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Summary

This thesis is concerned with channel coding. Channel coding consists of error
control coding and line coding (LC). The basic definitions and concepts of both
error correcting codes (ECCs) and LC are initially examined, followed by the pre-
sentation of a number of existing coding algorithms. Where appropriate, computer
simulation is used to establish their limitations. Certain new codes are then devised
which offer improved performance.

Finally, following on what is now an established trend, error correcting and line
codes are combined to form error correcting line codes (ECLCs), which may offer
superior performance compared to the use of a cascaded scheme.

Specifically, the first chapter contains some basic definitions, the thesis outline
and a summary of the contributions.

Chapter 2 introduces the basic concepts behind error correcting codes and soft
decision decoding (SDD) together with a brief description of the well-established
Chase algorithms. Their advantages and limitations will be examined and used
generate novel SDD algorithms in chapter 5.

The basic concepts of line coding are introduced in chapter 3. In addition, a
new family of single added bit line codes is also presented. This offers reasonably
good line characteristics with very small compromise to rate.

Chapter 4 is concerned with simulation as a means of evaluating the perfor-
mance of coded systems. A conventional simulation technique is initially presented

and used for assessing the performance of BCH codes. This proves inadequate for

+to



simulating the very low error rates of modern communication systems, especially
when SDD is used. Two novel simulation acceleration algorithms are therefore
introduced to alleviate this problem. These will only simulate code words that
affect the residual bit error rate (RBER) and simply calculate the effects of the
code words which are correctly decoded. The novel simulator algorithms are used
in subsequent chapters to determine the performance of the proposed new codes.

Chapter 5 introduces the new generalised Chase (GC) algorithms, followed by
the adaptive immediate decision (AID) and test pattern elimination (TPE) algo-
rithms. These can be used to offer near mazimum likelihood (ML) performance
with minimum increase in complexity.

Chapter 6 is concerned with combined EC and line codes to form ECLCs.
These can offer both tight line coding characteristics and good decoding perfor-
mance. Some emphasis is placed on implementation appropriate to very high bit
rate systems.

Finally chapter 7 brings the thesis to a conclusion and provides recommenda-

tions for future work.
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Chapter 1

Introduction

1.1 Introduction

A major aim of communication theory is to devise methods with which signals
can be transmitted though imperfect media with the highest possible degree of
reliability and efficiency.

In order to achieve this, the signal format at the transmitting end must be
chosen so that it will offer maximum resistance to the channel impairments. Ad-
ditionally, the receiver must be able to recover as much of the original signal as
possible. The application of coding is one method of achieving increased reliability.

Generally, coding is a form of mapping whereby a given string of information
bits is converted into another sequence which | may have added redundancy. We

can divide coding into three major areas:

1. Source coding, which has two functions: | first to transform a message source

into a string of digital symbols and second, to remove any redundancy from
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the word thus increasing efficiency.

2. Cryptographic coding, which is used to increase the security level of a sig-
nal by concealing the message. This is done to ensure that only authorised

recipients can decode and obtain the transmitted information.

3. Finally, channel coding which aims to increase the reliability of a channel by

using added redundancy.

This thesis is concerned with channel coding, which can be further divided into

two main sub-areas:

1. Line coding (LC), in which the extra information is used to tailor the trans-
mitted signal in such a way as to match the characteristics of the communi-

cations link.

Line coding can be used, for example, to modify the spectral characteristics
of the signal, (e.g. by placing constraints on the running digital sum (RDS)),

or to place bounds on the runlength.

2. Error control coding, whereby extra bits introduced at the transmitter are
utilised at the receiver to detect and possibly correct any errors that may have
occurred. ‘This is further sub-divided into automatic repeat request (ARQ)
and forward error correction (FEC). Both ARQ and FEC will be examined

in more detail in the next chapter.

Figure 1.1 summarises the structure of the coding field, as described above.
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CODING

Cryptography Source Coding

Channel Coding

/\

ErroCorrecting
Codes

O O

Runlength Limiting Disparity Bounding Forward Error Automatic Repeat
Codes (RLL) Codes Correction (FEC) Reguest (ARQ)

Line Coding

Figure 1.1: Coding tree diagram.

Even though line and error control coding are two distinct operations they
both aim to increase the reliability of a system [1, 2, 3]. With the introduction of
digital systems in all aspects of modern life, the issue of data integrity is becoming
increasingly more important. Channel coding is a very attractive way of achieving
this.

This thesis concentrates on channel coding. A number of existing line and error
correcting codes will be presented and simulated, to identify their shortcomings.
In a number of cases, new codes will be introduced addressing these limitations.
The codes used will be very general in nature and simple to implement.

The basic concepts behind channel coding are initially presented. These are
then used to build more complex line and error control codes. However, it is not
uncommon for a designer to incorporate both aspects of channel coding in a system.
Thus, if a conventional cascaded scheme is used, the data goes first through an error

correcting (EC) encoder and then through a line encoder. The process is reversed
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at the decoder. It will be shown that this cascaded scheme can be inefficient
and reduces the overall decoding performance. For these reasons combined error
correcting line codes (ECLCs) have been devised which offer improved performance
4, 5).

Finally, the concept of soft decision decoding (SDD) will also be introduced.
This is a technique which combines the demodulation and decoding processes. A
number of the codes presented in this thesis can be improved by the use of SDD.
The latter increases the complexity of the receiver but offers increased decoding
power without adding extra redundancy.

A particular feature of the thesis is an exploration of the benefits that arise
from employing SDD with ECLCs. This enables significant improvements in both
rate and decoding power to be realised. There is currently considerable interest in
channel coding for high bit rate systems, such as undersea optical telecommunica-
tions transmissions, which provided the original motivation for this study. For this
reason only low complexity codes (which allow high bit rates to be realised) will

be considered.

1.2 Thesis Organisation

The structure of this thesis can be briefly summarised as follows:

Following this introduction, chapter 2 contains the fundamentals of error control
coding together with examples of various simple codes. This chapter is used as
a basis for the introduction and development of more advanced codes which are

presented in later chapters. In addition, the well-established Chase SDD algorithms
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are extensively examined due to their critical role in the following chapters, and
especially in chapter 5.

Chapter 3 presents the basics of line coding together with a family of simple
‘added bit’ codes. These offer tight runlength and disparity bounds while being
very simple to implement. A number of the added bit codes are used in chapter 6
to form error correcting line codes.

In chapter 4, the need for simulation in channel coding is presented together
with a basic ECC simulation. The latter is used as a basis for developing two
new simulation acceleration algorithms which are used throughout the thesis to
validate theoretical results. These work by ‘eliminating’ a large number of code
words without affecting the accuracy of the simulation.

Chapter 5 introduces three novel SDD algorithms which offer significant perfor-
mance improvements. Specifically, the generalised Chase (GC) utilises an increased
number of test ;pattemsto achieve improved decoding performance; the AID algo-
rithm then uses threshold decoding to reduce the average number of test patterns
without affecting the decoding performance. Finally, the TPE algorithm reduces
the number of test patters required for SDD, by eliminating those that produce
the same estimated error pattern (EEP).

In chapter 6, existing concatenated and ECLCs are presented together with the
reason behind the need for error correcting line codes. These are used as a basis for
the generatibn of novel codes, which also utilise SDD to provide better performance
with minimal increase in complexity.

Finally, chapter 7 brings the thesis to a conclusion and provides some recom-
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mendations for future work.

1.3 Summary of Main Contributions

The research presented in this thesis examines channel coding schemes suitable for
high bit rate systems. The major contributions fall into four main interlinked areas

and can be summarised as follows:

e New line codes: a new family of ‘added bit’ line codes was introduced, which
resulted in the harmonisation into a single identifiable family of the disparate

nB1X codes.

e Improved simulation techniques, where two novel simulation acceleration
techniques are developed. These significantly reduce the amount of time
required for obtaining statistically accurate results without compromising

accuracy.

e Novel SDD algorithms: a number of novel SDD algorithms are introduced
which offer improved decoding performance and increased decoding speed

without significantly increasing the complexity of the decoder.

e New error correcting line codes: SDD was combined with conventional error
correcting line codes thus producing novel codes which can offer both accept-

able decoding performance and reasonably good line coding characteristics.

A number of conference papers have been accepted for presentation and publi-

cation. These are the following:
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1. Y. Bian, J. O'Reilly, A. Popplewell, S. Fragiacomo: “New Simulation Tech-
niques for Evaluation Telecommunications Transmission Systems with FEC”,

Fifth IEE Conference on Telecommunications, March 1995, UK.

2. S. Fragiacomo, Y. Bian, A. Popplewell, J. O’Reilly: “A New Low Complex-
ity Near ML Soft Decision Decoding Algorithm for Linear Block Codes”,
IEE Singapore International Conference on Communication Systems, IEEE

ICCS/ISPACS ’96, 25-29 November 1996, Singapore.

3. Y. Bian, A. Popplewell, J. O’Reilly, S. Fragiacomo, R. Blake: “FEC for
Future Trans-Oceanic Optical Systems”, Fifth IEE Conference on Telecom-

munications, Brighton, March 1995, UK.

4. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “Exploiting Soft Decision Decod-
ing for Error Correcting Line Codes”, IEE Singapore International Confer-
ence on Communication Systems, IEEE ICCS/ISPACS 96, 25-29 November

1996, Singapore.

5. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Novel Error Correcting Line
Code”, Third Communication Networks Symposium, 8-9 July 1996, Manch-

ester, UK.

6. S. Fragiacomo, C. Matrakidis, J. O'Reilly: “A New Error Correcting Line
Code”, ITS/IEEE ROCHC 96 International Telecommunications Sympo-

stum, October 28-31 1996, Acapulco, Mexico.

7. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Novel Error Correcting Line

Code”, Networks and Optical Communications (NOC) - Post-Deadline Ses-
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sion, June 25-28 1996, Heidelberg, Germany.

8. S. Fragiacomo, C. Matrakidis, J. O'Reilly: “Soft Decision Error Correcting
Line Code for Optical Data Storage”, 9th Annual Meeting, LEOS 96, 18-21

November 1996, Boston, USA.

9. S. Fragiacomo, C. Matrakidis, A. Popplewell, Y. Bian, J. O’Reilly: “An
Accelerated Simulation Technique for Evaluating Communication Systems
Utilising FEC”, Networks and Optical Communications (NOC), June 17-20

1997, Antwerp, Belgium.

10. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Class of Low Complexity Line
Codes”, International Symposium on Information Theory, ISIT 97, 29 June

1997, Ulm, Germany.

11. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “Performance Aspects of a Class of
Low Complexity Line Codes”, International Conference on Signal Processing,

ICSPAT 97, September 1997, San Diego, USA.

In addition, a number of journal papers have been submitted. The next chapter
begins by presenting some basic concepts of error control coding and soft decision

decoding.
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Chapter 2

Channel Coding

2.1 Introduction

In this chapter a brief overview of forward error control (FEC) and soft decision
decoding (SDD) will be presented. As discussed before, channel coding can be di-
vided into two main categories: FEC and line coding (LC). This chapter introduces
the basic concepts behind FEC, while chapter 3 presents the basic concepts of line

coding.

2.2 Error Control Codes

In general, error control codes can be divided into two types [1]:

1. Automatic repeat request (ARQ), whereby the receiver can only detect errors.
If these occur, then a feedback path is used to request the re-transmission
of the erroneous data. ARQ systems can be divided into two main cate-
gories: stop-and-wait ARQ and continuous ARQ. With stop-and-wait ARQ

10
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the transmitter will only send the next word if the received word contains

no errors. Continuous ARQ will send words and receive acknowledgements

continuously.\ If errors are detected the offending code word will be re-
+ transmitted. ARQ systems can be simple to implement since they only
require error detecting codes and are efficient in high signal to noise ratio
(SNR) communication links. However, a number of disadvantages are also

present:

e They require a feedback path to send the repeat request. This means
that stop-and-wait ARQ requires a half-duplex channel while continuous

ARQ fequires a full-duplex channel.

e They can be very inefficient, especially if high channel error rates exist

because a high number of repeat requests will be made.

e In high bit rate or long distance systems where a significant delay exists,
continuous ARQ will be used. This can be more efficient but will require

large buffering systems.

For the above reasons ARQ systems are not considered here.

2. The second error control strategy is forward error correction (FEC). This
utilises codes which can detect and correct errors at the receiver, termed error
correcting codes (ECCs). Such codes are more complicated to implement but
do not require feedback paths. In addition, they are better suited to relatively
low SNR applications. For these reasons, FEC is examined in more detail in

this study.
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2.2.1 Forward error correction

The theoretical basis for error correcting codes was developed during the late 1940’s
by Shannon [2]. He suggested that the elimination of errors in a received digital bit
stream was possible, if the latter was properly encoded. Encoding usually requires
the introduction of redundancy. Shannon also proved that any number of errors
can be corrected, provided the block length is large enoﬁgh.

The challenge in coding theory is t(; discover codes which can correct a large
number of errors while minimising reduﬁdancy and complexity.

Error correcrting codes can be divided into binary and multi-level codeé. If the
encoded data stream at the transmitter can only obtain two distinct values then
our code is.a binary one, otherwise it is a multilevel one. Both these types of code
can be further sub-divided into block or tree codes. Block codes, which are of
interest here, were introduced by Hamming in the 1950’s [3]. They differ from tree
codes in that there is no ‘memory’ during the encoding process and the produced
bits depend only on the current information word.

Finally, either of these codes can be linear or non-linear. A binary block code
is linear if the modulfo-2 sum of any two of its codé words is also a code word. The
best known linear block codes are cyclic, where a cyclic shift of any code word also
produces a code word. The most frequently used ones are the BCH codes which
include the Reed-Solomon and Hamming families. The most common tree codes
are convolutional codes, where the check bits are mixed with the information bits
in a continuous manner.

Figure 2.1 presents the family of error correcting codes.
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Error Correcting Codes

Multi-level

Tree

[ Linear ] [ Non-linear ] [ Linear ]
e.g. Hamming e.g. Convolutional

Reed-Solomon
BCH

Figure 2.1: Error correcting code tree diagram.

This thesis aims to develop error correcting and line codes appropriate for mod-
ern high bit rate systems. For this reason, only linear binary block codes will be
considered as they are likely to be the simplest to implement and usually require
a minimal amount of decoding time. A widely used group of such codes are the
Bose-Chaudhuri-Hocgenghem (BCH) codes, introduced in 1960 [4]. These will be

used as an example whenever a specific code example is required.

2.3 Generating Linear Binary Block Codes

Figure 2.2 is intended to make linear block error correcting codes easier to appre-
ciate. This represents the block diagram of a complete communications system,
utilising an (n, k) ECC encoder.

The digital data source will generate a continuous stream of information bits.

The error correcting code encoder will divide this stream into blocks of k bits each.
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Digital Data

ECC Encoder Modulator
Source

u=(u u .u v=(v v ..V

Noise and Interference

X

system

n codewtird trils
Data Destination ECC Decoder Demodulator

Figure 2.2: Block diagram of a communications system.

These are represented by a binary k—tuple T = {UQ, .. Uk i) called a message.
This implies that for a binary code there are 2" possible messages.

The encoder ‘contains’ the generator matrix G which has as rows a set of k£
linearly independent code words. These are called the ‘basis code words’ and make
the row space of G the linear code. If all the linear combinations of the basis code
words are taken {v = ii mG) then 2" n-bit code words will be generated.

The error correcting capabilities of a code depend on the Hamming distance (d)
separating the code words. The Hamming distance of two code words of length n
(where k& < n) is defined as the number of places in which their bits differ [5]. The
minimum distance /[dmin) of a code is defined as the smallest possible Hamming
distance between any two code words. For BCH codes (dmin) is an odd number.

Such a code can detect and correct up to g-j-ors and ¢ is therefore
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termed the ‘error correcting capability’ of the code.

At the output of the encoder the k-bit information vector will therefore be
transformed to an n-bit code word which now has error correcting properties. The
added (n — k) bits are called the parity check digits, or parity bits. The n-bit code
word is then modulated and transmitted. The same process is repeated for the
next k information bits. An (n,k) code of minimum distance (dmi,) has therefore
been generated.

At the receiver, the received waveform is initially demodulated. This produces
a binary stream of code words. If no errors have occurred then the received vector
7 will equal the transmitted one, i.e. ¥ = ¥. If errors have occurred, then it can be
assumed that they will have formed the error vector €. In such a case 7 = v @ ¢,
where @ indicates modulo-2 addition.

It is up to the decoder to attempt to detect and possibly correct the errors
that may have occurred. To do this it uses the parity check matrix H. This is a
((n — k) x n) matrix where any vector in the row space of G is orthogonal to the
rows of H. Therefore, for any o we get #- HT = 0, where H” is the transpose of H.
In order to detect if errors have occurred, 7 is multiplied by H7. If 7#- HT = 0 then
either no errors have occurred, or the error correcting capability (t) of the code has
been exceeded.

If error correction (as opposed to error detection) is also required, then the

previous formula must be expanded. At the receiver 7 is multipliéd by HT, i.e.
F-H' =(v+eé)-H  =v-HT +é-HT

Since 7 is always a valid code word, - HT = 0, so 7 - HT = & HT. This
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product is called the syndrome (S) and only depends on the error pattern. If the
syndrome is zero then no errors have occurred; 2»=*) unique syndromes exist, each
corresponding to a specific error vector. Using the syndrome information the error
position can be located. Since our codes are binary there are only two possible
distinct bit states, a logic 1 or a logic 0. Therefore if the positions of the errors in
the code word are known, error correction is also possible by performing a simple

inversion of those positions.

2.3.1 A simple ECC example

To provide an illustrative framework for some basic definitions, an example of a
very simple linear binary (7,4) code with a minimum Hamming distance d,;, = 3
will be considered. This has k = 4 information bits encoded into n = 7 code word
bits. Therefore, 2F possible distinct messages will be encoded into 2" code words
using a one-to-one correspondence. The generator matrix G of such a code is of

the following form:

9% 1101000
o 0110100
G = = (2.1)
g2 1110010
g3 1010001

while the parity check matrix H will be the following:
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1001011

H={10101110 (2.2)

0010111J

Assume that a message 4 = (1101) must be transmitted using the above code.
To achieve this, the message must be multiplied with the generator matrix so that

the code word vector ¥ is produced, i.e.

1=4-G=(1101)-G=1-go+1-¢1+0-go+1-g3=

(1101000) + (0110100) + (1010001) = 0001101

Thus the transmitted EC code word will be 0001101. Because the (7,4) code
is a systematic one, the four last bits contain the original message in the correct
order, while the initial three bits are the parity bits required for error detection
and correction at the receiver. Table 2.1 contains the mappings for all possible four

bit information words.

2.4 Decoding a Simple ECC

In the previous section, a 4-bit information message was encoded into a 7-bit code
word using a linear block code. In this section, the received word will be decoded
and up to t errors will be corrected. Since t = w and for our code d,;, = 3
then ¢t =1, i.e. it is a single error correcting code.

Assume that 7 = (rg,7q,72,73,74,75,7¢) iS the received vector. The syndrome

S is defined as
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Information word

(7,4) code words

0000 000 0000
0001 101 0001
0010 011 0010
0011 010 0011
0100 011 0100
0101 110 0101
0110 010 0110
0111 001 0111
1000 110 1000
1001 011 1001
1010 001 1010
1011 100 1011
1100 101 1100
1101 000 1101
1110 010 1110
1111 111 1111

Table 2.1: Linear block code with & = 4 information bits and n = 7 code word

bits.
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S=§:T_'HT—_—- (80,81, ---;S(n—k—l))- (23)

From this it is deduced that the syndrome is simply the sum of the received
parity digits and those re-computed at the decoder. Thus if S # 0 an error has
been detected.

Using equation 2.3 in our example (7, 4) code the following equation is obtained:

5= (80,81,8) =7 -H =(a+é&)-H =u-H ' +e-H' =0+e-HT =e- HT

Assuming that the vector 7 = (1001001) has been received, i.e. a single error

exists in bit position 5 the syndrome will be equal to:

100
010
001
S =7-H" = (1001001) - | 110 | = (111) (2.4)
011

111

101

Therefore S # 0 and an error has been detected. In order to detect the error

position it is noted that

S:(80,81,82)2(1,1,1)ZE'HT:>
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100
010
001
(111) = (eo, €1, €2, €3, €4, €5,€6) - | 110 (2.5)
011

111

101

Using equations 2.4 and 2.5 the following error vectors are derived:

1l=ey+es+e;+eg (26)
1=61+63+64+65 (27)
1=62+64+65+€6 (28)

A number of possible solutions exist that satisfy the above equations. If max-
imum likelihood decoding is used for error location then the error pattern with
the minimum number of corrected positions is selected. In this case, this is the
(0000010) error vector. If this is added to our received vector the transmitted
vector will be obtained.

In chapter 4, Berlekamp’s iterative algorithm will be briefly presented. This
is an algorithm for generating the error locator polynomial, appropriate for more
complex and powerful codes. It is a well-established technique which lends itself

to software implementation.
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2.5 Soft Decision Decoding

In the previous sections it was demonstrated how the information bits could be
encoded and decoded so that error detection and correction were possible. At
the receiver, only the algebraic properties of the code were utilised to locate any
possible errors. This is termed hard decision decoding (HDD).

In this section, the basic principles of soft decision decoding (SDD) are pre-
sented. SDD uses the analogue information to try to increase the error correcting
capability of the code. As has been mentioned before, a code of minimum distance
dmmin can correct up to t errors. The use of SDD ailOws this limit to be exceeded,
under certain conditions. The penalty is the increased complexity of the decoder
and the fact that the t-error correcting capability May not be guaranteed anymore.

SDD techniques are not suitable for very noisy systems. However, modern
telecommunication and data storage systems usually have very low error rates and
can thus benefit from the application of such techniques.

A modified communications system which includes SDD, is shown in figure 2.3.

Here extra information is provided to the decoder 1n the form of the analogue
values of the received bits. These values are provided by the demodulator and are
used to facilitate the decoding process by indicating possible error positions.

SDD algorithms can be grouped into two broad classes:

(a) Minimum distance (or minimised sequence error rate) decoding algorithms,
based on [6].

(b) Trellis decoding algorithms, adapted for block codes.

A number of SDD algorithms exist, such as [8, 9, 10, 11], but the most widely
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Figure 2.3: Communications system (with SDD) block diagram.

used are the Chase algorithms. This is because they can offer a balance between
decoding power and complexity. In the following sections the Chase algorithms will
be examined in detail. Their shortcomings will be identified and then addressed in

chapter 5.

