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To Michael Kearney  
who introduced me to time series analysis and much more besides



A b stract

This thesis is about samphng theory and methods for analysing signals tha t have 
been sampled at irregularly spaced points.

Irregular samphng may arise naturally (examples of its occurrence may be found 
in geophysics, tomography, astronomy, and laser anemometry). In many cases it 
presents difficulties because standard techniques are unable to cope with the un
even samphng. However there is an alternative and exciting facet to the subject: 
dehberate aperiodic samphng. This is being mooted cls a method for unambiguous 
frequency identification in new generations of signal analysers and of pulse-Doppler 
and synthetic-aperture radars. For the classes of signal tha t these systems need to 
process and analyse, signal reconstruction is not of prime importance and it can 
be the wrong approach. The principal aim of this thesis is to develop methods for 
analysing irregularly sampled data and the principal theme is methods tha t do not 
employ exphcit signal reconstruction.

The key contributions of this thesis are the development of prediction and filter
ing. A difficult problem associated with the spectral analysis of irregularly sampled 
signals is that the dynamic range of the observed spectrum is greatly reduced. It 
can however be resolved using a combination of elementary spectral analysis and ad
vanced hnear filtering techniques. The fast optimal filtering algorithms enable this 
to  be done. They are derived using our general theory of linear prediction, which 
we extensively test on synthetic data.

Other important contributions are made in the theories of nonhnear prediction 
and of samphng series. Nonhnear techniques are designed for signals of dynamical 
origin and we show that they can be made to work for irregular samphng. The work 
on samphng series shows that classical signal processing techniques such as system 
identification, convolution and filtering are not the preserve of regular samphng.

Additionahy an extensive review of samphng theory and its relation to signal 
processing is included. It provides an in-depth introduction to the subject and its 
fascinating hterature.
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C h ap ter  1

In trod u ction

1.1 Sam pling theory and irregular sam pling

M an’s view of the world around him is formed from observations or samples. In 
observing a static object one may make observations at different points in space. If 
the object moves about, observations may be made on its position, periodically or 
aperiodically with time. For example in navigation one might be observing someone 
else’s ship from land, or calculating the position of one’s own ship relative to a 
fixed frame of reference. More generally the physical properties or qualities of an 
object (temperature, size, colour, etc.) may vary with time. In addition we may 
wish to observe an object tha t is abstract rather than concrete, such as a radar or 
radio waveform, or a sound wave; in these cases it is the electromagnetic field or the 
density of the medium that is varying with time.

We shall be talking about signals; a signal is any time-varying quantity, and sig
nals may be classified in a variety of ways (periodic, stochastic, deterministic, linear, 
nonlinear, and so on; see e.g. [135]). At some juncture one must ask how samples of 
a  continuously-varying quantity relate to that continuously-varying quantity. This 
question is answered by signal sampling theory (or sampling theory for short). One 
might also ask what a signal (continuous or discrete) says about the system from 
which it came. That is the science and art of signal analysis.

Sampling theory has a long history and, in common with many other areas 
of mathematics, finds its roots in the work of Cauchy [46] and Gauss. Its name 
has almost become synonymous with tha t of C. E. Shannon, who amongst others 
is credited with the statement of the ‘sampling theorem’. This states tha t from 
periodic observations one may reconstruct a signal tha t contains no frequency above 
half the sampling rate (a limit to which Nyquist’s name hats become attached). In 
other words, for a correct representation one must sample at least twice per cycle of 
the highest frequency component. The importance and attraction of this theorem 
are th a t the samples of a bandlimited signal contain all the information needed to 
reconstruct that signal. But like all good theorems it raised far more questions than 
it answered, as it was not long before people began to ask whether the sampling 
has to  be regular, and what to do when it is not; or how to generalise the notion of 
frequency, or to drop the requirement of ‘bandlimitedness’.

7



1.1. SAMPLING THEORY AND IRREGULAR SAMPLING 8

The theory has also been given practical impetus from situations in which irreg
ular sampling arises naturally [143]§VIIL Some examples and pointers to hterature 
are:

• Geophysics [62, 168, 169, 183]. These problems are usually spatial rather than 
temporal. One wishes to collect geophysical data  (e.g. electrical resistivity of 
the ground, gravitational or magnetic potentials). Such scalar or vector fields 
can only be sampled at points on the E arth ’s surface (or down holes) to which 
the investigator has access. The observations therefore tend to be irregular, 
and clustered, because on setting up the equipment the user finds it convenient 
to make several sets of readings close by.

• Computer tomography [197]. ‘Tomography’ means ‘picture-cutting’. A 3D 
object (such as a human head) is to be analysed from 2D pictures. Each 2D 
picture is obtained by parsing an X-ray or positron beam through the object 
and recording the transm itted image; the procedure is repeated for different 
observation angles. As it is generally convenient to scan in spirals, and c l s  the 
geometry is polar rather than Cartesian, the observations are not on a simple 
Cartesian grid.

• Astronomy [180]. When observing a star, for example, one only has access 
to it at certain times of the day or the year (owing to the E arth ’s rotation 
and orbiting). There are also the difficulties of adverse weather conditions 
preventing observations being made, and of equipment faults.

• Laser anemometry [10]. The objective is to ‘seed’ a gas flow with small particles 
(in turbomachinery the particle size is less than a micron or so) and illuminate 
with laser fight (see e.g. [131] for an overview). In laser Doppler anemometry a 
pair of crossed laser beams intersect at a spot and interfere to produce fringes. 
As a particle (following the gas flow field) crosses these fringes transversely 
a sequence of flashes is observed by an optical detector. Particles turn up at 
irregular intervals, so one has an irregularly sampled record of a time-varying 
flow field.

• ‘Spiky data’ e.g. heart beat [58, 59, 176, 177],[106]§9. In recent years there has 
been increasing interest in understanding the pattern of the heart beat from 
the point of view of specrtral analysis or of nonlinear dynamics. Electronic 
oscillators [218, 50, 112, 130] may also give spiky outputs. In each case the 
interspike spacing may be taken as the observed variable. Work on spectral 
analysis uses the sequence of spacings as an irregularly sampled time series (if 
(tji) are the times at which spikes occur, the ordinate is ^(in-i-i — ^n) and the 
abscissa is |( tn  -f fn+i))- More generally one can observe for a multivariable 
system the state variable Y  whenever the variable X  performs a spike, so tha t 
the sequence of T-observations is in a very natural way an irregularly sampled 
data set.

• Control theory [143]§VIIIA. The objective is to sample adaptively and irreg
ularly to reduce the volume of data that the controller has to cope with. One
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can imagine that this might work well if the controller needs to be active only 
when the system enters a certain region of its state space.

• Missing data  [65, 66, 67, 68]. Any data  stream subject to ‘drop-outs’ gives rise 
to a missing data problem. An obvious example is audio restoration, to which 
[74] is a fine introduction. The subject of missing data includes the additional 
question of how to detect corrupted samples.

In the first three of these applications it is probably fair to say tha t irregular sam
pling is undesirable. This is because one wants to reconstruct the continuous-time 
waveform, which is assumed to  be slowly-varying. When the sampling is irregu
lar the sampling theorem no longer applies and reconstruction has to use methods 
tha t are computationally intensive. Signal processing tools such as the Fast Fourier 
Transform (FFT)—used for spectral estimation, convolution and filtering—no longer 
work. It is not just that there is no fast discrete Fourier transform (DFT); it is that 
the irregular DFT is not even invertible, so one cannot go back and forth between 
time and frequency domains. T hat is what make convolution and filtering so diffi
cult.

Summers [209], in his PhD thesis, poses two questions about irregular sampling:

• W hat are the disadvantages of irregular sampling (why is it not used very often 
in sampled-data systems)?

• W hat benefits can be gained from irregular sampling?

We have answered the first question in much the same way tha t Summers does, 
though he seems less clear about the consequences of noninvertibility of the DFT.

Let us now turn to the second question, to which the answers have a more pos
itive flavour. The key point is tha t by regular sampling one cannot unambiguously 
identify frequencies above the Nyquist critical frequency of half the sampling rate. 
Signals above tha t critical frequency get folded back into the interval [—\ f s ^ \ f s ]  
( f s  is the sampling rate) and be indistinguishable from those th a t do in fact have 
frequencies in tha t interval; this effect is known as aliasing. W ith irregular sam
pling this restriction disappears. Irregular sampling is therefore described as an 
anti-aliasing measure. This has led to two major applications:

• High-speed signal analysers. The best example is the ‘digital alias-free signal 
processing system’ (DASP) pioneered by groups at the Institute of Electronics 
and Computer Science in Riga (Latvia) and the University of Westminster 
(London); see [20, 21] for an overview. It is currently able to identify com
ponents at frequencies up to 1.2GHz, far higher than the maximum rate at 
which analogue-to-digital converters (ADCs) may be operated using today’s 
technology—yet its ADC samples at an average rate of only 80MHz. The 
Nyquist limit has been exceeded by a factor of 30. This technology presents 
formidable hardware problems, in addition to the difficulties of processing the 
signal samples. The most serious obstacle in the hardware has been the con
trolling and recording of the sampling instants to an accuracy of a few tens
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of picoseconds; time-jitter errors seriously reduce the accuracy of frequency 
estimation.

• Radar [14] and synthetic-aperture radar [120].

Consider a pulse-Doppler radar, which uses the pulse round-trip time to es
timate range, and the Doppler shift to estimate radial velocity. The pulse 
repetition frequency (PRF) is an im portant param eter to be set [109]. If the 
range information is to be unambiguous for targets up to 150km, a PRF less 
than IkHz is required. But for unambiguous identification of the Doppler fre
quency a PRF of at least %ilOOkHz is required (this is because fighter aircraft 
radars at X-band («lOGHz) typically encounter Doppler shifts of 60-120kHz). 
These constraints are mutually contradictory. One solution is to use medium 
PRF (M PRF) schemes, in which multiple PRFs are transm itted [109]; irregu
lar pulses are also being tried as an opportunity to reduce aliasing in the range 
and Doppler domains [14].

Synthetic aperture radar^ or SAR is a well-established technique for imag
ing the ground to one side of an airborne platform. Moving target detection 
is a very useful capability for a long range sensor. The combination of syn
thetic aperture radar and moving target detection has the potential to produce 
high resolution ground imagery with superimposed moving target information. 
Unfortunately, using conventional imaging data  for detecting moving targets 
leads to ambiguities in the targets’ positions and velocities. By using a non- 
uniform pulse repetition interval, the proposed ground imaging/moving-target 
detection radar overcomes this limitation and allows the azimuthal data  to be 
focused at any velocity of interest, while collecting data  at the same average 
rate as a conventional synthetic aperture radar. This approach permits the 
flexible use of a multimode radar, relaxes the specifications of data  acquisition 
systems, affords a degree of protection against electronic countermeasures and 
retains a large unambiguous range swath, but with the added complexity of 
processing the non-uniform samples.

Having said tha t the Nyquist limit can be exceeded by irregular sampling, which 
seems like a very good prospect, we must be clear what class of signals can be unam
biguously identified from irregular samples. There is a crucial distinction between 
spectral analysis and waveform reconstruction.

For signal reconstruction the Shannon theorem does not apply but variants of 
it do. First, simple interpolation (low-pass) schemes will only work if the signal 
is bandhmited to less than half the average sampling rate. Secondly, and more 
substantially, if the Fourier transform (or the spectrum) of the signal is confined^ to 
a set I  of measure B  then reconstruction is possible providing the average sample rate 
exceeds B  and providing I  is known. Usually /  is a finite union of subintervals^ ; the 
signal is called a multiband signal, I  is the spectrum support, and B  is the bandwidth

^This paragraph is taken from Legg’s thesis [120].
^We are counting positive and negative frequencies when calculating I  and B.  
^So we do not need any sophisticated measure theory.
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and also the Nyquist-Landau rate. This result was proven by Landau [115, 116] and 
has been rederived in an elementary way by the present author [141]. See §2.4.2, 
and footnote'^.

For spectral estimation, the spectrum of the underlying waveform is uniquely 
determined from the spectrum of (an infinite set of) samples, regardless of sampling 
rate, provided tha t an alias-free sampling scheme is used. See [189, 145] in the 
first instance, and §2.5.4. W ith regular sampling, the spectrum of the observations 
consists of periodic replications of the underlying spectrum; this gives rise to aliasing, 
i.e. the observed spectrum does not uniquely determine the underlying one. W ith 
random sampling, the spectrum of the observations consists of one faithful copy, 
and one smeared-out copy, of the underlying spectrum. So regular sampling is, by 
definition, not alias-free. As an example, Poisson sampling, in which the sampling 
instants constitute a Poisson process, is alias-free.

Let us now consider in general terms the question of how to analyse a multiband 
signal, in which the bands are at unknown frequencies. This is exactly the same 
problem as is encountered in the DASP system (q.v.), so we shall consider it from 
tha t point of view. Let us assume that technology a t present imposes an upper limit 
of 1.2GHz, and that sampling is carried out at an average rate of 80MHz. Then 
from what we have already said, sampling theory and technology combined impose 
the following constraints on the system:

• It may unambiguously identify frequencies up to 1.2GHz, but no higher.

• It may reconstruct a signal bandlimited to 1.2GHz provided tha t the signal 
does not occupy the whole band 0-1.2GHz; specifically, the total width of its 
constituent bands® must not exceed 40MHz (half the Nyquist-Landau rate).

We are not saying that the present system can actually perform such tricks; these 
are simply the limits.

Assume that the input signal obeys the Nyquist-Landau constraint. Low-pass re
construction methods, or simple interpolation, wiU fail because there are signal com
ponents at frequencies above half the average sampling rate (40MHz). Multiband 
reconstruction theory is useless until we have found 7, the spectrum support. From 
what we have said about spectral estimation, though, it should be possible to obtain 
the spectrum from the samples (provided we used an alias-free sampling scheme). 
Then we would have 7, and then we could apply the multiband reconstruction the
orem. Unfortunately there is a problem with the spectrum estimation. Although 
alias-free samphng schemes permit unambiguous identification of frequency compo
nents, they cause the observed spectrum to be smeared so tha t only the strongest 
components are visible. Accordingly one cannot find 7 with any degree of certainty, 
except by making the unreahstic assumption that all the frequency components are

^In [141] the author suggests and shows that as the Nyquist-Landau rate is often a good deal 
less than twice the highest frequency present, irregular sampling offers great flexibility in sampling 
multiband signals from sensors. The same point is made by other authors [84].

^Here we are only talking about positive frequencies, because the signals are necessarily real
valued.



1.2. THIS THESIS: ITS AIMS AND THEMES  12

of roughly equal strength. (There is also the problem of inconsistency', the spectrum 
estimated from a finite data record (length N )  does not settle down as iV —> oo.) It 
is therefore a question of sequentially identifying the frequency components in the 
spectrum and filtering them out of the time series. The difficulty there is tha t the 
theory of linear filtering is poorly developed if the data are irregularly spaced. Re
call tha t we, and Summers [209], made this point earlier when asking why irregular 
sampling is not in greater use in sampled-data systems. Present techniques for this 
sequential-component extraction require the components to be sinusoidal so th a t 
they can be parametrised as A  cos u>t 4- B s in u t ,  and the parameters A , B  found by 
linear least-squares [20, 69]. It follows tha t filtering is a key problem to be solved.

1.2 This thesis: its aims and them es  

A im s

Combining questions of sampling theory with those of signal analysis gives the fol
lowing list of questions. The aims of ‘irregular sampling theory’ are to answer them.

The aims of this thesis are to help answer these questions.

Q1 How do irregular samples of an underlying waveform relate to  tha t waveform; 
for example do they, under appropriate sets of hypotheses, permit unique 
reconstruction?

Q2 Given an irregularly sampled signal, how should we process it?

Q3 How should we generalise common signal processing techniques such as filter
ing, convolution, model fitting, etc., to cope with irregularly sampled data?

The second two are closely related and cannot really be treated in isolation from 
each other. None of the questions is easy to answer.

Chapter 2 fills the need for a concise discussion of sampling theory and signal 
analysis that includes stochastic and nonlinear approaches, as well as the areas of 
complex analysis and integral transforms tha t are more familiar to ‘pure’ sampling 
theorists. It gives an overview of the (already large) literature on the subject, and 
finishes by drawing out some specific technical questions.

Chapter 3 is concerned with Q l, Q2 and Q3. §3.1 looks at specific types of sam
pling scheme, namely the sampling series associated with certain integral transforms 
such as the Hankel transform. It shows that filtering, convolution and system iden
tification may be carried out using these irregular sampling schemes, provided th a t 
the theory is developed in a consistent way. Next, as there are explicit sampling se
ries associated with these integral transforms it is desirable to have simple and tight 
truncation error bounds for them so that their practical value can be estimated. §3.2 
examines this problem for the Jo-Bessel sampling series. Finally §3.3 has a different 
flavour. It is also focused on a specific type of sampling scheme—regular sampling 
with missing data—and shows tha t, assuming a simple condition on the sampling
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set L C Z, a signal generated by harmonics® only has to be sampled at points on 
L to determine its values at the other integer points. This tells one how an infinite 
sensor array may be thinned with no (theoretical) loss in performance. The proof 
requires samphng theory for local fields.

Chapter 4 helps to answer Q2 and Q3; it rests on the idea of an underlying 
continuous-time harmonic or stochastic process, and so also addresses Q l. It looks 
in detail at the notion of ‘generalised hnear prediction’ of hnear signal analysis, 
which rather than attem pting to express an observation as a hnear combination of 
p previous values (with time-varying weights), seeks instead to treat p + 1  consecu
tive values as hnearly dependent. Extensive tests have shown tha t this is a robust 
technique and test results for signals with hne spectra and with continuous spectra 
are shown. A natural progression of this work leads to the discussion of fast optimal 
filtering algorithms, thereby going a long way towards solving what we regard as the 
most im portant part of Q3.

Chapter 5, which is also concerned with Q2 and Q3, shows tha t signals that arise 
from dynamical systems may be processed using nonhnear prediction techniques even 
when the samphng is irregular. The underlying idea is to recognise determinism 
in a time series and use it to assist in further processing. It is shown tha t this 
substantially improves on hnear methods for chaotic signals such as the Lorenz 
attractor. We also suggest how nonhnear filters should be constructed.

Appendices cover the derivation of the spectrum of an irregularly sampled signal 
(this has been done before but several of the oft-quoted texts [189, 143] contain 
crucial errors), and an introduction to some of the ultrametric techniques needed in 
the last part of Chapter 3.

The work in Chapter 4 is to be pubhshed in two journal papers [133, 136]. Other 
papers on the work in Chapters 3,5 are in progress.

T h e m e s

The principal theme in this thesis is the analysis and processing of irregularly sam
pled da ta  without recourse to  exphcit signal reconstruction. There are two facets to 
this idea, which we now discuss.

• We have already said tha t in the case of multiband signals with unknown fre
quency bands, one must not start one’s analysis with an attem pt at reconstruc
tion. This was because we said that reconstruction cannot be accomphshed 
correctly if there is no knowledge of the spectrum. The first step must be to 
find the bands. But there is another objection to immediate reconstruction: 
we may not want the waveform. For example we may only wish to answer a 
question similar to this, which occurs in radar signal processing:

Is this signal just white noise, or is it white noise plus a sinusoid?

One can answer that question just by running a DFT on the samples. Recon
struction has no part to play, and it wiU make matters much worse if a bad 
reconstruction (based on erroneous spectrum information) is attem pted.

’Actually the theorem is rather more general than that.
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# Suppose tha t we have a signal processing technique that is defined for continuous
time signals. This is a very general concept; here is a specific example, the 
‘power function’:

/ oo
x { t y  dt (r  G N)

-O O

Suppose tha t a sampled signal is given to us, th a t we know how to reconstruct 
the underlying signal from its samples via the function p say, and that we wish 
to calculate from the samples. For example, if the underlying signal is
bandlimited to |  (frequency units) then p is given by (see §2.1.1)

P : ^  I < sine (t -  n) j
V  n €Z  /

It seems labouring an obvious point to say tha t we simply have to apply p and 
then 0^ :

Oi { =  Q^p) : { xn)ne i  ^  I  ( ' ^ X n s m c { t  -  n ) \  dt.  (1 .1)
" /-oo \n € 2  /

But there is a tendency^ not to do this, preferring instead the simpler

Q f : { x n ) n e i ^  [  -  n ) l  dt.
V n e i  /

The realisation dawns that f  6 ( t  — n)’’ d t  is meaningless when r > 2. In fact 
g ( S ( t ) )  never is well-defined except in trivial cases (because it is not a distri
bution). But pressing on undeterred, the practitioners write g ( S ( t ) )  = ^(1)6(^) 
and are now able to conclude (?)

o f  : ( x n ) n e z  ^  Y ^ 3 : ( n y .  ( 1 .2 )
n€Z

This is consistent with (1.1) when r =  1, and also when r = 2 remarkably
enough (because the sine functions are orthonormal on R); but not® when
r > 3.
The reason why the delta-function approach fails is tha t it ignores the whole 
basis of sampling and reconstruction—namely tha t a continuous-time signal 
is uniquely determined by its samples, when certain assumptions hold, via a 
reconstruction formula.
This argument might at first appear contradictory to the theme of analysing 
and processing data without recourse to explicit reconstruction; but it is not. 
The key word is explicit The expression (1.1) is an example of reconstruction 
being used implicitly and consistently. If we write down Qf  as a function of the 
samples, and tidy up the algebra, we have avoided explicit reconstruction, and 
we have a formula consistent with the ideas we had when we did the sampling. 
That is what §3.1 is about.

^Private communications to the present author.
®Let X : t t-> sine t. Then 0r(® ) — 0 as r -+ oo. But Xn =  1 for n =  0, and x„ =  0 otherwise. 

So the RHS of eq.(1.2) is 1 for all r and so doesn’t tend to 0 as r —+ oo.
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R e la t io n  o f  C h a p te r  2 to  e x is t in g  te x t s

Several books on sampling theory have emerged in the past few years and all have 
different emphases. Marvasti’s book [143] undertakes an in-depth review of the 
theory of zero-crossings and related issues. He also provides an extensive overview of 
the literature (particularly applications of nonuniform sampling). Bilinskis’ account 
[23] is rather different, concentrating on the advantages tha t deliberate irregular 
or random sampling may have^ with regard to aliasing and his is the only text to 
do so extensively; his approach is almost to regard uniform sampling as a rather 
inconvenient special case. Marks II [127] has compiled a large text in which leading 
authorities have written chapters on their various subjects, such as Gabor analysis, 
optics, multidimensional sampling, sampling in polar coordinates, and error analysis; 
its bibliography is substantial, running to over 1000 references. Zayed’s account [229] 
is technical, concentrating on the Shannon and Kramer-Weiss sampling theorems. 
Finally Higgins’ superb text [84] is easily the best if one seeks a comprehensive 
discussion of sampling theory written from a mathematical standpoint, combining 
insight with mathematical precision to produce a balanced and very readable account 
of the subject.

1.3 N otation

As this thesis uses ideas and results from different branches of mathematics and engi
neering the notation has been standardised; that adopted here necessarily sometimes 
differs from tha t to which specialists are accustomed. The following is not an ex
haustive list of notation used but is intended to clear up any confusion before it 
should arise.

C hapter 2

The Fourier transform is always written in the ‘engineering notation’

/oo

x{t) =  r
J — CO

as opposed to f{oj) =  which is usual in the sampling theory liter
ature. The chosen form is symmetric and more useful for making remarks about 
time-frequency reciprocity.
A signal is bandlimited to W  iff its Fourier transform vanishes for | / |  > W.
A signal has bandwidth B  if its Fourier transform is supported on the set I  of measure
B. Hence an arbitrary signal bandhmited to W  has bandwidth 2W, not W .  The 
reader should be careful about this.

®— both in the time domain (abscissa) and the ‘amplitude dom ain’ (ordinate), the latter being 
the subject of irregular quantisation levels. Some mention of Monte Carlo techniques is made, but 
Hammersley & Handscomb’s fine text [78] is missing from the Bibliography.
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C h a p te r  3, S ection  1

This discusses the so-called A"-transform, which would be better described as an 
integral representation of a signal. It is

'{t) = J  X{u)K{u ,t )p{u)du.

K  denotes the kernel; / ( t ) ,  x{t) etc. denote functions of time with transforms F(u),  
X{u)  etc.; © and ® are the generalised shift and convolution operators.

C h a p te r  3, Section  2

r  denotes complex time and its real and imaginary parts are u, v. Hence x = x(r )  = 
x(u  -f- iu) rather than the more normal /  =  f { z )  =  f { x  -h \y).

C h a p te r  3, Section  3

Zp is the ring of p-adic integers {not the rational integers taken modulo p, as it 
sometimes means): see Appendix B.

C h a p te r  4

denotes the expectation taken over all realisations of the random process x{t) 
(realisation average). En denotes the expectation taken over time n (time average). 
B{t)  is a Brownian motion process, i.e. random walk obeying the condition

= { " K :  Ï  ;  t

where dB{ti) are increments of the process at times ti over an infinitesimal time dt. 
The quantity is known as the diffusion coefficient and has dimensions [B]^[T]~^ 
where B , T  denote the dimensions of the physical variable and of time, 
r  is the effective intersample spacing (or, equivalently, l / 2 r  is the ‘normahsing 
frequency’ playing the role of the classical Nyquist frequency). 
z denotes the transform-variable in the z-transform; z = {zn} is a time series.

C h a p te r  5

Tn denotes the intersample spacing tn+i —
Underhning denotes a ‘delay-vector’, i.e. a vector of d consecutive observations 
viewed in



C h apter 2

O verview

2.1 The Shannon (W K S) sam pling theorem

2 .1 .1  In tro d u cto ry  rem arks

The sampling theorem referred to here was introduced by Shannon to information 
theory [188]. However, the interest of the communications engineer in sampling and 
reconstruction can be traced back to Nyquist [156]. The theorem was originated by 
E.T. and J.M. Whittaker, W.L. Ferrar and V.A. Kotelnikov. In an extensive review 
of various aspects of the Shannon sampling theorem and its extensions, A.J. Jerri 
[94] refers to it as ‘WKS’, after these authors. Other reviews have been carried out 
by Butzer [30, 31, 32, 34, 38] and Higgins [82, 84].

Shannon’s original statement [188] of the sampling theorem was:

If a  function x{t) contains no frequencies higher than W  it is completely determined 
by giving its ordinates at points spaced 1 /2W  apart.

Its significance was that for the first time one could see tha t a bandlimited signal 
is uniquely determined by its samples via an explicit formula (which we shall now 
derive) and for an explicit sampling rate. Shannon’s proof starts by letting

/ oo r w
=  /  X ( / ) e “ ^‘d/, (2.1)

-O O  J —W

the second equality holding because % (/) , the Fourier transform of x(t), defined as

/oo

-O O

is assumed to be zero outside the range [—W, W]. Next X { f )  is expanded as a 
Fourier series on the interval (—VF, W) as

X { f )  =  Y ,  (2.2)
nÇJL

17
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and the coefficents obtained by Fourier analysis:

(2.3)

We note that is essentially x{n/2W)., the sample of the signal x a t the point t = 
n/TW.  Finally we substitute (2.3) into (2.2) into (2.1) and perform the integration 
to get

= E   ̂ (2»̂ * -  «) = E   ̂( t )  ("-")
with

a — 2'kW

(a notation which will be used from now on).
One sees from the above proof of the WKS theorem that the functions

Bn{t) =  sinc(2VF< -  n)

form an orthogonal basis for the space of signals bandlimited to W  : the spanning 
property is provided by (2.4) and the orthogonality follows from tha t of the Fourier 
basis employed in (2.2), by Plancherel’s identity. Note also tha t Bnif)  is 1 at the n th  
sample point and 0 at the others, so all the samples are necessary. Given tha t the 
independent samples arrive every 1/2W  and tha t the bandwidth is 2W,  we arrive 
at the conclusion that Bandwidth = Information rate (in some sense). This is the 
basis of Shannon’s ‘2W T’ theorem which states tha t in a channel bandlimited to W  
one can only transm it 2 W T  independent numbers in a time T  : see e.g. [188, 193].

