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To Michael Kearney

who introduced me to time series analysis and much more besides



Abstract

This thesis is about sampling theory and methods for analysing signals that have
been sampled at irregularly spaced points.

Irregular sampling may arise naturally (examples of its occurrence may be found
in geophysics, tomography, astronomy, and laser anemometry). In many cases it
presents difficulties because standard techniques are unable to cope with the un-
even sampling. However there is an alternative and exciting facet to the subject:
deliberate aperiodic sampling. This is being mooted as a method for unambiguous
frequency identification in new generations of signal analysers and of pulse-Doppler
and synthetic-aperture radars. For the classes of signal that these systems need to
process and analyse, signal reconstruction is not of prime importance and it can
be the wrong approach. The principal aim of this thesis is to develop methods for
analysing irregularly sampled data and the principal theme is methods that do not
employ explicit signal reconstruction.

The key contributions of this thesis are the development of prediction and filter-
ing. A difficult problem associated with the spectral analysis of irregularly sampled
signals is that the dynamic range of the observed spectrum is greatly reduced. It
can however be resolved using a combination of elementary spectral analysis and ad-
vanced linear filtering techniques. The fast optimal filtering algorithms enable this
to be done. They are derived using our general theory of linear prediction, which
we extensively test on synthetic data.

Other important contributions are made in the theories of nonlinear prediction
and of sampling series. Nonlinear techniques are designed for signals of dynamical
origin and we show that they can be made to work for irregular sampling. The work
on sampling series shows that classical signal processing techniques such as system
identification, convolution and filtering are not the preserve of regular sampling.

Additionally an extensive review of sampling theory and its relation to signal
processing is included. It provides an in-depth introduction to the subject and its
fascinating literature.
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Chapter 1

Introduction

1.1 Sampling theory and irregular sampling

Man’s view of the world around him is formed from observations or samples. In
observing a static object one may make observations at different points in space. If
the object moves about, observations may be made on its position, periodically or
aperiodically with time. For example in navigation one might be observing someone
else’s ship from land, or calculating the position of one’s own ship relative to a
fixed frame of reference. More generally the physical properties or qualities of an
object (temperature, size, colour, etc.) may vary with time. In addition we may
wish to observe an object that is abstract rather than concrete, such as a radar or
radio waveform, or a sound wave; in these cases it is the electromagnetic field or the
density of the medium that is varying with time.

We shall be talking about signals; a signal is any time-varying quantity, and sig-
nals may be classified in a variety of ways (periodic, stochastic, deterministic, linear,
nonlinear, and so on; see e.g. [135]). At some juncture one must ask how samples of
a continuously-varying quantity relate to that continuously-varying quantity. This
question is answered by signal sampling theory (or sampling theory for short). One
might also ask what a signal (continuous or discrete) says about the system from
which it came. That is the science and art of signal analysis.

Sampling theory has a long history and, in common with many other areas
of mathematics, finds its roots in the work of Cauchy [46] and Gauss. Its name
has almost become synonymous with that of C. E. Shannon, who amongst others
is credited with the statement of the ‘sampling theorem’. This states that from
periodic observations one may reconstruct a signal that contains no frequency above
half the sampling rate (a limit to which Nyquist’s name has become attached). In
other words, for a correct representation one must sample at least twice per cycle of
the highest frequency component. The importance and attraction of this theorem
are that the samples of a bandlimited signal contain all the information needed to
reconstruct that signal. But like all good theorems it raised far more questions than
it answered, as it was not long before people began to ask whether the sampling
has to be regular, and what to do when it is not; or how to generalise the notion of
frequency, or to drop the requirement of ‘bandlimitedness’.

7



1.1. SAMPLING THEORY AND IRREGULAR SAMPLING 8

The theory has also been given practical impetus from situations in which irreg-
ular sampling arises naturally [143]§VIII. Some examples and pointers to literature
are:

o Geophysics [62, 168, 169, 183]. These problems are usually spatial rather than
temporal. One wishes to collect geophysical data (e.g. electrical resistivity of
the ground, gravitational or magnetic potentials). Such scalar or vector fields
can only be sampled at points on the Earth’s surface (or down holes) to which
the investigator has access. The observations therefore tend to be irregular,
and clustered, because on setting up the equipment the user finds it convenient
to make several sets of readings close by.

e Computer tomography [197]. ‘Tomography’ means ‘picture-cutting’. A 3D
object (such as a human head) is to be analysed from 2D pictures. Each 2D
picture is obtained by passing an X-ray or positron beam through the object
and recording the transmitted image; the procedure is repeated for different
observation angles. As it is generally convenient to scan in spirals, and as the
geometry is polar rather than Cartesian, the observations are not on a simple
Cartesian grid.

e Astronomy [180]. When observing a star, for example, one only has access
to it at certain times of the day or the year (owing to the Earth’s rotation
and orbiting). There are also the difficulties of adverse weather conditions
preventing observations being made, and of equipment faults.

o Laser anemometry [10]. The objective is to ‘seed’ a gas flow with small particles
(in turbomachinery the particle size is less than a micron or so) and illuminate
with laser light (see e.g. [131] for an overview). In laser Doppler anemometry a
pair of crossed laser beams intersect at a spot and interfere to produce fringes.
As a particle (following the gas flow field) crosses these fringes transversely
a sequence of flashes is observed by an optical detector. Particles turn up at

irregular intervals, so one has an irregularly sampled record of a time-varying
flow field.

e ‘Spiky data’ e.g. heart beat [58, 59, 176, 177],[106]§9. In recent years there has
been increasing interest in understanding the pattern of the heart beat from
the point of view of specrtral analysis or of nonlinear dynamics. Electronic
oscillators [218, 50, 112, 130] may also give spiky outputs. In each case the
interspike spacing may be taken as the observed variable. Work on spectral
analysis uses the sequence of spacings as an irregularly sampled time series (if
(t) are the times at which spikes occur, the ordinate is 3(tn+1 — t,) and the
abscissa is %(tn + tn41)). More generally one can observe for a multivariable
system the state variable Y whenever the variable X performs a spike, so that
the sequence of Y -observations is in a very natural way an irregularly sampled
data set.

e Control theory [143]§VIIIA. The objective is to sample adaptively and irreg-
ularly to reduce the volume of data that the controller has to cope with. One
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can imagine that this might work well if the controller needs to be active only
when the system enters a certain region of its state space.

¢ Missing data [65, 66, 67, 68]. Any data stream subject to ‘drop-outs’ gives rise
to a missing data problem. An obvious example is audio restoration, to which
[74] is a fine introduction. The subject of missing data includes the additional
question of how to detect corrupted samples.

In the first three of these applications it is probably fair to say that irregular sam-
pling is undesirable. This is because one wants to reconstruct the continuous-time
waveform, which is assumed to be slowly-varying. When the sampling is irregu-
lar the sampling theorem no longer applies and reconstruction has to use methods
that are computationally intensive. Signal processing tools such as the Fast Fourier
Transform (FFT)—used for spectral estimation, convolution and filtering—no longer
work. It is not just that there is no fast discrete Fourier transform (DFT); it is that
the irregular DFT is not even invertible, so one cannot go back and forth between
time and frequency domains. That is what make convolution and filtering so diffi-
cult.

Summers [209], in his PhD thesis, poses two questions about irregular sampling;:

e What are the disadvantages of irregular sampling (why is it not used very often
in sampled-data systems)?

e What benefits can be gained from irregular sampling?

We have answered the first question in much the same way that Summers does,
though he seems less clear about the consequences of noninvertibility of the DFT.

Let us now turn to the second question, to which the answers have a more pos-
itive flavour. The key point is that by regular sampling one cannot unambiguously
identify frequencies above the Nyquist critical frequency of half the sampling rate.
Signals above that critical frequency get folded back into the interval [—~% fs, -;— fs)
(fs is the sampling rate) and be indistinguishable from those that do in fact have
frequencies in that interval; this effect is known as aliasing. With irregular sam-
pling this restriction disappears. Irregular sampling is therefore described as an
anti-aliasing measure. This has led to two major applications:

e High-speed signal analysers. The best example is the ‘digital alias-free signal
processing system’ (DASP) pioneered by groups at the Institute of Electronics
and Computer Science in Riga (Latvia) and the University of Westminster
(London); see {20, 21] for an overview. It is currently able to identify com-
ponents at frequencies up to 1.2GHz, far higher than the maximum rate at
which analogue-to-digital converters (ADCs) may be operated using today’s
technology—yet its ADC samples at an average rate of only 80MHz. The
Nyquist limit has been exceeded by a factor of 30. This technology presents
formidable hardware problems, in addition to the difficulties of processing the
signal samples. The most serious obstacle in the hardware has been the con-
trolling and recording of the sampling instants to an accuracy of a few tens
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of picoseconds; time-jitter errors seriously reduce the accuracy of frequency
estimation.

e Radar [14] and synthetic-aperture radar [120].

Consider a pulse-Doppler radar, which uses the pulse round-trip time to es-
timate range, and the Doppler shift to estimate radial velocity. The pulse
repetition frequency (PRF) is an important parameter to be set [109]. If the
range information is to be unambiguous for targets up to 150km, a PRF less
than 1kHz is required. But for unambiguous identification of the Doppler fre-
quency a PRF of at least ~100kHz is required (this is because fighter aircraft
radars at X-band (~10GHz) typically encounter Doppler shifts of 60-120kHz).
These constraints are mutually contradictory. One solution is to use medium
PRF (MPRF) schemes, in which multiple PRFs are transmitted [109]; irregu-
lar pulses are also being tried as an opportunity to reduce aliasing in the range
and Doppler domains [14].

Synthetic aperture radar! or SAR is a well-established technique for imag-
ing the ground to one side of an airborne platform. Moving target detection
is a very useful capability for a long range sensor. The combination of syn-
thetic aperture radar and moving target detection has the potential to produce
high resolution ground imagery with superimposed moving target information.
Unfortunately, using conventional imaging data for detecting moving targets
leads to ambiguities in the targets’ positions and velocities. By using a non-
uniform pulse repetition interval, the proposed ground imaging/moving-target
detection radar overcomes this limitation and allows the azimuthal data to be
focused at any velocity of interest, while collecting data at the same average
rate as a conventional synthetic aperture radar. This approach permits the
flexible use of a multimode radar, relaxes the specifications of data acquisition
systems, affords a degree of protection against electronic countermeasures and
retains a large unambiguous range swath, but with the added complexity of
processing the non-uniform samples.

Having said that the Nyquist limit can be exceeded by irregular sampling, which
seems like a very good prospect, we must be clear what class of signals can be unam-
biguously identified from irregular samples. There is a crucial distinction between
spectral analysis and waveform reconstruction.

For signal reconstruction the Shannon theorem does not apply but variants of
it do. First, simple interpolation (low-pass) schemes will only work if the signal
is bandlimited to less than half the average sampling rate. Secondly, and more
substantially, if the Fourier transform (or the spectrum) of the signal is confined? to
a set I of measure B then reconstruction is possible providing the average sample rate
exceeds B and providing I is known. Usually I is a finite union of subintervals®; the
signal is called a multiband signal, I is the spectrum support, and B is the bandwidth

1This paragraph is taken from Legg’s thesis [120].
2We are counting positive and negative frequencies when calculating I and B.
3S0 we do not need any sophisticated measure theory.
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and also the Nyquist-Landau rate. This result was proven by Landau {115, 116] and
has been rederived in an elementary way by the present author [141]). See §2.4.2,
and footnote?.

For spectral estimation, the spectrum of the underlying waveform is uniquely
determined from the spectrum of (an infinite set of) samples, regardless of sampling
rate, provided that an alias-free sampling scheme is used. See [189, 145] in the
first instance, and §2.5.4. With regular sampling, the spectrum of the observations
consists of periodic replications of the underlying spectrum; this gives rise to aliasing,
i.e. the observed spectrum does not uniquely determine the underlying one. With
random sampling, the spectrum of the observations consists of one faithful copy,
and one smeared-out copy, of the underlying spectrum. So regular sampling is, by
definition, not alias-free. As an example, Poisson sampling, in which the sampling
instants constitute a Poisson process, is alias-free.

Let us now consider in general terms the question of how to analyse a multiband
signal, in which the bands are at unknown frequencies. This is exactly the same
problem as is encountered in the DASP system (q.v.), so we shall consider it from
that point of view. Let us assume that technology at present imposes an upper limit
of 1.2GHz, and that sampling is carried out at an average rate of 80MHz. Then
from what we have already said, sampling theory and technology combined impose
the following constraints on the system:

¢ It may unambiguously identify frequencies up to 1.2GHz, but no higher.

¢ It may reconstruct a signal bandlimited to 1.2GHz provided that the signal
does not occupy the whole band 0-1.2GHz; specifically, the total width of its
constituent bands® must not exceed 40MHz (half the Nyquist-Landau rate).

We are not saying that the present system can actually perform such tricks; these
are simply the limits.

Assume that the input signal obeys the Nyquist-Landau constraint. Low-pass re-
construction methods, or simple interpolation, will fail because there are signal com-
ponents at frequencies above half the average sampling rate (40MHz). Multiband
reconstruction theory is useless until we have found I, the spectrum support. From
what we have said about spectral estimation, though, it should be possible to obtain
the spectrum from the samples (provided we used an alias-free sampling scheme).
Then we would have I, and then we could apply the multiband reconstruction the-
orem. Unfortunately there is a problem with the spectrum estimation. Although
alias-free sampling schemes permit unambiguous identification of frequency compo-
nents, they cause the observed spectrum to be smeared so that only the strongest
components are visible. Accordingly one cannot find I with any degree of certainty,
except by making the unrealistic assumption that all the frequency components are

*In [141] the author suggests and shows that as the Nyquist-Landau rate is often a good deal
less than twice the highest frequency present, irregular sampling offers great flexibility in sampling
multiband signals from sensors. The same point is made by other authors [84].

SHere we are only talking about positive frequencies, because the signals are necessarily real-
valued.
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of roughly equal strength. (There is also the problem of inconsistency: the spectrum
estimated from a finite data record (length N) does not settle down as N — o0.) It
is therefore a question of sequentially identifying the frequency components in the
spectrum and filtering them out of the time series. The difficulty there is that the
theory of linear filtering is poorly developed if the data are irregularly spaced. Re-
call that we, and Summers [209], made this point earlier when asking why irregular
sampling is not in greater use in sampled-data systems. Present techniques for this
sequential-component extraction require the components to be sinusoidal so that
they can be parametrised as A coswt + B sinwt, and the parameters A, B found by
linear least-squares [20, 69]. It follows that filtering is a key problem to be solved.

1.2 This thesis: its aims and themes

Aims

Combining questions of sampling theory with those of signal analysis gives the fol-
lowing list of questions. The aims of ‘irregular sampling theory’ are to answer them.

I The aims of this thesis are to help answer these questions.

Q1 How do irregular samples of an underlying waveform relate to that waveform;
for example do they, under appropriate sets of hypotheses, permit unique
reconstruction? '

Q2 Given an irregularly sampled signal, how should we process it?

Q3 How should we generalise common signal processing techniques such as filter-
ing, convolution, model fitting, etc., to cope with irregularly sampled data?

The second two are closely related and cannot really be treated in isolation from
each other. None of the questions is easy to answer.

Chapter 2 fills the need for a concise discussion of sampling theory and signal
analysis that includes stochastic and nonlinear approaches, as well as the areas of
complex analysis and integral transforms that are more familiar to ‘pure’ sampling
theorists. It gives an overview of the (already large) literature on the subject, and
finishes by drawing out some specific technical questions.

Chapter 3 is concerned with Q1, Q2 and Q3. §3.1 looks at specific types of sam-
pling scheme, namely the sampling series associated with certain integral transforms
such as the Hankel transform. It shows that filtering, convolution and system iden-
tification may be carried out using these irregular sampling schemes, provided that
the theory is developed in a consistent way. Next, as there are explicit sampling se-
ries associated with these integral transforms it is desirable to have simple and tight
truncation error bounds for them so that their practical value can be estimated. §3.2
examines this problem for the Jo-Bessel sampling series. Finally §3.3 has a different
flavour. It is also focused on a specific type of sampling scheme—regular sampling
with missing data—and shows that, assuming a simple condition on the sampling
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set L C Z, a signal generated by harmonics® only has to be sampled at points on
L to determine its values at the other integer points. This tells one how an infinite
sensor array may be thinned with no (theoretical) loss in performance. The proof
requires sampling theory for local fields.

Chapter 4 helps to answer Q2 and Q3; it rests on the idea of an underlying
continuous-time harmonic or stochastic process, and so also addresses Q1. It looks
in detail at the notion of ‘generalised linear prediction’ of linear signal analysis,
which rather than attempting to express an observation as a linear combination of
p previous values (with time-varying weights), seeks instead to treat p 4+ 1 consecu-
tive values as linearly dependent. Extensive tests have shown that this is a robust
technique and test results for signals with line spectra and with continuous spectra
are shown. A natural progression of this work leads to the discussion of fast optimal
filtering algorithms, thereby going a long way towards solving what we regard as the
most important part of Q3.

Chapter 5, which is also concerned with Q2 and Q3, shows that signals that arise
from dynamical systems may be processed using nonlinear prediction techniques even
when the sampling is irregular. The underlying idea is to recognise determinism
in a time series and use it to assist in further processing. It is shown that this
substantially improves on linear methods for chaotic signals such as the Lorenz
attractor. We also suggest how nonlinear filters should be constructed.

Appendices cover the derivation of the spectrum of an irregularly sampled signal
(this has been done before but several of the oft-quoted texts [189, 143] contain
crucial errors), and an introduction to some of the ultrametric techniques needed in
the last part of Chapter 3.

The work in Chapter 4 is to be published in two journal papers [133, 136]. Other
papers on the work in Chapters 3,5 are in progress.

Themes

The principal theme in this thesis is the analysis and processing of irregularly sam-
pled data without recourse to explicit signal reconstruction. There are two facets to
this idea, which we now discuss.

o We have already said that in the case of multiband signals with unknown fre-
quency bands, one must not start one’s analysis with an attempt at reconstruc-
tion. This was because we said that reconstruction cannot be accomplished
correctly if there is no knowledge of the spectrum. The first step must be to
find the bands. But there is another objection to immediate reconstruction:
we may not want the waveform. For example we may only wish to answer a
question similar to this, which occurs in radar signal processing:

Is this signal just white noise, or is it white noise plus a sinusoid?

One can answer that question just by running a DFT on the samples. Recon-
struction has no part to play, and it will make matters much worse if a bad
reconstruction (based on erroneous spectrum information) is attempted.

6 Actually the theorem is rather more general than that.
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¢ Suppose that we have a signal processing technique that is defined for continuous-
time signals. This is a very general concept; here is a specific example, the
‘power function’:

@:‘:zH/w 2ty dt  (reN)

Suppose that a sampled signal is given to us, that we know how to reconstruct
the underlying signal from its samples via the function p say, and that we wish
to calculate ©%(z) from the samples. For example, if the underlying signal is
bandlimited to  (frequency units) then p is given by (see §2.1.1)

P (Zn)nez — (t - Z Zn sinc (t — n)) .

nel

It seems labouring an obvious point to say that we simply have to apply p and
then OF :

0¢(= 020) : (2 )nez — / : (Z 2, sinc (t — n)> dt. (1.1)

- ncZ

But there is a tendency’ not to do this, preferring instead the simpler

729 [ "
o¢ . (Tn)nez — (Z T b(t — n)) dt.
~® \nez
The realisation dawns that [ (¢t — n)" dt is meaningless when r > 2. In fact
g(6(t)) never is well-defined except in trivial cases (because it is not a distri-
bution). But pressing on undeterred, the practitioners write g(6(t)) = g(1)é(t)
and are now able to conclude (?)

7
0% : (£n)nez — Z z(n)". (1.2)
nez
This is consistent with (1.1) when 7 = 1, and also when r = 2 remarkably
enough (because the sinc functions are orthonormal on R); but not® when
r > 3.

The reason why the delta-function approach fails is that it ignores the whole
basis of sampling and reconstruction—namely that a continuous-time signal
is uniquely determined by its samples, when certain assumptions hold, via a
reconstruction formula.

This argument might at first appear contradictory to the theme of analysing
and processing data without recourse to explicit reconstruction; but it is not.
The key word is ezplicit. The expression (1.1) is an example of reconstruction
being used implicitly and consistently. If we write down ©¢ as a function of the
samples, and tidy up the algebra, we have avoided explicit reconstruction, and
we have a formula consistent with the ideas we had when we did the sampling.
That is what §3.1 is about.

"Private communications to the present author.
8let £ : t — sinct. Then Of(z) - 0 as r — co. But z, =1 for n = 0, and £, = 0 otherwise.
So the RHS of eq.(1.2) is 1 for all r and so doesn’t tend to 0 as r — co.
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Relation of Chapter 2 to existing texts

Several books on sampling theory have emerged in the past few years and all have
different emphases. Marvasti’s book [143] undertakes an in-depth review of the
theory of zero-crossings and related issues. He also provides an extensive overview of
the literature (particularly applications of nonuniform sampling). Bilinskis’ account
[23] is rather different, concentrating on the advantages that deliberate irregular
or random sampling may have® with regard to aliasing and his is the only text to
do so extensively; his approach is almost to regard uniform sampling as a rather
inconvenient special case. Marks II [127] has compiled a large text in which leading
authorities have written chapters on their various subjects, such as Gabor analysis,
optics, multidimensional sampling, sampling in polar coordinates, and error analysis;
its bibliography is substantial, running to over 1000 references. Zayed’s account [229]
is technical, concentrating on the Shannon and Kramer-Weiss sampling theorems.
Finally Higgins’ superb text [84] is easily the best if one seeks a comprehensive
discussion of sampling theofy written from a mathematical standpoint, combining
insight with mathematical precision to produce a balanced and very readable account
of the subject.

1.3 Notation

As this thesis uses ideas and results from different branches of mathematics and engi-
neering the notation has been standardised; that adopted here necessarily sometimes
differs from that to which specialists are accustomed. The following is not an ex-
haustive list of notation used but is intended to clear up any confusion before it
should arise.

Chapter 2

The Fourier transform is always written in the ‘engineering notation’

X(f) = /°° 2(2)e=2"Itdt

o) = [ X(peisay

—Oo0

as opposed to f(w) = [% f(t)e~“tdt which is usual in the sampling theory liter-
ature. The chosen form is symmetric and more useful for making remarks about
time-frequency reciprocity.

A signal is bandlimited to W iff its Fourier transform vanishes for |f| > W.

A signal has bandwidth B if its Fourier transform is supported on the set I of measure
B. Hence an arbitrary signal bandlimited to W has bandwidth 2W, not W. The
reader should be careful about this.

®—both in the time domain (abscissa) and the ‘amplitude domain’ (ordinate), the latter being
the subject of irregular quantisation levels. Some mention of Monte Carlo techniques is made, but
Hammersley & Handscomb’s fine text [78] is missing from the Bibliography.
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Chapter 3, Section 1

This discusses the so-called K -transform, which would be better described as an
integral representation of a signal. It is

2(t) = / X (u)K (u, t)p(w) du.

K denotes the kernel; f(t), z(¢) etc. denote functions of time with transforms F(u),
X (u) etc.; © and ® are the generalised shift and convolution operators.

Chapter 3, Section 2

7 denotes complex time and its real and imaginary parts are u,v. Hence z = 2(7) =
z(u + iv) rather than the more normal f = f(2) = f(z + iy).

Chapter 3, Section 3

Z, is the ring of p-adic integers (not the rational integers taken modulo p, as it
sometimes means): see Appendix B.

Chapter 4

&% denotes the expectation taken over all realisations of the random process z(t)
(realisation average). &, denotes the expectation taken over time n (time average).
B(t) is a Brownian motion process, i.e. random walk obeying the condition

B * (e} 2 di, tl = t2
E°dB(11)*dB(t;) = { B 0t # 1,
where dB(t;) are increments of the process at times ¢; over an infinitesimal time dt.
The quantity 0% is known as the diffusion coefficient and has dimensions [B]*[T"]~?
where B,T denote the dimensions of the physical variable and of time.
T is the effective intersample spacing (or, equivalently, 1/27 is the ‘normalising
frequency’ playing the role of the classical Nyquist frequency).
z denotes the transform-variable in the z-transform; z = {z,} is a time series.

Chapter 5

T, denotes the intersample spacing t,41 — t,.
Underlining denotes a ‘delay-vector’, i.e. a vector of d consecutive observations
viewed in R



Chapter 2

Overview

2.1 The Shannon (WKS) sampling theorem

2.1.1 Introductory remarks

The sampling theorem referred to here was introduced by Shannon to information
theory [188]. However, the interest of the communications engineer in sampling and
reconstruction can be traced back to Nyquist [156]. The theorem was originated by
E.T. and J.M. Whittaker, W.L. Ferrar and V.A. Kotelnikov. In an extensive review
of various aspects of the Shannon sampling theorem and its extensions, A.J. Jerri
[94] refers to it as ‘WKS’, after these authors. Other reviews have been carried out
by Butzer 30, 31, 32, 34, 38] and Higgins {82, 84].
Shannon’s original statement [188] of the sampling theorem was:

If a function z(t) contains no frequencies higher than W it is completely determined
by giving its ordinates at points spaced 1/2W apart.

Its significance was that for the first time one could see that a bandlimited signal
is uniquely determined by its samples via an explicit formula (which we shall now
derive) and for an explicit sampling rate. Shannon’s proof starts by letting

) . w .
s)= [ Xt = [ X(pesiag, (21)
—oo -w
the second equality holding because X ( f), the Fourier transform of z(t), defined as
oo .
X(H= [ s(eiria

[e.e]

is assumed to be zero outside the range [-W,W]. Next X(f) is expanded as a
Fourier series on the interval (—W, W) as

X(f)=3 cpe?min/2W (2.2)

ne€l

17




2.1. THE SHANNON (WKS) SAMPLING THEOREM 18

and the coefficents ¢,, obtained by Fourier analysis:

_ 1w amifn/2W gp L n
cn_W/_WX(f)e 2 df_mz(ﬁ) by (2.1) (2.3)

We note that c, is essentially z(n/2W), the sample of the signal z at the point t =
n/2W. Finally we substitute (2.3) into (2.2) into (2.1) and perform the integration

to get
n\ . n7 sin(at — nw)
z(t) = m(——) sinc Wt —n) = m(—) —_— (2.4)
% 2w T; a at — nw
with
a=2rW

(a notation which will be used from now on).
One sees from the above proof of the WKS theorem that the functions

B,(t) = sinc (2Wt — n)

form an orthogonal basis for the space of signals bandlimited to W : the spanning
property is provided by (2.4) and the orthogonality follows from that of the Fourier
basis employed in (2.2), by Plancherel’s identity. Note also that B,(¢) is 1 at the nth
sample point and 0 at the others, so all the samples are necessary. Given that the
independent samples arrive every 1/2W and that the bandwidth is 2W, we arrive
at the conclusion that Bandwidth = Information rate (in some sense). This is the
basis of Shannon’s ‘2WT"’ theorem which states that in a channel bandlimited to W
one can only transmit 2WT independent numbers in a time T : see e.g. [188, 193].
Multidimensional analogues, which are of interest because of the different sorts
of sampling geometry and lattices that one can obtain, are given in [49, 197, 84].