2.5.1 The Chase algorithms

In 1972, D. Chase [7] suggested three different SDD algorithms of type (a), each
of which provided a different number of test patterns, allowing a trade-off between
performance and complexity. Specifically, the Chase decoder generates a set of
possible error patterns, called the test patterns (TPs). These are then sequentially
perturbed with the received word and taken through a conventional HDD decoder.

This may result in a possible error pattern being generated, termed an estimated
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error pattern (EEP). The EEP is used to indicate the bit positions which are
deemed to contain an error and each is assigned a confidence value, provided by
the analogue information. After HDD of all possible patterns has taken place, the
one with the highest confidence value is selected and added to the received word
to provide the corrected word.

Chase suggested three different algorithms, each examining a different number
of TPs. The TPs are used to invert a number N of least confidence bit (LCB)
positions. These are defined as the bit positions closest to the decision threshold.
The reason behind the use of TPs is that if the voltage value of a received bit is
very close to the decision threshold, this bit is very likely t’o be in error. Thus
if the syndrome calculations indicate that the received code word contains errors,
these are more likely to be in the LCB positions than anywhere else. By systematic
inversion of different combinations of these positions, the errors within a code word
could be corrected.

An ECC utilising HDD can correct upto [ng—‘—lj errors. The use of an SDD
algorithm, in conjunction with an ECC, allows a higher average number of errors
per code word to be corrected. However, unlike a conventional ECC, the use of any
SDD algorithm méy not guarantee the correction of up to ¢ errors within a code
word.

The flow diagram of the decoding process for the Chase algorithms is shown in

figure 2.4 and is explained in more detail in the following section.
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Add it to the received word and decodé
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Figure 2.4: Flow diagram of the Chase algorithms.
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2.5.2 Mechanics of the Chase algorithms

Assume that for a given communication system the transmitted word is defined as
U = v, V1, -- Un—1) and the received word as T = 1o, 71, ... T(n—1), Wwhere r; = v;+no;
for 0 < i < (n — 1) and no; is defined as the noise amplitude. Let ¢ be the error
correcting capability of the (n, k) ECC.

The resultant error pattern (EP) indicates the bit positions where T and 7
differ. € = eg, €1, ... €,_1 is termed the error vector and is defined by e; = v; ® r;
for 0 < ¢ < (n — 1) while the binary weight of & is termed W (€) and defined as
the total number of non-zero elements in the sequence. A decoder will try to find
a code wdrd that satisfies W(e) < (imzﬂ‘—l) where d,,;, is the minimum Hamming
distance of the code.

In the Chase algorithms, a test pattern TP = tpy,tp,, ... tp(n—1) for 0 < @ <
(n—1) of length n is initially generated. This is done by selecting a number (Ngpgse)
of LCBs and producing a set of n-bit sequences containing possible permutations
of these Ngpase positions. This generates a set of upto 2V¢kase TPs. The initial TP
will always be the all zero word.

Each TP is then modulo-2 added to the received word 7 and the resultant
sequence 7 = 7 @ TP is conventionally decoded using any suitable HD decoder.
Since the addition of the TPs has the effect of inverting a number of LCB positions
it is likely that some of the resultant sequences will have a reduced number of errors
compared to the received code word.

If a conventional HD error correcting decoder was used and the initial number

of errors exceeded ¢ then the decoding operation would fail. With the addition of
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the TP procedure, it is possible that the total number of errors is reduced (or even
eliminated) thus allowing conventional decoding to take place.

The received word with the added TP will be taken through the EC decoder,
which will either produce a decoder error pattern (DEP) or fail to decode. The DEP
will then be added to the TP to produce an n—bit sequence termed estimated error
pattern. Thus, EEP = (eep, eepy, ... eep(n—1y) = TP & DEP. If the addition of
the TP has introduced more errors (instead of eliminating them) it is possible that
the decoding will fail. In such a case no EEP will be produced. This is the reason
for always starting with the all zero word as the initial TP; if the error pattern
contains t or less errors the all zero TP will allow the decoder to operate properly.
If not, then only the removal of errors will allow decoding. The latter can only be
accomplished by using appropriate TPs and for this reason the process is repeated
for the whole TP set.

Once all possible EEPs have been produced, one must be selected. It should
be noted that not every TP will create an EEP and not all EEPs will be distinct.
The selection will be done using the analogue weight of each EEP which is defined

as:

n—1

QWEEP = Y, a; X €ep; (2.9)

i=0

where a; is the analogue value of the i — th bit position of the EEP.

The EEP with the smallest analogue weight will be modulo-2 added to the
reccived word and the resulting sequence will be accepted as the corrected word.

The EEP of minimum analogue weight is selected because equation 2.9 determines
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the pattern which has inverted the least confident bits. If all errors have been

corrected then the EEP should equal the EP.

2.5.3 Test pattern set generation

It should be clear that the generation of the TP set is a very important task. If
this is correctly generated then the total number of errors in a code word may be
reduced, otherwise it will be increased. -For this reason, the introduction of channel
measurements; May not guarantee anymore the correction of a minimum number
of t received errors. However, if the total number of errors is above ¢, the decoder
may have the ability to correct them. The three algorithms for selecting the TPs

as suggested by Chase are the following:

1. The first algorithm (Chase 1) examines all possible TPs. Therefore, for an
n-bit code with a minimum distance between code words of d,,;,, a total of
(L%}u J) possible combinations exist. For other than very small values of n
this is impractical to implement in hardware or indeed to simulate down to
the RBERS of interest. A considerable reduction in complexity is obtained if

the test patterns that produce identical error patterns are ignored, but even

with this improvement, the algorithm is not very efficient.

2. The second algorithm (Chase 2) considers only the set of error patterns con-
taining Ngpase = [Q%MJ lowest channel measurements (i.e. the bits with the
highest probability of error). The test patterns generated in this case are
those where any combination of inverted positions is allowed within the set

d:
of lowest measurements. Thus 2l73™] TPs are examined.
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3. Chase 3 examines Ngpase = ([izgmj + 1) possible patterns. Once more the

inverted positions are assigned to the ¢ positions of lowest confidence. If
dmin is even, i takes the values i = (0,1,3, ...d — 1). If dpy, is odd then
i =(0,2,4, ...d — 1). This algorithm gives best results for codes with large

values of dn.

Chase does not give the reason for differentiating between odd and even
values of d,;, and work done on the simulator indicates that it is unnec-
essary. Specifically, the performance of a code decoded using Chase 3 with
i =(0,2,4, ...d — 1) never exceeds the performance of the same code using

Chase 3 but with 7 = (0,1,3,5, ... d — 1).

2.5.4 Performance comparison of the Chase algorithms

Each of the three Chase algorithms utilises a different sized set of TPs for decoding.
Clearly, if the TPs are sensibly chosen, the larger the set of TPs the more decoding
power the code will have. However a large set of TPs will require more time to
decode since a decoding operation for each TP is required.

Clearly, for large n (even for a relatively small d,,;,) algorithm 1 is too complex
to employ in practice, since it will examine (L’%‘ J) possible error patterns. The second
Chase algorithm will examine 2(l2) possible error patterns. Finally, using the third
Chase algorithm (4] + 1) possible test error patterns must be examined.

The above figures indicate that the complexity of Chase 2 and 3 depends on

the minimum distance d only and not on the code word length. Therefore they

offer clear benefits whenever long code words are used. These results can be seen
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in table 2.2 where the total number of TPs needed for each Chase algorithm are

shown for various values of d,,;,, for an n = 63 BCH code.

t | Chase 1 | Chase 2 | Chase 3
1 63 2 2
2| 1953 4 3
3| 39711 8 4
4| 595665 16 5
o | 7028847 32 6

Table 2.2: Number of TPs for a n = 63 BCH code with various values of d;n

decoded using the Chase algorithms.

In terms of decoding power, Chase 1 will provide results which will closely ap-
proach the mazimum likelihood (ML) limit. The latter is the best possible decoding
result soft decision decoding can offer. Simulation results indicate that Chase 2
performs reasonably well when compared to Chase 1, particularly at the low error
rates of importance for this study. A significant reduction in the number of TPs is
effected while an acceptable decoding performance is maintained. Chase 3 involves
a loss in performance compared to the second algorithm due to the reduced number
of TPs.

A disadvantage of all 3 algorithms is the fact that the complete set of TPs needs
to be generated and used before one can be selected. This can prove to be too time

consuming, especially for high bit rate operations.
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2.6 Summary

In this chapter, the basic definitions and concepts of error control coding (which
included both hard and soft-decision decoding algorithms) were introduced. The
Chase SDD algorithms were then described in detail and a critical assessment of
their performance was made. Thus the second Chase algorithm was found to be
the most promising choice for implementation in practical high rate systems. This
is because it offers a balanced solution in terms of decoding power and simplicity.
The latter is very important both because it allows improvements to be made and
also because of the potential application on high bit rate systems.

Having introduced some key ideas relating to error correcting codes we now turn
our attention in the following chapter to line coding. We will begin by reviewing the
basic principles and then progress to the consideration of some novel low-complexity

codes suitable for high bit rate applications.
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Chapter 3

Line Coding

3.1 Introduction

In the previous chapter, the basic concepts of forward error correction (FEC) were
presented. Soft decision decoding (SDD) was then introduced which offered greater
error correcting (EC) capabilities but at the expense of increased complexity. A
number of existing SDD algorithms were presented and critically evaluated.

In this chapter, line coding (LC) will be introduced. Specifically, the need for
LC will be presented together with some basic definitions and concepts. Those will
be followed by the presentation of a new family of line codes which are very simple
to implement, yet offer reasonably tight bounds for both the maximum runlength
and the disparity. Since they are single added bit codes, the overall rate is not
significantly reduced which makes them well suited to high bit rate applications.

The chapter begins with a presentation of the basics of line coding, a simple

line code being used as an example to illustrate the main concepts. The nB1X

33



Chapter 3 - Line Coding 34

family of line codes is then introduced followed by a detailed examination of its
performance. We conclude by presenting two methods for determining the power

spectrum of a line code.

3.2 Line Coding

The principal function of a line code is to match the transmission signal to the
communication channel characteristics. Therefore, line coding is introduced to
overcome the physical impairments of the channel used. This is usually achieved
by limiting or eliminating the low frequency content of a signal and/or by reducing
the maximum runlength. Both of these factors require added redundancy.

The low frequency content must be restricted since most channels cannot achieve
sufficient signal to noise ratio in that area of the spectrum [1]. For example, mag-
netic recorders do not respond well to low frequency signals, so that a signal that
contains such components will have an increased number of errors. These can be
corrected by using FEC. However, a simpler technique is to code the data so that
distortion is minimised. This can be achieved by line coding [2].

In addition, for practical reasons, many channels are AC coupled. This implies
that the DC and low-frequency content of a signal must be suppressed [3, 4]. This
can be achieved by bounding the digital sum variation (DSV), which is the differ-
ence between the largest and smallest values of the running digital sum (RDS) [5],

defined as

RDS =¥k, d;



Chapter 3 - Line Coding 35

where d; is defined as the disparity (i.e. the difference in ones and zeros) of
each one of the k code words.

Additionally, it is common for the receiver to be synchronised by extracting
timing information from the received waveform. It is thus necessary to have an
adequate number of transitions within a given amount of time. This is achieved by
limiting the maximum runlength (RLy,,;) of a bit stream. The latter is defined as
the maximum number of consecutive identical bits in a code word.

Recent experimental data suggest that significant gains in error performance
can be achieved in some systems by limiting the maximum runlength of a trans-
mitted word. Specifically, in a 232km optical fibre system, 4dB of equivalent coding
gain was present simply by limiting the maximum runlength from RL,,,, = 31 to
RLpez =7 [6].

Generally speaking, a line code will map a block of & symbols which have p
levels into a block of m symbols with 7 levels. In most cases the use of the line
code will introduce some redundancy, so that r™ > p*. The rate R of a code is

defined as

R= k logap

m logar”

A disadvantage of most line codes is known as ‘error extension’. This is a
phenomenon whereby errors along the channel give rise to a larger number of errors
in the decoder. An example of error extension will be presented in the following
sections with the introduction of the bi-modal codes.

The following evaluation factors can be used to compare various line coding

schemes:
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1. Power Spectrum: This usually is one of the most important factors, indicating
the extent of any DC or low frequency contents. The low frequency region of

the power spectrum is related to the running digital sum bounds.

2. Synchronisation: In most applications, the receiver utilises signal transitions
to synchronise itself with the transmitter so that optimal sampling is effected.
Therefore, a code which offers a high number of transitions is preferred. Syn-

chronisation is determined by the maximum runlength.

3. Signal degradation: Very frequent transitions can in some instances (e.g.
bandwidth limited channel) cause inter-symbol interference (ISI) between ad-

jacent symbols.
4. Reduction in the overall bit rate R, due to the introduction of the line code.

5. Complexity of implementation and cost.

Various existing and new line codes will be presented in this chapter with the

areas mentioned above forming a basis for assessing their suitability for use.

3.2.1 A simple line code

One of the simplest line codes is the alternate mark inversion (AMI) code. Such a
code is not very useful for optical transmission systems since the three transition
levels required are not suited to on-off keying techniques. However, AMI will be
used to demonstrate, by way of example, the basic concepts behind line coding,.

The AMI code will encode a binary zero as a ternary 0 and a binary one as a £1
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- alternately. Thus long runs of ones will be avoided while long runs of zeros can

still exist. The encoding dictionary for this code is shown in table 3.1.

Information Word Code word
RDS=0 | RDS=1

0 0 0

1 +1 -1

Table 3.1: Encoding dictionary for the AMI code.

Figure 3.1 presents the state diagram of the AMI code. A state diagram is a
convenient way of showing the possible states a code can have (represented by a
circle) and the probability of transferring from one state to another. Figure 3.1
indicates that in the AMI code there is an equal probability of transferring between

different states or remaining in the same state.

0.5

Figure 3.1: AMI state diagram.

Finally, the power spectrum of a line code is very important. As has been
mentioned before, one of the reasons behind the use of a line code is the suppression

of the low frequency content and the elimination of the DC component. The power
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spectrum presents the power spectral density versus frequency for a given code. In
our case this was achieved by using the Cariolaro and Tronca algorithm [7]. The
power spectrum of the AMI code is illustrated in figure 3.2, where it is seen that

indeed the lower frequencies are suppressed and the DC content is zero.

2.5 T T T T T T T T T

-
)]
I

Power Spectral Density
T

0.5

1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalised frequency

O 1 1 1

Figure 3.2: AMI power spectrum.

In the following sections a unified family of line codes, termed nB1X, is exam-
ined. This is simple to implement and can offer very good line coding characteris-

tics.

3.3 The nB1X Class of Line Codes

A binary block line code can be considered as a member of the nBmB family.

Such codes have n binary information bits which are encoded to m binary code
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word bits. A widely used subset of these codes are those where m = (n + 1), i.e.
a single bit has been added to every n information bit block. The added bit can
be used to achieve either error detection or line coding properties. The nB1X
line codes introduced here are a subclass of this family [4, 8, 10]. These are very
simple to implement and relatively effective but, like all line codes, they reduce

(747), and under certain

the overall code rate, which becomes equal to R = ()

circumstances, may introduce error extension.

The major advantages of the nB1X codes can be summarised as follows:

They can provide tight runlength and disparity bounds.

e The reduction in rate (especially for large values of n) is minimal.

e They can be very simple to encode and decode.

e They use state-independent decoding. This means that the decoder does not
utilise the RDS information so error propagation between line code words is

impossible.

e Finally, most added bit line codes can be converted into error correcting line

codes (ECLCs).

This chapter introduces a number of novel single added bit codes. These are
combined with existing line codes, to form the nB1X family. Each member of
this family is presented in detail, together with any possible improvements, in the

following sections.
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3.3.1 The nB1P, nB1C and nB1lI line codes

The nB1P code is a single bit insertion code where the added bit is a parity bit.
It offers odd number error detection by forcing the code word to have either odd
or even parity. If an odd number of errors is present then this will be detected and
the word can be ignored or a re-transmission requested.

The nB1P code can not place bounds on disparity but it can place runlength
constraints if odd parity is used when n = odd. In such a case the maximum
runlength will be equal to 2n. If n = even and even (odd) parity is used then there
are no runlength bounds since the number of zeros (ones) is unbounded, while the
number of ones (zeros) is limited to 2n. An example 4B1P encoded word, using
odd parity, is shown in figure 3.3 (a).

The nB1C code [11] inserts an extra bit at the end of each word, the value of
which is the inverse (complement) of the value of the previous bit. The runlength
is thus limited to a maximum value of (n+1). Figure 3.3 (b) uses a 4B1C encoded
word as an example.

It should be noted that if n = 1 on the nB1C code, then each bit is followed
by its inverse, i.e. a ‘Manchester’ dipulse code has been derived. This has zero DC
content, suppressed low frequencies and is very simple to implement. In addition,
it is suitable for use as an ECLC and is thus presented in more detail in chapter 6.

Finally, the nB1I [12] is a bi-modal code where the added bit indicates whether
the word is inverted or not. Inversion is effected if both the code word disparity
(dew) and the RDS have the same sign, i.e. if d., X RDS > 0. This ensures that

RDS bounds are placed. The initial value of the flag bit is set to zero. If the word
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@ {1101 1{t1]o|1]o

nB1P code (using odd parity)

® 1] 1]0]1 1{1]0{1]0

nB1C code

1[1{0]1]o0| (fRDSS0)

disp=+1

© {1]1]0]1

olol11lo0|1 (if RDS>0)

disp=-1

nB1I code

Information Words Codewords

Figure 3.3: Examples of the P, C' and I codes, for n = 4.

is subsequently inverted then the value of the flag will become equal to one and
this will indicate to the receiver that inversion has taken place. This code offers
the best line coding performance of all three codes presented in this section, in
terms of disparity reduction. Figure 3.3 (c) presents a 4B1I encoded word as an
example.

The RDS of this code can be between the values of (—n —1) and (n—1) if n is
odd and between (—n — 1) and (n) if n is even. The maximum runlength for ones
is £5'712_+31 and for zeros anill’ if n is odd. The equivalent numbers if n is even are
both @ A disadvantage of the nB1I code is the fact that error extension is

present. If, for example, an error occurs on the flag bit then the information bits
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will be incorrectly decoded.

3.3.2 Improving the nB1I code

The state diagram of the nB1I code was used to determine the word combination
that generated the worst runlength of ones, if n is odd. This was found to occur
when zero disparity words existed and since these can be inverted without affecting
the RDS, a modified algorithm was created, termed nB1I Improved (I). The latter
will invert zero disparity words if the first L”T“l bits of the current zero disparity
word equal the last bit of the previous one. This technique slightly reduces the
maximum runlengths of ones down to £5—"2—+H if n is odd. The maximum runlength

of zeros and the DSV were not affected. By placing an extra constraint a reduction

in the maximum runlength without reducing the rate has been achieved.

3.3.3 The nB1D and nB1R line codes

The nB1D code consists of an n bit (where n is odd) information word coupled to
a single bit flag. The value of the flag depends on the disparity of the information
word and aims to reduce it. As an example consider that the all-zero information
word is to be transmitted in = continuous blocks of three bits each. If the nB1D
code is to be used, a flag bit with a value of 1 will be added in every block. Thus
a four bit block will be generated which will have a reduced disparity compared to
the uncoded version. The flag bit primarily aims to reduce the average DSV value
but since it consists of a single bit, it will never manage to place bounds on the

RDS. Figure 3.4 (a) presents an example of a 5B1D code.
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It should be also noted that while this code primarily aims to reduce the average

DSV this will also have the effect of reducing the maximum possible runlength, see

Table 3.4.
(@) 1|1 1}0f1 t{1{1]lo|l1]o0
nB1D code
11110110 (GfRDS>=0)
(b) 1| 1]0]1
1 1 0 1 1 (if RDS<0)
nB1R code
Information Words Codewords

Figure 3.4: Examples of the D and R codes.

The nB1R code aims to reduce the overall RDS value by using a flag bit of
the opposite sign, i.e. if RDS > 0 then the flag bit is equal to zero, otherwise it
equals one. The advantage of this coding scheme is that the average DSV is more
tightly bound than before. However, no bounds are placed on either the runlength

or DSV. Figure 3.4 (b) presents an example of a 4B1R code.

3.3.4 The nB1DR line code

The nB1DR is the final code of this class [13]. Similarly to the nB1I algorithm

presented previously, it also is a bi-modal code but uses the flag bit to either reduce
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the disparity of the code word or to indicate that an inversion of the information
bits has taken place. The encoder flow diagram for this code is shown in figure 3.5.

Initially the disparity of the information block is calculated and the extra bit is
appended at the end. The value of the latter aims to reduce the overall disparity
of the code word, in a similar manner to the nB1D code. If n is even it is possible
that the code word disparity will be zero. In such a case the flag will be set to zero
as well.

The disparity of the whole word (including the flag bit) termed d, in figure
3.5 is then calculated. If (d., x RDS) > 0 (i.e. the code word disparity has the
same sign as the RDS) then the information bits are inverted before transmission,
otherwise the word is simply transmitted. The value of the RDS is then updated
and the process is repeated.

This concludes the algorithm if n is odd. However if n is even, then an extra
step must be added which compensates for possible zero disparity words. The
information bit disparity once inversion has taken place is re-evaluated and if it is
found to be equal to zero then the flag is inverted as well.

At the receiver the disparity of the information word is re-calculated. If there
is a ‘rule violation’ between the disparity of the information bits and the flag, the
information bits are inverted before being accepted. A ‘rule violation’ occurs when
either both the disparity of the information bits and the flag bit have the same
sign, or when the information bit disparity is 0 and the flag is 1, which only occurs
if n is even.

As an example, consider that an all-zero information word is to be transmitted
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Generate information bits|

Determine their disparity

Yes

Flag=0 Disparity >=07 Flag=1

! {

Find codeword disparity
d

cwW

RDS d_, >0 Add d ., toRDS

cw W

Yes

Invert information bits Transmit word

Info bit

Invert ﬂag Disparityz()?

Re-calculate codeword
disparity

Figure 3.5: Flow diagram of the nB1DR code.
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in  continuous blocks of three bits each. In such a case, the flag for the initial
block will be determined according to the disparity of the information bits, and in
this case will be equal to 1. The overall disparity of the resultant code word will
be —2 and since the initial value of the RDS is zero, the word is transmitted. At
the receiver, if no errors have occurred, the disparity of the first three bits is equal
to —3. The flag has a bit disparity of +1 and for this reason the word is accepted.

