 and re-arranging gives,

E^{x) = EQ[Cosh8^x-  Smhô^xTanhô^XQ^] ' % < 0 (10.28)

f  8 ^
E2 (x) = Eq CosKx + —  SinKxTanh8^XQ^\ 0 < x < d  (10.29)

V ^  J
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E^{x) = Eç^^osKd + —  Sin 8 2 dTanh 8 ^XQ^^Cosh8 .^{x - d ) -  Sinh8 ^{x -  d)Tanh 8 X̂Q2 ]

x > d  (10.30)

-1

These equations are the nonlinear versions of eqns 9.2-9 A.

10.3.4 Linear core with nonlinear cladding on one side
To model the nonlinear directional coupler with the nonlinearity in the separation region 
[51], one cladding (region 3) is allowed to become linear, but the other cladding 
remains as nonlinear [10] (see Fig. 10.3)

nonlinear

.  Z

Fig. 10.3 illustrating linear core, and nonlinearity in region 1 only. 

Therefore as Xq̂  —> -«>, the eigenvalue equation (eqn. 10.26) becomes

K[8^Tanh8^XQ^ + ^3)
TanKd —

-  8^8.^Tanh8^XQ^
(10.31)

Also as %Q3 - 00, the fields become (using eqns. 10.28-10.30)

F, (jc) = EQ\Cosh8^x -  Sinh8^xTanh8^XQ  ̂]

^2W  = ^0 Cos Kx + —̂ Sin KxTanh8 ^

x < 0

0 < x < d

CosKd-\— -SinKdTanh 8 X̂Q̂ x > d
V ^

(10.32)

(10.33)

(10.34)
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10.3.5 Calculating the total power
In this section, Poynting's theorem is used to calculate the total power T  carried by the 

nonlinear waveguide. The motive is to relate the power-dependent propagation 
coefficient p  to the total power f  [4,8]. Time-averaged intensity 7̂ ,̂  can be calculated 
using eqn. A6.12. Power per unit length can be derived by integrating the intensity 
over total cross-section.

(10.35)

Substituting the field (eqns. 10.32-10.34) into eqn. 10.35 and integrating gives

^ ^ pôf{\-Tanh^ô,XQ^)

Ô̂ [l + Tanhô^XQ^]
+

1H— Y Tcinĥ ô̂ XQ̂ +

Sin2 Kd
Ak

—Y T a n h ô ^ X Q ^ S ir p K d  - h

28 .

+

3 V
Cos Kd + —  Tanhd^ Xq^SIu Kd

(10.36)

This equation relates the total power T  to the propagation coefficient )8 . We therefore 
note that K, 5,, and ^3 can be related to p  via eqns. 10.13, and TanhS^XQ  ̂ can be 
calculated by rearranging the eigenvalue equation (eqn. 10.31). ie.

^  _ K(KTanKd-8.)
(10.37)

The relationships between the power T  and the mode index [Plko) (commonly referred 
to as the dispersion curves [eg. 16]) are plotted in Fig. 10.4 using eqn. 10.36 for 
various guide thicknesses. When plotting the curves it is useful to note that the power 

T  in eqn. 10.36 is always real, even if K is driven imaginary. This is because CosKd 
becomes Cosh\K\d for imaginary K and hence is real, and SinKdjK becomes 
Sinh\K\dl\K\ and is also real. Furthermore a close examination of eqn. 10.37 reveals 
that TanhÔ̂ XQ̂  must be real even if K is imaginary, therefore fP is always real.
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1 0 0

6 0 i = 1 .5 /L
(W a tts /m )

4 0

20

M o d e  In d ex

Fig. 10.4 Relationship between power/unit length fP and mode index for various 

guide thicknesses, ë] = £3 = (1.55)^, and £3 =(1.57)^, a , = 6.377x 10“' ^ ,  
A = 1.064/xm [11,51]

From Fig. 10.4, it is observed that at low powers (eg. zero power), the mode index is 
larger for the thicker guides. This is because the field is contained mostly within the 
high index core in these guides, and so the index of the mode happens to be large.

As the input power is increased, the mode indices of the thinner guides increase 
more rapidly than the thicker guides. In this case the modes of thin guides are spread 
more outside the film region and therefore have a larger proportion in the nonlinear 
cladding region. Any slight increase in the power is likely to increase the refractive 
index in the cladding by an appreciable amount and this causes the mode index to be 

increased.
The curve for the d = 2.0jim guide is interesting in that it peaks suddenly at 

(P = 1 4 W / m ,  then decreases and then follows the other curves. The peak is due to the 
mode transitioning from a virtually power-independent film-guided mode to a power- 
dependent surface mode. For thick guides (d = 2.0jim), the mode is concentrated in the 
film region and has only a small fraction in the nonlinear region. Consequently quite 

large powers are needed to cause the mode to become power dependent.
Once the power is large enough, the subsequent transition from linear TE mode to 

surface mode is rapid (for the thick guides). Also once the surface modes have been 
formed for different thickness guides, they become similar to one another and 
independent of the guides they originate from. This is the reason why the d = 2. Ofim 

curve decreases at first before joining the other curves at larger mode indices.
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The d  = l.Ofim curve shown in Fig. 10.4 looks different to that in [8], and [11]. 
The peak (threshold power) here reaches around 14W /m  whereas theirs reaches a 
much higher power. There are two reasons why we believe our curve is more correct 
than the one in ref. 11. Firstly, lAW jin  corresponds with the 'maximum power' 
observed by Meng and Okamoto [51]. Secondly, we found that the mode index (p/ko) 
at îF = 0 here corresponds with that calculated using the linear eigenvalue equation 
(which is around 1.56229), whereas [8,11] gives around 1.567.

Between 70 and 14W /m,  with d = 2.0jJ,m, there are three values for the mode 

index (labelled (i), (ii), and (iii) in Fig. 10.4), for every value of îP. According to 
Kolokolov [23], the modes which lie on the positive slope (eg. (i) and (iii) in Fig. 
10.4) correspond with stable modes, and the ones lying on the negative slope with the 
unstable mode. If the guide is excited with one of the stable modes, then the field stays 
stationary with propagation distance, but if the unstable mode is chosen, the mode 
wobbles between the two stationary mode. The variation of the field with distance 
when the nonlinear guide is excited in turn with modes corresponding to points (i), (ii) 
and (iii) on Fig. 10.4 are shown in a BPM diagram (see Figs. 10.5-10.7 respectively). 
Using a power of 72 Watts/m Figs. 10.5, and 10.7 correspond with the stable modes 
(points (i) and (iii)), whereas Fig. 10.6 (point (ii)) corresponds with an unstable mode. 
It is noticed, that the field ‘wobbles’ sideways periodically as it propagates.

4 7 9 .8

3 9 9 .8

3 1 9 .8

2 3 9 .8

1 5 9 .8

tNl

¥-
a
o
CO

-20  0 20  

X (microns)

Fig. 10.5 BPM simulation. Power=72 Watts/m. Relating to state (i) in Fig. 10.4
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479.8

399.8

319.8

239.8

159.8

isi

3
n

§UJ

X [microns)
Fig. 10.6 BPM simulation. Nonlinearity in the left hand cladding. Power=72 
Watts/m, state (ii) in Fig. 10.4

480.0

400.0

320.0
239.9

159.9

X (microns)

Fig. 10.7 BPM simulation. Nonlinearity in the left hand cladding. Power=72 

Watts/m, state (iii) in Fig. 10.4
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Therefore we need to use either points (i) or (iii) in Fig. 10.4 for input to the BPM 
program. The relationships between power T ,  and Xqj are shown in Figs. 10.8 and

10.9 for two guide thicknesses d  = ZOjum, and d = 1.0/xm respectively. We note that 

% < 0 refers to the nonlinear cladding and 0< x < d  the linear film.

1 4 0  
120 
1 0 0  

Î  8 0  

(W a tts /m ) 6 0  
4 0  
20 

0

d  =  2 0 /ilm

-0 .5  0  0 .5  1
jCqi (  m ic r o n s  )

1 .5

Fig. 10.8 Illustrating total power/unit length against for d = 2. Ofim

1:40
120
too

fP 8 0  
(W a tts /m ) 6 0  

4 0  
20 

0

\ d = 1 , 0  l i m

-0 .5  0  0 .5  1
Xqi(  m ic r o n s  )

1 .5

Fig. 10.9 Illustrating power/unit length against Xq̂ for d  = l.O^um

At low input powers, the nonlinear cladding is approximately linear. Therefore is 
large and positive in Figs. 10.8 and 10.9 (cf Fig. 10.3). As the input power increases, 
Xq, decreases, and shifts towards the nonlinear region. Once reaches zero, the field 

becomes a surface mode. A further increase in the power causes the field maximum to 
enter the nonlinear region. Xp, keeps decreasing until it reaches around - 0 .4 jim , where 
it stops decreasing. At this point the field starts to narrow.
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We notice that once the mode becomes a surface wave {T  = 74W /m ) the curves 

for the two thicknesses (Figs. 10.8 and 10.9) become similar. This is expected, 
because once a mode becomes self-guiding, it is independent of its original guide.

10.3.6 Comparing the field amplitude with that calculated in chapter 9
To check whether the formulation in this chapter matches the one in chapter 9, the linear 
limit of Eq can be calculated. This should result in eqn. 9.12.

To calculate Eq for linear guides, we cannot use eqn. 10.14 and simply say 
Xq, oo. There is an a , in the denominator which tends to zero for linear guides. 

Another approach is to use the relationship between T  and Eq derived in eqn. 10.36 
and let Xq, ^  . Therefore eqn. 10.36 becomes (after a little rearranging).

2û) îo

1 1 d ô}d  -| -|- [- ------
25, 25, 2 2 k-"

+SinKdCosKd

f  1

1
2 k  2 k  ̂ S^Ky

+Sin Kd
2& K

+
y K

(10.38)

After much manipulations, eqn. 10.38 becomes

Êo =
Ak ^wii„(P

P{K^+Sf ) - f 1 y

(10.39)

which reassuringly compares exactly with that calculated for linear guides in chapter 9 

(see eqn. 9.12).

10.4 THE NONLINEAR DIRECTIONAL COUPLER
In nonlinear directional couplers (NLDCs), the situation is a little more complex. Since 
the power of the mode determines its shape, the problem is determining what power to 
use. One can either consider the fractional power carried by each mode at a particular 
propagation distance [53], or use the full power in the NLDC for the individual modes. 
The latter approach was the one taken by Meng and Okamoto [51]. As seen in chapter 
12, this gives accurate results. We also propose in chapter 12 that because some of the 
power is stored in the overlap integral, this should not be included in the total power for
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calculating the mode shapes.

We assume the guides are identical. Shifting the fields (eqns. 10.40-10.42) by - d  
gives the equation for guide '1'.

= E q CosKd —  SinKdTanhÔ^XQ^ -s. x > 0 (10.40)

C o s k { x  -H d) -I— -SinK{x + d)Tanhô^XQ^ - d < x < 0 (10.41)

£, = EQ\Coshô^ [x + d ) -  Sinhô^ (% H- d)Tanhô^XQ^ ] * x < —d (10.42)

Therefore, E^{-d) = Eg, and E,(0) = E^

For the second guide, we reverse the fields (eqns. 10.40-10.42), and shift by 
-{2 d  + w) to give

^2 = Eo[Co5'/z5, {x + d + w) + SinhS^ {x-{-d + w)Tanh8^XQ^ ] '
x > - ( d  + w) (10.43)

E j  —  E q C o s k { x  + d-\-w)  -SinK{x + d  + w)Tanhô^XQ^

- ( 2 d  4- w) < % < - ( d  + w) (10.44)

E^ -  Eq CosKd + SinKdTanhô^XQ^ 6 ]  { x + 2 d + w )

x < - ( 2 d  + w) (10.45)

Therefore E^(-(d  + w)) = Eg, and E 2(-(2d -H w)) = E^

To draw the field for each guide, we use the values for 5,, K, Eg and %g, as calculated from 
eqns. 10.36 and 10.37 for a particular power T . It should be noted that the fields E ,, and E2 

are real, even if K is driven imaginary at high powers for the same reasons as given after eqn. 

10.37.
Eqns. 10.40-10.45 are used to draw the modes of the two guides for different input powers 

(see Figs. 10.10). The vertical lines show the guide edges. We can observe that at high powers
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(chained curves), the modes penetrate into the separation region, and increase their overlap. At 
even higher powers (solid curves) we notice that the fields narrow and reduce their overlap.

24
22

0)
■D
0)
'iZ

\ \

-10
Distance (microns)

Fig. 10.10 Mode shapes for three powers îP = 1 0 W / m  (dashed), AOWfrn (chained), 
lOOVF/m (solid) {d = 2.0^m , w = 2Afim ,  n, = n  ̂= n^ = 1.55, n^ = n^ = 1.57)

In the next section, the properties of all the linear and nonlinear coefficients are 
investigated. It is rather difficult to derive analytical solutions in view of the fact that the 
equations for the fields are more complicated here than for the linear case in Chapter 7. 
Therefore the integrations are performed numerically using NAG integration package 
DO 1 OAF, which uses third-order finite difference formulae (according to a method by 
Gill and Miller [52])

10.5 VARIATION OF COEFFICIENTS WITH INPUT POWER
In this section a study of the characteristics of all the coefficients appearing in the two 
guide coupled mode equations is made. The guide parameters are the same as Meng and 
Okamoto [51], ie two guides (thickness d)  separated by a nonlinear medium of width 
w. We assume that the refractive indices are n, =«3= 1.55 , n2=l.51,  and

n3„, = 10-’ m7lV.
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For simplicity we use the same notation as in chapter 9, ie. Q , Q2 , notation for

the nonlinear coefficients, and assume perfect symmetry such that 0, = q I\̂  = 22 ’

Q2  -  Qn -  -  Qn-  We also note that AT,, = K 2 2  and K ^ 2 = AT̂ i-

10.5.1 O verlap integrals
In chapter 9 we studied the variation of the overlap integral with guide separation w for 

various guide thicknesses d  (see Fig. 9.3). At that stage we assumed that the field 

shapes were power independent (linear). We observed that the overlap integral 

increased with reduction in the guide separation. The variation of the overlap integral 
with input power is now investigated in Fig 10.11 for various guide separations. A 

thickness of d = 2.0/im is assumed for both guides. It can be seen that using power 

dependent field shapes causes the overlap integral to become a nonlinear function of 
input power. The power independent (linear) case is shown for comparison (see 

horizontal dotted line in Fig. 10.11).

w  =  1. O f i m

^  O . G

p. 0 .4
40

Vl
o>
>o

0.2

0.0

w  = l . S f l m  "''s.