2.1.2 Aliasing

For the WKS theorem to hold we require X(f) to vanish outside! [-W,W]. If it
does not, the reconstruction formula can be applied but an error occurs, known as
the aliasing error:

ea) = a(t) - 3 z(ﬂ) sin(at = nr)

nez a at — nw

System-theoretically the aliasing error can be understood as follows. When a signal is
sampled at rate R, the transform of the sampled signal consists of a sum of displaced
copies of the transform of the continuous-time waveform; the displacements in f-
space are multiples of R. If X(f) does not vanish outside the range [~ R, %R], the
copies overlap and the reconstruction process is not able to remove the displaced
copies. It is apparent therefore that only the out-of-band spectral density should

1We assume X to be continuous at +W. This is to prevent X having a delta-function contri-
bution at the ends. For example if z(t) = sinxt and W = 1, then the samples are all 0 and the
reconstruction fails.
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contribute to €4(¢), and indeed the following bound, derived by Stickler [206] in a
less transparent form, has this property?:

w
e <23 [sinkatl [ 1X(f+26W)|d5.
kez -w
For the proof, take the previous equation, Fourier transform everything in sight, and
use the Poisson summation formula, " €?™"* = 5~ §(u — m). (For a discussion
of the PSF, see e.g. [84, 121, 98, 13], and a nice paper by Schmeisser [182].) This
estimate has the merits of vanishing at the sample points (as it should) and being
tight in several nontrivial cases, e.g. when z(t) = %!, Splettstosser [196] gives a
useful overview of aliasing error bounds.

2.1.3 Multiband signals

The discussion on aliasing and derivation of the reconstruction kernel sinc () suggest
a substantial generalisation of the WKS theorem, as follows. Suppose that X(f) is
supported on (i.e. vanishes outside) a set I of measure B < oo (technically this
means the Lebesgue measure, but we shall only be dealing with very simple-minded
sets ) and that sampling is carried out at rate R. First, if translates of I through
all integer multiples of R are disjoint, then there is no obvious source of aliasing.
Secondly, we can write (2.4) as

z(t).z Z z(n/R)ke(t — n/R) (2.5)
n€l

with ke(t) the inverse Fourier transform of the indicator function of I, up to a
factor:

ke(t) = R~ / 1jereftdf.
—o0

This formula is meaningful whether or not [ is in one piece so does it work when the
condition of disjointness holds? Remarkably the answer is ‘yes’; loosely, the proof
consists in shifting the various parts of I through multiples of R, until they lie in
the interval [— R, R], and then applying (2.4); see Higgins [84] §13.

Having established that (2.5) holds we must be clear what the admissible values
of R are, given I. A little thought shows that R must exceed B, the so-called Nyquist-
Landau rate. (It turns out that even if the sampling is irregular the minimum average
sampling rate must exceed B; see §2.4.) An algorithm for finding the minimum
admissible value of R is given by Dodson & Silva [55].

A simple case that admits direct analysis is the ‘bandpass sampling’ of a signal
bandlimited to W; < |f| < W,. In that case the admissible values of R are those
for which no integer n satisfies the inequality nR € (2W), 2W,,) —a well-established
result [172]. Furthermore the lowest such R (Rq say) is 2W,, /| W, /(W, — W})], with
|-] denoting the integer part; in particular if W;/(W, — W;) € Z then Rq is the
Nyquist-Landau rate 2(W, — W;). Provided that R is admissible, we have (2.5) with
sin 2n Wt — sin 2n Wit

Rt '
2And implies the older and better-known result |€4| < 2f|!|>W [ X ()] df.

ke (t) =
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When the sampling is random the reconstruction process is more difficult, but the
choice of sampling rate is more flexible, as we can choose any R > B.

2.1.4 Self-truncating sampling expansions

The concept of a self-truncating sampling expansion was introduced by Helms &
Thomas [81] with the view to increasing the rate of convergence of the sampling
series. Suppose that z(t) is bandlimited to rW, for some 7 < 1, but that samples
are still taken at rate 2W. The kernel3

hm(t) = [sinc

2th] m

is decaying, bandlimited to ¢gW, and is 1 at t = 0. Pick ¢ = 1 — r and apply the
WKS theorem to z(t)hn,(t' — t), which has bandlimit *W + ¢W = W :

z(t)hm(t' — t) = ;m(%) [sinc 24W (t' - énw)]m sinc (2Wt — n)

m

and put t' = ¢ :
z(t) = Zx(é%—) [sinc %(2Wt - n)] " sinc (2Wt — n). (2.6)

This gives a more rapidly convergent series than (2.4). A system-theoretic approach
shows why. The reconstruction process corresponds to multiplication by a gate-
function (1/2W if |f| < W, 0 if not) in the frequency domain, and the discontinuity
in this function causes the impulse response to decay slowly (as t=!). If the signal is
known to have an empty spectrum between (1 — ¢)W and W, the spectrum of the
samples will be empty between (1—¢)W and (14¢)W, and the filter transfer function
can be arbitrary in that band: in particular it can be made so that it drops smoothly
from 1 (at frequency (1 — q)W) to 0 (at (1 + ¢)W). Here the transfer function is
a convolution of gate-functions. A related point is of interest: the reconstruction
kernel is bandlimited to (1 + ¢)W rather than W.

Helms & Thomas then considered the possibilities of adjusting m to minimise the
truncation error, i.e. the error induced by neglecting the terms with |n| > some N.
In the same paper they discussed a contour integral approach for the estimation of
truncation errors (this will be discussed in §2.3) and after lengthy calculations gave
an approximate ‘optimal’ value of m. We shall show here that judicious guesswork
gives the same answer. Near the origin the excluded terms in (2.6) are approximately

Z x(_n_) [sinc ﬂ]m sin 2r W't
2w '

m ™
In|>N

The dominant contribution comes from the lowest value of |n| in the summation,
and is of order (m/Ngn)™ (as sincu decays as 1/mu). This expression assumes its
minimum at (the integer closest to)

mg = Ngm/e

3The same applies if in hm we replace sinc (-) by Ji(#-)/(x-), where J; is the Bessel function.
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and this is the same result as given in [81]. The truncation error is reduced by a
factor of ~ (e”/e)N‘?, which is quite substantial (e.g. N=10, ¢ = 0.5 cause a 300-fold
reduction).

2.1.5 Zhu’s theorem

A so-called generalisation of the WKS theorem has been enunciated by Zhu [230],
namely that even if a signal y = y(t) is not bandlimited to W, it may be recovered by
sampling at rate 2W if there exists an invertible transformation g : R — R such that
gy = g(y(t)) is bandlimited to W. One simply reconstructs gy using the sampling
theorem and then applies g~1. The intention is that g is a smooth invertible function,
which will have to be nonlinear if it is to do something interesting.

Now a nonlinearity nearly always increases the bandwidth of a signal, and one
is led to ask for an example of a bandlimited signal y and invertible g such that gy
has a lower bandlimit than y. An example does arise if y = hz for some bandlimited
z and smooth invertible h. At that point one realises that Zhu’s theorem is stated
‘inside-out’. The practical version runs as follows. Let z = z(t) be bandlimited to
W. Then it can be recovered from instantaneously-distorted samples h(z(n/2W))
by applying A~ and then (2.4).

Like Zhu’s result this is also trivial but it has an important practical consequence,
which is that an instantaneous nonlinearity may be identified and corrected at the
Nyquist rate of the input. Recent work [70] has shown that nonlinearities with
memory—cast in the form of Volterra operators—may also be identified when the
input and output are both sampled at the input Nyquist rate. We shall discuss this,
from the point of view of the Kramer-Weiss sampling theorem, in Chapter 3.

2.2 Kramer’s sampling theorem

2.2.1 Introductory remarks

Looking at the proof of the (WKS) sampling theorem we see that it requires the
following ingredients:

¢ A signal that is transform-limited, z(t) = [; X (u) K (u,t)p(u) du for some ker-
nel K and nonnegative weight function p

e A countable subset {£,} of R, indexed by X say, such that K(u,¥,) are orthog-
onal functions of v on I,

/I K(u, m)" K (u, L)p(u)du=0 (m # n)

Technically we require {K(£,) : n € X} to be an orthogonal basis for L2(I).
¢ An expansion, X (u) = linear combination of the K(u,{,)’s.

Notice that, despite the term ‘integral transform’, X(u) is not obtained from z(2)
by an integral; it is the other way round, and maybe ‘integral representation’ would
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be a more appropriate term. Kramer’s sampling theorem {113, 222] asserts that if
X (u) is zero outside I then z(t) can be reconstructed from its samples z[n] = z(¢,)

by

o) = 3 g JLE @ DK (U, £a)"p(u) du
(t)—nezx ] 1K (u, 8)2p(u) du (2.7)

The proof is identical to that of the WKS theorem (§2.1.1). Indeed to obtain the
WKS theorem from (2.7) we simply put

n

E(f,t)=em0 p(f)=1/2W, I=[-W,W], =0

Other transforms that are encompassed by this definition are the Hankel (Bessel),
Legendre and Chebyshev transforms [228, 7, 42, 40, 152, 99, 93, 94]. For example,
in the case of the Jo-Hankel transform,

K(uvt) = Jo(’ut), p(u) = u, I= [O,b], L, = jO,n/b

(jo,n denotes the nth zero of Jo(t)) and the expansion is

z(t) = i z (]OTn> 20 nJo(bt)

n=1 (jg,n - b2t2)J1 (jO,n)

in which we have used common properties of the Bessel functions [2, 221].

Initially the kernels were taken from self-adjoint (Sturm-Liouville) boundary
value problems, which are mathematically ‘pleasant’ to deal with (eigenvalues real,
eigenfunctions orthogonal, etc.). For example, the Fourier transform comes from the
system with operator

.dv
L(v) = —ioy
and the J,,-Hankel transform from the system with (singular) operator
d*v m?— %
L('U) = _W + t2 v.

See Zayed’s and Jerri’s texts [229, 97] for further details of sampling theorems from
differential operators, and also [85]. Recent work by Annaby [4, 5] concerns more
general sources of transform kernels and their ‘resolvent’ kernels. The question
of what operators are ‘permitted’ remains open. Other work [6, 71, 72] considers
sampling theorems associated with discrete transforms and difference equations.

2.2.2 Further developments

We note first that when X vanishes outside I, it can be obtained directly from the
time-domain samples z[n] = z(£,), by the discrete-time K-transform or ‘DKT’:

(2.8)
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where
wn] = [ 1K (u, ) Po(u) du.
(Jerri [95, 98] derives this for the case of the Hankel transform.) For the proof,

simply compare

/1 X (u)K (v, t)p(u)du= 3

neX

T

[] / : ' .
el /i K(u,t)K(u,%,)" p(u) du.
From (2.8) we have a discrete version of the Plancherel formula:

: z[n]"yIn]
X(u)Y(uv)p(u)du = —_ (2.9
XY @etau= 3 oy )
or (X,Y) = (z,y) for short. Consider now the interpretation of a convolution for the
K -transform. We are used to the standard Fourier convolution being a multiplication
in the transform domain, so we define a K-convolution by [98, 88, 54]

(fo9)(®) = [ FW)Gw)K (u,t)p(v)du
It is also possible to define a K-translation [98]:

ftor) = / F(u) K (u, )K (u, 7)*p(u) du.

Note that on its own ¢ © 7 does not mean anything; © actually operates on the
function f. Some caution is required in the manipulation, for f(¢ © t) does not
mean the same as f(0); also the K-translations do not in general form a group. The
Fourier case is quite familiar, for then the K’s are just exponentials (and they do
form a group), © gives rise to a straightforward translation, and the above equation
simply says that a translation in one domain corresponds to a modulation in the
other. Using the generalised translation we can obtain a rather neat statement of
Kramer’s sampling theorem:

z[n]
z(t) = ——ke(tol,)
2 et o
in which the reconstruction kernel ke has K-transform ly,¢;.

A final point concerns the DKT. For an arbitrary signal z(t), whose transform
is X (u), we have

z(t) = /X(u)K(u,t)p(u) du.
Consider now
K(u,£,)*
K[n]

X*(u) =Y z[n]

neX
Suppose that z is transform-limited. Then X°® and X are identical on I, but not
outside (as X vanishes, but X* doesn’t). In general X°(u) can be thought of as
a convolution of X (u) with a generalised impulse train (array of delta-functions at
certain positions and of certain strengths, which depend on the transform kernel K).
Equivalently, X* consists of generalised translations of X (in the Fourier case these
would be straightforward translations). Using this device Jerri obtains a bound for
the aliasing error of the Jo-Hankel transform {96, 98].
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2.3 Truncation errors and contour integration

All sampling expansions involve infinitely many terms, so one often wants to esti-
mate the truncation error, i.e. the error obtained by taking only finitely many terms,
as is always the case in practice. The earliest workable bound for the WKS expan-
sion was given by Helms & Thomas [81, 224], which apart from being in closed form
has the advantage of offering considerable insight into sampling and reconstruction
problems and providing a general technique by which more general sampling expan-
sions may be derived. See [94] for a review of truncation error bounds, and [35, 83]
for discussion of the role of complex analysis in sampling theory.

We first note that a bandlimited signal is entire (analytic and free from singu-
larity), because it can be written

2(r) = / Y X(pemisrap (2.10)
-w

which is valid for all 7 € C. This incidentally leads to some quite interesting observa-
tions about bandlimited functions: for one, using the Identity Principle for analytic
functions, we see that no bandlimited function can be timelimited too (unless it van-
ishes identically), and that knowledge of a bandlimited function in some interval is
sufficient to define it all over C. As Marks points out ([126], p.257) this second point
can if misinterpreted lead to some alarming conclusions: for example, a telephone
conversation can be considered bandlimited, and so can be determined if we know
only a word or two in the middle (!). See [84]§17, [193], and footnote?.

Returning to (2.10) we see that z is of exponential-type a = 27W, in that
|z(7)] < Ke®l on C. Remarkably the converse is also true, in that an entire function
of exponential type (EFET) must necessarily be bandlimited (the Paley-Wiener
theorem [159]). We may therefore work with EFETs and use methods of complex
variable theory; 7 may be thought of as ‘complex time’. Its real and imaginary parts
will be called u,v.

We sketch the method of Helms & Thomas. The signal z(t) is assumed to be
bounded by M on the real axis, and to be of exponential type, but bandlimited to
[0, W] rather than {0, W], i.e. the signal is oversampled. By a theorem of Duffin
& Schaeffer [57], we have |z(u + iv)| < M cosh rav (if = is real on the real axis), or
|z(u 4 iv)] < Me™ll (if not). We shall use the former, as it makes the integrals
easier in the ensuing discussion. Consider the integral

4Slepian [193] resolves this ‘paradox’ by providing a philosophical distinction between the un-
derlying signal, which can never be perfectly observed, and one’s model for it; concepts of bandlim-
itedness only apply to the model, so the question ‘Are real signals bandlimited?’ is not meaningful.
This seems rather dubious. Consider the question of how ‘unbandlimited’ a time-limited signal
has to be. The answer is ‘Not very much at all’. Indeed if we consider the operators B and T
that bandlimit and timelimit a signal to |f| < 1B and |t| < 3T, we are looking at how close the
eigenvalues of the operator BT can come to 1. The eigenfunctions of BT are the prolate spheroidal
wavefunctions, discussed in a classic series of papers [162, 118, 119, 192, 194], and if the eigenvalues
are Ag > A1 > --- then 1 — X, scales exponentially with —BT'. Slepian states that as copper wires
cannot transmit frequencies above (say) 10%°Hz, a ‘paradox’ must occur. To knock over the paradox

only requires us to allow something in the region of 10729%° of the total signal energy in frequencies
> 102°Hz. Can this really be objected to on physical grounds?
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v

+V

Figure 2.1. Integration contour for
derivation of sampling series.

z(7) sinat
271'1 (r —t)sinar

In = (2.11)

around the box contour shown in Figure 2.1. The crosses are at zeros of sinar, and
the samples at (¢t = nw/a, —N < n < N) are inside the contour.

The sides +U are chosen at zeros of the derivative of sinar. We let V — oo and
can now evaluate the integral in two different ways. First we consider the residue
theorem, and find that

Io = a(t) + E m('f;_ﬂ')( )*sinat — 2(t) - Z (mr) sin(at — nw)

In<N nw — <N a at — nw
which we identify as the truncation error: I = er(t). Secondly we consider the
contributions from each side. On the top and bottom, we see that the numerator
scales as €™V and the denominator as e*V, so these sections do not contribute.
On the left and right sides, |sina7| = coshav and so the contributions from these
sections are bounded by

M]|sinat| [ coshrav , M| sin at|
21|t £ U| Jooo coshav ~ ~ 2acos(rm/2)|t+ U]

(By choosing U to be a zero of cos ar, we minimise the contributions from the sides.)
Writing U = (N + 3)7/a,

M| sin at| 1 1
ler(®)] < 2 cos(rm/2) {[at — (N + )| + lat + (N + %)71’|} (2.12)

We make the following observations:
(a) Convergence. The truncation error bound tends to 0 as N — oo.

(b) Assumptions. z(t) needs only to be an EFET and in L*°(R). To make the
proof of §2.1.1 rigorous requires z(t) to be in L% (and then the sampling series
is absolutely convergent, not just convergent).
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Bandwidths. We require r < 1; indeed the integrals will not converge if r >
1. This gives a succinct justification of the WKS theorem, as follows. The
bandlimit on z gives the rate of exponential growth of z(7) as 27 W; the rate
of sampling R gives the rate of exponential growth of the denominator as 7 R;
for a valid expansion the latter must exceed the former.

Generalisation. One can generalise to arbitrary sampling schemes, by replacing

sin a7 with another function (§(7) say), the zeros of which correspond to the

sample points. The residue theorem gives the Lagrange interpolation formula
5(t)

)=)> z(ty))———5t—— 2.13

"E( ) Z ( n)(t—tn)S'(tn) ( )

n

Further, we may include sampling of the derivatives of z. If S has a zero of
order d + 1, the sampling expansion will contain the value of z(t) at that point
and the values of its 1,2,...,dth derivatives. Indeed the exponential-type of
S(7) is related closely to the density of its zeros, and there is a large body
of work devoted to this matter, including several books (see [171] in the first
instance). The question of what the ‘allowable’ sampling schemes are, i.e.,
those that make (2.13) correct, is a delicate one discussed later in §2.4.2.

Extrapolation. The truncation error bound increases to co at the ends of
the observation interval, suggesting that the formulae given here cannot be
used for extrapolation. Now a bandlimited function can be extrapolated from
past samples (though the problem is very unstable) provided that it has been
‘oversampled’, i.e. sampled at a rate above the minimum rate prescribed by the
sampling theorem. The reason why the above contour integral does not do the
job is that, despite the assumption that z is bandlimited to rW, the sampling
series uses reconstruction functions of the form sinc (2Wt — n), which are
linearly independent when the sampling rate is 2W. The extrapolation requires
an expansion using the functions sinc (2rWt — n), which are overcomplete
(dependent) at sample rate 2W.

Two-sidedness. For arbitrarily good accuracy of reconstruction at a point ¢,
one needs to take infinitely many samples on both sides of . There has been
interest in reconstruction from past samples [39], in which one needs only to
take samples on one side of the point in question. We show in [140] that this

may be achieved by the contour integral method, using a kernel of the form
T'(2)e=*=.

Reconstruction

There is a large body of work devoted to reconstructing signals from nonuniform
samples. In the first two subsections we deal with methods that, despite the use of a
finite number of samples, do produce a bandlimited reconstruction. Other methods,
such as sample-and-hold techniques, splines, and finite-order Lagrange interpolation,

are simplifications of the fundamental sampling theorems, and are discussed in the
third.
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2.4.1 Using the WKS (sinc) kernel

Following on from remark (e) above, we now turn to more general problems of
reconstruction, when the restriction of bandlimitedness is retained but the sample
points assume arbitrary positions. If the bandlimit is W then the signal can be
reconstructed as a linear combination of any of the functions sin a(t — 7,,,)/a(t — 71,)
with a = 27W as before. The 7,,, are arbitrary. Now it is plain that if there are only
a finite number of observations to be interpolated then there are infinitely many
reconstructions of the form

(1) = ng sma(t - Tm) (2.14)

- Tm)
obeying the interpolation condition
z"(ty) = Zp. (2.15)

It has been shown (in [226, 15]; see also [48, 41, 231, 211]) that the minimum-energy
solution, i.e. that which minimises [ |z7(t)|?dt, uses sinc functions ‘centred’ at the
observation points, i.e.

Tn 1= In (Minimum norm).
The result, usually attributed to Yen [226], may be obtained by minimising the

signal energy subject to (2.15), but a rather more elegant approach may be taken,
as follows. Consider two possible reconstructions, z(t) and z°(t), defined by

ori osina(t —t,) _ sina(t — 7y)
z°(t) = ;fnm, z(t) = an—T)

and both interpolating the observation points, so 2°(ty,) = 2(tm) = Zm. Then

002 2 o2_£ o*Sina(Tm_tn)
R R e O M e
i t —t)
= [lel? + lz°]% - Z2Re M os S altm — tn)

ol + "1 - Z2Re €26 =0 s

[l + lz° 1 = 2f|z°|?

Therefore
0 < lz — 2°| = [Jz]|® - [|=°[I?

and z° is the minimum-energy reconstruction. In Chapter 3 we shall show that this
method of proof generalises to the K-transforms. The above derivation requires the
inner product of two of the basis functions:

/°° sina(t — ¢1)sina(t —t;) . wsina(t —ta)
—oo a(t—1t1) a(t—ty) a a(t; —t2)
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This neat result is known as the Hardy integral and its generalisation to the K-
transforms, as mentioned by Jerri [98], allows the minimum-norm proof to go through
in the same way as above.

Elegant though Yen’s result is, it cannot be regarded as a sensible way to re-
construct signals in practice. As we shall see later, low-pass reconstruction is stable
only when the sampling rate is on average higher than twice the highest frequency
present, thereby allowing overcompleteness in the set of ‘basis functions’ in (2.14).
Given then that the ‘basis functions’ are no longer independent, we must expect the
matrix inversion (needed to obtain the ,’s from the samples z, in (2.14)) to be
ill-conditioned (see [225]). One can use singular-value decomposition to identify and
remove almost-zero combinations of generating functions [223]. A more satisfactory
idea is to use a basis set that is irredundant to start with, and that is the key to
methods currently used at the NUHAG group in Vienna University. By considering
the periodic extension of the data and fitting a truncated Fourier series (i.e. using
the transform kernel), the problem reduces to the inversion of a Toeplitz matrix,
which can be tackled by a number of techniques to reduce the computational load.
This can also be viewed as constructing the signal using translates of the Dirichlet
kernel (2.16)—so the distinction between using the WKS (sinc) kernel and using the
transform kernel becomes blurred. Incidentally the idea of using translates of some

parent function to perform reconstruction is implicit in the radial basis approach
(82.4.3).

2.4.2 Using the transform kernel
Low-pass reconstruction

First let us find the reconstruction when there are N uniformly spaced samples z,
(intersample spacing 1/2W) and the underlying signal is bandlimited to W. Take the
interval [-W, W] and identify its end-points. IV equally-spaced frequencies f,, are
marked off, starting at f = 0. The reconstruction is posed as a linear combination
of the functions

B (t) = e¥mifmt,

As the time samples are uniformly spaced the weights can be obtained by the DFT
(because the DFT is invertible) and z"(¢) can be found explicitly as

TP sina(t —t,)
o’ (t) = Z; "N ) et = ) (2.16)

(with sin used when N is odd, tan when N is even). This may be thought of as the
Lagrange interpolant for a function specified at N points evenly distributed round
the unit circle. As N — oo this tends towards the Shannon reconstruction. Note that
the extension of this function, outside the observation interval, is periodic (period
N/2W). A crucial point which will be used again is that the frequency spacing of
the basis functions (2W/N) is the reciprocal of the observation time (N x 1/2W).
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Nonuniform sampling

Let us consider the same situation when the sampling is irregular. In that case we
pose a model of the form

z(tn) = % AmBm(tn)  (1<n<N),  Bp(t)=e¥ifmt (2.17)
m=1

In the previous section we argued that the spacing of the basis frequencies should
be the reciprocal of the observation time T'. This argument was based on regular
sampling, but there are two reasons why it should be true in general. First, over an
observation time T two signals exp(27ifit) and exp(2rifat) differ ‘significantly’ if
and only if | fy — f2| > 1/T (in fact when | f; — f2| is a nonzero integer multiple of 1/T
they are orthogonal). Secondly the reconstructed signal is composed of harmonics
that are integer multiples of the frequency spacing 6f, and will therefore be periodic
with period 1/6f; if §f > 1/T then 1/6f < T and the reconstruction would have to
repeat inside the observation window, whereas the underlying signal z(t) could not
be expected to do this.

Having established that §f < 1/7T', the number of unknown parameters is M =
2W/&f > 2WT. For correct identification of these (by linear least-squares) we
require N > M, and so N/T > 2W. As N/T is the average sampling rate, we have
found that the average sampling rate must exceed the signal bandwidth®. This is in
agreement with the point hinted at in §2.3(d).

Given that we have chosen the frequencies f,, to be equally spaced, we may write
down the least-squares solution to the above problem:

A = A
N

Ay = ZeZWi(s—r)ﬂt"
n=1

N
br — ane—%nr&ftn
n=1

The matrix A is hermitian and Toeplitz and so the computational cost of inverting
it is the square of the matrix dimension (by the Levinson recursion: see [128] for
details of this) rather than the cube, which would be the cost if A were an arbitrary
matrix. There are other methods based on the enlargement of a Toeplitz matrix to
a circulant one (in which case inversion can be effected using the FFT) or conjugate-
gradient methods. The idea can be extended to higher dimensions, whereupon the
matrix assumes block-Toeplitz structure. A full discussion of these issues, and some
examples of their application, is in the papers of the NUHAG group ([63, 64, 169,
207, 208] + references therein).

SRecall that we are defining the bandwidth B as the measure of the support of the Fourier
transform.
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Multiband signals

We can reconstruct a multiband signal in the same way, provided we know where-
abouts in the frequency domain the bands lie. In each band the basis frequencies
must be spaced by < 1/T, so there are > B/(1/T) of them; for stable reconstruc-
tion, N must be greater than this, and so N/T > B as before. Numerical simulation
confirms that this train of thought is justified [141]. This is a famous result proved
in a rather less rustic fashion by Landau [115, 116] and developed by Katsnelson
[105]. Scoular & Fitzgerald [185] consider the reconstruction of real multiband sig-
nals with bands of equal bandwidth using periodic uniform sampling. Greitans [76]
presents an example in which a real signal, with frequencies between 19Hz and 22Hz,
is randomly sampled at an average sample rate R = 17Hz. One sees from this that
B = 6Hz (the signal is real), which is substantially less than R: this explains why
his methods worked well.

Periodic signals

Another situation in which equally-spaced frequency components arise is when the
underlying signal is periodic (and of known period). In that case we can pose the
same model as (2.17), except that now the basis frequencies are multiples of fy (the
fundamental frequency). Again the problem reduces to a Toeplitz matrix inversion.

It is worth reflecting that there is an important information-theoretic difference
between reconstructing a bandlimited signal using equispaced frequencies and re-
constructing a periodic signal. In the first case the number of basis frequencies is
2WT «x N, and although the reconstruction is periodic the repetitions occur out-
side the observation window (because the period is T', the observation time). For
signals of known period (the second case) the number of basis frequencies is 2W/ fo
independently® of N, and the reconstruction repeats (several or many times) within
the observation window. Defining the ratio

. Number of parameters M(T)
lim —
T—o0 Observation time T

as the information rate, we are led to the correct conclusion that the information
rates are 2W for the first case and 0 for the second.