Multidimensional analogues, which are of interest because of the different sorts 
of sampling geometry and lattices that one can obtain, are given in [49, 197, 84].

2 .1 .2  A lia s in g

For the WKS theorem to hold we require X{ f )  to vanish outside^ [—W,W].  If it 
does not, the reconstruction formula can be applied but an error occurs, known as 
the aliasing error:

V a  /  at-UTTTiEZ

System-theoreticaUy the aliasing error can be understood as follows. When a signal is 
sampled at rate R,  the transform of the sampled signal consists of a sum of displaced 
copies of the transform of the continuous-time waveform; the displacements in / -  
space are multiples of R. If X { f )  does not vanish outside the range [—^R,  |i2 ], the 
copies overlap and the reconstruction process is not able to remove the displaced 
copies. It is apparent therefore that only the out-of-band spectral density should

 ̂We assume X  to be continuous at ± W . This is to prevent X  having a delta-function contri
bution at the ends. For example if r (t)  =  sin 7t< and W  =  then the sam ples are all 0 and the 
reconstruction fails.
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contribute to €A(t), and indeed the following bound, derived by Stickler [206] in a 
less transparent form, has this property^:

|e^(«)l  <  2 ^ | s i n f c a * |  /  \ X { f  +  2 k W ) \ d f .

For the proof, take the previous equation, Fourier transform everything in sight, and 
use the Poisson summation formula, =  Ylm (For a discussion
of the PSF, see e.g. [84, 121, 98, 13], and a nice paper by Schmeisser [182].) This 
estimate has the merits of vanishing at the sample points (as it should) and being 
tight in several nontrivial cases, e.g. when x(t)  =  Splettstosser [196] gives a
useful overview of aliasing error bounds.

2 .1 .3  M u ltib a n d  sign a ls

The discussion on aliasing and derivation of the reconstruction kernel sine (t) suggest 
a substantial generalisation of the WKS theorem, as follows. Suppose tha t X ( f )  is 
supported on (i.e. vanishes outside) a set I  of measure B  < oo (technically this 
means the Lebesgue measure, but we shall only be dealing with very simple-minded 
sets I)  and that samphng is carried out at rate R.  First, if translates of I  through 
all integer multiples of R  are disjoint, then there is no obvious source of abasing. 
Secondly, we can write (2.4) as

x(t) = ^  x(n/Æ ) ke(f -  n /i2) (2.5)
n ez

with ke(/) the inverse Fourier transform of the indicator function of / ,  up to  a 
factor:

ke(«) = Æ -M
J  — OO

This formula is meaningful whether or not I  is in one piece so does it work when the 
condition of disjointness holds? Remarkably the answer is ‘y^s’; loosely, the proof 
consists in shifting the various parts of I  through multiples of R,  until they he in 
the interval [—R, il], and then applying (2.4); see Higgins [84] §13.

Having estabhshed that (2.5) holds we must be clear what the admissible values 
of R  are, given I .  A ht tie thought shows that R  must exceed H, the so-called Nyquist- 
Landau rate. (It turns out that even if the samphng is irregular the minimum average 
samphng rate must exceed B; see §2.4.) An algorithm for finding the minimum 
admissible value of R  is given by Dodson & Silva [55].

A simple case that admits direct analysis is the ‘bandpass samphng’ of a signal 
bajidhmited to Wi < \f\ < Wu- In that case the admissible values of R  are those 
for which no integer n satisfies the inequahty n R  G (2IF/,2Wu) —a weh-estabhshed 
result [172]. Furthermore the lowest such R { R q  say) is 2 W u l \ W u l ( ^ u  — kP/)J, with 
['J denoting the integer part; in particular if Wi!{Wu — Wi) G Z then R q  is the 
Nyquist-Landau rate 2{Wu ~  Wj). Provided that R  is admissible, we have (2.5) with

, . . sin 27rWut -  sin 27rWit
_______________________ ------------------------T m  •

^And implies the older and better-known result |ex | <  2 \ N { f ) \ d f .
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When the sampling is random the reconstruction process is more difficult, but the 
choice of sampling rate is more flexible, as we can choose any R >  B.

2 .1 .4  S e lf-tru n ca tin g  sa m p lin g  e x p a n s io n s

The concept of a self-truncating sampling expansion was introduced by Helms & 
Thomas [81] with the view to increasing the rate of convergence of the sampling 
series. Suppose that x{t) is bandlimited to rW , for some r < 1, but tha t samples 
are still taken at rate 2 W . The kernel^

. 2qWt  
sine-------

m

is decaying, bandlimited to qW., and is 1 at i =  0. Pick q = 1 — r and apply the 
WKS theorem to x { t ) h m { t '  — f), which has bandlimit r W  -f qW  = W  :

and put t '  =  t  :

sine {2Wt  — n)

sine — (2Wt — n) 
m

sinc(2W't — n). (2.6)

This gives a more rapidly convergent series than (2.4). A system-theoretic approach 
shows why. The reconstruction process corresponds to multiphcation by a gate- 
fun ction (1 /2VP if I/I < VP, 0 if not) in the frequency domain, ajid the discontinuity 
in this function causes the impulse response to decay slowly (as t~^). If the signal is 
known to have an empty spectrum between (1 — q)W  and VP, the spectrum of the 
samples will be empty between { l —q)W  and (H-ç)VP, and the filter transfer function 
can be arbitrary in that band: in particular it can be made so th a t it drops smoothly 
from 1 (at frequency (1 — q)W)  to 0 (at (1 -f q)W).  Here the transfer function is 
a convolution of gate-functions. A related point is of interest: the reconstruction 
kernel is bandhmited to (1 -f ç)VP rather than VP.

Helms & Thomas then considered the possibiUties of adjusting m  to minimise the 
truncation error, i.e. the error induced by neglecting the terms with |n| > some N . 
In the same paper they discussed a contour integral approach for the estimation of 
truncation errors (this will be discussed in §2.3) and after lengthy calculations gave 
an approximate ‘optimal’ value of m.  We shall show here tha t judicious guesswork 
gives the same answer. Near the origin the excluded terms in (2.6) are approximately

sin 27rVPtqn
sine —  

m 7rn

The dominant contribution comes from the lowest value of |n| in the summation, 
and is of order (m/Nqw)'^  (as sine u decays as 1/ttw). This expression assumes its 
minimum at (the integer closest to)

mo = Nqir/e

*The same applies if in hm we replace sine (•) by Ji (7r-)/(7r ), where Ji is the Bessel function.
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and this is the same result as given in [81]. The truncation error is reduced by a 
factor of % which is quite substantial (e.g. 1V=10, q = 0.5 cause a 300-fold
reduction).

2 .1 .5  Z hu’s th eo rem

A so-called generalisation of the WKS theorem has been enunciated by Zhu [230], 
namely that even if a signal y =  y(t) is not bandhmited to W ,  it may be recovered by 
samphng at rate 2W  if there exists an invertible transformation : R R such tha t 
gy  =  g{y{t)) is bandhmited to W .  One simply reconstructs gy using the samphng 
theorem and then apphes g~^. The intention is that ^ is a smooth invertible function, 
which wiU have to be nonhnear if it is to do something interesting.

Now a nonhnearity nearly always increases the bandwidth of a signal, and one 
is led to ask for an example of a bandhmited signal y and invertible g such that gy  
has a lower bandhmit than y. An example does arise li y = hx for some bandhmited 
X  and smooth invertible h. At tha t point one reahses tha t Zhu’s theorem is stated 
‘inside-out’. The practical version runs as fohows. Let x =  x{t) be bandhmited to 
W . Then it can be recovered from instantaneously-distorted samples h{x{nl2W))  
by applying h~^ and then (2.4).

Like Zhu’s result this is also trivial but it has an im portant practical consequence, 
which is that an instantaneous nonhnearity may be identified and corrected at the 
Nyquist rate of the input. Recent work [70] has shown tha t nonhnearities with 
memory—cast in the form of Volterra operators—may also be identified when the 
input and output are both sampled at the input Nyquist rate. We shah discuss this, 
from the point of view of the Kramer-Weiss samphng theorem, in Chapter 3.

2.2 Kram er’s sam pling theorem

2 .2 .1  In tr o d u cto r y  rem ark s

Looking at the proof of the (WKS) samphng theorem we see tha t it requires the 
foUowing ingredients:

A signal that is transform-hmited, x{t) = X (u )A (u , i)p(u) dw for some ker
nel K  and nonnegative weight function p

A countable subset of R, indexed by X say, such th a t A"(w, £„) are orthog
onal functions of u on 7,

J ^ K { u , i m y K { u , I n ) p { u ) d u = 0  (m /  n)

Technicahy we require {K{in)  : n G X} to be an orthogonal basis for 7^(7). 

An expansion, X{u)  = hnear combination of the K^u^inYs.

Notice tha t, despite the term ‘integral transform’, % (u) is not obtained from x{t) 
by an integral; it is the other way round, and maybe ‘integral representation’ would
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be a more appropriate term. Kramer’s sampling theorem [113, 222] asserts that if 
X ( u )  is zero outside I  then x(i) can be reconstructed from its samples a:[n] = x{in)
by

xU) -  T  p{u)du

The proof is identical to that of the WKS theorem (§2.1.1). Indeed to obtain the 
WKS theorem from (2.7) we simply put

K { f . t )  =  e^” ' \  p { f )  =  l / 2 W ,  I  =  [ - W , W ] ,  tn =  ^ -

Other transforms that are encompassed by this definition are the Hankel (Bessel), 
Legendre and Chebyshev transforms [228, 7, 42, 40, 152, 99, 93, 94]. For example, 
in the case of the Jg-Hankel transform,

K{u^Ej — «/o(^^); /^(^) — I  — [0? ]̂) — jo,nf^

{jo,n denotes the nth zero of Jo(<)) and the expansion is

= 2 jo ,„ ./o W

n = l

in which we have used common properties of the Bessel functions [2, 221].
Initially the kernels were taken from self-adjoint (Sturm-LiouviUe) boundary 

value problems, which are mathematically ‘pleasant’ to deal with (eigenvalues real, 
eigenfunctions orthogonal, etc.). For example, the Fourier transform comes from the 
system with operator

and the J^-Hankel transform from the system with (singular) operator

See Zayed’s and Jerri’s texts [229, 97] for further details of sampling theorems from 
differential operators, and also [85]. Recent work by Annaby [4, 5] concerns more 
general sources of transform kernels and their ‘resolvent’ kernels. The question 
of w hat operators are ‘perm itted’ remains open. Other work [6, 71, 72] considers 
samphng theorems associated with discrete transforms and difference equations.

2 .2 .2  F u rth er d ev e lo p m en ts

We note first that when X  vanishes outside / ,  it can be obtained directly from the 
time-domain samples x[n] = x{£n)-> by the discrete-time if-transform  or ‘DKT’:

X ^ u ) = j : x { n ] B ^  (2.8)
n e x
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where
:[n] =  \K(u, in)\^p(u)du.

I,

(Jerri [95, 98] derives this for the case of the Hankel transform.) For the proof, 
simply compare

/  X {u )K {u , t )p (u )d u =  ^  f  K{u^ t )K {u , inyp (u )  du.

From (2.8) we have a discrete version of the Plancherel formula:

X{urY{u)p{u) d u = Y l  (2 9)
 ̂ nGx ^1^1

or (X, Y)  = {x, y) for short. Consider now the interpretation of a convolution for the 
ÜT-transform. We are used to the standard Fourier convolution being a multiplication 
in the transform domain, so we define a A'-con volution by [98, 88, 54]

(/®P)(0- J  F{u)G{u)K{u,t)p{u)du

It is also possible to define a A-translation [98]:

f { t © r )  = J  F {u )K {u , t )K {u , ryp {u )  du.

Note tha t on its own t Q r  does not mean anything; © actually operates on the 
function / .  Some caution is required in the manipulation, for f { t  © t )  does not 
mean the same as /(O); also the A'-translations do not in general form a group. The 
Fourier case is quite familiar, for then the AT’s are just exponentials (and they do 
form a group), 0  gives rise to a straightforward translation, and the above equation 
simply says that a translation in one domain corresponds to a modulation in the 
other. Using the generalised translation we can obtain a rather neat statement of 
Kramer’s sampling theorem:

^ (0  =  ^^U ke(t© ^,i)
nex

in which the reconstruction kernel ke has A'-transform luei-
A final point concerns the DKT. For an arbitrary signal x{t),  whose transform 

is X (u), we have
x(t) = J  X{u)K{u, t)p(u)du .

Consider now

Suppose that x is transform-limited. Then X^  and X  are identical on / ,  but not 
outside (as X  vanishes, but X ^  doesn’t). In general X^(u) can be thought of as 
a convolution of X{u)  with a generalised impulse train (array of delta-functions at 
certain positions and of certain strengths, which depend on the transform kernel A ). 
Equivalently, X^  consists of generalised translations of X  (in the Fourier case these 
would be straightforward translations). Using this device Jerri obtains a bound for 
the aliasing error of the Jg-Hankel transform [96, 98].
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2.3 Truncation errors and contour integration

All sampling expansions involve infinitely many terms, so one often wants to esti
mate the truncation error, i.e. the error obtained by taking only finitely many terms, 
2LS is always the case in practice. The earliest workable bound for the WKS expan
sion was given by Helms & Thomas [81, 224], which apart from being in closed form 
has the advantage of offering considerable insight into sampling and reconstruction 
problems and providing a general technique by which more general sampling expan
sions may be derived. See [94] for a review of truncation error bounds, and [35, 83] 
for discussion of the role of complex analysis in sampling theory.

We first note tha t a bandlimited signal is entire (analytic and free from singu
larity), because it can be written

r W
x ( t )  =  /  X ( / ) e ^ " ^ - d f  ( 2 . 1 0 )

J —W

which is valid for aU r  G C. This incidentally leads to some quite interesting observa
tions about bandlimited functions: for one, using the Identity Principle for analytic 
functions, we see tha t no bandlimited function can be timelimited too (unless it van
ishes identically), and that knowledge of a bandlimited function in some interval is 
sufficient to define it ail over C. As Marks points out ([126], p.257) this second point 
can if misinterpreted lead to some alarming conclusions: for example, a telephone 
conversation can be considered bandhmited, and so can be determined if we know 
only a word or two in the middle (!). See [84]§17, [193], and footnote'*.

Returning to (2.10) we see tha t x is of exponential-type a =  27tW, in that 
|æ(r)| < on C. Remarkably the converse is also true, in th a t an entire function
of exponential type (EFET) must necessarily be bandlimited (the Paley-Wiener 
theorem [159]). We may therefore work with EFETs and use methods of complex 
variable theory; r  may be thought of as ‘complex tim e’. Its real and imaginary parts 
win be called u, u.

We sketch the method of Helms & Thomas. The signal x{t) is assumed to be 
bounded by M  on the real axis, and to be of exponential type, but bandlimited to 
[0, rW] rather than [0, W], i.e. the signal is oversampled. By a theorem of Duffin 
& Schaeffer [57], we have |z (u  -|- iu)| < M  cosh rav (if x is real on the real axis), or 
\x{u +  iu)| < (if not). We shall use the former, as it makes the integrals
easier in the ensuing discussion. Consider the integral

^Slepian [193] resolves this ‘paradox’ by providing a philosophical distinction between the un
derlying signal, which can never be perfectly observed, and one’s m odel for it; concepts of bandUm- 
itedness only apply to the model, so the question ‘Are real signals bandlim ited?’ is not meaningful. 
This seem s rather dubious. Consider the question of how ‘unbandlim ited’ a time-lim ited signal 
has to be. The answer is ‘Not very much at all’. Indeed if we consider the operators B and T  
that bandlimit and timelimit a signal to  | / |  <  and |t| <  |-T, we are looking at how close the 
eigenvalues of the operator S T  can come to 1. The eigenfunctions of B T  are the prolate spheroidal 
wavefunctions, discussed in a classic series of papers [162, 118, 119, 192, 194], and if the eigenvalues 
are Ao >  Ai >  then 1 — Ai scales exponentially with —B T .  Slepian states that as copper wires 
cannot transmit frequencies above (say) 10^°Hz, a ‘paradox’ must occur. To knock over the paradox 
only requires us to allow something in the region of 10“ °̂ of the total signed energy in frequencies 
>  10^°Hz. Can this really be objected to on physical grounds?
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Figure 2.1. Integration contour for 
derivation of sampling series.

I d
x { t ) sin at

dr (2.11)( r  — t) sin ar

around the box contour shown in Figure 2.1. The crosses are at zeros of sin a r ,  and 
the samples at {t =  nrja., —N  < n <  N )  are inside the contour.
The sides ±U  are chosen at zeros of the derivative of sin a r . We let F  oo and 
can now evaluate the integral in two different ways. First we consider the residue 
theorem, and find that

f  n 7 rY (-)” sin at
n r  — at |n|<7V ^

n r  \  sin(ai — nr)  
J at — n r

which we identify as the truncation error: /□ =  er(0* Secondly we consider the 
contributions from each side. On the top and bottom , we see tha t the numerator 
scales as and the denominator as so these sections do not contribute. 
On the left and right sides, | sin a r | = cosh au and so the contributions from these 
sections are bounded by

M | sin at I cosh rau
L2 r \ t±  U\ 7 - 0 0  cosh au

dv —
M\ sin at\

2 aco s(r7r / 2 ) |t ±  U\

(By choosing U to be a zero of cos a r , we minimise the contributions from the sides.) 
Writing U = {N + \ ) r / a ,

I (D\ < /  1 1 1 /o  i o \
^ “ 2  cos(r7r / 2 ) \  \at -  {N + 1 )7t| |a t +  (iV +  | ) 7r| J

We make the following observations:

(a) Convergence. The truncation error bound tends to 0 as TV ^  oo.

(b) Assumptions. a:(Z) needs only to be an EFET and in L°°{R). To make the 
proof of §2 .1 .1  rigorous requires x{t) to be in (and then the sampling series 
is absolutely convergent, not just convergent).
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(c) Bandwidths. We require r < 1 ; indeed the integrals will not converge if r  > 
1 . This gives a succinct justification of the WKS theorem, as follows. The 
bandlimit on x gives the rate of exponential growth of x{r)  as 2'kW \  the rate 
of sampling R  gives the rate of exponential growth of the denominator as Tri?; 
for a valid expansion the latter must exceed the former.

(d) Generalisation. One can generalise to arbitrary sampHng schemes, by replacing 
sin n r with another function (5 (r)  say), the zeros of which correspond to the 
sample points. The residue theorem gives the Lagrange interpolation formula

x{t) =  Ç  (2.13)

Further, we may include sampling of the derivatives of z. If S' has a zero of 
order 1 , the sampling expansion wiU contain the value of x(t)  at tha t point 
and the values of its 1 ,2 ,. .  .,d th  derivatives. Indeed the exponential-type of 
S{r)  is related closely to the density of its zeros, and there is a large body 
of work devoted to this m atter, including several books (see [171] in the first 
instance). The question of what the ‘allowable’ sampling schemes are, i.e., 
those that make (2.13) correct, is a delicate one discussed later in §2.4.2.

(e) Extrapolation. The truncation error bound increases to oo at the ends of 
the observation interval, suggesting tha t the formulae given here cannot be 
used for extrapolation. Now a bandlimited function can be extrapolated from 
past samples (though the problem is very unstable) provided tha t it has been 
‘oversampled’, i.e. sampled at a rate above the minimum rate prescribed by the 
sampling theorem. The reason why the above contour integral does not do the 
job is that, despite the assumption tha t x is bandlimited to rW , the sampbng 
series uses reconstruction functions of the form sm c(2W t  — n), which are 
linearly independent when the sampling rate is 2W .  The extrapolation requires 
an expansion using the functions sine (2 rW ( — n), which are overcomplete 
(dependent) at sample rate 2W.

(f) Two-sidedness. For arbitrarily good accuracy of reconstruction at a point i, 
one needs to take infinitely many samples on both sides of t. There has been 
interest in reconstruction from past samples [39], in which one needs only to 
take samples on one side of the point in question. We show in [140] tha t this 
may be achieved by the contour integral method, using a kernel of the form 
r(z)e-^» .

2.4 R econstruction

There is a large body of work devoted to reconstructing signals from nonuniform 
samples. In the first two subsections we deal with methods tha t, despite the use of a 
finite number of samples, do produce a bandlimited reconstruction. Other methods, 
such as sample-and-hold techniques, splines, and finite-order Lagrange interpolation, 
are simplifications of the fundamental sampling theorems, and are discussed in the 
third.
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2 .4 .1  U s in g  th e  W K S  (s in e )  k e rn e l

Following on from remark (e) above, we now turn to more general problems of 
reconstruction, when the restriction of bandlimitedness is retained but the sample 
points assume arbitrary positions. If the bandlimit is W  then the signal can be 
reconstructed as a linear combination of any of the functions sin a{t — Tm)/a{t — 
with a = 27riy as before. The are arbitrary. Now it is plain th a t if there are only 
a finite number of observations to be interpolated then there are infinitely many 
reconstructions of the form

=  (2.14)

obeying the interpolation condition

X''{tn) = Xn. (2.15)

It has been shown (in [226, 15]; see also [48, 41, 231, 211]) that the minimum-energy 
solution, i.e. tha t which minimises f  \x^{t)\‘̂dt^ uses sine functions ‘centred’ at the 
observation points, i.e.

Tn '= in (Minimum norm).

The result, usually attributed to Yen [226], may be obtained by minimising the 
signal energy subject to (2.15), but a rather more elegant approach may be taken, 
as follows. Consider two possible reconstructions, x(f) and x°(f), defined by

-Of.-v -  V ' C» Sina(f -  t„) ~

and both interpolating the observation points, so x°{tm) = x{tm) = Xm- Then

= Ik ir  +  l l z ' f  -  ^ 2 Re
® m.n 0,\^m ^n)m , n

= i k f + i K i r - 2 i K i r

Therefore
0 < l |x - x ° | |^  =  | |x |p - | |x ° lp

and x° is the minimum-energy reconstruction. In Chapter 3 we shall show tha t this 
method of proof generalises to the FT-transforms. The above derivation requires the 
inner product of two of the basis functions:

/: sin a{t — ti)  sin a{t — 2̂ ) _  7r sina(/i — (2 )
<x(f — f 1 ) (i{t — (2 ) d u(f 1 — ̂ 2 )
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This neat result is known as the Hardy integral and its generalisation to the K- 
transforms, as mentioned by Jerri [98], allows the minimum-norm proof to go through 
in the same way as above.

Elegant though Yen’s result is, it cannot be regarded as a sensible way to re
construct signals in practice. As we shall see later, low-pass reconstruction is stable 
only when the sampling rate is on average higher than twice the highest frequency 
present, thereby allowing overcompleteness in the set of ‘basis functions’ in (2.14). 
Given then that the ‘basis functions’ are no longer independent, we must expect the 
m atrix inversion (needed to obtain the ^n’s from the samples Xn in (2.14)) to be 
ill-conditioned (see [225]). One can use singular-value decomposition to identify and 
remove almost-zero combinations of generating functions [223]. A more satisfactory 
idea is to use a basis set tha t is irredundant to start with, and tha t is the key to 
methods currently used at the NUHAG group in Vienna University. By considering 
the periodic extension of the data and fitting a truncated Fourier series (i.e. using 
the transform kernel), the problem reduces to the inversion of a Toeplitz matrix, 
which can be tackled by a number of techniques to  reduce the computational load. 
This can also be viewed as constructing the signal using translates of the Dirichlet 
kernel (2.16)—so the distinction between using the WKS (sine) kernel and using the 
transform kernel becomes blurred. Incidentally the idea of using translates of some 
parent function to perform reconstruction is imphcit in the radial basis approach 
(§2.4.3).

2 .4 .2  U sin g  th e  tra n sfo rm  kernel 

Low-pass reconstruction

First let us find the reconstruction when there are N  uniformly spaced samples Xn 
(intersample spacing 1/2W )  and the underlying signal is bandlimited to W .  Take the 
interval [-W , W] and identify its end-points. N  equally-spaced frequencies fm are 
marked off, starting at /  =  0. The reconstruction is posed as a linear combination 
of the functions

B „ (i) =

As the time samples are uniformly spaced the weights can be obtained by the DFT 
(because the DFT is invertible) and x^{t) can be found exphcitly as

(with sin used when N  is odd, tan when N  is even). This may be thought of as the 
Lagrange interpolant for a function specified at N  points evenly distributed round 
the unit circle. As A — oo this tends towards the Shannon reconstruction. Note that 
the extension of this function, outside the observation interval, is periodic (period 
N /2 W ).  A crucial point which wiU be used again is that the frequency spacing of 
the basis functions {2W /N)  is the reciprocal of the observation time {N  X 1/2W).
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N onuniform  sam pling

Let us consider the same situation when the sampling is irregular. In that case we 
pose a model of the form

M
x { u )  =  Y .  (1 < n < iv), B „ ( t)  =  (2.17)

m = l

In the previous section we argued that the spacing of the basis frequencies should 
be the reciprocal of the observation time T. This argument was based on regular 
sampling, but there are two reasons why it should be true in general. First, over an 
observation time T  two signals exp(27ri/it) and exp(27ri/2t) differ ‘significantly’ if 
and only if | / i  —/ 2 I > 1 /T  (in fact when |/ i  —/ 2 I is a nonzero integer multiple of 1 /T  
they are orthogonal). Secondly the reconstructed signal is composed of harmonics 
th a t are integer multiples of the frequency spacing ^/, and will therefore be periodic 
with period 1/^/; if èf  > 1 /T  then 1 /d / < T  and the reconstruction would have to 
repeat inside the observation window, whereas the underlying signal x{t) could not 
be expected to do this.

Having established that 6f < 1/T , the number of unknown parameters is M  = 
2W /6 f > 2W T.  For correct identification of these (by linear least-squares) we 
require N  > M , and so N / T  > 2W. As N / T  is the average sampling rate, we have 
found tha t the average sampling rate must exceed the signal bandwidth®. This is in 
agreement with the point hinted at in §2 .3(d).

Given that we have chosen the frequencies fm  to be equally spaced, we may write 
down the least-squares solution to the above problem:

A = A -^b
N

Ars =
n = l
N
è
n = l

^  ^-2mrSftn

The m atrix A is hermitian and Toeplitz and so the computational cost of inverting 
it is the square of the matrix dimension (by the Levinson recursion: see [128] for 
details of this) rather than the cube, which would be the cost if A  were an arbitrary 
matrix. There are other methods based on the enlargement of a Toeplitz m atrix to 
a circulant one (in which case inversion can be effected using the FFT) or conjugate- 
gradient methods. The idea can be extended to higher dimensions, whereupon the 
m atrix assumes block-Toeplitz structure. A full discussion of these issues, and some 
examples of their appHcation, is in the papers of the NUHAG group ([63, 64, 169, 
207, 208] -f references therein).

 ̂Recall that we are defining the bandwidth B  as the measure of the support of the Fourier 
transform.
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M ultiband signals

We can reconstruct a multiband signal in the same way, provided we know where
abouts in the frequency domain the bands he. In each band the basis frequencies 
must be spaced by < 1/T , so there are > B /( l /T )  of them; for stable reconstruc
tion, N  must be greater than this, and so N / T  > B  a,s before. Numerical simulation 
confirms that this train of thought is justified [141]. This is a famous result proved 
in a rather less rustic fashion by Landau [115, 116] and developed by Katsnelson 
[105]. Scoular & Fitzgerald [185] consider the reconstruction of real multiband sig
nals with bands of equal bandwidth using periodic uniform samphng. Greitans [76] 
presents an example in which a real signal, with frequencies between 19Hz and 22Hz, 
is randomly sampled at an average sample rate R  =  17Hz. One sees from this that 
B  =  6 Hz (the signal is real), which is substantially less than R: this explains why 
his methods worked weU.