= 2 . 0 f l m

0 50 100 150 200

Input Power (Watts/n)
Fig. 10.11 Variation of overlap integral with input power d = 2.0flm,  (i) w = l.Oflm 
(solid), (ii) w = I5f im (chained), (iii) w = 2.0fim (chained), (iv) w = 2.4flm (dotted) 

(power dependent curve), (v) w = 2.4fim (power independent curve)

The solid curve in Fig. 10.11 refers to the case when the guides are closest together 

( vr = l.O^m). It can be observed that at low powers the overlap integral increases with
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input power. As the input power increases, the fields are attracted towards the nonlinear 
separation region, and overlap each other more as a result. The increase in the overlap 
integral with input power is slow at first, but then gradually becomes more rapid, and 
asymptotic at threshold power (around 74 W/m). Physically the threshold power is the 
power where the guided mode suddenly becomes a surface mode. At this power, the 

overlap integral jumps from 0.4 to 0.95. Above this power, the overlap integral 
increases gradually with input power until it reaches a value close to 1. As before, the 
increase occurs because the modes slant towards each other as the power is increased. 

At a certain power, the modes stop shifting further into the cladding (see Fig. 10.8), 
and instead start to narrow because of self-focusing (see Fig. 10.10). Consequently the 
overlap between the modes starts to reduce (see Fig. 10.11), and the overlap integral 
decreases. Although the initial increase in the overlap integral with input power has 
been mentioned before [51], we are the first to mention this decrease in the overlap 
integral with input power.

The effect of the decrease in overlap integral due to field narrowing becomes 
important for larger separations. Above threshold power, the overlap integral reduces at 
a rate which is greater for larger guide separations. At very large separations (eg. 
vy = 6.0jHm not shown in Fig. 10.11), the overlap integral just drops discontinuously 
to a lower value at threshold power.

The d = 0.5fim case was also investigated (graphs not included here). The modes 
for this case are wider spread than the d  = 2.0fim  case. Consequently these modes are 

affected more by the nonlinearity in the cladding, and are more sensitive to changes in 
input powers. The variation of the overlap integral with input power is continuous here 
and occurs over all powers, in contrast to the d = 2 . 0 fim case where the overlap 
integral changes significantly only near the threshold power. The discontinuity seen in 
the d = 2. Ojim case is not observed here, but the variation is otherwise similar. As in 

the d = 2 . 0 fim case, at low powers the overlap integral increases because the modes 
overlap more, and at high powers reduces because of self-focusing. At an intermediate 
power the overlap integral peaks. The peak tends to move to lower input powers as the 
guide separation is increased. This is because field narrowing effects are more 
important for large guide separations.

10.5.2 Coupling coefficient
The variation of the coupling coefficient with input power and guide separation was 
investigated next. We observed that the relationships were similar to those found for the 
overlap integral. The variation with guide separation was exactly the same as with the
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overlap integral. The coupling coefficient decreased because the modes were physically 
more apart. The variation with input power was slightly different to that of the overlap 

integral, because whereas the overlap integral is an integral over all space and depends 
on the physical overlap between the modes, the coupling coefficient is an integral over 
one of the guide regions, and is therefore dependent on the field strength in that region. 
Therefore even if the overlap between the modes increases with input power, this does 
not necessarily mean the coupling coefficient increases, because it is the field strength 

over the perturbation region which matters. We found that the coupling coefficient did 
not generally increase as much as the overlap integral at lower powers, but started to 
reduce at higher powers due to self-focusing of the field.

We varied the film thickness to investigate the variation of the coupling coefficient 
with input power. We found discontinuities at threshold power for the d = 2. Ojum case, 
similar to those for the overlap integral above. Above threshold we found that the 
coupling coefficient decreased sharply until at very high powers it reached zero.

For the smaller thicknesses the coupling coefficient varied continuously with input 
power, just as was observed for the overlap integral. We saw that the peak shifted to 
lower input powers as the guide thickness was decreased.

The effect of the overlap integral on the coupling coefficient (ie. was examined 
next. As indicated in previous chapters (also see eqn. 11.11), the overlap integral 
modifies the value of each coefficient, and it is the modified value, ie and not the 
actual coefficient which determine the critical power. This can be seen clearly in the 

critical power formula (CPF) (see eqn. 11.42) derived in chapter 11. It can be seen that 
the modified form of the coefficients rather than the actual coefficients appear in 
formula.

For the thick guide {d = 2.0/im) where the overlap integral is negligible, the value 
for was exactly the same as at all powers. However for the d = 0.5fim case 

where the overlap integral is large (see Fig. 10.12) we saw that was larger than 
K  for the lower powers. At higher powers the curves are similar.
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Fig. 10.12 Variation of coupling coefficients with input power for d  = 0.5fim, 
w = 2 . 0 fim (i) (solid curve), (ii) (dashed curve)

10.5.3 Nonlinear modification coefficient (NLMC)
Fig. 10.13 shows the variation of the self-phase modulation Q  with input power for 
two guides with film thicknesses d = 0 .5}im , and 2 ^m  where the separation between 
the guides is assumed to be w = 2 .0^m . It can be seen that whilst the d = 0.5fim case 
(upper solid curve) is continuous at all input powers, the d = 2. Ofim case (see lower 
solid curve) is discontinuous at the threshold power. Below threshold, Q̂  is greater for 
the d  = 0.5fim case, because the fields in this case extend further into the nonlinear 
separation region and are affected more by the nonlinearity. Above threshold, the 
curves are similar since the fields are all surface modes, and affected by the same 
amount by the nonlinearity. It can be seen that above threshold the variation of 

becomes linear with input power and the slope is much steeper than that below 

threshold.
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Fig. 10.13 Variation of Q  and with guide thickness and input power.
(i) Q, d = 0.5fim , w = 2 . 0 jim (upper solid curve), (ii) g, d = 2 . 0 jim, w = 2 . 0 fim 
(lower solid curve), (iii) (2,"* d = 0.5fim, w = 2 . 0 fim (upper dashed curve), (iv) 
d = 0.5f im , w = 2. Ofim (lower dashed curve)

In Fig. 10.13 we can also see how the self-phase-modulation terms are modified by the 

overlap integral (ô f s )  (see dashed curves and eqn 11.10 (next chapter) for the 

definition). For the d = 0.5fim case, was found to be larger than Q at all input 

powers. For the d = 2. Ofim case was observed to be similar to Q̂  below threshold,
but slightly greater than Q̂  above threshold. It can also be seen that the modified 
coefficients (dashed curves) become similar at high powers.

10.5.4 The nonlinear cross-coefficients
Fig. 10.14 shows the variation of Q2  with input power for d = 2.0fim, and various 
guide separations. We first notice the discontinuous change in Q2  at the threshold 
power, which is characteristic of the d = 2. Ofim case. It can also be observed that the 

guide separation has an effect on Q2  in contrast to what was observed for Q . This is 
because Q2  is a coupling coefficient, which depends on the interaction between two 
separate fields. Therefore it reduces when the separation between the fields is 
increased. In Fig. 10.14 we can see that above threshold, Q2  initially increases with
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input power, reaches a peak, and then reduces at higher powers due to field narrowing 
effects (see section 10.4.1). One remembers that in the g  case (cf. Fig. 10.13) the 
relationship was linear with input power above threshold.

5
x 1 0

12 !

w  = l.Ô u/n

w = l.QfJun

50 100 150
Inp u t P o w e r  (W a tts /m )

200

Fig. 10.14 Variation of with input power d  = l.Ojim, (i) w = 1.0/xm (solid) (ii) 
w = 1.5^m (chained), (iii) w = 2.0jim (dashed), (iv) w = 2.4fim (dotted)

We next investigated the effect of varying the film thickness. We saw that the film 
thickness did not have an effect above threshold, but below threshold Qj became larger 
with thinner films.
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The variation of with input power and with guide separation is very similar to that of 
Q2 . A comparison between Q2  and is shown in Fig. 10.15 for d = O.Sjim and the 
two separations w = 3.0jim and w = 2.0jj.m. The upper solid (Q2 ) and dashed (Q^) 
curves refer to the smaller separation w = 2. Ojiim. It can be seen that the peaks are at 
higher input powers for the smaller guide separations. This is because as the guide 
separation is decreased, the amount of nonlinearity also decreases and therefore more 

power is needed to compensate. It can be seen that > Ô3 1̂ all input powers. 
However, as we shall see in chapter 11, it is not the actual values Q2  and which 
affect the switching power, but the effect that the overlap integral has on these 

coefficients. It can be seen from the critical power formula (CPF) in eqn. 11.42 that, 

Q2  becomes the overlap integral dependent (= ) /2 ) where Q2  and Q2

are defined in eqns. 11.10 and 11.9 respectively, and becomes Q^. We show in 
Fig. 10.16 the variation of and with input power for d = 0.5fim for two guide 
separations w = 2. Ofim (upper solid and dashed curves) and w = 3. Ofim (lower solid 
and dashed curves). We saw that up to 50W /m,  was small but positive, but 

above that went negative. We observed that at low input powers, (2̂ v̂ > Ô3" whereas at 
high input powers, > Q^a  ̂- Therefore it is dangerous to leave out Q2  or without 
careful attention to the effect of the overlap integral, guide thickness, and input power.
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with guide separation for three input powers lOW /m  (lower curves), SOW/m (middle 
curves), and 100 W/m  (upper curves), assuming a film thickness o f d = 2.0fim.
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In Fig. 10.17, we plot the variation of g ,  Q2 , and with guide separation for three 
input powers 70, 80, and lOOW/m, assuming a film thickness of = ZOfim. It can be 

seen that for zero guide separation, where there is no nonlinearity, all three coefficients 
are zero. As the separation is increased, all the coefficients initially increase together. 
However around LO^am separation, they reach a maximum. With increase in separation 
(2i stays at the maximum level since it is a self-phase-modulation coefficient and not 
dependent on the other guide, whereas Q2  and reduce, since they are concerned with 
the interaction between two separate fields.

10.6 CO N CLU SIO N S FO R  C H A PTER  10
It was shown in chapter 9 (previous chapter) that when power independent (linear) 
mode shapes are used, the overlap integral , and the coupling coefficient are 

constants with power, and the nonlinear coefficients and the nonlinear coefficients Q , 
Q2  and Ô3 are directly proportional to power.

In this chapter we calculated the power-dependent modes for a slab waveguide. We 
then used these to calculate the linear and nonlinear coefficients. We showed that 
incorporating power dependence not only causes a nonlinear variation of the 
coefficients with respect to input power, but also causes these coefficients to be 
dependent on the film thickness and the guide separation. At low powers, the power 
causes the fields to be skewed towards one another, which increases the overlap 
between the modes, and increases the coefficients above the power independent case. 
At much higher powers all the linear and nonlinear coefficients as well as the overlap 
integral are decreased because of field narrowing effects (this has not been mentioned 
elsewhere).

The film thickness is important below threshold power. Modes from thinner guides 
overlap more, and are affected more by the nonlinearity. Modes from thicker guides are 
unaffected by input power until near the threshold power, where they suddenly change 
into surface modes and all the coefficients become sharply affected at the threshold 

power.
It was also discussed that it is not the actual values of the coefficients which matter 

in strong coupling, but the modified form due to the overlap integral. For example 

although Q2  > Ô3 may occur at all powers, it may be possible that the modified forms 
of these coefficients could show . Therefore it is ill-advised to omit either 02

or 03 in strong coupling without knowing in advance how they change for different 

parameters.
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CHAPTER 11

ANALYTICAL SOLUTION OF NONLINEAR COUPLED 
MODE EQUATIONS

In this chapter we calculate for the first time analytical solutions to the complete coupled 
mode equations for the strongly coupled two guide case, show that one constant of 
motion which is the Poincaré sphere changes into an ellipsoid in strong coupling 
(section 11.3.2.1), and calculate a new analytical formula for the critical power (eqn. 

11.42).

11.1 IN T R O D U C T IO N
The critical (or switching) power is the most important parameter defining a nonlinear 
directional coupler (NLDC). It is the unstable input power which causes equal 
asymptotic power variation along the guides. In this state, the NLDC can be switched 
by slight variation in the input conditions.

Coupled mode theory can be used to calculate an analytic formula for the switching 
power, as well as to find the variation of the mode amplitudes with distance in terms of 
elliptical functions. The first attempt at solving the nonlinear coupled mode equations 
was made by Jensen [1]. This was later followed by Daino et. al. [2] and Trillo et. al.
[3] who introduced a more elegant approach involving first converting the mode 
amplitudes into Stokes parameter formalism. Although these initial papers were 
important in demonstrating the techniques involved, the actual derived solutions were 
inaccurate, since over-simplified and inconsistent forms of the coupled mode equations 

were used.
Attempts at improving the accuracy of the solutions were later made by Chen [4] 

who included the overlap integral as well as many of the nonlinear and linear terms. 
However the main conclusion from that paper seemed to be that including all the terms 
causes the critical power to be lower than Jensen’s analysis. We found the opposite 
case to be true (see chapter 12). The main problem with Chen’s analysis however was 
that power dependent mode shapes were not incorporated. The analysis therefore only 
applied to very large guide separations. For small separations, as found by Meng and 
Okamoto [5], the power dependence of the mode shapes is the most important factor 
determining the accuracy of the coupled mode equations. Meng and Okamoto’s analysis
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on the other hand was deficient for two reasons. Firstly, the overlap integral was 
ignored. It is known that ignoring the overlap integral causes inconsistencies in linear 
coupled mode equations (see chapter 3). It has an even greater effect in nonlinear 
couplers. Secondly, Meng and Okamoto used the full power of the NLDC to calculate 
the mode shapes whereas in reality some of the power (the power carried in the 
overlap) does not contribute to the shape of the modes; only the power carried by the 
modes does. Meng and Okamoto’s analysis is therefore not valid for strong coupling.

Ankiewicz and Peng [6] also incorporated power dependence, and included the 
overlap integral. However by omitting a large number of nonlinear coefficients, their 
equations were inconsistent and resulted in severe errors (see chapter 6 and 12). Their 
use of local mode theory also did not lead to a formula for the critical power.

In this chapter an accurate analytical formula for the switching power is derived and 
then checked using the beam propagation method (BPM)- see chapter 12- for various 
guide thicknesses and separations. To derive the formula, the coupled mode equations 
derived in chapter 6 are first converted into Stokes parameter formalism; two constants 
of motion (3D surfaces in Stokes parameter coordinates) are then extracted. We show 
for the first time that one of the constants of motion, the Poincaré sphere, changes into 
a (Poincaré) ellipsoid at strong coupling. The intersection between these two 3D 
surfaces gives rise to an analytical formula for the critical power. The formula 
incorporates power dependence of the mode shapes in the correct manner using the 
modal powers and not the total power (as in [5]). In the second part of the chapter, a 
complete solution for the powers as a function of distance is derived.