Sampling sets

The question that we are considering is this. Suppose that a signal 2 of bandlimit W
is supplied. What are the admissible sampling sets, i.e. those sets of time instants
that permit reconstruction? We have justified that an average sampling rate > 2W
is required, but have been a little vague on questions of sufficiency. It is quite a
subtle question and there are several related questions of uniqueness and of stability.
There are two ways in which one can examine it. First, we can consider the canonical

8Provided 2W/fo < N of course; otherwise the problem is underdetermined.
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product with respect to the sample points,

S(t)ztk[nl(1— %)

(where k is the number of samples at the origin), and apply the method of contour
integration to obtain a sampling expansion; we must then ask what conditions must
be obeyed by the set {t,} for the Lagrange interpolant (2.13) to be correct.

The second approach is more subtle, and goes as follows. There is no difference
between reconstructing the signal z and reconstructing its Fourier transform X.
This can be uniquely determined only when X(f) lies in the space generated by the
functions exp(27ift,). If we make the further assumption that z € L?(R), so that
X(f) € L*(—W,W), then we are looking for a generating set (or Riesz basis, if we
do not wish for overcompleteness) for L2(—W,W).

In this paragraph we shall for simplicity take W = % It is clear that the set
{t. = n} is admissible. It seems fair to assume that migration of the samples by
a small amount should not affect the admissibility of {t,}, and a famous result of
Kadec [103] states that provided that each sample moves by less than some upper
bound < %, admissibility is preserved. A generalisation by Avdonin [8] asserts that
only the average displacement (in a well-defined sense) has to be less than %. This
has been an active area of research for some time and some important results have
been obtained by Beutler [15, 16]. He raises an interesting question about sampling
in which only past samples are available, i.e. at 0,—1,—2,.... For such schemes an
average sampling rate is not well-defined, and although this is a set of uniqueness
(no other signal of bandlimit W agrees with z(¢) at those points) it is not a set of
stable reconstruction (small changes in = produce large changes in the reconstructed
signal). Recent work includes generalisations to LP(R) [86, 220], sampling at complex
time instants [219], and multiband signals [105, 123, 124, 187); see also [186]. Voss
[220] provides a good overview.

2.4.3 More general reconstruction techniques

It is apparent from the above discussions that although reconstruction is possible us-
ing various techniques, those for general irregular sampling are not computationally
straightforward and require large matrix operations.

This has led researchers to investigate approximate reconstruction of signals. In
principle one can distinguish between two types of generalisation: (i) the underlying
signal is still assumed to be bandlimited but the reconstruction does not have to be,
and (ii) the underlying signal is assumed only to be ‘slowly-varying’. Given that we
wish a reconstruction algorithm to be stable to small unbandlimited perturbations,
(ii) is more commonly supposed.

Marvasti ([143], §VII) gives a good overview of techniques. For example we have
spline reconstruction ([3, 53] give introductory texts and Butzer [33, 37, 47] give
examples of use in a sampling-theoretic context). Spline reconstruction is called
a local technique, which means that at any given point only finitely many basis
functions (or, equivalently, parameters) contribute to the reconstructed signal there.
Simple Lagrange and sample-and-hold interpolators are also a popular choice.
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Multidimensional signals (or functions, as they would normally be called) present
a difficult problem: from the point of view of bandlimited functions one can use
Fourier series, as discussed previously in this section and in [208]. A more flexible
alternative, which has gained much popularity in recent years, is the use of radial
basis functions (RBFs), to which Powell [163] provides an overview. The RBF
approximant to a function from a metric space (X,d) to R is

= i A(d(t, c;) (2.18)

in which the c¢; are known as ‘centres’, placed in X', and 7 is some smooth nonlinear

function such as a Gaussian (r — e~2""), though In(1 + r2), r3, v+ 72 and r2Inr
may also be used. These have been extensively used in neural networks [200] and in
chaotic time series prediction (§2.7). This is partly because one can place the centres
in the domain of definition of the function. Recent work by the present author [137]
suggests that RBFs outperform bandlimiting approximators when the function to be
approximated is not smooth; in particular, he has shown that the delta-function ap-
proximant, rather than being a sinc function, is of the form « sin(7t/7)/ sinh(7yt/7),
where T is the intercentre spacing and v relates to the ‘radius’ of the RBF. This of
course decays very much more rapidly than the usual sinc function.

Now that the assumption of bandlimitedness has been relaxed, it is important to
consider whether some minimum sampling rate is necessary for accurate reconstruc-
tion. It goes without saying that there is one, and these reconstruction techniques
always work best at low frequencies and fail when the signal fluctuates significantly
between the sample points. In rounding off this section, we point to the inevitable
conclusion that, with the exception of the reconstruction of multiband signals with
known bands, discussed in the previous section, no general technique is capable of
accurate reconstruction when there are significant components above the Nyquist
limit.

2.5 The spectrum

2.5.1 Introductory remarks

The power spectrum, or power spectral density (PSD), of a continuous-time signal
is defined as the formal limit
2

P(f) = lim —

T
i —2mift
T—oo 2T ./;T :E( )6 dt

and it is used for assessing the spectral content of signals that have infinite energy
(such as stationary stochastic processes, or signals generated by chaotic attactors).
The power spectrum of a sampled signal, P°(f), is usually defined as the formal
limit N — oo of the periodogram function

N .
Z 2}”6—27”ﬂ"
n=1

2 2

1

N-1
—27miftn
or —— Tnp€
2N Z n

n=—N

(2.19)

1
PY(f) =
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though modifications to take irregular sampling into account can be made [129].
Given that they have been defined independently of each other, it is necessary to
investigate how P(f) and P*(f) are related. When the sampling is regular with
rate R, P°(f) consists of equispaced translates of P(f), spaced by R, in the same
way that the Fourier transform behaves under sampling. In particular if z(¢) is
bandlimited to W and W < }R then the copies of P(f) do not overlap and P*(f)
determines P(f) uniquely; but if W > %R then this is no longer so.

When the sampling is irregular the position is more complicated but the conclu-
sions are essentially the same, namely that P*(f) is the convolution of P(f) with a
function related to the sampling scheme [24]:

P* = P xSC. (2.20)

By substituting a delta-function for P(f) we can treat SC(f) as the spectrum of a
sampled process taking the value 1 at each sampling instant, i.e. it is the observed
spectrum of the constant process. Two interesting case are as follows.

With additive-random sampling, in which the intersample spacings t,41 — ¢, are
i.i.d. as p(t), the function SC is obtained in terms of p(f) = [5° p(t)e~2"/t d¢ as

SC(f) = 8(Ef) + Cont Re(i—i—%g—;) + Y hab(f-fo).  (221)
fa#0

(Here % is the mean intersample spacing. The operator ‘Cont’ signifies that the Re (+)
term is taken as continuous at the singular frequencies f = f3 where p(f) = 1; in fact
these must generate delta-function contributions, which have been explicitly brought
out in the equation as the last term. Note that 0 is always a singular frequency, and
it generates the first term. A full discussion is given in Appendix A.)

With jittered sampling the sampling instants vary from their mean sample posi-
tions by t, = (n + s,)f, where s, are i.i.d. as ¢(t). Then SC is obtained in terms of
Q1) = %2, q(t)e=2mis dt as

SC(f) = 1= lg@ N> +1d@EN> Y 6@f —n). (2.22)
n#0

It is interesting to compare these two sets of results. In general, SC for the
additive-random scheme will contain a delta-function at the origin and a continuum
(the second term in (2.21)) but no delta-function train. This is because p(t) will
only give rise to nonzero singular frequencies when it consists of delta-functions:
however, such a possibility cannot be ignored, because that is exactly what happens
for regular sampling”. On the other hand, SC for the jittered scheme will in general
contain a delta-function train; the exceptions occur precisely when § vanishes at all
nonzero integers®. One might guess that, as the delta-function train in SC is respon-
sible for aliasing, that additive-random sampling is better than jittered sampling at

"A union of periodic sampling schemes, with commensurate periods, is the only way in which
this can occur. So regular sampling is a pathological case!

8For 100% uniform jitter, i.e. when g(t) = 1 for |t| < 3 and 0 outside, this does occur, as § is
the sinc function.
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suppressing aliases. This is true, and corroborated by some of the simulations in
§4.6; see also [23].

An important point that is not emphasised in the literature is that the average of
SC (over the real axis) is 1. This means that we cannot construct a sampling scheme
in which only one copy of P(f) comes through into P*(f); we must have unwanted
copies as well and these two examples (of which the second is additive-random) give
the extremes:

e Regular sampling: SC(f) =3, 6(tf — n).
e Poisson sampling: p(f) = (1 + 27if?)~!, and SC(f) = 6(tf) + 1.

In the first case the unwanted copies give rise to aliasing; in the second they are
smeared out to a uniform level. Let us give P(f) a spike, or other pronounced
feature, at frequency fo. In the first case we cannot find fy uniquely from P*(f); in
the second case we can. But in the second case the dynamic range is much reduced,
and in a plot of P*(f) we would only be able to find the strongest features.

We have therefore identified three fundamental principles: irregular sampling
suppresses aliases in a line spectrum; additive-random sampling does this better
than jittered sampling; irregular sampling causes spectral smearing, reducing the
dynamic range.

2.5.2 Practical difficulties

The periodogram function Pg( f) suffers from three problems:

(a) Inconsistency. For stochastic signals, Py (f) /# P°(f) as N — oo. This has
been known for a long while (see e.g. [161]) and is a problem regardless of the
sampling. A simple demonstration constructs FFTs of samples of white noise.
As the sample length is increased the spectrum retains its jagged appearance
rather than settling down to a smooth (constant) PSD estimate [128]. This
can be mitigated by averaging periodograms of different length [148]; see also
[26]810.

(b) Leakage. This means simply that a spectral component at frequency fo ap-
pears at other frequencies too. Taking a finite amount of data corresponds to
multiplication in the time domain by a gate-function, or convolving the Fourier
transform with a sinc function, thereby giving each pronounced spectral fea-
ture a train of ‘sidelobes’. By multiplying the data by a tapered ‘window
function’ that decays to 0 at the edges, the sidelobes decay more rapidly (a
corollary of the Riemann-Lebesgue lemma) but the resolution is reduced. If
the data length is less than about 32 points, windowing gives hopeless results.

(¢) Smearing. This is a consequence of irregular sampling and can be summarised
quite neatly as: P*(f) # P(f). Even for a bandlimited signal, P*(f) and P(f)
do not agree on the Nyquist interval. This problem is often called leakage, as
well as (b), but unlike the effects in (b) it cannot be cured by windowing. This
is because a good estimate of P°(f), which is what the modifications in (a)
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and (b) are trying to achieve, is not a good estimate of P(f). The only way to
get back to P(f) is to deconvolve P* with SC and although several methods
have been proposed (see [25]) this is a very ill-conditioned problem [180] made
worse by the fact that estimating P°(f) is difficult enough in the first place
(problem (a)).

Scargle [180], who discusses these issues well (except (c), which he describes
as leakage and attributes entirely to use of the ‘raw’ periodogram, rather than to
the sampling), mentions in his introduction that despite all these problems the raw
periodogram is still a good and quick method of detecting a sinusoid in noise, and
that seems a sensible attitude to take. It is this that led him to discuss an alternative
periodogram, which we mention next.

2.5.3 The Lomb spectrogram. Detection

An alternative spectral estimator, similar to the DFT, is the Lomb spectrogram
[122]. This exploits the ability of the Fourier transform to detect a sinusoid in white
additive noise. If we decompose {z,} thus,

T, = Acos(27 ft,) + Bsin(27 ft,) +up,
sn(f)

in which, for each f, the parameters A, B are adjusted so as to minimise Y, |u.|?,
and define

P*(f) " 3 [sa( NI,

then we have a function whose peaks indicate the main frequencies. Indeed one can
use this definition to give a statistical test for the presence of a sinusoid in white
noise, because for each f, P°(f) is after appropriate normalisation exponentially
distributed with unit mean [180]. Computational aspects are discussed in Numerical
Recipes [165].

It is worth mentioning in general terms why the periodogram (or any of its
relatives) is a useful device for detecting sinusoids. Suppose a complex-exponential,
Ae?™ifot is observed in white noise of variance o2. From a sample of size N form
the spectrum; the height of the spike corresponding the sinusoid is N A% whereas
the average level produced by the noise is at 0% and that produced by the spectral
smearing of the sinusoid is somewhere between 0 and A? depending on the sampling
scheme. The ‘relative spike height’ on a logarithmic scale is therefore

NA?
10 10g10 ;2-(::‘47) dB

so the acquisition of more data leads to a more pronounced spike. This effect is
known as coherent gain; the periodogram owes its existence to it.
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2.5.4 Alias-free sampling

The concept of alias-free sampling was introduced in a classic paper by Shapiro &
Silverman [189]. In it they derived, for jittered and for additive-random sampling,
results similar to those given in §2.5.1, working mainly with the sample autocorre-
lation,

[ o]
P i= EnTaTpim = EV° 8 Tpim = /0 R(7)pm(7)dT,

where p,, is the pdf of (f,4m — ). They also considered the difficult problem of
determining R(-) from the r’s. If no two distinct autocorrelation functions R; s
could generate the same set of r’s the sampling scheme was said to be alias-free.
The problem reduces to one of establishing whether the functionals p,,(7) form
a ‘complete set’, i.e. allow R(:) to be found. Remarkably one does not have to
know the times at which the observations were made(!), as r,, depends only on the
ordinates. A particular case is that of Poisson sampling, in which the p,,(7) are
(up to a few factors) the Laguerre functions and, coming as they do from a Sturm-
Liouville problem, are complete®. So Poisson sampling is alias-free, and the above
construction using Laguerre functions allows R(:) to be obtained. This property is
exploited by Masry in the construction of a consistent spectral estimate for Poisson
sampling [145, 146].

Shapiro & Silverman found that jittered sampling is not alias-free. They also
found that additive-random sampling is alias-free if §, viewed as a function from R
to C, is injective (‘one-to-one’), and is not alias-free if p, viewed as a function from
the lower half-plane to C, is not injective. As examples, the I'(v, A) pdf is alias-free
provided that A > 0 and v < 2, whereas the rectangular pdf is never alias-free.

Since then their work has been reconsidered and extended by various authors.
Strangely, nobody seems to have pointed out, in the additive-random case, that
their equation ([189], p.236) for P*(f) with additive-random sampling is incorrect;
one might also criticise that in the jittered case there is no explicit statement of
SC(f). We have resolved these issues in Appendix A, and discussed the precise
form of SC in the additive-random case. Beutler & Leneman [18, 19, 17] and Masry
[144] have extended the definition of ‘alias-free’ so that one can define a sampling
scheme as alias-free relative to a family of spectra. Masry [145, 147] points out
that Shapiro & Silverman’s definition of ‘alias-free’ is deficient in that it does not
not necessarily imply that P(f) can be consistently estimated from a finite set of
samples; he strengthens the definition to suit. Bilinskis & Mikelsons [22] concentrate
on signals with line spectra and argue that it does not matter too much whether a
sampling scheme is (rigorously) alias-free, if it succeeds in suppressing aliases over
a substantial spectral range. This is the basis of our discussion at the outset, and
in Chapter 4 we shall feel free to use a variety of sampling schemes.

It cannot be emphasised too strongly that ‘alias-free sampling’, as defined here,
has nothing to do with sampling rates and nothing to do with signal reconstruction;
it is purely an exercise in identifying the spectrum. That is why no mention of
Nyquist limits has been made; Poisson sampling, for example, is alias-free for all

®Specifically Y un(7)un(t) = 8(t — 7) where u, are the normalised eigenfunctions.
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(nonzero) sampling rates. In information-theoretic terms there is a great difference
between knowing the spectrum and knowing the waveform: it is only for a very
special class of signals—those consisting of sinusoids in observation noise—that the
problems of spectral analysis and signal reconstruction become equivalent.

2.5.5 Final points

Of all the problems associated with spectral analysis of irregularly sampled data,
the smearing problem is the most difficult one to solve and it has important conse-
quences, not just for signal detection. The fact that a sinusoid no longer transforms
to a simple spike means that there is no inverse Fourier transform available to us,
and that we cannot go freely between time and frequency domains, as we are used
to in classical digital signal processing (DSP). This has serious repercussions, one
of which is that designing filters for irregularly sampled data has to be done in the
time domain; as Marvasti points out, this requires a time-varying impulse response
([143], p.6), and Bilinskis states that filtering is one of the major unsolved problems
in ‘irregular DSP’ ([23], §11).

2.6 Linear models

2.6.1 Introductory remarks

We have already seen that when the bandwidth of a signal is small compared with
the sampling rate, the signal has, in effect, been oversampled and consequently is
predictable, at least over a short range. This has been addressed in the sampling-
theoretic literature in recent years [36, 39, 140]. The principal thrust of this research
has been to construct one-sided sampling series, as opposed to the bi-infinite sum
(2.4). Its main disadvantage is that the notion of bandlimitedness is not always
very helpful, particularly in the case when the signal consists of several narrow-band
components.

The statistical, or stochastic, approach is subtly different in that it associates the
notion of linear prediction with that of modelling and parametrisation; the prediction
coefficients, central to the description of a signal, give a tighter representation than
a simple bandlimit. (If the fit is poor, the fitting procedure will say so.) The
abundance of signals that are susceptible to parametric spectral analysis has led
to a vast literature on linear prediction and spectral estimation, to which good
introductions are [125, 107, 128]. Some specific examples are radar clutter (see e.g.
[142]) and audio signals (see e.g. [74] and [77]§8).

The autoregressive model celebrates its seventieth anniversary this year but,
judging by the continuing steady stream of papers, it is not showing its age. It was
introduced by Yule [227] to find periodicities in the sunspot data, on the basis that
a sinusoid A cosQt + Bsin Q¢ is linearly predictable from two equispaced previous
observations:

Ty = —A1Tp—-1 — Tp-2, ay = —2cos 6t

and that to account for prediction errors one needed an additive ‘disturbance term’
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on the RHS. After a further generalisation the autoregressive, or AR(p), model was

born!?:

P
Ty = — Z AjTrn_j + Epn.
i=1
The term {¢,} is an uncorrelated Gaussian process with variance o2.

Linear processes are usually analysed in the 2-domain, with 2z defined by 2 =
e2™f8t. this change of variable maps the real frequency axis to the unit circle in
the z-plane. Let A(z) := 1+ Z;?:l ajz~3. Then an AR process is generated by
passing white noise into a system of transfer function 1/A(2). The zeros of A, («;)
say, are called the poles of the model; for the process to be meaningful it must be
stable, which means that the poles must be inside the unit circle. In the special case
when all the poles tend toward the unit circle, and 02 — 0, the process becomes
completely coherent, or harmonic, and consists of p tones at angular frequencies ;
given by a; = exp(i;6t). In that case the prediction errors are zero; we call this
the coherent case. The spectrum of an AR process is given by

2 2
a; |z}=1 o;

) = dmaars 1450z

which is continuous (on account of the fact that the model is assumed to hold for
all time) and may have a large dynamic range irrespective of the size of the data
set used to construct the AR coefficients. By contrast the periodogram (q.v.) is a
polynomial in 2, and only has well-defined features when the coherent integration
time is large.

A further generalisation is the ARMA(p, ¢) model, in which a ‘moving-average’
term is introduced on the RHS:

|4 q
Tp = — Z(Ij:l?n_j + Z bjen_j
i=1 7=0

This gives rise to a system function that contains zeros (as well as poles).
There are several excellent accounts of AR and ARMA modelling, for example
(107, 125] and the texts [128] and [77].

2.6.2 Coefficient estimation and maximum-entropy

The coefficients can be estimated either from the sample autocorrelation function
(Yule-Walker method) or by minimising the prediction error power defined as

2 2
N P p
1 "
E(x,a) = —— E T, + E ajTn—j| + {Tn—p+ E AjTr—ptj
AN -p) S j=1 i=1

1%Some authors correctly distinguish between the process, which is a sequence of random variables
and written X, = E;zl a; Xn-j+e€n, and the observations, which are written in lower-case letters.
However it is more usual, particularly in the engineering literature, to use the same symbol for
both. This should not cause confusion.
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with respect to the AR coefficients in an optimisation that can be either constrained
(Burg) or unconstrained (Covariance). The constraint in the Burg method is the

Levinson recursion, which relates the pth-order model ag’_’ .)‘p to the (p — 1)th-order

model aﬁ’ _;1_)1 by a single coefficient py,, the reflection coefficient:

a§~p) = ag-p_l) + ppag,p_—;l)* (1<7<p), o) = p,.
This is a byproduct of the Toeplitz matrix inversion in the Yule-Walker method;
it guarantees that the model is stable whenever the reflection coefficients are all
inside the unit circle!’. The second |- |? term is the backward prediction error
energy, occurring because if {z,} obeys the AR model with coefficients a; then its
time-reverse obeys the model with coefficents aj.

The above method is the maximum likelihood formulation (if one takes forward
prediction errors only and assumes Gaussian driving noise), for one is in essence
maximising the probability of observing the given dataset w.r.t. the AR parameters.
In recent years the theory of entropy has led to new insights into the AR problem.
The entropy of a process is a measure of its information content or ‘disorder’. For
a discretely sampled Gaussian process the entropy (more correctly the entropy per
sample) is given in terms of the power spectrum as

1/26t

Entropy = 26t / In P(f) df
1/26¢

which (rather nicely!?) is simply In o2 for a stable AR process, independently of the
AR parameters. The maximum-entropy approach to linear prediction seeks to find
the PSD with maximum entropy (or the whitest spectrum) that agrees with the data
as far as the first p autocorrelation lags. Solving by means of Lagrange multipliers,
one finds that P(f) must be the reciprocal of a polynomial in 2. See [77]§7.2.4 and
[107] for good discussions. The solution is then the same as that of the Yule-Walker
method. In information-theoretic terms it corresponds to constructing the unknown
autocorrelation moments in a way that ‘makes fewest assumptions’.

An important issue that arises when fitting models is what order to use. It is
not difficult to see that the quality of fit improves with the model order p, for the
residual variance 62[p] decreases. One therefore imposes a penalty on high-order
models that is severe when the available data length is short. Two such methods
are the Akaike Information Criterion and Minimum Description Length criteria :

AIC[p] = Nné&2[p]+2p

MDL[p] = NInéXp]+ (InN)p (2.23)

though there are others (see [128]). Unfortunately none of them works particularly
well on short data sets [217], which is the field in which AR modelling has most to
offer.

Straightforward consequence of Rouché’s theorem in complex analysis [205].

12Cepstrum lovers will recognise it as the zeroth cepstrum coefficient. The cepstrum of AR (and
ARMA) processes is a particularly elegant function of the z-plane poles and zeros, carrying the
implication that these estimators are fundamentally logarithmic.
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2.6.3 Irregular sampling

As the AR model is a discrete one it is not surprising that the early work on irregular
sampling concentrated on the missing data problem. There are three approaches, as
follows. Let K be the set of indices n for which z,, is known.

e Method of Nuttall [155]. Here F is calculated only over the available prediction
errors; the nth forward prediction error is available if and only if n,...,n—p €
K. The problem with this method is seen when the missing data points are
scattered; in that case, the number of available prediction errors may be too
small.

e Maximum-entropy method [153, 154] using the autocorrelation function (ACF).
Here the autocorrelation lags R..[k] are estimated from available pairs:

Zl z‘; Titk
1
in which the ’ symbol means that the only values of 7 included are those for

which both j and j + &k are in K. The AR coefficients can then be found by
maximum-entropy.

R.z[k] = (Missing data problem)

¢ Expectation-Maximisation (EM) algorithm [92, 191]. E is quadratic in x and
in a, so it can be minimised iteratively, w.r.t. the AR coefficients keeping the
unknown data fixed, then w.r.t. the unknown data keeping the AR coefficients
fixed.

In the special case when the ACF is known explicitly, there is the following option:

o Irregular ACF method [56]. Occasionally the ACF of the continuous-time
process is given at irregular intervals, e.g. when the data come from an inter-
ferometer or autocorrelator. Then the maximum-entropy method is used to
obtain the AR spectrum.

For more general sampling these 'methods cannot be used and the following have
been suggested:

¢ Reconstruct, resample and use standard methods [149). This is acceptable
only when the signal is oversampled, as is often the case in geophysics.

¢ Continuous-time methods [101, 102]. Here the continuous-time all-pole model
is posed:

(Cy(®)dt = dB(), L= b (%)p_] :

Defining x(t) = [y(t) --- y®»~V(¢)]T and m = [1 0- - -0] we can write the above
stochastic differential equation as

-j—t)_g(t) =B -x(?) +e(t)
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for an appropriate matrix B, and the observations as y, = m - x(¢,). The
Kalman filter (see e.g. [80]) is a predictor-corrector scheme that converges to
an estimate of the state vector x even though only one component is observed.
Given a set of putative coefficents b = (b;) one may thus derive a likelihood
function lik(y|b) and maximise it w.r.t. b. In principle this method should
produce very good (‘optimal’) results but in Jones’ experience [101, 102] there
were problems because the function b — lik(y|b) was ‘ill-behaved’, having
a large number of local maxima. This is clearly at variance with the regular
case, in which the prediction error function is quadratic in the unknown AR
parameters.

o Generalised prediction error method [132, 134, 136, 139]. This is ours (see
Chapter 4). Briefly the idea is to replace the prediction of z, from p previous
values with a generalised concept of prediction!3:

2 2

2
P
<2

=0

P

n,. .
Z T Tn—j
i=0

P
> s
i=0

The LHS is the generalised prediction error energy. In the coherent case (q.v.)
it can be arranged to be zero. It can also be made to coincide with the conven-
tional definition when the sampling is regular. It was conceived for the missing
data problem; subsequent work moved to the continuous-time AR model a la
Jones, and then the two were combined. Although a nonlinear optimisation is
required to find the model poles, the performance surface appears smooth and
remarkably free from spurious minima.

2.6.4 Linear models and linear filtering

The AR and ARMA processes are closely linked to the theory of linear filtering. A
finite impulse response (FIR) filter!'* with input {z} and output {y} is defined by

p
Yn = Tn + ) QjTn_j
j=1

from which it is clear that passing an AR process with parameters (a;) through an
FIR filter with coefficients (a;) gives white noise. The catch is that this filter is not
the optimal filter for separating an AR process from an additive combination of it
and another process. To see why, consider the case in which the AR process is a
constant function (p = 1, a; = —1); the optimal filter for the removal of this is a
notch filter at DC. But the FIR filter given by (p = 1, a; = —1) does not have a
notch characteristic. To solve the problem properly one needs to write down the
Wiener filter (which amounts to assuming Gaussian statistics and doing maximum-
likelihood). Indeed, let z(t) and s(t) be uncorrelated signals, of known spectra P.(f)

13By replacing < with < one would simply obtain the Cauchy-Schwarz inequality.
See [150] for a good introduction to the practicalities of the subject.
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and P;(f), and let their sum be given as z(t). The Wiener filters for estimating z
and s from z have, respectively, transfer functions

1 1
and

1+ Ps(f)/ P=(f) 1+ Po(f)/ Ps(f)

which are acausal and IIR in general. This is derived in many texts, e.g. [77, 104,
160]. What happens if Ps(f) is unknown and P;(f) is known only up to a factor,
though? This does not seem to have been discussed at all, and we show how to
resolve the problem in Chapter 4.

When one tries to filter irregularly sampled data, the literature is even less help-
ful. Apart from the Savitzky-Golay smoothing filter (a simple device based on local
polynomial fitting [179, 165]) and the ‘top-hat’ filter implicit in signal reconstruction
(wherein frequencies under the Nyquist limit are passed and the others rejected),
which are both specific types of filter, the only attempt to construct linear filters
seems to have been made by Bilinskis and co-workers {23]. Their idea is to construct
a ‘notch-pass’ filter by performing a discrete convolution with a sinusoid. (This is
based on the elementary observation that in continuous time one would construct
such a filter by convolving with a sinusoid.) There are several difficulties with this
method: as an FIR filter, it requires a large number of taps to achieve a narrow
passband; the transfer function is ill-defined on account of sampling irregularities;
and one cannot construct stop-band filters. Chapter 4 will show how to deal with
these problems and others, using the generalised prediction error approach.