Periodic signals

Another situation in which equally-spaced frequency components arise is when the 
underlying signal is periodic (and of known period). In tha t case we can pose the 
same model as (2.17), except tha t now the basis frequencies are multiples of fo (the 
fundamental frequency). Again the problem reduces to a Toeplitz m atrix inversion.

It is worth reflecting tha t there is an im portant information-theoretic difference 
between reconstructing a bandlimited signal using equispaced frequencies and re
constructing a periodic signal. In the first case the number of basis frequencies is 
2 W T  a  A , and although the reconstruction is periodic the repetitions occur out
side the observation window (because the period is T , the observation time). For 
signals of known period (the second ca.se) the number of basis frequencies is 2W /fo  
independently® of A , and the reconstruction repeats (several or many times) within 
the observation window. Defining the ratio

Number of parameters M {T)  
r-foo Observation time T

as the information rate, we are led to the correct conclusion tha t the information 
rates are 2W  for the first case and 0  for the second.

Sam pling sets

The question that we are considering is this. Suppose that a signal x of bandhmit W  
is supphed. W hat are the admissible samphng sets, i.e. those sets of time instants 
tha t permit reconstruction? We have justified tha t an average samphng rate > 2W  
is required, but have been a httle vague on questions of sufficiency. It is quite a 
subtle question and there are several related questions of uniqueness and of stabihty. 
There are two ways in which one can examine it. First, we can consider the canonical

’Provided 2W/ fo  <  jV of course; otherwise the problem is underdetermined.



2.4. RECONSTRUCTION  31

product with respect to the sample points,

s { t ) = ~ ^

(where k is the number of samples at the origin), and apply the method of contour 
integration to obtain a sampling expansion; we must then ask what conditions must 
be obeyed by the set for the Lagrange interpolant (2.13) to be correct.

The second approach is more subtle, and goes as follows. There is no difference 
between reconstructing the signal x and reconstructing its Fourier transform X .  
This can be uniquely determined only when X { f )  lies in the space generated by the 
functions exp(27ri/t„). If we make the further assumption tha t x E L^(R), so tha t 
X ( / )  E L ^(-IF , IF), then we are looking for a generating set (or Riesz basis, if we 
do not wish for overcompleteness) for L^(—IF, IF).

In this paragraph we shall for simplicity take IF = | .  It is clear that the set
=  7i} is admissible. It seems fair to assume that migration of the samples by 

a small amount should not affect the admissibility of {in}, and a famous result of 
Kadec [103] states that provided tha t each sample moves by less than some upper 
bound < admissibility is preserved. A generalisation by Avdonin [8 ] asserts that 
only the average displacement (in a well-defined sense) has to be less than This 
has been an active area of research for some time and some im portant results have 
been obtained by Beutler [15, 16]. He raises an interesting question about sampling 
in which only past samples are available, i.e. at 0 , -1 ,  —2, —  For such schemes an 
average sampling rate is not well-defined, and although this is a set of uniqueness 
(no other signal of bandlimit IF  agrees with x{t) at those points) it is not a set of 
stable reconstruction (small changes in x produce large changes in the reconstructed 
signal). Recent work includes generalisations to L^(R) [8 6 , 220], sampling at complex 
time instants [219], and multiband signals [105, 123, 124, 187]; see also [186]. Voss 
[2 2 0 ] provides a good overview.

2 .4 .3  M ore gen era l r e c o n str u c tio n  tech n iq u es

It is apparent from the above discussions tha t although reconstruction is possible us
ing various techniques, those for general irregular sampling are not computationally 
straightforward and require large matrix operations.

This has led researchers to investigate approximate reconstruction of signals. In 
principle one can distinguish between two types of generalisation: (i) the underlying 
signal is still assumed to be bandlimited but the reconstruction does not have to be, 
and (ii) the underlying signal is assumed only to be ‘slowly-varying’. Given that we 
wish a reconstruction algorithm to be stable to small unbandlimited perturbations, 
(ii) is more commonly supposed.

Marvasti ([143], §VII) gives a good overview of techniques. For example we have 
spline reconstruction ([3, 53] give introductory texts and Butzer [33, 37, 47] give 
examples of use in a sampling-theoretic context). Spline reconstruction is called 
a local technique, which means that at any given point only finitely many basis 
functions (or, equivalently, parameters) contribute to the reconstructed signal there. 
Simple Lagrange and sample-and-hold interpolators are also a popular choice.
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Multidimensional signals (or functions, as they would normally be called) present 
a difficult problem: from the point of view of bandlimited functions one can use 
Fourier series, as discussed previously in this section and in [208]. A more flexible 
alternative, which has gained much popularity in recent years, is the use of radial 
basis functions (RBFs), to which Powell [163] provides an overview. The RBF 
approximant to a function from a metric space (%, d) to  R is

(2.18)
1=1

in which the Cj are known as ‘centres’, placed in Æ, and is some smooth nonlinear
function such as a Gaussian (r e“ ^’’̂ ), though ln (l +  r^), r^, V T +T ^ and In r 
may also be used. These have been extensively used in neural networks [200] and in 
chaotic time series prediction (§2.7). This is partly because one can place the centres 
in the domain of definition of the function. Recent work by the present author [137] 
suggests that RBFs outperform bandlimiting approximators when the function to be 
approximated is not smooth; in particular, he has shown tha t the delta-function ap
proximant, rather than being a sine function, is of the form 7  sin(7r</r)/ sinh(7r7f/r), 
where r  is the intercentre spacing and 7  relates to the ‘radius’ of the RBF. This of 
course decays very much more rapidly than the usual sine function.

Now tha t the assumption of bandfimitedness has been relaxed, it is im portant to 
consider whether some minimum samphng rate is necessary for accurate reconstruc
tion. It goes without saying that there is one, and these reconstruction techniques 
always work best at low frequencies and fail when the signal fluctuates signiflcantly 
between the sample points. In rounding off this section, we point to the inevitable 
conclusion that, with the exception of the reconstruction of multiband signals with 
known bands, discussed in the previous section, no general technique is capable of 
accurate reconstruction when there are significant components above the Nyquist 
hmit.

2.5 The spectrum  

2 .5 .1  In tr o d u cto r y  rem ark s

The power spectrum, or power spectral density (PSD), of a continuous-time signal 
is defined as the formal hmit

2

and it is used for assessing the spectral content of signals tha t have infinite energy 
(such as stationary stochastic processes, or signals generated by chaotic attactors). 
The power spectrum of a sampled signal, -P^(/), is usually defined as the formal 
hmit A  —>• 0 0  of the periodogram function

2

Pn U ) -  J
NE

n~l
Xfi^ or

1 N - l

n= —N

-2Tciftn (2.19)
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though modifications to take irregular samphng into account can be made [129]. 
Given that they have been defined independently of each other, it is necessary to 
investigate how P ( / )  and P^( f )  are related. When the samphng is regular with 
rate P , P^{f )  consists of equispaced translates of P ( / ) ,  spaced by P , in the same 
way that the Fourier transform behaves under samphng. In particular if x(t)  is 
bandhmited to W  and W  < then the copies of P ( / )  do not overlap and P ^ ( /)  
determines P ( / )  uniquely; but i f W  > \ R  then this is no longer so.

When the samphng is irregular the position is more comphcated but the conclu
sions are essentially the same, namely tha t P®(/) is the convolution of P ( / )  with a 
function related to the samphng scheme [24]:

P" =  P  * SC. (2.20)

By substituting a delta-function for P ( / )  we can treat S C (/) as the spectrum of a 
sampled process taking the value 1 a t each samphng instant, i.e. it is the observed 
spectrum of the constant process. Two interesting case are as follows.

With additive-random samphng, in which the intersample spacings tn+i — tn are 
i.i.d. as p{t), the function SC is obtained in terms of p( f )  = dt as

SC (/) =  6{t f )  + C o n t R e ( ] ^ 4 ^ )  +  ~ U)-  (2.21)
VJ- VU)  y

(Here t is the mean intersample spacing. The operator ‘Cont’ signifies tha t the Re (•) 
term is taken eis continuous at the singular frequencies f  = fd where p{f )  = 1 ; in fact 
these must generate delta-function contributions, which have been exphcitly brought 
out in the equation as the last term. Note tha t 0 is always a singular frequency, and 
it generates the first term. A fuU discussion is given in Appendix A.)

With jittered sampling the samphng instants vary from their mean sample posi
tions by tn = {n-\- s„)î, where Sn are i.i.d. as q{t). Then SC is obtained in terms of 
? ( /)  =  dt as

S C (/) =  1 -  \q{tf)\^ +  |?(^/)P  ^  S( t f  — n). (2 .2 2 )
n^O

It is interesting to compare these two sets of results. In general, SC for the 
additive-random scheme wiU contain a delta-function at the origin and a continuum 
(the second term in (2.21)) but no delta-function train. This is because p[t) wiU 
only give rise to nonzero singular frequencies when it consists of delta-functions: 
however, such a possibihty cannot be ignored, because tha t is exactly what happens 
for regular samphng^. On the other hand, SC for the jittered scheme wiU in general 
contain a delta-function train; the exceptions occur precisely when q vanishes at all 
nonzero integers®. One might guess that, as the delta-function train in SC is respon
sible for aliasing, that additive-random sampling is better than jittered sampling at

 ̂A  union of periodic sampling schemes, with commensurate periods, is the only way in which 
this can occur. So regular sampling is a pathological case!

®For 100% uniform jitter, i.e. when q{t) =  1 for \t\ <  |  and 0 outside, this does occur, as g is 
the sine function.
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suppressing aliases. This is true, and corroborated by some of the simulations in 
§4.6; see also [23].

An im portant point that is not emphasised in the literature is tha t the average of 
SC (over the real axis) is 1 . This means tha t we cannot construct a sampling scheme 
in which only one copy of P ( f )  comes through into we must have unwanted
copies as well and these two examples (of which the second is additive-random) give 
the extremes:

• Regular sampling: S C (/) =  ~  ^)-

# Poisson sampling: p( f )  =  (1 + 2 ?ri/i) , and S C (/) =  S( t f )  +  1 .

In the first case the unwanted copies give rise to aliasing; in the second they are 
smeared out to a uniform level. Let us give P ( f )  a spike, or other pronounced 
feature, at frequency fo. In the first case we cannot find fo uniquely from P^( f ) ;  in 
the second case we can. But in the second case the dynamic range is much reduced, 
and in a plot of P^( f )  we would only be able to find the strongest features.

We have therefore identified three fundamental principles: irregular sampbng 
suppresses abases in a bne spectrum; additive-random sampbng does this better 
than jittered sampbng; irregular sampbng causes spectral smearing, reducing the 
dynamic range.

2 .5 .2  P ra c tica l d ifficu lties

The periodogram function P ^ ( f )  suffers from three problems:

(a) Inconsistency. For stochastic signals, P ^ { f )  P^ i f )  as A  oo. This has 
been known for a long while (see e.g. [161]) and is a problem regardless of the 
sampbng. A simple demonstration constructs FFTs of samples of white noise. 
As the sample length is increased the spectrum retains its jagged appearance 
rather than settbng down to a smooth (constant) PSD estimate [128]. This 
can be mitigated by averaging periodograms of different length [148]; see also 
[26]§10.

(b) Leakage. This means simply that a spectral component at frequency fo ap
pears at other frequencies too. Taking a finite amount of data  corresponds to 
multipbcation in the time domain by a gate-function, or convolving the Fourier 
transform with a sine function, thereby giving each pronounced spectral fea
ture a train of ‘sidelobes’. By multiplying the data  by a tapered ‘window 
function’ that decays to 0  at the edges, the sidelobes decay more rapidly (a 
corollary of the Riemann-Lebesgue lemma) but the resolution is reduced. If 
the data length is less than about 32 points, windowing gives hopeless results.

(c) Smearing. This is a consequence of irregular sampbng and can be summarised 
quite neatly as: P^{f )  ^  P{f ) -  Even for a bandhmited signal, P^{f )  and P( f )  
do not agree on the Nyquist interval. This problem is often called leakage, as 
web as (b), but unbke the effects in (b) it cannot be cured by windowing. This 
is because a good estimate of P ^ (/) , which is what the modifications in (a)
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and (b) are trying to achieve, is not a good estimate of P{f ) .  The only way to 
get back to P{ f )  is to deconvolve P^ with SC and although several methods 
have been proposed (see [25]) this is a very ill-conditioned problem [180] made 
worse by the fact tha t estimating P^{f )  is difficult enough in the first place 
(problem (a)).

Scargle [180], who discusses these issues well (except (c), which he describes 
cLS leakage and attributes entirely to use of the ‘raw’ periodogram, rather than to 
the sampling), mentions in his introduction that despite all these problems the raw 
periodogram is still a good and quick method of detecting a sinusoid in noise, and 
tha t seems a sensible attitude to take. It is this tha t led him to discuss an alternative 
periodogram, which we mention next.

2 .5 .3  T h e  L om b sp ec tro g ra m . D e te c t io n

An alternative spectral estimator, similar to the DFT, is the Lomb spectrogram 
[122]. This exploits the ability of the Fourier transform to detect a sinusoid in white 
additive noise. If we decompose thus,

Xn = A  COs{27T f t n)  +  B  sin(27r/t„) +Un,
 ̂ ' S/* " ^

S n l f )

in which, for each / ,  the parameters A ,B  are adjusted so as to minimise Yin Wn\^i 
and define

n

then we have a function whose peaks indicate the main frequencies. Indeed one can 
use this definition to give a statistical test for the presence of a sinusoid in white 
noise, because for each / ,  P^{f )  is after appropriate normalisation exponentially 
distributed with unit mean [180]. Computational aspects are discussed in Numerical 
Recipes [165].

It is worth mentioning in general terms why the periodogram (or any of its 
relatives) is a useful device for detecting sinusoids. Suppose a complex-exponential, 

is observed in white noise of variance From a sample of size N  form 
the spectrum; the height of the spike corresponding the sinusoid is NA'^ whereas 
the average level produced by the noise is at and tha t produced by the spectral 
smearing of the sinusoid is somewhere between 0  and depending on the sampling 
scheme. The ‘relative spike height’ on a logarithmic scale is therefore

NA^

SO the acquisition of more data leads to a more pronounced spike. This effect is 
known as coherent gain'., the periodogram owes its existence to it.
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2 .5 .4  A lia s - f re e  s a m p lin g

The concept of alias-free sampling was introduced in a classic paper by Shapiro & 
Silverman [189]. In it they derived, for jittered and for additive-random sampling, 
results similar to those given in §2.5.1, working mainly with the sample autocorre
lation,

roo
Tm •—  ̂ ~ I -K(̂ )Pm(̂ )dT,

Jo

where Pm is the pdf of (tn+m — tn)’ They also considered the difficult problem of 
determining R {’) from the r ’s. If no two distinct autocorrelation functions R i ^2 

could generate the same set of r ’s the sampling scheme was said to be alias-free. 
The problem reduces to one of establishing whether the functionals Pm{T) form 
a ‘complete set’, i.e. allow R{-) to be found. Remarkably one does not have to 
know the times at which the observations were made(!), as Vm depends only on the 
ordinates. A particular case is that of Poisson sampling, in which the Pm{T) are 
(up to a few factors) the Laguerre functions and, coming as they do from a Sturm- 
LiouviUe problem, are complete^. So Poisson sampling is alias-free, and the above 
construction using Laguerre functions allows R(-) to be obtained. This property is 
exploited by Masry in the construction of a consistent spectral estimate for Poisson 
sampling [145, 146].

Shapiro & Silverman found tha t jittered sampling is not alias-free. They also 
found tha t additive-random sampling is alias-free if p, viewed as a function from R 
to C, is injective (‘one-to-one’), and is not alias-free if p, viewed as a function from 
the lower half-plane to C, is not injective. As examples, the F(i/, A) pdf is alias-free 
provided that A > 0 and < 2 , whereas the rectangular pdf is never alias-free.

Since then their work has been reconsidered and extended by various authors. 
Strangely, nobody seems to have pointed out, in the additive-random case, th a t 
their equation ([189], p.236) for P^{f )  with additive-random sampling is incorrect; 
one might also criticise tha t in the jittered case there is no explicit statem ent of 
S C (/). We have resolved these issues in Appendix A, and discussed the precise 
form of SC in the additive-random ceise. Beutler & Leneman [18, 19, 17] and Masry 
[144] have extended the definition of ‘alias-free’ so tha t one can define a sampling 
scheme 8ls alias-free relative to a family of spectra. Masry [145, 147] points out 
tha t Shapiro & Silverman’s definition of ‘alias-free’ is deficient in tha t it does not 
not necessarily imply that P{ f )  can be consistently estimated from a finite set of 
samples; he strengthens the definition to suit. Bilinskis & Mikelsons [22] concentrate 
on signals with line spectra and argue that it does not m atter too much whether a 
sampling scheme is (rigorously) alias-free, if it succeeds in suppressing aliases over 
a substantial spectral range. This is the basis of our discussion at the outset, and 
in Chapter 4 we shall feel free to use a variety of sampling schemes.

It cannot be emphasised too strongly that ‘alias-free sampling’, as defined here, 
has nothing to do with sampling rates and nothing to do with signal reconstruction; 
it is purely an exercise in identifying the spectrum. That is why no mention of 
Nyquist limits has been made; Poisson sampling, for example, is alias-free for all

^Specifically Un(T)un{t) =  6{i — r)  where «„ are the normalised eigenfunctions.
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(nonzero) sampling rates. In information-theoretic terms there is a great difference 
between knowing the spectrum and knowing the waveform: it is only for a very 
special class of signals—those consisting of sinusoids in observation noise—that the 
problems of spectral analysis and signal reconstruction become equivalent.

2 .5 .5  F in a l p o in ts

Of all the problems associated with spectral analysis of irregularly sampled data, 
the smearing problem is the most difficult one to solve and it has im portant conse
quences, not just for signal detection. The fact that a sinusoid no longer transforms 
to a simple spike means tha t there is no inverse Fourier transform available to us, 
and tha t we cannot go freely between time and frequency domains, as we are used 
to in classical digital signal processing (DSP). This has serious repercussions, one 
of which is tha t designing filters for irregularly sampled data  has to be done in the 
time domain; as Marvasti points out, this requires a time-varying impulse response 
([143], p.6 ), and Bilinskis states that filtering is one of the m ajor unsolved problems 
in ‘irregular DSP’ ([23], §11).

2.6 Linear m odels

2 .6 .1  In tr o d u cto r y  rem ark s

We have already seen that when the bandwidth of a signal is small compared with 
the sampling rate, the signal has, in effect, been oversampled and consequently is 
predictable, at least over a short range. This has been addressed in the sampling- 
theoretic literature in recent years [36, 39,140]. The principal thrust of this research 
has been to construct one-sided sampling series, as opposed to the bi-infinite sum 
(2.4). Its main disadvantage is that the notion of bandlimitedness is not always 
very helpful, particularly in the case when the signal consists of several narrow-band 
components.

The statistical, or stochastic, approach is subtly different in tha t it associates the 
notion of linear prediction with tha t of modelling and parametrisation; the prediction 
coefficients, central to the description of a signal, give a tighter representation than 
a simple bandlimit. (If the fit is poor, the fitting procedure will say so.) The 
abundance of signals tha t are susceptible to parametric spectral analysis has led 
to a vast literature on linear prediction and spectral estimation, to which good 
introductions are [125, 107, 128]. Some specific examples are radar clutter (see e.g. 
[142]) and audio signals (see e.g. [74] and [77]§8 ).

The autoregressive model celebrates its seventieth anniversary this year but, 
judging by the continuing steady stream of papers, it is not showing its age. It was 
introduced by Yule [227] to find periodicities in the sunspot data, on the basis that 
a sinusoid A  cos ü t  + B  sin ü t  is linearly predictable from two equispaced previous 
observations:

X n  =  — a i ^ n - l  -  =  — 2 c O S Ü 6 t

and tha t to account for prediction errors one needed an additive ‘disturbance term ’
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on the RHS. After a further generaUsation the autoregressive, or AR(p), model was 
born^°:

p
Xn — ^   ̂ A £ji'

j=l
The term {£„} is an uncorrelated Gaussian process with variance a^.

Linear processes are usually analysed in the z-domain, with z defined by 2  =  
g27Ti/5t. cj^ange of variable maps the real frequency axis to the unit circle in 
the 2 -plane. Let A{z) ;= 1 +  CLjZ~Ê Then an AR process is generated by 
passing white noise into a system of transfer function 1 /A (2 ). The zeros of A, (a i) 
say, are called the poles of the model; for the process to be meaningful it must be 
stable, which means that the poles must be inside the unit circle. In the special case 
when all the poles tend toward the unit circle, and 0 , the process becomes
completely coherent, or harmonic, and consists of p tones at angular frequencies Qi 
given by a{ = exp(ifi,-^t). In tha t case the prediction errors are zero; we call this 
the coherent case. The spectrum of an AR process is given by

b l = i

A {z)A*(l!z)

which is continuous (on account of the fact that the model is assumed to hold for 
all time) and may have a large dynamic range irrespective of the size of the data  
set used to construct the AR coefficients. By contrast the periodogram (q.v.) is a 
polynomial in 2 , and only has well-defined features when the coherent integration 
time is large.

A further generalisation is the ARMA(p, q) model, in which a ‘moving-average’ 
term  is introduced on the RHS:

p 9

Xn — ~  ^  ] 0,jXn—j 4" ^   ̂
j=l j=0

This gives rise to  a system function tha t contains zeros (as weU as poles).
There are several excellent accounts of AR and ARMA modelling, for example 

[107, 125] and the texts [128] and [77].

2 .6 .2  C oeffic ien t e s t im a tio n  and  m a x im u m -en tro p y

The coefficients can be estimated either from the sample autocorrelation function 
(Yule-Walker method) or by minimising the prediction error power defined as

E ( x , a )  =  -___  T
p 2

P

X n  4- ^   ̂ a j X n —j + X n —p 4* ^  ]  ^ j X n —p + j

i = i

^°Some authors correctly distinguish between the process, which is a sequence of random variables 
and written Xn  =  a j X n - j  + £ n ,  and the observations, which are written in lower-case letters.
However it is more usual, particularly in the engineering literature, to use the same symbol for 
both. This should not cause confusion.
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with respect to the AR coefficients in an optimisation tha t can be either constrained 
(Burg) or unconstrained (Covariance). The constraint in the Burg method is the 
Levinson recursion, which relates the pth-order model to the (p — l)th-order 
model by a single coefficient Pp, the reflection coefficient:

Pp-

This is a byproduct of the Toeplitz matrix inversion in the Yule-Walker method; 
it guarantees that the model is stable whenever the reflection coefficients are all 
inside the unit circle^^. The second | • p term is the backward prediction error 
energy, occurring because if obeys the AR model with coefficients aj then its 
time-reverse obeys the model with coefficents a’j.

The above method is the maximum hkelihood formulation (if one takes forward 
prediction errors only and assumes Gaussian driving noise), for one is in essence 
maximising the probability of observing the given dataset w.r.t. the AR parameters. 
In recent years the theory of entropy has led to new insights into the AR problem. 
The entropy of a process is a measure of its information content or ‘disorder’. For 
a discretely sampled Gaussian process the entropy (more correctly the entropy per 
sample) is given in terms of the power spectrum as

f l / 2 S t
Entropy =  26t /  In P ( f )  df  

J —l / 2 S t

which (rather nicely^^) is simply In 4  for a stable AR process, independently of the 
AR parameters. The maximum-entropy approach to linear prediction seeks to find 
the PSD with maximum entropy (or the whitest spectrum) tha t agrees with the data  
as far as the first p autocorrelation lags. Solving by means of Lagrange multipliers, 
one finds that P( f )  must be the reciprocal of a polynomial in z. See [77]§7.2.4 and 
[107] for good discussions. The solution is then the same as that of the Yule-Walker 
method. In information-theoretic terms it corresponds to constructing the unknown 
autocorrelation moments in a way tha t ‘makes fewest cissumptions’.

An im portant issue tha t arises when fitting models is what order to use. It is 
not difficult to see tha t the quality of fit improves with the model order p, for the 
residual variance 4 [p ] decreases. One therefore imposes a penalty on high-order 
models tha t is severe when the available data length is short. Two such methods 
are the Akaike Information Criterion and Minimum Description Length criteria :

AIC[p] = JVlnA|[p] +  2 p 
MDL[p] = JVlnCT2[p] +  (in iv)p

though there are others (see [128]). Unfortunately none of them works particularly 
well on short data sets [217], which is the field in which AR modelling has most to 
offer.

“ Straightforward consequence of Rouche’s theorem in com plex analysis [205].
^^Cepstrum lovers will recognise it as the zeroth cepstrum coefficient. T he cepstrum of A R  (and  

ARM A) processes is a particularly elegant function of the z-plane poles and zeros, carrying the 
im plication that these estim ators are fundamentally logarithmic.
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2 .6 .3  I r r e g u la r  s a m p lin g

As the AR model is a discrete one it is not surprising tha t the early work on irregular 
sampling concentrated on the missing data problem. There are three approaches, as 
follows. Let /C be the set of indices n for which Xn is known.

• Method of NuttaU [155]. Here E  is calculated only over the available prediction 
errors; the nth forward prediction error is available if and only if n , . . . ,  n —p G 
/C. The problem with this method is seen when the missing data  points are 
scattered; in that case, the number of available prediction errors may be too 
small.

• Maximum-entropy method [153,154] using the autocorrelation function (ACF). 
Here the autocorrelation lags Rxx[k] are estimated from available pairs:

y '  X*X A.],
Rxx[k] =  — —  (Missing data  problem)

in which the ' symbol means that the only values of j  included are those for 
which both j  and j  A  k  are in 1C. The AR coefficients can then be found by 
maximum-entropy.

• Expectation-Maximisation (EM) algorithm [92, 191]. E  is quadratic in x  and 
in a, so it can be minimised iteratively, w.r.t. the AR coefficients keeping the 
unknown data fixed, then w.r.t. the unknown data  keeping the AR coefficients 
fixed.

In the special case when the ACF is known explicitly, there is the following option:

• Irregular ACF method [56]. Occasionally the ACF of the continuous-time 
process is given at irregular intervals, e.g. when the data  come from an inter
ferometer or autocorrelator. Then the maximum-entropy method is used to 
obtain the AR spectrum.

For more general sampling these methods cannot be used and the following have 
been suggested:

• Reconstruct, resample and use standard methods [149]. This is acceptable 
only when the signal is oversampled, as is often the case in geophysics.

• Continuous-time methods [101, 102]. Here the continuous-time all-pole model 
is posed:

{Cy{t)]dt -  dB{t), C = y ^  bj ^

Defining x{t) = [y{t) • • • ^l(f)]^ and m = [1 0 • • - 0] we can write the above
stochastic differential equation as

^ x ( 0  = B- x(i) +  e(t)
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for an appropriate m atrix B, and the observations as =  m - x(^n)- The 
Kalman filter (see e.g. [80]) is a predictor-corrector scheme tha t converges to 
an estimate of the state vector x even though only one component is observed. 
Given a set of putative coefficents b =  (bj) one may thus derive a likelihood 
function lik(y |b) and maximise it w.r.t. b. In principle this method should 
produce very good (‘optimal’) results but in Jones’ experience [101, 102] there 
were problems because the function b i-> lik(y |b) was ‘iU-behaved’, having 
a large number of local maxima. This is clearly at variance with the regular 
case, in which the prediction error function is quadratic in the unknown AR 
parameters.

Generalised prediction error method [132, 134, 136, 139]. This is ours (see 
Chapter 4). Briefly the idea is to replace the prediction of Xn from p previous 
values with a generalised concept of prediction^^:

p
2

P
2

P

j = o
< E r ]

j = o j = 0

The LHS is the generalised prediction error energy. In the coherent case (q.v.) 
it can be arranged to be zero. It can also be made to coincide with the conven
tional definition when the sampling is regular. It was conceived for the missing 
data problem; subsequent work moved to the continuous-time AR model à  la 
Jones, and then the two were combined. Although a nonlinear optimisation is 
required to find the model poles, the performance surface appears smooth and 
remarkably free from spurious minima.