The analytical solutions for three or more guides is not attempted here. These are 
much more complicated to derive than the two guide cases. Several attempts for 
solutions have been made in the literature. The only complete solutions exist for centre 
guide excitation [7], which are easy to study because the symmetry allows the structure 
to be regarded as pseudo- two guide. For the outer excitation cases, although a full 

derivation is complicated, it is possible to derive an empirical formula for the critical 
power using simple physical arguments [8]. Graphical (phase-space) approaches have 

also been attempted [9].

11.2 TRANSFORMING TO STOKE S COORDINATES
The method in this section is first to re-express the mode amplitudes in terms of Stokes 
parameters (similar to [2-3] but using more complicated nonlinear coupled mode 
equations). Four differential equations then result. Two constants of motion can be 
extracted to derive a formula for the switching power. The constants of motion are
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three-dimensional geometrical objects in Stokes parameter coordinate system. The 
intersection between the two constants of motion gives rise to the trajectories of motion, 
which represent the variation of the amplitudes and phases with distance along the 

coupler.
First the nonlinear coupled mode equations are calculated from the matrix form of 

the equations (eqn. 7.17), pre-multiplied by C~\ and expanded out for the two guide 
case using the matrix definitions in eqns. 7.18-7.24. Assuming the symmetrical case

where > ^ i i  ~ Q\ ~ ^iV ~ Ô2 ~ Ô1V ~ Q2 1  ’ Ô3 ~ Gn  ̂ ~ Q2 2  ^
= a:,”; -h -  0 " ,  " -  Gf , the nonlinear coupled mode equations

become

+ Kl" +\aj\ 0 7 +KI  Q2 )^2~^{^^i\^2\ +^1^2 )0 ^ +(2fl2|«7| +a]a^Ql

( 11. 1)

- 7 ^  = (A + ^ r  +K rer)«2 + (^2" +hrÔ2"j«, +(2\a,fa, + aX)Q" + {2a,\a,\‘ +ay,)Q^
( 11,2)

where P ,̂ and P 2  the nonlinear propagation coefficients for the isolated nonlinear 
guide (we note that p  = p^= P2  since the guides are symmetrical). It is possible to 
separate the different terms in a similar way to the linear coupled mode equations into 
those which contribute to the propagation coefficients and those which contribute to the 

coupling coefficients as follows

- j  = A™ (z)«i (z) + % ,f(z)a2 (z) (11.3)
dz

- 7 ^ ^  = A"‘ (zK(z) + «:,f(z)a,(z) (11.4)
dz

where p ^ ^ , P^^ and Jd̂ 2^, %2 \ ^^6 the nonlinear z-dependent propagation and 

coupling coefficients defined as

A " '= A  + K  + \a,fQ'" +{2a;a, + a,a;)Q,"‘ (11.5)

A"" = A  + A" +\(hfQ"+{2a,a; + a;a^)Q^ (11.6)

+ (2a ,A  + fl,*aj)Ô3” (11.7)
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+ |a,pG™' + ( 2 a , + a ,a;)gr (11.8)

Although the propagation coefficients , and are complex quantities (see eqns 
11.5 and 11.6), we note that this does not mean that the system is lossy or active as is 
usually the case when there are imaginary components in the propagation coefficients. 
Power conservation can still be satisfied exactly (see chapter 7). We note that the m 

superscripts for the coefficients refer to the modified forms of the coefficients due to the 
presence of the overlap integral. The coefficients are defined as

e r  = 7 ^ ( 0 2 - C „ a ) ,  (11.9)
1 C,2 i Cj2

e r = 7 - ^ ( 0  -  c ,2& ). Ü2 = -  c ,2 a ) .
1 f  12  ̂ 1̂2

( 11. 10)

f ^ n = - r - ^ i ^ n - C n K n ) ,  G," = 7 ^ ( 6 3  -  C , ^ ) ,  (11 .11)
i C|2 t C,2

K , f " = - r ^ { K , T - C n K , f ) -  (H .12)
1 C,2 1 (-12

To solve the nonlinear coupled mode equations (eqns 11.3-11.4), they are first 
decoupled by removing p  + K!^ terms. Hence a, (z) and ^2(2) can be expressed as.

a,(z) = A,(z)/^^^^' a^iz) = (11.13)

where A,(z) and A2(z) are the slow varying (complex) amplitudes. Therefore eqns. 

11.1-11.2 become

= A, |A, I" G," + [k :;+  K f  G2”' ) 4  + (2  AIA I' + A'A' + (2 A  |A f + A* A  jc j
dz

(11.14)

- ; - ^  = A  lA f Q " + ( A" + 1A f  Q"' ) a  + (2 A  |A f  + A  A  )Q" + (2  AIA I' + A* A  )Gr

(11.15)

The mode amplitudes A, and A2 can be expressed in terms of Stoke’s parameters Sq, 

5'|, S2 , and as follows
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S„=|A ,|^+|4 f  5 ,= |A ,f - |A ,f  (11.16)

S, = A,AJ + a ;A2 S, = j(A,Aj* -  Al'A,) (11.17)

Differentiating Sq, 5',, iSj, wrt z, substituting the coupled mode equations (eqns. 
11.14 and 11.15) and rearranging extensively, results in the following differential 
equations

( n - i s )

^  = -2(̂ K-+Q̂ S, +^(Q^+Qf)y, (11.19)

^  = {Qr-Q")S,S, (11.20)

^=2{^K̂ +Q̂ s,+ ^ (er+ 0 2 " ')]-s , + (a " ' -02” )V i - ( G r - G r ) %

( 11.21)

If the overlap integral had been ignored however, the equations would have become [2]

^  = 0, ^  = -2{K, + Q,S, + Q,S,)S, ( 11.22)
dz dz

^  = (G, -  Q,)S,S,, ^  = 2{K̂ + Q,S„ + G3S,)S, -  (G -  G)^A2

(11.23)
It is instructive to study the similarity and differences between eqns. 11.18-11.21 and 

eqns. 11.22-11.23. Firstly it is noticed from eqn 11.22 that Sq does not vary with z. 
This is because in weak coupling Sq is equal to the total power in the NLDC, and is 
therefore a constant. In strong coupling however, some of the power is held in the 
overlap between the eigenmodes. Therefore in that case Sq is not necessarily equal to 
the total power, and its variation with z is non-zero (as in eqn. 11.18). A further 
comparison of eqns. 11.18-11.21, and eqns. 11.22-11.23 shows that becomes 

(<2f + ) /^ , where #  Qj \  becomes K ^,  Q becomes Q"*, and becomes

Gr
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11.3 CONSTANTS OF MOTION
By careful manipulation of the four differential equations above (eqns. 11.18-11.21) it 
is possible to find some constants of motion, ie. quantities which remain unchanged 
with propagation distance.

11.3.1 Calculation of the total power
We first calculate a relationship between Sq and S2 . This can be derived from total 
power calculation using Poynting’s theorem (see Appendix 6, eqn A6.19). However it 
can also be derived from eqn. 11.18-11.21. Eliminating from eqns. 11.18 and 
11.20 leads to the following relationship between Sq and Sj

dz dz
(11.24)

But -  Q2  ) and ) can be derived from eqns. 11.9-11.11

Ô 2 " '- a ” = 7 ^ ( e 3 - G , )  e , " - ô r = T ^ ( e , - e , )  ( n . 25 )
1 C,2 1 (--12

ô r - ô , "
we can now substitute for

V ^3 y

initial conditions S2  and Sq into eqn. 11.24 gives

in eqn. 11.24. Substituting also the arbitrary

(5„-S „) = - C , y s , - 5 , )  (11.26)

Using initial values = 0 and S q = 1  (guide 1 excitation), eqn. 11.26 becomes 

5o = 1-C,2^2 (11.27)

Eqn 11.27 can be shown to be exactly the same formula as the power conservation 
formula derived in Appendix 6 (eqn. A6.19). By substituting the definitions for Sq and 

S2  (eqns. 11.16 and 11.17) into eqn. 11.27 leads to

K  f  + K f  + + Aj*A, ) = 1 (11.28)
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which agrees exactly with eqn. A6.19

11.3.2 The ‘Poincaré’ equations (spheres, ellipsoids, and paraboloids)
It is shown in this section that the Poincaré sphere is a constant of motion in weak 
coupling, but becomes an ellipsoid in strong coupling and finally a paraboloid. This has 
not been mentioned in the literature. The Poincaré equation (which describes spheres, 

ellipsoids, and paraboloids), can be calculated by noting that the quantities

2 ( ^ : " + e 3”S2 + 5o(ô2” + e 2" ') /2 )- and ( Q " - Q " )  in the definition of dSJdz  (eqn. 

11.21), are contained in eqns. 11.18, 11.19, and 11.20 respectively. Therefore by 
incorporating these equations into eqn. 11.21 and integrating (using arbitrary initial 

values for the Stokes parameters Sq, S2 , S^) results in

«  -  So ) = ( f  - ^ ' )  + (s^ - s ,^ )  + {s^ -  S3' )  (11.29)

Assuming that the initial amplitudes are A,(0) = and A2(0 ) = where

0 , (z) and 02 (z) are the respective initial phases (the bar implies initial conditions) and 
for convenience letting 0(z) = 0 ;(z ) -  02(z), the initial values of Stokes parameters 
become

S„= |A ,f+ |A 3f, 5, = |A , f - |4 f  (11,30)

S2 = Â A2* + A*A2 = 2|A,||y42|C(950 , = j^A^A  ̂-  A/Ag) = -2|A,||A2|5'm0
(11.31)

Inserting the initial conditions (eqns. 11.30-11.31) into eqn. 11.29 leads to the 

Poincaré equation

S"^+Sl+Sl = Sl (11.32)

Sq is in general not equal to the total power. Therefore in general it is not a constant. 

However for weakly coupled geometries where the overlap integral can be ignored, 

is equal to the total normalised power {Sq = 1).
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Weak coupling: Poincaré sphere

s; + s; + s; = i (11.33)

Equation 11.33 represents the equation of a sphere, and is known as the Poincaré 

sphere [2] (see Fig. 11.1). The surface of the sphere represents all possible states 
corresponding with constant total power. Therefore a trajectory on the sphere 
represents the evolution of the magnitudes and states of polarisation of the mode 
amplitudes in a lossless system. Several regions on the sphere surface have physical 

meaning. The north pole (S', =1) represents all power carried by mode 1. The south 
pole (S', = -1 )  represents all the power in mode 2. The equator (curve / ] )  represents 

equal power in the modes. Points on the great longitude (curve Tj) correspond with 
equal phases between the mode amplitudes. Any other points on the sphere (ie those 
not on curve P^) signify unequal phases and points S"̂ = —1 and S"̂ = 1 on the equator 
with orthogonal phases [10].

+1

+1-1

-1

Fig.11.1 The Poincaré sphere

11.3.2.1 Strong coupling case
As explained before, for strong coupling Sq is not a constant. It is the fourth variable in 
the Poincaré equation (eqn. 11.32). However, it can be eliminated from the Poincaré
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equation by relating it to S2  using the total power formula (eqn. 11.26). Therefore 
substituting the total power formula (eqn. 11.26) into the Poincaré equation (eqn. 
11.32) leads to

& ,'+ ( ! -  + 2 C „ {S ,~ S ,X% + c j , )  + S l=  (11.34)

which is the equation for an ellipsoid. Considering guide 1 excitation only so that the 

initial conditions are 5, = 1, 8 2  = S^= 0  simplifies eqn. 11.34 to

Strong coupling: Poincaré ellipsoid

Sf + (1 -  + 2 0 ,2X2 + X̂  = l (11.35)

In summary, the effect of the overlap integral on the Poincare sphere is to change it into 
an ellipsoid. It can also be seen from eqn, 11.35 that for very strong coupling 
(C ,2 = 1), the Poincaré ellipsoid itself then becomes a Poincaré paraboloid. Equation 
11.35 is plotted in Fig. 11.2 below (in the Ŝ  - S 2  plane), for various values of the 
overlap integral. By simple geometry it can be shown from eqn. 11.35 that the ellipsoid 

crosses the 5”2 axis at l/( l + Ci2) and l/(C,2 - l ) ,  but crosses the axis always at 
Ŝ  = ±1. The point where the ellipsoid intersects the positive S2  axis {S2  = l/( l + Q 2), 

= 0) is a particularly important one, since it corresponds with the state where the 

mode amplitudes and phases are equal (ie this point corresponds with the final 

evolution state of the amplitudes if the NLDC is excited with the critical power).
The overall effect of the overlap integral on the Poincaré equation can be seen from 

Fig. 11.2. It is observed that C,2 0 corresponds with the shape of a sphere. As C,2

increases, the shape changes into an ellipsoid and the ellipsoid ‘expands’ in the negative 

S2  region (crossing the negative S2  axis at l/(C ,2 - l ) ) .  At C,2 = 1 the result is a 

paraboloid.
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- 3  - 2 . 5 - 0 . 5

-2

Fig. 11.2 The effect of the overlap integral on the ellipsoid. The overlap integral is 
varied from 0 (solid curve) to 0.5 (dashed curve) to 0.9 (dotted curve)

11.3.3 The p arabo lic  su rface
A second geometric surface in Poincaré coordinates can be derived by eliminating 
from eqns. 11.19 and 11.20 and rearranging to give.

dz
- 2 K -  2Q" ,  S„(Qr + e r )

02
I

dS.
dz

(11.36)

By substituting the following into eqn 11.36

4 K 2 + ^ { Q " + Q 2 ')

C n {Q "+ Q ^)
er-e,"

(11.37)

(11.38)
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and integrating results in the general equation for a parabolic surface.

= 7^(52  -  5, ) + f  r  -  Ç \ { S Î  -  5 /)  (11.39)
M \  J

Note that a ‘parabolic surface’ is not a paraboloid (which was mentioned in section 
11.3.2). A paraboloid is cup-shaped whereas a parabolic surface is one where the 
parabola shape is unchanged in the third dimension. To be formally accurate, the shape 
(resulting from eqn. 11.39) is not a parabolic surface but an elliptical surface. However 

it approximates to a parabolic surface in the regions of interest on the Poincaré 

ellipsoid. Assuming guide 1 excitation, so that S^=l ,  8 2 = 0,  eqn. 11.39 becomes

Strong coupling: Parabolic surface

s
7 — S" (11.40)

11.4 CRITICAL POWER FORMULA
11.4.1 Intersection between the two geometrical surfaces
The intersection between the parabolic surface discussed in the previous section and the 
ellipsoid derived in section 11.3.2.1 (see Fig. 11.3), gives rise to the trajectories of 

motion, ie the evolution of the mode amplitude and phases with propagation distance z .
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Fig 11.3 Showing the intersection between the two constants of motion. 
cl = 0.5fJm, w = 2.0n m , and pow = 10 WIm

The parabolic surface and the ellipsoid are drawn in three dimensions in Fig. 11.3. It 

can be seen that the two surfaces always intersect at 6", = ±1 if guide 1 is excited. The 

intersection between these two surfaces gives rise to the trajectories of motion. At low 

powers, the base of the parabolic surface is at 5, = 0 .  Therefore the intersection 

between the two surfaces is a large circle. As the power increases, the base of the 

parabolic surface shifts along the positive S. -̂ axis. At the critical power the ellipsoid 

and the base of the parabolic surface intersect at the point = \j{C^^^-\^. The 

trajectory is then a three dimensional separatrix, with a col at = */(^p + l) (see Fig. 