2.7 Nonlinear models

There exists a large class of signals that are not well modelled using Fourier, or
linear, methods, but are susceptible to nonlinear prediction. An artificial example
is data from the Hénon map, z, = 1 — 1.4z2_, + 0.3z,_2, which is observed to be
very broad-band and has a featureless power spectrum [184]. Indeed by examining
the spectrum one would not be able to distinguish it from white noise, but of course
the time series is (in principle, at least) perfectly predictable, unlike noise. For such
signals, nonlinear prediction provides a much better method of attack than linear
techniques: but how likely are such signals to occur? Suppose that the signal arose
from observing a dynamical system

dyldt = f(y) f:M—M

at periodic intervals every 7 (time units). Here M is a D-dimensional compact
differential manifold. This is a structure that looks locally like RP, in the sense that
a small open set in M is homeomorphic (i.e. in 1-1 correspondence via a continuous
map) to an open set in RDP. For example a torus is a compact differential manifold
of dimension 2.

Suppose—and this gives the complications—that we do not observe y(t) € M
explicitly, but instead observe it through a smooth function g : M — R. Also let
¢ : M — M be the map that takes y to where the dynamics send y after time 7.
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We may construct!® the set of delay-vectors
E={{g¢7y 9¢7% -+ 9o~ ] :ye M)}
and give the mapping that performs this construction a label, ® say. So
®:y— g7y 997y - g7y
We have a picture, in which the bottom branch has yet to be supplied:

2. M

M
3| 3| (2.24)
ECR. & E
We now employ the following theorem of differential topology [210, 90].

Theorem 1 (Takens Embedding a la Huke) Let M be a compact manifold of dimen-
sion D. Let ¢ : M — M be a diffeomorphism satisfying the following constraints
(which are generic):

e ¢ has a finite number of periodic points with period < 2D

e if y is a periodic point with period k < 2m then the eigenvalues of ¢* at y are
distinct.

Then for all g in an open dense subset of C*(M,R), the map & : M — R? given by

iy [g¢7'y g7y - g¢7]T
is an embedding if d > 2D + 1. O

A simple justification is that it is a generic property of D-dimensional manifolds
that they do not intersect in (2D + 1)-dimensional space: in other words if they do
intersect, an arbitrarily small perturbation in some direction will break the intersec-
tion. By saying that the constraints on ¢ are generic, we mean that if the constraints
are not so for a particular choice of ¢ then they will be true for one arbitrarily close
to it. We can think of a non-generic ¢ as being ‘unlikely to occur’. As an example
of the use of the terminology, a real (n x n) matrix is generically nonsingular, if we
give the space of (n X n) matrices the Euclidean topology of an; in fact the set of
nonsingular (n X n) matrices is open dense in R™.

That ® is an embedding means that it is smooth and invertible. As E is by
construction the image of ®, we have that ® gives a smooth 1-1 correspondence
(diffeomorphism) between M and E. Define now the following map to complete
the bottom branch of the diagram (2.24), marked by ‘?’, and make the diagram
commute:

K=%¢d1.E—E

15Tn composition of maps we shall not always put in the parentheses, so g¢ 'y is short for

9(67 (¥))-
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which is a diffeomorphism because ® and ¢ are. Obviously invertibility of ® is very
important: otherwise K is not well-defined. The map ® would not be invertible if
the embedding dimension d were too low.

Having established that a suitably well-behaved K exists, we can now apply it
to time series prediction. Write

In = gy(t + nT)3 X" = [ Tpn-1 Tp-2 "~ Tp-d ]T

so that {z,} form a time series and

K :.&n '_)Xn+l‘

The ‘top’ component of K therefore takes x™ to z,; write H for that function. Then
z, = H(x") (2.25)

and the time series is predictable using the smooth function H.

From the dynamicist’s point of view the importance of Takens’ theorem is that it
says that under generic conditions M and E are diffeomorphic, and time-discretised
dynamics on M are manifested in E. From the practitioner’s point of view the
figure d = 2D + 1 is salient, as it is small enough to make practical the estimation
of H from experimental observations. (Indeed d can often be made smaller: for
the Lorenz and Rossler systems [212], in which D = 3, we find that d = 4 suffices,
though the embedding theorem says that an embedding exists for d > 7.)

Consequently these methods have stimulated a vast range of applications in-
cluding fluid dynamics, electronic engineering, biology, medicine and economics (for
good overviews see e.g. [158, 106]). It has led both to a reexamination of old data
sets and to the construction of new experiments, with the aim of detecting deter-
ministic behaviour in time series previously thought to be random. The subject is
often informally referred to as ‘chaotic time series analysis’ (for good overviews see
e.g. [1, 199]).

The function H can be estimated from a time series by local or global functional
approximation [60, 43, 61, 1]. A particularly attractive idea is the radial basis
method, because H is not defined on R? but rather on E which is a subset of it, and
so one can choose centres in that region. In particular we may choose delay-vectors
from the time series as centres, and the following approximation to H can be posed:

zn & H(x™) =) \p(lls" - 7).
J=1

The (c;), which are just integers, index the centres.

In practice we must be able to choose the (c¢;) and find the (A;). The latter
problem is accomplished by linear least-squares, in which for a block of training
data (a:n)iv the following cost function is to be minimised:

2
N m
Error= Y (%—ZI\W(H&"—XC’H)) = X b|?

n=d+1 1=1



2.7. NONLINEAR MODELS 45

where A is an ((N — d) x m) matrix with entries A;; = ¥(||x' — x%]|) and b is an
((N —d) x 1) vector with entries b; = z;.

We wish to find the centres that have smallest effect on the error; the corre-
sponding basis functions are then removed from the basis set (which corresponds
to removing those columns from A). This can be done independently of finding
the ‘best’ weight-vector A, or selection and parameter estimation can be combined.
The second approach is discussed in detail by Stark [200]. We shall discuss the
ideas underpinning the first approach from the point of view of radial basis function
fitting.

The ‘independent’ approach consists in choosing the centres first and then finding
the (A;). Choosing a large number of centres at random from the training data is a
good way of ensuring that the domain of the function to be fitted is well covered with
centres. Many of the centres, however, will be too close to each other and this causes
the matrix A to become ill-conditioned. A simple idea for eliminating this problem
is to ensure that no two centres are less than some predetermined distance [195]). To
evaluate ‘closeness’ in the context of two identical radially-symmetric!® functions
f1,2 centred at ¢ € R?, one may use as a yardstick the value f;(c?) [= fa(c!)).
Any quantitative conclusion depends of course on the functions in question. From
our experience it appears that for a Gaussian RBF f : x — e~ ;'“’”1'9”2, for which
f(c) = 1, a centre should be rejected if the value of its associated basis function at
any of the previously chosen centres exceeds 0.9. This figure of 0.9 is independent
of w.

It is now a question of finding A. In principle one can solve the ‘normal equa-
tions’, ATAX = ATb, which give the solution to the minimisation of || AX—b]|2, by
Cholesky decomposition of ATA. A preferable approach if the basis set is degener-
ate (or almost so) is singular-value decomposition of A. This expresses A = QDPT
with Q, P orthogonal, and D diagonal with elements §; > 63 > -+ > 6, > 0 (m is
the number of columns of A). The normal equations can then be cast in the form
DPTA = Q"b. Now those elements of PT\ corresponding to the smallest of the
(8;) cannot be reliably found because errors in the ‘data vector’ (Q'b) are greatly
amplified on division by the small ;5. SVD sets these elements of PT to zero.
To determine which of the (6;) should be regarded as ‘too small’, a tolerance C is
set by the user and the integer r (the rank) satisfying é, > Cé; > 6,41 is found.
The (r + 1)th, (r 4+ 2)th, ..., mth elements of PT are then set to zero, while the
others are obtained in the obvious way by dividing each element of Qb by its cor-
responding §;. Then the matrix P is applied to obtain A. As a rule C should reflect
the accuracy of the data; if it is too small, the solution vector A will be unstable to
small perturbations in b. We usually use a value in the range 107%-107° in these
sorts of simulation.

Recursive schemes for updating the (};), i.e. those suited to sequential data, are
discussed in [199].

All this was on the subject of regular sampling. There is less information on how
to construct nonlinear models when the sampling is irregular, apart from some inter-
esting work by Sauer [175, 176, 177] on reconstruction from interspike intervals. In

16\We mean that the functions are identical in all particulars except for where they are centred.
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Chapter 5 we shall discuss methods of fitting nonlinear models to irregularly sampled
data; this relies on a generalisation of Takens’ theorem, due to Stark, Broomhead
and coworkers [202, 198], that incorporates the intersample spacings.

2.8 Summary

We conclude by making some general observations on the general theory of signal
sampling and techniques for analysing irregularly sampled data. The latter part of
the discussion is slanted towards the development of the thesis.

e Signal reconstruction requires some sort of minimal (average) sampling rate;
in the ‘low-pass’ case this is twice the highest frequency present and in the
‘multiband’ case it is the bandwidth (the measure of the support of X(f)).
This is justifiable on information-theoretic grounds. Equivalently we can talk
about a Nyquist limit (half the average sampling rate). If a signal is bandlim-
ited to less than that frequency, it is oversampled and low-pass reconstruction
is possible. If not, low-pass reconstruction will fail.

e Sometimes reconstruction is given by a sampling series. In that case further
processing should be done in a way consistent with that sampling series rather
than through an injudicious application of delta-functions. This raises some
interesting questions about how to perform convolution, filtering, system iden-
tification, etc., from discrete samples.

e Signals with a few unknown narrow frequency components above the Nyquist
limit present a difficult problem as, with the exception of multiband recon-
struction techniques, all reconstruction relies on oversampling. And multiband
reconstruction is not very helpful either, because that requires the spectrum
support to be known. It is interesting because the situation of unknown nar-
row frequency components is that to which regular sampling has most to offer
as an anti-aliasing device, and it is not well-served by existing techniques.

¢ Estimation of spectra is an important problem, made difficult because of the
smearing associated with alias-free sampling schemes. However there is in
principle no Nyquist rate associated with spectral estimation: an alias-free
sampling scheme in principle permits correct identification of the underlying
spectrum regardless of sampling rate. This distinguishes spectral estimation
from reconstruction, as does the following observation. Testing the hypoth-
esis that a signal has a pronounced frequency component, against the null
hypothesis that it is white, can be done without reconstructing the signal;
moreover, attempting reconstruction without knowledge of the spectrum is
virtually guaranteed to give the wrong answer.

e The above discussion has identified a class of multiband signals, which consist
of a few widely-spaced narrow frequency components at unknown locations.
(Such signals abound in Doppler radars [14, 120].) The information content of
such signals is low, on account of their low bandwidth, so by Nyquist-Landau
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they can be sampled at a rather leisurely rate provided that the sampling is
done irregularly. The problem then is to identify such signals and, since Fourier
techniques are likely to be quite useful, circumvent the spectral smearing prob-
lem. Present algorithms for this require the components to be sinusoidal (zero
bandwidth) [20, 69] so that they can be sequentially extracted by least-squares
techniques as their frequencies are identified in the Fourier spectrum.

o It is clear that autoregressive modelling would be most helpful in this task,
because the characteristic AR spectrum consists of a few narrow spikes. This
should allow the construction of a wide class of bandpass and bandstop filters
to allow extraction of narrow-band spectral components in the time domain.
However at present these techniques are insufficiently well-developed.

e The concept of nonlinear prediction should be applicable to irregularly sam-
pled signals, and would probably be the best method of analysing signals of
nonlinear dynamical origin.



Chapter 3

Developments in sampling
theory

This chapter is divided into three parts. In the first we explore the properties of the
generalised translation operator for the K-transforms and use it to derive results
on minimum-energy reconstruction; then linear filters and the discrete convolution
product are discussed; then the results are extended to general Volterra operators
and it is shown that a Volterra operator can be identified from input and output
samples taken using the same sampling scheme (even though this superficially gives
rise to aliasing ambiguities). In the second section we discuss the contour integra-
tion method and derive some bounds for the truncation error for Bessel sampling.
The third section also deals with discrete sampling and some results are derived
concerning the identifiability of signals from samples taken at integer points; the
theorems proved are difficult using real or complex analysis but, remarkably, are
quite straightforward if p-adic power series are used.

3.1 Developments on Kramer’s sampling theorem

3.1.1 Minimum energy reconstruction formula

We consider K-transforms as discussed in §2.2 and the reconstruction of a function
whose K-transform is finitely supported on the interval I. By Kramer’s theorem
such a signal could be represented as

2(t) = 3 w(ty) L DK@ L) P du _ o~ b)) (4 gy

ex JIE(u,6)?p(u) du 2= s(n]
which requires the samples to be taken at time instants t = £,,. Suppose however
that the observation points t, are arbitrary, so that samples z,, are given at time
points t,. A reconstruction is required. Noting that the function ke(t © 7) has
K-transform 1,e7K (u, 7)* which is zero outside I, we expect to able to reconstruct
z using a more general form,

z"(t) = Z Enke(toT), z™(tn) = Tn

nex

48
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in which the 7, can be chosen arbitrarily. The &, are then no longer the samples,
but depend on the t,, 7, and z, through a matrix equation that is easily seen to be

K{=x, Kpnn= ke(tm ©7).

We wish to choose a specific set of 7, and, in common with the regular case, it
can be shown that the solution giving rise to the reconstructed signal of minimum

energy
|2(4n)[?

K[n]

EEN R OOLEDS

nex

is obtained by putting 7, = t,; and in that case K will be hermitian.
The proof proceeds on the same lines as Chapter 2 §2.4. Consider two possible
reconstructions, z(t) and z°(t), defined by

2°(t) = Y & ke(tots)
z(t) z Enke(toT,)

and both interpolating the observation points, so x°(tm) = 2(ty) = Zyn. Then

lle = 2°)1? = llz* - l=°[1?

—2Re ZZ [] ménke(l, 0ty,) ke (lr0m)

rexm,n

na

—2Re Zg:;gn ke (tm © Tn)
= —2Re Z{mxm
= —2Re Z{ *£2 ke (tm Oty)

2 9Re Y Y — [] 0*£° ke (£y © 1 )* ke (€, © 1)

rexm,n

= —2|=°||".

Therefore

0< [le - 2°l1? = [Jo|f® ~ [l=°]?
and z° is the minimum-norm reconstruction. We have only to justify the step
labelled (©) above, namely the identity

2w

ke(€ @tl) ke(f @tz)— ke(t1 @tz)
rEX []

which is a discretised and generalised version of the ‘Hardy integral’ discussed in
§2.4. This result is a trivial consequence of Kramer’s sampling theorem. Indeed,
consider a function y(t) = ke(t ©t3), and expand it from samples {t = £, : r € X} :

y(t) = ke(toty) = Zﬂke(f ot ke(tol,)
reX
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Now put t = t;, and note that ke(t; ©£,) = ke (4, ©11)*.

This is a very general method of proof not unknown in mathematical physics
(for example it underpins the proof of the Minimum Dissipation Theorem in fluid
dynamics, which states that of all velocity fields with the same boundary conditions
the one with the smallest dissipation is the Stokes flow). More generally, these ideas
stem from the following algebraic observation: if V is a vector space and U is a
subspace of it, and we are to find the smallest element in a given coset v + U of
V/U, then that element is z° € v + U satisfying z € v + U = (z,2°) = (z°,2°).
When the result is applied, U is the space of functions that vanish ‘on the boundary’
(in our case, this means signals that vanish at the sample points). Performing the
minimisation using Lagrange multipliers is less elegant.

3.1.2 Linear filtering

We consider again a transform-limited signal z(t), with transform X(u) that is
assumed to vanish for u ¢ I. In (2.2) we stated that a linear filter can be regarded
as a multiplication in the transform domain:

W) =(@e B = [ XWF@K (o) du (3.1)

Because X (u) vanishes outside I, we may as well assume that F(u) does too (this
is rather an important point). Then we may expand X and F as the DKTs (2.8) of
their corresponding time samples:

mo_zjruﬂfzwe “ K (u, £)" K (u, t)p(w) du.

~ k[r]x[s]
Upon sampling we obtain the nth sample y°[n] = y(¢,) as

Z Qnrsz[r] f[s]

Onrs /K@E)K@Z)AWZ@Mwu. (3.2)

k[r]x]s] n[s]

If in the discrete time domain we implement the filter by

= Z Qnrsz[r] f[5] (3-3)
r,s
then we have a commuting diagram

2(t) L y(t)

in which V¢ is (3.1) and V¢ is the discrete convolution (3.3).
We may note that in the Fourier case Qnrs is 1if n = 74+ s and 0 if not, so (3.3)
reduces to a normal convolution of the samples of z and f.
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3.1.3 Convolution products. Example

The formula (3.3) might well be referred to as the discretisation of the convolution
product, but that name has already been given to the following result (see e.g. [98]):

(fogn =y {Eitot) (3.4)

for transform-limited f and g. The proof is straightforward, for by definition the
LHS is

/ F(u)G(w)K (u, t)p(u) du
I
which on expanding F(u) using the DKT evaluates to

60K o 3 Kl ),

now the integral is performed and the result drops out. Alternatively we can use
the time-discretised Plancherel identity (2.9).

However we must remember that g(t © £,) is not a sample of g, i.e. it is not
the same as g(t — £,). Equation (3.4) does not, therefore, give a direct expression
for the continuous-time convolution in terms of the samples. It is therefore only a
partial discretisation; such nomenclature, if adopted, would be quite good because
the DKT was applied only to F(u) in the above derivation, whereas to obtain our
full discretisation (3.3) we applied the DKT to both F(u) and X (u) in (3.1).

As an example let us consider some (very nearly) bandlimited functions that
have closed-form Jp-Hankel transforms, namely the following class:

—1/\ Q A+1P a 1 A, A=1_—ou 3.5
a T W HF()‘)au e (3.5)

where P) is the Legendre function, Re A > —1 and Rea > 0. (See [75], §6.621, and
footnote!). Suppose an input signal z(¢) and a filter function f(t) have parameters
Az, g etc.; then it is clear from the form of the Hankel transform that their convolution
y(t) will have parameters Ay = A; + Ay — 1, oy = a; + ay. For a specific test the
following have been chosen:

Signal A a
T 20 50
f 30 50
Yy 49 100

!Proof of (3.5). Write down the Jo-Hankel transform of the RHS. Replace the transform kernel
Jo(ut) with its integral representation, f 02" exp(iut cos ¢)dé/2x. Do the u-integration. Disregarding
a few numerical factors one is left with foh (cos B +isin 8 cos )"*~1d¢ /27 = Px(cos8), the integral
representation of the Legendre function, with cos§ = a/+/a? + 2. See [75] §8.411/§8.711.
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The bandlimit has been selected as 6 = 1 (see §2.2.1), i.e. A"(u) and F{u) are assumed
to vanish for « > 1. The left-hand diagrams below show the time signals and the
right-hand diagrams their transforms.

0.6 5
0.5
4
0.4
03 3
0.2
0.1 2
-0.1
0.2 0
0 5 10 15 20 25 30 0.2 0.4 0.6 0.1
vs. ( A(u), F{u) vs. u
(/(/) shown dotted) {F{u) shown dotted)
0.5 6
0.4 s
03
4
0.2
3
2
0.1 !
0.2 0
0 5 10 5 20 25 30 0.2 0.4 0.6 0.8 1
y{t) VS. t Y{u) vS. u

Figure 3.1. Test functions and their Jo-Hankel transforms.

The functions x{/) and f{:) were sampled at the zeros of Jo(t), i.e. at / = Ton, for
1 < n < 10. Next the discrete convolution (3.3) was employed to find the samples
y~n]; of course, the sum had to be truncated (1 < r,5 < 10) as there were only
ten samples. Finally, the ‘true’ continuous-time waveform y;:) was sampled and its
samples, y*[n], compared with the calculated samples y“[n]. The results are not
quite the same, because two approximations were made; (i) assuming x and / to be
transform limited, when they are not, and (ii) truncating the convolution sum. One
can see from the plots of the signals and their transforms that the truncation error
is small and that the aliasing error is minuscule. The next figure shows the extent
to which y~ and y~ differ.
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y"[n] — yA[ril

0.002

Figure 3.2. Error in truncated convolution product.

The error is consistently ~ 2% oi y{t)., which seems to be a reasonable result in view
of the short data record.

3.1.4 Nonlinear operators; the Volterra operator

We now consider a more general form of filtering, again for bandlimited inputs. The
filter will now be nonlinear, though, and the diagram that we wish to establish lacks
symmetry because y/s) is no longer transform-limited:

x{t) i)
I A i
z[7z] y[n\

The filter that we shall consider is, in the first instance, a quadratic Volterra
operator. (The higher-order case follows directly.) This is an operator capable of
introducing nonlinearity and memory, and in continuous time it is given by

yi{t) = JJ KD, T2)x{t - Ti)x{t - T2)dri dT2

in the classical (Fourier) case. By writing #,x in terms of their Fourier transforms,

we have JJ
yi{t) =

General discussions on identification and correction of nonlinear distortion can be
found in a series of publications by Tsimbinos & Lever [214, 215, 216]; the derivation
we present here is a faster, more transparent, and more general version of Frank’s
proof [70]. Frank carries out his working in the frequency domain, which means
that to see what happens when the output is sampled (the right-hand branch of
the diagram) he needs to invoke the Poisson summation formula, comphcating the
proof.
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Let us now develop this second expression in the same way as before, generalising
first to the K'-transform:

y(t) = /I /I H (ur, u2) X (u2) X (u2) K (u, £) K (2, £)p(1)p(u2) duy duy
and then using the DKT to go back to the time domain:

y()= > hlsi,sole[ri]z[rs]x

T1,72,81,52
/1 /I K (un, s, K (g, 6, K (ur, £, ) K (ug, €, )" K (w1, 1) K (3, ?)

p(u1)p(u2) duy duy
K[s1]K[s2]K[r1]K[ra]

Notice as before that because X (u) vanishes outside I, we may as well assume H (-, -)
to vanish outisde I x I. That is why we have been able to use the DKT to expand
it in terms of a two-dimensional array of time samples. Sampling each side and
recalling the definition of the tensor @ :

y’[n] = Z Qrnrys1@nrys; b1, 82]2[r1]2([r2]

T1,72,51,52

thereby coinciding with the ‘obvious’ discrete definition.
We can now write down the results for the higher-order Volterra operators. The
general Volterra operator is given in continuous time by

y(t) = Z—:o /I CH@X(w)... X (un)p(u) dus ... dur,

(where p(u) := p(u1) -+ - p(urn)) and in discrete time by
y[n] = z E Qnr131 . ‘Qnrmsm hm{S]x[TI] o 'x[rm]-

m=0r,sez™

In each case m is the order of the nonlinearity and A™ its corresponding Volterra
kernel.

3.1.5 Discussion

We have shown that a continuous-time Volterra operator induces a discrete-time
operator in a natural way provided that:

e the input is transform-limited;

e the input may be reconstructed from samples via the symmetric K-transform
reconstruction formula;

e the output and input are sampled using the same sampling scheme.
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For the regular case, this just means that input and output are sampled simulta-
neously and at a rate exceeding the input Nyquist rate. One might expect that to
identify a continuous-time operator would require the input to be sampled at its
Nyquist rate and the output at its Nyquist rate (which might not even be finite).
But that is not the case—a point that has been appreciated for some time, but not
fully understood until recently (hence Tsimbinos’ extensive work [214, 215, 216] and
Frank’s paper [70]).

What does this tell us about signal reconstruction? It is apparent that if a sig-
nal y(t) has been obtained from a known bandlimited signal z(¢) by an unknown
Volterra-type nonlinear distortion then the continuous-time waveform y can be re-
constructed from samples taken at the Nyquist rate of z, which will generally be
smaller than that of y. The reconstruction would be effected as follows. From the
discrete samples (z¢, yd) we identify the discrete Volterra operator V¢, and having
found its kernel we apply the integral transform to obtain V¢. Then V¢ is applied
to z(t) and the result is y(¢). We conclude that reconstruction of a signal not
bandlimited to W has taken place from samples taken every 1/2W. This is true,
but extra information has been used, and that extra information is contained in z.
Not every unbandlimited signal arises as a distortion of a bandlimited one. This
is common sense, and information-theoretically it is clear that a distortion cannot
increase the information rate even if it does increase the bandwidth, so the fact that
reconstruction of y is possible at the input Nyquist rate is not surprising after all.

A related issue which should not be confused with the theory presented here is
the correction (not identification) of nonlinear distortion. Consider the following
problem. A signal z(t) is bandlimited to W. It is then passed through an invertible
memoryless nonlinearity, and then through a bandlimiter (bandlimiting to W). If the
nonlinearity is known but the input is not, does the bandlimited output determine
the input signal? The answer is ‘yes’ [114, 117, 173, 174] and the proof is based on
the Contraction Mapping Theorem. The extension of this result to nonlinearities
with memory is more delicate, because a Volterra operator does not necessarily
have an inverse (for example it could simply be a linear filter). We suspect however
that the case of the instantaneous nonlinearity should generalise to the symmetric
K-transforms.
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3.2 Truncation error bounds for Bessel sampling

The Shannon, Kramer-Weiss and other sampling expansions involve infinitely many
terms. In practice one can only take finitely many, thereby giving rise to a truncation
error; it is useful to have a convenient upper bound for this. The work in this section
could be viewed as giving a truncation error bound for the Bessel sampling expansion
as obtained by the Kramer-Weiss sampling theorem, but we shall not be using that
theorem; we only use contour integration (§2.3). An elegant upper bound for the
contour integration kernel allows a neat truncation error bound to be derived.

3.2.1 Derivations

As in §2.3 the objective is to obtain a sampling expansion by applying the residue
theorem to the integral

10 S0,
fo= 27rif(7‘—t) S(T)d ’ (3.6)

taken over the box contour (Figure 2.1) used in §2.3, and a truncation error bound
by estimating the contributions from the left- and right-hand sides of the contour.
This requires a lower bound for |S(7)| on each of those sides. The assumptions used
here are that:

e The signal z(¢) is real on R and bounded by M.
e The samples are taken at the zeros of the function S(t) = Jo(bt).
e For 7 € C z(7) is of exponential-type 7b < b.

Then as discussed in §2.3 we have |z(7)| < M coshrbv (v = Im 7).
We can use the residue theorem to write down the following sampling expansion,

-1 N .
In = er(t) = o(t) - ( 3 +E) 2don/b) Jolbt) (3.7)

n=—N n=1 J(’)(jO,n) bt — jO.n ’

which is simply the Lagrange interpolant. If we are to make any progress at all
towards a truncation error bound, we must find lower bounds (or workable ap-
proximations) for S(7) = Jo(b7) on each section of the contour. To estimate the
contribution from the upper and lower sections we can use an asymptotic lower
bound for Jg, which is that for any § > 0

|Jo(u £iV)| > 0 vV 5 oo
Choosing § = (1 — r) we have

|z(7)/Jo(bT)| < Merbv/e(l_é)bv = Me™%V
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which ensures that these contributions vanish as V — o0o. Next we consider the
sides. We now use the asymptotic approximation to the Bessel function, which in
fact gives a very good approximation to |Jo(2)| on the line? Rez = jg , :

2
|Jo(2)| = e cosh(Im z) Rez =jo, (n#0) (3.8)
The validity of such an approximation is confirmed by the following experiment, in
which the following two functions,

2
M;(2) = |Jo(2)], My(z) = e cosh(Im z) ,
were computed along the contour given by Rez = jg .. The percentage approxima-

tion error for M; by M,
My — M,

M
was plotted. The results are shown here for n = 1,2, 3.

x 100%,

error /%

0 5 10 15 20 25 30
Imz

Figure 3.3. Error analysis for (3.8).