2 .6 .4  L inear m o d e ls  and  lin ear  filter in g

The AR and ARMA processes are closely linked to the theory of linear filtering. A 
finite impulse response (FIR) filter^^ with input {x} and output {y}  is defined by

p

Vn — T ^   ̂^ j^n—j 
i=i

from which it is clear that passing an AR process with parameters (aj) through an 
FIR  filter with coefficients (aj) gives white noise. The catch is th a t this filter is not 
the optimal filter for separating an AR process from an additive combination of it 
and another process. To see why, consider the case in which the AR process is a 
constant function {p = 1 , ai = —1 ); the optimal filter for the removal of this is a 
notch filter at DC. But the FIR filter given by (p = 1, ai =  — 1) does not have a 
notch characteristic. To solve the problem properly one needs to write down the 
Wiener filter (which amounts to assuming Gaussian statistics and doing maximum- 
likelihood). Indeed, let x(t) and s(t) be uncorrelated signals, of known spectra Px{f )

replacing <C with <  one would simply obtain the Cauchy-Schwarz inequality. 
^^See [150] for a good introduction to the practicalities o f the subject.
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and Psi f ) ,  and let their sum be given as z(t). The Wiener filters for estimating x 
and s from z have, respectively, transfer functions

1 1
and

1 +  P s ( f ) / P A f )  1 +  P À D / U S )

which are acausal and HR in general. This is derived in many texts, e.g. [77, 104, 
160]. W hat happens if Ps{f )  is unknown and Px{ f )  is known only up to a factor, 
though? This does not seem to have been discussed at all, and we show how to 
resolve the problem in Chapter 4.

When one tries to filter irregularly sampled data, the literature is even less help
ful. Apart from the Savitzky-Golay smoothing filter (a simple device based on local 
polynomial fitting [179,165]) and the ‘top-hat’ filter implicit in signal reconstruction 
(wherein frequencies under the Nyquist limit are passed and the others rejected), 
which are both specific types of filter, the only attem pt to construct linear filters 
seems to have been made by Bilinskis and co-workers [23]. Their idea is to construct 
a ‘notch-pass’ filter by performing a discrete convolution with a sinusoid. (This is 
based on the elementary observation that in continuous time one would construct 
such a filter by convolving with a sinusoid.) There are several difficulties with this 
method: as an FIR filter, it requires a large number of taps to achieve a narrow 
passband; the transfer function is ill-defined on account of sampling irregularities; 
and one cannot construct stop-band filters. Chapter 4 will show how to deal with 
these problems and others, using the generalised prediction error approach.

2.7 N onlinear m odels

There exists a large class of signals that are not well modelled using Fourier, or 
linear, methods, but are susceptible to nonlinear prediction. An artificial example 
is data  from the Hénon map, Xn = I — 1.4z^_i 4- 0 .3 xn_2 , which is observed to be 
very broad band and has a featureless power spectrum [184]. Indeed by examining 
the spectrum one would not be able to distinguish it from white noise, but of course 
the time series is (in principle, at least) perfectly predictable, unlike noise. For such 
signals, nonlinear prediction provides a much better method of attack than linear 
techniques: but how likely are such signals to occur? Suppose tha t the signal arose 
from observing a dynamical system

dy/d t = f {y)  f  : M  M

at periodic intervals every r  (time units). Here A4 is a D-dimensional compact 
differential manifold. This is a structure that looks locally like in the sense tha t 
a  small open set in A4 is homeomorphic (i.e. in 1 -1  correspondence via a continuous 
map) to an open set in R^. For example a torus is a compact differential manifold 
of dimension 2 .

Suppose—and this gives the complications—th a t we do not observe y{t) G A4 
explicitly, but instead observe it through a smooth function g : A4 R. Also let 
^  : A4 —» A4 be the map that takes y to where the dynamics send y after time r .
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We may construct^^ the set of delay-vectors

^  =  { [ 9 4 > ~ ^ y  9<l>~^y • • •  9<P~"^y V  ’ y  ^  

and give the mapping that performs this construction a label, $  say. So

^  : y [ 9 <j)-^y g(j)~‘̂ y ••• 9<t>~'^yV- 

We have a picture, in which the bottom branch has yet to be supplied:

M  M

$1  $1  (2.24)

ECR^^ E

We now employ the following theorem of differential topology [210, 90].

T h e o re m  1  (Takens Embedding à la Huke) Let A i  be a compact manifold of dimen
sion D. Let (j) : A i  ^  A i  be a diffeomorphism satisfying the following constraints 
(which are generic):

• <j) has a finite number of periodic points with period < 2D

• if  y is a periodic point with period k < 2m then the eigenvalues of 4>̂ at y are
distinct.

Then for all g in an open dense subset o /C ^(A f,R ), the map $  : Ai R  ̂ given by

$  : y t-y g<j>~̂ y ••• g<}>~'^y]^

is an embedding if  d > 2D +  1. □

A simple justification is tha t it is a generic property of D-dimensionai manifolds 
th a t they do not intersect in {2D +  l)-dimensional space: in other words if they do 
intersect, an arbitrarily small perturbation in some direction will break the intersec
tion. By saying tha t the constraints on <f) are generic, we mean tha t if the constraints 
are not so for a particular choice of <f) then they will be true for one arbitrarily close 
to  it. We can think of a non-generic <j) as being ‘unlikely to occur’. As an example 
of the use of the terminology, a real {n x  n) matrix is generically nonsingular, if we 
give the space of (n x  n) matrices the Euclidean topology of R"- ; in fact the set of
nonsingular (n x  n) matrices is open dense in R” .

T hat $  is an embedding means that it is smooth and invertible. As E is by 
construction the image of $ , we have that $  gives a smooth 1 -1  correspondence 
(diffeomorphism) between A i  and E. Define now the following map to complete 
the bottom branch of the diagram (2.24), marked by ‘?’, and make the diagram 
commute:

K  = ^  <f) : E —> E

composition of maps we shall not always put in the parentheses, so g<f> is short for
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which is a diffeomorphism because $  and (f) are. Obviously invertibility of 0  is very 
im portant: otherwise K  is not well-defined. The map $  would not be invertible if 
the embedding dimension d were too low.

Having estabhshed that a suitably well-behaved K  exists, we can now apply it 
to time series prediction. Write

— 9 y { ^  T  ^ 7 " X =  [ Xf i —\  Xf i —2 ’ ' " ^ n —d ]

so tha t { x n ]  form a time series and

The ‘top ’ component of K  therefore takes x^ to write H  for tha t function. Then

= ^ (x " )  (2.25)

and the time series is predictable using the smooth function H.
From the dynamicist’s point of view the importance of Takens’ theorem is th a t it 

says tha t under generic conditions A4 and E are diffeomorphic, and time-discretised 
dynamics on A4 are manifested in E. From the practitioner’s point of view the 
figure d =  2D -f 1 is salient, as it is small enough to make practical the estimation 
of H  from experimental observations. (Indeed d can often be made smaller: for 
the Lorenz and Rossler systems [212], in which Z) = 3, we find tha t d =  4 suffices, 
though the embedding theorem says that an embedding exists for d > 7.)

Consequently these methods have stimulated a vast range of applications in
cluding fluid dynamics, electronic engineering, biology, medicine and economics (for 
good overviews see e.g. [158, 106]). It has led both to a reexamination of old data  
sets and to the construction of new experiments, with the aim of detecting deter
ministic behaviour in time series previously thought to be random. The subject is 
often informally referred to as ‘chaotic time series analysis’ (for good overviews see 
e.g. [1, 199]).

The function H  can be estimated from a time series by local or global functional 
approximation [60, 43, 61, 1]. A particularly attractive idea is the radial basis 
method, because H  is not defined on but rather on E which is a subset of it, and 
so one can choose centres in tha t region. In particular we may choose delay-vectors 
from the time series as centres, and the following approximation to H  can be posed:

m

The (cj), which are just integers, index the centres.
In practice we must be able to choose the (cj) and find the (Aj). The latter 

problem is accomplished by linear least-squares, in which for a block of training 
data  (x„)^  the following cost function is to be minimised:

N /  m \  ^
Error = ^  ^  A ,^(||x" -  x<=> ||) =  1|AA -  b |p

n = d + l  V j = l  /
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where A is an ((N  — d) x  m) matrix with entries Aij =  i/)(||x  ̂ — x^^\\) and b is an 
({N — d) X 1) vector with entries bi = X{.

We wish to find the centres that have smallest effect on the error; the corre
sponding basis functions are then removed from the basis set (which corresponds 
to removing those columns from A). This can be done independently of finding 
the ‘best’ weight-vector A, or selection and parameter estimation can be combined. 
The second approach is discussed in detail by Stark [200]. We shall discuss the 
ideas underpinning the first approach from the point of view of radial baisis function 
fitting.

The ‘independent’ approach consists in choosing the centres first and then finding 
the ( A j ) .  Choosing a large number of centres at random from the training data is a 
good way of ensuring that the domain of the function to be fitted is well covered with 
centres. Many of the centres, however, will be too close to each other and this causes 
the m atrix A to become ill-conditioned. A simple idea for eliminating this problem 
is to ensure tha t no two centres are less than some predetermined distance [195]. To 
evaluate ‘closeness’ in the context of two identical radially-symmetric^® functions 
/ i ,2 centred at c^’̂  € one may use a^ a yardstick the value /i(c^) [= / 2 (ç^)]. 
Any quantitative conclusion depends of course on the functions in question. From 
our experience it appears tha t for a Gaussian RBF f  : x   ̂ for which
/ ( ç )  = 1, a centre should be rejected if the value of its associated basis function at 
any of the previously chosen centres exceeds 0.9. This figure of 0.9 is independent 
of w.

It is now a question of finding A. In principle one can solve the ‘normal equa
tions’, A  AA =  A ^b , which give the solution to the minimisation of ||AA —bjp ,  by 
Cholesky decomposition of A ^A . A preferable approach if the basis set is degener
ate (or almost so) is singular-value decomposition of A . This expresses A  = Q D P ^  
with Q, P  orthogonal, and D diagonal with elements > ^2 > ' • ' > > 0 (m  is
the number of columns of A ). The normal equations can then be cast in the form 
D P  A =  Q ^b . Now those elements of P ^A  corresponding to the smallest of the 
(6 *) cannot be reliably found because errors in the ‘data  vector’ (Q ^b) are greatly 
amplified on division by the small 6iS. SVD sets these elements of P  A to zero. 
To determine which of the (6 *) should be regarded as ‘too small’, a tolerance C  is 
set by the user and the integer r  (the rank) satisfying 6r > C6i > 6r+i is found. 
The (r  -f l) th , (r  -f 2)th, . . . ,  m th elements of P^A  are then set to zero, while the 
others are obtained in the obvious way by dividing each element of Q b by its cor
responding Si. Then the m atrix P  is applied to obtain A. As a rule C  should reflect 
the accuracy of the data; if it is too small, the solution vector A wiU be unstable to 
small perturbations in b. We usually use a value in the range in these
sorts of simulation.

Recursive schemes for updating the (Aj), i.e. those suited to sequential data, are 
discussed in [199].

All this was on the subject of regular sampling. There is less information on how 
to construct nonhnear models when the sampling is irregular, apart from some inter
esting work by Sauer [175, 176, 177] on reconstruction from interspike intervals. In

*We mean that the functions are identical in all particulars except for where they are centred.
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Chapter 5 we shall discuss methods of fitting nonlinear models to irregularly sampled 
data; this relies on a generalisation of Takens’ theorem, due to Stark, Broomhead 
and coworkers [202, 198], that incorporates the intersample spacings.

2.8 Sum mary

We conclude by making some general observations on the general theory of signal 
sampling and techniques for analysing irregularly sampled data. The la tter part of 
the discussion is slanted towards the development of the thesis.

• Signal reconstruction requires some sort of minimal (average) sampling rate; 
in the ‘low-pass’ case this is twice the highest frequency present and in the 
‘multiband’ case it is the bandwidth (the measure of the support of X ( f ) ) .  
This is justifiable on information-theoretic grounds. Equivalently we can talk 
about a Nyquist limit (half the average sampling rate). If a signal is bandlim
ited to less than that frequency, it is oversampled and low-pass reconstruction 
is possible. If not, low-pass reconstruction will fail.

• Sometimes reconstruction is given by a sampling series. In tha t case further 
processing should be done in a way consistent with tha t sampling series rather 
than through an injudicious application of delta-functions. This raises some 
interesting questions about how to perform convolution, filtering, system iden
tification, etc., from discrete samples.

• Signals with a few unknown narrow frequency components above the Nyquist 
limit present a difficult problem as, with the exception of multiband recon
struction techniques, all reconstruction relies on oversampling. And multiband 
reconstruction is not very helpful either, because tha t requires the spectrum 
support to be known. It is interesting because the situation of unknown nar
row frequency components is that to which regular sampling has most to offer 
as an anti-aliasing device., and it is not well-served by existing techniques.

• Estimation of spectra is an im portant problem, made difficult because of the 
smearing associated with alias-free sampling schemes. However there is in 
principle no Nyquist rate associated with spectral estimation: an alias-free 
sampling scheme in principle permits correct identification of the underlying 
spectrum regardless of sampling rate. This distinguishes spectral estimation 
from reconstruction, as does the following observation. Testing the hypoth
esis that a signal has a pronounced frequency component, against the null 
hypothesis tha t it is white, can be done without reconstructing the signal; 
moreover, attempting reconstruction without knowledge of the spectrum is 
virtually guaranteed to give the wrong answer.

The above discussion has identified a class of multiband signals, which consist 
of a few widely-spaced narrow frequency components at unknown locations. 
(Such signals abound in Doppler radars [14, 120].) The information content of 
such signals is low, on account of their low bandwidth, so by Nyquist-Landau
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they can be sampled at a rather leisurely rate provided tha t the samphng is 
done irregularly. The problem then is to identify such signals and, since Fourier 
techniques are Hkely to be quite useful, circumvent the spectral smearing prob
lem. Present algorithms for this require the components to be sinusoidal (zero 
bandwidth) [20, 69] so tha t they can be sequentially extracted by least-squares 
techniques as their frequencies are identified in the Fourier spectrum.

• It is clear that autoregressive modeUing would be most helpful in this task, 
because the characteristic AR spectrum consists of a few narrow spikes. This 
should allow the construction of a wide class of bandpass and bandstop filters 
to allow extraction of narrow-band spectral components in the time domain. 
However at present these techniques are insufficiently weh-developed.

• The concept of nonlinear prediction should be apphcable to irregularly sam
pled signals, and would probably be the best method of analysing signals of 
nonhnear dynamical origin.



C h ap ter 3

D evelop m en ts in sam pling  
th eo ry

This chapter is divided into three parts. In the first we explore the properties of the 
generalised translation operator for the A'-transforms and use it to derive results 
on minimum-energy reconstruction; then linear filters and the discrete convolution 
product are discussed; then the results are extended to general Volterra operators 
and it is shown that a Volterra operator can be identified from input and output 
samples taken using the same sampling scheme (even though this superficially gives 
rise to aliasing ambiguities). In the second section we discuss the contour integra
tion method and derive some bounds for the truncation error for Bessel sampling. 
The third section also deals with discrete sampling and some results are derived 
concerning the identifiability of signals from samples taken at integer points; the 
theorems proved are difficult using real or complex analysis but, remarkably, are 
quite straightforward if p-adic power series are used.

3.1 D evelopm ents on Kram er’s sam pling theorem

3 .1 .1  M in im u m  en erg y  rec o n stru c tio n  form u la

We consider /i-transforms as discussed in §2.2 and the reconstruction of a function 
whose iT-transform is finitely supported on the interval I .  By Kramer’s theorem 
such a signal could be represented as

which requires the samples to be taken at time instants t = In- Suppose however 
tha t the observation points are arbitrary, so that samples Xn are given at time 
points tfi. A reconstruction is required. Noting that the function k e ( t © r )  has 
A-transform lu 6 /lf (u ,r )*  which is zero outside / ,  we expect to able to reconstruct 
X using a more general form,

X  ( f )  — ^  k s  { t  ©  T, i ) ,  X  ( f n )  —
nex

48
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in which the can be chosen arbitrarily. The are then no longer the samples, 
but depend on the and Xn through a matrix equation tha t is easily seen to be

— X, Kfjifi — ke {trn © ^n)'

We wish to choose a specific set of and, in common with the regular case, it 
can be shown that the solution giving rise to the reconstructed signal of minimum 
energy

Ikll^ =  /  \X{u)\‘̂ p{u)du=  Y2 —
nGX

is obtained by putting r„ =  and in tha t ca.se K  will be hermitian.
The proof proceeds on the same hnes as Chapter 2 §2.4. Consider two possible 

reconstructions, x{t) and defined by

n

^ ( 0  =  X^ ^ n k e ( t Gr n )
n

and both interpolating the observation points, so x°{tm) = x{tm) = Xm- Then 

l k - T ° | | ' - | k | | ' - | K f  = - m e  y ]  ^  ke(4 0  (m)' ke (4  0  T.)
r€X m ,n

m, n

= - 2 R e X ; C ^ m
m

= - 2 R e y ; C « n k e ( < „ 0 «„)
m , n

= -2R e - T l C C  ke ( 4  0 1™)* ke (4  0  «„)
r e x m .n  1 

= - 2 ||x°||2 .

Therefore
o < i k - z ° i r = i i z | i ' - i K f

and x° is the minimum-norm reconstruction. We have only to justify the step 
labelled ( V )  above, namely the identity

^  - ^ k e ( 4  0 ( i ) * k e ( 4  ©<2 ) =  ke(t i  G (2 )
rex

which is a discretised and generaHsed version of the ‘Hardy integral’ discussed in 
§2.4. This result is a trivial consequence of Kramer’s sampling theorem. Indeed, 
consider a function y{t) = ke(t  G <2 ), and expand it from samples : r E X} :

y{t) = ke (< G 2̂ ) =  ^  ] —rrr ke © 2̂ ) ke(i  G 
rex
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Now put t = ti ,  and note that ke{t i Q £r) = ke(G Qti)*-
This is a very general method of proof not unknown in mathematical physics 

(for example it underpins the proof of the Minimum Dissipation Theorem in fluid 
dynamics, which states tha t of all velocity fields with the same boundary conditions 
the one with the smallest dissipation is the Stokes flow). More generally, these ideas 
stem from the following algebraic observation: if y  is a vector space and 17 is a 
subspace of it, and we are to find the smallest element in a given coset u +  17 of 
V/U,  then that element is x° Ç v + U satisfying x 6 v A [/ => (x,x°)  = (x°,x°) .  
When the result is apphed, U is the space of functions tha t vanish ‘on the boundary’ 
(in our case, this means signals tha t vanish at the sample points). Performing the 
minimisation using Lagrange multipliers is less elegant.

3 .1 .2  L inear filter in g

We consider again a transform-limited signal x(t),  with transform X (u )  th a t is
assumed to vanish for u ^ I .  In (2.2) we stated tha t a linear filter can be regarded
as a multiphcation in the transform domain:

y{t) = {x ® f ){ t )  = j  X{u)F{u)K{u. , t)p{u)du.  (3.1)

Because X{u)  vanishes outside / ,  we may as well assume tha t F{u)  does too (this 
is rather an im portant point). Then we may expand X  and F  as the DKTs (2.8) of 
their corresponding time samples:

K < )  =  /  K { u X r K ( u , Q - K { u , t ) p { u ) d u .

Upon samphng we obtain the n th  sample y^[n] =  y  (in) as 

=  Y^Qnrsx[r]f[s]
r,s

Qnrs := r } r 1 /  K{u,ir)*K{u,isYK{u,ir i)p{u)du.  (3.2)

If in the discrete time domain we implement the filter by

y"^M = J2Qrirsx[r]f[s] (3.3)

then we have a commuting diagram

x { t )  y { t )

I  ̂ I
x[n] ^  y[n]

in which is (3.1) and is the discrete convolution (3.3).
We may note that in the Fourier case Qnrs is 1 if n = r  s and 0 if not, so (3.3) 

reduces to a normal convolution of the samples of x and / .
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3 .1 .3  C o n v o lu tio n  p r o d u c ts .  E x a m p le

The formula (3.3) might well be referred to as the discretisation of the convolution 
product, but that name has already been given to the following result (see e.g. [98]):

( / ® » ) ( , ) = 5 :  (3.4)
n

for transform-hmited /  and g. The proof is straightforward, for by definition the 
LHS is J  F(u)G{u)K (u, t)p{u) du 

which on expanding F{u) using the DKT evaluates to

j  G{u)K(u,  t)p(u) -7

now the integral is performed and the result drops out. Alternatively we can use 
the time-discretised Plancherel identity (2.9).

However we must remember tha t g{t 0  in) is not a sample of i.e. it is not 
the same as g{t — in). Equation (3.4) does not, therefore, give a direct expression 
for the continuous-time convolution in terms of the samples. It is therefore only a 
partial discretisation; such nornenclature, if adopted, would be quite good because 
the DKT was apphed only to F(u)  in the above derivation, whereas to obtain our 
fuU discretisation (3.3) we apphed the DKT to both F{u)  and X{u)  in (3.1).

As an example let us consider some (very nearly) bandhmited functions that 
have closed-form Jo-Hankel transforms, namely the following class:

“  '  '  '■‘ ( v r ô )  “  <“ >

where P\  is the Legendre function. Re A > -1  and R ea  > 0. (See [75], §6.621, and 
footnote^). Suppose an input signal z(<) and a filter function f ( t )  have parameters 
X x j  etc.; then it is clear from the form of the Hankel transform tha t their convolution 
y{t) wih have parameters Xy = A  ̂ +  A/ -  1, a^ = + a j .  For a specific test the
foUowing have been chosen:

Signal A a

X 20 50
f 30 50
y 49 100

 ̂Proof of (3.5). Write down the Jo-Hankel transform of the R ES. Replace the transform kernel 
Jo(ut) with its integral representation, exp{iuicos^)d<f>/2Tr. Do the «-integration. Disregarding 

a few numerical factors one is left with J^’̂ (cos9 ± is in  $cos<f))~^~^d<f)/27r =  P\{cosO),  the integral 
representation of the Legendre function, with cos  ̂ =  a j V o P  - f - S e e  [75] §8.411/§8.711.
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The bandlimit has been selected as 6 =  1 (see §2.2.1), i.e. A"(u) and F { u )  are assumed 
to vanish for u  > I .  The left-hand diagrams below show the time signals and the 
right-hand diagrams their transforms.
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Figure 3.1. Test functions and their Jo-Hankel transforms.

The functions x { t )  and f { t )  were sampled at the zeros of Jo(t), i.e. at / =  _7o,n, for 
1 < n < 10. Next the discrete convolution (3.3) was employed to find the samples 
y^[n];  of course, the sum had to be truncated (1 < r, 5 <  10) as there were only 
ten samples. Finally, the ‘true’ continuous-time waveform y { t )  was sampled and its 
samples, y*[n], compared with the calculated samples y‘̂ [n]. The results are not 
quite the same, because two approximations were made; (i) assuming x  and /  to be 
transform limited, when they are not, and (ii) truncating the convolution sum. One 
can see from the plots of the signals and their transforms that the truncation error 
is small and that the aliasing error is minuscule. The next figure shows the extent 
to which y^  and y^  differ.
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y'^[n] — y^[ri\

0.002

Figure 3.2. Error in truncated convolution product.

The error is consistently ~  2% o i  y {t)., which seems to be a reasonable result in view 
of the short data record.

3 .1 .4  N on lin ear  op erators; th e  V olterra o p era to r

We now consider a more general form of filtering, again for bandlimited inputs. The 
filter will now be nonlinear, though, and the diagram that we wish to establish lacks 
symmetry because y { t )  is no longer transform-limited:

x { t )  y { t )

I  ̂ i
z[7z] y[n\

The filter that we shall consider is, in the first instance, a quadratic Volterra 
operator. (The higher-order case follows directly.) This is an operator capable of 
introducing nonlinearity and memory, and in continuous time it is given by

y { t )  =  J  J  K D , T 2) x { t  -  T i ) x { t  -  T2) d r i  dT2

in the classical (Fourier) case. By writing h , x  in terms of their Fourier transforms, 
we have

y { t )  =  JJ
General discussions on identification and correction of nonlinear distortion can be 
found in a series of publications by Tsimbinos & Lever [214, 215, 216]; the derivation 
we present here is a faster, more transparent, and more general version of Frank’s 
proof [70]. Frank carries out his working in the frequency domain, which means 
that to see what happens when the output is sampled (the right-hand branch of 
the diagram) he needs to invoke the Poisson summation formula, comphcating the 
proof.
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Let us now develop this second expression in the same way as before, generalising 
first to the /t-transform:

y(t) = j^  j ^ H {u i ,U 2 )X {u i )X {u 2)K {u i , t )K {u 2 , t)p{ui)p{u2 ) dui dU2

and then using the DKT to go back to the time domain:

2 / ( 0 =  M 5 i , 5 2 ] a : [ r i ] x [ r 2 l x
ri,r2,si,S2

I J  K { m ,e „  )*jr(ti2,4 , T K { u2, 4 , T K (u i , t )K ( t t2 ,  t)

p{ui)p{u2 ) dui dU2 

« [ 5 l ] « [ 5 2 l« [ n ] « [ 7 * 2 ]  ’

Notice as before tha t because X{u)  vanishes outside / ,  we may as well assume Lf(-, •) 
to vanish outisde I  x I .  That is why we have been able to use the DKT to expand 
it in terms of a two-dimensional array of time samples. Sampling each side and 
recalling the definition of the tensor Q :

y [^] = ^  V Q nri Si Qnr2S2 ^[^15 ^2]2:[ri]x[r2]
ri,r2,si,&2

thereby coinciding with the ‘obvious’ discrete definition.
We can now write down the results for the higher-order Volterra operators. The 

general Volterra operator is given in continuous time by

r
2/ ( 0 =  H  I ^ H { u ) X { u i ) .. . X { u m )p { u )d u i . ..

m =0

(where p(u) := p{ui) ■ • ' p{um)) and in discrete time by

2/[^] — ^  y ^   ̂ Q n r i s i  ' ’ ' Q n rm S m^  [s]2:[7”i] • • • x [r„ i]. 
m=0r,S€2^

In each case m  is the order of the nonlinearity and its corresponding Volterra 
kernel.

3 .1 .5  D iscu ss io n

We have shown that a continuous-time Volterra operator induces a discrete-time 
operator in a natural way provided that:

• the input is transform-limited;

• the input may be reconstructed from samples via the symmetric Æ-transform 
reconstruction formula;

• the output and input are sampled using the same sampling scheme.



3.1. DEVELOPMENTS ON K R A M E R ’S SAMPLING THEOREM  55

For the regular case, this just means that input and output are sampled simulta
neously and at a rate exceeding the input Nyquist rate. One might expect th a t to 
identify a continuous-time operator would require the input to be sampled at its 
Nyquist rate and the output at its Nyquist rate (which might not even be finite). 
But tha t is not the case—a point that has been appreciated for some time, but not 
fully understood until recently (hence Tsimbinos’ extensive work [214, 215, 216] and 
Frank’s paper [70]).

W hat does this teU us about signal reconstruction? It is apparent tha t if a sig
nal y{t) has been obtained from a known bandlimited signal x(t)  by an unknown 
Volterra-type nonlinear distortion then the continuous-time waveform y can be re
constructed from samples taken at the Nyquist rate of a;, which wiU generally be 
smaller than that of y. The reconstruction would be effected as follows. From the 
discrete samples (a:‘̂ ,2/^) we identify the discrete Volterra operator and having 
found its kernel we apply the integral transform to obtain V^. Then is apphed 
to x(i) and the result is y{t). We conclude tha t reconstruction of a signal not 
bandhmited to W  has taken place from samples taken every 1/2W . This is true, 
but extra information has been used, and that extra information is contained in x. 
Not every unbandhmited signal arises as a distortion of a bandhmited one. This 
is common sense, and information-theoreticaJly it is clear th a t a distortion cannot 
increase the information rate even if it does increase the bandwidth, so the fact tha t 
reconstruction of y is possible a t the input Nyquist rate is not surprising after all.