The second block of three bits is initially encoded exactly as before, i.e. the
code word 0001 is generated. However, because both the disparity and the RDS
are equal to —2 the information bits are inverted. The (1111) code word is therefore
transmitted, which produces an RDS value of (—2 4+ 4) = +2. At the receiver, the
disparity of the initial three bits is +3 and the flag bit disparity +1. Thus a ‘rule
violation’ exists and the information bits are inverted. The whole process is then
repeated for the third block of data which will be encoded in exactly the same way
as the first one. The RDS will thus become equal to zero once more.

The code word table for the 3B1DR code is presented in table 3.2. Each code
word has two alternative representations depending on the state of the RDS at the

time of transmission. The figures in brackets indicate the disparity of each word.

3.3.5 Improving the nB1DR code

If n is even, the nB1DR code can be further improved in terms of runlength
performance. This is achieved if the word is not inverted when the RDS has the
next closest to zero allowable value and provided that the disparity bounds are not

exceeded. In such a case the disparity will remain within the bounds while the
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Information Word Code word
Initial Inverted
000 0001 (-2) | 1111 (+4)
001 0011 (0) |1101 (+2)
010 0101 (0) | 1011 (+2)
011 0110 (0) | 1000 (-2)
100 1001 (0) | 0111 (42)
101 1010 (0) | 0100 (-2)
110 1100 (0) | 001 0 (-2)
111 111 0 (+2) | 000 0 (-4)

Table 3.2: State table for the 3B1DR code. The resultant disparity of each code

word is shown in the brackets.

maximum runlength will be reduced. This code is termed nB1DR(I).

The explanation for the above procedure becomes clear if the worst case for
the runlength is examined using the 4B1DR code as an example. The case for a
maximum runlength of ones is investigated but this also applies if zeros were to be
used.

The code words shown in the upper part of figure 3.6 represent a set of original
words, i.e. words where no inversion has been effected. Words shown in the lower
part of figure 3.6 represent inverted ones. The worst case for the runlength occurs
if an all-one word (Word 3, lower) is preceded by a word with n ones (Word 2,

lower) and followed by a word with 2 ones (Word 4, upper). This situation can
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exist if a code word of disparity equal to +3 has initially occurred (Word 1, upper),
together with an RDS of +1. The code word was therefore inverted causing the
RDS to become equal to —4 (Word 1, lower). This allowed two further code word
inversions to take place which resulted in the worst case situation.

If the nB1DR(I) code had been used instead, the inversion at ‘Word 1’ would
not have taken place. The RDS would have been equal to —5 which is within the
bounds and therefore the maximum runlength would not have occurred. Using the

nB1DR(I) algorithm the maximum runlength is thus reduced down to %, if n is

even.
RDS=+1 RDS=-4 RDS=-1 RDS=+4
1 i 1 110 100|001 010010 1 i 110]0]0
(inversion) disp=+3 (inversion) disp=-1 (inversion) ' disp=-3 disp=-1
ofo[Of|[O0]O 0 1 1|1 1 i 1 | 1)1
disp=-5 disp=+3 disp=+5
Word 1 Word 2 Word 3 Word 4

Figure 3.6: Worst case runlength for the 4B1DR code.

A similar analytical technique can be used to reduce the runlength, if n is odd.
Once more, the worst case is analysed and a slightly more complicated algorithm
is developed.

Specifically, the worst case occurs if a zero disparity word follows an all-zero or
all-one word. If, therefore, the last and first bits of these two words are identical
and provided that the RDS limits are not exceeded, the zero disparity word can

be inverted so that the maximum runlength is reduced.
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The maximum runlength is therefore reduced to RL,,., = 57" for all values of n,
at the expense of encoder simplicity. The RDS bounds and the decoder complexity

are not affected.

3.4 Summary of Code Performance

Table 3.3 presents the RDS bounds for the nB1X class of codes while table 3.4 indi-
cates the maximum possible runlengths for the same codes. These were determined
using the state diagrams of each code and verified using computer simulation.
From both the above tables, it was concluded that the nB1l and nB1DR are
the most powerful codes. Between the two, the latter offers the best performance
in terms of disparity and runlength. At the same time the encoding and decoding

algorithm is kept at a reasonably low complexity level.

3.4.1 Decoding performance of the single added bit codes

The decoding performance of the non-bi-modal added bit line codes is exactly the
same as that of the information bits. If, for example, a ‘parent’ error correcting code
was used to encode the information bits, thus generating a simple error correcting
line code (ECLC), then the decoding performance of the latter would equal that
of the ECC. This is because the flag bit is only used to offer line coding properties
and is discarded before decoding at the receiver.

The decoding performance of the bi-modal added bit codes is affected by error
extension. The latter occurs when the number of errors at the decoders’ output

exceeds the number of errors that have occurred in the channel. Using the nB11
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Running Digital Sum (RDS)

Code Used n = odd n = even
nB1P Unbounded
nB1C Unbounded

nB1I (—n—=1)<RDS<(n—-1)|(-n—-1) < RDS <n

nB1I (I) |(-n—1)<RDS<(n-1)|(-n—-1)<RDS<n

nB1D Unbounded -

nBl1R Unbounded

nB1DR | (-n+1)<RDS<(n—-1)| (-n)<RDS<n

nB1DRI || (-n+1)<RDS<(n-1)| (-n)<RDS<n

Table 3.3: RDS bounds for the nB1X class of codes.
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Maximum Runlength (RLye;)

Code Used | n=o0dd (1/0) |n = even (1/0)

nB1P see text

nB1C (n+1)

nB1I ndd | Sndl Snt2
nB1I (1) sl Snt2

nB1D ntl -

nB1R Unbounded
nBIDR | 2 12ifn =5 mi2
nB1DRI =

Table 3.4: Maximum runlength characteristics of the nB1X class of codes.
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code as an example, if an error occurs at the flag bit then the whole word will be
wrongly decoded, since that particular bit indicates whether inversion has taken
place or not. Similar results exist for the nB1DR code [14]. The decoding perfor-
mance of both codes can be improved by using ECCs (combined with soft decision
decoding, if required) to encode the information bits. This way, the effects of error
extension are minimised, at the expense of simplicity and rate. Such ECLCs are

presented in more detail in chapter 6.

3.5 Spectral Properties of Selected nB1X codes

The spectral properties of selected nB1X codes are indicated by the power spectra
presented in figures 3.7 and 3.8. These were obtained by using the Cariolaro and
Tronca algorithm [7].

Figure 3.7 presents the power spectrum of a nB1D code with n = 3. Such a
code will suppress the low frequency content, but since no bounds on disparity are
placed, the DC content will not be equal to zero.

Figure 3.8 indicates that both the nB1I and nB1DR codes have a DC null and
suppress the low frequency content, thus allowing AC coupling to take place. Since
the nB1DR code has a slightly tighter DSV bound, it offers a small improvement

in the suppression of low frequencies, compared to the nB1/ code.
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Figure 3.7: Power spectrum for the nB1D code with n = 3.

3.6 Direct Calculation of the Power Spectrum

For the nB1C, nB1D and Manchester codes, the spectral characteristics may be

obtained directly using the formula:

Suy(f) = Ruy(0) +2 z Ryy (k)cos (2 fK)

where Sy, (f) is the power spectrum and R,,(k) is the auto-correlation function
of the given code. This formula is derived by obtaining the Fourier transform (F)

of the auto-correlation function, i.e.
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Figure 3.8: Power spectrum for the nB1DR and nB1[ codes.

Syy(f) = F(Ryy(7)) = F(Ryy (0)8(7) + ;(J(T £ k) Ry (K)) (3.1)

where k is the number of information bits (excluding the parity bit). We there-
fore need only to determine the values of Ry, (j) for both j = 0 and j # 0 to obtain
the power spectrum. Where this is possible, such an analysis has the advantage
of being more general in nature because it can analytically accommodate varying
code lengths and provide for relatively simple direct calculation for specific codes.

Two examples using this technique are presented: the first demonstrates the
basic analytic technique with reference to the familiar single information bit Manch-

ester code. The second example applies the same principles in a new context, to
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obtain the power spectrum of the nB1D code. The technique develops from the
approach outlined by O’Reilly [15] for the nB1C code. We assume that the infor-
mation bit positions are from 1 to n, the parity bit is the n + 1 bit, and a logic 1

and 0 are presented as +1 respectively.

3.6.1 Analysing the Manchester code

To indicate the nature of the analytic approach let us first examine a familiar case
and obtain the power spectrum for the Manchester code. This can be viewed as
a very short nB1C or nB1P code with n = 1. We must first determine the auto-

correlation function Ry, (k) at j = 0 and j # 0, where 0 < j < n. For j = 0 we

obtain:
1 n+1 ) _ 2
Ry (0) = nt D) k=1(P[X(k) =1))(1)* + (P[X (k) = -1])(-1)* =
Ry0)= — S 1=1
vy - (n+ 1) kgl -

Ry, (j) is equal to:

Ryy(j) = (n_]{-_ 1) :gl

(PIX (k) =1|X(k - j) =1])—

N =

S(PLX(K) = —1{X(k — j) = 1)) = Z(PIX()) = 11X (k — ) = ~1])+

S(PIX(F) = ~11X(k - ) = 1))
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For a Manchester code all information bits will have equal probabilities of oc-

currence which will be equal to % However, any bit k£ within a code word will

be followed by its inverse. Therefore the above equation can now be expressed as

follows:

1 , 1
‘“§+0“‘1):>Ryy(1)=_‘2‘

N =
N =

Ryy(j) = (

Substituting the above values for Ryy(j) into equation 3.1 we obtain:

Ryy(r) = 6(r) = 36(r 1)

Applying the Fourier transform to R,,(7) the power spectrum Sy, (f) is ob-

tained, which for this example is:

Syy(f) =1 — cos(2mf)

The power spectrum of a Manchester code is the same shape as that of the AMI

code shown in figure 3.2; a more detailed analysis can be found in appendix A.

3.6.2 Analysing the nB1D code

A similar analysis to the one described above is performed for the nB1D code,

where 7 is odd. Ry, (7) is thus determined as being equal to:




Chapter 3 - Line Coding 57

If the Fourier transform is once more applied on Ry, (7) the power spectrum

Syy(f) is obtained:

n—1

n—1
1 2

Sy(f)=1— IR v kglcos(%rfk)

The power spectrum of an nB1D code for various values of n is presented in
figure 3.9. Clearly, for n = 3 the waveform matches that of figure 3.7 (the latter
obtained using the Cariolaro and Tronca algorithm). A detailed analysis for the

nB1D code can be found in appendix A.

2 ! ! ! ! ! T ! ! !

I ......... .......... S /o e N S S ]
ok N
1.4

1.2

Amplitude

osL /. [ S S S AU S L\ e AW i
06F { /- ........ .......... .......... .......... ......... .......... .......... ......... .......
04t/ /- ......... .......... .......... .......... .......... .......... .......... .......... ........

02F . ......... ST .......... .......... S SR — SR G ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Figure 3.9: Power Spectrum of the nB1D code with various values of n.
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3.6.3 Analysing the nB1C code

Finally, similar analysis obtained from [15] yields a power spectrum described by

the following formula:

Sulf) =1~ ——cos(nf)

+1

This is presented in figure 3.10. If n» = 1 then a Manchester code has been
created, where each bit is followed by its inverse. This means that both the disparity
and the runlength are bounded thus suppressing the low frequencies. As the values
of n are progressively increased no disparity bounds exist, which is indicated by

the DC content present.

3.7 Summary

In this chapter, the basic definitions and concepts of line coding were introduced.
These were followed by an examination of a family of added bit codes, the nB1X
codes.

The nB1X codes are all quite simple to implement and reduce the code rate
by only a very small amount. However, they can place relatively tight bounds on
both disparity and runlength. With small modifications they can be also used as
error correcting line codes (see chapter 6).

Finally, the power spectrum for a number of line codes was also presented.
This was obtained either by utilising the Cariolaro and Tronca algorithm or by

performing a direct mathematical analysis, the latter being more general in nature.
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Figure 3.10: Power Spectrum of the nB1C code with various values of n.
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Chapter 4

Simulation

4.1 Introduction

Almost all the theoretical work presented in this thesis was validated through
computer simulation. In this chapter, the basic concepts behind modelling and
simulating a communications system will be presented.

A model is a description of a system intended to predict its behaviour should
certain events take place. Almost always a model will be more clearly defined
than the actual system it describes because it will be simplified and idealised.
However, all relevant behaviour and properties should represent reality as closely
as possible and should be determinable in a practicable way, e.g. by numerical
analysis. Simulation means driving the model with suitable inputs and observing
the outputs [1].

A computer simulator is a very valuable tool in system investigations which

complements advantageously conventional experiments for the following reasons:

63
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1. It is very easy to modify since only software changes are required.
2. It can be very accurate.
3. Results are repeatable.

4. ‘Rare’ events which would normally require long time intervals to occur can

be programmed to happen at user-defined intervals.
Two different types of simulation exist:

e Synchronous simulation, whereby the events of interest occur at regular in-

tervals.

e Asynchronous simulation, whereby the events of interest may occur at any

time.

In this thesis, three distinct code performance evaluation programs were devel-
oped and used to validate existing and proposed codes. The first is a simulation
program used for evaluating the decoding performance of error correcting codes
and error correcting line codes. Decoding performance is measured in terms of
residual bit error rate (RBER) versus signal to noise ratio (SNR) and either hard
decision decoding (HDD) or soft-decision decoding (SDD) can be used.

The model of a communications system utilising error correcting codes (ECCs)
is initially presented and implemented using asynchronous simulation. This re-
quires significant amounts of computational time if low RBERs are to be achieved.
This problem is addressed by the introduction of two novel synchronous simula-
tion acceleration techniques which reduce the time required without affecting the

accuracy of the simulation.
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A second simulation tool evaluates the line coding performance of various codes.
This is a small and hence very fast simulation which will indicate runlength and
disparity average and maximum values. Finally, the third program implements the
Cariolaro and Tronca algorithm [2] to obtain the power spectrum versus frequency
for a coded sequence. In the following sections the main concepts behind each

program will be presented.

4.2 A Communications System Model

The modelling of a communications system used to determine its decoding per-
formance is usually achieved by attempting to mimic the encoding and decoding
operations which would be implemented in practice. Using an (n,k) BCH binary
block code combined with HDD as an example, the main steps may be summarised

as follows:

1. Generate a random k-bit block (%) of binary data. This is termed the infor-

mation or message word.

2. Encode the data block to generate an n-bit code word (7). This will contain
both the k information and (n — k) parity bits. In addition, a second copy of

the encoded word is made and stored for performance measurement purposes.

3. Generate the channel noise and add this to the transmitted code word. This

will generate the received code word (7).

4. Decode the received code word so that any errors can be located and cor-

rected.
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5. Compare the resultant decoded message with the copy of the original message.

6. Measure the decoded bit errors and calculate the RBER.

7. Repeat the whole procedure using further blocks of information bits until
the estimated RBER stabilises within limits corresponding to the required

accuracy of the simulation.

Figure 4.1 graphically represents all of the above operations.

o ata k information bits n codeword bits
¢
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Figure 4.1: Communication system simulator outline.

The aim of this simulation is to determine the decoding power of a particular
ECC, measured by the number of errors causing decoder failure. Clearly, the longer
the simulation time, the more accurate the final result, due to the larger amount of
residual errors. In this study, a number of about 1000 residual errors was deemed

to provide sufficient accuracy. This figure can be justified by assuming that error
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events occur totally at random so that they can be approximately modelled as
a Poisson process. The relative level of ‘uncertainty’ (defined as how close the
simulation result is relative to the theoretical value) can be analytically expressed

by the following equation:

Standard Deviation
mean

relative uncertainty ~

However, for a Poisson distribution, both the variance and the mean have equal
values, i.e. 0? = p = o = /. Substituting these values in the above equation we

obtain:

Standard Deviation _ g
mean T

relative uncertainty ~ =

= relative uncertainty = 3#@ = —=

1
VB

In our case p is the number of residual bit errors; if this is set to be y = 100
then a 10% uncertainty level is achieved (i.e. the result will be within 10% of the
theoretical value); If = 1000 then the result will be within 3% of the theoretical
value which is taken here as an acceptable level of accuracy.

The components needed to realise the model outlined in figure 4.1 are presented

in more detail in the following section.

4.2.1 Model components

There are three basic components of a communications system simulator and these

are as follows:

1. A data source together with a channel encoder.
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2. The transmission channel which could include memory, attenuation, noise

and interference effects, non-linear effects, etc.

3. A channel decoder capable of performing hard or soft decision decoding and

a data sink.

Each component is now examined in more detail.

4.2.2 Data source and encoder

The first task of a communications channel model is to generate a data source. This
is usually a random k bit sequence that should offer all possible bit permutations.
The random number generator used at this stage is not very critical as far as the
validity of the simulation is concerned. For this reason an ANSI — C standard
library function was used to generate pseudo-random binary information bits. This
is a linear congruential generator and as such is quite fast; it can exhibit sequential
correlations on successive calls but at a level which is unimportant in this context.
Since this generator only creates the information bits true ‘randomness’ is not
necessary. An added feature of pseudo-random data is the ability of the user to
define the transmitted bits so that repeatability is possible. This way the effects
of a particular parameter can be isolated and examined using the same set of
information bits.

The next step is to encode the information bits using an ECC. As mentioned
before, a (n, k) BCH code will be used and therefore its parameters must be defined.

These include the following:

1. The desired code length (n).
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2. The information vector length (k).

3. The error correcting capability of the code (t).

4. The power of the corresponding Galois Field .

5. The generator polynomial coefficients of the code.

Once all relevant data are entered, the parity bits are calculated (using the gen-
erator polynomial) and appended at the end of the information bits. The complete
code word vector T, is then used to produce two copies: The first one is used for
‘transmission’ while the second copy is stored so that it can be used for performance
measurements.

Finally, the code word is passed through a modulator; this will further encode
the bits by assigning a ‘voltage’ value to each ‘logic’ value. Thus, for example, a
‘logic’ 1 becomes a ‘voltage’ +1 and a 0 becomes a —1. The simulated voltage

values are then passed through to the transmission channel model.

4.2.3 Channel simulation

The second task is to simulate the communications channel, or more specifically
for this study, the noise content of the channel. The mechanics of the transmission
medium are not of interest in this particular case so interference, attenuation, non-
linear and other similar effects are not considered. In contrast, the performance of
the system for a given signal-to-noise ratio expressed in decibels (dB) is of interest.
Thus only the noise parameters for a given SNR need to be calculated.

These are described by using the additive white Gaussian noise (AWGN) model.
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The term ‘additive’ indicates that the noise is signal independent and its amplitude
is added to that of the variable representing the signal. The term ‘Gaussian’
indicates that the signal has a bell-shaped probability density function (PDF) which

can be mathematically expressed as:

_!:c—m)2
PDF = \/(;_) e @)

where z identifies possible values of the random variable, m is the mean of the
function and o is the standard deviation.

Finally the term ‘white’ means that the noise is uncorrelated and therefore the
noise amplitudes are statistically independent with a zero mean, i.e. a memoryless
channel is used.

The AWGN noise model is a reasonably accurate description of a realistic com-
munications channel and makes calculations tractable. A good noise simulator must
represent the AWGN model as accurately as possible. For this reason, the noise
model requires high accuracy for the relevant parameters, e.g. PDF, ‘randomness’
etc.

This is achieved by implementing the generator in two distinct stages: First
a uniformly distributed random number is generated, ranging in value from 0 to
1. This is then used by a second function to generate a suitable number (with a
Gaussian PDF) representing the noise amplitude.

The inbuilt random number generator varies between different ANSI-C com-
pilers. Its use would make the simulation program non-portable between various

compilers, and for this reason the ‘minimal standard ’ random number generator
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of Park and Miller with Bays-Durham shuffle (as described in Knuth [3]) is used.
This creates a number ranging in value from 0 to 1 with the shuffling procedure
required to break up any sequential correlations.

This number is then used as a ‘seed’ to produce a normally distributed devi-
ate with zero mean and unit variance (n;). This is a Gaussian deviation function
which produces the characteristic bell-like shape centered around zero. The al-
gorithm used to achieve this is based on the Box-Muller method for generating
random deviates. The variance is user controlled so that different SNRs can be

accommodated. Since the definition of a SNR (expressed in dBs) is

SNR =10 log (avemge si@al)ower)

average noise power

the above equation can be solved for ¢ thus defining a suitable PDF.
In our case the average noise power is equal to 02 and assuming that the average

signal power is equal to 1, solving for o we get:

SNR=10log (%) = L =/10"0" = 0 = 1

A low SNR corresponds to a large variance of the Gaussian distribution which
results in high probability of error for a given signal amplitude. The opposite is
true for a high SNR.

The above procedure thus produces a Gaussian distribution which represents
the noise amplitude. This is then added to the modulated bit value so that the
complete received bit 7; is created (the original bit with noise added to it, r; =

Vi + ’I’Li).
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The addition of noise to the transmitted bit implies that errors may be present
at the receiver. On figure 4.2, the probability of errors occurring is indicated by
the areas where the two functions overlap. This is because in that case the noise
amplitude n; is greater and of opposing sign to the encoded bit amplitude v;. This
will force the analogue value of the signal plus the noise to cross the decision

threshold which will cause the decoder to erroneously decode the received bit.

Figure 4.2: Noise function shape.

4.2.4 Hard decision decoder

Upto this point an information bit sequence has been generated, EC encoded and
transmitted. This section presents the demodulation and error correcting algo-
rithms required so that the original message is recovered.

The first component of a receiver is the Q level quantiser, where Q=2 for a
binary HDD system. This will make a simple initial decision on the value of the
received bits based on their analogue value with respect to the threshold. Since

the modulator in our example has assigned analogue values of +1 for a logic one
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and zero respectively, the output of the quantiser (rg;) is decided according to the

following rule:

+1 ifr; >0

rq;
—1 otherwise

The next component of a receiver is the demodulator which makes the transla-
tion from voltage values to logic values. In our case it simply decides whether the

accepted signal ra; is a logic 1 or 0 using the following simple rule:

1 ifrg,=+1
ra; =

0 ifrg=-1

After demodulation has taken place, the received word passes through the error
decoder. The first task is for the syndrome S of the received code word to be
calculated. If this is zero then it is assumed that no errors have occurred or if they
have, they cannot be detected. In either case, the code word is accepted and the
parity bits are discarded, thus producing the message. If the syndrome is not zero
then it is assumed that errors have occurred.