Having established that (3.8) is in fact an excellent approximation (improving as
n — 00), we bound the side contributions by

M|Jo(bt)| [ [|b7|/?\ coshrbv
221 Jooo \|T—t|) coshbv

and it is not difficult to show that, provided t is real, the parenthesised term is
maximised on the real axis, taking the value bjé}](rz/ l7o ;v — bt|.- Replacing it with

this constant value and performing the integration gives the upper bound

.11/2 11/2

dv, T =djon/b+iv

)| < ; ]
|€T( )l = 2\/§COS(’I"7F/2) ‘bt+](l],N| Ibt—JE)'N‘

2By convention jon (n # 0) is the nth zero of Jo, and jj ,, is the nth zero of Jj.
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If different numbers of samples are taken on each side of ¢t = 0, the variable N
in the braced expression needs to be altered; the left- and right-hand terms come,
respectively, from the truncation in the left- and right-hand summations in (3.7).
Remember that we have only assumed that z(t) is an EFET bounded on the
positive real axis. This has two advantages: first, it leads to an estimate for |z(7)|
that does not require knowledge of the Hankel transform of z, and secondly, z(t) does
not have to be even. Having said that, we can consider two special cases, namely
when z(t) is even or odd, and the latter allows us to improve our error estimate.

Even z(t)

We combine the integrals along the left- and right-hand sides of the contour to obtain

J (bt) 27 z(T) o .
er(t) = 0 /_oo VAT dv, T = jon/b+iv

and then estimate its magnitude:

M| Jo(bt)] /°° b1/2|7[3/2\ coshrbv
)| < ——= dv,
ler(?)] < J2r v

|t2 — 12| / coshbv

T= j('),N/b +1v

Again the (-) term is maximal when v = 0, so we simplify the integral as before and
arrive at the following expansion and bound (which is essentially (3.9)):

M3kt 1 To(bt)]

N, 2(jo,n/b) 25onJ0(bt)
OEDY = V2cos(rm/2)|5hy — b2

=1 J(I)(jO,ﬂ) (b2t2 - jg,n)

(3.10)

Odd z(t)

Combining the integrals along the left- and right-hand sides of the contour as before,
we obtain

Jo(bt) 2t f(’l‘)
er(t) = oo ( =) To(or) 2

T= j(',|N/b +iv
and then estimate its magnitude:

M|tJo(bt)] o [ |br|/2 \ coshrbu
ler() < =2 [ ( )

|72 — 2| ) coshbv

dv, T =Jon/b+iv

Again the () term is maximal when v = 0, so we simplify the integral as before and
arrive at the following expansion and bound:

M /T4t bt Jo(bt)]
= VZcos(rr/2) |y - 020

2(t) - Z z(Jon/b) 2btJo(bt)

Jo(Jon) (b%t2 — 35 ) (3.11)

n=1

The error bound is 0 at the origin (despite the lack of a sample there), which is what
it ought to be if z is known to be odd.
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3.2.2 Simulations

The simplest examples of a function x/r) satisfying the requirements enunciated at
the beginning of this section are the sine and cosine. Then

_ " cos(w;0,7/6)2;5'0,TiJo(6t)
A A sin(wjo,n/6) 2btJo{bt)
“« h JoUo.n) bh"-Jln

with truncation errorsgiven by (3.10) and (3.11) with # = 1. Of course, these
results arevahd only for r = w/6 < 1.
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Figure 3.4. Truncation errors in the reconstruction cos ujr and sin cut from samples
taken at the zeros of Jo(-). Here »>= 0.51.
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3.2.3 Discussion

It is apparent that the truncation error bounds work well and are fairly easy to
calculate. (In particular the truncation error tends to 0 as N — oo, a vital property
of any sampling series.) The key step is the tight lower bound for the Bessel function,
which is valid only along the lines Rez = jj ,; by producing a bound of the form
‘envelope X cosh(Im z)’ we can follow the calculations through just as in the regular
case, and produce similar results. Notice that the form of the lower bound is rather
similar to the upper bound derived by Duffin & Schaeffer [57]. (For the Bessel
function this would be |Jo(z)] < cosh(Imz).) This is only to be expected. We
only need a lower bound of |Jo(2)| in regions of the complex plane where |Jo(2)],
viewed as a function of Re z, is locally maximal (this allows us to get a tight bound
on the truncation error); and a tight lower bound for local maxima of a function
will necessarily coincide with a tight upper bound for that function. So, rather
paradoxically, in searching for lower bounds for use in this problem it is sensible
to consider the form of the upper bound. In fact the general form of the lower
bound is observed for other types of sampling, e.g. paired sampling [138] in which
S(t) = cosat — cosB. Similar results apply to the sampling expansions of higher-
order Bessel functions, in which S(t) = (bt)7"J,(bt).

The fact that = : C — C needs only to be a bounded EFET is useful because
it is more flexible than having to deal with the Hankel transform. For example the
sine and cosine, which fulfil our requirements, do not have measurable Jy-Hankel
transforms; they therefore do not meet the conditions of Jerri [100, 98] or Rawn
[170] both of which require a bound to be placed on the Hankel transform of z. A
useful spin-off of the results given here is that a self-truncating sampling series can
be derived without any fuss. Going through the motions, if = has exponential-type
rb< band ¢=1—r then

. gb ™
t —(t -1
z(t) [smc m1r( )]
is bounded on R and of exponential-type b. So it obeys our requirements and can be

expanded as a sampling series in which the sampling instants are the zeros of Jo(bt).
Putting t' = t gives

)=z (‘lobﬂ) [sinc i(bt - jo.n)] "’ Jo(bt) (3.12)

nZ0 mm J6(Jo,n)(bt — jon)’

which enjoys more rapid convergence than the series (3.7).

3Jerri’s result has been published but not with proof:

ler ()] < 2K \/(2/7) In(1 = 2r) =3 | Jo(88)/ Jo (o)l (156, + 8l ™" + 136,n — 01| ")

where .
K= / w? X (w)’dw.
0

This is a bizarre formula. For a start there seems no reason why K should be finite, and the
mysterious In(-) term explodes when 7 = 1, without good reason.
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3.3 Ultrametric sampling theory

3.3.1 Basic ideas and a sketch theorem

This section discusses discrete sampling theory in a new way and gives, amongst
other things, a rather nice result on the identifiability of sinusoids from samples
taken at integer points. To start with let us consider in general terms the current
relationship between discrete sampling and continuous sampling theorems.

The WKS and Kramer-Weiss sampling theorems make the obvious connection
between discrete and continuous signals, using an assumption of transform limit-
edness. In §3.1 these have been used to derive consistent methods for processing
discrete data. A continuous-time model may be used to describe properties of the
samples. For example the autoregressive model is essentially discrete and its clas-
sical form says nothing about the evolution of the signal in between the samples;
however as discussed in §2.6 and Chapter 4 it can be viewed as a discretely-sampled
continuous-time stochastic process (‘diffusion’). One may also consider the spec-
trum, and derive the spectrum of samples from the spectrum of an underlying sta-
tionary process. As a different type of example, work on nonlinear methods has
shown that continuous-time dynamics, when observed periodically with an appro-
priate (‘generic’) observation function, induce discrete-time dynamics in the time
series of observations (§2.7). In all that has been done there is a link between the
samples and a supposed underlying waveform that may be real-valued, be complex-
valued, or evolve on a manifold.

The work in this section breaks that link. Consider the following question:

A discrete signal ¢ from some family C is given at points n € L C Z. Do the known
samples (Z,)neL cause z% to be uniquely determined at each integer point?

If they do, we shall say that L determines z (over C). For example if C is the set
of rational functions regular at all integer points then L determines z over C if and
only if L has infinitely many elements. If C is the set of functions bandlimited to
W then L determines = over C if and only if the density of points in L exceeds 2W
(see §2.4.2). Now for the crunch: what if C is the set of functions generated by
finite numbers of harmonics? What can we say about them? In general terms if C is
closed under addition and subtraction, as it has been in these three examples, then
the question boils down to distinguishing between the zero function (which is in C)
from any other function in C on the basis of the samples on L.

Sketch Theorem 1 Let z(t) be a sum of harmonics® sampled fort € L C Z. If,
and only if, L has no periodic gaps, then the samples on Z are uniquely determined
by those on L.

We are not saying that the (real) continuous-time waveform is uniquely deter-
mined by the samples on L, for that would contradict some basis notions of aliasing.
What we are saying is that the remaining samples (those in Z but not in L) are
determined by the known samples (those on L).

izt Z:?:l A; exp(iw;t), for constants 4; € C, w; € R.
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We can suggest an application of these results in array processing. The direction
of arrival of a ‘target’ generating a sinusoidal signal is determined by performing
signal processing analogous to the identification of the frequency of a tone from time-
domain samples: the temporal frequency corresponds to the spatial angle. What we
are saying is that not all the elements of an infinite equispaced array are necessary
to perform this task, and moreover that from that array one may delete arbitrarily
many elements provided that the thinned array does not contain periodic gaps.
The general idea is well-known in the array processing community (see e.g. [87])
but an explicit identifiability theorem such as the Sketch Theorem would appear to
be a novel contribution to the subject. The rest of this chapter is devoted to the
exposition of the relevant mathematics.

So how are we to go about proving the Sketch Theorem? At first sight one
would say that complex variable theory should do the trick. However the Sketch
Theorem is more closely connected with the subject of exponential Diophantine
equations [190]). Diophantine equations are the subject of questions such as ‘Find all
integer or rational solutions to [equation]’, and they usually require number-theoretic
techniques. The Diophantine theory of elliptic curves [45] (an elliptic curve is one of
the form ‘y? = cubic in z’) is one such example, and much progress has been made
on it using local fields @,. These fields are somewhat analogous to R in that they are
obtained from @ by completing (= filling in the gaps to make topologically complete)
with respect to a valuation (‘measure of size’); indeed R is sometimes written Q.
The valuation that is used in constructing the @, is the p-adic valuation which is
defined number-theoretically. The p-adic valuation has some properties that are not
paralleled in R, and so Analysis in @, usually called Ultrametric Analysis, is rather
different from Real Analysis. The reader is advised to consult Appendix B.

So, rather than considering the existence of an underlying signal defined on R
or on C, we are going to consider one defined® on Q,, and why not? After all one
can do Analysis on Q,, and Q, contains the integers Z. The following diagram
summarises the position, with the top line representing the conventional view in
signal processing, and the right-hand side representing ours:

sample
(z°:R — C) P (z¢:2—C)

reconstruct

T? (3.13)

(2P : Qp — Qp)

This is not the first time that p-adic methods have been used in signal processing,
as number-theoretic and p-adic transforms are being used to design convolution
and filtering operations (see e.g. [108]); but apart from a well-known paper on the
generalisation of the sampling theorem to abstract groups [111], the paths of algebra
and sampling theory cross only rarely.

5In fact we only need to define it on Z,, the ring of valuation-integers of Qp, i.e. the elements
y € Q, satisfying |y|, < 1.
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3.3.2 Ultrametric interpolation

If (3.13) is to be of any use, we must be able to make some headway with the
following problem:

Given a sequence & = (Zn)nez, find a function g convergent on Z, such that whenever
v is a (rational) integer n, g(v) = z,.

We have defined W, to be the space of such sequences (in Appendix B have referred
to them as functions Z — Q,; clearly this is equivalent). We shall exclude p = 2
from now on. Then from Appendix B Lemma 10 we have that

a € Pos(Qy) = (n—a™) e W,
and also that for a € Q,,
lalp =1, (p—1)| m = o™ € Pos(Q,).

So for a € Qp,
lal, =1, (p=1)|m= (n—a™) € W,.

So although the sequence (a™) is not generally in W, its p—1 subsequences, obtained
by starting at r (say) and going along in steps of p — 1, are in W,. To take this into
account we enlarge W, as follows.
Definition 1 Let z : Z — Q, and define the function zll by

gl in e Trin(p-1)-

If, for each r between 1 and p — 1, we have zl") € W, then we say that = € Wi
More compactly

zeW) <= (1grgp—1=>(n+—>x,+n(,,_1))ew,,).
Proposition 1 Ifp# 2, a € Q,, |a], = 1, then (n— a™) € Wi.
For z[7) : n — ar.a™P-1) ; clearly (n+— a”(”‘l)) € W,, so the result follows. O

Theorem 1 Ifp # 2, a;; € Qp, |aijl, = 1, then
2 e(s)
(n Y gi(n)afioly "‘a?e(i)) A
i

in which the sum is finite and the q; are polynomials defined over Q.

Proof. As Wi is a ring we have only to show that (n — o) is in W, where e
is a (rational) integer, and o obeys the hypotheses of the theorem. To do this, let
z:n— a™. Then

zl o n e olrt(e-1)n]e

Now
Gt[7'+(p—1)n]"‘ = o o™

with m a multiple of p— 1 : so zl"l € W, as required. O




3.3. ULTRAMETRIC SAMPLING THEORY 64

3.3.3 Sampling lattices and functions in W

Definition 2 A; is the set® of subsets L C Z that have the following property: for
every integer r and every nonzero integer m there ezists an element of L equivalent
to r (mod m).

Essentially A; is the set of subsets of Z that do not have periodic gaps.
Proposition 2 A; contains sampling sets of arbitarily low density.

To see this, choose an irrational real ¥ and a subset J of [0,1) of Lebesgue measure
|J| > 0. Define for real ¢t the number [t]; as the element in [0,1) that differs from ¢
by an integer. Define L C Z by

n €L <= [ny]; € J.

By the density (Kronecker’s) theorem for irrationals (see [79], Thm 439), L € A;.
And L has density |J|. O

Proposition 3 Let L € Ay. For each r and each nonzero m there are in fact
infinitely many elements | € L satisfying l = r (mod m).

Suppose that only s elements of L are equivalent to r (mod m). By hypothesis there
are elements of L equivalent (mod (s+1)m) tor,r+m,...,r+sm respectively. These
are distinct, there are s + 1 of them, and they are each equivalent to r (mod m), a
contradiction. O

Theorem 2 Ifz € W,‘,*’ for some” p, and if L € Ay, then L determines z.

Proof. Suppose that there are two functions in W,'," that agree on L. Let z be their
difference; then z is in W;,“ and is zero on L. For each r between 1 and p — 1,
il in - Ty 4n(p-1) Vanishes for infinitely many n € L (by Proposition 3) and so by
Strassmann’s theorem (Appendix B, Theorem 11) it is identically zero (viewed as
a function on Z,). Therefore z vanishes at each integer, and that is all we need to
show. O

Theorem 3 Suppose that £ : Z — C is of the form
Tt Zqi(t)e”‘(t),

in which the sum is finite and p;, ¢; are polynomials. AnyL € A, determines x.

8In previous versions of this work the condition on L was written lim Ulell_ I+ mZ =17. This is

equivalent.
"One does not have to know p; it suffices to know that some p will do the job.
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Proof. Let the coefficients of the polynomials be p;;, q;;. Write

K = Q({gij, €™, each i,5}).

Then K is finitely generated and by the Embedding theorem (Appendix B, Theorem
7) can be embedded in @, for infinitely many choices of p. We therefore choose p # 2,
and define

y - Z_’Qp
y nHZqi(n)e”‘(").

By Theorem 1 y € W;’ . Now apply Theorem 2. O

Theorem 4 (Converse to Theorem 3.) IfL ¢ Ay then there are two signals of the
form

z it Y g(t)en “ }Vz

p; = linear
that agree on L but not on Z.
Proof. By hypothesis there exist m,r such that no element of L is equivalent to
r (mod m). Let

. 1 -
T —~— Z e27rik(n—-—r)/m.
k=1

IE(TL):{ 01 mX(""’")

1, m|(n—r) ~

Then

So z(L) = {0}, which means that z and the zero function agree on L but not on Z,
and that completes the proof. O

3.3.4 Discussion

Note that Theorems 3 and 4 together give quite a strong result. L € A; is, by the
simple considerations of Theorem 4, obviously the minimum possible condition for
determination of exponential signals, and it admits sampling sets of arbitrarily low
density. The fact that it is a condition sufficient to determine not only these but
also a much larger class C, including exponentials, polynomials and exponentials of
polynomials, is remarkable. Of interest is that C is a differential ring®.

8Structure closed under addition, subtraction, multiplication and differentiation.



Chapter 4

Linear models

In this chapter we shall discuss time-domain techniques for autoregressive (AR)
modelling and AR-based signal separation using a generalised prediction error tech-
nique in which the prediction coefficients depend on the observation intervals and on
the underlying poles. Spectral estimation is effected by minimising a certain error
energy function with respect to the poles; this coincides with the Covariance method
in the regular case. The resulting spectral estimate is quite subtle and has the fol-
lowing significance. Suppose that the observed data come from a continuous-time
harmonic or autoregressive process .A. Then the discrete-time AR model that our
method produces is the same as that obtained by fitting a conventional AR model to
a regularly-sampled data record from .A. Such an approach requires a normalising
frequency, or virtual sampling rate, which we call 1/7. The construction of the error
energy function arises from the interplay between the discrete and continuous-time
models.

In separation schemes we show that the time-domain removal of features with
known spectra is able to allow identification of smaller features made invisible by
the spectral ‘smearing effect’ associated with irregular sampling.

4.1 Generalised prediction errors

In this first section we shall introduce the concept of generalised prediction for linear
models. The objective is to define time-varying prediction coeflicients, dependent on
the sampling instants and on the underlying model poles, that generalise the regular
case in a natural way. The estimation problem can be summarised as follows. In
the regular case the poles do not enter the calculations explicitly, for we can just
optimise with respect to the AR coefficients as the left-hand diagram on the next
page suggests: the error function E is calculated and the prediction coefficients
chosen to minimise it. In fact the optimisation is linear, so there is a closed-form
solution and there is no need to go through this iterative process (though adaptive
methods do). In the irregular case the poles are fixed, but not the coefficients, and
this explains the extra step; further, the optimisation is nonlinear. Note that the
optimisation with respect to the poles is nonlinear whether or not the sampling is
regular.

66
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IChoose prediction coeffs a1 IChoose poles I
!
Evaluate E(x,a) |Ca1cu1ate prediction coeffsl
| !
Evaluate E(x,a)
1

Classical and generalised AR fitting.

4.1.1 Introductory remarks

Given that the prediction coefficients are time-varying, we establish how they are
obtained from the poles. We see immediately that in the case of regular sampling
the AR coefficients a; are determined from the poles a; by the matrix equation

-1 ag
ol of 1
ay
: : : . =0
oP aP1 1
P ap

and the ‘normalisation condition’: agp = 1. The forward prediction errors are
P
fa(y3@) = D ajYn—j. (4.1)
—

At this point it is convenient to make some notational definitions. For a set of p
complex numbers a = (a;)}_; we define A(z) =[[’_; 1 - /2 and

1 . dz
— ﬂi[zm A4 (1/2)Z

2ri
IS WS O I W
Cla) = 2miJp=1 A(2)A*(1/2) 2

I

N(a) :

System-theoretically these are, respectively, the power gains observed by putting
white noise through the FIR filter with zeros a; and the IIR filter with poles ;. In
terms of the coefficients a; and the reflection coefficients p; :

P 14
N(a)=14Y la;]> and C(e)=]J]1- o>
1=1

i=1

which give closed-form expressions for these quantities (expand [];(1 — a;/2) to
get the coefficients a;; this gives N(a), and the downward Levinson recursion (see

§2.6.2) gives C(a)).
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4.1.2 Derivation for the coherent case

When the data consist of p pure tones at angular frequencies w;, the z-plane model
poles are at o; = €!“% and the prediction errors are all zero (independently of the
amplitudes and phases of the tones). For irregular sampling let us define o; = el*i7
in which 7 is reasonably arbitrary; then to make the generalised forward prediction
errors,

P
fo(yie) =Y hynj, (4.2)
rd
zero independently of the amplitudes and phases of the tones, we require
A A N
: : ] =0 (4.3)
agtn"tn—ﬂ)/f a}(’tn—l_tn—p)/“' e 1 T'n
P

Note that a nontrivial solution must exist, as the matrix is p X (p+1), and generically
the kernel is one-dimensional. The normalisation needs to be established and we
quickly find that r§ = 1 will not work if p > 1. For example, take

a1=i, a2=—i
tn=3, tre1=2, lno=0, 7=1

The matrix equation now reads
L TS
[ il _i } } r? | =0, implying rg = 0.
r3

Thus requiring 7§ = 1 would make the r} and 73} infinite. The situation arises
whenever we try to predict a sinusoid from observations taken at or near its zero-
crossings; the above example occurs when the sinusoid is given by sin %wt. We shall
return to this point in Chapter 5 when we address the subject of nonlinear prediction,
but in the mean time we must find a method of normalising the generalised prediction
coefficients so that the total prediction error energy—the device that we intend to
minimise in order to fit a set of poles to a set of data—depends continuously on the
poles and the sampling instants.

The key step is to constrain the length of r by imposing a normalisation such as
the following:

Z |7‘;‘|2 = N(a). (4.4)
3=0

Recalling that for regular sampling N (o) is just the sum of the squared moduli of
the AR coeflicients, we see that in that case the definitions (4.2,4.3,4.4) produce the
same prediction errors as the classical definition (4.1), up to a factor of modulus
1. This does not matter because we will only need the generalised prediction error
energies |f,|%.
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At this point we may remark that, for given data (z,,t,), we have a method
for determining the frequencies of a set of p pure tones, simply by minimising
S ou lfn(x;@)]? wr.t. @. The minimum of this function is 0, achieved only when
the a; are correct. Further there does not seem to be any particular reason why the
definitions above cannot be used for any AR process, enabling a general AR process
to be fitted. This intuition turns out to be well-founded, as we shall see.

We conclude this subsection by discussing why the above construction gives a
prediction error energy that is continuous in the model poles and in the sampling
instants. The matrix equation (4.3) gives r = (r;)5_, up to a scaling factor, except
in non-generic cases when the matrix has a kernel of dimension > 1. Hence r is an
element of the complex projective space G, defined as the quotient space

G, = CP*/~, vewe (v=Aw, 0# A €C).

G, is a compact analytic manifold. By use of elementary row and column operations
to reduce the matrix (4.3) to diagonal form, we see that r € 6, is a rational function
of the matrix elements, and hence is continuous (viewed as a function into G,). The
following mapping, in which (X;) are just symbols, is well-defined, because it is
invariant under a scaling of r, and it is continuous:

]Z?:o ’"J'le2

Li=olrsl®

Also N(a) is a continuous function of a. The RHS is, up to a factor of N(«), the
generalised prediction error energy—and that completes the proof. Essentially the
space of normalised predictors is compact if we choose the normalisation (4.4), but
not if we choose to require rq = 1.

r€ G, | (Xj)f—o —

4.1.3 Prediction errors for white input

Let us construct the generalised prediction errors for a white-noise input w (variance
02) and AR model « :

P
fo(w;a) = Zr;‘wn_j.
—

Apart from the obvious fact that they form an MA(p) process these have the property

E¥fa(wi )| = (Xp: IT?lz) o, = N(a)og,
3=0

independently of n and hence of the sampling; this implies the weaker result
Enlfn(w; @)|* = N(a)ol,

that is, the ratio of prediction error to white input power! is N(a), just as it is in

the classical case?.

!Time-average of the modulus-squared.

2The second equation is weaker because it involves a time-average over n. Both equations involve
averaging over w; as W is ergodic, it is immaterial that the first equation uses a realisation-average
and the second a time-average over it.
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4.1.4 Why ‘generalised’ prediction?

The previous discussion has seen a departure from the classical theory of linear
prediction, for two reasons. First, as r§ # 1 in general (it might even be 0, as in the
above example), we cannot view the quantity — Z?zl T7Yn—j as a prediction for the
element y,. Secondly, only the modulus of f, is defined. Consequently it is better to
think of f, as a measure of how well the sequence of p+ 1 data points (Yyn—p,...,¥n)
accords with the pth order AR model a. Of course, the smaller |f,| is, the closer
the fit.

4.1.5 The incoherent case

Moving to the incoherent case, we now show that the definition (4.3) is the correct
one whether or not the poles are on the unit circle. To do this we consider the
continuous-time AR process (Ito diffusion®)

P d\PI
(Cy(D)}dt = dB(1), L= ;Obj (E) (4.5)
in which B(t) is a Brownian motion on R or C. The solution is
o0
y(t) = / G(t - t') dB(t) (4.6)
. -0
where G(t) is the Green’s function satisfying
LG(t) = 6(t), t<0=>G(t)=0. (4.7)
For a stable process, G(t) — 0 exponentially as ¢ — oco. For an unstable process
the integral does not exist. The model (4.5) is an all-pole model in that the Laplace
transform of y is a polynomial in the transform-variable ¢; the poles are, by ele-

mentary arguments, the roots 3; of the polynomial equation 2;?:0 bjc”_j = 0. The
Green’s function is given by

0, <0
4

G(1) = 3 hiefit, £>0
=1

for appropriate coefficients A; which we need not find explicitly.
Now let us sample y(t), so yn, = y(t,). Then

P oo
B =213 [ Gltass — ) dB(Y)
=0 B

31to diffusions are used for modelling a wide variety of phenomena, including biological systems,
mechanics, fluid dynamics, and the pricing of various financial instruments such as ‘derivatives’.
See [157, 110], both of which go into the subject in much more depth than is required here.
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which after expanding the Green’s function may be written

P tnj tn—p 4 ,
fu(y;B) = Z (/ +j ) Z 2P (tn—j=t )dB(t’)fr;?,
j=0 tn—p —o0

i=1

By requiring

P
Y efitn-ir =0  (1<i<p) (4.8)
rd

the terms arising from the second integral, i.e. that going back to ¢’ = —oo, vanish.

Consequently
tn
(v 8) = / (Fn. of ¢)dB(t').

n—p

Using the overlap formula for stochastic integrals,

e2{ [ 1B} [awasw = b [ sera@a,
we can see that if f(t) and g¢(t) have non-overlapping support then the LHS must
vanish. Applying this to the sequence {f,}, we have that
o {f,} is a MA(p — 1) process: m > p = EBfif, . = 0;
e {f,} is independent of past observations: m > p = £Bfty,_m = 0.

It is a standard result [11] that regular sampling of y(t) produces an ARMA(p,p—1)
process—the proof can be effected as above in fact—which implies that after pth
order linear prediction the residuals are a MA(p—1) process. The definitions (4.2,4.3)
therefore appear to be a natural generalisation of prediction to irregular sampling
in the incoherent case, because (4.3) and (4.8) are equivalent if o; = €%i.

4.1.6 Backward prediction errors

If an AR process is stable then its time-reverse is also stable with complex-conjugate
AR coefficients. We can then deduce from (4.3) the following expression for the
generalised backward prediction errors:

Y4
bu(y; @) = > (87) Un4
£

agtn+p—in)/‘r agtn+p_tn+l)/'r - 1 :z?l

: : Tl1=o0 (4.9)
a;tru-p—tn)/'r a;tn+p—tn+1 Wt .4 s;‘
P

and the same normalisation as (4.4) is used to fix the size of s™. Asin §4.1.2 we prefer
to think of these as a measure of how well the sequence of data points yn, ..., Yn—p
accords with the AR model a*. One might ask whether there is a difference between
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the forward and backward prediction errors, given that the coefficients r§ and s§
are not 1. There is a difference, and it occurs because the ‘forward’ and ‘backward’
models are both fitted to the data: equivalently, the model is fitted to the data
and the conjugate AR model (obtained by conjugating the poles) is fitted to the
time-reversed data.