11.4). At higher powers, the separatrix then changes into two small loops in the north 
and south hemispheres. This results from the base of the parabolic surface being 

located outside the ellipsoid on the positive 6"̂ - axis. These loops shrink as the power is 

increased further.
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5i

Col of the 
Separatrix

Fig. 11.4 Showing the trajectories resulting from the intersection between the two 
geometric surfaces for different input powers {d = 0.5fim, w = l.Ofim)

The trajectories are drawn in the Ŝ  - S 2  plane in Fig. 11.4. These trajectories are 
similar to those found in nonlinear dynamics. Movement along any particular trajectory
[2] corresponds with the evolution of the mode amplitudes and phases with distance z . 
Closed trajectories correspond with oscillations of the mode amplitudes with distance, 
and separatices with asymptotic evolution. At low powers, the trajectories are large 
loops which emanate from the north pole 5', = 1 (corresponding with excitation of guide 
1 at z = 0), which pass through the south pole after one coupling length (where all the 
power is then in guide 2). As the input power is increased, the loop narrows in the 
middle (in bow-tie fashion), until at the critical power it forms a separatrix. The 
separatrix trajectory starts from 5, = 1 and ends at the col after an infinite distance. 
Above the critical power the separatrix splits into two closed curves in the top and 

bottom hemispheres.
To find the critical power, we are interested in the separatrix trajectory. Substituting 

the values for }i"', and 5'" (from eqn 11.37-11.38) into the general form of the 

parabolic surface equation (eqn 11.40) leads to

( er -  - 1) + 4(/irr+ i / 2(Gr+ -  (C]2(Gr+ = o
(11.41)
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At the critical power, the final values for Ŝ  and S2  are = 0, and Sj = l/( l + 
respectively. Therefore eqn 11.41 can be rearranged to result in the critical power 
formula

Critical power formula

4k :

( i+Q)er- 2 -
C12

1 + C [Q2 +Q 2 ' ) -
12

(1+ 0 ,2) + J
+ c 12

=  1 (11.42)

This equation contains the critical power implicitly. All the coefficients incorporate 
fields with shapes which are power dependent. The critical power formula can be used 
to calculate the critical power iteratively, eg using the bisection method. The critical 
power is defined as that power which enables eqn. 11.42 to be satisfied.

The question arises as to which power should be used for the determination of the 
mode shapes. Meng and Okamoto used the full power P. However, for the 
symmetrical case, at strong coupling and after a large propagation distance, the power 
in the modes is P /(l + C,2) (see section 11.5.1.2). The rest of the power 
PC,2/(1 + C,2) is held in the overlap. Therefore one should use the power P /( l + C,2) 
in calculating the mode shapes rather than the full power P .

It is possible to extract the critical power explicitly from eqn. 11.42 if we assume 
power independent mode shapes, in which case when eqn. 11.42 is satisfied , Q2  , 

Q2  ,Q^  are directly proportional to the critical power, and and C,2 are constants 

with power. Therefore substituting Q!  ̂ = P^ ,̂'", Q2  = , Q2  = , Q3  = ,

where P̂  is the critical power, and , q!^, q^ , and q^ are proportionality constants, 

eqn. 11.42 becomes

P =
(l + C,2)^,'” -

V 1 + C {qi
12 y

(l + C,2) +J
+ C,12

(11.43)

11.4.2 Physical explanation for the coupled mode formula
11.4.2.1 Effect of linear and nonlinear coefficients
The various parameters which affect the critical power (eg. eqn 11.42 or 11.43) can be
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explained physically. In summary, (ignoring the effect of the overlap integral) the main 

contributions are from those coefficients which are in essence coupling coefficients or 

propagation coefficients. The two contributions are explained as follows.

An increase in the coupling coefficient increases the critical power. This can be 

demonstrated from the following physical argument. Suppose that guide 1 is excited 
with the critical power P̂ .̂ . The power would then emerge equally from the output 

ports, and (ignoring the effect of the overlap integral), they would each be 50% of the 

total power. This situation is plotted as point A in Fig. 11.5 below (assuming a one 

coupling length device). If the coupling coefficient were now to be increased slightly 

(still keeping the coupling length and input power unchanged) then more power would 

emerge from guide 2 than guide 1. This state is plotted as point B in Fig. 11.5. Since 
point B is below the 0.5 level, the new critical power for this new geometry must lie 

above the old critical power P̂.̂ . In summary, increasing the coupling coefficient 
slightly increases the critical power slightly. Since Qj and are all coupling 

coefficients, a small increase in any of them increases the critical power (and not 

decrease it as implied by Chen [4]).

u0̂
oa.
3
O.

'3
O

(Point A)

0.5P
1.0

Increased coupling (Point B) 

*̂cr ► < 0.5 P_

0.0

Fig. 11.5
switching

Input power

Showing the effect of increased coupling on the critical power. The 

slope is exaggerated for discussion purposes

The self-phase-modulation (SPM) coefficient Q, on the other hand alters the critical 

power by affecting the nonlinear propagation coefficients. At the point where the 

NLDC is excited (z = 0), the input power mismatches the propagation coefficients, and
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Q, determines the extent to which they are mismatched. If the input power were at 

critical (point A on Fig. 11.6) and Q were to be increased at this stage, then the 
mismatch between the propagation coefficients at z = 0 would be greater than that 

necessary for asymptotic equal power output. Consequently an increase in Q would 
lead to more power emerging from the output of guide 1 than guide 2 (point C in Fig. 

1 1.6). Since point C is above the 0.5 level, the new critical power must be at a 

value below the old critical power f  Therefore in summary increasing Q causes a 

decrease in the critical power.

Increased SPM (Point C)

a

t î
O  Î/5
-H =  0.5

I I
0.0

Fig. 11.6
power

Input power

Showing the effect of increased Self-Phase-Modulation on the critical

11.5 POW ER CURVES
11.5.1 Power as a function of distance
In this section the coupled mode equations are solved to calculate the variation of the 

power with distance. Squaring both sides of eqn. 11.20 gives

(11.44)

Substituting for S', and from eqns. 11.35 and 11.40 into eqn. 11.44 leads to
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dz r
1 f  \  A

— -  z'" -  —  S2  -  (1 -  C^2)^2 “
yv jU

(11.45)
which can be rearranged to give

dS.
dz

2 _  ,,/M= /̂ 4(/̂ r+i/2(Gr+erl) f ^ - 7 "
U ” yv

X

{S2 -  « 1  ) ( 5'2 -  « 2  ) ‘̂ 2 (*^2 -  p2 ) (11.46)

where a , , «2 ’ P2  defined as

1
+

Gc, — 7

y" iiU
r  1 r  

- 4 7 -

7 "

(11.47)

Pi =
12

(11.48)

Eqn. 11.46 can be integrated as follows

(11.49)

11.5.1.1 Below critical power
The solution to eqn. 11.49 depends on whether the power is above or below critical 

power. Below critical power, ^2 > ^2 > *̂2 -  ^ therefore (using Byrd and
Friedman [11] formula 254, page 112) the solution is
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Sn =

— 0C2Sfl / . ” 4 ( / f ” + i / 2 ( e r + ô U )  i f r  s-
Z 1̂

ju""4{k; + i / 2 ( e r + 0 ;  ) )]  i( g .  Y . . »  r  , A .
- Of ,g '  A '  r  ' " " T  '

(11.50)
where k is a. modulus defined as

k =
Pï{<^2 ®l) ~  ®l)

and sn and cn are elliptical sine and cosine functions. Note that (see page 11 Byrd and
f  jr \  f  7T \

Friedman [11]) Note that k = l where K = F —,k  \F —,1 = Æ(l) = oo leads to the
v2 J \ 2  J

critical power.

11.5.1.2 Above Critical Power

Above critical power, «2 > *̂2 -  ^ • Using formula 254 from Byrd &
Friedman [11] (page 112) leads to

(11.51)

S. =

F + i / 2 ( e r + Q f ) ] ]  ijT -  „ y  .  a

g
- r J\ F J

F 4(A:” + l/2 (ô "  + a " ') )

g
Y

\ (  s:m \

y\
a,

 ̂_  I ̂ 2 (^2 ^l)
g =

(11.52)

(11.53)
«2 (A  ^ l)

S2  can be related to the power carried in each guide. Using eqns. 11.16 gives

+ h r  =(*^0 (11.53)

But Sq can be related to S2  through eqn. 11.27, and to S2  through eqn. 11.40.
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Therefore the amplitudes of the fields become

I |2 \Œ — 1 - C , 2 5 2  + J 1 - — S j  + '2 and (11.54)

— 7 - (11.55)

Eqns. 11.54 and 11.55 are plotted below

=  0.4

) 200 400 600 800 1000
P r o p a g a t io n  d i s t a n c e  (m ic r o n s )

Fig. 11.7 Power vs propagation distance J  = 0.5//m, w = 3.95fim, at critical 
power (pow = 15.22Watts/m).  Note that since this is strong coupling the output 
powers are around 0.4 (and not 0.5 arising in weak coupling).

At the critical power, after an infinite propagation distance, the powers in the two 

guides are equal. At this point 5, = 0, and S2  = l/{ l  + €^2 ) (see section 11.3.2.1)

\a, = lün
2(1+ C„)

£11.56)

Therefore it can be seen from eqn. 11.56 that when C,2 > 0 , the normalised mode 
powers are equal, with values each less than 1/2, so that the sum of the normalised 
mode powers do not equal the total normalised power (ie 1). The remaining power is 
found in the overlap.
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11.6 CONCLUSIONS
Analytical solutions for the full coupled mode equations in the strongly coupled regime 
were calculated for the first time. It was shown that one constant of motion which is the 
Poincaré sphere in weak coupling, changes to an ellipsoid in strong coupling. A new 

analytical formula for the critical power was derived. A physical explanation for this 
formula was given.
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CHAPTER 12

NUMERICAL COMPARISON OF COUPLED MODE 
THEORY WITH BPM

12.1 Introduction
In this chapter we compare and contrast our coupled mode model against other 

methods, and against BPM, and investigate the importance of terms which are ignored 
in other works (eg. [1]).

12.2 Critical power curves
The main parameter used in this chapter for comparison purposes is the critical power, 
which is the most important parameter defining a nonhnear directional coupler (NLDC). 
In chapter 11 we derived the ‘critical power formula’ (CPF) (see eqn. 11.42). In 
section 12.2.1 below we study the variation of the critical power with guide separation 
for various film thicknesses. A slab geometry is assumed for the guides mainly to 
compare against another work [2] and also because it is a structure where the mode 
shapes can easily be calculated. In order to study different strengths of coupling, either 
the strength of the guidance or the separation between the guides can be changed. One 
way to adjust the strength of the guidance is to vary the film thickness. In general the 

thicker the films become, the less the fields extend into the cladding regions, and the 
smaller the overlap between the fields (see Fig. 9.3). Conversely, the thinner the films 
become, the more the fields are spread out, and the larger the overlap between them. 

For comparison purposes we consider two extreme cases (see sections 12.2.2 and 
12.2.3), a thick-film guide {d = 2.0/xm), and a thin-film guide {d = O.Sfim). The other 
thicknesses are assumed to lead to results which are intermediate between these two. A 
thick film guide was studied by ref. 2. Their results were however only relevant for the 
weak coupling case. A thin film case would allow strong coupling to be studied, where 

differences between different methods can clearly be seen.
Our results are compared against BPM and against other methods, and the 

importance of various coefficients which affect the critical power investigated (see also 
chapter 10). We study some inconsistencies present in various papers, usually 
occurring as a result of the overlap integral and the nonlinear cross-coefficients not
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appearing (or disappearing) together in the coupled mode equations. For example, in 

ref. 2, the overlap integral was neglected but the nonlinear cross-coefficients were kept. 

In ref. 1 the reverse occurred: the overlap integral was included but the nonlinear cross­
coefficients neglected. This was also inconsistent and lead to inaccurate results as 
shown later in this chapter. A further defect with the use of the local mode theory as 
carried out in ref. 1 is that it does not lead to a theoretical solution for the coupled mode 
equations or allow the derivation of a formula for the critical power taking into account 

the power dependence of the fields as was possible in chapter 11. Also by using local 

mode theory some of the advantages of coupled mode theory are lost since the field 
shapes have to be calculated at every step. It could be argued that one might as well use 

BPM in that case.
Another approach is the nonlinear supermode approach. Dios et. al. [3] stated that 

their approach was more accurate than the coupled mode theory approach. However 
their results do not bear out their argument. Even though they studied a weakly coupled 
geometry where literally any method would have been accurate, their results were very 

poor.

12.2.1 Varying the guide thicknesses
The critical powers for four different guide thicknesses d = 2.0, 1.5, 1.0, and 0.5 fxm 
are compared in Fig. 12.1. As mentioned above we used the CPF formula (see eqn 
11.42) to draw the curves. All the fields have shapes which are power dependent, and 
all the coefficients which appear in the CPF are also power dependent. The CPF 
formula contains the critical power implicitly. Therefore the critical power is calculated 
by first calculating the coefficients in eqn. 11.42 for a particular input power, and then 

inserting them into the equation, checking the equality, and iteratively repeating this for 
different input powers (eg by using the bisection method) until the equality is satisfied. 
The input power which allows eqn. 11.42 to be satisfied is then the critical power.
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Fig. 12.1 Variation of the critical power with guide separation using our formula for 
various guide thicknesses (inset shows the location of the nonlinearity- hatched)
(i) d = Ijim  (solid curve), (ii) d  = 1.5/xm (dashed), (iii) d  = \.0}im (chained), and (iv) 
d  = Q.5jim (dotted).

It can be observed from Fig. 12.1 that at large guide separations (w > A.Ofim) all the 
curves are similar. This is because for large guide separations, the modes of the two 
guides are so distant from each other that only the small portion of the evanescent tails 
overlap. Since the evanescent tails of modes at a distance are similar even if they are 
from guides of different thicknesses, the linear and nonlinear coupling coefficients are 
also similar at large separations irrespective of the guide thickness. Since these 
coefficients are similar, the critical powers are also expected to be similar. Actually it 
can be seen in Fig. 12.1 that the d  = 0.5fim curve is slightly higher than the others in 

the region w> A.O^m. This is because the mode for the d = 0.5fim guide has an 
increased spread in the cladding than the others, and separations of 6 to 8 /zm 
considered here do not constitute as large separations. The larger overlap in this case 
causes the linear and nonlinear coupling coefficients to be slightly greater, resulting in a 
slightly higher critical power.