A related issue which should not be confused with the theory presented here is 
the correction (not identification) of nonhnear distortion. Consider the foUowing 
problem. A signal x{t) is bandhmited to W.  It is then passed through an invertible 
memoryless nonhnearity, and then through a bandhmiter (bandhmiting to W).  If the 
nonhnearity is known but the input is not, does the bandhmited output determine 
the input signal? The answer is ‘yes’ [114, 117, 173, 174] and the proof is based on 
the Contraction Mapping Theorem. The extension of this result to nonhnearities 
with memory is more dehcate, because a Volterra operator does not necessarily 
have an inverse (for example it could simply be a hnear filter). We suspect however 
tha t the case of the instantaneous nonhnearity should generahse to the symmetric 
A-transforms.
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3.2 Truncation error bounds for B essel sam pling

The Shannon, Kramer-Weiss and other sampling expansions involve infinitely many 
terms. In practice one can only take finitely many, thereby giving rise to a truncation 
error; it is useful to have a convenient upper bound for this. The work in this section 
could be viewed as giving a truncation error bound for the Bessel samphng expansion 
as obtained by the Kramer-Weiss sampling theorem., but we shall not be using th a t 
theorem; we only use contour integration (§2,3). An elegant upper bound for the 
contour integration kernel allows a neat truncation error bound to be derived.

3 .2 .1  D er iv a tio n s

As in §2.3 the objective is to obtain a samphng expansion by applying the residue 
theorem to the integral

taken over the box contour (Figure 2.1) used in §2.3, and a truncation error bound 
by estimating the contributions from the left- and right-hand sides of the contour. 
This requires a lower bound for |<S'(r)| on each of those sides. The assumptions used 
here are that:

• The signal x{t) is real on R and bounded by M .

• The samples are taken at the zeros of the function S{t) = Jo{bt).

•  For r  G C x(r )  is of exponential-type rb < b.

Then as discussed in §2.3 we have |x (r) | < M  cosh, rbv (v = Im r) .
We can use the residue theorem to write down the fohowing samphng expansion,

which is simply the Lagrange interpolant. If we are to make any progress at all 
towards a truncation error bound, we must find lower bounds (or workable ap
proximations) for S{t ) = Jo{br) on each section of the contour. To estimate the 
contribution from the upper and lower sections we can use an asymptotic lower 
bound for Jo, which is that for any 6 > 0

|Jo(«±iT^)| > y  ^  CO

Choosing  ̂ =  ^(1 — r) we have
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which ensures tha t these contributions vanish as F  —> oo. Next we consider the 
sides. We now use the asymptotic approximation to the Bessel function, which in 
fact gives a very good approximation to | Jo(z)| on the line^ Re z = Jq ^ :

\M ^ ) \  -  cosh(Im z) R ez  = jo.n ^  0) (3.8)

The validity of such an approximation is confirmed by the following experiment, in 
which the following two functions,

Mi{z)  = |Jo (4 l, M 2 {z) =
-k \ z \

cosh(Im z ) ,

were computed along the contour given by Re z = The percentage approxima
tion error for M\  by M2 ,

X  100%,
Ml

was plotted. The results are shown here for n =  1,2,3.

0.5

error /%

-0.5

-1.5
0 20 25 305 10 15

Im z

Figure 3.3. Error analysis for (3.8).

Having established that (3.8) is in fact an excellent approximation (improving as 
n —> 0 0 ), we bound the side contributions by

M|Jo(^OI coshr
7 - 0 0

dv,  T = ±jQj^/b + iv
J - o o \ \ T - t \ J  cosh

and it is not difhcult to show that, provided t is real, the parenthesised term  is 
maximised on the real axis, taking the value ~ ^̂ 1* Replacing it with
this constant value and performing the integration gives the upper bound

+I  , My/l^\Jo{bt)\ I  j g ÿ
~  2 \ / 2 c o s ( r i r / 2 )  116( +  jg  f̂ \ |6l -  j'g fj\ j

(3.9)

'By convention jo,n {n 0) is the nth zero of Jo, and  ̂ is the nth zero of Jq.
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If different numbers of samples are taken on each side of < = 0, the variable N  
in the braced expression needs to be altered; the left- and right-hand terms come, 
respectively, from the truncation in the left- and right-hand summations in (3.7).

Remember that we have only assumed that x(t)  is an EFET bounded on the 
positive real axis. This has two advantages: first, it leads to an estimate for |a:(r)| 
tha t does not require knowledge of the Hankel transform of x,  and secondly, x(t)  does 
not have to be even. Having said that, we can consider two special cases, namely 
when x{t) is even or odd, and the latter allows us to improve our error estimate.

E ven  x{t)

We combine the integrals along the left- and right-hand sides of the contour to obtain

.r(* ) = ^  -  =  A , n /I> +

and then estimate its magnitude:

M\Jo{bt)\ coshrôu

Again the (•) term is maximal when u =  0, so we simplify the integral as before and 
arrive at the following expansion and bound (which is essentially (3.9)):

^  ^Uo,n/b) 2jo^nJo{bt) < ______:______  :_   (rt
“  \ /2 c o s ( r7 r /2 ) |j '2 ^ -62̂ 21

O dd  x{t)

Combining the integrals along the left- and right-hand sides of the contour as before, 
we obtain

^ r ( i )  =  ^  -  =  j ' o . N / b  +  -

and then estimate its magnitude:

Again the (•) term is maximal when u = 0, so we simplify the integral as before and 
arrive at the following expansion and bound:

KO - <   I -.Vr  ____      f3.11f
“  V2cos(r7r/2)\j'Q^j^ -  bH^\

The error bound is 0 at the origin (despite the lack of a sample there), which is what 
it ought to be if x is known to be odd.
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3 .2 .2  S im u la t io n s
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The simplest examples of a function x { t )  satisfying the requirements enunciated at 
the beginning of this section are the sine and cosine. Then

. _  ^  cos(w;o,^/6)2;'o,TiJo(6t)

 ̂ ^  sin(wjo,n/6) 2btJo{bt)
“  h  JoUo.n) b h ^ - J l n

with truncation errors given by (3.10) and (3.11) with M  =  1. Of course, these
results are vahd only for r =  w /6 < 1.
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Figure 3.4. Truncation errors in the reconstruction cos  uj t  and sin cut from samples 
taken at the zeros of Jo( - ) .  Here u> =  0.51.
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3 .2 .3  D isc u ss io n

It is apparent that the truncation error bounds work well and are fairly easy to 
calculate. (In particular the truncation error tends to 0 as iV — oo, a vital property 
of any sampling series.) The key step is the tight lower bound for the Bessel function, 
which is valid only along the lines Re z = by producing a bound of the form 
‘envelope x cosh(Imz)^ we can follow the calculations through just as in the regular 
case, and produce similar results. Notice tha t the form of the lower bound is rather 
similar to the upper bound derived by DufRn & Schaeffer [57]. (For the Bessel 
function this would be |Jo(z)| < cosh(Imz).) This is only to be expected. We 
only need a lower bound of | Jo(z)| in regions of the complex plane where | Jo(z)|, 
viewed as a function of Re z, is locally maximal (this allows us to get a tight bound 
on the truncation error); and a tight lower bound for local maxima of a function 
will necessarily coincide with a tight upper bound for tha t function. So, rather 
paradoxically, in searching for lower bounds for use in this problem it is sensible 
to consider the form of the upper bound. In fact the general form of the lower 
bound is observed for other types of sampling, e.g. paired sampling [138] in which 
S{t) = cosat — cos(3. Similar results apply to the sampling expansions of higher- 
order Bessel functions, in which S{t)  =  (bt)~^J^{bt).

The fact that a; : C —> C needs only to be a bounded EFET is useful because 
it is more flexible than having to deal with the Hankel transform. For example the 
sine and cosine, which fulfil our requirements, do not have measurable Jo-Hankel 
transforms; they therefore do not meet the conditions of Jerri [100, 98]^ or Rawn 
[170] both of which require a bound to be placed on the Hankel transform of z. A 
useful spin-off of the results given here is that a self-truncating sampling series can 
be derived without any fuss. Going through the motions, if x has exponential-type 
rb < b and q = 1 — r then

x(t) sine — t)
rmr

is bounded on R and of exponential-type b. So it obeys our requirements and can be 
expanded as a sampling series in which the sampling instants are the zeros of Jo{bt). 
Putting t' = t gives

sine - ^ ( b t  — jo n) 
m'K

1 m

JÔUo,n){bt -  jo,n) ’ 

which enjoys more rapid convergence than the series (3.7).

(3.12)

‘Jerri’s result has been published but not with proof:

k T ( t ) |  <  2 A  \ / ( 2 / 7 r ) ln ( l — 2r) ^\Jo{bt)/Jo{jo,N)\  ( | jo ,^ i  +   ̂ ~  ^)

where ^

K  =  j  X { w Ÿ d w .
Jo

This is a bizarre formula. For a start there seems no reason why K  should be finite, and the 
mysterious ln( ) term explodes when r =  | ,  without good reason.
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3.3 U ltram etric sam pling theory

3 .3 .1  B a s ic  id ea s  and a sk etch  th e o r e m

This section discusses discrete sampling theory in a new way and gives, amongst 
other things, a rather nice result on the identifiability of sinusoids from samples 
taken at integer points. To start with let us consider in general terms the current 
relationship between discrete sampling and continuous sampling theorems.

The WKS and Kramer-Weiss sampling theorems make the obvious connection 
between discrete and continuous signals, using an assumption of transform limit
edness. In §3.1 these have been used to derive consistent methods for processing 
discrete data. A continuous-time model may be used to describe properties of the 
samples. For example the autoregressive model is essentially discrete and its clas
sical form says nothing about the evolution of the signal in between the samples; 
however as discussed in §2.6 and Chapter 4 it can be viewed as a discretely-sampled 
continuous-time stochastic process (‘diffusion’). One may also consider the spec
trum , and derive the spectrum of samples from the spectrum of an underlying sta 
tionary process. As a different type of example, work on nonlinear methods heis 
shown tha t continuous-time dynamics, when observed periodically with an appro
priate (‘generic’) observation function, induce discrete-time dynamics in the time 
series of observations (§2.7). In all tha t has been done there is a link between the 
samples and a supposed underlying waveform that may be real-valued, be complex
valued, or evolve on a manifold.

The work in this section breaks tha t link. Consider the following question:

A discrete signal from some family C is given at points n G L C Z. Do the known 
samples (xn)n€L cause to be uniquely determined at each integer point?

If they do, we shall say that L determines x (over C). For example if C is the set 
of rational functions regular at aU integer points then L determines x over C if and 
only if L has infinitely many elements. If C is the set of functions bandlimited to 
W  then L determines x over C if and only if the density of points in L exceeds 2 W  
(see §2.4.2). Now for the crunch: what if C is the set of functions generated by 
finite numbers of harmonics? W hat can we say about them? In general terms if C is 
closed under addition and subtraction, as it has been in these three examples, then 
the question boils down to distinguishing between the zero function (which is in C) 
from any other function in C on the basis of the samples on L.

S k e tch  T h eo re m  1 Let x(t) be a sum of harmonics'^ sampled for  t G L C Z. If, 
and only if, L has no periodic gaps, then the samples on Z are uniquely determined 
by those on L.

We are not saying that the (real) continuous-time waveform is uniquely deter
mined by the samples on L, for tha t would contradict some basis notions of abasing. 
W hat we are saying is that the remaining samples (those in Z but not in L) are 
determined by the known samples (those on L).

t  exp(ia;i<), for constants Ai  G C, Wi G
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We can suggest an application of these results in array processing. The direction 
of arrival of a ‘target’ generating a sinusoidal signal is determined by performing 
signal processing analogous to the identification of the frequency of a tone from time- 
domain samples; the temporal frequency corresponds to the spatial angle. W hat we 
are saying is tha t not all the elements of an infinite equispaced array are necessary 
to perform this task, and moreover that from that array one may delete arbitrarily 
many elements provided that the thinned array does not contain periodic gaps. 
The general idea is well-known in the array processing community (see e.g. [87]) 
but an explicit identifiability theorem such as the Sketch Theorem would appear to 
be a novel contribution to the subject. The rest of this chapter is devoted to the 
exposition of the relevant mathematics.

So how are we to go about proving the Sketch Theorem? At first sight one 
would say that complex variable theory should do the trick. However the Sketch 
Theorem is more closely connected with the subject of exponential Diophantine 
equations [190]. Diophantine equations are the subject of questions such as ‘Find aU 
integer or rational solutions to [equation]’, and they usually require number-theoretic 
techniques. The Diophantine theory of elliptic curves [45] (an elliptic curve is one of 
the form ‘y^ =  cubic in z ’) is one such example, and much progress has been made 
on it using local fields Qp. These fields are somewhat analogous to R in tha t they are 
obtained from Q by completing (=  filling in the gaps to make topologically complete) 
with respect to a valuation ( ‘measure of size’); indeed R is sometimes written Qoo- 
The valuation tha t is used in constructing the Qp is the p-adic valuation which is 
defined number-theoretically. The p-adic valuation has some properties tha t are not 
paralleled in R, and so Analysis in Qp, usually called Ultrametric Analysis, is rather 
different from Real Analysis. The reader is advised to consult Appendix B.

So, rather than considering the existence of an underlying signal defined on R 
or on C, we are going to consider one defined® on Qp, and why not? After all one 
can do Analysis on Qp, and Qp contains the integers Z. The following diagram 
summarises the position, with the top line representing the conventional view in 
signal processing, and the right-hand side representing ours:

sample
(z ‘= : R C) (z ‘̂ : Z ^  C)

reconstruct

(3.13)

(x” : Qp Qp)

This is not the first time tha t p-adic methods have been used in signal processing, 
as number-theoretic and p-adic transforms are being used to design convolution 
and filtering operations (see e.g. [108]); but apart from a well-known paper on the 
generalisation of the sampling theorem to abstract groups [111], the paths of algebra 
and sampling theory cross only rarely.

^In fact we only need to define it on Zp, the ring of valuation-integers of Qp, i.e. the elements 
y €  Qp satisfying |y|p <  1.
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3 .3 .2  U l t r a m e t r i c  in te r p o la t io n

If (3.13) is to be of any use, we must be able to make some headway with the 
following problem:

Given a sequence x = (a:n)nez5 find a function g convergent on Zp such that whenever 
z/ is a (rational) integer n, g{u) =

We have defined >Vp to be the space of such sequences (in Appendix B have referred 
to them as functions Z —>• Qp; clearly this is equivalent). We shall exclude p =  2 
from now on. Then from Appendix B Lemma 10 we have that

a. € Pos(Qp) => (n a ” ) € >Vp

and also tha t for o; G Qp,

|a|p = 1, (p -  1) \ m  ^  e  Pos(Qp).

So for a  G Qp,
|a|p =  1, (p -  1) I m (n i-> o ”̂ ” ) G Wp.

So although the sequence (a ’̂ ) is not generally in >Vp, its p —1 subsequences, obtained 
by starting at r (say) and going along in steps of p — 1, are in Wp. To take this into 
account we enlarge Wp, as follows.

D efin ition  1 Let x :Z —*■ Qp and define the function zM by

x^  ̂ . n t—)•

If, for each r between 1 and p — 1, we have zM £ Wp, then we say that x G W ^. 
More compactly

X  G W ^ s— ^ ^ l < r < p — )■ a^r+n(p—1)} ^  •

P ro p o s itio n  1 I f  p ^ 2 ,  a £ Qp, |o|p = 1, then (n t-> o") G W+.

For zM : n i-> ; clearly (n t-»- q:”(p“ ^)) £ Wp, so the result follows. □

T h e o re m  1 I f  p ^  2, aij G Qp, |0 (j|p = 1, then

in which the sum is finite and the qi are polynomials defined over Qp.

Proof. As yVp is a ring we have only to show that (n a ”*) is in W ^, where e 
is a (rational) integer, and a  obeys the hypotheses of the theorem. To do this, let 
z : n Then

ẑ ^̂  : n i->

Now
^ [r + (p - l)n ]«  _

with m  a multiple of p — 1 : so zM £ Wp as required. □
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3 .3 .3  S a m p lin g  la tt ic e s  and  fu n ctio n s  in

D efin ition  2 Ai is the set^ of subsets L C Z that have the following property: for  
every integer r and every nonzero integer m there exists an element of  L equivalent 
to r (mod m).

Essentially is the set of subsets of Z that do not have periodic gaps.

Proposition  2 A% contains sampling sets of arbitarily low density.

To see this, choose an irrational real 7  and a subset J  of [0,1) of Lebesgue measure 
I J |  > 0 . Define for real t the number [t]i as the element in [0 , 1 ) tha t differs from t 
by an integer. Define L C Z by

n 6  L [7̂ 7 ] 1 G J.

By the density (Kronecker’s) theorem for irrationals (see [79], Thm 439), L G A%. 
And L has density |J |.  □

Proposition  3 Let L G Ai. For each r and each nonzero m  there are in fact 
infinitely many elements / G L satisfying I = r (mod m).

Suppose that only s elements of L are equivalent to r  ( mod m). By hypothesis there 
are elements of L equivalent ( mod (s+ l)m ) to r, r + m , . . . ,  r+ sm  respectively. These 
are distinct, there are s + 1 of them, and they are each equivalent to r (mod m), a 
contradiction. □

T heorem  2 I f  x Q. kVj" for some^ p, and z/L G Ai, then L determines x.

Proof. Suppose that there are two functions in tha t agree on L. Let x be their 
difference; then x is in and is zero on L. For each r  between 1 and p — 1, 

: n a:r+n(p-i) vanishes for infinitely many n G L (by Proposition 3) and so by 
Strassm ann’s theorem (Appendix B, Theorem 11) it is identically zero (viewed as 
a function on Zp). Therefore x vanishes at each integer, and tha t is all we need to 
show. □

T h e o re m  3 Suppose that x :Z ^  C is of the form

x : t ^  Y^qi(t)e^*^^\

in which the sum is finite and Pi.,qi are polynomials. Any  L G Ai determines x.

®In previous versions of this work the condition on L was written lim I +  mZ =  Z. This is

equivalent.
^One does not have to know p; it suffices to know that some p  will do the job.
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Proof. Let the coefficients of the polynomials be Pij^qij. Write

K  = Q({9ti,eP’-', each i j } ) .

Then K  is finitely generated and by the Embedding theorem (Appendix B, Theorem 
7) can be embedded in Qp for infinitely many choices of p. We therefore choose p ^  2, 
and define

y : Z -»■ Qp

i

By Theorem 1 p G VV+. Now apply Theorem 2. □

T h e o re m  4 (Converse to Theorem 3.) I f L ^  Ai then there are two signals of the 
form

X : n
m

^  Pi = linear I

that agree on L but not on Z

Proof. By hypothesis there exist m, r such tha t no element of L is equivalent to 
r (mod m). Let

1 m
^2nik{n—r) /m

k = l

Then

So x(L) = {0}, which means tha t x and the zero function agree on L but not on Z, 
and th a t completes the proof. □

3 .3 .4  D iscu ss io n

Note tha t Theorems 3 and 4 together give quite a strong result. L G Ai is, by the 
simple considerations of Theorem 4, obviously the minimum possible condition for 
determination of exponential signals, and it admits sampling sets of arbitrarily low 
density. The fact tha t it is a condition sufficient to determine not only these but 
also a much larger class C, including exponentials, polynomials and exponentials of 
polynomials, is remarkable. Of interest is that C is a differential ring®.

^Structure closed under addition, subtraction, multiplication and differentiation.



C h ap ter  4 

Linear m odels

In this chapter we shall discuss time-domain techniques for autoregressive (AR) 
modelling and AR-based signal separation using a generalised prediction error tech
nique in which the prediction coefficients depend on the observation intervals and on 
the underlying poles. Spectral estimation is effected by minimising a certain error 
energy function with respect to the poles; this coincides with the Covariance method 
in the regular case. The resulting spectral estimate is quite subtle and has the fol
lowing significance. Suppose tha t the observed data  come from a continuous-time 
harmonic or autoregressive process A.  Then the discrete-time AR model tha t our 
method produces is the same as tha t obtained by fitting a conventional AR model to 
a  regularly-sampled data record from A.  Such an approach requires a normalising 
frequency, or virtual sampling rate, which we call 1 /r .  The construction of the error 
energy function arises from the interplay between the discrete and continuous-time 
models.

In separation schemes we show that the time-domain removal of features with 
known spectra is able to allow identification of smaller features made invisible by 
the spectral ‘smearing effect’ associated with irregular sampling.

4.1 G eneralised prediction errors

In this first section we shall introduce the concept of generalised prediction for linear 
models. The objective is to define time-varying prediction coefficients, dependent on 
the sampling instants and on the underlying model poles, tha t generalise the regular 
case in a natural way. The estimation problem can be summarised as follows. In 
the regular case the poles do not enter the calculations explicitly, for we can just 
optimise with respect to the AR coefficients as the left-hand diagram on the next 
page suggests: the error function jE is calculated and the prediction coefficients 
chosen to minimise it. In fact the optimisation is linear, so there is a closed-form 
solution and there is no need to  go through this iterative process (though adaptive 
methods do). In the irregular case the poles are fixed, but not the coefficients, and 
this explains the extra step; further, the optimisation is nonlinear. Note that the 
optimisation with respect to the poles is nonlinear whether or not the sampling is 
regular.

66



4.1. GENERALISED PREDICTION ERRORS 67

Repeat

Repeat

Choose poles ex.

Evaluate £ '(x ,a )

Evaluate E(x ,c t)

Choose prediction coeffs a

Calculate prediction coeffs

Classical and generalised AR fitting.

4 .1 .1  In tr o d u c to r y  rem arks

Given tha t the prediction coefficients are time-varying, we establish how they are 
obtained from the poles. We see immediately tha t in the case of regular sampling 
the AR coefficients aj are determined from the poles o* by the m atrix equation

ai  a p-i 1

ai; a p-i . . .  1

Q q

a i

.  “ p  .

=  0

and the ‘normahsation condition’: uq = 1* The forward prediction errors are

p
fn(y5^) — ^jVn-j'  

j = 0
(4.1)

At this point it is convenient to make some notational definitions. For a set of p 
complex numbers ct = (a,)f_i we define A(z)  =  n f= i 1 — ol{ /z and

L dz
C{ol) ’ 27Ti J\z\=i A{z)A*{l lz )  z

System-theoreticaJIy these are, respectively, the power gains observed by putting 
white noise through the FIR filter with zeros a , and the HR filter with poles a{. In 
terms of the coefficients aj and the reflection coefficients pi :

7V(a) = 1 - f - ^  |a jP  and C { ol) =  -  \ p i Ÿ .
i= i t=i

which give closed-form expressions for these quantities (expand r i i ( l  — to
get the coefficients aj\ this gives N{a.), and the downward Levinson recursion (see 
§2.6.2) gives C (a )).
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4 .1 .2  D e r iv a t io n  fo r th e  c o h e re n t  case

When the data consist of p pure tones at angular frequencies w*, the z-plane model 
poles are at ai = and the prediction errors are all zero (independently of the 
amplitudes and phases of the tones). For irregular sampling let us define a* = 
in which r  is reasonably arbitrary; then to make the generalised forward prediction 
errors,

f n (y ;« )  = Y ^ r ] v n - j ,  (4.2)
j=o

zero independently of the amplitudes and phases of the tones, we require

a {tn — tn—p)/T (tn—i—tn—p)/Ta;

{tn — tn -p ) /T  ( t n - l —tn-p ) / ' ’'
LXp i X p

[ r S  1

-

=  0 . (4.3)

Note tha t a nontrivial solution must exist, as the m atrix is p x ( p + 1), and generically 
the kernel is one-dimensional. The normalisation needs to  be established and we 
quickly find that rq =  1 will not work if p > 1. For example, take

Ql =1, Q!2 =  —1
t f i  — 3, t f i — l  — 2, tn—2 — 0? T  —  \

The matrix equation now reads

- i  - 1  1 
i - 1  1

1 Tq

2̂
=  0, implying rg =  0.

Thus requiring Tq = 1 would make the r ” and rg infinite. The situation arises 
whenever we try to predict a sinusoid from observations taken at or near its zero- 
crossings; the above example occurs when the sinusoid is given by sin \'Kt. We shall 
return to this point in Chapter 5 when we address the subject of nonlinear prediction, 
but in the mean time we must find a method of normalising the generalised prediction 
coefficients so tha t the total prediction error energy—the device tha t we intend to 
minimise in order to fit a set of poles to a set of data—depends continuously on the 
poles and the sampling instants.

The key step is to constrain the length of r  by imposing a normalisation such as 
the following:

pE
3=0

(4.4)

Recalling that for regular sampling N{a.) is just the sum of the squared moduli of 
the AR coefficients, we see tha t in that case the definitions (4.2,4.3,4.4) produce the 
same prediction errors as the classical definition (4.1), up to a factor of modulus 
1. This does not m atter because we will only need the generalised prediction error 
energies
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At this point we may remark tha t, for given data {xn,tn),  we have a method 
for determining the frequencies of a set of p pure tones, simply by minimising 
I2 n lfn (x ;« )P  w.r.t. ex. The minimum of this function is 0, achieved only when 
the ai are correct. Further there does not seem to be any particular reason why the 
definitions above cannot be used for any AR process, enabling a general AR process 
to  be fitted. This intuition turns out to be well-founded, as we shall see.

We conclude this subsection by discussing why the above construction gives a 
prediction error energy tha t is continuous in the model poles and in the sampling 
instants. The m atrix equation (4.3) gives r  =  (rj)^_o up to a scaling factor, except 
in non-generic cases when the matrix has a kernel of dimension > 1. Hence r  is an 
element of the complex projective space Gp defined as the quotient space

Gp =  V w  (v =  Aw, 0 /  A G C).

Gp is a compact analytic manifold. By use of elementary row and column operations 
to reduce the matrix (4.3) to diagonal form, we see that r  G Gp is a rational function 
of the m atrix elements, and hence is continuous (viewed as a function into Gp). The 
following mapping, in which (Xj) are just symbols, is well-defined, because it is 
invariant under a scaling of r, and it is continuous:

r  G Gp

Also N(ex) is a continuous function of ex. The RHS is, up to a factor of N(ex),  the 
generalised prediction error energy—and tha t completes the proof. Essentially the 
space of normalised predictors is compact if we choose the normalisation (4.4), but 
not if we choose to require tq = 1.

4 .1 .3  P r e d ic t io n  errors for w h ite  in p u t

Let us construct the generalised prediction errors for a white-noise input w  (variance 
a J )  and AR model ex :

p
f n ( w ; a )  =  ^ r ] w n - j .

j=o
Apart from the obvious fact that they form an MA(p) process these have the property 

^"^lfn(w;o:)P = a l  = N (e x )a l

independently of n and hence of the sampling; this implies the weaker result

^nlfn(w ;0')p = N{ex)(Tl,

tha t is, the ratio of prediction error to white input power^ is A(o:), just as it is in 
the classical case^.

^Time-average of the modulus-squared.
^The second equation is weaker because it involves a time-average over n. Both equations involve 

averaging over w; as w  is ergodic, it is immaterial that the first equation uses a realisation-average 
and the second a time-average over it.
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4 .1 .4  W h y  ‘g e n e r a lise d ’ p red ic tion ?

The previous discussion has seen a departure from the classical theory of linear 
prediction, for two reasons. F irst, cls Tq 7  ̂ 1 in general (it might even be 0, as in the 
above example), we cannot view the quantity — a-s a prediction for the
element yn- Secondly, only the modulus of is defined. Consequently it is better to 
think of as a measure of how well the sequence of p +  1 data  points (î/n-p, • • •, yn) 
accords with the pth order AR model a .  Of course, the smaller |f, |̂ is, the closer 
the fit.