4.1.7 Choice of 7

The value of 7, while not being critical, needs to be chosen with reasonable care so
as to avoid problems with multivalued functions.

When we perform the calculations needed to construct the matrices (4.3,4.9),
we either work in Cartesian coordinates, so that the real and imaginary parts of a
are held, or we work in polars. In the first case the power function a — o! is ill-
defined unless we cut the plane, and the most natural place to put the branch cut is
along R™. In the second, we need for practical reasons to constrain the argument to
prevent the o; from wandering over the Riemann surface of the log function (which,
looking as it does like a spiral staircase, is not bounded). Then a range (—7,7) is
appropriate. Recalling now that z = e2™/7 we have

argz € (—m,7) <= f€(-1/2r,1/27)

and so R~ in the z-plane corresponds to the hypothetical Nyquist frequency +1/27.

It is worth mentioning that in the missing data problem, where 7 is the lattice
interval, the exponents in the matrices of (4.3,4.9) are integers—in which case we
can (and should) work in the z-domain and the question of branch cuts does not
arise.

4.2 Fitting the model
4.2.1 Method

Now suppose that we have an irregularly-sampled dataset with z,, the observations
and t, the times at which they are observed (we assume m < n = t, < t,). The
first thing to do is to set 7. Then, for a set of poles & we construct the forward and
backward prediction coefficients r}, s? and prediction errors f,, b, and thence the

i
total forward and backward prediction error power

N
E(x; ) QN%I,) 2 Il + [ouop(xs)f (4.10)

We then minimise E(x;a) with respect to a. As discussed in §4.1.7, we constrain
the arguments to lie within (—m, ) (or equivalently stop the a; wandering across
the branch cut). It is not necessary to constrain the moduli of the a;, because the
inclusion of backward prediction error energies in the cost function keeps the model
stable. The way that we have performed the minimisation is this. OQur computer
program has been developed for modelling real-valued data. We assume an even
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model order and write the poles in complex conjugate pairs: o3 = a3, az = aj, etc.
First the performance surface is searched, with

O<arga; <argaz <<
0.95 < |ay] < 1.00

The moduli are chosen randomly between 0.95 and 1.00; the arguments are stepped
round with a granularity of approximately = /6 radians. The ‘best’ point, i.e. that
with the minimum FE-value, is selected as the starting-point for a simple gradient-
descent algorithm. We estimate the local gradient at a certain point by looking at
nearby points, and then walk down the performance surface in small steps in the
direction of steepest descent. When no further progress can be made, the step size
is made smaller and the process is repeated. The resulting minimum is found to a
precision |6a| < 0.001. It might appear that, by choosing all the starting points
very near the unit circle, one cannot obtain a model with poles away from the unit
circle; but this is not so. Unnecessary poles are moved away from the unit circle
during the optimisation. Hence a 6th-order model may have a spectrum with three,
two or one pronounced spikes, or even none at all. This is seen in the test results.

4.2.2 A note on the minimum error energy

Let us investigate the relation between generalised forward and backward prediction
error energies for the model orders p and p + 1. For model order p the prediction
coefficients are given by (4.2). Let us now increase the model order by 1, introducing
a (p + 1)th pole @,y at the origin. Call the new prediction coefficients 7} and the

new prediction errors f, and b,. By (4.3),

agtn"tn—p—l)/T agtn—l—‘n—v—l)/“' N | 7o
T
: : : Sl =o
agtn—tn—p—l M agtn-l_tn—P—l)/T e 1
0 0 e 1 Tp41
Clearly 77, = 0 from this; now for each : multiply the ith row by
agtn—p'—tn—p—l)/'r to get
agtn—'tn—p)/‘r agtn—l —tﬂ—P—'l)/T e 1 :3
. : Il =o.
O AR G Fg

Noting the obvious fact
N(aq,.-.,0ap,0) = N(ay,...,ap)

we have |f,|? = |f,|?. By similar arguments |b,|? = |b,|2. We may conclude that the
introduction of a new pole at the origin does not affect the prediction error energies.
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Therefore the minimum prediction error energy for model p+1 cannot be any higher
than that for model order p. Writing E,, for the minimum assumed by E(x;a) as
o € CP is varied, we can write this statement as

Eo>FE1>Ey2>---

It is not difficult to see that Eg = N-13"I  |2,|2. Also, we have a generalisation
of the various order selection criteria mentioned in (2.6), for 62[p], the estimate of
the driving noise variance for model order p, is Ep(x).

4.2.3 Properties of E(x; )

This section summarises the main properties of E.

e In the coherent case F is zero precisely when the o; are in the correct places
(a; = €“iT); so of course minimising E gives the right answer even for finite
data length.

e When the sampling is regular 7 = §t, and so our method reduces to an un-
constrained minimisation of forward and backward (classical) prediction error
energy—the Covariance method.

e Given that the solution is unique? in the case of regular sampling, and that

the generalised prediction coefficients depend continuously on the sampling
instants, we can expect a — E(x,a) to be free from local minima when the
samples deviate ‘slightly’ from uniformity . Given that the function a +
E(x,a) is infinitely differentiable as well, there must be reasonable optimism
that minimising it will not be too onerous.

e With the notation of §4.2.2,
Eo>E1>2E; 2 ---

- 50 that E,/Eq provides a measure of goodness-of-fit.

4.3 A description of the AR(1) case

At this point we have completed a description of a method for representing a time
series by a set of poles (¢;) evaluated for a specific Nyquist limit 1/27. Before moving

“We mean unique up to a permutation of the poles.

®As each prediction error is constructed from p + 1 data points, we mean that each (p + 1)-
tuple of points should not deviate too far from uniformity. This is therefore a ‘local’ definition
of uniformity. The distinction between this and a global constraint on sampling uniformity is the
same as the distinction between additive-random and jittered sampling. One may additive-randomly
sample a time series using an intersample pdf that has narrow width, i.e. ‘almost a delta-function’,
and this will give rise to a sequence of observations that is locally quite uniform. But over a long
stretch of data it will be quite nonuniform. Our comment on the function F is that it should have a
unique minimum when the samping deviates slightly from uniformity in either the additive-random
or the jittered cases.
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on to consider some test examples, let us consider the first-order continuous-time
stochastic process (Ornstein-Uhlenbeck, or OU, process)

dy(t) + b'y(t)dt = dB(t), Rebd' >0 (4.11)

which is solved by the stochastic integral

t ey
y(t) = / =B,
—00
Following the nomenclature that we have established,

tn
Yn = e_b'(t"'t"‘l)yn_l + e—b'(t,,-t,,_l) ebl(t/_tn_])dB(tl).

tn—1

First let us consider the case when we know b’ and merely wish to simulate obser-
vations from this process. For brevity let us write f,, for the last term in the above
equation. Of course it has a simple interpretation as the forward innovation error
and, from the discussions in §4.1.6, it satisfies the equations

m2>1= (C;Bf,:yn—m = ng,:fn:I:m =0

We can go further, for

2
Bir12 _ _9B _ ,2Reb . (tne1—tn)
g |fﬂ.| - 2Reb/ (1 € ! )
gBIy |2 — 0123
" 2Re v’

and so to simulate a first-order stochastic process of variance 03 and decay parameter
b’ we have only to calculate

—b (t— ’ _ 1/2
Yn = € b (tn t"_l)?/n—l + ay (1 _ e2Reb .(t"_l tn)) gn

where the g, are independent observations from the standard Normal distribution.
Now let us consider how our generalised prediction error approach fares when
we wish to estimate b’ from a section of data. By (4.3)

6 S5 1
[ f ] ’ [ sf ] ) l —etlin1=tr) ]

Suppose that, rather than the normalisation (4.4), we simply put r§ = s§ = 1 (which
is always alright when p = 1 but, as we have seen, goes wrong when p > 1). Then

fn(ya b) = Yn— eb(t"_l—tﬂ)yn—l

buo1(¥,0) = yu_y — ellin-1=tn)y.

and because

2
B, * g b n—m=—in
£ Yn—mYn = Qbe'e (t ¢ )a m >0
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their variances are
E8 |y, 0)I* = EB b1 (y, 0)P =

ok b(tn_1~tn)|2 _ (*+5')(tn—1—tn)
Red/ (1 + [lens 2Re {¢ ).
)

For brevity write PE(b) for this quantity. Then
PE(b) — PE((,’) — i (Ieb(tn-1—tn) _ eb’(t,._l—t,.,) 2) >0
2Re b’ ==

This is an important conclusion, because we can now say that ‘on average’ (i.e. over
all realisations of the underlying random walk B(t))

E(y,b) > E(y,b)

PE bl . O-% 1— b'(tu_l—tn)
)= FRew ¢

and so

and it follows that minimising E(y,b) with respect to b is a good way to estimate b'.
The same conclusion is obtained even if the prediction error energies are ‘weighted’
with weights depending on the observation times. One might, for example, notice
that PE(b’) is approximately proportional to (f, —t,—1), and minimise the function

newdef - 1 al [f,.(y,0)12 + [bn_1(y, b)|?

tn — tn-1

It is worth noting that the normalisation (of the predictors) used in the derivation of
the optimality result E(y,b) > E(y,b) is not the same as that posed for the general
case (4.4). That raises the question of whether (4.4) is the right normalisation to
use. Unfortunately it does not raise a satisfactory answer, for the problem is almost
intractable for p > 1. It may be that (4.4) is not quite the best choice, but we are
going to show by way of examples in the next section that it works, and that is an
important recommendation.

4.4 Test examples

It is almost universal to test autoregressive algorithms on data consisting of sinusoids
in noise; by so doing one can investigate the resolution, performance for different
SNR, and so on. We have therefore run some tests on this kind of data. One
objection to this kind of test is that tones in noise do not obey an AR model.
Therefore we have also tested the algorithm in question on genuinely broad-band
data.

The specific aim in carrying out these tests has been to examine if, and how, the
model fitting procedure depends on the sampling scheme. Ideally there should be
no dependence except when there are spectral components above the Nyquist limit;
in those cases regular sampling would give rise to aliasing, so the results for different
sampling schemes would not agree.
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4.4.1 Test on one sinusoid in noise

The first test was to take 64 samples of a sinusoid in white additive Gaussian noise
of standard deviation 1. The frequency of the sinusoid was taken (arbitrarily) as
0.27Hz. The quality of fit was assessed as a function of the following three parame-
ters:

o Signal-to-noise ratio. Four values of the amplitude (A) of the sinusoid were
considered: 8,4,2 (SNR +15,49,+3 dB) and 0. The purpose of trying A = 0
was to examine the level of spurious features thrown up.

e Model order. Orders 2 and 6 were used.
e Sampling scheme. Six sampling schemes were applied:

(a) regular sampling with period 1 (i.e. 1 second)

(b) additive random sampling, intersample spacings drawn from the rectan-
gular (‘uniform’) distribution on [0.5, 1.5]

(c) additive random sampling, intersample spacings drawn from the I'(2,2)
distribution

(d) additive random sampling, intersample spacings drawn from the I'(3, 3)
distribution

(e) jittering the sampling in (a), varying the positions of the samples ran-
domly, with uniform probability, up to £0.25

(f) jittering the sampling in (a), varying the positions of the samples ran-
domly, with uniform probability, up to £0.5.

The I'(v, A) distribution has pdf

1 vav—1 _—At
F(V)/\ " e (v>0,A>0)

and has mean v/A. (When v = 1 it is the Poisson distribution.) In each of the six
cases enunciated above, the average sampling rate is 1Hz. The parameter T was set

to 1 for each of these tests, corresponding to a notional Nyquist interval [—-%, %]

The results are shown in Figures 4.1-4. Some general trends are clear. For
SNR=+15dB (corresponding to A = 8) the results for model order 2 are all good
(and virtually identical); the peak becomes lower and wider as the SNR reduces.
The effect of increasing the model order is to sharpen the peak, as is a well-known
effect with the classical AR spectral estimator; but the results for sampling schemes
(c) and (d) are consistently not as good as for the other four schemes. We are
not sure why this should be, but it may be due to the wider spread of intersample
spacings for those two schemes.
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4.4.2 Test on two sinusoids in noise

The second test was to take 64 samples of a pair of sinusoids, each of amplitude 4, in
white additive Gaussian noise of standard deviation 1. The same sampling schemes
as in §4.4.1 were applied, and model orders of 4 and 6 were used. See Figures 4.5-6.

First the frequencies were selected as 0.27 and 0.37; one sees that the AR(4)
model does not separate the two components, but the addition of a third pair of
poles is sufficient to split them.

When the frequencies were altered to 0.43 and 0.83 the uniform sampling gives
rise to aliasing, but the nonuniform sampling schemes correctly identify the fre-
quencies (the ‘Nyquist interval’ was expanded by putting 7 = 0.5 for this example).
In fact the uniform sampling gave us some problems, because the error function
E(x;a) had multiple minima and depending on the starting-conditions different
answers were produced. Of course, this is not a fault of the method, which if the
sampling is regular cannot be expected to differentiate between frequencies above
the Nyquist limit from their aliases.

4.4.3 Test on broad-band signals

A 64-point test sequence was created by calculating
z(t) = yc(t) cos 2 fot + ys(t) sin 2 fot (4.12)

with y.(¢) and ys(t) independent observations from the OU process (4.11) with
parameters b = 0.02 or 0.20, 05 = 50 (see §4.3). Different values of b give different
degrees of incoherence, or equivalently different notional bandwidths. The ‘centre
frequency’ fo was taken as 0.21. The model order was taken as 2 and the fit was
assessed as a function of the sampling scheme. The same six schemes as in §4.4.1
were applied. As can be seen from Figure 4.7, the AR spectra are virtually identical.
In particular the results for sampling schemes (c) and (d) are not demonstrably
worse, as they are in the results of §4.4.1. Perhaps this is because the signals under
consideration in these tests are closer to being autoregressive.

As an alternative method of spectral broadening we have considered amplitude
modulation by a continuous-time chaotic signal, the Lorenz attractor [212]:

z(t) = Z1(7t) cos 2 fot + Z15(7t) sin 27 fot. (4.13)
The Lorenz equations are
dZ,/dt = 10(Z; — Zy)
dZ2/dt = ~71Z3+282; - 7,
dZs/dt = Z21Z,-38Z3.
Zy1. and Zys are ‘independent’ realisations of the chaotic process, in that although
they are both observations on the Z; variable their starting conditions are different.

The integration of the Lorenz equations was performed using an adaptive step-
size fourth-order Runge-Kutta algorithm® and a relative accuracy of 1076. The

SNAG routine D02BAF.
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sampling could therefore be performed by nominating the next sample point, and
integrating in time as far as that point. The initial conditions, which correspond to
a points very close to the attractor (as opposed to arbitrary points in space) were
(Zic)(0) = (-15,-21,30) and (Z;5)(0) = (7,15, 10).

A typical realisation of data from the Z; variable, and its characteristically broad,
continuous spectrum, are shown in Figure 5.4-5. By altering v we can control the
coherence of z : the lower 7 is, the more slowly the modulator varies, and the more
coherent the process. We have considered two values, 0.02 and 0.10. Again (see
Figure 4.8) the AR spectra are seen to be virtually identical.
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Figure 4.1. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +15dB).
Sampling schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted line] p = 2.
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Figure 4.2. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +9dB).
Sampling schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted line] p = 2.
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Figure 4.3. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +3dB).

Sampling schemes: see §4.4.1. Orders: [sohd line] p = 6, [dotted hue] p = 2.
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Figure 4.4. AR(/;) spectrum for white noise.

schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted line] p = 2.
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Figure 4.5. AR{p) spectrum for pair of tones in white noise (frequencies 0.27, 0.37;

SNR +9dB).

Sampling schemes: see §4.4.1. Orders; [solid line] p = 6, [dotted line] p = 4.
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Figure 4.6. AR(p) spectrum for pair of tones in white noise (frequencies 0.43, 0.83;
SNR +9dB).
Sampling schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted hne] p = 4.
Note that aliasing has occurred in (a).
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Figure 4.7. AR(2) spectrum for continuous-time stochastic process (4.12).
[Solid line] » = 0.02, [dotted line] » = 0.20. Sampling schemes: see §4.4.1.
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Figure 4.8. AR(2) spectrum for continuous-time dynamical process (4.13).

[Solid line] 7 = 0.02, [dotted line] 7 =

0.10. Sampling schemes: see §4.4.1.
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4.5 Filtering and separation

4.5.1 The Wiener filter

In this section we shall consider the following problem

A signal is given consisting of the sum of an AR process with known poles and a
‘message signal’ about which nothing is known. Do the separation.

followed by its generalisation

Now do it when the sampling is irregular. |

We remark at this point that we are going to characterise an AR process by means of
its forward and backward prediction error energy, which (as seen earlier) is general-
isable to the irregular case. To start with it is worthwhile to consider the maximum-
likelihood separation of two signals x and s that have known covariance matrices
Cx and Cs. Their sum is given as z. As before, N is the data length. Assuming
the two are independent and Gaussian we maximise

(27) N (det Cx)~1/?(det Cs) /2 exp ~1 {5*0;15 +(z-&)IC; (z— g)} (4.14)

with respect to §; this of course can readily be solved to give the Wiener filter (see
e.g. [77, 104, 160]), which estimates x as X by

2= (1+C.C5")

Now suppose that x comes from an AR model whose parameters are known but
whose driving noise variance is possibly unknown. Suppose also that nothing is
known about s. Then we must assume that Cg is a multiple of the identity matrix,
so Cx = 0?2 (Ff tpf )_1 and Cg = o?2I, where F/ is the forward prediction error
matrix,
ap Qp-1 ... 1
F/ = ap aQp_y ... 1

(the vacant spaces are supposed to be filled with zeros). Then the solution is

2

-1
% = (I + "—SFf*Ff) z.

2
O¢

We may wish to use the backward prediction error filter matrix

Fb

I}

—

=}
—
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f
as well, and if we write F = (F ) then the solution can be modified to

Fb
0‘2 -1
% = (1 + ﬁFfF) z. (4.15)

(Note that |Fv|? = 2(N —p)E(v;a).) The matrix to be inverted in (4.15) is banded,
so the equation can be solved quickly using Cholesky factorisation in O( N p?) oper-
ations. The sticking-point is that we do not know the variance ratio 02/02. Let us
therefore consider the possibility of introducing a parameter u for 02/202 :

Xy, = (I + ,uFfF)—l z. (4.16)

4.5.2 Estimating the variance ratio

We have considered three approaches for finding p and each involves the introduction
of a ‘self-consistency’ constraint. These are tabulated below.

Name Constraint

E  [F&,? = 2(N - p)o?
[F%,[?/1%,]* = 2C(a)
12— &2/ |F%,J? = g
C or R (see text)

SN

These can be justified as follows. In the E case, we know that x comes from an
AR process with known parameters and variance, and hence the total forward and
backward prediction error energy has expectation 2(N — p)o2. In the C case this
energy is unknown but it is proportional to the signal energy and the proportionality
constant is 2C(a). In RV the surfaces described by the constraints are an ellipsoid
and a cone. The R method is rather different: given that x4 supposedly estimates
02/20% and that |z — %,|?/|F%,|? also does, the two had better be equal. In fact we
can also obtain this equation by maximising the likelihood (4.14) w.r.t. p.

What we shall do now is to show that all three types of solution can be obtained
by repeated bisection (or a variant thereof”), thereby providing a robust method of
solution. It is convenient to diagonalise F1F, so let us consider® the singular-value
decomposition (SVD) of F, i.e.

F= Q(B)P*, QQ' =PP' =1, D = diag(é?,...,6%)

"The ne plus ultra of bisection algorithms is the van Wijngaarden—-Dekker-Brent method, which
combines superlinear convergence with the robustness of the simple bisection method. For further
details, consult the oracle [164]§9.3.

8This is for the purposes of proof only. One does not need to do the SVD in practice.
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and change basis via P, writing z = Pz’ and %, = Pv’. Without loss of generality
we may assume 6; < 8o < --- < én. In this notation v} = (1+ ué;)~'2!. It is a point
of interest that (in the limit N — o0)

Arithmetic mean of (§;) — 2N(a)
Harmonic mean of (§;) — 2C(a),

a result that arises from considering the definitions of N(a) and C(a); the factor of
2 occurs because F produces the forward and backward prediction errors.

E and C methods

In each case let the LHS of the constraint equation be called g(x) and the RHS go.
We are going to show that g(u) is monotone-decreasing.

For case E we have
N 112
6; |2i|

9(p) = |F&,f* = :
: ; (1+ pé)?

which is clearly monotonically decreasing; specifically it decreases from |Fz|? to 0
as p goes from 0 to oo.
For case C we have

g(p) = |qu|2 N bil =] EAk
L T ui] LTty

Let the numerator be U and the denominator V, and let their u-derivatives be U’, V.
We are to show that VU’ — UV’ < 0. Using suffix ¢ in the U- and U’- summations
and suffix j in the V- and V’- summations, we find after a little algebra that

—2|2}|?|25[26:(6; — 6;)
(1 + p6:)3(1 + pé;)3

~-UV' = Z

1,7=1
Then interchanging the suffices, adding the expressions and dividing by 2 :

— 12?1 551(6i - 85)°

AL Z <0
2 (U4 p&i)3(1+ pés)

as required. So along [0,00) ¢ decreases and these are the bounds:

9(0) = [Fz* = TL &il,  g(o0) = fﬁ% (4.17)
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R method

We are to solve the equation u = h(u), where h(p) = |z — %,|?/|F%,|%. One way
of doing this would be to iterate the equation, that is, to hope that the sequence
iy h(p), h(h()), ... converges and that there is only one stationary point. In the
notation of the previous section,

h(n) &L ps?|? 825|?
p z:(1+u5)2/ < (1+ péj)?” (4.18)

Clearly lim,_,o A(pt)/p = 0 and lim, o h(p)/p = oo, inspiring the following sketch
of h(p)/u

h(p)

A solution must therefore exist, and if the derivative of A(p)/u is everywhere positive
then the solution will be unique, in which case at that solution

< G hp) _ ph'(p) = hp) _ )
dp p p? 7

implying that A’(z) > 1. Therefore successive iterates u, A(pt), h%(p), . .. will diverge
to 0 or oo; this is seen in practice. Turning now to the question of monotonicity, in
(4.18) write U for the numerator and V for the denominator; then proceeding as for
the C and E cases we find

—— i 6:8;|2412}1°16; + 3u8i6; — ué} + p?8i8)
- (1 + péi (1 + pe; )P

t,7=1

After interchanging the suffices, adding the expressions, and dividing by 2, this
becomes

i 5{6]"22{[2]2;]2[51' +6; + pu(66;6; — 62) + p126;6; (6 + 65 )]
2(1 + pé; )3(1 + uﬁ )

t,y=1

Unfortunately one cannot say that each summand is nonnegative; in fact there are
a few cases where h(u)/p undergoes a slight dip as u increases, but in those cases
the solution to h(u)/p = 1 was still unique. We have not found an example in which
the R method failed to give a unique estimate fi.
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Consideration of the coherent case

As with the estimation procedure, in which we proved that the generalised prediction
error approach gave optimal results (on account of zero prediction error), it is worth
considering what happens in the case of signal separation. It is important to realise
that in this case the kernel of F' (or equivalently of FTF) is nonempty and contains
linear combinations of tones corresponding to the z-plane poles. Accordingly there
will be p zero eigenvalues, 6y, ...,6,.

Let us therefore consider how the three methods perform in this limit. The E
case is straightforward, for 02 = 0 (so we require g(x) = 0) and g(u) =0 & p = co
(so a solution exists). The C case is a little more complicated: using the fact that
6 = -+ = 6, = 0, we compute g(oo) using (4.17) and find it to be 0 (unless
2y = -+ = 2z, = 0, but that would only happen if z contained no power at the
frequencies we were trying to remove). For the C and E methods we therefore find
the solution to be

%z{d,&=0

0, 6; #0

which means that X = X, is the projection of z onto ker F. This means that the
filter is performing a least-squares fit to the model 3°; A;e!%*, as one would hope.

The R method on the other hand does not have this property. Specifically, the
equation g = h(p) has a finite solution which does not tend to oo as the AR model
becomes coherent. Consequently, in signal separations in which the AR process is
harmonic the estimate X of the harmonic process contains unwanted frequencies or,
to put it differently, components which belong in 8.

It therefore appears that the best of the three methods is type C (preferable to
type E as it does not require the driving noise variance to be known). However we
have found that when g = 02/202 is small (£ 1) the R method tends to provide
a better estimate, particularly when the sampling is irregular (we shall discuss this
next): the C method tends to underestimate u and consequently produces an es-
timate of § that is too small. Given that the R method underestimates p in the
coherent case (by producing a finite estimate when it should set 2 = o0) it appears
that a neat way of combining the good points of each method is to estimate y using
both the C and R methods and take the higher of the two estimates. We call this
the B method (B for ‘both’) and this is our method of choice.
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4.5.3 Irregular sampling

To answer the second boxed question in §4.5.1 is now very easy. We simply re-
place the AR coefficients in F with the generalised forward and backward prediction
coefficients:

[ p+1 r+1 r+1 )
Tp Tp—1 - + .2 To 12
p+2 p P
L4 Tp—1 v Ty
N N N
F= . . r{J Tp—1 To
" s .. sp"
2% 2% 2%
CH S3 .o S5
N—p* N—p* N_p*
i So 8] cee Sp |

The normalisation described in §4.1 means that the rows of F' are defined only up
to multiplication by scalars of modulus 1. This is not a problem because only FtF
is used, and that is well-defined. So by design, all the above working holds good.

4.6 Test examples

4.6.1 Suppressing an interferer

We have considered a signal consisting of the broad-band process as defined in (4.12),
with a (small) sinusoid added:

2(t) = ye(t) cos 2w fot + ys(¢) sin 27 fot + A cos 27 fst.

We can think of the broad-band process as an undesirable clutter signal (such as
Bragg clutter [142] in HF radars) and the sinusoid as a ‘ship target’ appearing at a
frequency governed by its radial velocity. The parameters of the broad-band process
were the same as those considered in the spectral estimation examples (§4.4.3), i.e.
b = 0.01s7%, 62 = 50, fo = 0.21Hz. The parameters of the added sinusoid were
A =1, f; = 0.61Hz. First the signal was sampled (256 samples were taken) and
the Lomb spectrogram calculated. From the spectral estimation work we know how
to represent the broad-band signal as an AR(2) process, and the poles, together
with the samples z, = 2(t,), were supplied to the filtering algorithm. The spectral
content of the ‘residual’ (8) of the filter was then assessed, again using the Lomb
spectrogram. The same sampling schemes as in §4.4.1 were applied.

Results are shown in Figure 4.9 for those six sampling schemes. Owing to the
spectral leakage the sinusoid does not show up, except for regular sampling (in which
it occurs twice as a consequence of aliasing). In the filtered signals, where the broad-
band process has been removed, the sinusoid can be detected by elementary spectral
analysis, as seen in the diagrams. Incidentally for sampling scheme (e), a jittered
sampling scheme, the aliases are not suppressed very well; that jittered sampling is
inferior to additive-random sampling, from the point of view of alias suppression,
was discussed in §2.5.
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Obviously the removal of the strong ‘interferer’ at 0.21Hz has greatly enhanced
the detectability of the sinusoidal feature. As a quantitative guide to the improve-
ment we shall describe a fairly obvious method of assessing the SNR of each spectral
component in a signal consisting of sinusoids of known frequencies fi in noise. It is
a simple generalisation of the Lomb method. The time-domain signal is decomposed

into two parts,
z(t) = Z sk(t) + r(2)
k

with
sk(t) = A cos 27 fit 4+ By sin 27 fit.