Three choices are then available depending on the theoretical error correcting

capability (¢) of the code, all of which were included in the computer model:

1. If ¢ is specified as being equal to one, only a single error can be corrected.

The error position is equal to the power of the received syndrome element S;
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and the corresponding bit in the received code word is inverted. This is the

simplest algorithm for correcting single errors.

2. If ¢ is specified as being equal to two then up to two errors can be corrected.
First it must be decided whether a single error is present or not. If the
syndrome elements S; and S; are equal, then a single error is present and
its position is equal to the power of S;. If S; # S3 then multiple errors
have occurred and they are located at the positions given by the roots of the
equation z2 + S;z + S3S7! + S;. If no solution exists then more than two
errors are present and the received code word can not be corrected. It must
therefore be accepted as received. As before, this is the simplest algorithm

for correcting double errors.

3. Finally if ¢ > 3, then up to three errors can be corrected and in our case this
is achieved using Berlekamp’s iterative algorithm [4], as presented in Lin and
Costello [5]. This algorithm is the most general in nature and can also be
used for ¢t < 3 BCH codes, at the expense of simplicity. It consists of three

main steps:

(a) Use the received data polynomial to compute the syndrome S.

(b) Determine the error location polynomial o(X) from the syndrome ele-

ments.

(c) Calculate the roots of o(X) which are the error location numbers and

use them to correct the corresponding bit positions.

Once error correction is finished, the parity bits are discarded and the informa-
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tion bits are used to determine the RBER.

4.3 Simulation Verification and Validation

In the previous section, the basic communications system model with ECC was
introduced. The accuracy of the decoding performance results must now be de-
termined. In general, this is done using two checks, namely verification and
validation [1].

Verification is the process whereby the correct implementation of the model is
checked, which means that our model is examined to determine whether it does
what is intended. The latter is achieved by carefully examining each stage of the
code for correct operation. After debugging has taken place, a number of tests are
performed such as stress testing (where inputs that will cause the model to fail are
applied) and sensitivity testing (where only one parameter at a time changes).

The second test is validation. This is the process whereby every aspect of our
simulation against a real system is compared, or in our case against specific nu-
merical results. It has already been mentioned that due to the various assumptions
made while designing our model, there will not be an exact matching of the two.
However it must be ensured that any differences will not have practical significance.
Validation is the most important test one can perform and for this reason a whole
range of BCH codes were tested against known results. These include (but are not

limited to) the following:

e (7,4) and (15,11) (15,7) (15,5) BCH codes. These are very useful codes since

they offer different error correcting capabilities and any result can be manu-
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ally checked against the simulation.

n = (127,255,511,1023) single, double and triple error correcting codes.
These codes were simulated because they could be potentially used in a real-

istic system.

All of the above codes were tested in conjunction with all possible configura-
tions, namely HDD and soft decision decoding (SDD) (the latter using the algo-
rithms introduced in the next chapter).

Figure 4.3 provides an example of validation by comparing the simulated decod-
ing performance ofa (127,106) triple error correcting BCH code with the theoretical
values. Signal to noise ratios between 1 and 6 dB, combined with hard decision
decoding were used, until 1000 residual bit errors were obtained. The continuous
line indicates the theoretical results and the dashed line the simulated results. It
can be seen that a very close match exists between the two. These results were

repeated for other code lengths.

2.5 35 4.5 5.5
SNR (dB)

Figure 4.3; Validation of (127,106) BCH code.
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Higher SNRs were (at this stage) not simulated due to time limitations.

A final validation test was performed by comparing the decoding results ob-
tained by the use of the three different HDDs. Specifically, the ¢ = 3 algorithm was
used to detect and correct single and double errors against the results produced
by the t = 1 and ¢t = 2 algorithms. These were found to be exactly the same, as

expected.

4.4 The Need for Accelerated Simulation Tech-

niques

It has been mentioned before that a number of residual errors must be present at the
decoder’s output to ensure that a statistically accurate result has been obtained.
As the SNR progressively improves, the number of channel errors (and therefore the
number of residual errors) progressively decreases. Thus, longer simulation runs
are necessary before the required number of residual errors is present, a process
that can be very time consuming.

Table 4.1 gives some indicative simulation times required for obtaining decoding
performance results of a (127,106) BCH code while using a SUN ULTRA-SPARC
platform. These are based on obtaining 1000 residual errors. The first column
indicates the SNR (expressed in dBs), the second the number of words required
to achieve the presented RBER, the third one the achieved RBER and the final
column indicates the time taken. The times presented here are not very precise;

they are only given as an indication of the exponential increase of computing time
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required with each 1 dB increment in SNR. The main reason for the inaccuracy of
the times is the fact that the processor in a workstation usually divides its time
so that other essential tasks can be performed as well. Therefore, at any given
time, only a percentage of processor time is used for the actual simulation. This

percentage can vary in time according to the demands from other users or the

network, thus affecting the timing operation.

(127,106) BCH HDD code
SNR | Number of Simulated Words | RBER | Simulator Time Required
1 154 7.8 x 1072 55 sec
2 249 5.6 x 1072 59 sec
3 993 3.2 x 1072 1:31 min
4 2931 4.4 x 1073 3:43 min
5 32760 4.0 x 1074 25:50 min
6 929085 2.1 x 107° 7:14 hours

Table 4.1: Number of words and simulator time required for obtaining 1000 residual

errors for varying SNRs.

The next section presents two simulation acceleration techniques which reduce

the total number of code words that must be simulated, without affecting the

accuracy of the produced results.
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4.5 Simulation Acceleration Techniques

As explained in the previous section, the simulation efficiency decreases progres-
sively with increasing SNR since more and more time is spent on encoding and
decoding error-free blocks which offer no contribution to simulation accuracy.

Whilst state of the art workstations allow for effective simulations of low SNR
channels, it is impracticable to obtain an accurate estimate of RBERs below 107°
without excessive computational time.

Modern fiber-optic communications systems operate at very low residual bit
error rates which would make simulation a very time consuming process. For
this reason, the simulation program described above was used as a basis for the
development of a new simulation acceleration technique [6, 7]. The latter is also
used as a basis for developing a second acceleration technique [8], which further
reduces the computational time required. Both techniques are described in the

following sections.

4.6 First Acceleration Technique

As has been noted earlier, a conventional simulation will perform three distinct
operations, i.e. encode, transmit and decode. Once all three are completed, the
decoding performance of the code for various SNRs will be assessed.

In order to measure decoding performance a given number of residual bit errors
(usually 1000 errors are sufficient) are required to be present at the output of the

decoder. However, code words with a number of errors less than, or equal to ¢,
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do not contribute anything to the simulation since it is certain that they will be
completely corrected. Nevertheless they will still have to go through the whole
simulation process which can be time consuming. In order to enhance efficiency
and reduce the total computational time required, a new technique was proposed.
This uses knowledge of channel noise statistics to generate the occurrence times of
bit errors without generating noise samples.

To demonstrate this point, a block code will be used where the occurrence times
of possible bit errors are known. These are defined as the bit positions where the
corresponding noise amplitude exceeds the modulation amplitude, which in our
case is 1. If the corresponding bit has the same sign as the noise amplitude then
no error will occur, otherwise an error will be present. Since the number of bits
per word is known, it follows that the number of possible bit errors in each block
is also known. Thus for a given error correcting capability ¢ the number of words
with less than ¢ errors is known. These will therefore be calculated as having been
successfully transmitted free of error. The remaining blocks which may add to the
RBER will have to go through the whole encoding and decoding process.

However, if such a scheme is used, even though the encoding and decoding
processes will remain the same as before, the way in which the noise is generated
will have to be different compared to a conventional simulation. The reason for
a different noise generation requirement is that the positions of possible bit errors
have already been defined. Specifically, noise samples which cause bit errors and
those which do not, are distinguished and generated separately according to their

respective conditional probability distribution functions. To further illustrate this
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point, the effect of an additive white Gaussian noise channel on a transmitted signal
is considered:

The first task is to determine the occurrence times of possible bit errors by
generating samples of a random variable Tgr. This is defined as the number of

error-free bits between two adjacent bit errors and has a probability function

P; = Prob {Tgr =i} = p(1 — p)* i=0,1,2, ..

where

p(X) = o [P exp~® /2" dg

2mo

is the transition probability of the channel with o2 being the variance of the
channel noise.

The next task is to generate the amplitude of the noise samples in code words
with more than ¢ possible errors in them. To generate a noise sample which causes
a bit error, a random variable z. is considered for which the conditional PDF when

either a +1 or -1 was transmitted was shown to be:

1 —z2 /20 _
Fad 1) = 4 P O TS
J+1) =

and

L oy ppe2/20?
fla — 1) = ) PR P Te2
-
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In contrast, to generate a noise sample which does not cause a bit error another

random variable z,. is considered with conditional PDF given by:

2 2
ﬂexp‘mne/za Tne > -1
f(@ne| +1) =4 OV

and

Fon - 1) — | T ST e <41
0 Tpe > +1
Thus, the distributions for both the time interval between adjacent error events
and the amplitude distribution of the noise for these events have been calculated.
Sufficient information is now available to simulate code performance without having

to simulate each individual bit. The new simulation technique for block codes with

AWGN channels may be summarised as follows:

1. Generate samples of the random variable Tgr which indicates the interval

between adjacent error events.

2. Determine the code word blocks which have a number of errors exceeding the

error correcting capability. Perform steps 3 to 5 only on these words.
3. Generate a random message for each word and conventionally encode.

4. Generate samples of =, and z,.. These represent the noise amplitudes for all

the bits of interest. Add them to the corresponding code word bits.

5. Conventionally decode and measure the residual bit error rate.
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As before, the whole process is repeated until the estimated residual error rate
stabilises within specified limits.

The new simulation technique was incorporated in the previous simulator and
the results were validated. Both the conventional and the accelerated simulations
provided statistically identical results. The new technique was then tested to see
if the expected improvements in time efficiency were obtained. These results are
shown in Table 4.2, together with the conventional simulation times from Table

4.1, illustrating that a very significant improvement exists.

(127,106) BCH HDD code

SNR Accelerated Conventional
(dB) | Simulator Time Required | Simulator Time Required
1 23 sec 35 sec
2 26 sec 39 sec
3 28 sec 1:31 min
4 32 sec 3:43 min
) 1:13 min 25:50 min
6 10:02 min 7:14:07 hours

Table 4.2: Simulator time required for obtaining 1000 residual errors at varying
SNRs using the first acceleration algorithm, compared with conventional simulation

results.
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4.7 Second Acceleration Technique

The first acceleration technique reduced the computational time required by a
significant amount. However, there are a number of cases where an even larger
decrease of simulation time is required, e.g. optical systems with very low RBERs.
For this reason a further acceleration technique was devised [6].

The main concept behind the previous algorithm was that words with a total
possible number of errors below the error correcting capability ¢ of the code, do
not need to be encoded and decoded since they do not contribute to the RBER.
Therefore the occurrence times of possible bits in error were initially determined.
If the number of possible error occurrences exceeded ¢ within the time frame of a
single word, the corresponding noise function and code word were generated and
decoded. However, if the noise amplitude and the information bit have the same
sign then an error will not be generated. Assuming random information bits, only
50% of the possible error events will actually generate errors. Even so, if the number
of possible error events exceeds the error correcting capability of the code the code
word will have to be generated.

The second acceleration technique takes this idea a step further and completely
eliminates the words with less than ¢ errors (as opposed to possible error occurrences
of the first acceleration technique), by using channel noise statistics. The main
difference compared with the first acceleration technique is that if the word does
not contribute to the RBER it is only calculated and not simulated.

To describe the second technique a white noise channel is considered once more.

Let p be the bit error probability. Therefore p* is the probability of having exactly
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u errors in u bits, while the probability of no errors in (n — u) bits is (1 — p)(*~%),
It is now clear that if all possible combinations of having u errors in a total of
n bits are considered, then the probability that a code word of length n contains u

transmission errors is

Py = Gl pM(1 = p)

Probability p can be determined theoretically for various SNRs. Therefore,
using this formula, the percentage of code words from a user defined initial set
which contain u errors can be statistically determined. If a high enough initial
number of code words is selected, it can be analytically determined what percentage
of those words will have more than ¢ errors within a \ span of n bits and simulate
only these. The rest of the words‘r‘ (Wit:h tor less errors)  are of no interest since
they will always be correctly decoded. Thus they are not simulated but are only
used in the final calculation of the RBER.

Simulation of the code words of interest is effected using the same techniques
as described in the previous section. So, for example, if a (127,106) BCH code
at a SNR of 5 dB is used with 2.85 x 107 transmitted words, only 2 x 10° code
words will contain more than ¢t = 3 errors and will need to be simulated, see figure
4.4. The words with fewer than t errors will be corrected by the decoder and are
therefore ignored.

Finally, oncé the complete set of words has been decoded, the RBER. needs to

be calculated because the words with less than ¢ errors were not included in the
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x 10° 28.733 e6 codewords in total
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Figure 4.4: BCH (127,106) at SNR=5 simulated error distribution.

simulation. Since RBER is defined as

__ Number of information bits in error after EC
RBER = Total number of information bits

it is clear that the non-simulated information must be added to the denominator
if a correct result is to be obtained.

The second acceleration technique can therefore be summarised as follows:

1. Select the total number of code words to be transmitted, which should be

chosen to provide a sufficient number of residual errors.

2. Determine the number of code words with more than ¢ errors and determine

their distribution.

3. Generate a message and conventionally encode to create a code word. Then
modify a given number of bit positions so that they are in error, as determined

from the distribution obtained in step 2.

4. Generate the remaining noise samples (as described in the previous section).
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5. Conventionally decode the code word.

6. Measure the number of residual errors and calculate the RBER.

The results of this second acceleration technique were also included in the sim-
ulator and were validated. Near identical results to a conventional simulation were
achieved but at the same time RBERs of 10~° or even lower could be simulated
within a reasonable amount of time. Table 4.3 indicates the approximate times

required to achieve 1000 residual errors for various SNRs.

(127,106) BCH HDD code
SNR | Number of words Simulated | Simulator Time Required
1 137 20 sec
2 172 21 sec
3 190 29 sec
4 220 31 sec
5 249 50 sec
6 260 1:05 min

Table 4.3: Number of words and simulator time required for obtaining 1000 residual

errors at varying SNRs.

It should be noted that in this case the total number of words simulated re-
mains virtually constant and does not increase exponentially with increasing SNR
as with a conventional simulation. This is because higher values of SNRs imply

that progressively larger numbers of error-free words are generated, which are not
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simulated. Thus, the total number of code words contributing to the RBER re-
mains relatively stable regardless of the SNR value, which explains the very low
simulation times present.

In this section, the second novel simulation acceleration technique was presented
which has enabled the simulation of very low RBER levels within a reasonable
amount of time and without any loss in accuracy. This is achieved by concentrating
only on those code words that do contribute to the RBER and not simulating any

other words which will be corrected by the decoder.

4.8 SDD and the Simulation Acceleration Tech-
niques

Both the simulation acceleration techniques reduce the amount of computational
time required by not simulating code words containing ¢ or less errors since these
are certain to be corrected by the decoder. While this is true for HDD, it may
not always be the case for SDD. Specifically, the use of SDD does increase the
average error correcting capability of a code over ¢, but may not guarantee that
less that ¢ errors will always be corrected. Three possible situations, depending on

the number of errors (e) present within a code word may exist:

1. A code word has no errors, i.e. e = 0. In such a case the syndrome will be
zero, the received code word will be immediately accepted and no decoding
(HDD or SDD) will take place. The accuracy of the accelerated simulations

will not be affected.
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2. A code word contains more than £ errors, i.e. € > t. In such a case, the code

word will be simulated and therefore the accuracy is not affected.

. The number of error events is one or more, upto (and including) ¢, i.e. 1 <
e < t. In this case it is possible that the use of the SDD may result in errors

being present at the output of the decoder. For this reason these code words

must be simulated, if the accuracy is not to be affected.

However, the probability of producing residual errors in this instance is very
small, especially for ECCs with large values of t. SDD of code words with less
than or equal to ¢ errors can only fail if the real error bits do not belong to the
position of least confident bit (PLC) set. This is even more unlikely for SDD
algorithms that utilise extended PLC sets, such as the generalised Chase,
introduced in the next chapter. For this reason, the effects on the simulator
accuracy of the accelerated techniques combined with the use of SDD can
be ignored. This can be proven if the same ECC is used to determine the
RBER utilising both the accelerated and the conventional techniques, since

both results are virtually identical.

It can therefore be concluded that, for all practical purposes, the accelerated

simulation techniques may be used in conjunction with both HDD and SDD.

4.9 Other Performance Evaluation Programs

In this section two more performance evaluation programs will be briefly described.

These are used for obtaining the line performance and power spectrum of a given
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line code.

4.9.1 Line code performance

In the previous section, a computer simulation that modelled a complete commu-
nications system was introduced. This can, on principle, be modified to determine
the line properties of interest such as the maximum runlength and the disparity
bounds but would be impractical because of the excessive computation required.
This is especially true since none of the acceleration techniques presented before
can be used when line signal sequence characteristics are to be assessed. A more
elegant solution is therefore the introduction of a new dedicated simulation pro-
gram for determining line performance. This is briefly summarised in the following

steps:

1. Generate a set of information bits.

2. Map these into line-encoded words e.g. by determining any flag bits that may

be required.

3. Calculate and store the maximum runlength (RL,,,,) and disparity of the

complete word.

4. Use the runlength information of the previous word to determine if a max-
imum runlength is generated by two consecutive words. If this is the case,

then display the relevant code words.

5. Update the running digital sum (RDS) value and repeat from step 1.
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Such a program is very useful since it allows the user to determine the chain
of events leading to a line bound being reached. The code can then be modified
to ensure that this will not occur again. In addition it is very fast and therefore
almost all possible combinations can be examined within a reasonable amount of

time.

4.9.2 Power spectrum

The final program implements the algorithm of Cariolaro and Tronca [2] which
allows the power spectrum versus normalised frequency of a given code to be de-
termined. It was introduced in 1974 and is one of the simplest ways of obtaining
the power spectrum of a code. As mentioned earlier the power spectral density
(PSD) of a code provides useful information, such as its response at DC and at low
frequencies.

Unfortunately the calculation of the PSD is a very complex and computationally
intensive process. In addition, it depends on the statistics of the code words and
the coding rules. Therefore, a complete state transition diagram together with
the associated probabilities is required for each simulated code. In practice this

precludes the use of this technique for complex and/or long codes.

4.10 Summary

This chapter has described the basic steps behind generating a model for simulating
BCH codes, both with hard and soft decision decoding. It was then demonstrated

that in certain cases (such as when low residual bit rates are required, or the number
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of test patterns is large) conventional simulation proves to be too computationally
intensive for practical purposes, requiring long simulation runs.

To overcome this difficulty two new simulation acceleration techniques were
introduced which utilised channel statistics to reduce the number of words that
need to be simulated. These have achieved significant savings in the simulation
time required without affecting the accuracy of the results produced.

To complement the main performance evaluation simulation program, two soft-
ware tools were described; the first one enabled line-code symbol sequence charac-
teristics such as the RDS and RL,,,; to be determined, while the second used the
Cariolaro and Tronca algorithm for coded signal power spectrum calculations.

All of the programs described in this chapter will be used for both the SDD
algorithms (presented in the following chapter) and the ECLCs presented in chapter

6.
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Chapter 5

‘Generalised Chase and the AID

Algorithm

5.1 Introduction

In chapter 2, the three Chase algorithms were introduced which set the standard for
all soft decision decoding (SDD) algorithms, due to their simplicity and reasonable
performance. However, they also have a number of disadvantages (especially when
used in high-speed systems) such as long decoding times due to the number of test

patterns (TPs) that need to be examined and limited decoding performance.

In this chapter, the deficiencies of the Chase algorithms will be addressed by
introducing three new algorithms: the generalised Chase (GC), the adaptive im-

mediate decision (AID) and the test pattern elimination (TPE) algorithm.

95
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Of the three Chase algorithms, the second one offers a good balance between
decoding power and implementational complexity. Nevertheless, both of these
attributes could be usefully improved, and to this end a new variation of the Chase
algorithms termed generalised Chase (GC) has been devised. Furthermore, the GC
algorithms may be combined with a new EEP selection technique termed adaptive
immediate decision (AID) algorithm which reduces the average number of TPs
used per code word. Finally, both the Chase and GC algorithms can be further
improved by the introduction of the TPE algorithm. All of these developments are

presented in the following sections.

5.2 Generalised Chase Algorithms

In chapter 2, it was determined that both the decoding power and complexity of the
Chase algorithms are mainly dependent on the number (Ngpqse) of least confidence
bit (LCB) positions examined. Higher values of N¢pqse imply an improved decoding
performance coupled with increased complexity (in terms of TPs required), and
vice-versa. Chase placed boundaries which determine the possible values Ncpgse
may obtain thus defining the performance of the SDD algorithm.

In this chapter, the bounds for the possible values of N (the number of PLCs)
are relaxed thus achieving a more versatile SDD algorithm. The latter is termed
generalised Chase (GC) and the number of possible PLC values is represented by
Nec [3, 4].

Since increasing the value of Ng¢ over a certain boundary effectively reduces

the decoding performance of the code while increasing its complexity, the limits of
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Ngc must be clearly defined. In addition, further restrictions must be applied to
the set of resultant TPs generated by a given Ng¢ if improved performance is to

be maintained. All these problems are examined in more detail in the next section.

5.2.1 Ngc selection and TP generation

Ngc selection is constrained by the existence of an optimum value. Further in-
creases of this value will not improve performance and will result in an inefficient
algorithm. This is because the use of higher values of Ng¢ means that progressively
more confident bit position combinations will be examined.

Another issue is that not all 2V6¢ possible combinations give different estimated
error patterns. This is especially true at high SNRs where the average number of
errors in a code word is small. In such cases, the first few TPs are usually successful
while the remaining ones (which examine bit positions that are progressively more
confident) either are rejected or produce the same EEP as before.

In addition, for any given Ng¢, only discrete permutations of all possible bit
positions must be used. In all cases, the algebraic sum of the inverted positions in

each TP must be less than t, i.e.