4 .1 .5  T h e  in co h eren t ca se

Moving to the incoherent case, we now show that the definition (4.3) is the correct 
one whether or not the poles are on the unit circle. To do this we consider the 
continuous-time AR process (Ito diffusion^)

{Cy{t)}dt = dB{t),  r  =  ^ 6 ,  ( ^ ) "  '  (4.5)

in which B(t)  is a Brownian motion on R or C. The solution is

/oo
G { t - t ' ) d B ( t ' )  (4.6)

-00

where G{t) is the Green’s function satisfying

CG(t) =  6 (<), ( < 0 => G{t) = 0. (4.7)

For a stable process, G{i) — 0 exponentially as < —> 0 0 . For an unstable process 
the integral does not exist. The model (4.5) is an all-pole model in that the Laplace 
transform of y is a polynomial in the transform-variable ç; the poles are, by ele
mentary arguments, the roots /?*• of the polynomial equation =  0. The
Green’s function is given by

r 0,  t < 0
G ( t )  =  <

p

i > 0

i = l

for appropriate coefficients A»- which we need not find exphcitly. 
Now let us sample y(<), so y„ =  y(<n)- Then

_E_ fOO
f„(y; /3) =  E  /  G ((._ , -  <') dB(t')

j = o

^Ito diffusions are used for modelling a wide variety of phenomena, including biological system s, 
mechanics, fluid dynamics, and the pricing of various financial instruments such as ‘derivatives’. 
See [157, 110], both of which go into the subject in much more depth than is required here.
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which after expanding the Green’s function may be written

71

j = 0  V ^ r i - p  J - O O  j

By requiring
V

^ € ^* * ”-■'>” =  0 (1 < Î < p) (4.8)
3=0

the terms arising from the second integral, i.e. that going back to t' =  —oo, vanish. 
Consequently

fn (y ;/3 )=  /  {Pn .o it ' )dB{t ' ) .
J t n —p

Using the overlap formula for stochastic integrals,

/  9{i)dB{t) = J  fW *9{ t )d t ,

we can see that if f{ t )  and g{t) have non-overlapping support then the LHS must 
vanish. Applying this to the sequence {fn}, we have tha t

• {f„} is a MA(p -  1) process: m > p ^  ^^fnfn+m = 0;

• {f„} is independent of past observations: m >  p =  0.

It is a standard result [11] tha t regular sampling of y{t) produces an A RM A (p,p— 1) 
process—the proof can be effected as above in fact—which implies tha t after pth 
order linear prediction the residuals are a MA(p—1) process. The definitions (4,2,4.3) 
therefore appear to be a natural generalisation of prediction to irregular sampling 
in the incoherent case, because (4.3) and (4.8) are equivalent if a , =

4 .1 .6  B ack w ard  p red ic tio n  errors

If an AR process is stable then its time-reverse is also stable with complex-conjugate 
AR coefficients. We can then deduce from (4.3) the following expression for the 
generalised backward prediction errors:

f»n(y;o:) = ^(sy)*2/n+j 
j=0

^{ ^r i+p- tn) / r  ^ ^ n + p - t n + l ) / r

I I % = 0 (4.9)
( t n+p- tn) /T ( t n+p- tn+l ) /T  i 

_ ^ p  '-^p ■ ■ ■ .

and the same normahsation as (4.4) is used to fix the size of s”’. As in §4.1.2 we prefer 
to think of these as a measure of how well the sequence of da ta  points . . . ,  Pn-p 
accords with the AR model cc*. One might ask whether there is a difference between
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the forward and backward prediction errors, given tha t the coefficients Tq and 5q 
are not 1, There is a difference, and it occurs because the ‘forward’ and ‘backward’ 
models are both fitted to the data: equivalently, the model is fitted to the data  
and the conjugate AR model (obtained by conjugating the poles) is fitted to the 
time-reversed data.

4 .1 .7  C h o ice  o f  r

The value of r ,  while not being critical, needs to be chosen with reasonable care so 
as to avoid problems with multivalued functions.

When we perform the calculations needed to construct the matrices (4.3,4.9), 
we either work in Cartesian coordinates, so that the real and imaginary parts of a  
are held, or we work in polars. In the first case the power function a  oM s ill- 
defined unless we cut the plane, and the most natural place to put the branch cut is 
along R~. In the second, we need for practical reasons to constrain the argument to 
prevent the a:,- from wandering over the Riemann surface of the log function (which, 
looking as it does like a spiral staircase, is not bounded). Then a range (—7r,7r) is 
appropriate. Recalling now tha t z = we have

argz € ( - 7 r , 7 r )  <=> /  6 ( - l / 2 r ,  l / 2 r )

and so R~ in the z-plane corresponds to the hypothetical Nyquist frequency ± l /2 r .
It is worth mentioning that in the missing data  problem, where r  is the lattice 

interval, the exponents in the matrices of (4.3,4.9) are integers—in which case we 
can (and should) work in the z-domain and the question of branch cuts does not 
arise.

4.2 F ittin g  th e m odel

4 .2 .1  M e th o d

Now suppose tha t we have an irregularly-sampled dataset with the observations 
and tn the times at which they are observed (we assume m  < n tm < tn). The 
first thing to do is to set r .  Then, for a set of poles a  we construct the forward and 
backward prediction coefficients r ” ,s ” and prediction errors f„,, t>n and thence the 
to tal forward and backward prediction error power

E(x;cK) |f„ (x ;a ) |2 -f  |b n -p (x ;a )p . (4.10)
 ̂ n=p-f-l

We then minimise £^(x;a) with respect to ex. As discussed in §4.1.7, we constrain 
the arguments to lie within (—7 r , 7 r )  (or equivalently stop the a{ wandering across 
the branch cut). It is not necessary to constrain the moduli of the o:*, because the 
inclusion of backward prediction error energies in the cost function keeps the model 
stable. The way tha t we have performed the minimisation is this. Our computer 
program has been developed for modeUing real-valued data. We assume an even
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model order and write the poles in complex conjugate pairs: o;i =  0:3 =  0 :4 , etc.
First the performance surface is searched, with

0  < arg a i  < arg 0:3 < • • • < tt 
0.95 < |oi| < 1.00

The moduli are chosen randomly between 0.95 and 1.00; the arguments are stepped 
round with a granularity of approximately tt/6  radians. The ‘best’ point, i.e. th a t 
with the minimum E-value, is selected as the starting-point for a simple gradient- 
descent algorithm. We estimate the local gradient at a certain point by looking at 
nearby points, and then walk down the performance surface in small steps in the 
direction of steepest descent. When no further progress can be made, the step size 
is made smaller and the process is repeated. The resulting minimum is found to a 
precision |^ a | < 0.001. It might appear tha t, by choosing all the starting points 
very near the unit circle, one cannot obtain a model with poles away from the unit 
circle; but this is not so. Unnecessary poles are moved away from the unit circle 
during the optimisation. Hence a Oth-order model may have a spectrum with three, 
two or one pronounced spikes, or even none at all. This is seen in the test results.

4 .2 .2  A  n o te  on  th e  m in im u m  error en erg y

Let us investigate the relation between generalised forward and backward prediction 
error energies for the model orders p and p 1. For model order p  the prediction 
coefficients are given by (4.2). Let us now increase the model order by 1, introducing 
a (p -f l) th  pole Op+i at the origin. Call the new prediction coefficients f j  and the 
new prediction errors and b^. By (4.3),

a a

a { t n  — t n - p - \ )  I T  U n —1 —< n —p - 1  I / ' Ta;
0 0

. . .  %

•  •  • 1
. . .  1

r i

p+i

=  0 .

Clearly =  0 from this; now for each i  multiply the zth row by
^ [ t n - p - t n - p - l ) / r

a { t n  — t n - p ) f ' r  ( t n —l — t n —p — l ) ! ' ^a

a { t n ~ t n —p ) / T  ( i n — 1 ^n—p —l ) / la

-1
■ ^  ■

n

f U
.  p  -

=  0 .

Noting the obvious fact

A ( a i , . . . , Op,0)  =  N{ai, . ..,<%p)
we have = IfnP- By similar arguments jb^P = |bnP- We may conclude that the 
introduction of a new pole at the origin does not affect the prediction error energies.
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Therefore the minimum prediction error energy for model p+1  cannot be any higher
than tha t for model order p. Writing Ep for the minimum assumed by E (x ; o:) cis
q: G is varied, we can write this statement as

Eq > El  > E 2 ^

It is not difficult to see that Eq = N~^ Yln=i \^n\^- Also, we have a generalisation 
of the various order selection criteria mentioned in (2.6), for the estimate of
the driving noise variance for model order p, is Ep(x).

4 .2 .3  P r o p e r tie s  o f  E (x; ex)

This section summarises the main properties of E.

• In the coherent case E  is zero precisely when the cti are in the correct places 
{ai = so of course minimising E  gives the right answer even fo r  f in ite
data length.

• When the sampling is regular r  =  and so our method reduces to an un
constrained minimisation of forward and backward (classical) prediction error 
energy—the Covariance method.

• Given that the solution is unique'^ in the case of regular sampling, and tha t 
the generalised prediction coefficients depend continuously on the sampling 
instants, we can expect a  £ '(x,q:) to be free from local minima when the 
samples deviate ‘slightly’ from uniformity Given th a t the function oc 
E{y:,ot) is infinitely differentiable as well, there must be reasonable optimism 
tha t minimising it wiU not be too onerous.

• W ith the notation of §4.2.2,

Eq > El > E 2 > - ' '

So tha t E p !E q provides a measure of goodness-of-fit.

4.3 A  description o f th e A R (1) case

At this point we have completed a description of a method for representing a time 
series by a set of poles (a*) evaluated for a specific Nyquist limit 1/2T. Before moving

^We mean unique up to a permutation of the poles.
^As each prediction error is constructed from p -|- 1 data points, we mean that each (p -|- 1)- 

tuple of points should not deviate too far from uniformity. This is therefore a ‘local’ definition 
of uniformity. The distinction between this and a global constr«iint on sampling uniformity is the 
sam e as the distinction between additive-random and jittered sampling. One may additive-randomly 
sample a tim e series using an intersample pdf that has narrow width, i.e. ‘alm ost a delta-function’, 
and this will give rise to a sequence of observations that is locally quite uniform. But over a long 
stretch of data it will be quite nonuniform. Our comment on the function E  is that it should have a 
unique minimum when the samping deviates slightly from uniformity in either the additive-random  
or the jittered cases.
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on to consider some test examples, let us consider the first-order continuous-time 
stochastic process (Ornstein-Uhlenbeck, or OU, process)

dy{t) -f b'y{t)dt = dB{t),  Re6' > 0 

which is solved by the stochastic integral

y(t)  =  / '
J —oo

Following the nomenclature tha t we have established,

dtn-l

(4.11)

yn

First let us consider the case when we know E and merely wish to simulate obser
vations from this process. For brevity let us write /„  for the last term  in the above 
equation. Of course it has a simple interpretation as the forward innovation error 
and, from the discussions in §4.1.6, it satisfies the equations

m > i = >  =  0

We can go further, for

c B \  f  \2 _  (  1 _
“  2R,e&'V )2Re6'

2Re6'

and so to simulate a first-order stochastic process of variance <jy and decay param eter 
b’ we have only to calculate

Vn =  +  <T„(l -

where the gn are independent observations from the standard Normal distribution.
Now let us consider how our generahsed prediction error approach fares when 

we wish to estimate b' from a section of data. By (4.3)

^0 [ a g i 1

.  . . 4 .
OC

— t n )

Suppose that, rather than the normaUsation (4.4), we simply put rg = 5q =  1 (which 
is always alright when p = 1 but, as we have seen, goes wrong when p > 1). Then

L(y,6) = Pn -
b n _ i ( y , 6 )  =  P n - l  -

and because
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their variances are

For brevity write PE (6 ) for this quantity. Then

r2

and so

P E W - P E M  =  ^ > 0 .

This is an im portant conclusion, because we can now say tha t ‘on average’ (i.e. over 
all realisations of the underlying random walk B{t))

E { y , b ) > E { y , b ' )

and it follows tha t minimising E{y.,b) with respect to 6 is a good way to estimate 6 '. 
The same conclusion is obtained even if the prediction error energies are ‘weighted’ 
with weights depending on the observation times. One might, for example, notice 
tha t PE (6 ') is approximately proportional to {tn — tn-i)? and minimise the function

newdef 1 lf„(y,<>)1̂  +  |l>n-l(y,
2 (Â  — 1 ) tn — tn- 1

It is worth noting tha t the normalisation (of the predictors) used in the derivation of 
the optimality result E"(y, 6 ) > E (y , b') is not the same as tha t posed for the general 
case (4.4). That raises the question of whether (4.4) is the right normalisation to 
use. Unfortunately it does not raise a satisfactory answer, for the problem is almost 
intractable for p > 1. It may be tha t (4.4) is not quite the best choice, but we are 
going to show by way of examples in the next section tha t it works, and tha t is an 
im portant recommendation.

4.4 Test exam ples

It is almost universal to test autoregressive algorithms on data  consisting of sinusoids 
in noise; by so doing one can investigate the resolution, performance for different 
SNR, and so on. We have therefore run some tests on this kind of data. One 
objection to this kind of test is that tones in noise do not obey an AR model. 
Therefore we have also tested the algorithm in question on genuinely broad-band 
data.

The specific aim in carrying out these tests has been to examine if, and how, the 
model fitting procedure depends on the sampling scheme. Ideally there should be 
no dependence except when there are spectral components above the Nyquist limit; 
in those cases regular sampling would give rise to aliasing, so the results for different 
sampling schemes would not agree.
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4 .4 .1  T est on  on e  s in u so id  in n o ise

The first test was to take 64 samples of a sinusoid in white additive Gaussian noise 
of standard deviation 1. The frequency of the sinusoid was taken (arbitrarily) as 
0.27Hz. The quahty of fit was assessed as a function of the following three param e
ters:

• Signal-to-noise ratio. Four values of the amplitude (4.) of the sinusoid were
considered: 8,4,2 (SNR 4-15,+9,+3 dB) and 0. The purpose of trying 4  =  0
was to examine the level of spurious features thrown up,

• Model order. Orders 2  and 6  were used.

• SampUng scheme. Six sampling schemes were apphed:

(a) regular sampling with period 1 (i.e. 1 second)

(b) additive random sampling, intersample spacings drawn from the rectan
gular (‘uniform’) distribution on [0.5,1.5]

(c) additive random sampling, intersample spacings drawn from the F(2 , 2 ) 
distribution

(d) additive random sampling, intersample spacings drawn from the F (3 ,3) 
distribution

(e) jittering the sampling in (a), varying the positions of the samples ran
domly, with uniform probabUity, up to ±0.25

(f) jittering the sampling in (a), varying the positions of the samples ran
domly, with uniform probability, up to ±0.5.

The F(z/, A) distribution has pdf

and has mean ly/X. (When !/ =  1 it is the Poisson distribution.) In each of the six 
cases enunciated above, the average sampling rate is IHz. The parameter r  was set 
to 1 for each of these tests, corresponding to a notional Nyquist interval [—| ,  |] .

The results are shown in Figures 4.1-4. Some general trends are clear. For 
SNR=±15dB (corresponding to 4  = 8 ) the results for model order 2 are aU good 
(and virtually identical); the peak becomes lower and wider as the SNR reduces. 
The effect of increasing the model order is to sharpen the peak, as is a well-known 
effect with the classical AR spectral estimator; but the results for sampUng schemes
(c) and (d) are consistently not as good as for the other four schemes. We are 
not sure why this should be, but it may be due to the wider spread of intersample 
spacings for those two schemes.
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4 .4 .2  T est on  tw o s in u so id s in  n o ise

The second test was to take 64 samples of a pair of sinusoids, each of amplitude 4, in 
white additive Gaussian noise of standard deviation 1. The same samphng schemes 
as in §4.4.1 were applied, and model orders of 4 and 6  were used. See Figures 4.5-6.

First the frequencies were selected as 0.27 and 0.37; one sees tha t the AR(4) 
model does not separate the two components, but the addition of a third pair of 
poles is sufficient to split them.

When the frequencies were altered to 0.43 and 0.83 the uniform sampUng gives 
rise to aliasing, but the nonuniform sampUng schemes correctly identify the fre
quencies (the ‘Nyquist interval’ was expanded by putting r  =  0.5 for this example). 
In fact the uniform sampUng gave us some problems, because the error function 
jÇ(x;o:) had multiple minima and depending on the starting-conditions different 
answers were produced. Of course, this is not a fault of the method, which if the 
sampUng is regular cannot be expected to differentiate between frequencies above 
the Nyquist Umit from their abases.

4 .4 .3  T est on  b road -b an d  sign a ls

A 64-point test sequence was created by calculating

x{t) = yc{t) cos 27rfot -|- ys(t) sin 27t fot (4.12)

with yc{t) and ys{t) independent observations from the OU process (4.11) with
parameters b =  0.02 or 0.20, <7 y = 50 (see §4.3). Different values of b give different
degrees of incoherence, or equivalently different notional bandwidths. The ‘centre 
frequency’ /o was taken as 0.21. The model order was taken cis 2 and the fit was 
assessed as a function of the sampUng scheme. The same six schemes as in §4.4.1 
were appUed. As can be seen from Figure 4.7, the AR spectra are virtually identical. 
In particular the results for sampUng schemes (c) and (d) are not demonstrably 
worse, as they are in the results of §4.4.1. Perhaps this is because the signals under 
consideration in these tests are closer to being autoregressive.

As an alternative method of spectral broadening we have considered ampUtude 
modulation by a continuous-time chaotic signal, the Lorenz attracto r [212]:

x(t) =  Zic{'yt) cos27tfot -f Z u i j t )  sin27rfot. (4.13)

The Lorenz equations are

dZ\Jdt =■ 10(^2 — ^ i)
dZ2 / dt = — Zi Z^ 28%i — Z 2

dZsfdt  = Z 1 Z 2 — .

Zic and Zis are ‘independent’ reaUsations of the chaotic process, in that although 
they are both observations on the Zi variable their starting conditions are different. 

The integration of the Lorenz equations was performed using an adaptive step- 
size fourth-order Runge-Kutta algorithm® and a relative accuracy of 10“®. The

®NAG routine D02BAF.
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sampling could therefore be performed by nominating the next sample point, and 
integrating in time as far as that point. The initial conditions, which correspond to 
a points very close to the attractor (as opposed to arbitrary points in space) were 
{Zic){0) = ( -1 5 , -2 1 ,3 0 ) and (Z,.)(0) = (7,15,10).

A typical realisation of data  from the Zi variable, and its characteristically broad, 
continuous spectrum, are shown in Figure 5.4-5. By altering 7  we can control the 
coherence of x : the lower 7  is, the more slowly the modulator varies, and the more 
coherent the process. We have considered two values, 0.02 and 0.10. Again (see 
Figure 4.8) the AR spectra are seen to be virtually identical.
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Figure 4.1. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +15dB).

Sampling schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted line] p = 2.
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Figure 4.2. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +9dB).

Sampling schemes: see §4.4.1. Orders: [solid line] p = 6, [dotted line] p = 2.
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Figure 4.3. AR(p) spectrum for single sinusoid (frequency 0.27) in white noise
(SNR +3dB).

Sampling schemes: see §4.4.1. Orders: [sohd line] p =  6, [dotted hue] p = 2.
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Figure 4.4. AR(/;) spectrum for white noise.
Sampling schemes: see §4.4.1. Orders: [solid line] p =  6 , [dotted line] p  =  2 .
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Figure 4.5. AR{p) spectrum for pair of tones in white noise (frequencies 0.27, 0.37;
SNR +9dB).

Sampling schemes: see §4.4.1. Orders; [solid line] p = 6, [dotted line] p = 4.
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Figure 4.6. AR(p) spectrum for pair of tones in white noise (frequencies 0.43, 0.83;
SNR +9dB ).

Sampling schemes: see §4.4.1. Orders: [solid line] p =  6 , [dotted hne] p =  4. 
Note that aliasing has occurred in (a).
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Figure 4.7. A R (2 ) spectrum for continuous-time stochastic process (4.12). 
[Solid line] b =  0 .0 2 , [dotted line] b =  0 .2 0 . Sampling schemes: see §4.4.1.
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Figure 4.8. A R (2 ) spectrum for continuous-time dynamical process (4.13). 
[Solid line] 7  =  0 .0 2 , [dotted line] 7  =  0.10. Sampling schemes: see §4.4.1.
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4.5 F iltering and separation

4 .5 .1  T h e  W ie n e r  filter

In this section we shall consider the following problem

A signal is given consisting of the sum of an AR process with known poles and a 
‘message signal’ about which nothing is known. Do the separation.

followed by its generalisation

Now do it when the sampling is irregular.

We remark at this point tha t we are going to characterise an AR process by means of 
its forward and backward prediction error energy, which (as seen earlier) is general- 
isable to the irregular case. To start with it is worthwhile to consider the maximum- 
likehhood separation of two signals x  and s tha t have known covariance matrices 
Cx and Cg. Their sum is given as z. As before, N  is the data  length. Assuming 
the two are independent and Gaussian we maximise

(2 ? ) -" (d e t C x )- '/" (d e t C s)-^/^exp { « tC x '€  +  (z -  | ) t C - ' ( z  -  ( )}  (4.14)

with respect to this of course can readily be solved to give the Wiener filter (see 
e.g. [77, 104, 160]), which estimates x  as x  by

x =  ( l  +  C s C ; ' ) " 'z .

Now suppose that x  comes from an AR model whose parameters are known but 
whose driving noise variance is possibly unknown. Suppose also that nothing is 
known about s. Then we must assume that Cg is a multiple of the identity m atrix,
so Cx =  (Tg and Cg =  <7^1 , where F^ is the forward prediction error
matrix,

1

F-̂  =
CLp CLp—1 • •

Ojp • 1

(the vacant spaces are supposed to be fiUed with zeros). Then the solution is

X =  j  z .

We may wish to use the backward prediction error filter matrix

1
F^ =
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f F ^ \as well, and if we write F  =  I 1 then the solution can be modified to

r2 - 1

z .  (4.15)

(Note th a t |F vp  = 2(iV — p)F(v; a).) The matrix to be inverted in (4.15) is banded,
so the equation can be solved quickly using Cholesky factorisation in 0{Np^)  oper
ations. The sticking-point is tha t we do not know the variance ratio o'l/cr'l. Let us 
therefore consider the possibiHty of introducing a param eter p  for :

x „ =  ( l  +  M FtF)‘ ^z. (4.16)

4 .5 .2  E s t im a t in g  th e  v a r ia n c e  r a t io

We have considered three approaches for finding and each involves the introduction 
of a ‘self-consistency’ constrziint. These are tabulated below.

Name Constraint

E |F x J 2 =  2 (JV -p )< t|
C |F x „ p / |i , .P  =  2C (a)
R N -  * « P /|F x „ P  =  p
B C or R (see text)

These can be justified as follows. In the E case, we know tha t x  comes from an 
AR process with known parameters and variance, and hence the total forward and 
backward prediction error energy has expectation 2ÇN — p)(7g. In the C case this 
energy is unknown but it is proportional to the signal energy and the proportionality 
constant is 2C(a). In the surfaces described by the constraints are an ellipsoid 
and a cone. The R method is rather different: given th a t p  supposedly estimates 
(jg/2al  and that |z — x ^ p / |F x ^ p  also does, the two had better be equal. In fact we 
can also obtain this equation by maximising the likelihood (4.14) w.r.t. ji.

W hat we shall do now is to show that all three types of solution can be obtained 
by repeated bisection (or a variant thereof^), thereby providing a robust method of 
solution. It is convenient to diagonahse F'I'F, so let us consider® the singular-value 
decomposition (SVD) of F , i.e.

D = diag(6 ^ , . . . , % )QQT = P P t  = I,F  = Q

^The ne plus ultra of bisection algorithms is the van W ijngaarden-D ekker-Brent method, which 
combines superlinear convergence with the robustness of the simple bisection method. For further 
details, consult the oracle [164]§9.3.

*This is for the purposes of proof only. One does not need to do the SV D  in practice.
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and change basis via P , writing z = P z ' and = P v '. W ithout loss of generality 
we may assume Si < S2 < - • - < In this notation =  (1 -f fiSi)~^z[. It is a point
of interest that (in the limit N  0 0 )

Arithmetic mean of {S{) — 2iV(a)
Harmonic mean of (Si) — 2C(a) ,

a result that arises from considering the definitions of # ( a )  and C(a); the factor of 
2 occurs because F  produces the forward and backward prediction errors.

E  a n d  C m e th o d s

In each case let the LHS of the constraint equation be called g(/i) and the RHS go- 
We are going to show that g(/j,) is monotone-decreasing.

For case E we have

ff(M) =  |F x , r  =  E  ■

which is clearly monotonicaUy decreasing; specifically it decreases from |Fz|^ to 0 
as jLt goes from 0  to 0 0 .

For case C we have

Let the numerator be U and the denominator F , and let their //-derivatives be U \  V . 
We are to show tha t VU'  — U V  < 0. Using suffix i in the U- and U'- summations 
and suffix j  in the V-  and V -  summations, we find after a little algebra th a t

V U ' - U V ' =  y
0  + + n S j f

Then interchanging the suffices, adding the expressions and dividing by 2 :

E g

as required. So along [0 , 0 0 ) g decreases and these are the bounds:

g(Q) = IFzp = YIÎL1 9 (0 0 ) = M 1 2 /^ 2  ' (4.17)
2^j= i F jl /Oj
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R  m e th o d
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We are to solve the equation (i =  where = |z — x ^ p / |F x ^ p . One way
of doing this would be to iterate the equation, that is, to hope that the sequence 
/ i , / i ( / z ) , . . .  converges and that there is only one stationary point. In the 
notation of the previous section,

K r )
N E (4.18)

Clearly lim^_o K p ) / p  =  0 and lim^_oo h{p)/l^ = oo, inspiring the following sketch 
of h{fi)/fi :

h{fi)

1

A solution must therefore exist, and if the derivative of h{jT)l^ is everywhere positive 
then the solution will be unique, in which case at that solution

0 < -  1

implying tha t h'(fi) > 1. Therefore successive iterates /z,/i(//), h^(/x),. . .  wiU diverge 
to 0  or oo; this is seen in practice. Turning now to the question of monotonicity, in 
(4.18) write U for the numerator and V  for the denominator; then proceeding as for 
the C and E cases we find

v u '  - u v ' = f '  -  M l  +

tii=i ( 1  +  + f i S j f

After interchanging the suffices, adding the expressions, and dividing by 2, this 
becomes

N

A 3

Unfortunately one cannot say that each summand is nonnegative; in fact there are 
a few cases where h(/z)//z undergoes a slight dip as ji increases, but in those cases 
the solution to h(fi)/fi = 1 was still unique. We have not found an example in which 
the R method failed to give a unique estimate fi.
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C onsideration o f  the coherent case

A s w ith  th e  e s t im a tio n  p roced u re , in  w hich  w e p roved  th a t  th e  gen era lised  p red ic tio n  
error ap p roach  g a v e  o p tim a l resu lts  (o n  accou n t o f  zero  p red ic tio n  erro r), it  is w o rth  
co n sid er in g  w h a t h a p p en s in th e  ca se  o f  sign a l se p a r a tio n . It is im p o r ta n t  to  rea lise  
th a t  in  th is  case  th e  k ern el o f  F  (or  eq u iv a len tly  o f  F ^ F )  is n o n e m p ty  an d  c o n ta in s  
lin ear c o m b in a tio n s  o f  to n e s  co rresp o n d in g  to  th e  z -p la n e  p o le s . A cco rd in g ly  th e re  
w ill b e  p  zero e ig en v a lu es, 61, . .  . , 6p.