The weights Ay, By are found by SVD, minimising the residual Y, |r(¢,)|%. The
power Py in each component, and the noise power, are defined as

Py

LS
= > lsk(ta)]?
N n=1

1 ¥ )
P = Nﬂ;lr(tn)l

and for each component the SNR may be written Px/Py. For the example we have
considered there is only one spectral component, so the method is identical to the
Lomb spectrogram. In later examples there will be several components.

Using these quantitative mieasures we have appended to each pair of spectra
an assessment of the SNR before and after filtering, and it is fairly clear that the
filtering works consistently for all the sampling schemes tried.

For a more complicated example we have considered the possibility of several
‘targets’. We have used the same interferer as above (centre frequency 0.21) and
added four frequency components of amplitude 2, v/2, 2, 2 at frequency 0.41, 0.79,
1.05, 1.65 respectively. Results for sampling schemes (a) and (b) in §4.4.1 (regular
and rectangular additive-random) are shown. These four diagrams (Figure 4.10)
summarise the benefits and difficulties of irregular sampling. When the sampling
is regular, the targets are visible both in the filtered and unfiltered signal, but as
multiple copies because of aliasing. More seriously, a nasty accident befalls the
second target (i.e. that at frequency 0.79), because it is indistinguishable from the
interferer (at sampling rate 1) and is removed by the filter. When the sampling
is random the targets cannot be seen in the raw spectrum, as a consequence of
smearing; but they are clear in the filtered signal and do not appear as aliases. Of
course there is no longer any special relationship between frequencies 0.21 and 0.79
when the sampling is random, so the second target is not annihilated by the filter.

4.6.2 Estimating an FSK signal in noise

In the previous examples the AR process, whose poles were known, was viewed as an
undesirable interferer, and after the separation the estimate of it (%X) was discarded
and the residue (§) analysed. Here we shall consider an example in which the AR
process is the one in which we are interested, and the uncharacterised residual is
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observation noise. This can therefore be viewed as an example of noise reduction.
See Figure 4.11.

Frequency shift keying is a simple method of transmitting, by frequency modu-
lation, a stream of digits®. For each type of digit a frequency is assigned and the
transmitter is switched between the appropriate frequencies to transmit the infor-
mation. The waveform is seen to be the solution of the differential equation

dz(t .
fi(t ) = 2mifo(1)z(t), c(t) = ey

in which ¢g,¢cy,... is the sequence of digits to be transmitted, T" is the dwell (i.e.
transmission time allotted to each digit) and |-| denotes the integer part. It is
apparent that during the transmission of any one digit the signal is one of a selection
of pure tones, and hence that the sampled signal obeys a coherent AR model with
poles a; = e2™fi¥t. Of course the signal in its entirety is not exactly predictable,
because a prediction error occurs when the signal is switched from one frequency
to another; however, as the waveform is a continuous!® function these prediction
errors will be quite small (and tend to 0 as §t — 0). An AR model is likely to be
appropriate, and in the binary case, when there are only two frequencies, we have a
complex AR(2) model.

As a specific example we have used 0.10Hz and 0.19Hz as the transmission
frequencies, 19s as the dwell, and an amplitude of 1. The transmitted code is
01010011100---. The real and imaginary parts of this signal are shown (Figure
4.11(a)). An AR(2) model was then fitted to the signal using regular sampling at
rate 1Hz; the AR(2) spectrum is shown (Figure 4.11(b)).

Next, samples were taken of the FSK signal using the sampling schemes (a) and
(b) of §4.4.1 and complex white Gaussian noise of variance 1 was then added. This
means that in each case the SNR, defined as the FSK signal power divided by noise
power, is 0dB. Figure 4.11(c,e) show the noisy signals, and the transmission pattern
is not at all obvious. Then the filtering algorithm was employed to separate the AR
model (clean FSK signal) from the noise. The signal estimates (%) are shown in
Figure 4.11(d,f). In each case the transmission pattern is much clearer; it could, for
example, be picked out by examining the zero-crossings.

While on the subject of noise reduction, we may usefully point out similarities
with noise reduction in nonlinear dynamics. There the idea is, given a ‘chaotic’
signal that we know how to predict, to clean it up if noise is added to it. There are
similarities and differences between the techniques used here and the nonlinear ones,
which we now discuss from the point of view of regular sampling. In the nonlinear
case one has

p = H(Zp_1,-..,%n_p)

and let us assume that H is known (or that H has been estimated from the data in

9This is for the purposes of demonstrating a principle and the modulation scheme discussed here
should not be regarded as state-of-the-art. For a comprehensive discussion of digital communication
signals, see [167].

1% e. ‘not discontinuous’, as opposed to ‘not discrete’
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embedding space). The idea is then to minimise the total dynamical error

N

Edyn = z |§n - H(fn-—h . wf’n—p)'z 3

n=p+1

this requires a nonlinear minimisation, and hence is usually tackled by gradient
descent or a similar technique ([52]; see also [51]). As there will be many trajectories
(specifically, a p-dimensional set) that minimise Egyyn, the objective is to find one
that is close to the original data, and hence one can write down an objective function
of the form

N N
A Z |én — H(&n-1, - - -vfn—p)lz + Z |zn — fnlz
n=p+1 n=1
where z is the uncleaned time series, and A is a Lagrange multiplier. It is not difficult
to see that this is the same type of idea used in the construction of the Wiener filter
for the linear case. Note however that in the linear case we do not need to know the
amplitude of the signal x, whereas in the nonlinear case we need either to know it
or to be able to estimate it from the data (this amounts to finding H). Note also
that a linear function H gives rise to a linear optimisation problem, because then
even when the sampling is irregular the objective function is quadratic in §.
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Figure 4.9. Effect of filtering (sampbng schemes a,b from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.9. Effect of filtering (sampbng schemes c,d from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.9. Effect of filtering (sampling schemes e,f from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.10. Effect of filtering, four targets; (a) uniform, (b) random sampling.
The targets are at 0.41, 0.79, 1.05, 1.65; the interférer is ‘centred’ at 0.21.
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Figure 4.11. Modelling and estimation of FSK signal in noise (see overleaf).
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4.7 The identification problem (revisited)

The problem of identifying the spectral components of an irregularly sampled signal
has led in the astronomy literature a sequence of algorithms, offering successively
better performance. Indeed it seems de rigueur to name them after their supposed
cleanliness; naturally we refer the reader only to the cleanest [69]. These and re-
lated cleaning algorithms [20] revolve around the simple principle of estimating the
strongest frequency components using the periodogram and then removing them in
the time domain before reassessing the spectrum. Of course these methods simply
correspond to the coherent case discussed in §4.5.2, wherein it was shown that per-
forming a least-squares fit to a sinusoid (or sinusoids) is the same as filtering using
our algorithm with AR poles on the unit circle and letting 4 — oo (as prescribed
by the C estimation scheme). Our technique will deal with more general classes of
signals, thereby including the case in which the amplitude and/or frequency of the
sinusoid wander over a period of time. It is clear that the AR approach, which essen-
tially relies on local linear predictability, is more flexible than the current approach
of using a global representation A cos{2t+ B sin Qt. In other words, the AR approach
admits spectra other than delta-functions, i.e. spectra having nonzero bandwidth.
All we have to do is to combine the model-fitting algorithm with the filtering one.
As a test we repeat the tests of §4.6.1 but instead of knowing in advance the poles of
the AR process to be removed, we estimate them from the data (which contains the
extraneous sinusoid as well). It is to be hoped, of course, that the presence of the
sinusoid will not drastically affect the estimation process. We show the results for
sampling schemes (a) and (b) only: as can be seen, the results are virtually identical
with those of §4.6.1 where the model poles were estimated from the ‘clean’ interferer.
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Figure 4.12. Effect of filtering (sampling schemes a,b). In this simulation the
process paramaters are estimated from the test data, rather than being known
beforehand.
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4.8 Final remarks

We have developed the theory of linear prediction for irregularly sampled data that
relies on linking discrete-time process with the continuous-time autoregressive and
harmonic models. This has allowed estimation and filtering algorithms to be con-
structed, and there is plenty of scope for research in either of these areas.

One area that could be investigated—though it is by no means easy—is the con-
struction of the function FE, as the normalisation of the predictors is an awkward
sticking-point. Our normalisation (4.4) has some useful properties (notably it sim-
plifies the analysis of prediction errors for a white input signal) and on the basis of
the test results we can say that it works well—the peak heights of the ARPSDs in
Figures 4.7-8, which are extremely sensitive to small errors in estimating the poles,
are remarkably consistent—but a sounder theoretical justification would be help-
ful. The other awkward corner is that a continuous-time AR process when sampled
(regularly or irregularly) produces a discrete ARMA(p, p— 1) process, not an AR(p)
process, and it is not clear whether, or how, to take into account the MA(p — 1)
part.

The optimisation to obtain & from F(x,a) is nonlinear because each residual
does not depend linearly on the (¢;). This is rather inconvenient, and means that
one always has the worry about finding the best minimum. There does not seem
to be a way out of that problem. However we have found that, if one is prepared
to make a quick search of the performance surface and choose the best point as
the starting-value, there is little difficulty in obtaining reproducible results. Re-
member that in the regularly-sampled case the performance surface is quadratic in
the AR coefficients, and hence unimodal when viewed as a function of the poles
(we mean unique up to a permutation of the poles). Incidentally Belcher et al.
[12] reconsidered Jones’ work [101, 102] and came up with a reparametrisation of
the Laplace-domain (continuous-time AR) poles to circumvent the p!-to-1 mapping
from poles to coefficients.

While on the subject of nonlinear optimisations, we note that there is one minor
improvement that can be worked in at no extra computational cost, namely the
use of methods from robust statistics [89, 164] as an alternative to least-squares.
Least-squares methods fall down when outliers in the data give rise to excessive
contributions on squaring and pull the estimated parameter away from its correct
value; they can be attributed to the tails of the Normal distribution, which are
unrealistically thin. Robust statistics assumes that the underlying distribution ¢ of
the residuals (e,) is non-Gaussian (with fatter tails); in particular

L = Inlik(e|la) = lanb(en) = Zln d(en)

is maximised. In linear least-squares problems e, is linear in o and if In ¢ is quadratic
(as it is for a Gaussian ¢), then 9L /0« is linear in a. As soon as one moves away
from Gaussian distributions, 0L /0a becomes nonlinear, which is inconvenient. For
our application e, is not linear in o to start with, so the introduction of further
nonlinearities is not of much concern. Another possibility is to weight the prediction
errors in inverse proportion to their associated intersample spacings, for if the data



4.8. FINAL REMARKS 106

had a few large gaps one would not expect to be able to estimate across the gap,
and reducing the sensitivity of E(x,a) to these terms would give better robustness.

Concerning the filtering, there are several questions of interest. One is the re-
lationship between the C and R methods of estimating the variance ratio u, and
why they give different results. As a third method there is also the expectation-
maximisation (EM) algorithm [151] for estimating this parameter. There is also
the question of how to implement the filtering algorithm for data that arrive se-
quentially rather than in blocks; one possibility is to solve the filtering equation for
blocks of data (tn,zn)N_, and (t,,2,) 3! and find a relation between the two to
give the required recursion. In the case of sequential component extraction (using
alternate estimation and filtering) it would be worth investigating whether, if sev-
eral components are identified in a signal, they should be extracted sequentially or
simultaneously.

Given the vast literature on autoregressive methods, the ideas introduced here
could form the basis of many interesting developments. Further there is no reason
why one should stick to simple autoregressive models. In recent years there has
been much interest in allowing the parameters of an AR model to be amplitude-
dependent, or to consider other forms of nonlinearity such as the bilinear model of
which the following is the discrete-time representation:

P r
Yn + Zajyn—j =en+ Z Yn—i€n—j-
J=1 1,j=1

Priestley [166] discusses these nonlinear models in discrete time. The continuous-
time threshold autoregressive model, or CTAR, is discussed in {27, 213, 91].



Chapter 5

Nonlinear models

In this chapter we shall consider nonlinear prediction of a time series sampled at
irregular intervals. The motivation for nonlinear prediction is the study of signals
obtained from observations of a'dynamical system. In the regularly sampled case we
can predict an observation from d previous observations provided that the embedding
dimension d is sufficiently large. In the irregular case we expect to have to take
the intersample spacings into account, so that the nth sample is predicted from
the previous d samples and their associated intersample spacings. Recent research
[198, 202] shows that this approach will in principle work. The simplest nontrivial
case is that of a sinusoidal signal, which can be viewed as one-dimensional dynamics
§ = Q, on a circle parametrised by the angle 8, using an observation function
g : 8 — cosf. It turns out that even this simple case is quite interesting when
the sampling is irregular, and the existence of a smooth predictor function depends
on a certain condition relating the frequency of the sinusoid and the irregularity
of the sampling. Then we consider a rather different type of dynamical example,
the Lorenz attractor, in which chaotic dynamics are predicted. Chaotic sources
generally give rise to broad-band time series which are not analysed well using linear
techniques. The nonlinear techniques shown here give a significant improvement. We
conclude by suggesting how methods for nonlinear prediction demonstrated here,
when combined with the linear filtering discussed in Chapter 4, could be used to
design nonlinear filters for irregularly sampled data. Thus nonlinear prediction and
filtering techniques fit in with the general aim in this thesis of devising methods for
analysing irregularly sampled time series.

5.1 Predicting irregularly sampled data
In §2.7 we discussed Takens’ theorem and nonlinear prediction for the case of regular
sampling and said that:

e Suppose that a signal is obtained by observing, using a smooth function g,
dynamics y(t) on a compact manifold M of dimension D. Construct the set
E of d-dimensional delay-vectors

E={lg¢7'y 9072 - go7 %] :ye M}
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where ¢ takes y € M to where y is moved by the dynamics after time 7. We
have a copy of M in E provided d > 2D + 1. In fact M and E are identical up
to a smooth coordinate change. We are taking the genericity constraints for
granted.

e Time-discretised dynamics on M are manifested in E. Thus there is a smooth
function K : E — E that predicts the (n + 1)th delay-vector from the nth.
Writing Tn = gy(t+n7—) and Xn = [ Tn-1 Tp-2 °°° Tp-d ]T, so that l(.n € E,

K :x" — x"1 and K :E — E is smooth.
e We don’t need all the components of K, as (d — 1) of them are trivial. The
important thing is to predict z, (the ‘top’ component of x"*1) from x™:
H:x"w— z,, and H : E — R is smooth.

A good way to estimate H, from a set of data, is the radial basis function
method, using known delay-vectors as centres. Thus,

2 H@E") = 3490l ~ x¥]).
J

The (c;j), which are just integers, index the centres.

When the sampling is irregular, the generalised version of Takens’ theorem, due
to Stark, Broomhead et al. [198, 202], states that:

o H still exists, if we incorporate the intersample spacings into the delay-vectors,
and is well-behaved except at countably many points.

So one question to be answered is whether the ‘exception at countably many points’
occurs in practice and, if it does occur, what the implications are for time series
embedding and prediction. It is then a question of how to approximate H. Again
we wish to use radial basis functions. To do this, write 7, = ¢,4; — t, and define
delay-vectors by

T
T T T N

X" = [Xn T"] — n—1 n—2 n—d ) (51)

- Tn—1 Tn-2 *°* Tn-d

We can put the usual algebraic structure on these; the norm is given by

2 ={x z] = walll® + izl (5.2)

To make this norm dimensionally consistent w, and w, will need to have different
dimensions; in fact, as there are two parameters in the above equation, ¥ need not
have an implied ‘width parameter’. We write H for the RBF approximant to the
smooth function taking x" to z, :

H:xm e 300" - x71).
J
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We intend to use the Gaussian 9(r) = e~z throughout, though other choices such
as V1 + r2 and r%In r are possible too.

Before applying this we need to estimate w, and w,, and after nondimensional-
ising they may be cast in the form

/
wy, w

w = 21
Var{z}’ ' Var{r}’

!

(5.3)

where Var(-) denotes the variance (though other suitable measures of spread could
be used) and wy , are dimensionless. This means that the parameters w,, ., depend
on the nature of the problem rather than on the dimensions used to describe it. For
the problems that we have been examining, w,, = 1 and w) = 513 were always found
to be suitable.

Having selected wy, , for a given data set, we must now decide which points in
the training set should be used as centres. From these data points we wish to choose
a representative set of centres that are not too close (numerical ill-conditioning will
result if they are). As discussed in the Introduction, a simple way of accomplishing
this is to start selecting centres at random from the time series and, each time a
centre is chosen, reject it if it is too close to any of the previously chosen centres.
We suggested in §2.7 that for the Gaussian RBF f : x — e‘%‘”“FEHZ, for which
f(c) = 1, a centre should be rejected if the value of its associated basis function at
any of the previously chosen centres exceeds 0.9. We shall use the same criterion
here. :

Then, taking the training data (z, tn)llV , we have only to minimise the following

function with respect to the (X;) :

N

Error= (xn - Z Aip(lIx" - x ||)) = ||[AX - b]|?

n=d+1

where A;; = ¢»(||x" — x%||) and b; = z;. This is a completely standard linear least-
squares problem: methods for solving it were discussed in §2.7. We shall use SVD
on the matrix A to accomplish this; the tolerance level in the SVD will be 10~4
throughout.
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5.2 Prediction of a sinusoid

The sinusoidal signal cos 27 ft contains the ingredients of an interesting dynamical
prediction problem. It can be regarded as the observation of the system 6 = § on
a circular manifold M = T! with the (2-to-1) observation function g : § — cos§.
Note that M is compact. Alternatively we may view the dynamics in R?(¢,7) and
say that we are observing the £-coordinate of the system (E = —n, 7 = £); there
is nothing wrong with that, but it is a rather loose representation and hides the
topology.

Consider, for an average sampling rate of 1 (frequency units), the prediction of
a sinusoid of frequency f sampled using an additive-random sampling scheme with
intersample spacings taken from the rectangular distribution with pdf

-1 1
— q -, |T'-1IS 39
p(r) = { 0, otherwise.

Additive-random sampling means that the intersample spacings are independent. It
is apparent that:

e When ¢ = 0, prediction will be accurate using d = 2 regardless of f because we
know that a sinusoid can be predicted from two equispaced previous values by
linear prediction, so the (more general) nonlinear prediction must also work.
[The prediction from regular samples is 2, = (2cos27 f61)z,—1 — Tpn-2.]

e When f is small, prediction will be accurate for ¢ > 0. This is because the
signal will vary only slowly between the samples, so there should not be any
difficulty in predicting it.

So the question is whether accurate reconstruction requires some constraint on f
and q.

In an extensive numerical simulation we investigated the predictability of a si-
nusoid, using d previous values and associated intersample spacings, as a function
of the sinusoid’s frequency (f) and of the irregularity of the sampling (g). Both ¢
and f were varied between 0 and 1. A sample size of 2000 was used. The centres
(¢j) were chosen between d + 1 and 1000. The first 1000 data points were used for
training, i.e. a linear least-squares fit was performed to these data points to obtain
an estimate of the (A;). The second 1000 data points were used for verification. The
mean-square verification error ey and the error in decibels eqg were calculated in
the natural way:

N N
€ms = Z |$n—H(§n)l2 Z |C”n|2
n=d+1 n=d+1
eae = 10log;gems.

Here the data points indexed by (ar:n)iV are the verification data (in this demonstra-
tion, samples 1001 to 2000 of the time series).

In the first instance a model order of 2 (i.e. d = 2) was chosen, and the results are
shown in Figure 5.2(a,b) for 30 radial basis centres and also for 60 centres. Although
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the latter allows a closer fit it is clear that there are some regions of the (g, f)
plane that do not permit prediction. This is made clearer in Figure 5.2(c,d), which
are contour plots of the three-dimensional graphs (a,b) showing lines of constant
prediction error. A simple conclusion would be that when ¢ or f is small, accurate
prediction is possible, but not otherwise. This would, however, ignore the rather
interesting ‘kink’ in the surface which is observed when ¢ is kept at a low value and
f is raised from 0.5 to 0.8 : the mean-square prediction error, having risen to a peak
at around f = 0.5, drops and then increases again. The significance of f = 0.5 is
that it is half the average sampling rate, but beyond that more analysis is required.

It turns out that the stumbling-block that prevents nonlinear prediction in the
‘disallowed’ regions of the (g, f) plane is precisely the same one that caused the
normalisation problem in Chapter 4. The reader might recall that that difficulty was
caused by trying to predict the observation at time ¢, from observations t,_;,t,—2
close to the zero-crossings of the sinusoid. It was resolved by replacing a classical
prediction error with a generalised prediction sum Z?:o 772Zn—; and constraining the
length of the coefficient vector r™. In the nonlinéar prediction schemes that we are
examining, we have returned to the prediction of z, from two previous values—and
so the difficulty presents itself again.

The dependence of z, on previous samples is

_ sinQ(t, — ta2) sin Q(tn — tn-1)
- sin Q(tn_l - tn_g) -1 sin Q(in..l - tn—2)

Tp_2, Q=2xf.

This function is singular whenever 27 f(,—1 — t,—2) is a multiple of 7. Nonlinear
prediction schemes require the prediction function to be smooth, and so if the de-
pendence of H(x) on x is discontinuous, the method will fail. This situation can be
imagined in embedding space. In the sketch below, the dynamics are embedded for
different sets of intersample spacings.

A B A B AeB Be eA B A

In the first and last sketches the circular dynamics are embedded as an ellipse,
but in the awkward case in the middle sketches, the minor axis of the ellipse is
very narrow {(and zero in the singular case). The implication for prediction is that
the prediction function H has to take very different values at the points A and B,
because at those points the dynamics are going in opposite directions. Consequently
an attempt to approximate H using smooth functions (such as RBFs) will fail if A
and B are very close.

The above discussion points to a conclusion that prediction is likely to fail if
sin Q(tn—1 — tn—2) is ever zero (equivalently, if 2(¢tn—1 — tn~2) € Z). Accordingly,
it appears that successful prediction of a sinusoid from two previous observations
requires the set {27,,f} to lie completely within one connected component of the set
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R\Z. For the sampling scheme that we are considering, i.e. an additive-random one
in which 7 lies between! (1 £ %q)f, the allowable regions of the (g, f) plane are those
for which (2 & ¢)tf both lie between k and k + 1 for some integer k. This statement
can be summarised by saying that the allowable region is .A given as the following
disjoint union:

A = | A (5.4)

k>0
A = {(¢,f):05¢<2, f>0,2-9)tf >k, 2+ 9)tf <k+1}

The Ay are shown in Figure 5.1 and the allowed regions are also marked on the test
results (Figure 5.2(e)). It appears that the contour plots of prediction error closely
follow the allowed regions, so the ‘kink’ in the performance surface is explained.

2

051

Figure 5.1. Allowed regions Ak of (g, f) plane for prediction of a sinusoid.
Numbers on the graph refer to the index k; unnumbered regions are disallowed.
(Ag is the leftmost strip; Ay, Az, ... are the little triangular segments.)

We also examined the effect of increasing the model order to d = 3 (Figure
5.3(a,c)) and d = 4 (Figure 5.3(b,d)). For these simulations the number of centres
was increased to 90 (for d = 3) and 120 (d = 4). Interestingly these graphs are virtu-
ally identical to the previous ones: increasing d seems to have very little effect. This
points to the conclusion that even in higher embedding dimensions the prediction
function H remains discontinuous when (g, f) is not in an allowed region.

Looking at Figure 5.1 again, it is interesting that the only value of ¢ for which
all frequencies are admissible is ¢ = 0, which means regular sampling. (Strictly
speaking we have not examined the behaviour on the boundaries of the (Ax).) The
case ¢ = 0 is easily analysed, for then we obtain an embedding whenever 2¢f is
irrational, and not otherwise.

It would be interesting to see how Figure 5.1 would be affected if a periodic
signal other than the sinusoid were considered. It seems likely that the answer to

!For the simulations %, the average sample spacing, is 1.
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this question would be provided by the number of maxima and minima per cycle.
Let us consider perturbations to the sinusoid. If the perturbation did not affect the
number of local maxima and minima (so that there was still one of each per cycle)
the diagram would only be slightly affected, though possibly the allowed regions
would shrink so that they no longer touched. If multiple maxima and minima were
introduced, the diagram would become more complicated, and the allowed regions
would probably split. For example, if the observation function were g : § — cos 26
then in the ranges shown in Figure 5.1 (0 < ¢ < 2,0 < f < 2) there would be eight
allowed regions.
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Figure 5.2. Reconstruction errors (embedding dimension 2).
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(a,b) Error (dB, top axis) vs. frequency (RH axis) and nonuniformity parameter ¢

(LH axis): (a) 30 centres, (b) 60 centres.
(c,d) Contour plots for surfaces depicted in (a,b).

(e) ‘Allowed regions’ (marked YES).
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Fig. 5.3. Reconstruction errors (embedding dimension 3,4)-
(a,b) Error (dB, top axis) vs. frequency (RH axis) and nonuniformity parameter ¢
(LH axis): (a) d= 3, (b) d = 4.
(c,d) Contour plots for surfaces depicted in (a,b).
(e) ‘Allowed regions’ (marked YES).
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5.3 Prediction of the Lorenz attractor

The work in the previous section showed that it is possible to predict periodic
dynamics when certain conditions are met. In this section we shall consider the
prediction of a chaotic dynamical system and show that nonlinear prediction has
substantial advantages over linear prediction (classical or generalised) for this type of
waveform, which is inherently broad-band and hence not amenable to linear analysis.

The system that we shall choose is the Lorenz attractor [212], governed by the
3-dimensional dynamics

dZ,/dt = 10(Zz - Zy)
ng/dt —Z1Z3+ 282y — Z,
iZs)dt = 2,2~ 875,

Strictly speaking we should not apply Takens’ theorem without checking that the
underlying manifold is compact. It can be shown using Lyapunov functions [73]
that the Lorenz system is Lyapunov stable, i.e. trajectories that start in some closed
ball stay within another closed ball (in R®). Hence the attractor is contained in a
compact region, and it can be shown that this is sufficient for the conclusions of
Takens’ theorem to go through [90, 178].

Suppose that observations are made on the first variable, so that the observed
waveform is z(t) defined as

2(t) = Zi(72). (5.5)

As in Chapter 4, where the same signal was used, v controls the bandwidth of the
process: the higher the value of v, the more broad-band the waveform z(¢). We do
not wish v to be too small, for if it were, the signal z(¢) would be too slowly-varying
and too easy to predict by linear methods, and this would make the comparison
between linear and nonlinear techniques rather pointless. In the simulations of this
section 7 = 1. A typical realisation of z(t) is shown in Figure 5.4(a). This was
obtained by integrating the Lorenz equations using an adaptive step-size fourth-
order Runge-Kutta algorithm? and a relative accuracy of 10~6. The sampling could
therefore be performed by nominating the next sample point, and integrating the
equations as far as that point. The initial conditions, which correspond to a point
on or very close to the attractor (as opposed to an arbitrary point in space) were
(Z:)(0) = (4.1,-0.8,28.8).

The Lorenz attractor has underlying dimensionality D = 3 so if the sampling
were regular one would by Takens’ theorem require a seventh-order nonlinear model
(2D + 1) to predict it. However it is often the case with nonlinear prediction that if
the observation function is reasonably sensible, that is, not too convoluted, one can
often successfully predict the time series using a rather lower embedding dimension
than 2D + 1. In the previous section we saw an example of this with linear predic-
tion for the sinusoid, where d = 2 is sufficient even though the Takens’ embedding
theorem suggests a dimension of 3.