S TR <t (5.1)

=1
where (T'P); is the sum of the binary values of the TP elements. Thus, if Ngc
least confident positions are examined, the total number of TPs will be determined

by
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t
Ngc!
2 Neo — ) (52)
instead of
oNec (5.3)

If, for example, Ngc = 5 and ¢ = 3 then only 26 TPs need to be generated
instead of 2° = 32.

The reason for requiring the total number of inverted positions in a TP to be
t or less is best explained using an example. For a single error correcting code,

numbers are assigned to all possible test patterns, as shown in table 5.1.

TP number | LCB 1 | LCB 2
0
1 invert
2 invert
3 invert | invert

Table 5.1: Defining TPs according to the inverted LCB positions.

For example, the second TP (TP 2) has the second least confidence bit position
inverted, while TP 3 has both the first and second LCBs inverted. The decoding
performance of our code is now examined if a number of errors (e) ranging from
0 to 4 occurs within a single code word. Referring to table 5.1 the probability of

erroneously decoding a code word will be determined for two different cases:
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e Case (a): decode using the proposed rule, as expressed by equation 5.2, using

all possible combinations of one LLCB position, i.e. TP 0 and TP 1.

e Case (b): decode using more LCBs, e.g. using 4 TPs (TP 0,1,2,3), as defined
by equation 5.3. This set includes TP 3 which contains a number of inverted

positions exceeding t.

All permutations of errors and TPs are examined in tables 5.2 and 5.3 where
an ‘X’ indicates a failure to decode while a +/ signifies a successfully decoded word.
Table 5.2 indicates the results using case (a), i.e. the performance of a single
ECC where a single position of least confidence is used by the SDD algorithm, as
indicated by the proposed rule. Table 5.3 indicates the performance of the same
code using case (b), i.e. two LCBs which correspond to four possible TPs. In both
cases, the first column presents the number of errors in the code word and the
second the test pattern used (using the conventions indicated in figure 5.1). The
following columns indicate whether a word with a given number of errors and a
specific TP would be correctly decoded or not.

Assume that the probability of erroneously decoding a code word for various
numbers of errors is equal to P,. In such a case the resultant overall probability of
erroneously decoding a word using either 2 or 4 TPs is shown in table 5.4.

Adding the corresponding probabilities for both cases produces a P.(a) = 0.5
for 2 TPs and a P,(b) = 0.56, where P.(a) is the probability of erroneously decoding
a code word if case (a) is used, and P,(b) if case (b) is used. Therefore the use
of all possible 2Y¥6¢¢ TPs not only increases the decoding time required but also

increases the probability of erroneously decoding a code word. Even though the
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No of errors LCB matches error LCB does not match error
TP O \/ \/
0
TP 1 \/ \/
TP O \/ \/
1
TP 1 \/ X
TP O X X
2
TP 1 \/ X
TP O X X
3
TP 1 X X

Table 5.2: Single error correcting performance using 2 TPs.

above example considered a simple ECC, similar results occur regardless of the
code used.

Another reason for constraining the number of inverted positions in a TP using
equation 5.1, is to avoid exceeding the minimum Hamming distance d,;, of a
code word. If the latter does occur, it is possible that our received word may be
erroneously decoded as an adjoining (in terms of Hamming distance) one.

To summarise, it is clear that an optimum maximum value of Ng¢ exists above
which the number of TP increases significantly without a comparable increase in
decoding power. Furthermore, not all possible TP combinations can be used once
a value for Ngc is defined. Experimental results using a computer simulation
have clearly demonstrated that the best choice is Ngc = (Nchase2 + 2) where

Nchase2 = [%_l At this value of Ng¢ not only is most of the coding gain recovered,
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Errors P NoMatch | [,CB1Match| LCB2Match | LCB 1/2 Match
0 vV vV vV vV
. ! vV vV v/ V/
2 \/ V V/ V
3 X X X X
0 Vv v \/ v
1 1 X v X X
2 X X v Vv
3 X N vV \
0 X X X X
) 1 X Vi X Vv
) X X \ Vv
3 X X X -V
0 X X X X
3 1 X X X - X
2 X X X X
3 X X X X

Table 5.3: Single error correcting performance using 4 TPs.
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Number of errors in word | P, for 2 TPs | P, for 4 TPs
4
0 0 16
1 6
1 1 16
) ; 3
3 1 i

Table 5.4: Probability of incorrectly decoding a word for various numbers of re-

ceived errors.

but the number of TPs remains reasonably low. If this value of Ngc¢ is exceeded, the
increased number of TPs is not justified by any RBER gain that may be present.

The fact that Ngc is defined as having the value Ngc = (Nghase2 + 2) indicates
that a larger set of TPs is examined compared to the standard Chase 2 algorithm.
This implies that improved decoding performance will be present. Since Ng¢ ex-
amines fewer TPs than Chase 1 it is also implied that the decoding performance
may not match that of Chase 1. However, the GC performance is very close to the
ML limit which makes it a very attractive algorithm. This will be demonstrated

by the simulation results presented in the following section.

5.2.2 Simulation results

The generalised Chase algorithm was simulated in order to determine the decoding
performance for various SNRs and the optimum values for Ngc. The introduc-
tion of the GC algorithms made the need for accelerated simulation techniques as

described in [5] even more acute. This is because the use of large values of Ngc



Chapter 5 - Improving the Chase Algorithm 103

and the corresponding large set of TPs that need to be examined increases the
simulation times beyond acceptable limits.

In this section, the decoding performance of a (127,106) BCH code will be used
as an example (see figure 5.1). This is a triple error correcting code and if the
conventional Chase 2 algorithm was used Ncpqse Wwould be equal to three, i.e. three
LCBs would be examined which would correspond to eight TPs. In this example,
values of Ng¢ ranging from one to five will be used.

The upper solid line of figure 5.1 (labelled ‘Uncoded’) indicates the decoding
performance of the system when no error correcting code has been used and the
data are transmitted as they are generated from the source.

The solid line below it (labelled ‘HDD’) indicates the performance when a triple
error correcting code has been included and the decoder utilises hard decision
decoding. The next two dashed lines indicate the performance of the same code
but decoded using soft decision and the generalised Chase algorithm with Ngc =1
(i.e. 2! = 2 test patterns) and Ngc = 2 (i.e. 22 = 4 test patterns).

The solid line below that indicates the Ngc = 3, 8 TP conventional Chase 2
results while the next two dashed lines are the results for Ngc = 4 (16 TPs) and
Ngc = 5 (26 TPs). The final solid line ( labelled ‘Ideal SD’) indicates the best
possible SDD performance, ML.

For the above code if Ngc = 5, a 0.5dB increase in coding gain compared to
the Chase 2 algorithm is offered. The penalty for such a decoding improvement is
a corresponding increase from 8 to 26 test patterns.

Figure 5.1 clearly indicates that by using all the combinations of 5 LCBs de-



Chapter 5 - Improving the Chase Algorithm 104

10
10°¢
JJncoded
10¢
a
LU
@ NHD
;X
g 10"
0
é) HD  hard decision A Q X
« SD  soft decision
10¢ x : generalised Chase-2 with 1 X
0 generalised Chase-2 with N=2
H Chase-2
10° * generalised Chase-2 with N=4 Ideal 8 1~ *
+ ' generalised Chase-2 with N=5 8
X *
10¢
4 5
SNR (dB)

Figure 5.1: Simulation of a BCH (127,106) error correcting code with various values

of AF
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coding power is very close to the ML bound. Any further increase over Ngc = 5
will not significantly increase decoding performance. The decoding results once the
optimum value of Ng¢ is exceeded are demonstrated in the following examples:

In the first example a (63,51) double EC BCH code is used with Ngpgse = 2
and Ngc = 4. The decoding results for a SNR of 4dB are shown in Table 5.5.

The resulting RBER steadily improves with increasing values of Ng¢ until
Ngc = 4. For Ng¢ = 5 an insignificant improvement exists and for Nge > 5
the\RBER deteriorates.

In the second example, a (127, 106) triple ECC is used and in this case Ngpese =
3 and Ngc = 5, as shown in Table 5.6. Again, the RBER progressively improves
until Ngc = 5 and thereafter remains almost constant. Similar results are found

with any combination of BCH code and SNR.

5.2.3 Generalised Chase 3

In the previous sections, the generalised Chase algorithm\was introduced. This is
an extension of the Chase 2 algorithm whereby a larger set of TPs is examined. The
method of generating this extended set remains the same as that of Chase 2. In
this section, a possible extension of the conventional Chase 3 called - - v generalised
Chase 3 (GC-3) is developed.

The GC-3 will examine (depending on whether d,,;, is odd or even) a set of
test patterns with ¢ positions of least confidence inverted. Specifically if dpn
is odd, Chase 3 dictates that ¢ = 0,1,3,...,d — 1 and if d,,;, is even then ¢ =

0,2,4,6,...,d —1. The (GC-3) simply extends the values of ¢ for both cases, gener-
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RBER | 34.9 (159|233 2020|228

(107%)

TPs 2 4 7T |11 |16 | 22

Table 5.5: BCH (63,51) ECC at SNR=4 dB with various values of N (channel

BER = 1.2 x 1072).

RBER | 88.1 | 356 | 11.2 4.2 |2.0( 1.9

(107°)

TPs 2 4 8 | 15| 26 | 42

Table 5.6: BCH (127,106) ECC at SNR=5 dB with various values of N (channel

BER = 5.9 x 1073).
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ates the appropriate TPs and then performs a conventional hard decision decoding.
However, unlike . - GC-2, - GC-3 was found to not offer any significant improve-
ments in performance with increasing values of ¢ and was therefore not investigated

further.

5.3 Adaptive Immediate Decision Algorithm

In the previous sections, it was demonstrated how the decoding power of the Chase
algorithms can be increased. This was achieved by using a larger set of TPs for
decoding by setting Ngc = (Nchase2 + 2). Both the standard and the generalised
Chase algorithms generate and examine a complete set of test patterns before
selecting the corresponding estimated error pattern of minimum analogue weight.

However, this will result in increased decoding time which will place bounds
on the maximum bit rate allowable. A new algorithm, the adaptive immediate
decision (AID) has been developed to address this problem, which reduces the
average number of TPs required without significantly affecting performance. In
this section, the AID algorithm will be presented and used in conjunction with
both the Chase and generalised Chase codes. This will make the GC a more

attractive option for use in high bit rate systems.

5.3.1 Description of the AID algorithm

The AID algorithm offers an improved TP selection procedure compared to Chase.
It is based on the observation that for stationary noise channels the analogue

weight of the selected EEP (awggp) is another stationary random variable. This is
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because the algebraic sum of the absolute voltage levels of each erroneous bit in a
selected estimated error pattern (EEP) (as described in equation 2.9) should have
statistically stable values.

Furthermore, for white noise channels and for a relatively large code word length
n, the analogue weight of the selected estimated error pattern awggp is concen-
trated around its mean value My, . It is therefore possible to devise a threshold
of analogue weight, e.g. Towppp = Mawggp, 50 that an EEP selection decision is
made immediately, based on the calculated cwggp. Such an algorithm reduces the
average number of required TPs for correctly decoding a received word. This offers

a significant reduction in the required decoding time per word, thus allowing higher

bit-rate coded systems to be realised.

5.3.2 Threshold decision

The concept behind the AID algorithm is the fact that the complete TP set may
not need to be generated for each code word. This will reduce the average number
of TPs examined, thus reducing the decoding time and complexity required. This
technique is effected by calculating the analogue weight of each EEP (awggp)
after decoding has taken place. If (awggp) < (Tawggp), then the EEP will be
immediately accepted otherwise the next test pattern is examined and the process
repeated. If the analogue weights of the complete set of EEPs are greater than the

threshold, i.e.

- Neg!
(a’U)EEpz.) > (Ta‘wEEP) V1 <1 S‘\'Zzt':o W;G{W

|

i
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then the threshold condition will not be satisfied for any TP. In such a case con-
ventional Chase decoding will take place. This will result in the EEP of minimum
analogue weight being selected. In either case, the analogue value of the selected
EEP awggp will also be added to the value of Tg,,,,. The flow diagram of the

AID algorithm is shown in figure 5.2.

Defining the threshold values

For a stationary channel, the noise content will remain almost constant regardless
of how many words have been transmitted. In such a case, after a statistically
significant sample of initial words has been decoded using a conventional Chase 2
or GC-2 algorithm, T, ., can be determined. The latter will remain reasonably
stable and therefore will not need to be re-evaluated. Experimental results suggest
that a suitable number of initial words is about 100.

For a fluctuating noise channel however, T, is not constant. Therefore it

WEEP
must be constantly re-calculated otherwise the threshold level will be invalid. In
such a case the average number of TPs required will be increased, or erroneous
results will be produced. For such channels, a windowed averaging technique con-
sisting of a number (m) of most recent words is used to calculate T,y,,,- The
window width (m) needs to be large enough to ensure statistically accurate results;
if it is too large then the fluctuations of the noise channel will not be closely fol-
lowed. An optimum width must therefore be determined which depends on the
stability of the noise channel. A rapidly fluctuating channel would require a nar-

row window for accurate noise tracking; a more stable channel could utilise a larger

window likely to offer more statistically accurate results. The threshold weight will
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Use conventional Chase decoder

to decode initial number of words
calculate and store aw
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word

aw less than
threshold?

Select current TP

Have all TPs
been generated?

NO

Select EEP of lowest analogue weight

Add it to the received word.

{

Decode word using selected TP

Figure 5.2: AID algorithm flow diagram.
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therefore be defined as

Towgpr = — awEEP (5.4)

where o is a factor that determines the decoding power versus speed and
(awggp); is the analogue weight of the jth most recent word. The factor ‘o’
is introduced to provide more flexibility by artificially raising or lowering Ty .z,

thus allowing a trade-off between decoding speed and power.

5.3.3 Optimal value of «

From formula 5.4 it is clear that the values of o are very significant since they
dictate the decoding power and corresponding time required by the algorithm.

For example, if & < 0 the code words are decoded using a conventional GC
algorithm since the condition awggp < Thuwpgp 18 never satisfied except for the
zero-error case. If o is a large positive number (e.g. greater than 2) then the
condition awggp < Ty, 1S easily satisfied and therefore the average number of
examined EEPs is reduced. However, in such a case, an increased probability of
error exists. The opposite is true if « is a small positive number such as 1 or 2,
because more test patterns are examined.

In order to determine the optimal value of a, the simulator was used to provide
a number of examples which are presented in the following section in Tables 5.7
and 5.8. In all cases the optimal value of o was determined to be between 2 and
3 since at this level most of the decoding power was present while the required

number of TPs was reasonably low.
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The formula for calculating Ty, » allows the algorithm to be adaptive in nature
so that it can be used in situations where the SNR levels may vary with time. It can
also be used in stationary channels without compromising performance. Since the
complete set of TPs is not always required, a major improvement in the decoding
time can be achieved, up to an order of magnitude, without significant loss in
decoding power.

Sample results for a triple error correcting BCH(127,106) code at various sta-

tionary and fluctuating SNRs are included in the following section.

Chase’s threshold decoding

In [1], Chase also introduced the concept of threshold decoding. It should be noted
though that this is completely different to the threshold decoding arrangement
presented here. The technique introduced by Chase uses a threshold to examine
whether an error pattern (EP) (as opposed to an EEP) will be accepted for cor-
recting a word. This means that the complete set of TPs must first be created
and examined. Therefore, in Chase, the decision is not immediate (after every
EEP) and if the accepted EP has an analogue weight above the threshold then the
accepted word is taken to be the received word without any corrections. Chase
therefore uses his threshold weight to examine the validity of an EP.

A second difference between Chase’s threshold decoding and the AID algo-
rithm is that Chase provides a different definition for the threshold analogue weight
awgpp(Tk). The latter is defined as the analogue weight of a TP containing K
ones, where K is a user specified arbitrary number that can take values 1 < K < n,

where n is the code word length.
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5.3.4 Simulation results for the AID algorithm

In the previous sections, the AID algorithm was introduced. The main advantage
of this algorithm is that it will achieve a reduction in the average number of TPs
examined per code word without a significant reduction in decoding performance.

In this section, the performance improvements will be demonstrated, using the
simulation techniques introduced in the previous chapter and in [5, 6]. A BCH
(127,106) triple error correcting code with Ngc = 5 will be used as an example
but similar performance was present when other codes were used.

The main aim of the AID algorithm is the reduction of the number of TPs used
and this is especially useful in conjunction with the GC codes, due to the increased
number of least confidence positions they examine. It has been noted before that
near maximum likelihood performance for a BCH code exists if the generalised
Chase algorithm examines Ngc = Nghese2z + 2. Since this creates a relatively
large set of TPs the introduction of the AID algorithm should offer substantial
advantages in reducing the total simulation time required.

Table 5.7 presents the simulation results of a (127,106) triple error correcting
code with Ngc = 5 while simulated at a SNR = 4.

The first column indicates the value of the factor o which determines the de-
coding power used. Decreasing the value of o improves decoding performance.
Increasing the value of o however, decreases the average number of TPs and the
associated decoding time required. The second column indicates the decoding per-
formance of the code (the RBER) while the third column indicates the average

number of TPs used to achieve the corresponding decoding performance. The
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theoretical RBER of this particular code at this SNR is 1.2 x 107

From table 5.7 it is evident that there is a small difference in the ML limit and
the actual RBER while using the GC with Ngec = 5. The latter is shown in the
first row (where o = —1) since with this value of « the threshold condition is never
satisfied. The total number of TPs is equal to 26 in accordance with equation 5.2.
Progressively increasing the value of a decreases both the decoding performance
and the number of TPs used. However, at a value of @ = 3, while the reduction
in the decoding performance is insignificant, the average number of TPs examined
per word has dropped by an order of magnitude, from 26 to an average of about 2.

Table 5.8 presents the results for a (63,51) double error correcting BCH code
with Ngc = 4 simulated at a SNR of 5 dB. This will create a set of 16 TPs and
will have a theoretical RBER of 5.6 x 1075%. Once more the optimum value of a
is three, and a minimal reduction in decoding performance exists. Similar results
were observed for all combinations of codes and SNRs.

The reduction in the number of required TPs can be demonstrated by setting
an arbitrary time limit and decoding the largest number of code words within that
limit. For example, in the same time interval that a GC algorithm with Ngc = 5 at
a SNR of 3 dB examines 1000 words, AID will have examined over 8000 words. For
comparison, if a conventional Chase 2 decoder was used, about 3000 words would
have been examined in the same time interval, but with a much reduced decoding

performance.
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(127,106) BCH ECC
a | Decoding performance | Average number of TPs
-1 2.3 x 10~ 26
1 2.4x107* 9.7
2 2.5 x107* 3.8
3 2.6 x 107* 1.9
4 3.0 x 107* 1.4

Table 5.7: Decoding performance versus average number of TPs for a (127,106)

BCH ECC code at SNR=4dB.

(63,51) BCH ECC
a | Decoding performance | Average number of TPs
-1 6.2 x 1076 16
1 6.4 x 1078 3.5
2 6.7 x 107 2.2
3 6.8 x 10~° 1.4
4 9.1 x 10~¢ 1.1

Table 5.8: Decoding performance versus average number of TPs for a (63,51) BCH

ECC code at SNR=5dB.
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5.3.5 Variable noise simulations

The previous simulations have demonstrated that the AID algorithm has managed
to reduce by an order of magnitude the number of TPs required, compared to
the GC algorithms, when the SNR remained reasonably constant. The latter is a
condition not necessarily representative of a real system. In this section a variable
SNR source is used in order to determine the performance of the algorithm.

Two different types of non-constant amplitude noise were used to model the
behaviour of a non-stationary system while using the AID algorithm. The first one
involved randomly variable noise figures between code words to simulate a rapidly
fluctuating transmission channel. This was implemented by allowing the SNR to
take random but discrete values. The performance achieved was not significantly
worse compared to that of a constant SNR channel. Specifically, the total average
number of TPs used increased from an average of 3.4 (for a stationary channel) to
about 5.5 while the decoding performance remained at similar levels, as shown in

table 5.9.

(127,106) BCH ECC

a | Channel Error Rate RBER | Average number of TPs
f -1 1.2 x 1072 1.7 x 104 26
! 1 1.2 x 1073 2.1 x 107 11
’ 2 1.1 x 1073 2.4 x 1074 5.15
" 3 1.2x 1073 3.8x 1074 3.8

Table 5.9: Code performance simulation results.
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The second series of tests used a sloping noise function with SNRs increasing
and decreasing with time as illustrated in figure 5.3. The resultant RBER was
similar when using both algorithms (AID and GC-2) but AID used an average of 3
TPs as opposed to 26. This represents a significant reduction in decoder complexity‘
and decoding time required. Both of the above tests provide an indication of the

potential of the AID algorithm if the values for Ng¢ and o are chosen appropriately.

SNR (dBs)

9

lime

5000 codewords 10000 codewords B 15000 codewords

SNR improving with respect to time between every bit

Generalised Chase-2 AID withex=3
Channel Error Rate 1.768%-2 1.778¢-2
Residual Bit Error Rate 1.52¢-3 1.73¢3
Number of Test Patterns Used 26 3.08

Figure 5.3: Performance comparison between the GC-2 and AID for a (127, 106)

BCH code, with sloping noise functions.
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5.4 Improving the Chase and AID Algorithms

The introduction of the GC algorithm established the fact that the use of an in-
creased number of test patterns will result in improved decoding performance. The
AID algorithm was then used to decrease the number of TPs without significantly
affecting the performance of the ECC. In this section, a further improvement called
test pattern elimination (TPE) will be introduced. The TPE algorithm significantly
reduces the decoding time per code word required by reducing the number of TPs
that are taken through the EC decoder, as first suggested by Chase. This is achieved
by eliminating TPs that produce the same EEP, thus not affecting the decoding
performance of the ‘parent’ algorithm.

The TPE algorithm can be briefly described as follows: In both the Chase and
AID algorithms, a TP is added to the received code word and the result is passed
through the EC decoder. The latter can correct up to ¢ errors and will produce
an estimated error pattern (EEP). The Chase algorithm will then select the EEP
of minimum analogue weight once a complete set has been generated, while the
AID algorithm will immediately select an EEP if its analogue value is below a set
threshold.

Observation of the decoding stage however, indicates that a large number of
TPs will eventually give the same EEP. This is a very serious drawback of both
algorithms, since the EC decoder is the most power intensive component of the
decoder.