L et u s th erefore con sid er h ow  th e  th ree  m e th o d s  p erform  in  th is  h m it . T h e  E  
ca se  is stra ig h tfo rw a rd , for (7 ^ = 0  (so  w e require g{iJ.) =  0) a n d  g{/j.) =  0 ^  /z =  00 
(so  a  so lu tio n  e x is ts ) .  T h e  C ca se  is a  l it t le  m ore  co m p h c a te d : u sin g  th e  fa c t  th a t

=  . . .  =  =  0 , w e c o m p u te  gr(oo) u sin g  (4 .1 7 )  an d  find  it  to  b e  0 (u n less
z ( =  • • • =  Zp =  0 , b u t th a t  w ou ld  o n ly  h a p p en  if  z co n ta in e d  n o  p ow er a t th e  
freq u en cies w e w ere try in g  to  rem o v e). For th e  C a n d  E  m e th o d s  w e th erefore find  
th e  so lu t io n  to  b e

0 : % 'A

w h ich  m ea n s th a t  x  =  Xqo is th e  p ro jec tio n  o f  z o n to  ker F .  T h is  m ean s th a t  th e  
filter  is p erform in g  a  le a st-sq u a r es  fit to  th e  m o d e l XT,- as o n e  w ou ld  h o p e .

T h e  R  m e th o d  o n  th e  o th e r  h an d  d o es n o t h a v e  th is  p rop erty . S p ecifica lly , th e  
e q u a tio n  p  =  h{p)  h as a  f in ite  so lu tio n  w hich  d o es  n o t  ten d  t o  00 as th e  A R  m o d e l 
b e c o m e s  co h eren t. C o n seq u en tly , in  s ig n a l se p a r a tio n s  in  w h ich  th e  A R  p ro cess  is  
h a rm o n ic  th e  e s t im a te  x  o f  th e  h a rm o n ic  p rocess  c o n ta in s  u n w a n ted  freq u en cies or , 
t o  p u t it  d ifferen tly , co m p o n e n ts  w h ich  b elo n g  in  s .

It th erefore  a p p ea rs th a t  th e  b e st  o f  th e  th ree  m e th o d s  is  ty p e  C (p referab le  to  
ty p e  E  as it  d o es n o t  require th e  d riv in g  n o ise  va ria n ce  to  b e  k n o w n ). H ow ever w e  
h a v e  fo u n d  th a t  w h en  p  =  is  sm all ( ~  1) th e  R  m e th o d  ten d s  to  p rov id e
a  b e t te r  e s t im a te , p articu lar ly  w h en  th e  sa m p lin g  is irregu lar  (w e  sh a ll d iscu ss  th is  
n e x t):  th e  C m e th o d  ten d s  to  u n d er estim a te  p  an d  c o n se q u e n tly  p rod u ces an  e s 
t im a te  o f  s  th a t  is to o  sm all. G iven  th a t  th e  R  m e th o d  u n d e r e st im a te s  p  in  th e  
co h eren t ca se  (b y  p ro d u cin g  a  f in ite  e s t im a te  w h en  it  sh o u ld  s e t  /t =  00) it  a p p ea rs  
th a t  a  n e a t  w ay  o f  com b in in g  th e  g o o d  p o in ts  o f  ea ch  m e th o d  is  to  e s t im a te  p  u sin g  
b o th  th e  C an d  R  m e th o d s  an d  ta k e  th e  h igher o f  th e  tw o  e s t im a te s . W e ca ll th is  
th e  B  m e th o d  (B  for ‘b o th ’) an d  th is  is our m e th o d  o f  ch o ice .
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4 .5 .3  Irregu lar sa m p lin g

To answer the second boxed question in §4.5.1 is now very easy. We simply re
place the AR coefficients in F  with the generalised forward and backward prediction 
coefficients:

F  =

.P+i rP+i 
p p-l

rP+ 2

4 '
«2*

.P + 2
p-l

.P+1

.N
-Î.

,P + 2
0

„2*

^ N - p *  N - p *  
>0 ’’I , N - p *

The normalisation described in §4.1 means tha t the rows of F  are defined only up 
to multiplication by scalars of modulus 1. This is not a problem because only F^F 
is used, and that is well-defined. So by design, all the above working holds good.

4.6 Test exam ples

4 .6 .1  S u p p ressin g  an in terférer

We have considered a signal consisting of the broad band process as defined in (4.12), 
with a (small) sinusoid added:

z(<) =  yc{t) cos 27r/oi -f ys{t) sin 27r/oi + A  cos 2'ïïfst.

We can think of the broad band process as an undesirable clutter signal (such as 
Bragg clutter [142] in HF radars) and the sinusoid as a ‘ship ta rge t’ appearing at a 
frequency governed by its radial velocity. The parameters of the broad-band process 
were the same as those considered in the spectral estimation examples (§4.4.3), i.e. 
b' =  0.01s~^, (7y = 50, fo = 0.21Hz. The parameters of the added sinusoid were 
A  = 1, /s  =  0.61Hz. First the signal was sampled (256 samples were taken) and 
the Lomb spectrogram calculated. From the spectral estimation work we know how 
to represent the broad-band signal as an AR(2) process, and the poles, together 
with the samples Zn = z{tn), were supplied to the filtering algorithm. The spectral 
content of the ‘residual’ (s) of the filter was then assessed, again using the Lomb 
spectrogram. The same sampling schemes as in §4.4.1 were applied.

Results are shown in Figure 4.9 for those six sampling schemes. Owing to the 
spectral leakage the sinusoid does not show up, except for regular sampling (in which 
it occurs twice as a consequence of aliasing). In the filtered signals, where the broad
band process has been removed, the sinusoid can be detected by elementary spectral 
analysis, as seen in the diagrams. Incidentally for sampling scheme (e), a jittered 
samphng scheme, the abases are not suppressed very well; tha t jittered sampUng is 
inferior to additive-random sampUng, from the point of view of alias suppression, 
was discussed in §2.5.
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Obviously the removal of the strong ‘interférer’ at 0 .2 1 Hz has greatly enhanced 
the detectabihty of the sinusoidal feature. As a quantitative guide to the improve
ment we shall describe a fairly obvious method of assessing the SNR of each spectral 
component in a signal consisting of sinusoids of known frequencies fk in noise. It is 
a simple generalisation of the Lomb method. The time-domain signal is decomposed 
into two parts,

2 ^ (0  =  +  KO
k

with
Sk{t) — Ak cos 2 wfkt -f- Bk sin 27t fkt.

The weights Ak, Bk are found by SVD, minimising the residual Yin k(^n)P- The 
power Pk in each component, and the noise power, are defined as

1

n = l

^ n = l

and for each component the SNR may be written Pk/Po. For the example we have 
considered there is only one spectral component, so the method is identical to the 
Lomb spectrogram. In later examples there will be several components.

Using these quantitative measures we have appended to each pair of spectra 
an assessment of the SNR before and after filtering, and it is fairly clear tha t the 
filtering works consistently for all the sampling schemes tried.

For a more complicated example we have considered the possibility of several 
‘targets’. We have used the same interférer as above (centre frequency 0.21) and 
added four frequency components of amplitude 2, \/2 , 2, 2 at frequency 0.41, 0.79,
1.05, 1.65 respectively. Results for sampling schemes (a) and (b) in §4.4.1 (regular 
and rectangular additive-random) are shown. These four diagrams (Figure 4.10) 
summarise the benefits and difficulties of irregular sampling. When the sampling 
is regular, the targets are visible both in the filtered and unfiltered signal, but as 
multiple copies because of aliasing. More seriously, a nasty accident befalls the 
second target (i.e. tha t at frequency 0.79), because it is indistinguishable from the 
interférer (at sampling rate 1 ) and is removed by the filter. When the sampling 
is random the targets cannot be seen in the raw spectrum, as a consequence of 
smearing; but they are clear in the filtered signal and do not appear as aliases. Of 
course there is no longer any special relationship between frequencies 0.21 and 0.79 
when the sampling is random, so the second target is not annihilated by the filter.

4 .6 .2  E s tim a tin g  an F S K  sign a l in  n o ise

In the previous examples the AR process, whose poles were known, was viewed as an 
undesirable interférer, and after the separation the estimate of it (x) was discarded 
and the residue (s) analysed. Here we shall consider an example in which the AR 
process is the one in which we are interested, and the uncharacterised residual is
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observation noise. This can therefore be viewed as an example of noise reduction. 
See Figure 4.11.

Frequency shift keying is a simple method of transm itting, by frequency modu
lation, a stream of digits^. For each type of digit a frequency is assigned and the 
transm itter is switched between the appropriate frequencies to transm it the infor
mation. The waveform is seen to be the solution of the differential equation

dx(t^
= 27Ti/c(f)x(i), c{t) =  cyt(T\

in which c o ,c i , . . .  is the sequence of digits to be transm itted, T  is the dwell (i.e. 
transmission time allotted to each digit) and [-J denotes the integer part. It is 
apparent that during the transmission of any one digit the signal is one of a selection 
of pure tones, and hence tha t the sampled signal obeys a coherent AR model with 
poles a,- =  Of course the signal in its entirety is not exactly predictable,
because a prediction error occurs when the signal is switched from one frequency 
to another; however, as the waveform is a c o n tin u o u sfu n c tio n  these prediction 
errors wiU be quite small (and tend to 0 as 6t —»■ 0). An AR model is likely to be 
appropriate, and in the binary case, when there are only two frequencies, we have a 
complex AR(2) model.

As a specific example we have used O.lOHz and 0.19Hz as the transmission 
frequencies, 19s as the dwell, and an amplitude of 1. The transm itted code is 
01010011100* • The real and imaginary parts of this signal are shown (Figure 
4.11(a)). An AR(2) model wa^ then fitted to the signal using regular sampling at 
rate IHz; the AR(2) spectrum is shown (Figure 4.11(b)).

Next, samples were taken of the FSK signal using the sampling schemes (a) and
(b) of §4.4.1 and complex white Gaussian noise of variance 1 was then added. This 
means tha t in each case the SNR, defined as the FSK signal power divided by noise 
power, is OdB. Figure 4.11(c,e) show the noisy signals, and the transmission pattern 
is not at aU obvious. Then the filtering algorithm was employed to separate the AR 
model (clean FSK signal) from the noise. The signal estimates (x) are shown in 
Figure 4.11(d,f). In each case the transmission pattern is much clearer; it could, for 
example, be picked out by examining the zero-crossings.

While on the subject of noise reduction, we may usefully point out similarities 
with noise reduction in nonlinear dynamics. There the idea is, given a ‘chaotic’ 
signal tha t we know how to predict, to clean it up if noise is added to it. There are 
similarities and differences between the techniques used here and the nonlinear ones, 
which we now discuss from the point of view of regular sampling. In the nonlinear 
case one has

Xfi — H  (Zyi—1 , . . . , Xfi—p̂  

and let us assume that H  is known (or that H  has been estimated from the data in

^This is for the purposes of demonstrating a principle and the m odulation scheme discussed here 
should not be regarded as state-of-the-art. For a comprehensive discussion of digital communication 
signals, see [167].

^°i.e. ‘not discontinuous’, as opposed to ‘not discrete’
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embedding space). The idea is then to minimise the total dynamical error

N
^ d y n  — y ] l^n ~  • • • Î ^ n - p ) l  i

n = p + l

this requires a nonlinear minimisation, and hence is usually tackled by gradient 
descent or a similar technique ([52]; see also [51]). As there will be many trajectories 
(specifically, a p-dimensional set) tha t minimise Edyn^ the objective is to find one 
tha t is close to the original data, and hence one can write down an objective function 
of the form

N N

n = p + l  n = l

where z is the uncleaned time series, and A is a Lagrange multiplier. It is not difficult 
to see tha t this is the same type of idea used in the construction of the Wiener filter 
for the linear case. Note however tha t in the linear case we do not need to know the 
amplitude of the signal x , whereas in the nonlinear case we need either to know it 
or to be able to estimate it from the data (this amounts to  finding H).  Note also 
tha t a linear function H  gives rise to a linear optimisation problem, because then 
even when the sampling is irregular the objective function is quadratic in
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Figure 4.9. Effect of filtering (sampbng schemes a,b from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.9. Effect of filtering (sampbng schemes c,d from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.9. Effect of filtering (sampling schemes e,f from §4.4.1).
The target is at frequency 0.61; the interférer is ‘centred’ at 0.21.
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Figure 4.10. Effect of filtering, four targets; (a) uniform, (b) random sampling.
The targets are at 0.41, 0.79, 1.05, 1.65; the interférer is ‘centred’ at 0.21.
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Figure 4.11. Modelling and estimation of FSK signal in noise (see overleaf).
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Figure 4.11 (second page)

(a) Clean FSK signal (real & imag.) (b) AR.(2) model of clean FSK signal,
(c) Noisy signal, regular sampling (d) Cleaned signal, regular sampling
(e) Noisy signal, irregular sampbng (f) Cleaned signal, irregular sampling
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4.7 T he identification problem  (revisited)

The problem of identifying the spectral components of an irregularly sampled signal 
has led in the astronomy literature a sequence of algorithms, offering successively 
better performance. Indeed it seems de rigueur to name them after their supposed 
cleanliness; naturally we refer the reader only to the cleanest [69]. These and re
lated cleaning algorithms [2 0 ] revolve around the simple principle of estimating the 
strongest frequency components using the periodogram and then removing them in 
the time domain before reassessing the spectrum. Of course these methods simply 
correspond to the coherent case discussed in §4.5.2, wherein it was shown tha t per
forming a least-squares fit to a sinusoid (or sinusoids) is the same as filtering using 
our algorithm with AR poles on the unit circle and letting /i —> oo (as prescribed 
by the C estimation scheme). Our technique wiU deal with more general classes of 
signals, thereby including the case in which the amplitude and/or frequency of the 
sinusoid wander over a period of time. It is clear th a t the AR approach, which essen
tially relies on local linear predictability, is more flexible than the current approach 
of using a global representation A  cos Dt + B  sin Vtt. In other words, the AR approach 
admits spectra other than delta-functions, i.e. spectra having nonzero bandwidth. 
All we have to do is to combine the model-fitting algorithm with the filtering one. 
As a test we repeat the tests of §4.6.1 but instead of knowing in advance the poles of 
the AR process to be removed, we estimate them from the data  (which contains the 
extraneous sinusoid as well). It is to be hoped, of course, tha t the presence of the 
sinusoid will not drastically affect the estimation process. We show the results for 
sampling schemes (a) and (b) only: as can be seen, the results are virtually identical 
with those of §4.6.1 where the model poles were estimated from the ‘clean’ interférer.
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Figure 4.12. Effect of filtering (sampling schemes a,b). In this simulation the 
process paramaters are estimated from the test data, rather than being known

beforehand.
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4.8 Final remarks

We have developed the theory of hnear prediction for irregularly sampled data  that 
relies on Unking discrete-time process with the continuous-time autoregressive and 
harmonic models. This has aUowed estimation and filtering algorithms to be con
structed, and there is plenty of scope for research in either of these areas.

One area tha t could be investigated—though it is by no means easy—is the con
struction of the function E,  as the normaUsation of the predictors is an awkward 
sticking-point. Our normalisation (4.4) has some useful properties (notably it sim- 
pUfies the analysis of prediction errors for a white input signal) and on the basis of 
the test results we can say tha t it works well—the peak heights of the ARPSDs in 
Figures 4.7-8, which are extremely sensitive to small errors in estimating the poles, 
are remarkably consistent—but a sounder theoretical justification would be help
ful. The other awkward corner is tha t a continuous-time AR process when sampled 
(regularly or irregularly) produces a discrete A RM A (p,p— 1) process, not an AR(p) 
process, and it is not clear whether, or how, to take into account the MA(p — 1) 
part.

The optimisation to obtain â  from jF (x ,a ) is nonUnear because each residual 
does not depend linearly on the (o:*). This is rather inconvenient, and means tha t 
one always has the worry about finding the best minimum. There does not seem 
to be a way out of that problem. However we have found th a t, if one is prepared 
to make a quick search of the performance surface and choose the best point as 
the starting-value, there is little difficulty in obtaining reproducible results. Re
member that in the regularly-sampled case the performance surface is quadratic in 
the AR coefficients, and hence unimodal when viewed as a function of the poles 
(we mean unique up to a permutation of the poles). Incidentally Belcher et al. 
[12] reconsidered Jones’ work [101, 102] and came up with a reparametrisation of 
the Laplace-domain (continuous-time AR) poles to circumvent the p!-to-l mapping 
from poles to coefficients.

While on the subject of nonlinear optimisations, we note tha t there is one minor 
improvement tha t can be worked in at no extra computational cost, namely the 
use of methods from robust statistics [89, 164] as an alternative to least-squares. 
Least-squares methods fall down when outliers in the data give rise to excessive 
contributions on squaring and puU the estimated parameter away from its correct 
value; they can be attributed to the tails of the Normal distribution, which are 
unrealisticaUy thin. Robust statistics éissumes that the underlying distribution (p of 
the residuals (e^) is non-Gaussian (with fatter tails); in particular

L = ln h k (e |a )  =  In J J  </>(€„) =  ]^ln<j!>(e„)
n n

is maximised. In hnear least-squares problems is Hnear in oc and if In (p is quadratic 
(as it is for a Gaussian </>), then dLfdoc is Hnear in a:. As soon as one moves away 
from Gaussian distributions, dLfdoc becomes nonHnear, which is inconvenient. For 
our application is not Hnear in ot to  start with, so the introduction of further 
nonlinearities is not of much concern. Another possibiHty is to weight the prediction 
errors in inverse proportion to their associated intersample spacings, for if the data
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had a few large gaps one would not expect to be able to estimate across the gap, 
and reducing the sensitivity of E ( x , 0 ') to these terms would give better robustness.

Concerning the filtering, there are several questions of interest. One is the re
lationship between the C and R methods of estimating the variance ratio /i, and 
why they give different results. As a third method there is also the expectation- 
maximisation (EM) algorithm [151] for estimating this parameter. There is also 
the question of how to implement the filtering algorithm for data  tha t arrive se
quentially rather than in blocks; one possibility is to solve the filtering equation for 
blocks of data (tn,Xn)n=i and (tn,Xn)nJ2 and find a relation between the two to 
give the required recursion. In the case of sequential component extraction (using 
alternate estimation and filtering) it would be worth investigating whether, if sev
eral components are identified in a signal, they should be extracted sequentially or 
simultaneously.

Given the vast literature on autoregressive methods, the ideas introduced here 
could form the basis of many interesting developments. Further there is no reason 
why one should stick to simple autoregressive models. In recent years there has 
been much interest in allowing the parameters of an AR model to be amplitude- 
dependent, or to consider other forms of nonlinearity such as the bilinear model of 
which the following is the discrete-time representation:

p r
Vn "b ^   ̂^ j V n - j  — A  ^  ] Vn—i^ n—j '

i=i. »,i=i

Priestley [166] discusses these nonlinear models in discrete time. The continuous
time threshold autoregressive model, or CTAR, is discussed in [27, 213, 91].
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N onlinear m odels

In this chapter we shall consider nonlinear prediction of a time series sampled at 
irregular intervals. The motivation for nonhnear prediction is the study of signals 
obtained from observations of a dynamical system. In the regularly sampled ca.se we 
can predict an observation from d previous observations provided tha t the embedding 
dimension d is sufficiently large. In the irregular case we expect to have to take 
the intersample spacings into account, so that the n th  sample is predicted from 
the previous d samples and their associated intersample spacings. Recent research 
[198, 202] shows that this approach will in principle work. The simplest nontrivial 
case is tha t of a sinusoidal signal, which can be viewed as one-dimensional dynamics 
6 = fi, on a circle parametrised by the angle 9, using an observation function 
g : 0 cos 6. It turns out that even this simple case is quite interesting when 
the sampling is irregular, and the existence of a smooth predictor function depends 
on a certain condition relating the frequency of the sinusoid and the irregularity 
of the sampling. Then we consider a rather different type of dynamical example, 
the Lorenz attractor, in which chaotic dynamics are predicted. Chaotic sources 
generally give rise to broad-band time series which are not analysed well using linear 
techniques. The nonlinear techniques shown here give a significant improvement. We 
conclude by suggesting how methods for nonlinear prediction demonstrated here, 
when combined with the linear filtering discussed in Chapter 4, could be used to 
design nonlinear filters for irregularly sampled data. Thus nonlinear prediction and 
filtering techniques fit in with the general aim in this thesis of devising methods for 
analysing irregularly sampled time series.

5.1 Predicting irregularly sam pled data

In §2.7 we discussed Takens’ theorem and nonlinear prediction for the case of regular 
sampling and said that;

• Suppose that a signal is obtained by observing, using a smooth function g, 
dynamics y{t) on a compact manifold M  of dimension D.  Construct the set 
E of d-dimensional delay-vectors

 ̂= {[g(l>~̂ y g4>~‘̂y • • •

107
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where (j) takes y Ç: M  to where y is moved by the dynamics after time r .  We 
have a copy of At in E provided d > 2D +  1. In fact Af and E are identical up 
to a smooth coordinate change. We are taking the genericity constraints for 
granted.

• Time-discretised dynamics on Ai are manifested in E. Thus there is a smooth 
function ÜT : E -> E that predicts the (n +  l ) th  delay-vector from the nth. 
Writing a:„ =  n r) and x” =  [ a;„_i Xn- 2  ■" ]^, so tha t x” G E,

K  :x^  x”"^̂ , and A' : E E is smooth,

• We don’t need aU the components of A”, as (d — 1) of them are trivial. The 
im portant thing is to predict Xn (the ‘top’ component of x”"*"̂ ) from x’̂ :

A  : x”' Xn, and A  : E —>■ R is smooth,

A good way to estimate H,  from a set of data, is the radial basis function 
method, using known delay-vectors as centres. Thus,

j

The ( c j ) ,  which are just integers, index the centres.

When the sampling is irregular, the generalised version of Takens’ theorem, due 
to Stark, Broomhead et a i  [198, 2 0 2 ], states that:

• H  still exists, if we incorporate the intersample spacings into the delay-vectors, 
and is well-behaved except at countably many points.

So one question to be answered is whether the ‘exception at countably many points’ 
occurs in practice and, if it does occur, what the implications are for time series 
embedding and prediction. It is then a question of how to approximate H.  Again 
we wish to use radial basis functions. To do this, write Tn =  tn+i — tn and define 
delay-vectors by

,-r  _ r
(5.1)x ”' r ”'

T ^ n —1 X n —2 X n —j

^ n —1 T n - 2  ' '^n—d

We can put the usual algebraic structure on these; the norm is given by

2
IxlP = WillslP +  WrlldP (5.2)

To make this norm dimensionaUy consistent and Wr will need to have different 
dimensions; in fact, as there are two parameters in the above equation, ^  need not 
have an impHed ‘width param eter’. We write H  for the RBF approximant to the 
smooth function taking ^  to Xn :
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We intend to use the Gaussian ■0(r) =  throughout, though other choices such
as \ / l  +  and In r are possible too.

Before applying this we need to estimate and Wr, and after nondimensional- 
ising they may be cast in the form

where Var(-) denotes the variance (though other suitable measures of spread could 
be used) and are dimensionless. This means tha t the parameters depend 
on the nature of the problem rather than on the dimensions used to describe it. For 
the problems that we have been examining, w'̂ . = 1 and w'̂  = -^  were always found 
to be suitable.

Having selected for a given data set, we must now decide which points in 
the training set should be used as centres. From these data points we wish to choose 
a representative set of centres tha t are not too close (numerical ill-conditioning wiU 
result if they are). As discussed in the Introduction, a simple way of accomplishing 
this is to start selecting centres at random from the time series and, each time a 
centre is chosen, reject it if it is too close to any of the previously chosen centres. 
We suggested in §2.7 that for the Gaussian RBF f  : ^  ^  for which
/(ç )  =  1 , a centre should be rejected if the value of its associated basis function at 
any of the previously chosen centres exceeds 0.9. We shall use the same criterion 
here.

Then, taking the training data  ( x ^ ,  t n ) ^ , we have only to minimise the following 
function with respect to the (Xj) :

Error = ^  AjV’d li” -  =  IIAA -  b|p
n = d + l  \  j  j

where A{j =  ^(||^* — ^̂  ̂||) and 6 ,- =  x,-. This is a completely standard linear least- 
squares problem: methods for solving it were discussed in §2.7. We shall use SVD 
on the matrix A to accomplish this; the tolerance level in the SVD will be 10~^ 
throughout.
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5.2 Prediction  of a sinusoid

The sinusoidal signal cos 2%f t  contains the ingredients of an interesting dynamical 
prediction problem. It can be regarded as the observation of the system 6 = 0, on 
a circular manifold A4 = with the (2 -to-l) observation function g : 6 cos 6. 
Note that M  is compact. Alternatively we may view the dynamics in R^(^, r}) and 
say tha t we are observing the ^-coordinate of the system (^ =  — 77, 77 =  ^); there 
is nothing wrong with tha t, but it is a rather loose representation and hides the 
topology.

Consider, for an average sampling rate of 1 (frequency units), the prediction of 
a sinusoid of frequency /  sampled using an additive-random sampling scheme with 
intersample spacings taken from the rectangular distribution with pdf

0 , otherwise.

Additive-random sampling means tha t the intersample spacings are independent. It 
is apparent that:

• When Ç =  0, prediction wiU be accurate using d = 2 regardless of /  because we 
know that a sinusoid can be predicted from two equispaced previous values by 
linear prediction, so the (more general) nonhnear prediction must also work. 
[The prediction from regular samples is Xn = (2 cos27r/^i)a;„_i — x„,_2 .]

• When /  is small, prediction will be accurate for g > 0. This is because the 
signal wiU vary only slowly between the samples, so there should not be any 
difficulty in predicting it.

So the question is whether accurate reconstruction requires some constraint on /  
and q.

In an extensive numerical simulation we investigated the predictabihty of a si
nusoid, using d previous values and associated intersample spacings, as a function 
of the sinusoid’s frequency ( / )  and of the irregularity of the sampbng (g). Both g 
and /  were varied between 0 and 1 . A sample size of 2000 was used. The centres 
(cj) were chosen between d -f 1 and 1000. The first 1000 data  points were used for 
training, i.e. a Hnear least-squares fit was performed to these data  points to obtain 
an estimate of the (Aj). The second 1000 data points were used for verification. The 
mean-square verification error Cm s and the error in decibels eae were calculated in 
the natural way:

N
e m s  =  E

n = d -|-l 

^dB — 1 0 1 o§io^ms*

Here the data points indexed by {xn)i are the verification data  (in this demonstra
tion, samples 1 0 0 1  to 2 0 0 0  of the time series).

In the first instance a model order of 2 (i.e. d = 2) was chosen, and the results are 
shown in Figure 5.2(a,b) for 30 radial basis centres and also for 60 centres. Although

n = d + l
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the la tter allows a closer fit it is clear tha t there are some regions of the ( q , f )  
plane tha t do not permit prediction. This is made clearer in Figure 5.2(c,d), which 
are contour plots of the three-dimensional graphs (a,b) showing lines of constant 
prediction error. A simple conclusion would be tha t when ç or /  is small, accurate 
prediction is possible, but not otherwise. This would, however, ignore the rather 
interesting ‘kink’ in the surface which is observed when q is kept at a low value and 
/  is raised from 0.5 to 0.8 : the mean-square prediction error, having risen to a peak 
at around /  =  0.5, drops and then increases again. The significance of /  =  0.5 is 
tha t it is half the average sampling rate, but beyond tha t more analysis is required.

It turns out that the stumbhng-block that prevents nonhnear prediction in the 
‘disallowed’ regions of the (q ,/ )  plane is precisely the same one that caused the 
normahsation problem in Chapter 4. The reader might recall tha t tha t difficulty was 
caused by trying to predict the observation at time from observations L - i ,^ 7%-2 

close to the zero-crossings of the sinusoid. It was resolved by replacing a classical 
prediction error with a generahsed prediction sum r'^Xn-j and constraining the 
length of the coefficient vector In the nonhnear prediction schemes that we are 
examining, we have returned to the prediction of from two previous values—and 
so the difficulty presents itself again.