As the guide separation is reduced to w = A. Ofim we notice that the critical powers 
for the different thicknesses become equal, and a further reduction in separation 
reverses the situation from what it was above w = 4.0/zm : ie. the mode of the thickest 
guide (<i = 2.0/zm) (solid curve) now has the highest critical power. As the guide
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separation is reduced, the critical power for all thicknesses increases. This is because 

the increased overlap between the fields means that all the linear and nonlinear 
coefficients (eg. Q^, and K^^), with the exception of the self-phase-modulation 

term Q , are increased. Therefore using this fact and considering the CPF formula (eqn. 

11.42 or eqn. 11.43) (and bearing in mind the physical explanation given in section

11.4.2 for the dependence of the critical power on the coefficients) it can be seen that 
the critical power is also increased. It can also be seen that in this intermediate range of 
guide separations the critical power for the thickest guide rises more rapidly than the 

others as the guide separation is reduced. This is because the mode of the thickest guide 

is more tightly confined within the film region than the others and least influenced by 
the nonlinearity. Consequently more power is required to enable nonlinear effects to 
take place. The increase in critical power continues down to a separation of w = 2.5/xm. 
where there is then a plateau. Meng and Okamoto [2] who studied the d  = 2.0/im case 
only, also observed the plateau, but labelled it as the 'maximum power' which it clearly 
is not so. They further implied wrongly that it occurs for all guide thicknesses. The 
reason for the existence of the plateau is because the mode of the thickest guide (ie 
d  =  l.OjLLm) becomes a surface mode. Since surface modes are outside the film regions, 
they are not affected so much by the film region. Therefore the critical powers should 
also be much the same. Once the mode of the thickest guide becomes a surface mode, 
the critical power plateaus, and the plateau remains until the critical powers for the other 
thicknesses reach high enough values until all the curves then increase together. At that 
stage (around d = hSjiim),  there is then an asymptotic increase in the critical power for 
all thicknesses.

12.2.2 Comparison with BPM for a ‘thick’ guide
In this section we compare the critical powers obtained using our strong coupled mode 

theory (SCMT) against the beam propagation method (BPM). We consider the 
d = 2.0iim case, which is an example of a 'thick' film guide. In Fig. 12.2 various 

comparisons are made between the different methods. It can be seen that all the 
methods lead to similar results for w > 4. Ofim. Therefore this region is very weak 
coupling. BPM results are given by the thick solid curve in Fig. 12.2. Our CPF 
formula with all the terms included is given by the thin solid curve, which agrees 
almost exactly with BPM. As can be seen, the two curves are virtually coincident, and 
the plateau predicted by the CPF formula is also predicted by BPM. The dashed curve 
concerns the case where the overlap integral is omitted (ie the approach taken by Meng 

and Okamoto [2]). The results are fairly accurate for w >2.2jim  but inaccurate for 
w < 2.2fim. We can see that in hindsight Meng and Okamoto [2] were quite fortunate
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in studying the d  = 2.0/tm w = lAjLim case, because as it happens the overlap integral 

which they neglected made very little difference to the critical power. However for the 

general case which is not necessarily extremely weak coupling, the overlap integral 

does make a difference.
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Guide Separation w (microns)
Fig. 12.2 d = 2fum . Our formula with (i) all the terms included (solid line), (ii) only 
overlap integral missing, (iii) the ‘simple’ case (chained), (iv) only nonlinear cross­
coefficients missing (lower dotted), (iv) power independent curve (upper dotted), (v) 

BPM simulations (thick solid line).

The lower dotted curve is the approach taken by Ankiewicz and Peng [1] where the 

overlap integral is kept but the nonlinear cross-coefficients (g^ and Q^) are omitted. It 

can be seen that the approach leads to very inaccurate results, even worse than the 

simple case (chained curve) which does not include the overlap integral. The absolute 

worst case is the power independent curve (upper dotted curve). Ignoring the power 

dependence causes large inaccuracies for small guide separations. There is no plateau 

with this curve, since plateau effects are due to surface waves. If power independent 

(linear) modes are used, then of course surface waves would not come into it and there 

would not be a plateau.
As mentioned above, a nonlinear supermode approach was used by Dios et. al. [3]. 

They analysed a weakly coupled NLDC with planar guides, the same as was done here. 
In one of their studies they used a structure with d = 2.0fim, and w = 3.4/im, which is
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extremely weak coupling. From their Fig.4, it can be observed that their BPM 

simulation predicts a critical power of 29W/m, whereas their supermode analysis and 
nonlinear mode analysis shows a value of 36W/m, and 43W/m, an error of 24% and 
48% respectively. Our CPF formula however agrees almost exactly with BPM for the 
same structure, as we have shown in Fig. 12.2. In addition, for the weak coupling 

geometry that they studied, even our coupled mode theory with power-independent 
fields seems to give better agreement than their formula.

Figure 12.3 shows the effect of the nonlinear cross-coefficients and Q^) on the 

critical power. The CPF formula (with relevant terms missed out for each curve) was 
used to draw all these curves. It can be noticed that removing Qj (dotted curve) has the 
least effect on the critical power. Q2  °n  the other hand (dashed curve) has a more 
significant effect, especially for small guide separations. Ignoring both Q2  and Qj 
results in the chained curve,which is the most inaccurate case.
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o .

4

Guide Separation w (microns)
Fig. 12.3 d = 2}im. Our formula with (i) all the terms included (solid line), (ii) 
^2 = 0 , and C3 = 0 (chained) (iii) Ô3 = 0  (dotted), (iv) Q j - O  (dashed)

In summary, the most accurate cases seem to be those where either all the nonlinear 
cross-coefficients as well as the overlap integral are included in the equations (the ‘full’ 
case), or where the overlap integral as well as the nonlinear cross-coefficients are 
excluded from the equations (the ‘simple’ case). Ignoring either the overlap integral or 
the nonlinear cross-coefficients without ignoring both, leads to inaccurate results. It 
was also found that the power dependence of the fields was the most important
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parameter in the accuracy of the equations.

12.2.3 C om parison  w ith BPM  for a ‘th in ’ guide

Now we consider an example of a thin guide (d  = O.Sfim). In this case the mode shape 
is spread out, and extends deeper into the nonlinear region. Therefore the modes 

overlap each other to a greater extent (see Fig. 9.3).
In Fig. 12.4 we compare the critical power curves obtained from coupled mode 

theory against BPM. The thick solid curve is BPM. The closest curve to BPM is the 
thin solid line which is the CPF curve. The next most accurate is the chained curve 
where both the nonlinear cross-coefficients and the overlap integral are ignored. The 
inaccurate cases are when the overlap integral is kept but the nonlinear cross­
coefficients neglected (approach taken by Ankiewicz and Peng [1]), or where the 
overlap integral is neglected but the nonlinear cross-coefficients are kept (approach 
taken by Meng and Okamoto [2]). The absolute worst case is the power independent 
curve (upper dotted). These conclusions are exactly the same as Fig. 12.2, except in 
this case the differences can be seen more clearly.
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Guide Separation w (microns)
Fig. 12.4 d = 0.5jJm. (i) BPM simulations (thick solid)

Our formula with (ii) All the terms included (solid), (iii) the ‘simple’ case (chained), 
(iv) overlap integral ignored (dashed), (v) nonlinear cross-coefficients ignored (lower 
dotted), (vi) Power-independent curve (upper-dotted).

In Fig. 12.5 we study the importance of the various cross-coefficients on the critical
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power. The results are similar to those in Fig. 12.3. The solid curve is the curve with 
all the coefficients present in the formula. It can be seen that for large separations 

(w > 2.5Jim) omitting Q2  (dashed curve) has the greatest effect on the critical power, 
whereas for very strong coupling (w < 2.5jim) the situation reverses, and (dotted) 
becomes the dominant coefficient. This reversal has not been pointed out before, and 
might seem slightly surprising (at first) because Qj should be greater than for all 

separations. The reason for the interchange is that it is not the actual values of Ô2 and 
(23 that matter, but rather the effect that the overlap integral has on these coefficients. 

The overlap integral modifies Q2  and so that at large separations, the modified  
value of Q2  is larger than the modified value of , but the situation reverses at small 

separations (w < 2.5jim). Once again as in Fig. 12.3, the most inaccurate case occurs if 
both Q2  and are neglected from the equations (chained curve).

200
4-1
(Q
^  150

Guide Separation w (microns)
Fig. 12.5 d = O.Sjim, our formula with (i) all the terms included, (ii) Q2=0,  and 
^3 = 0 (chained), (iii) Ô2 = 0 (dashed), (iv) Ô3 = 0  (dotted)

In Fig. 12.6 we can see that the accuracy of the CPF curve can be improved by 
calculating the power dependent mode shapes by bearing in mind that the power in the 

overlap does not affect the mode shape, ie using P /(l + 0 ,2) instead of P for the mode 

shapes (see eqn. 11.56).
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I—I
(d
u

U
o

Guide Separation w (microns)
F ig . 12.6 d = 0.5jim, our formula with (i) full power fields (chained), (ii) 
normalised fields (solid), (iii) BPM (thick solid).

Fig. 12.7 below shows the case where the nonlinearity is in the outer cladding 
regions. It can be seen that once again, including the overlap integral without also 
including the nonlinear cross-coefficients leads to a result which is even worse than the 
‘simple’ case.
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1—Ïs—I
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Guide Separation w (microns)
Fig. 12.7 Variation of critical power with guide separation for guide thicknesses 
d = Q. 5{im. The nonlinearities are in the outer cladding regions
(i) BPM (thick solid), (ii) Our formula with all the terms included (solid), (iii) The 
‘simple’ case (chained), (iv) Overlap integral omitted (dashed), (v) nonlinear cross­
coefficients omitted (similar approach to Ankiewicz and Peng [1]) (dotted)

12.3 Some notes on the BPM analysis
More discussion of the BPM analysis is now given. We excited the NLDC with the 

nonlinear mode (using the method in chapter 10), and used it also in the CPF formula 
to calculate the critical power. In a practical NLDC the nonlinear mode can be created 
by exciting a graded-nonlinear lead-in guide with a linear TE mode (see chapters 13 
and 14). The lead-in guide adiabatically reshapes this linear mode so that it becomes the 
nonlinear mode when it reaches the NLDC.

In our BPM program we used 512 grid points and step sizes of O.S^um. Due to the 

large number of computations needed (to derive the critical power), we were restricted 
in using smaller step lengths. However we checked that the results did not change 

when the step sizes were reduced for several specific cases.
To calculate the powers in each guide, the field to the right of the middle of the 

separation region was attributed to the right hand guide, and the field to the left of the 
centre line to the left hand guide. This method introduces a slight error when calculating 
the guide powers. For example if one guide is supposed to contain the full power, our
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program would calculate that one guide has perhaps 98% of the power and the other 
guide 2%. This is because our program apportions the part of the mode which extends 
into the other region as belonging to the other guide. This proportion naturally increases 
as the separation between the two guides is reduced.

The critical power is calculated in our program by plotting the output power versus 

the input power for a one coupling length device, and looking for the input power 
where a sharp transition in the output power occurs. Note that the critical power (which 
is the main parameter) was calculated here very accuratelv. This was due to the fact that 

in calculating it we were not concerned with the actual output powers, but only looking 
for when there was a sharp discontinuity in the output power. Therefore for example, at 
the critical power, the normalised output power could rise from 0 to 1, or from 0.3 to 

0.8. It does not matter. The input power where this occurs is the important parameter.
It is difficult to calculate the actual output powers in strongly coupled guides with 

good accuracy. One solution might seem to be to provide diverging guides at the output 
so that the modes can be well separated before their powers are calculated. But this 
means that there will be some coupling in the diverging regions before the modes are 
separated sufficiently. Another method might seem to be to extend one guide at the end 
of the coupling region but not the other. However this introduces a difficulty because 
an abrupt end to one guide constitutes a large step change in refractive index and gives 
rise to backward reflections, which violates one of the assumptions of Feit and Fleck 
analysis.

12.4 C O N C LU SIO N S
We compared numerical solutions of our critical power formula (CPF) with those from 
accurate numerical simulations using the beam propagation method (BPM). We showed 
that the most accurate case arose whenever the overlap integral and the nonlinear cross­
coefficients were present together or disappeared together from the equations (Figs. 

12.2, 12.4, and 12.7). In conclusion either the full form of the equations, or the simple 
case with the nonlinear cross-coefficients and the overlap integral omitted should be 
used. The accuracy does not improve from the simple case by just adding the overlap 
integral as done by Ankiewicz and Peng [1]. The results would then be unreliable at the 
very least, or in some cases as in the geometry considered here even worse than the 
simple case.

We also discussed an improvement on the coupled mode theory model (Fig. 12.6). 
This was from an observation that the power carried by the overlap between the fields 
does not contribute to the shape of the modes. Therefore the actual power in the modes 
should be used to calculate the mode shapes, but not the full power as done by ref. 2.
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CHAPTER 13

NOVEL GRADED-NONLINEAR SCANNER AND SINGLE 
SOLITON GENERATOR

13.1 IN T R O D U C T IO N
Spatial solitons can be used to construct angular scanning elements. Two such devices 
have so far been proposed in the literature. The first is based on the power dependent 
refraction of a soliton penetrating the interface between two nonlinear media [1]. The 
soliton refracts at different angles depending on the input power, and this fact can be 
used for scanning applications. An alternative method is to make use of a nonlinear 
waveguide (with linear film and one nonlinear cladding) and excite it with a large power 
non-modal field shape. Since the waveguide cannot support this large power, it at once 
rejects much of it in the form of a soliton (or solitons at higher powers) [2]. This device 
is also a scanner because the soliton is emitted at an angle which depends on the input 
power. In this (latter) device, the first emitted soliton does not carry the whole power of 
the waveguide, except when the power happens to be at the threshold power for soliton 
generation. The device therefore has two major limitations. The first is that multisoliton 
emission occurs at higher powers degrading the performance of the device as a soliton 

generator, and the second is that incomplete power transfer occurs for the single soliton 
emission case, and since these types of waveguides are used in soliton couplers, the 
incomplete power transfer and multisoliton emission lead to inefficient soliton couplers

[3].
This chapter discusses a new type of soliton generator and all-optical linear scanner 

based on graded-non\\nQdiX waveguides (GNLWs). These devices employ a 
nonlinearity in one cladding which increases gradually with propagation distance. In 

contrast to uniform-nonlinear waveguides (UNLWs) [2-3], improved soliton emission 
occurs since most of the power of the waveguide is shed cleanly through the first 
emitted soliton. The launching length for soliton emission here is dependent on the 

input power (leading to design of other new devices, for example a three guide graded- 
nonlinear soliton coupler with switching based on propagation distance). Furthermore, 
in contrast to the angular scanners discussed above [2-3], the device is a linear scanner.
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since the emission angle is constant and only the launching length is varied. The emitted 
soliton is then captured by one of a number of ports stationed perpendicular to the 

direction of its travel, by a parallel nonlinear film waveguide (as in soliton couplers) or 
by a parallel strip of high nonlinearity.