The TPE algorithm suggests that if the Hamming distance (d) between the

current TP and any existing EEP is less or equal to t, i.e.
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Ji<n:dTP,EEP,) <t

then the same EEP will result. Therefore, such TPs will be immediately rejected
without going through the decoder. The reason behind this technique is the fact
that the decoding algorithm used will always return a ‘valid’ code word, i.e. a code
word with zero syndrome. If the distance between a TP and any one of the existing
EEPs is less or equal to the error correcting capability ¢ of the code, then the use
of the EC decoder will produce as a result an existing EEP.

Simulation results using both the Chase and AID algorithms with TPE have
indicated that a significant reduction in the number of times the decoder is used
exists, without affecting the decoding performance at all. Figure 5.10 indicates the
reduction in the use of the decoder using a BCH (127, 106) triple error correcting

code at a SNR of 3 dB as an example.

Code type Decoder usage | Max TP number | Average TP number
Chase 7.8 8 8
Chase and TPE 3.8 8 8
AID 10.3 26 11.3
AID and TPE 8.4 26 11.3

Table 5.10: Number of times decoder is used for a BCH (127,106) ECC at a SNR

of 3 dB.

The first column of figure 5.10 presents the type of SDD algorithm used, the

second indicates the number of code words that went through the EC decoder,
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the third column presents the maximum number of TPs allowable while the final
column indicates the average number of TPs used.

. Table 5.10 indicates that the use of the TPE algorithm combined with Chase
decoding offers a very significant reduction (of the order of 50%) in the number of
times the decoder is used. This reduction is not so significant when combined with
the AID algorithm since the use of the immediate decision threshold will usually
select a code word before a significant amount of repetition in the EEPs is present.

In both cases, the introduction of the TPE algorithm has not affected at all the

decoding performance of the ‘parent’ codes.

5.4.1 Decoding bounded algorithm

An alternative implementation of the TPE algorithm is the decoding bounded (DB)
algorithm. In this implementation an upper limit on the number of allowable
decodings is placed. The decoder will then generate an appropriate number of TPs
until the pre-set limit is reached. The difference with the algorithms presented in
the previous sections is that no set number for N (the number of examined PLCs)
exists. Therefore, the algorithm will use as many TPs as required to achieve the

number of decodings specified.

5.5 Summary

In this chapter, the shortcomings of the Chase algorithms were identified. These
consisted of a relatively poor decoding performance compared to the ML limit and

a large number of TPs required to achieve that performance. Both shortcomings



Chapter 5 - Improving the Chase Algorithm 121

were addressed in three new algorithms.

The first of these algorithms used an extended number of least confident posi-
tions in order to generate a larger set of test patterns. This resulted in enhanced
decoding capability but at the same time increased the necessary decoding time
per word. Since this algorithm was an extension of the Chase algorithm it was
termed the generalised Chase (GC).

The second new algorithm introduced a threshold for immediately selecting the
appropriate TP. The use of the threshold technique implies that the complete set of
TPs does not need to be generated before one is selected. This enables the average
decoding speed to be greatly increased without affecting decoding performance.
The resultant algorithm is termed adaptive immediate decoding (AID) algorithm.
The latter can be applied to either the Chase or the generalised Chase algorithms
and offers significant decoding speed improvements.

The final algorithm reduces the number of times the EC decoder must be used
by eliminating all TPs that generate the same EEP. This algorithm is termed
TPE and can be used in conjunction with either the Chase or the AID algorithms.
It offers the same decoding performance as that of the ‘parent’ algorithm while
significantly reducing the decoding time required.

These improvements in decoding speed and performance make it practical to
consider the application of forward error control based on BCH codes and SDD, to
high bit-rate optical fiber transmission systems. Such systems though also require
the use of a line code. Previous work has shown that both line coding and error

control functions can be merged to realise error correcting line codes (ECLCs).
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To date, this type of work has generally utilised hard decision decoding. It is
appropriate therefore to explore the extent to which the new SDD developments
may be combined with line coding as discussed in Chapter 3, to achieve enhanced
ECLC performance appropriate to high bit-rate systems. We turn our attention to

this in the next chapter.
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Chapter 6

Combining Error Control and
Line Coding with Soft Decision

Decoding

6.1 Introduction

In the previous chapters, the basic principles of error correcting codes (ECCs), line
coding (LC) and soft decision decoding (SDD) were presented. It was also shown
that each individual technique can offer significant improvements in increasing the
performance of a communications link.

However, if a high degree of reliability is required it is not uncommon to utilise
both the ECC and LC schemes. This is usually achieved by effecting a cascaded
implementation with the LC being the inner-most code on both sides of the link.

This arrangement has the advantage of simplicity and flexibility of choice of the

125
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ECC and LC but it also has significant disadvantages. An alternative technique
is to combine the two operations into a single code, an error correcting line code
(ECLC). In this chapter, both the cascaded approach and ECLCs will be examined
in some detail. Some existing codes will be reviewed and new codes introduced.
ECLCs can be modified so that with the use of SDD techniques, significantly
better performance can be achieved. All three algorithms introduced in the previous
chapter (GC, AID and TPE) can be used for decoding ECLCs, as will be shown

in the following sections.

6.2 The Need for Error Correcting Line Codes

Error correction and line coding are usually regarded as two distinct operations.
However, some circumstances require the simultaneous application of both; a par-
ticularly widespread example being the compact disk system. The conventional ap-
proach has been to apply the two operations in cascade with the line code being the
innermost code, as shown in figure 6.1. The information bits (¢) are initially taken
through the error correcting encoder and parity bits (p;) are appended. The resul-
tant word is then taken through the line encoder and have further parity bits (ps)
appended, before the complete word is transmitted. Such a concatenated scheme
was presented by e.g. Lin [1] whereby a number of error correcting/runlength
limited codes were created using trellis encoding and decoding.

The aim of the LC is to match the transmitted signal to the transmission
medium. It therefore has to be the inner-most code. If this were not the case, the

transmitted word would be modified by the ECC, thus eliminating the benefits of
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Figure 6.1: Conventional cascaded error correcting line code implementation.

the line code.

This arrangement however, may have several disadvantages: As was noted in

chapter 3, line decoding can introduce error extension which reduces the overall

decoding performance of the outer error correcting code since some of its power

has to be used to combat the extra errors.

In addition, with the cascaded scheme each coding operation requires the intro-

duction of redundancy. The redundant bits are introduced independently at each

stage and can not be used for both EC and LC. This results in a decreased overall

code rate R. Finally, the output of the line decoder is a binary waveform which

prevents soft decision decoding techniques being used at the ECC decoder. This

further limits the performance capabilities of such a cascaded scheme.

To summarise, the cascaded approach has the following performance character-
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istics, when compared to conventional ECC:
e Lower overall rate, due to two sets of independent parity bits.
e Error extension is present.
e The use of SDD |may not be possible.

Most of these problems can be alleviated by using combined error correcting
line codes. These codes combine the normally separate functions of line signal con-
ditioning and error protection into a single operation. By adopting this approach
error extension is minimised and higher overall code rates can be achieved.

Since the output of an ECLC encoder is a sequence of error control words,
the full spectrum of error detection and correction can be applied directly to the
received line signal. In particular, it will be demonstrated that it is possible to
apply SDD to achieve further overall performance enhancement compared with
conventional cascaded arrangements.

Figure 6.2 outlines such a system with the option of SDD included. Once more,
¢+ information bits are taken through an ECLC encoder and have a number of
parity bits (p;2) added to them, before transmission takes place. At the receiver,
the waveform goes through the error correcting decoder first so that any errors
can be corrected before any line decoding is effected. This arrangement offers two
significant benefits; SDD can now be used and the occurrence of error extension is
minimised.

A number of such combined schemes already exist. Brooks [2], for example, has

suggested a simple error detecting line code suitable for implementation in a high
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Figure 6.2: Error correcting line code block diagram.

speed system while Helberg et al. [3] has suggested a code that can either perform
line coding or error control but not both simultaneously.

Some of the codes presented in this chapter exhibit concatenated code char-
acteristics, such as separate redundancy for line and error correction coding, and
error extension. However, in all cases, error correction is effected before line decod-
ing takes place and SDD is always possible. For these reasons, all of the following

codes are classified as ECLCs.

6.3 Generating ECLCs

We can identify three broad approaches to the description and identification of an

ECLC:
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1. The first approach exploits the redundancy of a line code to achieve some
degree of error control. As a simple example consider an alternate mark
inversion (AMI) code in which a binary waveform is given a ternary repre-
sentation with a binary zero encoded as a ternary zero and a binary one is

alternately encoded as a +1.

If, at the decoder, two consecutive ones of equal polarity are received then
an error has been detected. This allows isolated errors to be detected but
the structure and degree of redundancy is insufficient to allow for correction

if hard decision decoding is employed.

In such a code, the principal reason for the introduction of redundancy is to
achieve line code characteristics; this technique does not produce powerful or
versatile error correcting codes although SDD can provide a degree of error
performance improvement [4]. Similar drawbacks exist for most such schemes
based on line codes and for these reasons they will not be considered in this

thesis.

2. The second approach is to use a ‘parent’ error correcting code, modified in
such a way so that line coding characteristics are present without the loss of
the algebraic structure or the decoding power of the code. This can imply
balancing the disparity of the transmitted code words and/or limiting the
maximum runlength (RLy,q;). Deng’s [5] and Popplewell’s [6] codes belong

to this category.

In order to achieve these characteristics the code rate will usually have to

be reduced to a certain extent but this is still a powerful technique. It will
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therefore be examined here in more detail.

3. Design totally new ECLC codes. A number of examples of this type of coding
exist but they are generally rather complex, use look-up tables to encode
and decode, and lack algebraic structure. Most such codes begin with zero
disparity words which also have some minimum Hamming distance. Error
correcting properties are then introduced, so that an ECLC is formed [7, 8].
The lack of structure and poor overall rate limit their usefulness, especially for
more complex and longer codes. For these reasons they will not be considered

here.

6.4 Proposed Codes

A number of codes presented in the following sections are based on those introduced
by Popplewell [6]. These are further modified in order to exploit the advantages
of soft decision decoding in combination with ECLC objectives. Such codes are
relatively simple to implement, have an algebraic structure thus being applicable
to any code length and are systematic.

In most cases a ‘parent’ ECC will be used to generate an ECLC. In our case,
this will be a cyclic linear block (n,k) BCH code with n code word bits and &
information bits, with n > k. The minimum Hamming distance between any two
words is dyin and ¢t = Ld—%ﬂsj is the number of errors which can be corrected in any
one word.

The parent ECC is then modified by the introduction of further redundancy, to

achieve line coding characteristics, thus becoming an ECLC. As noted previously,
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a line code aims to improve the reliability of a link. Cattermole [9] indicates that
a baseband channel with a low frequency cu't-off point cannot transmit arbitrary
bit sequences unless there is some constraint on the line characteristics. If no
such constraints exist, the performance of the communication link may eventually
degrade to an unacceptable level.

The line coding characteristics of interest to this study, are the running digital

sum (RDS) and the maximum runlength, RL,,.,. As a reminder, the RDS for a

number z of transmitted words is defined as

RDS =335, d;,

where d; is the disparity of each individual word. The digital sum wvariation
(DSV) is defined as the difference between the largest and smallest values of RDS.
Thus a good disparity limiting line code must place tight RDS bounds which will
in turn reduce the DSV value. This is necessary if the low frequency content of the
code is to be suppressed.

Another factor is the need to limit the maximum allowable number of continu-
ous ones or zeros (the maximum runlength) since these can cause synchronisation
problems at the receiver. Both the RDS and the runlength are important factors
which may need to be bounded by an ECLC.

In addition, the overall rate reduction and decoding complexity must be kept
as small as possible without significantly compromising the decoding performance.
All of the above factors place tight constraints on the code design. The ECLCs
presented here attempt to satisfy as many of these constraints as possible.

Figure 6.3 presents a tree diagram of the codes that will be introduced in this
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chapter. These can be divided into two main categories: the N = 2 codes whereby
two EC code words are coupled and transmitted as oné, and the nB1X family of
ECLCs. The latter is sub-divided in to the bi-modal (nB1I and nB1DR) and non
bi-modal codes. The non bi-modal codes do not require the flag bit for decoding,
which can therefore be ignored. The nB1DR can not be easily modified to become
an ECLC without the use of a look-up table. For this reason, it is not examined any
further. Finally the nB1I code can become an ECLC by the use of the enhanced
flag protection (EFP) code or the cascaded added bit (CAB) family of codes. All of

the above ECLCs will be presented in more detail in the following sections.

nBI1I J { nB1DR J [ nB1P/C/D/R ]

Manchester

Figure 6.3: Tree diagram of the presented ECLCs.
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6.5 The nB1X Family of ECLCs

A well-known class of block line codes are the nBmB as described by Smith [10]
which convert a block of n binary bits into m binary bits. If m is chosen to equal
n + 1 then these codes are termed nB1X and they were presented in chapter 3. In
this section the nB1X family of line codes will be re-examined and modified so that
they exhibit error correcting characteristics. This is achieved by considering the n
information bits of the nB1X code as being error correcting code words in their
own right. Therefore, & information bits are initially encoded into an n-bit word,
using a suitable ‘parent’ ECC. In this study, BCH codes will be used as ‘parent’
codes and therefore n will be assumed as being odd.

The non bi-modal members of the nB1X family do not exhibit error extension.
This is because the line coding redundant bits are not required at the receiver and
are thus discarded, without affecting the word. The bi-modal codes, i.e. the nB1I
and nB1DR, are affected by error extension. Each member of the nB1X family

of ECLCs will now be examined in more detail.

6.5.1 The nB1P ECLC

The nB1P line code is an added bit code whereby the extra bit is a parity bit.
In order to offer error correcting properties a parent (n,k) BCH code is initially
used. k information bits are therefore encoded into n code word bits which are then
encapsulated in the nB1P line code generating an (n+ 1, k) code. As explained in
chapter 3, if runlength limiting properties are required, then odd parity must be

used. In such a case the maximum runlength will be equal to RL,.; = §—";—1
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The use of odd parity will not place bounds on the RDS. The nB1P ECLC
can be modified so that both the RDS and RL,,,, are bounded, but this can only
be applied to specific codes such as the Hamming and BCH (7, 4) codes. This is
achieved by the application of even parity and the elimination of the all-one and
all-zero code words. For example, if the BCH (7,4) code is used, the code word
disparity will be equal to zero in all cases, except for the all-one and all-zero words.
The alphabet for such a code, using a parent (7,4) ECC which results in a (8, 4)
code, is shown in table 6.1.

The major disadvantage of this code is that the all-zero and one words must
be removed, otherwise the disparity and runlength will not be bounded. The
remaining 14 possible messages can not be formed from all possible combinations of
4 bits. In order to avoid the need for complicated look-up tables only 3 information
bits can be used, thus resulting in a (8,3) code of rate R = () = 0.37. Such a
code will have zero DSV and bounded maximum runlength.

Computer simulation of the (8,4) code has proven that it has similar error
correcting capabilities.as the parent (7,4) BCH code. This is because the extra
parity bit can only be used to validate the accepted word after hard or soft decision
decoding has taken place. This feature alone would offer a slight increase in the
decoding performance of the code. The residual error however, might be on the
parity bit itself which could result in invalidating a correct word, thus reducing the
performance. A slight improvement in performance can be achieved if soft decision
decoding is utilise’d.

The above algorithm can also be applied using any parent ECC. However, figure
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Information word || (8,4) ECLC code words | Disparity
0000 0000 000 0 -8
0001 0001 0111 0
0010 0010 110 1 0
0011 0011 101 0 0
0100 0100 111 0 0
0101 0101 100 1 0
0110 0110 001 1 0
0111 01110100 0
1000 1000 101 1 0
1001 1001 110 0 0
1010 1010 011 0 0
1011 1011 000 1 0
1100 1100 010 1 0
1101 1101 001 O 0
1110 1110 100 O 0
1111 11111111 +8

Table 6.1: (8,4) Parity code words, together with their corresponding disparities.
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6.4 indicates that with increasing values of n, the percentage of code words with
RDS values within +1 are significantly reduced. This implies that the significance
of any single flag, non-bimodal code is also reduced, due to the inability of a single
bit to affect the disparity. A significant amount of zero disparity words will only
occur if the (7,4) BCH or Hamming codes are used, because their RDS values
range between £1 and can thus be reduced to zero by a single bit. In view of the
inability of this technique to be applied to any code, i.e. the lack of generality, it

is not investigated any further here.
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Figure 6.4: Percentage of code words with RDS values within +1 versus code word

length n.
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6.5.2 nBl1C, nB1D and nB1R codes

The nB1C is a very simple code that introduces runlength bounds to an ECC. Once
more, the information bits are initially EC encoded using a parent ECC. They are
then line encoded by adding an extra bit at the end of the word. The appended
bit (v(n41)) has the inverse value of the n — th bit, i.e. v(n41) = T,. The inclusion
of this extra bit has the effect of reducing the runlength to RL,;,; = (n+1). The
disparity however, is not bounded.

The nB1D and nB1R codes are very similar in operation. In the nB1D code,
the added bit value is determined by the disparity of the code word, while in the
nB1R code the appended bit is determined by the running digital sum of the code
words transmitted so far. In both cases the added bits aim to reduce the disparity
or the RDS respectively.

Computer simulation has proved the expected theoretical results. Specifically,
in terms of decoding power, all three codes have similar performance to the conven-
tional BCH code. This is because the extra bit is only used to introduce LC prop-
erties without otherwise affecting the ECC. In terms of line coding characteristics,
all of the above codes have exactly the same performance as their corresponding
line codes. These can be found in tables 3.3 and 3.4 of chapter 3.

As before, a slight reduction in the code rate is present, reducing R to nkﬁ

which is insignificant, especially for long code lengths. In addition, SDD can be

used since the only function of the line decoder is the removal of the appended bit.
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6.6 Bi-modal ECLCs

In this section, the bi-modal members of the nB1X family of ECLCs will be in-
troduced. These use a ‘split dictionary’ where each code word has two alternative
mappings each of opposing disparity. These offer tight runlength and disparity
bounds but suffer from error extension. The first ECLC using this technique is the
nB1I ECLC, introduced by Popplewell in [6, 11] and presented here as an example.
The basic concept behind this code is then expanded and the enhanced flag pro-
tection and concatenated added bit (CAB) algorithms are introduced. These offer
significant decoding performance improvements without increasing complexity.

The nB1I ECLC algorithm can be briefly described as follows:

1. A ‘parent’ ECC is initially selected and the code words are constructed. In

this case, a BCH error correcting code is used.
2. The disparity of each code word is calculated.

3. The code words are then arranged into dictionaries in such a way that the

RDS is bounded.

4. The first bit of the code word is used as a ‘flag’ to indicate which dictionary

has been used.

5. At the receiver, conventional error correction decoding takes place using either

hard or soft decision decoding techniques.

6. The flag bit is then used to determine which dictionary will be used for line

decoding.
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The reason behind the above procedure is that, generally speaking, EC code
words are not of zero disparity. A bi-modal code is therefore required which means
that each information word must have alternate mappings of opposite disparity,
if the DSV is to be kept as low as possible. The placement of alternative code
words into dictionaries is effected in such a way that the first information bit of
the transmitted code word serves as a flag indicating which of the two mappings
is utilised. The word is then transmitted and conventionally decoded for error
correction. It is then passed through the line decoder which ﬁses the ‘flag’ bit to
determine the appropriate dictionary which is to be used for line decoding. Finally,
the flag and parity bits are discarded while the remaining bits form the received
information word.

The nB1I ECLC has bounded disparity, runlength and a rate of R = (kn;l),
while retaining most of the error correcting power of the ‘parent’ code. The power

spectrum of this ECLC is presented in figure 6.5, obtained using the Cariolaro and

Tronca algorithm. [12] As expected, the bounded RDS implies a zero DC content.

A simple (7,3) ECLC

As an example consider a single error correcting (7,4) BCH ‘parent’ code of rate
R = % = 0.57. In order to place bounds on the RDS the available code words
are divided into two groups. Each contains opposite disparity words, as shown
in Table 6.2, where the numbers in the brackets indicate the disparity of each
individual word. The first bit in each code word indicates which dictionary is used;

if it is a zero then no inversion has taken place, otherwise the word is inverted.

This results in a (8,3) ECLC of rate R = £ = 0.43.
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Figure 6.5: Power spectrum of a (7,3) ECLC.
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Information Code words
words —7 < Disparity < —1 | 0 < Disparity < 6
000 0000 000 (-7) 1111 111 (+7)
001 0001 011 (-1) 1110 100 (+1)
010 0010 110 (-1) 1101 001 (+1)
011 0011 101 (+1) 1100 010 (-1)
100 0100 111 (+1) 1011 000 (-1)
101 0101 100 (-1) 1010 011 (+1)
110 0110 001 (-1) 1001 110 (+1)
111 0111 010 (+1) 1000 101 (-1)

Table 6.2: Dictionary arrangement for a (7,3) BCH ECLC. The numbers in the

brackets indicate the disparity of each code word.

If, for example, the all-zero information vector 0000 was to be continuously
transmitted without any concern about disparity or runlength, it would be encoded
as 0000000 using a standard BCH (7, 4) encoder. This would result in a continuous
stream of zeros at the receiver (assuming no errors have occurred) which would
cause timing recovery problems and unbounded disparity. The code rate in this
case would be R = £ = 0.57.

A (7,3) ECLC is now created by dividing the complete set of code words into
two halves of opposing disparities and using the first information bit as a flag to
indicate which part of the table is selected. The resultant rate is equal to R = 0.43.

Using the above example, if a stream of zeros is to be transmitted, the first
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three information bits (as opposed to four information bits used in the ‘parent’
code) will still be encoded as an all-zero vector causing the RDS to become equal
to -7. Since RDS < 0, the second set of three zeros will use the alternate mapping
and will be encoded as the all-one vector. The disparity of this second word will
therefore equal +7 and the RDS will now become (=7 + 7) = 0. The third set of
information bits will be encoded as the all-zero word and the whole process will be
repeated. Such a code offers bounded disparity and limited runlength.

Note that the first bit (vo) indicates whether the rest of the code word bits are
inverted or not. If this is in error then all the other information bits will be in
error as well, i.e. error extension is now present. A modified algorithm is therefore

introduced which offers enhanced protection to the sensitive flag bit.

6.7 Enhanced Flag Protection

The main drawback of the previous algorithm is the presence of error extension.
This can be reduced by offering extra protection to the flag bit, given its critical role
in correctly decoding a code word. In this section, a novel algorithm is presented,
termed enhanced flag protection (EFP) [13, 14] which when applied to the nB1I
ECLC significantly reduces the effects of error extension. The EFP algorithm offers
maximum benefit when used in conjunction with SDD.