2NAG routine D02BAF.
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The test signal (5.5) was sampled additive-randomly with intersample spacings
taken from the rectangular distribution [0.5,1.5]. (This is the same as the type (b)
scheme of §4.4.1, or ¢ = 1 in the previous section.) A section of 4000 points was
taken. The first 2000 were used for training points (the centres were taken from
this section too) and the remaining 2000 were used for verification. As with the
test results of §5.2, the prediction errors ens and eqp were calculated using the
verification data.

Results for fourth-order nonlinear prediction (d = 4) are shown in Figure 5.4(b),
using 180 radial basis centres. The prediction errors are shown as a time series and
their energy is 19.0dB below that of the original signal (eqp, in the nomenclature of
the previous section, was —19.0dB). We think that this is a reasonable result, but
it is not as good as the sort of accuracy one can get for regular sampling. We found
that a time series obtained by sampling (5.5) regularly, with intersample spacings
all equal to 1, could be predicted with error —32dB (this required 60-70 radial basis
centres).

Some further experiments were performed. First, Figure 5.4(c) shows the effect
of putting w, = 0 rather than the ‘automatic’ choice (5.3) based on the variance of
the intersample spacings (as discussed in §5.1). This means that in performing the
prediction the intersample spacings are ignored. The results are seen to be worse
(eq = —12.1dB). So in Figure 5.4(b) the intersample spacings are being put to
good use in establishing the prediction function H.
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Fig. 5.4. Nonlinear prediction of the Lorenz attractor.
(a) Time series. (b,c) Prediction errors of irregularly sampled record, using
4th-order nonlinear prediction and a 180-centre RBF approximant to H :
(b) automatic selection (5.3) of width parameters (prediction error —0.0dB);
(c) Wr set to zero, excluding the temporal information (prediction error —2.1dB).
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It is also of interest to examine the effect of linear estimation using the generalised
prediction error methods of Chapter 4. When these are employed the results are
substantially worse; this is to be expected on account of the broad spectrum. Once
the ‘optimal’ model poles o were found the generalised prediction errors f,(x; )
were calculated; as they are determined only up to sign, their absolute values are
plotted in Figure 5.5(a). The prediction error is —4.8dB.

One might ask at this point, given the obvious failing of the linear technique,
whether the underlying signal is fundamentally unpredictable by linear means, or
whether our technique for fitting linear models is at fault. That question is easily
resolved if one recalls that all a linear method can do is estimate the spectrum, if it is
assuming that the statistics are Gaussian (as the least-squares AR approach does);
so, if the ARPSD resembles the underlying spectrum, the fitting technique has done
as well as could be expected of it. To compare these spectra we have calculated
the ARPSD from the model coefficients (Figure 5.5b) and obtained an estimate of
the underlying PSD by resampling z(t), regularly with intersample spacing 1, and
running a 1024-point windowed FFT (Figure 5.5¢). If one assumes the true PSD
to be continuous, which seems sensible, then it would resemble a smoothed version
of Figure 5.5¢c—in fact, something very like the AR spectrum. We may conclude
that the linear model-fitting technique has indeed chosen the best fourth-order linear
model, but that no linear model is a good representation.
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Fig. 5.5 Linear methods applied to the Lorenz attractor.
(a) Generahsed prediction errors |f,,| (prediction error —4.8dB).
(b,c) Spectral estimates are in broad agreement:

(b) AR(4) PSD estimate, (c) FFT of regularly sampled record.
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5.4 Final remarks

We have found two test cases on which linear and nonlinear prediction give opposite
results. For a sinusoid, the concept of generalised linear prediction, developed for
that purpose, works well, as the results of Chapter 4 showed. Nonlinear prediction
does well but not for all frequencies and sampling schemes. There is a simple criterion
(g, f) € A [eq. (5.4), §5.2.2] that states how irregular the sampling is allowed to be
for a given frequency. It bears a passing resemblance to the criteria of Nyquist and
of Kadec, for like the former it shows that prediction fails as the frequency gets to
half the average sampling rate—from Figure 5.1 we see that the regions .Ag and A;
touch at the point (g,%f) = (0,0.5)—and like the latter it gives a condition on how
far the sampling may deviate from uniformity.

This has interesting implications for embedding chaotic dynamics. Chaotic sys-
tems have an infinite supply of periodic orbits3. Figure 5.1, and the experimental
results which corroborate it, shows that, depending on the degree of aperiodicity in
the sampling, it is not always possible to embed periodic orbits correctly. We have
shown that the Lorenz system can be predicted quite well by nonlinear means when
the sampling is irregular (relative error —19dB). But the prediction is not as good as
it is when the sampling is regular (—32dB); nor is it as good as nonlinear prediction
of periodic dynamics (which, when it works, gives prediction errors of typically —30
to —40 dB). This suggests that in a chaotic system such as the Lorenz system, there
is a ‘spectrum’ of periodic orbits some of which are in the ‘allowed regions’ of Figure
5.1 and others not. This ‘spectrum’ is given by a mathematical device known as
the zeta-function which gives the density of orbits of period T as a function of T'.
(It is not the same as the Fourier spectrum, because the orbits are not stable and
not observed as sinusoidal functions in the time series.) An interesting question for
further research is to see if knowledge of the zeta-function, together with Figure 5.1,
directly implies the quality of prediction of irregularly sampled chaotic time series.

We have also been able to tie in the work of Chapter 4. For the Lorenz attractor
the linear technique attempts to model it as a stochastic process and gives a good
representation of the spectrum, but nonlinear prediction does much better.

There arises the question of whether the two schemes can be fused. Looking
at the derivations one sees instantly that the two methods are very different. The
linear model makes a very specific assumption about the underlying process and the
generalised prediction errors are constructed from the parameters associated with
that model. On the other hand the nonlinear model makes very weak assumptions
about the underlying process and although this makes it more flexible it also means
that much more training data is needed. Certainly there is no notion of a finite set
of parameters enabling one to construct generalised prediction errors.

One would therefore have to consider a class of nonlinear dynamical systems
that could be parametrised in a simple way, and define a predictor to be a function
p : R¥*! — R depending on the sampling instants and satisfying the condition

P(Tn,...,Zn—d) =0 for all realisations of the dynamics.

30f course they are unstable, but that is not the issue: they are still in the dynamics, and so
have to be embedded.
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The set 9 of all such predictors is a linear space (though of course p : R — R
is nonlinear) and one would have to reconsider the question of how to choose an
appropriately-normalised predictor § from B. The quantity |@(zn, ..., Tn-q)| would
then be the generalised nonlinear prediction error. The difficulty lies in identifying
B, which appears to involve solving the nonlinear differential equation (not an easy
proposition).

Another possible area for research is nonlinear filtering. There is a nice method,
due to Broomhead [28, 29], for constructing ‘nonlinear inverses to linear filters’
when the sampling is regular. This is how they work. Recall that, in the notation
we are using, ® is the diffeomorphism between the trajectory in R® described by
the sequence of delay-vectors and the trajectory followed by the system in its phase
space. It turns out that there is still such a diffeomorphism even if the observed
time series data are passed through a linear FIR filter. Let T denote the FIR filter,
which acts in the obvious way on E by

d
p
r: (:vn_i):-i=1 — (mn_i + Z’le'n-i-j)

3=1 i=1

If we write ®' for the Takens embedding associated with the time series filtered by
T, then the following diagram can be constructed:

KT

re £ 1E
of  of]
M 2
ol 9
E X E

We are given a sum {z,} of two signals, {z,} dynamical, and {u,} lying in some
known spectral band so that a filter I' can be found to remove it (or at least sub-
stantially reduce its magnitude). We wish to recover {u,} from {z,}. Note that, by
linearity of T,

I(x") =T(x")+ (") = (" +1") =I(z") € TE.

The map K takes x™ to x"*1; as before, write H for the component of K that takes
X" to z,,. Now all we have to do now is diagram-chase:

Un = Zp — Tn = 2n — H(X") = 2, — H®(®")"}(T2")
so that
() 1:TE-E

is a ‘nonlinear inverse’ to the linear filter I'. One needs to know I' and have a suitably
long stretch of data from the dynamics; in advance of somebody giving us the time
series {z,} we have representations for E and (on applying I') T'E and can construct
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the map ®(®")~!. Broomhead et al. [28, 29] performed the construction using a
radial basis function fit.

This is a subtle approach and (not surprisingly) the key step is to show that
@ is injective. An elementary argument suggests that chaotic signals have broad
spectra and so spread their information across the spectrum; applying a linear filter
cannot remove all the information, and so a Takens embedding should still exist.
Obviously this is not true for linear processes: for example applying an FIR filter to
a bunch of sinusoids could cause some of the tones to be removed completely, and
then the filter could not be inverted.

Having studied prediction techniques for irregularly sampled nonlinear data, we
are able to construct H or, equivalently, K. Also the techniques of Chapter 4 enable
the construction of narrow band-stop filters. Hence the nonlinear inverse filter should
be constructible. The only source of concern is that the filters we have developed are
in general IIR and acausal. IIR filters can generate new dynamics, depending on how
quickly the impulse response decays [201, 203]; if they do generate new dynamics,
the dimensionality of the time series is increased by filtering. This might require the
theory to be extended. Presumably in the above diagram the top branches would
have to be altered, for the inclusion of the filter dynamics in I'E would mean that
@' was no longer onto T'E, but rather onto a nonlinear subspace of it.



Chapter 6

Conclusions

This thesis has brought techniques from the theories of integral transforms, complex
analysis, local fields, linear stochastic processes, and dynamical systems, to bear
upon the problem of analysing signals sampled at irregular time instants. We have
deliberately reserved specific comments on the various methods for their respective
chapters: the purpose of this chapter is to make some observations on the state of
the theory as we have left it.

The aim of this thesis has been to answer the three questions listed in the Intro-
duction, which we reproduce here for convenience:

Q1 How do irregular sampleé of an underlying waveform relate to that waveform?
Q2 Given an irregularly sampled signal, how should we process it?

Q3 How should we generalise common signal processing techniques such as filter-
ing, convolution, model fitting, etc., to cope with irregularly sampled data?

The main theme has been the analysis and processing of irregularly sampled data
without recourse to explicit signal reconstruction.

From the point of view of practical signal processing the key developments have
been the linear prediction and filtering schemes of Chapter 4. This has produced
algorithms for clutter modelling, clutter removal and noise reduction. In addition
to being used on their own, these can also be combined with elementary spectral
analysis to solve the problem of signal identification.

The linear work has raised many questions of its own and notwithstanding a cou-
ple of awkward corners in the theory it seems that exploitation of the relationship
between continuous- and discrete-time theory has been a fruitful line of investiga-
tion. Of course the notion of time-varying prediction was always likely to be right
approach, but exactly how to make the predictors vary is a rather difficult problem.
What was not so obvious is that it is not necessarily a good idea to predict an obser-
vation from a finite number of previous ones: the prediction coefficients only have
to be capable of generating a bilinear function (of themselves and the data) that
gives an indication of how well a putative model accords with the data that one is
trying to fit. The construction of such an error energy function, playing the role of a
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log-likelihood function, then allows the construction of a Wiener filter in a way that
is almost disappointingly straightforward. We suggest that it is now time for this
filtering technique to take its place in the signal processing toolbox, as a method
for separating a narrow-band signal (from a combination of it and something else)
when the sampling is irregular; and it should fit well into modern technology that
looks uses irregular sampling ‘in anger’ [20, 21, 14, 120].

Chapter 3 discussed the theory of sampled signals. In §3.1 we showed that a
more general type of integral transform is sufficient to derive a theory of sampling,
convolution products and Volterra operators, provided that the transform kernel
satisfies a ‘completeness’ condition (namely that the kernels K(u,£,) were an or-
thogonal basis for L?(I), where I is the set on which the transform of the signal is
supported). Hence we have shown that periodicity of the sampling is not required
for all this to go through, though it must be said that the examples are easier when
the sampling is regular.

In §3.2 we contributed to the theory of contour integration, as applied to the
derivation of error bounds for sampling series. This method is likely to prove useful
partly as a tool in approximation theory and partly because of its connection with
the theory of canonical products. There is plenty of scope for ingenuity here, for in
principle any function with poles can be used as an integration kernel. However it
is not quite as simple as that, because one needs to ensure that (i) a workable upper
bound for the integrand can be found, and (ii) the truncation error bound tends to
0 as the number of samples tends to oo (otherwise, the resulting sampling series is
of little use).

Methods from local field theory in §3.3 gave a new viewpoint for analysing signals
that are generated by exponentials and polynomials. It is interesting that they are
able to solve these problems so neatly, and one is left asking why exponentials
managed to creep back into a subject that did not seem to require them. The most
convenient answer is that one is examining functions defined on Z, and that a key
point is to find a signal vanishing at each integer—whereupon the sinusoid enters.
An open question is whether the class of functions, for which those theorems were
derived, can be expanded.

Finally the young subject of nonlinear signal processing entered in Chapter 5.
Nonlinear methods have produced prediction schemes for data that are of dynami-
cal origin. The approach is concerned with the fundamental result that underlying
dynamics confer a property of predictability on the sampled data. In nonlinear
filtering—a difficult problem even in the regular case because a nonlinear filter does
not handle in a simple way an additive combination of signals—there seem to be in-
teresting possibilities for further research. Described in §5.4 is Broomhead’s method
(28, 29] for separating a dynamical signal (we know the dynamics) from an additive
combination of it and an arbitrary signal that can be cancelled with a known linear
FIR filter. Using the dynamics one can construct a ‘nonlinear inverse’ which recovers
the dynamical signal from delay-vectors that have been linearly filtered. One takes
the time series, filters it using the linear FIR filter, and then applies the ‘nonlinear
inverse’ to recover the dynamical signal. When the sampling is irregular we can
construct nonlinear predictors and linear filters using the techniques in Chapters 4
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and 5, so that should allow nonlinear filters to be constructed for aperiodic data.

When the sampling is periodic, nonlinear prediction can be regarded as subsum-
ing linear prediction (albeit with significantly increased opacity and computational
expense). When the sampling is not periodic, the complications that are thereby
introduced make the subjects distinct (at least, they do at present). This is because
the nonlinear prediction is attempting to predict an observation from previous val-
ues and their associated intersample spacings, whereas the linear methods employ
the method of generalised prediction referred to above. So in our investigations we
have found data that are well-handled by generalised linear prediction but not by
the nonlinear method, and vice versa. It is apparent, then, that the different tech-
niques for analysis discussed in this thesis are most suited to analysing ‘their own
types of signal’, and that leaves future researchers with a rich supply of avenues to
investigate.

In conclusion we may say that, although there is plenty still to be done on all
three questions, we have narrowed the gap between irregular sampling as an area for
purely academic research and irregular sampling as a powerful and practical tool.



Appendix A

Spectrum of nonuniform
samples

This Appendix gives derivations for the spectrum of samples, P*(f), of a process,
as a function of its underlying spectrum P(f). The case of jittered and additive-
random sampling are considered. These issues were first addressed by Shapiro &
Silverman [189] who preferred to work with the autocorrelation. Although they hint
at the result

P°=P=x%SC

they do not explicitly state the form of SC for jittered sampling, and for additive-

random sampling they incorrectly derive P*(f) from the sample autocorrelation
({189], p.236).
The following notation will be used.

e 2(t), continuous-time stationary process

L]

R(7), underlying autocorrelation. The conventional definition for this is

E%z(t)*z(t + 7) which is independent of ¢ provided that = is wide-sense sta-
tionary. In that case it can be replaced by a time-average to get

W7 o0 5 J 2 2(t)*2(t + 7)dt.

P(f), underlying power spectrum :

1|7 ]
P(f) = lim — ‘ /_ . z(t)e~ 2t dy

P*(f), observed power spectrum :

2

N-1 ‘
S ppe it

s . 1
P(f) = Jim 5N
n=-N

Pm, pdf of intersample spacing ¢,y — tn.
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e “denotes the Fourier transform : p(f) = [5° p(t)e2"ftdt.

e t, mean intersample spacing

For additive-random sampling :
¢ p, pdf of intersample spacing t,4+1 — t,. Note that p(t) = 0 for ¢ < 0.

¢ Here p,, is the m-fold self-convolution of p, and so the Fourier transform of

pm(t) is B(f)™.
For jittered sampling :

e g, the pdf of the jittering. Thus t, = (n + s, )f where s,, are i.i.d. observations
having this pdf.

e @, the pdf of sy4m — 8. For m # 0 we have

Q(s)
Q)

[ at&hats' +35)ds
ok

o Here pp(t) is 6(t) when m = 0, and T~'Q(t/Z — m) for all other m.

A.1 Additive-random sampling
We have
1 N ;
Z 2 x;xn_l_me_z’“f(t”‘“"‘_t")

[mI<N n=1

P(f)zi\}l«—I’nooQN-i-l

We now split the m-summation into three parts : the first has m = 0, the second
contains the terms with m > 0, and the third has m < 0. Clearly the third part
is the complex conjugate of the second, so we shall write it as ‘c.c.” from now on.
Then, replacing the n-summation with an integral w.r.t. the distribution function
of (th4m — tr) we have

P(f) = R(0) + (Z / R(7)e” Ty (r)dT + c.c.)
m=1"0
Using the Wiener-Khinchine theorem,
)= [~ (e,

we have

P*(f) = / © P(fydf + (Z /0 ” / ¥ PR DTy () df! dr + c.c.)
—oo m=1 —o0
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or
PS
SC(f)

P xSC

1+ (Z / e"27rif7pm(7') dr + c.c.)
m=1 0

1+ ( f‘_; )™ + c.c.) (A.1)

1+ 5(f)

R (25

The question of what happens when p(f) = 1 is a delicate one; we contend that at

such points, SC(f) has a delta-function singularity. Let the frequencies for which

P(f) = 1 be called ‘singular frequencies’ and denoted f;. Note that 0 is always a

singular frequency, and that the singular frequencies must be isolated ($ is analytic).

Let us consider the behaviour of SC(f) at the origin. Expanding 5(f) as a Taylor
series (valid as p is analytic) in the vicinity of f = 0,

H(f)=1+50)f+---,

we have in the limit ¢ — 0%,

) except when p(f) =1

/:Esc(f)df = Re /F(szf’('(()())}f:) d
= Re {riRes(ﬁ—,—(-Oz)—f,f = 0)}

—2mi

= Re 70)

in which the contour I' runs from —¢ to +¢ in the lower half of the complex plane.
This is because SC(f) is defined as an infinite series (by A.1) and so for validity we
must keep |p(I')| inside the unit circle; given that |5(f)| < 1 in the lower (not the
upper) half-plane, it is in that half-plane that we must put the contour. Now

[e o]
7(0) = —2xi / tp(t) dt = —2nit, t = mean sample spacing
0

and so SC(0) is a delta-function of strength 1/Z. By an identical argument, a singular
frequency f; generates a delta-function in SC(f) of strength hq := Re [-27i/5'(f4)]
at f = fy4. Thus

1+ p(f)

SC(f) = 8(tf) + Cont Re (ﬂ(’f‘)> + 3 has(f = 12 (A.2)

where ‘Cont’ signifies that the Re(-) term is taken as continuous at the (isolated)
singular frequencies.

We now consider the mean of the function SC. By the Riemann-Lebesgue Lemma
we have that whenever p is a measurable pdf, p(f) — 0 as f — +oo. Hence the

average of Cont Re (%‘—f%%) is 1. For a measurable pdf there is no delta-function

train, so the average of SC(f) as given by (A.2) over f € Ris 1.
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A.2 Jittered sampling

We have

N
s 1 1 * =271 f(tn4m~tn)
P(f) = Jim N |mz|<1v n2=1 EnPntme

We bring the m = 0 term out separately, where as before it generates R(0). Then, re-
placing the n-summation with an integral w.r.t. the distribution function of (¢, —
t,) we have

P(f) = RO)+ Y / R(r)e~7Q(r [T — m) dr
m#0
= RO)+ Y / R((m + o)D)e~"fHm+9) 0 (5) do.
m#0

Using the Wiener-Khinchine theorem as before,

Py =[P+ S [ [T R0 go) af do

m#0

or P* = P xSC with

SC() = 1+ 3 [ mfintQ(o)do

m#0
= 1+lEAR Y e
m#0
= 1—[g@NI* +13EN1 Y 6(Gf —n). (A.3)
ne€l

Notice that the delta-function train characteristic of regular sampling is still present,
so that aliases are not suppressed as effectively as they are when the sampling
is additive-random. An interesting case is when ¢ is the rectangular distribution
on [—1,1], which corresponds to uniform ‘100%’ jitter (i.e. successive samples can
actually touch). Then §(u) = sincu which vanishes at all nonzero integers, and
one is left with a delta-function at the origin, 6(Zf), plus a continuum given by
1 — sinc?tf.

Concerning the average of SC over f € R, we can say that for a measurable pdf
P, G(f) — 0 as f — +oo, and so only the first term in (A.3) contributes. So the
average is 1.



Appendix B

Introduction to local field
theory

The reader is referred to Cassels [44] for a concise treatment or Schikhof [181] for a
more extensive one. Cassels concentrates on the algebraic aspects, Schikhof on those
related to p-adic Analysis. Elementary results on groups, rings and fields are dealt
with by, for example, Stewart [204], while Baker’s book [9] discusses the relevant
bits of number theory.

B.1 Valuations

Most common properties of the standard (‘archimedean’) valuation on Q are corol-
laries of the following three :

V1 Positivity : |z| > 0 with equality iff z =0
V2 Multiplicativity : |zy| = |z||y|
V3 Triangle inequality : |z + y| < |z| + |y|

The standard valuation is not the only one to do so; there are a family of others,
known as the p-adic valuations, which satisfy the above three conditions, and also
this one,

V4 Ultrametric inequality : |z + y| < max(|z|, |y|)

which is stronger than V3. Such valuations are said to be non-archimedean.
The ultrametric inequality gives rise to some interesting properties. Let K be a
field with nonarchimedean valuation |- |. Then we define

e 0, the elements in K satisfying |z| < 1. This is closed under multiplication
and under addition, so it is a ring, called the valuation ring. It is also a local
ring as it has a unique maximal ideal.

e m, the elements in K satisfying |z| < 1. It is the maximal ideal of o.
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e u, the ‘units’ of K, satisfying |z| = 1.

e k = o/m, the residue class field of I{. The mapping from o to o/m will be
called A. It is easy to see that 2 € m & Az = 0 and ¢ € u & Az € kX (the
nonzero elements of k).

e Pos(K), the elements of K satisfying |z—1| < 1. Then z € Pos(K) & Az = 1.
From this we see that Pos(K’) is a group under multiplication.

e V, the set of {|z| : z € K*}, clearly a subgroup of R*, and called the value
group.

The following is a characterisation of Pos(K'), which will be useful later :

Lemma 1. Let K be a field with a nonarchimedean valuation |- | and suppose that
the residue class field k has p elements. If @ € K obeys |a| = 1 then o?~! € Pos(K).

For the proof, note that Aa € k%, so A(a?"!) = (Aa)?~! = 1) (Fermat’s little
theorem). So a?~! € Pos(K). O

Corollary 2. K, k, | -| as above. If |a| = 1 and (p — 1) | m then o™ € Pos(K'). O

That is the end of the algebraic content we need; we now state a remarkable ana-
lytical result.

Theorem 3. A series converges ultrametrically if (!) and only if its terms tend to
zZero. ,
By convergent, we mean of course that the sequence of partial sums tends to a
limit. Write s, = >, a;. Let £ > 0, and choose N s.t. n > N = |a,| < €. Then

m>n>N |8y, —sn| = |angr + - + an| < max{|antil,---,|am|} < &;
now use the General Principle of Convergence. O

We now introduce the p-adic numbers.

Definition 4. For any prime p the p-adic valuation |-|, of a rational number rs~1p*,
with r and s coprime to p, is p~".

It is easy to verify that V1-V4 are obeyed. The chief difficulty with such valu-
ations is psychological : numbers are p-adically small if they contain large numbers
of p’s in the numerator, e.g.

(p:2) 172’4’87'”_’0-

Definition 5. The completion of a field with respect to the valuation |-| is defined
as the set of all limits of convergent (w.r.t. |-|) sequences of elements in that field.
For example the completion of @ w.r.t. the standard valuation is R. Essentially the
completion process ‘fills in the gaps’.

Definition 6. The p-adic field Q, is the completion of @ w.r.t. | -|,. Its valuation
ring is called Z, and can be identified as the set of series

ao+ayp+app? +--- (0<a; <p-1)
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The maximal ideal of Z, is the set of series with ag = 0. The residue class field
is therefore F, the finite field with p elements. The value group of @, is the set
{p~" : r € Z}, which incidentally is the same as the value group of Q. From this
we see that o € Pos(Q,) ¢ |a — 1| < p~!, as there is nothing in the value group
between 1 and p~ 1.

For example —% € 23, for two reasons : first, its 3-adic value is clearly 1, and
secondly, we have a series representation of it,

D=

(p=3) 1+13+13*+1.33+..-= 1——1—5
Theorem 7 (Embedding). Let K be a finitely-generated extension of Q. Then
K can be embedded in @, for infinitely many choices of p. [In this context an
embedding is an injective field homomorphism.]

For the proof, see [44]. This is an important result because it means that one
has the benefits of working modulo p but also that K sits inside @, in a natural way.

B.2 Ultrametric functions

In this subsection we quote an important result on the exponential, or power, func-
tion.

Definition 8. Let P denote the set of convergent power series on 0. Then P
is a ring. Also let W, be the set of functions from Z to Q, that are p-adically
reconstructible, i.e.

{zn} EW, <= g€ Psit. g(n)=2z,foralln € Z.

Lemma 9. For any positive integer n

1

n!

n=1
< pr-i.
P

Proof. A well-known result of elementary number theory asserts that the number

of factors of p in n!is
n n n
ordy(n) = | o] + [ 35] + [ 53]+

Write d = |log,(n)]. Then

n n n n 1 n—1
Ordp("!)S;-l'F'l'""'rF:p_l(1—_(1') <

and now the result follows, because |m|, = p~°*% (™). O

Lemma 10. The function n — o™ is in W, if

1
lo = 1], < pi-7.
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Proof. The objective is to write & = (14 (a—1))" and use the binomial expansion
of (14 z)”. Define (v); =v(v—-1)---(v—3+1) (for j > 1) and (v)o = 1. (This
notation is not standard.) Consider the power series

o0 1 .,
9(v) = 3 _(v)jz(e - 1)
=0 I
If jv|, <1 then |(v);], £ 1 and so the jth term in the expansion is bounded by

=1 .
1xp'}’-—7x|a—1|;—+0asj—>oo

and, we recall, this is sufficient for the series to converge. So g is defined on o as a
convergent power series. And, for integer n,

n

o(n) = i i’}?—]’(a —pi=Y (j)(a S =+ (@-1)) =a"

=0
as required. O

Theorem 11 (Strassmann). Let g(t) be a power series convergent for t € 0. If ¢
has infinitely many zeros in o then g is identically zero. O

Note the connection with complex variable theory—if a function is analytic on the
closed! unit disc and has infinitely many zeros therein, it must be identically zero
(the Identity Theorem). But in Ultrametric Analysis the so-called unit disc o is very
different from what we are used to in Complex Analysis, and the results are often
surprising :

Corollary 12. If g is a convergent power series on o and g is periodic, then it is
constant. For g(t) — ¢(0) is zero in o infinitely many times. O

This really is rather remarkable, and caused by the fact that o contains the integers;
the fact that ‘all the integers are no larger than 1’ is a conceptually strange one, but
the reader might have gained the impression that Ultrametric Analysis is somewhat
more elegant than its Real counterpart, and for those classical functions to which it
can be applied (such as polynomials and exponentials) it can be very powerful.

'sin(1/(1 — t)) is analytic on the open disc and has infinitely many zeros therein, but their limit
point is outside.
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