13.2 GRADED NONLINEAR WAVEGUIDES
The structure consists of a linear film with nonlinear cladding on one side and linear 
cladding on the other. The nonlinearity increases gradually with propagation distance z 

(see Fig. 13.1). The graded nonlinearity can be formed, for example, by increasing the 

doping concentration gradually with distance. A linear TE mode is used to excite the 
waveguide. As the mode propagates along the waveguide, the nonlinear slope 

adiabatically changes the shape of the mode so that it always corresponds with the local, 
stable and stationary nonlinear mode. The variation of the mode shape with distance is 
analogous to the variation of the mode shape with increase in input power for a UNLW. 
The reshaping process is smooth and continuous so long as the dispersion characteristic 
for the stable mode of the waveguide is continuous. A discontinuity in the dispersion 
characteristics [2] would result in soliton emission since the change in the nonlinearity 
could not be made gradual enough to maintain adiabatic reshaping when there is a 
sudden discontinuity in the dispersion characteristics from a film-guided to cladding- 
guided mode. In a GNLW the soliton emission occurs at the value of propagation 
distance where the nonlinearity is just large enough for the threshold of soliton emission 
to occur for that particular power. At that distance, and for a large range of input 
powers, almost the whole power of the waveguide is transferred to the soliton. This is 

an improvement over the UNLW case, where for the single soliton emission case 
complete transfer occurs only at the threshold power, and incomplete transfer above, 
until the emission of the second soliton.
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Fig. 13.1 The graded-nonlinear waveguide converting a linear TE mode to the 
nonlinear TE mode in a J  = hOjim waveguide (input power=200VT/m). =1.57, and
n̂ i = 1.55

For the lossless GNLW geometry discussed here, with nonlinearity directly 

proportional to distance, the relationship PL^ = C approximately holds, where P  is the 
input power, L, the soliton emission distance, and C a constant.

We used our BPM program with 1024 grid points and 5nm longitudinal sections. 

The section length was found by trial and error, so that variation of the section length 
did not change the results. The film and cladding indices for the waveguide were 
My =1.57, and = 1.55 respectively. The nonlinear coefficient a  was defined by the 

nonlinear permittivity = e + , where E  is the electric field, and e  is the linear
permittivity, given by a  = mz where m  = = 12.754 x 10"'^ rn^/V^ , and

Kef -  500^m .
In Fig. 13.1 it can be seen that for film width d  = 1.0/im the effect of the nonlinear 

cladding is gradually to change the field from a linear TE to a nonlinear TE mode even 
for such high powers as 200 W/m.  The GNLW can therefore be used in the numerical 
calculation of the nonlinear mode [4], as well as for implementing a linear to nonlinear 
mode converter/launcher for practical nonlinear directional couplers. For d  = 2.0jim 
guides (with the same cladding and film indices as Fig. 13.1) there is a discontinuity in
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the dispersion characteristics [2] (see chapter 10) which can be exploited for soliton 
generation (see Fig. 13.2). In Fig. 13.3 the variation of the power remaining in the 

guide as a function of propagation distance is shown for a UNLW. At lower powers, a 
larger launching length is required for soliton emission since a greater nonlinearity is 

needed. In UNLWs, complete power transfer occurs only at the threshold input power 

for soliton emission. Any increase in input power deteriorates the switching 
characteristics because of incomplete switching or multisoliton emission. In Fig. 13.4, 
significant improvement in switching is obtained using graded nonlinearity [5]. We 
observe that the switching curve is much sharper, and almost full transfer of power 
occurs for a wide range of input powers. The emission distance for the first soliton is 
increased, and the emission of the second soliton is not ‘en cou raged ’ t  by the first 

soliton as in the UNLW case [2] (see Fig. 13.3), but occurs at a much larger distance. 

If a small amount of loss is present, the emission of the second soliton can be prevented 
altogether, resulting in single soliton emission.

tin  [2] it was mentioned that although the first soliton is emitted at the threshold power, 
the second soliton is emitted below twice this power because the emission of the second 
soliton is ‘encouraged’ by the presence of the first emitted soliton when it is in the 
vicinity of the waveguide.
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Fig. 13.2 Generation of a single soliton using the graded-nonlinear waveguide (input 
power=200 W/m).
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Fig. 13.3 Variation of waveguide power with propagation distance for different input 
powers in a uniform-nonlinear waveguide ( a  = 6.377 x 10~'  ̂ )
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Fig. 13.4 Improved switching characteristics using a graded-nonlinear waveguide.

13.3 C O N C LU SIO N S
We have proposed a new linear scanner which complements the angular scanners 
discussed in previous publications. The use of graded-nonlinear waveguides allows for 
variable power, clean single-soliton generation, and more efficient soliton couplers.
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CHAPTER 14

NOVEL TRI-STATE SPATIAL SOLITON SWITCH 
USING GRADED NONLINEARITIES

14.1 IN T R O D U C T IO N
In this chapter we discuss a novel type of three guide soliton coupler. We consider 
soliton couplers because they have several advantages over conventional coherent 
couplers. Firstly they are easier to fabricate due to having more relaxed requirements on 
their guide separations and lengths. Secondly they exhibit sharper switching since the 
coupling is by means of whole packets of solitons rather than continuous power 
transfer. Thirdly they allow power to be switched almost fully to all three guides, 
whereas in coherent couplers the power does not emerge fully from the middle guide 
unless gains and losses are also incorporated [1]. Fourthly, power emerges from each 
of the three guides for a wide range of input powers (see later in the chapter) whereas in 
coherent couplers the power emerges from the middle guide only for a narrow range of 
input powers.

The essential part of any soliton coupler is the soliton generator. It consists of a 
guide composed of a linear film with one of the claddings being nonlinear. The guide is 
initially excited with a linear TE field which is approximately the true mode of the 
waveguide at low powers but not at high powers (the mode becomes nonlinear in the 
latter case). At high powers the field shape becomes affected by the nonlinearity, and 

the field shifts towards the positive nonlinear cladding. At threshold the shift is so 

abrupt that in the process a soliton breaks off and becomes launched into the cladding. 
The soliton does not carry with it the whole power of the field however but some 
residual power is always left behind in the guide. In chapter 13 it was mentioned that 

the amount of residual power is always minimum when the emission occurs at 
threshold. The proportion of residual power then increases above threshold and results 
in reduced efficiency of emission. If the input power becomes larger than a certain 
threshold, a second soliton can be emitted [2] from the residual power. However the 
threshold input power needed for two soliton emission is lower than might be expected 

(ie less than twice the threshold power needed for single soliton emission). This is 
because the first soliton affects the emission conditions for the second soliton when it is
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in close proximity to the guide.
So far the nonlinearity has been assumed to be in one cladding only. If both 

claddings are nonlinear however, the soliton is emitted into the cladding which has the 
higher nonlinearity. When the nonlinearities in both claddings are equal then in theory 

solitons are launched simultaneously into both claddings. However this is a rather 

unlikely case to occur in practice, since any local imperfection breaks the symmetry and 
leads to emission into one cladding only. The symmetrical nonlinear cladding 
configuration has been used in a recent publication [3] to design a three guide soliton 
coupler. In this device the middle guide is excited with a below threshold input power. 
By adding an asymmetrical control beam on top of the input beam it was possible to 

choose the cladding for soliton emission. The asymmetrical beam increases the 

refractive index in one cladding encouraging soliton emission on that side and decreases 

the refractive index in the other cladding suppressing soliton emission there. By 

changing the phase of the asymmetrical beam the asymmetrical effect can be reversed, 
and the soliton directed into the other cladding instead.

This three-guide soliton coupler arrangement, although theoretically interesting, has 
unfortunately several drawbacks in practice. The most obvious disadvantage is the need 
for an additional control beam which makes the device complicated to operate. Another 
disadvantage is that the use of uniform  nonlinearities in the claddings leads to 
inefficient switching. As mentioned above, soliton emission from uniform nonlinear 
guides is efficient only if the total power happens to be at threshold. Above that power 
the emission becomes less efficient, and at even higher powers multisoliton emission 
effects degrade the switching characteristics even further. Another disadvantage of the 
arrangement is that both claddings are equally nonlinear resulting in the the field being 
drawn in both transverse directions. Therefore the emission is less efficient than say if 
one cladding had a much greater nonlinearity than the other. Another problem is that 
although the asymmetrical control beam enables switching to the lateral guides, it does 
not allow the power to be kept in the middle guide except for a narrow range of phases. 

The arrangement is therefore practically a two-guide switch and not the three-guide 
switch which was claimed [3]. The only solution for keeping the power in the middle 
guide seems to be to switch off that control beam altogether, but this adds extra 

complications to the already complicated device.

14.2 NEW GRADED-NONLINEAR TRI-STATE SWITCH
In chapter 13 we proposed graded nonlinear guides [4] which we believe have superior 
performance to uniform nonlinear guides for soliton generation. In graded nonlinear
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guides, the nonlinearity of one or both claddings changes gradually with propagation 
distance. These guides can be used as devices for linear-to-nonlinear mode conversion 
or soliton generation depending on whether the mode they support are weakly or 

strongly guided. In the case of the field being weakly-guided, a large proportion of it is 
in the nonlinear cladding region and consequently its shape is sensitive to changes in 

the nonlinearity or the input power. As the field propagates through such guides the 
nonlinearity changes and the field shape alters adiabatically with propagation distance, 
so that it always corresponds with the local nonlinear mode of the waveguide. These 
weakly-guided graded nonlinear devices are therefore useful as mode converters (see 
chapter 13). In the case of the field being strongly-guided, it is mostly concentrated 

within the linear film region, and therefore not affected by the nonlinearity in the 
cladding. Consequently so long as the nonlinearity does not become large enough to 

affect the field shape, the linear TE mode shape is preserved. When the nonlinearity 
reaches a certain threshold, there is a sharp swing of the field towards the nonlinear 
cladding, and in the process a soliton breaks away from the field and becomes launched 
into the cladding. The emission is more efficient than uniform nonlinear devices 
because it always occurs at exactly the threshold point, so that the residual power left 
behind in the guide happens to be minimum. It should be noted that the distance where 
the soliton emission occurs is determined by the input power. For example, for large 
input powers, a smaller threshold nonlinearity is required. Since smaller nonlinearities 
are situated near the start of the grading, the soliton emission occurs there.

In summary there are two effects regarding well-guided graded-nonlinear guides 
which might be useful for a potential new device. Firstly, below threshold the mode 
shape does not alter with propagation distance (ie the field retains its linear TE mode 
shape). Secondly, the input power determines the value of the threshold nonlinearity 

and therefore the emission distance. In this chapter we propose a novel three-guide 
soliton coupler which makes use of these two effects. The implication of the first effect 
is that the nonlinearity in either cladding can be arbitrary so long as it is below 

threshold. The implication of the second effect is that the soliton is emitted into the 
cladding which contains the threshold nonlinearity first (for example a soliton is 
launched into the left hand cladding if the threshold nonlinearity is first encountered 
there). If the field does not break up during its transit through the guide then it remains 
in the guide.

14.3 D EV ICE G EO M ETRY
A schematic of the device geometry is shown in Fig. 14.1 and the variation of the 
cladding nonlinearities with propagation distance in Fig. 14.2. The middle guide is
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excited with a linear TE mode, and there are two lateral nonlinear guides for capturing 
the emitted solitons. As the field propagates through the guide, initially there is a 

positive graded nonlinearity in the left hand cladding and zero nonlinearity in the right 

hand cladding. The nonlinearity at the start of the grading can be zero, or non-zero as is 

the case in Fig. 14.2. A non-zero nonlinearity has the advantage of leading to short 
grading lengths. So long as the input power is below the threshold associated with that 
nonlinearity it is permissible to use a non-zero nonlinearity. The length of the grading 
(more specifically the maximum nonlinearity reached) determines the minimum cut-off 

power required to excite a soliton into the left hand cladding. At the end of the left hand 
grading, further on along the guide, there is a grading in the right hand cladding. The 

initial value of the nonlinearity for the right hand grading continues from the maximum 
reached in the left hand grading. The generation of a soliton in either the left hand or the 
right hand grading depends on whether threshold nonlinearity is first reached in the left 
or the right hand cladding. Otherwise the field maintains its shape and remains in the 
input guide as a linear TE mode.

It can be noticed from Fig. 14.2 that there are negative graded nonlinear regions 
immediately following the positive graded nonlinear regions. As mentioned above, 
soliton emission is more efficient if the nonlinearities in the different claddings are 
sufficiently different. The purpose of the left hand negative grading in this case is 
therefore to ensure that the nonlinearities in the two claddings become sufficiently 
different so that the soliton is emitted efficiently into the right hand cladding. Another 
reason for the negative gradings is that there is a problem arising from high power 
solitons being emitted earlier in each positive grading than the low power solitons. 
Therefore they narrow more because they have to travel through the rest of the grading 
whilst in the cladding. Narrow solitons are captured less efficiently by the lateral 
guides. On the other hand using negative graded nonlinear regions immediately after the 
positive graded nonlinear regions allows these high power solitons to be widened 
before capture. However it should be remembered that the low power solitons are 
widened also, and in the limit they can become so wide that they collapse as solitons. 
Therefore the nonlinearity should not be decreased so much that low power solitons 

cannot complete their journey in the cladding towards the lateral guide. In Fig 14.2 it 
can be seen that the positive graded nonlinearity in the right hand cladding starts 
immediately once the negative graded nonlinearity ends in the left hand cladding. It can 
also be seen that at the end of the negative nonlinear regions, the nonlinearity becomes 
uniform in both claddings.
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Fig. 14.2 The variation of the nonlinearities in the two cladding with distance.
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The lateral guide should be carefully designed so that the incoming soliton is captured 
efficiently. Sometimes radiation is generated when the soliton is captured and upon 
capture whenever it reflects from the walls of the guide. This radiation reduces the 
capturing efficiency and leads to the degradation of the switching response. To 

minimise the amount of radiation, the transverse changes of the nonlinearity should be 

made gradual. Therefore as a first step the nonlinearity of the capturing film can be 
made the same as that of the cladding. In the longitudinal direction, the variation of the 

nonlinearity should depend on the distance where the soliton is captured. If the soliton 
is captured in the graded nonlinear region, then the film of the lateral guide should be 
graded. If it is captured in the uniform nonlinear region, the nonlinearity should be 
uniform. The latter is probably easier to implement in practice. To ensure that the 
soliton is captured in the uniform nonlinear section, the separation between the guides 
should be large enough so that the soliton emerges from the graded nonlinear region. 
The refractive index of the film should be such that the soliton is captured and not 
reflected or transmitted. To maximize the capturing efficiency a novel idea might be to 
make the lateral guides diverging with respect to the input guide so that the soliton is 
captured at a virtually grazing angle.