The EFP algorithm is a generalisation of the ECLC presented in the previous
section and increases the reliability of the flag of an nB1I code. This is achieved
by sending the flag bit vy twice. The added bit (v_;) can either be made equal to

the first bit, i.e. v_; = vy, or alternatively, equal to the complement of the first bit,



Chapter 6 - Error Correcting Line Codes 144

i.e. v_; = Tp. The advantage of the latter implementation is that the flag and its
copy will always be of opposite values, so their combined effect on the RDS will be
equal to zero. In addition, the maximum runlength will be limited to a maximum
of RLy.; = (n+1). Depending on the error rate required and the quality of the

link, there are three possible implementations of such a code:

1. In the first implementation, EFP 1, both the flag and its copy are placed
‘gutside’ the code word. This will create a (n + 2, k) code of rate R = (n—_’cﬁ)
Protection to the flag bits is offered by repetition and at the receiver the two
analogue values for the flags are averaged before the result is accepted as the

correct flag. Such a code would be suitable for high SNR communication

channels.

2. An alternative implementation, EFP 2, consists of increasing the code length
from n to (n + 1) so that only the flag itself is accommodated within the
code word. In such a case, protection to the flag bit is offered partly by the
ECC and partly by repetition. The rate is now decreased to R = (5;4_1), but
the effects of error extension are suppressed more, compared to EFP 1. The
maximum runlength is equal to RL,,,; = n. At the receiver, the analogue
values of both bits will be averaged and used to replace the analogue value

of the flag bit within the code word.

3. Finally, both flag bits can be placed ‘inside’ the code word and thus replace
two information bits. This is termed EFP 3. It will result in a (n, k—2) code of
rate R = (52). This code is suitable for poor quality channels as the flag bits

are protected both by repetition and by the ECC. The maximum runlength
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is reduced to RL,,.; = n — 1. The nB1I ECLC presented in the previous
section belongs to this category, but uses a single flag. At the receiver, the
analogue values of both flag bits will be averaged and the resultant value used

to replace the analogue values of both flags. SDD will then take place.

A detailed step-by-step presentation of the EFP algorithm using an example

parent code is now presented.

6.7.1 An example EFP code

Once more, a (7,4) parent BCH code is used as an example. This is modified so
that it becomes an EFP ECLC which offers improved decoding performance and

line characteristics. The modified encoding algorithm is as follows:

1. Use a ‘parent’ ECC to construct the code words.
2. Calculate the disparity of each code word.

3. Arrange the code words into dictionaries in such a way that the RDS is

bounded.

4. Select a code word according to the information word and the RDS state.
Depending on which of the three schemes is selected, the flag bits are calcu-

lated and applied. These will indicate which dictionary has been used.

5. At the receiver, the average analogue values of the two flag bits are calculated
and used to determine the new most likely flag value, replacing the values of

any flags within a code word. The code word is then EC decoded. Optimal
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protection for the flag bits is therefore achieved regardless which of the three

implementation schemes is used.

6. Finally, the line decoder selects the appropriate code word before the parity

and flag bits are discarded.

Therefore by using the EFP algorithm the flag is in effect sent twice. At the
receiver before any ECC decoding takes place, the two received analogue values
representing the flag will be averaged. The resultant analogue flag value will thus
be equal to r; = (U—;ﬂ), which reduces the error extension, because the noise
content of the flag bit is halved. The code word can then be decoded using any
suitable algorithm. Finally, the line decoder will select the most likely code word
from the dictionary based on the average value of the flag.

As a further minor modification, the two complementary flag bits can be dis-
tributed within the code word. This is achieved by placing the second (inverted)
copy of the flag at a distance of (5) from the beginning of each word. The all-zero
and all-one code word strings are now interrupted by the placement of the second
flag in the middle. By time spreading the flag bits the probability of both of them
being affected by a burst of interference is greatly reduced.

In the following section, a novel family of ECLCs will be introduced, termed

concatenated added bit (CAB).
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6.8 CAB Algorithm Description

The concatenated added bit ECLC is based on the nB1[ added bit ECLC. The
latter utilises a ‘parent’ ECC to encode k information bits into n code word bits,
with a ¢ error correcting capability. The parent code can be any linear transparent
code, to ensure that every code word has its inverse which is also a valid code word.
Line coding properties are then achieved by inverting code words according to the
RDS and code word disparity. Inversion is indicated by using a flag bit. If the
flag equals zero no inversion has taken place, otherwise the code word has been
inverted. However, if at the receiver the flag bit is erroneously decoded then all
the code word bits will be in error.

In the CAB algorithm, an (n, k) error correcting code is used to form a nx (k+1)
matrix, see figure 6.6. The initial k¥ rows of this matrix contain k£ conventional EC
code words. The k information bits (Info 1 to Info 4) of each code word are EC
encoded into n code word bits, the flag bit is set to zero, and the disparity (d;)
of each code word and its associated flag is calculated. This is compared to the
running digital sum intermediate (RDSI) variable which is the current value of the
RDS. RDSI is updated every time a complete code word and its associated flag are
generated, as opposed to the RDS which is updated once the complete matrix is
transmitted.

If d; x RDSI > 0 then all the code word bits are inverted and the flag bit is
set to one. If d; x RDSI < 0 then the flag bit remains a zero and no inversion
takes place. This process is repeated k times which results in the generation of &

flag bits (Flag 1 to Flag 4). These are then conventionally encoded into n bits thus
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forming the (k + 1) row.

Info 1 Info 2 Info 3 Info 4 Parity | [ Parity2 | Parity 3 E— —F;ag- -I-Er ------ :

R |

Info | Info 2 Info 3 Info 4 Parity 1 | Parity2 | Parity 3 E Flag 2 ;-- 3 ;

: o
Info 1 Info 2 Info 3 Info 4 Parity 1| Parity2 | Parity3 E Flag 3 i--; 15

Info 1 Info 2 Info 3 Info 4 Parity 1 | Parity2 | Parity 3 E“F-l;g- ;-i | |

_____________________________________________________________________________

Figure 6.6: Cascaded added bit ECLC matrix.

EC encoding the flag bits ensures that some degree of protection exists, thus
minimising the presence of error extension. The resultant matrix can then be trans-
mitted either column by column (interleaved) so that the flag bits are separated
in the time domain, or non-interleaved if tight runlength and disparity bounds are
necessary. Interleaving is performed so that a possible burst of noise or interference
will not affect all the flag bits, thus minimising the effects of error extension but
at the expense of tight line coding bounds.

In our example, we have used an (n,k) BCH ECC where n is an odd number.
With the introduction of the flag bit it is possible to generate zero disparity words.
These can cause the code to exceed its disparity bounds since their inversion does
not affect the disparity. If such words have occurred, an extra step is added to the

algorithm, whereby the overall disparity (od;) is calculated at the completion of
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the matrix. If od; x RDS > 0 then the complete matrix is inverted.

In order to place tighter disparity bounds, if a code word and its associated
flag have zero overall disparity and the RDSI is positive then inversion of the code
word will take place. The flow diagram of the CAB algorithm is shown in figure

6.7.

RDSI = RDS

|

Generate info bits and EC encode
Set flag to zero and find disparity d,

d RDSI>07?
1

Invert code word and associated flag
Setdi=-d i

no no
Store code word and flag in matrix

|

Repeat for all k codewords
RDSI =RDSI +d i

Encode flag bits and calculate
overall disparity odi

yes
od ;RDS>0 | Invert the complete matrix

Transmit bits

Figure 6.7: CAB flow diagram.

At the receiver, once the matrix is complete, each row of code words is conven-
tionally decoded, using SDD if required. Then line decoding takes place, whereby
each code word is inverted according to its corresponding flag. The parity and flag

bits are then discarded, and the resultant information bits are accepted.
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The CAB algorithm consists of k2 information bits and n x (k + 1) code word

k2

bits. The code rate is thus equal to R = PCESVR

The disparity bounds are
(=2n—1+k) < RDS < (2n—1—k). The latter ensures a zero DC, a suppressed
low frequency content and a bounded maximum runlength.

Depending on the quality of the communications link, the CAB algorithm can
be modified to offer a variable decoding performance and rate. This is achieved by
using a less powerful ECC (of higher rate)for high SNR applications, and vice-versa.

Finally, the CAB algorithm allows the use of SDD at the receiver. This offers

improved decoding performance with a minimal increase in complexity.

6.8.1 CAB N algorithm

The CAB algorithm can be very easily modified so that the rate is increased without
significantly affecting the runlength and disparity bounds or decreasing decoding
performance. This is achieved by considering groups of N error control words as
line code words and using a single flag to indicate inversion. Such a code is termed
‘CAB N’ ECLC and can be considered as the generalised case of the CAB code.
For example, if N = 2 then a group of two conventionally encoded n bit code
words will use a single flag to indicate whether both are inverted or not, see figure
6.8. Thus, the k initial information bits (Info 1 to Info 4) are conventionally
encoded, producing three parity bits (Parity 1 to Parity 3). The second set of
information bits (Info 5 to Info 8) is also conventionally encoded, producing three
further parity bits (Parity 4 to Parity 6). The disparity of both code words (and

their associated flag) is then evaluated and depending on the current value of the
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RDSI, inversion may then take place.

P
Info | Info 2 Info 3 Info 4 Parity 1 Parity 2 Parity 3 ' !
i Flag | r------ :
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Figure 6.8: Cascaded added bit ECLC with grouped (N=2) code words.

Grouping excessive numbers of error correcting words together (N > 3) does
not offer significant rate improvements while it adversely affects the maximum run-
length and disparity bounds. Figure 6.9 presents the rate gain versus the group
size N, for codes of different error correcting capability. The rate gain is defined
as the fraction of the CAB N ECLC rate over the conventional CAB rate. From
figure 6.9 it is clear that increasing the value of N over 2, does not offer a signifi-
cant advantage in rate, to justify the reduced performance in terms of line coding
characteristics. For this reason only N = 2 ECLCs will be considered here.

The CAB N rate is equal to R = Eﬁ%ﬁ while it can be mathematically
proven that the decoding performance of the CAB N code is exactly equal to that

of the conventional CAB code (shown in the following section). Finally, the RDS

can obtain any value between (—(N+1)n—1+4+k) < RDS< ((N+1)n—-1-k).
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Figure 6.9: CAB ECLC rate gain for various group sizes, using a n = 127 BCH

parent code with varying values of ¢.

The main advantages and disadvantages of the CAB family of ECLCs can be

summarised as follows:

SDD can be used at the receiver.

Rate can be very good, especially for larger values of V.

Decoding performance is the same as that of the nB1I code, regardless of

the value of N used.

The CAB ECLCs are easy to implement.

All of the above are achieved at the expense of very tight runlength and

disparity bounds.
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6.9 Simulation Results of the nB1X ECLCs

Each ECLC presented in this chapter is assessed by using computer simulations.

Three such programs will be discussed here:

1. The first program presents the decoding performance of the code in terms of
error ratio versus signal to noise ratio [15, 16]. This was presented in detail in
chapter 4. It should be noted that in the previous section, three alternative
schemes were suggested for placing the added flag bit. Since all three will
give similar decoding results, only one such scheme is simulated, i.e. the EFP

2 (n+1,k—1) code.

2. The second program determines the line coding characteristics, such as max-

imum runlength and running digital sum, as presented in chapter 4.

3. Finally, the third one uses the Cariolaro and Tronca [12] algorithm to deter-

mine the power spectrum of each code, as presented in chapter 4.

The BCH (7,4) and BCH (31, 26) single error correcting codes with rates R =
0.57 and R = 0.84 respectively, are used as examples.

It should be noted here that the simulation results on decoding power are not
fully representative of a realistic situation. This is because the communications
channel used is not limited in any way by effects such as low frequency cut-off
and runlength. For this reason, the introduction of line coding only creates error
extension without offering any performance benefit to the simulation.

Figure 6.10, demonstrates the decoding performance of a (7,4) nB1I ECLC

with HDD while the SD decoded version is presented in figure 6.11. The (31, 26)



Chapter 6 - Error Correcting Line Codes 154

code with SDD is presented in figure 6.12.

In the first two figures the lower line indicates the decoding performance of
an (8,3) EFP BCH code of rate R = 0.37, with double flag if HDD or SDD are
respectively used. The top line shows the performance of a (7,3) nB1I ECLC
of rate R = 0.43, where the first information bit is used as a flag. The middle
line shows the performance of a conventional (7,4) ECC of rate R = 0.57. The
improved decoding performance of the soft decision decoded algorithm can also be
observed by comparing the two figures.

Since the first bit indicates whether the rest of the information bits are inverted
or not, the added protection for this sensitive data becomes more important for
longer code lengths. This is reflected in the decreased performance of the (31, 26)
code used in the second example, shown in figure 6.12.

The lower line indicates the decoding performance of a conventional BCH
(31,26) ECC, of rate R = 0.84 with no line coding properties. The middle line
indicates the performance of a (31,24) EFP ECLC of rate R = 0.77 which utilises a
double flag, while the top line indicates the performance of a (31,25) nB1I ECLC
of rate R = 0.81 which utilises a single flag.

In this example, the double flag code gives slightly degraded decoding perfor- |
mance results compared to the conventional code (which has no LC characteristics)
due to the larger value of k. However, the reduction in rate due to the second flag
is not as significant as it is for the smaller code lengths.

Generally speaking, the decoding performance of the double flag ECLC will be

very similar to that of the parent ECC. Although the decoding performance of two
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Figure 6.10; HDD performance using a parent BCH (7,4) ECC with and without

ECLC properties.
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Figure 6.12: SDD performance using a parent BCH (31, 26) ECC with and without

ECLC properties.

example BCH codes has been presented here, computer simulations indicate that
similar results occur regardless of the code length used.

However, the line characteristics of the proposed code must also be examined:
Since the disparity is bounded, a null in the power spectrum at DC is generated,
see figure 6.13. In addition, the runlength characteristics are as shown in table 6.3.
The EFP algorithm offers better performance that any of the other codes at the

expense of rate, as can be seen from the third column of table 6.3.
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Figure 6.13: Power spectrum of a (8,3) ECLC.
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Code Used: Maximum Runlength | Rate

Parent ECC Unbounded k
Single flag ECLC 2-n k-l
EFP algorithm 1 n+1 nL-f-2
EFP algorithm 2 n %}
EFP algorithm 3 n—1 k=2

Table 6.3: Runlength performance and rates of various ECLC codes.

Finally, it should be noted that since the overhead of the extra bit remains
constant regardless of code length, the EFP code is more efficient for longer code
words. In such cases the reduction in rate is less significant which makes the
ECLC more attractive. The decoding performance of the CAB family of ECLCs

is presented in section 6.11.

6.10 N=2 ECLCs

In this section, the second main set of ECLCs is presented. These codes are termed
N = 2 ECLCs, since two code words are coupled together and transmitted as a
single word.

A problem in constructing ECLCs from odd code word length codes is that,
by definition, no zero disparity code words exist. If BCH ‘parent’ codes are used
then the code word length will be odd. Popplewell [17] has addressed this problem

by transmitting groups of N code words together so that the overall disparity
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is bounded. It was also proved that using groups of more than two code words
together does not significantly increase the rate, so only pairs of code words (N = 2)
will be examined.

As an example, consider a BCH (n, k) parent code which will then be used to
generate a (2n,2k — 1) N = 2 code. The latter will have a large percentage of
zero disparity code words and a reasonable rate R = (%“x;;)l) The algorithm for

producing such a code can be divided in the following steps:

1. Generate k information bits and conventionally encode into n bits. This word

will have a disparity of d;.

2. Generate k—1 information bits, set the k—th bit equal to 0 and conventionally
encode to n bits. This word will have a disparity of d;. The k —th bit is used

as a flag to indicate if both the first and second words are inverted or not.

3. Calculate the disparity (d) of both words, i.e. d = d; + d3, transmit both

words together and update the value of the RDS.

4. Repeat step 1 and 2 using the next set of information bits so that the third
and fourth code words are generated, of disparity ds and d4, respectively.
If the sum of d; + d4 has the same sign as the RDS then both words are
inverted, otherwise they are transmitted. The process is repeated from step

1 for the next information bits.

At the decoder, the k — th information bit of the second code word of each

group is examined. If it is equal to 0 then the code words are normally decoded,
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otherwise they are inverted before decoding is effected. Thus the disparity and the
runlength are both bounded while the reduction in rate is insignificant.

A variation of this algorithm was also introduced whereby the all-zero and
all-one code words were not conventionally encoded but look-up tables were used
instead. Thus tighter disparity and runlength bounds were achieved but the gen-
erality of the code was lost. For this reason, such codes were not considered any

further.

A simple example of a N = 2 code

The N = 2 ECLC is made easier to understand if an example is presented. For
this purpose, a (7,4) BCH code is used as a parent code. It is assumed that the
information bits consist of a row of identical symbols (e.g. a string of ones) which
is a worst case situation in terms of line performance criteria (RDS and RL,4;)-
This is because if a normal ECC were to be used, it would produce a continuous
stream of ones which would cause both the RDS and RL,,,,; to tend to infinity.
A N = 2 code will thus create a (14,7) code of rate R = 0.5 using the following

encoding algorithm:

1. Encode the initial four information bits. The complete code word is now 1111

111 with disparity d; = +7.

2. Encode the next three information bits. The fourth information bit is used
as a flag and is initially set to zero. The code word is then conventionally

encoded, producing the code word 1110 010 with a disparity d, = +1.
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3. The running digital sum is now equal to RDS = (4+7+ 1) = +8 and both

words are transmitted.

4. Steps 1 and 2 are repeated and since the information bits are a continuous
stream of ones, the same two code words are generated. However, since the
disparity of this second group of code words is once more equal to +8 and
RDS = +8 both words are inverted. Thus the transmitted code words are
now 0000000 and 0001101 with a disparity of —8 and the RDS is now equal
to RDS = (48 — 8) = 0. The k — th bit of the second word is used as a flag
and for this reason is always equal to zero unless both words are inverted.
The runlength for the worst case (the all-zero information stream) is also

limited to RL, ., = 14.

At the decoder, if the k — th bit of the second word is equal to one then both
words are inverted and then decoded, otherwise they are conventionally decoded.
The advantage of this algorithm is that line coding characteristics are achieved
without requiring alternative mappings for each word and therefore without signif-

icantly reducing the rate of the code.

6.10.1 Improvements on the N=2 codes

The N=2 code offers good line characteristics together with a reasonable rate and
is simple to implement. However similarly to the codes presented in the previous
section, it also suffers from reduced decoding performance due to error extension.

Specifically, if the flag bit is in error then the information bits of both code

words will be erroneously decoded. The use of SDD can offer a slight improvement
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in performance, but as before, it is much more practical if a second information
bit is sacrificed to increase the resilience of the flag bit [18]. This is achieved by
replicating and inverting it. With the use of SDD at the decoder the average
values of both flag bits can be used, thus significantly reducing the possibility of
erroneously decoding the flag bit and further reducing the runlength bounds. In
addition each copy of the flag is protected by the corresponding EC word to which
it belongs.

The improved N = 2 algorithm is once more demonstrated using the (7,4) BCH
code as an example. A continuous stream of ones will be chosen as the information

vector once more, since it highlights the differences with the previous code:

1. Encode the initial three information bits. The fourth information bit is used
as a flag and is initially set to one. The complete code word is now 1111111

with disparity d; = +7.

2. Encode the next three information bits. The fourth information bit is again
used as a flag and is initially set to zero. The code word is then conventionally

encoded, i.e. 1110010 with a disparity ds = +1.

3. The resultant disparity is now equal to RDS = (+7 + 1) = +8. Both words

are transmitted.

4. Steps 1 and 2 are repeated and the same two code words are generated.
However, since the total disparity of this group of code words is once more
equal to +8 and RDS = +8 then they are both inverted. The transmitted

code words are now 0000000 and 0001101 with the total disparity equal to
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—8 and RDS = 0.

Therefore by replicating the flag a significantly improved decoding performance

2k-2)

is achieved. The penalty is a further reduction in rate which now equals R = (%

or R = (&) = 0.43, if the example code is used.

6.10.2 Simulation results for the N=2 codes

The simulation used in the previous section was modified to produce the results
shown in this section. Specifically the (14, 7) and (14, 6) codes were simulated with
both HDD and SDD and the results are shown in figures 6.14 and 6.15. The lower
line in each figure indicates the decoding performance of a (7,4) parent BCH code
if HDD or SDD are used. The top line shows the performance of a (14,7) code
with a single flag while the middle line shows the performance of the (14,6) code
with a double flag.

As expected, the decoding performance of the single flag N=2 code is worse than
that of the parent code due to error extension. If however, the flag bit is replicated
then the decoding performance is improved and almost matches the performance

of the ECC. Similar results are present for various other code lengths.

6.10.3 Manchester ECLC

The Manchester ECLC presented in this section is a specific case of the N = 2
codes presented in the previous section. It is based on the idea that by transmitting
two EC code words together, an even length code is generated which enables zero

disparity words to be created. These do not require alternate mappings and thus
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Figure 6.14: HDD performance of N=2 error correcting line coding code, using a

(7, 4) parent ECO.
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Figure 6.15: SDD performance of N=2 error correcting line coding code, using a

(7, 4) parent ECO.
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significantly simplify the coding operation. A simple and yet very powerful solution
would be to transmit a code word together with its inverse.

There are two ways in which this could be done, either by appending the in-
verted bits at the end of each word or by interleaving them in the word itself, so
that each bit is followed by its inverse (as performed in Manchester encoding). The
advantages of this method are the very tight bounds of both the running digital
sum and the maximum runlength achieved which in the case of the Manchester
encoded word are RDS = =1 and RL,,,;, = 2. The disadvantage is the large
reduction of rate; this is now halved since the ‘parent’ (n,k) BCH code will be-
come a (2 x n, k) code. However, if SDD is introduced, the fact that each bit is
transmitted twice can be used to achieve significant decoding performance gains.
This is because at the receiver the two analogue values for each bit can be averaged
and the resultant value taken as the accepted one. This technique will be termed
‘Manchester SDD’ [19]. Conventional SDD can then take place (if required) using
the resultant analogue values to determine the least confident bits [20]. The new
algorithm is presented in block diagram form in figure 6.16.