14.4 RESULTS
Fig. 14.3-14.5 show beam propagation method (BPM) simulations for different input 
powers respectively. The geometry includes a left hand graded nonlinearity with the 
nonlinearity starting at 0.4xl0~^m ^/W  (see Fig. 14.2) and increasing to a peak of 
0.8xl0"^m^/VF over lOOfim. A negative graded nonlinearity then follows which 
decreases the nonlinearity down to OAxlO~^m^/W  over the next lOO^um. The 

nonlinearity subsequently becomes uniform with propagation distance. When the 
nonlinearity in the left hand cladding becomes uniform, the graded nonlinearity in the 
right hand cladding starts at 0 .9xl0"^m ^/W , increases to a peak value of 
1.3xlO “̂ m^/W over lOO^um, and then decreases down to 0.9xl0~^m ^/W  over the 
next lOOjUm, subsequently becoming uniform.

232



C hapter 14 A practical tri-state spatial soliton switch

320.0

160.0

N

3
o
o
3
0)

-50 50
X (microns)

Fig. 14.3 BPM diagram showing straight through output at 50 Watts/m input power

320.0

I 160.0

0 . 0

N
3
o- to
3
CO

-50 50
X (microns)

Fig. 14.4 Power switches to the right hand guide at 90 Watts/m
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Fig. 14.5 Power switches to the left hand guide at 130 Watts/m

As can be seen from Fig. 14.3, at low powers (eg. 50 Watts) the power emerges 
from the middle guide. At higher powers (90 Watts) a soliton is emitted into the right 
hand cladding (see Fig, 14.4), and at still higher powers (130 Watts) (see Fig. 14.5) a 

soliton is emitted into the left hand cladding. The switching characteristics (input power 
vs output power) are summarized in Fig. 14.6. It can be seen that the switching edges 
are sharp, and almost full switching occurs between all three guides. The width of the 
switching can be arbitrarily wide by careful adjustment of the slope and length of the 
grading whereas in coherent couplers the switching to the middle guide occurs over a 
narrow range of powers [5]. It can be seen from Fig. 14.6 that the output 
characteristics for the left hand guide is that of a high pass power filter, for the right 
hand guide a bandpass power filter and the middle guide a low pass power filter. The 

minimum power for which the soliton is switched to the left hand guide is determined 
by the length of the left hand grading. The range of powers for which the soliton is 
emitted into the right hand guide is determined by the length of the right hand grading. 
It should also be mentioned that the slope of the graded nonlinear regions is limited by 
the discretised step length used in the BPM program. If the slope is too large then the 
step length has to be small, otherwise large index changes from one step to the next 
results in backward reflections violating the basic assumption of our BPM program. A 
step length of 0 .05/zm was used in our BPM program. It should be mentioned that the
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lateral capturing guides have not been incorporated in our results. They are 

straightforward to design with a little experimentation (some design suggestions were 
proposed in the previous subsection).

0.8

1—I 
Dd
-U
o
C-H

0.0

Input power (Watts/m)
Fig. 14.6 Switching characteristics 

14.5 CONCLUSIONS
In conclusion we have proposed the basis of a novel three guide soliton coupler based 
on graded nonlinearities. The device is more efficient and easier to implement than a 
previous proposed arrangement [3] based on uniform nonlinearities. The switching is 
simpler because it does not rely on an additional control beam but is entirely controlled 

by the input power and grading parameters.
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CHAPTER 15

CONCLUSIONS AND FUTURE WORK

15.1 SUMMARY OF RESULTS AND CONCLUSIONS
A summary of the work done, and the main conclusions reached are given below. We 

covered three main topics in this thesis. The first concerned coupled mode theory for 

the nonlinear directional coupler (section 15.1.1 below), the second the graded 
nonlinear soliton generator (section 15.1.2), and the third, the three guide soliton 

coupler (section 15.1.3).

15.1.1 Conclusions (part 1): Coupled mode theory for the
multiwaveguide nonlinear directional coupler
The first aim was to derive the full coupled mode equations for the strongly coupled 
multiwaveguide nonlinear directional coupler (NLDC) (chapter 6). The word ‘full’ here 
signifies that all the linear and nonlinear coefficients are included in the equations. The 
‘simple’ case on the other hand refers to the weak coupling assumption where all the 
nonlinear coefficients except the self-phase-modulation term are neglected and the 
overlap integral is not present. The full case is more accurate than the simple case since 
it has been derived directly from the original perturbation assumptions. We considered 
a general geometry which consisted of an arbitrary set of parallel guides with 
nonlinearity positioned arbitrarily in the cross-section of the system. In the literature it 

is assumed that only adjacent guides interact. Here we allowed for the first time for all 
the guides to interact.

To allow the equations to be in a more structured form, we introduced a new matrix 
notation (chapters 5 and 7). It was found that the matrix form greatly simplified the 
form of the equations. For example the entire set of equations for the all-guide 
interaction case was reduced to one line! (eqn. 7.17) The matrix form enabled a clearer 
understanding of the physical effects and allowed general patterns in the equations to be 

observed.
The second aim of our investigations into coupled mode theory for the NLDC was 

to study in detail the two guide case. We derived two new identities (chapter 5). We 
used them to derive the nonlinear propagation coefficient for an isolated nonlinear 
guide, and to show that one of the identities actually links the coupled mode equations 
of two different papers which assumed different unperturbed systems in their
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derivations. We solved the full coupled mode equations analytically for the two guide 
case (chapter 11). We showed for the first time that one of two constants of motion 
which happens to be a Poincaré sphere in weak coupling changes into an ellipsoid in 

strong coupling (sections 11.3-11.4). We also derived a new formula for the ‘critical’ 
(or switching) power (eqn. 11.42), taking into account the power dependence of the 

mode shapes and the effect of all the nonlinear coefficients. This formula is not 
derivable from the local mode theory model suggested in a recent paper [1].

The third aim was to numerically investigate the two-guide case (chapter 12) in 
order to check the accuracy of the equations and to ascertain the importance of the 
various coefficients appearing in the equations (section 10.5 and chapter 12). The 
theory was shown to be more accurate than those of prior theories for both weak and 
strong coupling cases (Figs. 12.2 and 12.4). Since our equations included all the 
terms, they were free from inconsistencies. In the literature however, some terms were 
omitted from the coupled mode equations without careful consideration of their 
significance. For example, there has written a series of papers [1-3] where the overlap 
integral is included in the equations but the nonlinear cross-coefficients left out. We 
proved that this was inconsistent by using power conservation (section 7.4), reciprocity 
(section 5.4.2.4), and by performing numerical simulations and comparing the 
switching powers obtained using the different methods against those from the beam 
propagation method (chapter 12). We found that if the overlap integral were included 
without including the nonlinear cross-coefficients, the results would be even less 
accurate than the ‘simple’ case which does not contain the overlap integral at all (Figs. 
12.2, 12.4, and 12.7). Therefore if the objective of the above papers was to improve 
the accuracy of the coupled mode equations by including the overlap integral, it failed in 
this regards since the results were made worse than the simple case which does not 
include the overlap integral. We also assumed in our simulations that the mode shapes 
were power dependent (chapter 10), resulting in all the linear and nonlinear coefficients 
also being power dependent. We studied in detail the variation of the linear and 
nonlinear coefficients with input power and guide separation. We also proposed an 
improvement in the accuracy of the coupled mode equations by taking into account the 
power carried by the overlap between the fields. Meng and Okamoto [4] used the full 
power to calculated the field shapes. Since the power carried in the overlap does not 
contribute to the shaping of the modes, we stated that this power must be removed from 
the total power before calculating the mode shapes (Fig. 11.56, chapter 12). We found 
in numerical investigations that the results became more accurate.
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15.1.2 Conclusions (part 2): Graded nonlinear soliton generator
Secondly we proposed a new device, the graded-nonlinear soliton generator (see 

chapter 13). Graded-nonlinear guides have nonlinearity in one cladding which increases 
linearly, or changes otherwise with propagation distance. When the guide is excited 

with a field possessing a linear mode shape, the field propagates along the guide until it 

reaches a point where nonlinearity is at threshold, and at this point the field suddenly 

shifts towards the cladding and in the process a soliton breaks off from it and is emitted 
into the cladding (see Fig. 13.2). Some residual power is always left behind in the 
guide. In prior uniform nonlinear guides, whenever the input power was varied above 
threshold, the emission became less efficient, and the soliton emerged at varying 
angles. These guides were therefore applicable for angular scanning [5]. In graded- 
nonlinear guides on the other hand, the emission always occurs at threshold and 
therefore is more efficient than in uniform-nonlinear guides (see Figs. 13.3 and 13.4). 
The soliton is also emitted at the same angle regardless of the input power. This device 
can therefore be used as a linear scanner. Since the residual power left behind in the 
(graded nonlinear) guide is small, another soliton is not usually formed unless the 
length of the grading is very long. Therefore graded nonlinear guides can be employed 
as efficient single-soliton generators, whereas previous uniform nonlinear guides lead 
to inefficient emission, and multi-soliton emission at higher powers.

15.1.3 Conclusions (part 3): Graded nonlinear three-guide soliton 
coupler
We also designed, using the graded nonlinear concept, a novel three guide soliton 
coupler (see chapter 14) which we believe has superior performance to that in a 
previous paper [6] which used uniform nonlinearities and required the use of an 

additional control beam for its operation. By employing graded nonlinear guides here, 
the inconvenience of employing a control beam is avoided altogether. Our device 
operates purely by means of the input power, and the different switching powers are 
determined solely by the length and the slope of the graded nonlinearity. The switching 
is more efficient than the switching in the uniform nonlinear soliton couplers because 
graded nonlinearity is used. Almost full switching between all three guides can be 
expected. Moreover, the previous device is in practice a two-guide switch whereas ours 
is a true three-guide switch.

15.2 FUTURE WORK AND SOME NOVEL CONCEPTS AND DEVICES
The work undertaken in this thesis has opened up new exciting possibilities for further
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research.

1- Work can be done to further improve the efficiency of soliton emission from graded 
nonlinear guides. For example, the emission from curved-film graded nonlinear guides 
should be investigated, to determine whether the emission is more efficient than in 

straight-film graded nonlinear guides. The results would also lead to improved soliton 

generators and soliton couplers.

2- New devices using graded nonlinear guides can be explored. For example it may be 
possible to design an angular scanner element using the graded nonlinear concept. The 
angular scanning can be achieved by substituting a uniform nonlinearity in the cladding 

which is normally held linear. The angle with which the soliton emerges depends on the 
difference between the nonlinearities in the claddings. If the soliton is emitted early on, 

it emerges at a small angle since the nonlinearities in the two claddings are almost equal. 

If on the other hand the soliton is emitted further along the guide, it will emerge at a 
larger angle since there is a large difference in the nonlinearities by that point. By 
keeping the length of the device short and using a steep nonlinear grading, the soliton 
can appear to emerge from the same point along the guide, even though the angle 
changes with input power. Consequently this device operates as an angular scanner.

3- Temporal pulse propagation in graded nonlinear guides should be investigated. In 
normal circumstances it might be expected that the pulse breaks up, since different parts 
of the pulse would be emitted in the form of spatial solitons at different distances along 
the guide. It may be possible however to avoid pulse break-up by using temporal 
solitons. This approach has succeeded in the case of nonlinear directional couplers, 
where the use of temporal solitons enabled whole pulse switching. It would be of 
interest to check whether the same is true of graded nonlinear guides. If so, the device 
would presumably be a temporal to spatio-temporal soliton converter. This is because a 

temporal soliton inserted into the device, is emitted as a whole in the form of a spatial 
soliton into the cladding.

4- Another novel application using graded nonlinear waveguides would be as a 
wavelength demultiplexer. In this case each pulse effectively ‘sees’ a different 
nonlinearity, due to having a different wavelength, and is therefore emitted at a different 
location from the guide. It should of course be ensured that the time interval between 
the pulses is sufficiently long to avoid nonlinear interaction between them.
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5- Future work in the coupled mode theory area would include comparing numerically 
the coupled mode theory results for the three guide nonlinear directional coupler with 
those from beam propagation method simulations. It is necessary to use a numerical 

routine for the integration of the coupled mode equations, since an analytical derivation 
would be far too involved in this case. In addition, published papers on the three guide 

nonlinear coupler do not yet consider the effect of linear and nonlinear interactions 

between the outer guides. These effects could be investigated, and also comparisons 

between the characteristics of aligned and triangular formation could be made.

6- We suggest a novel idea using the nonlinear directional coupler. It is a filter with a 

power dependent bandwidth and fixed centre wavelength. The device has one guide as 
linear and the other as nonlinear. The nonlinearity in the nonlinear guide is such that it 

has a positive value over a certain range of wavelengths and negative over an adjacent 
range. At an intermediate wavelength the nonlinearity would be zero. At this particular 
wavelength both guides are linear. Assuming the length of the coupler is one linear 
coupling length, 100% power transfer would be expected at that wavelength. At other 
wavelengths the device is a nonlinear directional coupler. Therefore the output 
characteristic is that of a wavelength filter with a power dependent bandwidth. At low 
input powers the bandwidth is large or infinite depending on the maximum magnitude 
of nonlinearity achievable in that material. As the input power is increased the filter 
bandwidth reduces, but the peak efficiency stays the same. Practical materials with a 
nonlinearity which goes from positive to negative can be found in semiconductors [7], 
where physically the positive nonlinearity is due to two photon absorption and the 
negative nonlinearity due to bandgap resonance. Intermediate between these two is a 
wavelength where the nonlinearity is zero. It is possible to tailor this wavelength by 
changing material parameters, for example by altering the resonance nonlinearity 
distribution or the two photon absorption peak distribution.

This intensity dependent bandwidth filter is reminiscent of an intensity dependent 
tunable filter we proposed recently [8] which was also based on the nonlinear 
directional coupler. In that device the centre wavelength and the peak efficiency varied 
with input power. However, it was shown that in certain cases, it was possible to tune 
the filter whilst maintaining the peak efficiency and bandwidth.
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A PPEN D IX  1

NONLINEAR PERMITTIVITY
In this appendix, the relationship between the nonlinear refractive index «2» and the 
nonlinear permittivity a  is derived, and related to the third order susceptibility (Kerr 

effect). Let E{r,t) and P{r j)  be the real parts of the electric field and polarisation in a 
medium. E{r, t) can be split into amplitude and phase notation as follows

E ( r j )  = = l/2[|(r)£^<^^'“ > +  c.c.] (A l.l)

Similarly for P(r,t),  the polarisation response becomes

£ ( r j )  = +C.C.] (A 1.2)

where P(r) is the slow varying amplitude. If the electric field E(r,t)  is small, the 
polarisation P{r,t) is directly proportional to the field, but for large fields, the 
polarisation is related to it in terms of a Taylor expansion [1]

= + + (A1.3)

where etc are the susceptibilities, and Eq the permittivity of free space.

is responsible for second order effects such as second harmonic generation. 

X̂ ^̂  is responsible for third order effects such as the optical kerr effect. Substituting 
equations A l.l  and A 1.2 into A 1.3 and expanding the right hand side binomially gives,

l /2 [ f ( ry < ^ '- “ ' +C.C.] = (A1.4)
m=0

Eqn. A 1.4 gives the polarisation response of the medium to the electric field. It consists 

of many frequencies, but we are interested in co. Matching the coefficients of 
on both sides of eqn A 1.4, we note that on the RHS, if'm ' were replaced by a number 

' fi', and 'n-m' were replaced by ' j i - V ,  then could be extracted. Therefore
m = jLi and n - m  = f i - \  gives
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rt + 1
m = n - m -

n — \
(A1.5)

Substituting eqn A1.5 into eqn A1.4 and simplifying

P(d= I  l(r) kid
^ 2

(A1.6)

Expanding eqn A 1.6 as far as third order and multiplying both sides by gives

(A 1.7)

where and E^[r,t) are defined by

(A1.8)

The electric displacement is given by

D^{r,t) = e,E^{rj) + P%r_,t) (A1.9)

Therefore the electric displacement becomes (substituting eqns A 1.8 into eqn. A 1.9)

D‘“( r j )  = e , E ‘‘ { r M e a ^ ' ^ K % r , t )  + - e , X ^ % ' ‘ { r , t f E % r , t )  (Al.lO)
PLor{r,t)

But {r,t) = E^{r,t)  where n is the nonlinear refractive index. The linear 

refractive index is related to via nl = l + %^'\

( A l . l l )

But for intensity dependent refractive indices n = «q where the intensity 7(r)
is given by (see eqn. A6.12)

/(r) = l/2£o«oclk) (A1.12)
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Squaring n , and ignoring the term because it is small results in

=nl+2riQnJ{r) (A1.13)

Inserting the value for I{r) from eqn. A 1.12 into eqn. A 1.13 gives

=nl + E{r) (A1.14)

In terms of the nonlinear permittivity eqn. A1.14 becomes

£nl = e '" ’ + a Ê{r) (A l.15)

a  = (A1.16)

Also «2 and a  can be compared to the third order susceptibility. Comparing eqns 
A 1.15 and A1.16 with A l . l l .

a  = rin =
(3)

4 e„n‘c
(A1.17)

«2 is found in the literature either expressed in MKS units or ESU units. The 
relationship between the two is given by [2],

ri2[mks] = —  X 10  ̂X — ri2[esu] 
3 «0

(A1.18)
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APPENDIX 2

Maxwell's equations are given by

^ y ~ E  = j(û^QH W x H  = -j(0£Q£E (A2.1)

where /Iq is the permeability, £q the permittivity of free space, and £ the relative 

permittivity. Considering TE propagation £  = (o,£'^,o), and H  = and

expanding eqns. A2.1 gives

^  (A2.2)
(Ofla dz 0^0  dx

dH. dH.
X  __

dx dz
= j(û£^£E^ (A2.3)

Substituting eqns. A2.2 into eqn. A2.3 (assuming d /d y ^ O ) ,  and simplifying by 

shortening cô jj,q£q to . Also assuming that E^ has dependence (where P is the 

propagation coefficient), d^EyJdz^ becomes ~P^Ey. Therefore the wave equation 

becomes

^^2 (A2.4)

E igenvalue equation  111

In section 10.4, when the value for the constant A  is calculated, the eigenvalue 
equation is needed in the following two forms,

SinKd = -.------------ +  . CosKd^ I - ( 5— (A2. 5)
^{K^ + f ) { K ^ + S ^ )  ^j{K^ + f ) { K ^  + 0^)

where the signs in eqns A 1.5 are either both positive or both negative.
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Z-REVERSAL CONCEPT [1]
The z-reversai concept is very useful for converting backward travelling waves into 
forward travelling notation. Splitting E, H ,  and V into transverse and longitudinal
parts gives

E = E , + E ,  H  = H, + H,  V = V ,+ £ - |-  (A3.1)
dz

By inserting eqns A3.1 into Maxwell's equations (eqns A2.1) results in the following

V, XÊ  = i m M - i  V, x g ,  = -j(0e„eE^ (A3.2)

^ , y - E , + j P i y . E , = j ( O n H ,  y , x H , + j P i x H , = - j O } e „ e E ,  (A3.3)

For -ve travelling wave, P changes sign. Therefore Maxwell's equations become 
(where the superscript on the fields imply negative travelling waves)

=j(OnHl V , x H;  =-Jo)e„eEl (A3.4)

V, X -  j P i  X i r  = j(OnH- V, X -  j p z  X H - = -jcoe^eE-  (A3.5)

Eqns A3.4-A3.5 can now be converted back to eqns A3.2-A3.3 if the following 
substitutions are made.

E, = E- h , = - h ; h , = k : e , = - e ; (A3.6)

Therefore, in conclusion if we want to transform the time-invariant form of -z travelling 
wave to a +z travelling wave, we have to make the following substitutions,

p - ^ p ,  e ; - ^ e ,, e ; - ^ - e ,̂ h ; ^ - h „ h ; ^ - h  ̂ (A3.7)

R EFE R EN C ES FO R  A PPEN D IX  3
[1] eg. D.L.LEB,"Electromagnetic Principles of Integrated Optics", Wiley, 1986.
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LORENTZ* RECIPROCITY THEOREM [1,2]
Assume satisfies Maxwell's equations, and all the boundary conditions in
medium and in medium respectively.

Volume of 
integration

Waveguide

Fig. A4.1 illustrating Lorentz theorem 

Maxwell's equations for medium 1 and 2 are:

V X VxH'" = -y(oeoe<'>£<'> (A4.1)

V X V X (A4.2)

Using the vector identity V (AxB) = B V x A - A  VxB,  and relating eqns. A4.1 -
A4.2 in the following way

■ (A3.1) -£('>• (A3.4) + £<̂ > ■ (A3.2) -  <’> ■ (A3.3) 

gives V • (l<'> X X = y<»eo(e<̂ > -  • £<̂ > (A4.3)

Integrating eqn A4.3 over a volume V  and making use of the divergence theorem 
transforms the LHS from a volume integral to a surface integral

xH<'>]-dS = 7<aeoJ|J(e<̂ > -£<'>)£<'> (A4.4)
,v V

We now co n sid er the in tegrand  o f eqn. A 4.4. For c la rity , le t 
F = X X If the volume of integration is that of a large cylinder of
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infinitesimal length Az (see Fig. A4.1), and the fields are small over the bounding area 
C (since the fields are in the region of the waveguide), the LHS of eqn A4.4 becomes,

§ F d S  = § F d S  + § F - d S  = § (F , ( x ,y , z  + d z ) -F A ^ ,y , z ) )d S  (A4.5)
5  S, S2 S

For the RHS of eqn. A4.4, since the volume of integration is that of a cylinder SAz,  

the volum e in tegral - J û ) j j j d V  can be ex p ressed  as - j û ) A z ^ d S .
V s

= ^ (F j(x ,y ,z  + dz) -  F^{x,y,z))dS. Therefore eqn. A4.4 now becomes

lim
A z-> 0

j^[F^(x,y,z + dz) -  F^{x,y,z)]dS = -jœeQAzj^[e^^'^ -  - Ê '̂^dS (A4.6)

Dividing both sides of eqn A4.6 by Az gives

ButF^ (x,y,z)  = E^P x x . Therefore eqn A4.7 becomes

-£ p >  Xff('>)-£d5' = (A4.8)

where all the fields satisfy Maxwell's equations and all the boundary conditions for 
their respective systems. Substituting ds = dxdy gives finally

y j j  X X «<'>)■ £ dxdy= j(OE„jj (e<̂ > -  e<'>)£<'> • £<̂ > dxdy (A4.9)

R E F E R E N C E S  F O R  A P P E N D I X  4

[1] A. W. Snyder and J. D. Love, “Optical waveguide theory’. Chapman and Hall, 
1983.
[2] D.L.Lee,”Electromagnetic Principles of Integrated Optics", Wiley, 1986.
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The derivation of eqn 6.6 will be explained in more detail in this appendix. 
The product of the sum of N  numbers such that

(fl, +a 2 +a^ + - '’Oj )̂[a* +al  + a l+‘"C^)[a^ +a 2 +a^+"-a^)  is given by

^  N  A /  Af \  /  N  A N

X X = X “/KI
V</=l J  \ r = l  J  \  / = !  /  / = )

(AS.la)

N  N

w here
q=\

(A5.1b)

N  N

■’" X X w h e r e
l= \ q=\

(A5.1c)

N  N

t= \ q=\

w here i ^ q (AS.ld)

Inserting where s is any number, and for p ^ q  into eqn

A5.1, and substituting this into eqn 6.5, results in eqn 6.6
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POYNTING THEOREM

In this appendix, we will derive the Poynting theorem [1,2], which gives the power 

carried by an electromagnetic wave in terms of the fields.
Maxwell's equations in time-varying form for an isotropic medium are given by

V x E { z . t )  = - ^ ^ ^  = + (A6.1)
dt ot

where B{z,t) = and D{z,t) = £o£E{z,t) = £qE(zJ )  +P(z,t) , JIq is the
permeability, £q the permittivity of free space, P is the polarisation response of the 
medium, and J  is the current density. Substituting eqns. A6.1 into the following 
identity W { E x  H) = H  'V x  E -  E V x H  and integrating over an infinite volume 

gives

- j  V ■ (£(z, 0  X H(z, t))dV = 0  ■ + £(z, t) ■ + E(z, t) ■ 7(z. t) dV
dt dt

(A6.2)

The first term in eqn. A6.2 can be transformed from a volume integral to a surface 
integral using the divergence theorem.

dV-Jj (£(z, t) X H{z. 0) m  = \  H{z. t) ■ + E{z, t) ■ + £(z. t) ■ J(z. t)

(A6.3)
The first term on the RHS of eqn. A6.3 represents the rate of increase (with time) of the 
stored energy in the magnetic field, and the second term, the rate of increase of the 
stored electrical energy in the electrical field. The third term represents either ohmic 
power loss if 7 is a conduction current density, or the power required to accelerate 

charges if 7 is a convection current arising from moving charges. These rate of 

increase in energy are supplied by the -JJ(E(z, t) x  H{zy t)) • zdS on the LHS, of eqn.
5

A6.3, which represents the external energy flow into the volume.
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TIME AVERAGED INTENSITY
Since P{z, t) is the instantaneous intensity, we would like to find the time-averaged 
intensity, and to do this we have to somehow extract the time dependence from P{z, t ) . 

With fields, this is easy. We simply say

Eiz, t) = Re{Eiz)e->“‘ ) H{z. t) = Re{H{z)e->'“ ) (A6.4)

But we cannot express the Poynting vector P{z,t) in terms of amplitude P(z) and 
phase as we can with the fields, ie P ( z , t ) ^  Re(^P{z)e~^^‘Y  w here

P(z) = E{z) X H{z). Therefore we are forced to multiply out as follows,

P{z,t) = E(z, t) X H{z, t) = Re[E{z)e-“‘ ] x Re[H(z)e->“" ] (A6.5)

= \ [ e [z) X H(z)e-^‘“ + E {z )x  H ’{z) + E'(z)  x  H(z) + E"(z) x  ]

(A6.6)
The four terms in line A6.6 can be condensed to two terms as follows

= ^ R e l E ( z ) x H ' ( z )  + E(z)xH(z)e-^ '‘“] (A6.7)

Now that the time component is separated from the Poynting vector in line A6.7, the 
time-averaged intensity can be found by integrating eqn. A6.7 over the time T  and 
dividing by T. This will eliminate the fast varying component (containing since
the period T  is much larger than the period of oscillation. Using eqn A6.7, the time- 

averaged intensity is given by

L .  = ^ } E ( z , t ) d t  = ^ R e l E ( z ) x N \ z ) ]  (A6.8)

Therefore in summary, P(z, t) = E{z, t) x H{z, t) is called the Poynting vector, and is 

the instantaneous intensity vector, and = ^ /?^ [e (z )x  H*(z)] is the time averaged 

intensity vector. The vectors are in the direction of power flow (z direction).

Relating the intensity to the field
The time-averaged intensity, or irradiance is given by
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/ „  =  i ^ £ x r ) . |  ( A 6 . 9 )

Assuming TE propagation, and where E^, and are the

time-independent fields.

C  =  ( A 6 . 1 0 )

Assuming P = P^+ j p , , where p ^, and P, are the real and imaginary parts of the 
propagation coefficient, and making use of eqn. A2.2 (to relate and Ey) eqn. A6.10 

becomes

i2

Assuming p^ = cô J/Iq£^£q , eqn. A6.11 becomes,

I 1̂
« O p v  1 I |2 I-----

C  = I = - V ^ o p y |  where = ^£^  (A6.12)
Mo ^

Time-averaged power for a multiwaveguide system
The time-averaged power [3-4] is now calculated in terms of the overlap integrals. Let 
E, and H, be the total field for the multiwaveguide system, and that they can be 

approximately constructed from the eigenmodes of the guides. Therefore

E, = f  (A6.13)
q=\ p - \

The time-averaged power P{z) is calculated by integrating the time-averaged intensity 
(eqn. A6.9) over infinite cross-section. (Note P(z) should not be confused with 
Poynting vector).

P(z) = i R e j j  { E ,x H : ) - i d x d y  ( A 6 . 1 4 )
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Using the definition for E,  and H,  from A6.13, eqn. A6.14 becomes

= i W ï  y H Ÿ ^ \ l4 x d y  (A6.15)
q = \ p=\

but by definition j j  ^zdxdy = (A6.16)

Substituting for P from eqn. A6.16 into A6.15 and rearranging gives 
P = Therefore the total time averaged power is Cancelling

p-Q p-q

out the P gives g^Ca = 1.

In prior weak coupled mode theories, it was thought that C was the identity matrix, 
which led to = 1. For two guides, g^Cg = 1 becomes

|<3, f  + \ü2 f  + C, 2 (a*Ü2 + ) = 1 ( A 6.17)

Therefore the power is carried by the first mode, the second mode, and the overlap
between the modes (in prior theories, it was \â \ + P 2I =1). For N  guides, the total 
power is

Z k r  + I « ; c „ n , ( l - 5 ^ )  = l (A6.18)
r=] p.q

In terms of the amplitude coefficients A, (z), and such that a,(z) = and
assuming a symmetrical case so that = P2 , then eqn. A6.17 becomes

|A, f  + |Ajf + C,;(A,% + Aj*A, ) = 1 (A6.19)
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