In order to theoretically explain why this decoding performance improvement
is possible by replicating the code word bits and inverting them, a simple noise
analysis is performed:

Assume that a bit v; (where 1 < ¢ < n) and its complement 7; are transmitted
through a communications channel affected by Gaussian noise. At the receiver
r; = v; + n and 7; = T; + n' are obtained, where n and n' are the independent

Gaussian noise samples with ¢ being the standard deviation.
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T
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Figure 6.16: Block diagram of third algorithm.

At the receiver the two bits v; and v; are averaged thus providing us with an

analogue value equal to

(vi +n) — (T; +n) _ 2xvi+(n—n’).

. > (6.1)

Concentrating on the noise vector only, L"'T"Il has a standard deviation (SD)

of

V2xo0? o

Now the ratio of }"7 equals V/2 therefore the noise reduction will be equal to

SD =
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20 x zOg% = 10 x log2 = 3dBs. (6.3)

* Tt therefore has been proven that by averaging the analogue values of the re-
ceived bits a maximum 3dB noise improvement is achieved. It should be noted
here that as a general rule, SDD can achieve about 2dBs of coding gain. However
the £ dB improvement presented here and obtained through Manchester SDD is
generated by replicating the code word bits before transmission. This allows us
to use conventional SDD as well as Manchester encoding and have about 4 dBs of

overall coding gain.

Simulation results of the Manchester codes

The computer simulator was further modified to generate both versions of the
codes mentioned in the previous section, i.e. the Manchester code with the extra
bits interleaved in the word and the variant with the second set of bits placed at
the end of each word. A number of different code lengths were simulated and one
is used here as an illustrative example.

In figure 6.17 the top line indicates the computed decoding performance of a
BCH (31, 26) single error correcting code of rate R = 0.84 with no LC proper-
ties. The middle line represents the Manchester encoded version of the same code
which forms a (2 x 31, 26) code of rate R = 0.42 with very tight RDS and RLyqz
bounds. The significantly enhanced decoding performance of the latter code is
also evident. Finally for comparison purposes, the lower line indicates the perfor-

mance of a (63,30) 6 error correcting code. This has a similar rate (R = 0.48) to
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the Manchester encoded one but offers no LC properties. In all three cases hard

decision decoding was used, but similar relative results occurred if SDD was used.

Comparison of similar rate codes
10 T T T T T T T T

~

~~-__ HD(@31.26)

. : : . . N \
] e e pe Hp_63,30,§____4______§_\_\ ______ ]

\

Figure 6.17: Decoding performance of the third algorithm.

The same soft decision decoding process can be used in the case where the
complementary bits are all appended at the end of the word. In this case the
bounds for both disparity and runlength are expanded. Specifically, the RDS values
increase from RDS = +1 to RDS = 4n while the maximum runlength from
RLyez = 2 to RLypee = 2 - n. The advantage of this algorithm is that for bursty
noise channels greater separation between copies of the same bit in the time domain

exists. It therefore becomes unlikely that a burst of noise will affect both copies,
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especially for long code word lengths.

Another possibility would be to transmit the ‘raw’ information data without
using a ‘parent’ ECC. Even in such a case, most of the theoretical ZdB gain could
still be recovered thus offering limited error correction capabilities and maintaining
full line coding properties. Such a scheme would be very simple to implement and
under suitable circumstances could offer acceptable decoding performance.

The power spectrum of the Manchester ECLC is shown in figure 6.18. The
latter indicates no DC component and very good suppression of low frequencies,
both of which arise from the very tight disparity bounds.

Using the third proposed ECLC algorithm it was demonstrated that significant
line and error control coding properties can be gained, at the expense of rate. It
therefore becomes clear that decoding performance can be effectively ‘exchanged’
for LC properties. The main advantages of this algorithm are the very simple
nature of the encoding and decoding algorithm which can be used in either uncoded
or hard/soft decision coded words, and the very good decoding and line coding
characteristics present.

Up to this point, a number of existing and novel algorithms have been presented.
In the following sections several aspects of the performance of these ECLCs, such

as the calculated decoding performance and rate, will be examined in detail.
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Figure 6.18: Spectral densities of the Manchester ECLC.
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6.11  Calculating the Decoding Performance of

the Single Flag Codes

The decoding performance of all the single flag, bi-modal codes can be very easily
calculated. This applies to the nB1I, nB1DR, CAB, CAB N, and N = 2 ECLCs
all of which have exactly the same decoding performance. In this section, the CAB
code will be used as an illustrative example:

Assume that the parent (n,k) ECC is used to create a CAB ECLC consisting
of (k + 1) rows of n bits each. Since only the information bits of each code are of
interest, all the parity bits can be ignored. The residual bit error rate of the CAB
code (RBER') can be expressed in terms of the residual bit error rate (RBER) of

the parent code. By definition,

1 Total number of info bits in error
RBER' = Total number of info bits

Assume that the total number of information bit errors in the CAB code are e;

while the total number of information bits is equal to k2. Therefore,

;€ epter
RBER' = FEi (6.4)

where e; indicates errors caused by inverting code words due to errors in their
corresponding flags, and e, indicates conventional errors. By definition e; = e; +es.
In order to calculate e;, we assume that a number x of errors occur in the
last (k + 1) word which contains the flag bits. In such a case, z = RBER x k,

since the code words are encoded using the parent code. Therefore, x code words
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will be wrongly inverted, causing e; = = X k bit errors in total. From this figure
however, a number e, of original errors (errors that pre-existed the inversion) must

be subtracted, because they will now be corrected. Therefore, e; = ¢; — ¢, and

ei=kxz=kx (RBER x k) =k* x RBER (6.5)

and

€o=kx2x RBER=kx (RBER x k) x RBER = k* x RBER*  (6.6)

Subtracting equation 6.6 from equation 6.5, e; is determined to be

e; =e; — e, = (k* x RBER) — (k* x RBER?) (6.7)

The number of conventional errors in the remaining code words is equal to:

e; = (k—1z) x RBER x k= k? x RBER x (1 — RBER) (6.8)

Therefore the total number of errors can be determined by substituting equation

6.7 for e; and equation 6.8 for e, into equation 6.4,

e; = e; + ey = (k* x RBER) — (k* x RBER?)+

+(k* x RBER x (1 — RBER)) (6.9)
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Thus RBER'can now be obtained:

2 —
RBER — % _ 2x k' X RBEIZZX (1 - RBER) N

RBER =2 x RBER x (1 — RBER) (6.10)

The RBER of the parent code can be very easily simulated or calculated. Using
equation 6.10 it is now possible to calculate the decoding performance of all the
single flag bi-modal codes. Simulation results confirm the validity of the calculated
results.

As an illustrative example the (127,106) BCH parent code is used to form a
CAB ECLC. The decoding performance of the CAB code shown in figure 6.19 with
dashed lines, is slightly degraded compared to that of the parent code (shown in
solid lines) due to error extension. The decoding performance of hard decision
decoding is shown on top (HD), followed by the decoding performance using the
Chase 2 algorithm and the maximum likelihood limit (ideal SD).

The decoding performance of all of the single flag added bit codes is exactly

the same as that of the conventional CAB algorithm.

6.12 Calculating the Decoding Performance of

the EFP Codes

The decoding performance of the EFP ECLC can be also very easily calculated.

Once more we assume that the residual bit error rate (RBER) of the EFP code
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Figure 6.19: CAB decoding performance for a (127,106) BCH code with SDD.

is termed RBER' and that a total number x of codewords are transmitted. Of
these X words, X! will have conventional errors and X: will have errors due to an

incorrectly decoded flag bit. Once more, by definition

X = Xi-l- X2 6.11)
RBERwX
(6.12)
RBER-X

Xi = X —X2 = X — (6.13)
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The total number of errors e; can be sub-divided into two parts, e; and e, which

are the errors in x; and z,, respectively. Therefore, substituting equations 6.12 and

6.13 in equations 6.14 and 6.16 we obtain equations 6.15 and 6.17.

et=1z1-k-RBER =

RBER

es=k-z-RBER-(1 -

e =29 -k—125-k- RBER =

— RBE
62=/€-:I:-RBER-(-1—RZ—R-)
The total number of errors is now equal to:
—2RBFER
e, =¢€ +e =kxr-RBER- (3——5———)

Finally, using equation 6.18, RBER' becomes equal to:

RBER' = ke—tx _ rBER. 8= 2I;B ER)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

We have therefore managed to calculate the performance of the EFP ECLC

based on the RBER of the ECC. As an example, we apply formula 6.19 to a (7, 3)
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ECLC and figure 6.20 is obtained. Clearly the calculated decoding performance
equals the simulated decoding performance of the same code, shown in figures 6.10

and 6.11.

10

UncOded

10°

SDD

10

10

10°

SNR

Figure 6.20: Decoding performance for a (7, 3) EFP ECLC.

Similar results are present for other code lengths.

6.13 Rate Considerations

Any realistic system requiring the use of EEC or ECLCs is likely to have a defined
error performance target. This would mean that maintaining a given decoding
performance level (or residual bit error rate) would be paramount and the designer
would have to work around it, should any other features be required. Applied to

ECLCs this would be translated as the rate reduction required for introducing line
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characteristics while maintaining a given RBER. This is in contrast to the results
presented so far, where the RBER was allowed to vary in value with each successive
ECLC.

Figure 6.21 demonstrates two codes having on average similar decoding power
but each with different properties. The dashed line indicates the performance of a
(127,92) 5 error correcting BCH code of rate R = 0.72 which has no line coding
characteristics. The continuous line indicates the performance of a (63 x 2,57)
sfngle error correcting code which forms a (126,57) code of rate R = 0.45. This
uses the Manchester encoding principle presented in section 6.10.3 and has very
tight runlength bounds (RLy,,, = 2) and disparity bounds (-1 < RDS < +1).
This figure demonstrates that for a given RBER there will be a reduction in rate
from 0.72 to 0.45, i.e. a reduction of 62.5%.

If using figure 6.21 an arbitrary target RBER of 1.0e — 7 is selected (which
occurs at a SNR of 6dBs) a rate comparison can be effected for the other ECLCs.

Specifically, if a single flag bi-modal code is used, then a parent (31,11) seven
error correcting code with a resultant rate R = (33) = 0.32 is required to achieve
the target RBER. Compared to the Manchester code (which also offers improved
line coding characteristics) this encoding scheme has an unacceptably low rate
while offering similar decoding performance.

If a bi-modal code with a double flag is used, then in order to achieve the target
RBER a parent (31, 16) triple error correcting code is required with a resultant rate
R= () = 0.45. The performance of this coding scheme compares favourably in

31

terms of decoding performance and rate to the Manchester ECLCs, but does not
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Figure 6.21: Rate comparison of similar codes.

offer tight runlength and disparity bounds.

These results are presented in table 6.4 assuming that a target RBER of 1x10~7

is required.

It should be noted that the relationship between the above line coding param-

eters remains constant regardless of the code used. Thus from the above table the

Manchester code seems to have the best line code characteristics and is the simplest

one to implement.
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Target RBER=1 x 1077
Code Used: (RLynaz) (RDS) Rate reduction (%)
(127,99) BCH ECC code | Unbounded | Unbounded 0
(63 x 2,57) ECLC 2 +1 37.5%
(31,11) Single flag ECLC 17 +8 55.6%
(31,14) Double flag ECLC 17 +8 37.5%

Table 6.4: Comparison between rate and LC characteristics of various ECLC codes.

6.13.1 Line code rate

An alternative method of quantifying the rate of each of the proposed and existing
ECLCs can be described using the concept of concatenated codes. Specifically, the
ECLCs can be considered to consist of two distinct parts: the error correcting code
of rate By = s and the line code of rate R,. The overall rate willbe R, = Ri X Ry =
% X Ry. Using the known value of R, we can describe most of the presented ECLCs

as functions of k (the information bit length) versus Rj, as follows:

e The nB1I ECLC has R, = = 2&-1 Therefore, Ry = L.
e The nB1I EFP 1 has R, = n+2$R2=nL+2
e The nB1I EFP 2 has R, ——=>R2 %%

[ ]
[N

The nB1I EFP 3 has R, = &2 = R, = k-

The CAB ECLC has rate R, = = Ry, =

(k+1) +1

2
The CAB N ECLC has rate R, = ;fesy = Ry = ghoy
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e The N = 2 ECLC has R, = %1, while the improved N = 2 has a rate

Ry = % equal to that of the nB1I ECLC.

e Finally, the ‘Manchester’ ECLC has a constant LC rate R, = 3.

All of the above values are used to derive figure 6.22, where a n = 127 BCH code
is used with various values of k£ to present the differences in rate R,. Increasing
values of k indicate that a progressively less powerful EC decoding code is used.

For example, a (127,120) BCH code (upper end of the z-axis) can correct a
single error while a (127,8) BCH code (lower end of the z-axis) can correct upto
32 errors. The rate of the ‘Manchester’ code is constant at Ry = % and is therefore
not shown. The z-axis displays logs(k) for clarity.

Figure 6.22 indicates that all ECLCs asymptotically approach unity as the val-
ues of k increase. This means that they are becoming progressively more efficient,
with the EFP 1 being the most efficient ECLC for low values of k¥ and the CABN
with N = 2 code for higher values of k. These observations are valid when n = 127.

If other values of n are used, then the performance of the codes will also vary.
Figure 6.23 presents an indicative example where the ECLC rate performance with
n = 31 is shown. As expected, for lower values of n the rate performance of the
EFP 1 code decreases and the cross-over point with the CAB N = 2 ECLC occurs

for lower values of k.
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Figure 6.22; ECLC rate comparison with n = 127.
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Figure 6.23: ECLC rate comparison with n = 31.
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6.14 Summary

In this chapter, a number of new concatenated and combined error correcting
and line codes were presented. The nB1X family of ECLCs demonstrated that
elementary LC properties can be easily achieved with a very small reduction in
rate and without significantly affecting decoding performance or increasing circuit
complexity.

The EFP and ‘Manchester’ ECLC combined soft decision decoding techniques
together with modified existing ECLC algorithms and produced tight bounds for
both runlengths and disparity. At the same time, they achieved improved decoding
performance and are relatively simple to implement. Finally the CAB family of
ECLCs was introduced which can offer very good overall code rates and decod-
ing performance at the expense of tight line coding bounds. Simulations of both
the power spectrum and the decoding power indicate the expected performance

improvements for all ECLCs.
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Chapter 7

Conclusions

In this thesis, a number of existing and novel error correcting, line, and error
correcting line codes were presented. Particular emphasis has been placed on de-
veloping codes which were efficient, general in nature and suitable for high bit
rates.

The fundamental principles of error correcting and line coding were initially
presented. Existing coding schemes were then examined and new ones developed,
which addressed their shortcomings. Computer simulation was then used to vali-
date the theoretical results. The latter required the development of novel techniques
which offered a significant reduction in the amount of computational time required.

Line and error control coding were then combined together to create an error
correcting line code. This manages to avoid most of the problems created by the
use of concatenated codes while at the same time offers improved performance.

Finally the concept of soft decision decoding was also introduced. This can be

used on all three types of code presented so far, i.e line, error control and error

186
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correcting line codes. It offers significant gains in terms of improved decoding
performance but at the same time requires more complex receivers. Various SDD
algorithms were examined and the Chase algorithm number 2 was deemed to be the
most useful. The generalised Chase 2 together with the AID and TPE algorithms
also proved to offer an attractive solution, because of their near ML performance

and low complexity.

7.1 Contributions

The main points and conclusions derived from the present work can be summarised

as follows:

e Chapter 3 presents a number of novel line codes. These added bit codes
are very simple to implement while offering tight runlength and disparity
bounds. Because the resultant rate reduction is very small, and the associated
encoding and decoding processes are simple, such codes are suitable for high

bit-rate applications.

e The need for simulation at the error floors of interest required the devel-
opment of a novel simulation technique. This was presented in chapter 4.
Significant gains in terms of computational time were achieved by only im-

plementing code words which contributed to the RBER.

e Soft decision decoding is an appropriate method for increasing decoding per-

formance without significantly increasing complexity.
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e In chapter 5, a novel SDD algorithm is introduced, termed generalised Chase
2 (GC-2). It achieves near ML performance but is rather complex and compu-
tationally intensive for implementation in a practical high speed system. This

problem is alleviated by the introduction of the AID and TPE algorithms.

e The AID algorithm reduces the number of test patterns required by the GC-
2, without any reduction in decoding power. In addition, the TPE algorithm
reduces the number of decodings without affecting performance. These im-
provements make feasible the use of a GC-2 code for practical system appli-

cations.

e Finally, novel error correcting line codes were introduced in chapter 6. These
achieved very good line coding characteristics without significantly affecting
the decoding performance of the parent EC codes. Additionally most are

very simple to implement.

The proposals presented in this thesis were developed in the abstract, i.e. they
were not linked to some specific application. Therefore a suggestion for possible
future work would be to explore line coding, FEC codes and ECLCs with respect

to potential applications. These may include the following:

e Magnetic recording

e Long-haul optical systems

e High speed digital communications links using copper as a transmission medium
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7.2 Concluding Remarks

In this thesis, a number of novel line codes were presented followed by a the intro-
duction of a very efficient SDD algorithm suitable for error correcting codes. These
were ‘combined’ in chapter 6 to generate a number of novel ECLCs which utilised
SDD to achieve improved performance. The results were validated down to the low

bit error levels of interest using a novel simulation acceleration technique.



Appendix A

Calculating the Power Spectrum

A.1 Introduction

In this section, a more detailed explanation of the analytical technique for deter-
mining the power spectrum of the nB1X codes will be presented. This was briefly
described in chapter 3.

As has been mentioned before, the aim of a line code is to eliminate the DC
component and suppress the low frequency content of a transmitted signal as much
as possible. The power spectrum is a measure of success of the line code, since it

displays the power spectral density versus the normalised frequency.

A.2 Calculating the Power Spectral Density

In order to determine the power spectral density (PSD) of a signal (Sy,(f)) we
must first determine the auto-correlation function R,,(j). This is performed at

two distinct time intervals, one at j = 0 and the other at j # 0. Let n be the

190
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information bit length of a nB1X code, P[X (k) = 1] is the probability that any
bit £ will have a value of a logic one or zero and j is a variable that can take any

value between 0 < j < n.

A.2.1 Determining R,,(j) at j =0

The value of Ry,(j) at j = 0 is determined by the following equation:

+

X (k) =1)(1)* + (P[X (k) = —1])(-1)*

Ry (0)

Since equal probabilities of having a logic one or zero exist within any code

word, P[X (k) = 1] = P[X (k) = —1] = 3, thus:

O
==

This equation holds true for all codes of interest, so Ry, (0) = 1 always.

A.2.2 Determining R,,(j) at j #0

The value of Ry, (j) at j # 0 is determined by the following equation:

1 n+1

Ryy(7) = nt Z(P[X —7) = 1(PIX(k) =1 X (k - j) =1])-

(PIX(k —j) = 1))(P[X(k) = -1|X(k - j) = 1])-

(P[X(k —j) = -1))(P[X(k) = 1|X(k - j) = —1])+
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(P[X (k= j) = —1)(P[X (k) = —1|X(k - j) = —1])

Since the codes under consideration are symmetric towards the number of bits
having a logic value of one or zero, P[X(k — j) =1] = P[X(k—j) = —1] =  and

the above equation now becomes:

1

3
+

_ 1
B (n+1)¢§

Ryy(4)

g

(P[X (k) =1|X(k ~j) =1]-

S(PIX (k) = —1X (k= ) = 1] = S(PIX(K) = 11X (k— §) = —1}+
S(PIX(R) = ~1[X (k= ) = 1]

Simplifying the above we get that:

i) = Gy 22 (PX() = 1X(6 =) = 1)

—(PIX (k) = 1| X (k - j) = —1]) (A1)

We have therefore managed to determine all the necessary parameters which
characterise the auto-correlation function Ryy(7). In order to obtain the power

spectrum Sy, (f) we must now perform a Fourier transformation to the auto-

correlation function, i.e.
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Equation A.2 holds true for all codes of interest. In order to determine the
power spectrum of a given code we must calculate the specific values of Ryy(j).

These calculations are shown in the following sections for the Manchester and

nB1D codes.

A.3 Power spectrum of the Manchester Code

A Manchester code is a code where each bit is always followed by its inverse.

Therefore for j # 0:

PIX(1) = 11X(0) = 1] = P[X(1) = 1|X(0) = ~1] = 5

This is true, since there is no correlation between individual code words. In

addition

P[X(2) =11X(1) =1] =0

and

PIX(2) =1X(1) = -1] =1

since each bit within a code word is followed by its inverse. Substituting these

values in equation A.1 we obtain:
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We have therefore evaluated R, at all points of interest. Therefore,

Ryy(r) = 6(r) — 36(r £1)

If we apply the Fourier transform on R,,(7) we obtain the equation describing

the power spectrum Sy, (f) which for this example is equal to:

F(Ryy(r)) = Syy(f) =1 — cos(2m f)

A.4 Power Spectrum of the nB1D Code

The nB1D code is an added bit code whereby the flag is determined by the disparity

of the information bits. As before, R,,(0) =1 and if 1 < j < n then

(P[X(k) = 1[X(k - j) =1]) = (PIX() = |X(n—j) = —1]) = %

because the information bits are random.

However, the parity bit (k = (n+ 1)) is dependent on the information bits and
its value is therefore not random. Assume without loss of generality that X (0) = 1,
X(n+1) =1 and the disparity of the in-between information bits (excluding the
first one) is less than zero. Let y equal the number of (n — 1) bits with disparity
less than zero and z equal the number of (n — 1) bits with disparity equal to zero.
Due to symmetry, y is also equal to the number of (n —1) bits with disparity larger

than zero. Thus, 2y + z = 2"~ ! and
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(PIX(n+1)=1X(n+1-j)=1)) = =55

and

_z+y
- 2n—1

(PIX(n+1) =1X(n+1—5) = —1))

therefore

N | Y z+y, -1 z
RH?I(J) - (n+ 1)(2n——1 T on—1 ) = (n+1) (27 1)

n—1
By definition z is equal to thus R,,(j) now becomes equal to:

n—1

NI

Thus

n—1
1 n—1 n
2
Ryy(1) =6(1) — ST o kz:é(T:l:k)
=1

If we one more apply the Fourier transform on R,,(7) we obtain the power

spectrum Sy, (f) which is equal to:

Sy(f)=1- - cos(2m f)
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We have therefore succeeded in obtaining an analytical formula for the power

spectrum on an nB1D code.