The dependence of Xn on previous samples is

_ sin (a—2 ) sin i ) ^ ^  ^
"  Sin0 ((»_i -  ~  S inn(in_i -  tn - 2 ) '""""’ ~  ^ '

This function is singular whenever 27r/(t„_i -  tn - 2 ) is a multiple of tt. Nonhnear 
prediction schemes require the prediction function to be smooth, and so if the de
pendence of on X is discontinuous, the method wih fail. This situation can be 
imagined in embedding space. In the sketch below, the dynamics are embedded for 
different sets of intersample spacings.

A

A<> B A<>

V

B A B oA B o o A

In the first and last sketches the circular dynamics are embedded as an ehipse, 
but in the awkward case in the middle sketches, the minor axis of the ehipse is 
very narrow (and zero in the singular case). The imphcation for prediction is tha t 
the prediction function H  has to take very different values at the points A and B, 
because at those points the dynamics are going in opposite directions. Consequently 
an attem pt to approximate H  using smooth functions (such as RBFs) wih fail if A 
and B are very close.

The above discussion points to a conclusion that prediction is hkely to fail if 
s m ü { tn - i  -  tn - 2 ) is ever zero (equivalently, if 2(tn-i ~  tn - 2 ) € Z). Accordingly, 
it appears that successful prediction of a sinusoid from two previous observations 
requires the set {2 r„ /}  to he completely within one connected component of the set
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R\Z. For the sampling scheme that we are considering, i.e. an additive-random one 
in which r  lies between^ ( 1  ±  \q)t,  the allowable regions of the (ç, / )  plane are those 
for which ( 2  ±  q) t f  both lie between k and k - 1 1 for some integer k. This statement 
can be summarised by saying that the allowable region is A  given as the following 
disjoint union:

A  = U
k > 0

= { { q J ) ’ 0 < q < ‘̂ , f > 0 ,  { 2 - q ) t f  > k, (2 + q ) t f  < k  + l}

(5.4)

The Ak  are shown in Figure 5.1 and the allowed regions are also marked on the test 
results (Figure 5.2(e)). It appears tha t the contour plots of prediction error closely 
follow the allowed regions, so the ‘kink’ in the performance surface is explained.

q

0.5

0.5 1.5 20

t f

Figure 5.1. Allowed regions Ak  of (ç, / )  plane for prediction of a sinusoid. 
Numbers on the graph refer to the index k', unnumbered regions are disallowed. 

( ^ 0  is the leftmost strip; A i ^ A 2 <>. . .  are the little triangular segments.)

We also examined the effect of increcising the model order to d = 3 (Figure 
5.3(a,c)) and d = 4 (Figure 5.3(b,d)). For these simulations the number of centres 
was increased to 90 (for d = 3) and 120 (d = 4). Interestingly these graphs are virtu
ally identical to the previous ones: increasing d seems to have very little effect. This 
points to  the conclusion that even in higher embedding dimensions the prediction 
function H  remains discontinuous when (ç, / )  is not in an allowed region.

Looking at Figure 5.1 again, it is interesting tha t the only value of q for which 
all frequencies are admissible is ç = 0, which means regular sampling. (Strictly 
speaking we have not examined the behaviour on the boundaries of the (.4^).) The 
case q = 0 is easily analysed, for then we obtain an embedding whenever 2 t f  is 
irrational, and not otherwise.

It would be interesting to see how Figure 5.1 would be affected if a periodic 
signal other than the sinusoid were considered. It seems likely tha t the answer to

For the simulations /, the average sample spacing, is 1.
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this question would be provided by the number of maodma and minima per cycle. 
Let us consider perturbations to the sinusoid. If the perturbation did not affect the 
number of local maxima and minima (so tha t there weis still one of each per cycle) 
the diagram would only be shghtly affected, though possibly the allowed regions 
would shrink so that they no longer touched. If multiple maxima and minima were 
introduced, the diagram would become more complicated, and the allowed regions 
would probably spht. For example, if the observation function were g : $ cos 2^ 
then in the ranges shown in Figure 5.1 (0 < ç < 2, 0 < ? /  < 2) there would be eight 
allowed regions.
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Figure 5.2. Reconstruction errors (embedding dimension 2).
(a,b) Error (dB, top axis) vs. frequency (RH axis) and nonuniformity parameter q 

(LH axis): (a) 30 centres, (b) 60 centres.
(c,d) Contour plots for surfaces depicted in (a,b).

(e) ‘Allowed regions’ (marked YES).
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Fig. 5.3. Reconstruction errors (embedding dimension 3,4)- 
(a,b) Error (dB, top axis) vs. frequency (RH axis) and nonuniformity parameter q

(LH axis): (a) d =  3, (b) d =  4.
(c,d) Contour plots for surfaces depicted in (a,b).

(e) ‘Allowed regions’ (marked YES).
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5.3 Prediction  of th e Lorenz attractor

The work in the previous section showed that it is possible to predict periodic 
dynamics when certain conditions are met. In this section we shaU consider the 
prediction of a chaxDtic dynamical system and show tha t nonlinear prediction has 
substantial advantages over linear prediction (classical or generalised) for this type of 
waveform, which is inherently broad-band and hence not amenable to hnear analysis.

The system that we shall choose is the Lorenz attracto r [2 1 2 ], governed by the 
3-dimensional dynamics

dZ\/dt — 10(^2 — ^ i )  

dZ2jdt =  —Z\Zj, -f- 28^1 — Z 2 

dZz/dt =  Z\Z2 — §-^3 •

Strictly speaking we should not apply Takens’ theorem without checking tha t the 
underlying manifold is compact. It can be shown using Lyapunov functions [73] 
that the Lorenz system is Lyapunov stable, i.e. trajectories tha t start in some closed 
ball stay within another closed ball (in R^). Hence the attracto r is contained in a 
compact region, and it can be shown that this is sufficient for the conclusions of 
Takens’ theorem to go through [90, ITS].

Suppose that observations are made on the first variable, so tha t the observed 
waveform is x(t)  defined as

x(i) =  Z i i j t ) .  (5.5)

As in Chapter 4, where the same signal was used, 7  controls the bandwidth of the 
process: the higher the value of 7 , the more broad-band the waveform a;(i). We do 
not wish 7  to be too small, for if it were, the signal x{t) would be too slowly-varying 
and too easy to predict by linear methods, and this would make the comparison 
between linear and nonlinear techniques rather pointless. In the simulations of this 
section 7  =  y. A typical realisation of x{t) is shown in Figure 5.4(a). This was 
obtained by integrating the Lorenz equations using an adaptive step-size fourth- 
order Runge-Kutta algorithm^ and a relative accuracy of 10“®. The sampling could 
therefore be performed by nominating the next sample point, and integrating the 
equations as far as that point. The initial conditions, which correspond to a point 
on or very close to the attractor (as opposed to an arbitrary point in space) were 
(Z,)(0) =  (4.1 ,-0 .8 ,28.8).

The Lorenz attractor has underlying dimensionality D =  3 so if the sampling 
were regular one would by Takens’ theorem require a seventh-order nonlinear model 
{2D 4- 1 ) to predict it. However it is often the case with nonlinear prediction tha t if 
the observation function is reasonably sensible, tha t is, not too convoluted, one can 
often successfully predict the time series using a rather lower embedding dimension 
than 2D +  1 . In the previous section we saw an example of this with Hnear predic
tion for the sinusoid, where d =  2 is sufficient even though the Takens’ embedding 
theorem suggests a dimension of 3.

NAG routine D02BAF.
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The test signal (5.5) was sampled additive-randomly with intersample spacings 
taken from the rectangular distribution [0.5,1.5]. (This is the same as the type (b) 
scheme of §4.4.1, or ç = 1 in the previous section.) A section of 4000 points was 
taken. The first 2000 were used for training points (the centres were taken from 
this section too) and the remaining 2000 were used for verification. As with the 
test results of §5.2, the prediction errors e^s and ejB were calculated using the 
verification data.

Results for fourth-order nonlinear prediction (d = 4) are shown in Figure 5.4(b), 
using 180 radial basis centres. The prediction errors are shown as a time series and 
their energy is lO.OdB below tha t of the original signal (eae^ in the nomenclature of 
the previous section, was — lO.OdB). We think tha t this is a reasonable result, but 
it is not as good as the sort of accuracy one can get for regular sampling. We found 
th a t a time series obtained by sampling (5.5) regularly, with intersample spacings 
all equal to 1, could be predicted with error —32dB (this required 60-70 radial basis 
centres).

Some further experiments were performed. First, Figure 5.4(c) shows the effect 
of putting Wr = 0 rather than the ‘automatic’ choice (5.3) based on the variance of 
the intersample spacings (as discussed in §5.1). This means tha t in performing the 
prediction the intersample spacings are ignored. The results are seen to be worse 
(cdB = —12.1dB). So in Figure 5.4(b) the intersample spacings are being put to 
good use in establishing the prediction function H.
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Fig. 5.4. Nonlinear prediction of the Lorenz attractor.
(a) Time series. (b,c) Prediction errors of irregularly sampled record, using 
4th-order nonlinear prediction and a 180-centre RBF approximant to H :

(b) automatic selection (5.3) of width parameters (prediction error —lO.OdB);
(c) Wr set to zero, excluding the temporal information (prediction error — 12.1dB).
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It is also of interest to examine the effect of linear estimation using the generalised 
prediction error methods of Chapter 4. When these are employed the results are 
substantially worse; this is to be expected on account of the broad spectrum. Once 
the ‘optimal’ model poles <x were found the generalised prediction errors f„ (x ;a )  
were calculated; as they are determined only up to sign, their absolute values are 
plotted in Figure 5.5(a). The prediction error is —4.8dB.

One might ask at this point, given the obvious failing of the linear technique, 
whether the underlying signal is fundamentally unpredictable by linear means, or 
whether our technique for fitting linear models is at fault. T hat question is easily 
resolved if one recalls that all a linear method can do is estimate the spectrum, if it is 
assuming tha t the statistics are Gaussian (as the least-squares AR approach does); 
so, if the ARPSD resembles the underlying spectrum, the fitting technique has done 
as well as could be expected of it. To compare these spectra we have calculated 
the ARPSD from the model coefficients (Figure 5.5b) and obtained an estimate of 
the underlying PSD by resampling x(t) , regularly with intersample spacing 1 , and 
running a 1024-point windowed FFT  (Figure 5.5c). If one assumes the true PSD 
to be continuous, which seems sensible, then it would resemble a smoothed version 
of Figure 5.5c—in fact, something very like the AR spectrum. We may conclude 
tha t the linear model-fitting technique has indeed chosen the best fourth-order linear 
model, but that no linear model is a good representation.



5.3. PREDICTION OF THE LORENZ ATTRACTO R 120

time
500

PSD (dB) PSD (dB)
30

25

20

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5

30

25

20

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5

frequency frequency

Fig. 5.5 Linear methods applied to the Lorenz attractor.
(a) Generahsed prediction errors |f„| (prediction error —4.8dB).

(b,c) Spectral estimates are in broad agreement:
(b) AR(4) PSD estimate, (c) FFT of regularly sampled record.
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5.4 Final remarks

We have found two test cases on which hnear and nonhnear prediction give opposite 
results. For a sinusoid, the concept of generalised hnear prediction, developed for 
tha t purpose, works weh, as the results of Chapter 4 showed. Nonhnear prediction 
does weh but not for ah frequencies and samphng schemes. There is a simple criterion 
( ç , / )  € A  [eq. (5.4), §5.2.2] tha t states how irregular the samphng is ahowed to  be 
for a given frequency. It bears a passing resemblance to the criteria of Nyquist and 
of Kadec, for hke the former it shows that prediction fahs as the frequency gets to 
half the average samphng rate—from Figure 5.1 we see tha t the regions A q and A \  
touch at the point (q , t f )  =  (0,0.5)—and hke the la tter it gives a condition on how 
far the samphng may deviate from uniformity.

This has interesting imphcations for embedding chaotic dynamics. Chaotic sys
tems have an infinite supply of periodic orbits^. Figure 5.1, and the experimental 
results which corroborate it, shows tha t, depending on the degree of aperiodicity in 
the samphng, it is not always possible to embed periodic orbits correctly. We have 
shown tha t the Lorenz system can be predicted quite weh by nonhnear means when 
the samphng is irregular (relative error — 19dB). But the prediction is not as good as 
it is when the samphng is regular (—32dB); nor is it as good as nonhnear prediction 
of periodic dynamics (which, when it works, gives prediction errors of typicaUy —30 
to —40 dB). This suggests tha t in a chaotic system such as the Lorenz system, there 
is a ‘spectrum’ of periodic orbits some of which are in the ‘ahowed regions’ of Figure 
5.1 and others not. This ‘spectrum’ is given by a mathematical device known as 
the zeta-function which gives the density of orbits of period T  as a function of T. 
(It is not the same as the Fourier spectrum, because the orbits are not stable and 
not observed as sinusoidal functions in the time series.) An interesting question for 
further research is to see if knowledge of the zeta-function, together with Figure 5.1, 
directly implies the quality of prediction of irregularly sampled chaotic time series.

We have also been able to tie in the work of Chapter 4. For the Lorenz attractor 
the linear technique attem pts to model it as a stochastic process and gives a good 
representation of the spectrum, but nonlinear prediction does much better.

There arises the question of whether the two schemes can be fused. Looking 
at the derivations one sees instantly tha t the two methods are very different. The 
linear model makes a very specific assumption about the underlying process and the 
generalised prediction errors are constructed from the parameters associated with 
tha t model. On the other hand the nonlinear model makes very weak assumptions 
about the underlying process and although this makes it more flexible it also means 
tha t much more training data  is needed. Certainly there is no notion of a finite set 
of parameters enabling one to  construct generalised prediction errors.

One would therefore have to consider a class of nonlinear dynamical systems 
tha t could be parametrised in a simple way, and define a predictor to be a function 
p : R depending on the samphng instants and satisfying the condition

p (x „ ,, . . ,  Xn-d) = 0 for aU reahsations of the dynamics.

^Of course they are unstable, but that is not the issue: they are still in the dynamics, and so 
have to be embedded.
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The set ^  of all such predictors is a linear space (though of course p : IR
is nonhnear) and one would have to reconsider the question of how to choose an 
appropriately-normahsed predictor p  from The quantity , Xn-d)\ would
then be the generahsed nonhnear prediction error. The difficulty hes in identifying 

which appears to involve solving the nonhnear differential equation (not an easy 
proposition).

Another possible area for research is nonhnear filtering. There is a nice method, 
due to Broomhead [28, 29], for constructing ‘nonhnear inverses to hnear filters’ 
when the samphng is regular. This is how they work. Recall th a t, in the notation 
we are using, $  is the diffeomorphism between the trajectory in R‘̂ described by 
the sequence of delay-vectors and the trajectory foUowed by the system in its phase 
space. It turns out tha t there is stiU such a diffeomorphism even if the observed 
time series data  are passed through a hnear FIR filter. Let T denote the FIR filter, 
which acts in the obvious way on E by

/  p \
F (x,x_i)j_j 1—)̂ I Xn—I T ^   ̂ IV / ,=i

If we write for the Takens embedding associated with the time series filtered by 
F, then the foUowing diagram can be constructed:

FE ^  FE
$ r | $ r |

M M

E i  E

We are given a sum {zn} of two signals, {x^} dynamical, and {ttn} lying in some 
known spectral band so that a filter F can be found to remove it (or at least sub- 
stantiaUy reduce its magnitude). We wish to recover {wn} from {zn}- Note tha t, by 
hnearity of F,

r(x ^ ) = F(x") +  F(u") = F(x" +  u” ) =  F ( f  ) € FE.

The map K  takes x” to x”"*"̂ ; as before, write H  for the component of K  tha t takes 
x” to Xn- Now ah we have to do now is diagram-chase:

Un = Zn -  Xn = Zn -  -ff(x” ) = Zn ~  i f  $ ($ ^ )“ ^(Fz”)

SO t h a t

$ ( $ ^ ) - ^  : F E  E

is a ‘nonhnear inverse’ to the hnear filter F. One needs to know F and have a suitably 
long stretch of data  from the dynamics; in advance of somebody giving us the time 
series {zn] we have representations for E and (on applying F) FE and can construct
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the map Broomhead et al. [28, 29] performed the construction using a
radial bajsis function fit.

This is a subtle approach and (not surprisingly) the key step is to show that 
is injective. An elementary argument suggests tha t chaotic signals have broad 

spectra and so spread their information across the spectrum; applying a linear filter 
cannot remove all the information, and so a Takens embedding should still exist. 
Obviously this is not true for linear processes: for example applying an FIR filter to 
a bunch of sinusoids could cause some of the tones to  be removed completely, and 
then the filter could not be inverted.

Having studied prediction techniques for irregularly sampled nonlinear data, we 
are able to  construct H  or, equivalently, K .  Also the techniques of Chapter 4 enable 
the construction of narrow band-stop filters. Hence the nonlinear inverse filter should 
be constructible. The only source of concern is tha t the filters we have developed are 
in general HR and acausal. HR filters can generate new dynamics, depending on how 
quickly the impulse response decays [201, 203]; if they do generate new dynamics, 
the dimensionality of the time series is increased by filtering. This might require the 
theory to be extended. Presumably in the above diagram the top branches would 
have to be altered, for the inclusion of the filter dynamics in PE would mean that 

was no longer onto PE, but rather onto a nonlinear subspace of it.
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C onclusions

This thesis has brought techniques from the theories of integral transforms, complex 
analysis, local fields, linear stochastic processes, and dynamical systems, to bear 
upon the problem of analysing signals sampled at irregular time instants. We have 
dehberately reserved specific comments on the various methods for their respective 
chapters: the purpose of this chapter is to make some observations on the state of 
the theory as we have left it.

The aim of this thesis has been to answer the three questions listed in the Intro
duction, which we reproduce here for convenience:

Q1 How do irregular samples of an underlying waveform relate to that waveform?

Q2  Given an irregularly sampled signal, how should we process it?

Q3 How should we generalise common signal processing techniques such as filter
ing, convolution, model fitting, etc., to cope with irregularly sampled data?

The main theme has been the analysis and processing of irregularly sampled data  
without recourse to expHcit signal reconstruction.

From the point of view of practical signal processing the key developments have 
been the hnear prediction and filtering schemes of Chapter 4. This has produced 
algorithms for clutter modelling, clutter removal and noise reduction. In addition 
to being used on their own, these can also be combined with elementary spectral 
analysis to solve the problem of signal identification.

The hnear work heis raised many questions of its own and notwithstanding a cou
ple of awkward corners in the theory it seems that exploitation of the relationship 
between continuous- and discrete-time theory has been a fruitful Une of investiga
tion. Of course the notion of time-varying prediction was always hkely to be right 
approach, but exactly how to make the predictors vary is a rather difficult problem. 
W hat was not so obvious is tha t it is not necessarily a good idea to predict an obser
vation from a finite number of previous ones: the prediction coefficients only have 
to be capable of generating a bihnear function (of themselves and the data) tha t 
gives an indication of how well a putative model accords with the data that one is 
trying to fit. The construction of such an error energy function, playing the role of a
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log-likelihood function, then allows the construction of a Wiener filter in a way tha t 
is almost disappointingly straightforward. We suggest that it is now time for this 
filtering technique to take its place in the signal processing toolbox, as a method 
for separating a narrow-band signal (from a combination of it and something else) 
when the sampling is irregular; and it should fit well into modern technology tha t 
looks uses irregular sampling ‘in anger’ [20, 21, 14, 120].

Chapter 3 discussed the theory of sampled signals. In §3.1 we showed tha t a 
more general type of integral transform is sufficient to derive a theory of sampling, 
convolution products and Volterra operators, provided tha t the transform kernel 
satisfies a ‘completeness’ condition (namely that the kernels K{u,£n)  were an or
thogonal basis for Z^(T), where I  is the set on which the transform of the signal is 
supported). Hence we have shown that periodicity of the sampling is not required 
for all this to go through, though it must be said th a t the examples are easier when 
the sampling is regular.

In §3.2 we contributed to the theory of contour integration, as applied to the 
derivation of error bounds for sampling series. This method is likely to prove useful 
partly as a tool in approximation theory and partly because of its connection with 
the theory of canonical products. There is plenty of scope for ingenuity here, for in 
principle any function with poles can be used as an integration kernel. However it 
is not quite as simple as tha t, because one needs to ensure tha t (i) a workable upper 
bound for the integrand can be found, and (ii) the truncation error bound tends to 
0  as the number of samples tends to oo (otherwise, the resulting sampling series is 
of little use).

Methods from local field theory in §3.3 gave a new viewpoint for analysing signals 
tha t are generated by exponentials and polynomials. It is interesting tha t they are 
able to solve these problems so neatly, and one is left asking why exponentials 
managed to  creep back into a subject tha t did not seem to require them. The most 
convenient answer is that one is examining functions defined on Z, and tha t a key 
point is to find a signal vanishing at each integer—whereupon the sinusoid enters. 
An open question is whether the class of functions, for which those theorems were 
derived, can be expanded.

Finally the young subject of nonlinear signal processing entered in Chapter 5. 
Nonlinear methods have produced prediction schemes for data tha t are of dynami
cal origin. The approach is concerned with the fundamental result tha t underlying 
dynamics confer a property of predictability on the sampled data. In nonlinear 
filtering—a difficult problem even in the regular case because a nonlinear filter does 
not handle in a simple way an additive combination of signals—there seem to be in
teresting possibilities for further research. Described in §5.4 is Broomhead’s method 
[28, 29] for separating a dynamical signal (we know the dynamics) from an additive 
combination of it and an arbitrary signal that can be cancelled with a known linear 
FIR filter. Using the dynamics one can construct a ‘nonlinear inverse’ which recovers 
the dynamical signal from delay-vectors tha t have been linearly filtered. One takes 
the time series, filters it using the linear FIR filter, and then applies the ‘nonlinear 
inverse’ to recover the dynamical signal. When the sampling is irregular we can 
construct nonlinear predictors and linear filters using the techniques in Chapters 4
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and 5, so that should allow nonlinear filters to be constructed for aperiodic data.
When the sampling is periodic, nonlinear prediction can be regarded as subsum

ing linear prediction (albeit with significantly increased opacity and computational 
expense). When the sampling is not periodic, the complications tha t are thereby 
introduced make the subjects distinct (at least, they do at present). This is because 
the nonlinear prediction is attem pting to predict an observation from previous val
ues and their associated intersample spctcings, whereas the linear methods employ 
the method of generalised prediction referred to above. So in our investigations we 
have found data tha t are weU-handled by generalised linear prediction but not by 
the nonlinear method, and vice versa. It is apparent, then, tha t the different tech
niques for analysis discussed in this thesis are most suited to analysing ‘their own 
types of signal’, and tha t leaves future researchers with a rich supply of avenues to 
investigate.

In conclusion we may say tha t, although there is plenty stiU to be done on all 
three questions, we have narrowed the gap between irregular sampling as an area for 
purely academic research and irregular sampling as a powerful and practical tool.
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S p ectru m  o f  nonuniform  
sam ples

This Appendix gives derivations for the spectrum of samples, of a process,
as a function of its underlying spectrum P{f ) .  The case of jittered and additive- 
random samphng are considered. These issues were first addressed by Shapiro & 
Silverman [189] who preferred to work with the autocorrelation. Although they hint 
at the result

P" =  P  * SC

they do not explicitly state the form of SC for jittered sampling, and for additive- 
random sampling they incorrectly derive P®(/) from the sample autocorrelation 
([189], p.236).

The following notation will be used.

• x(t), continuous-time stationary process

• P ( r ) ,  underlying autocorrelation. The conventional definition for this is
-}- r )  which is independent of t provided tha t x is wide-sense sta

tionary. In that case it can be replaced by a time-average to get 
limr^oo ^  f - T  +  T)dt.

P ( / ) ,  underlying power spectrum :

P ^ (/) , observed power spectrum :

r  x( t)e -^” ^‘dt 
J - T

N - 1

n = —N

• pmi pdf of intersample spacing tn+m — tn-
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• ~ denotes the Fourier transform : p{f )  =

•  Ï, mean intersample spacing

For additive-random sampling :

• p, pdf of intersample spacing tn+i -  (a. Note tha t p{t) =  0 for i < 0.

• Here pm is the m-fold self-convolution of p, and so the Fourier transform of
Pm{t) is p(/)"*.

For jittered sampling :

• q, the pdf of the jittering. Thus tn = {n + Sn)t where Sn are i.i.d. observations 
having this pdf.

• Q, the pdf of Sn+m — <Sn- For m 7  ̂0  we have

Q(s) = J  q{s')q{s'+ s) ds'

Q (/)  =  l9(/)l"

• Here Pm(0 is S(t) when m =  0, and — m)  for all other m.

A .l  A dditive-random  sam pling

We have

|m|<N 71=1

We now split the m-summation into three parts : the first has m = 0, the second 
contains the terms with m > 0 , and the third has m < 0 . Clearly the third part 
is the complex conjugate of the second, so we shall write it as ‘c.c.’ from now on. 
Then, replacing the M-summation with an integral w.r.t. the distribution function
of {tn+m -  tn) Vfe have

P^{f )  =  R{0) +  ^  R{T)e~^^^^''pm{r)dT -\- c . c . j

Using the Wiener-Khinchine theorem,

/oo 

-00

we have

/ oo /  ^  rco foo \

P { f W  +  E  /  /  d f  dr + c.c.
-00 \m = W O  " /-o o  /
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or

P" = P  + SC 

S C (/) = Pm{r) dr + c .c ^

= 1 +  f £  p ( / r + c-c.) (A .l)
^m=l

= Re Q  ex cep t w h en  p{f )  = 1

The question of what happens when p{f )  =  1 is a delicate one; we contend tha t at 
such points, S C (/) has a delta-function singularity. Let the frequencies for which 
p{ f )  =  1 be called ‘singular frequencies’ and denoted fj,. Note tha t 0 is always a 
singular frequency, and that the singular frequencies must be isolated {p is analytic). 
Let us consider the behaviour of SC (/) at the origin. Expanding p( f )  as a Taylor 
series (valid as p is analytic) in the vicinity of /  =  0 ,

p ( /)  =  l  +  / ( 0 ) /  +  - - - ,

we have in the hmit £ —»■ ,

l y C i f M  =  R e / ^ ( H ^2 + p'(0)/ + df
(0) /  + -- 

= R e { x i R e s ( ^ , /  = o ) }

-2?ri

in which the contour F runs from —e to +£ in the lower half of the complex plane. 
This is because S C (/) is defined as an infinite series (by A .l) and so for validity we 
must keep |p(F)| inside the unit circle; given that \p{f)\ < 1 in the lower (not the 
upper) half-plane, it is in tha t half-plane tha t we must put the contour. Now

p'{0) = —2 x1 I tp{t)d t =  —2 xk , t = mean sample spacing 
Jo

and so SC(0) is a delta-function of strength 1/t. By an identical argument, a singular 
frequency fd generates a delta-function in S C (/) of strength hd := Re[-27ri/p'{fd)] 
a t /  =  /d. Thus

S C (/) =  6{t f )  + ContRe ( )  + E ~  M  (A.2)
V-L P{J)/

where ‘Cont’ signifies that the Re (-) term is taken as continuous at the (isolated) 
singular frequencies.

We now consider the mean of the function SC. By the Riemann-Lebesgue Lemma 
we have that whenever p is a measurable pdf, p( f )  —>• 0 as /  —» Too. Hence the 
average of Cont Re is 1 . For a measurable pdf there is no delta-function
train, so the average of S C{ f )  as given by (A.2 ) over /  G R is 1 .
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A .2 Jittered  sam pling

We have

|m|<AT n = l

We bring the m = 0 term out separately, where as before it generates Æ(0). Then, re
placing the n-summation with an integral w.r.t. the distribution function of {tn+m — 
tn) we have

P^{f )  = R { 0 )+ Y 1  /  72(T)e -  m )d T lt
m^O

=  A(0) +  ^  / i? ( (m  +  <7)«)e-^"^‘(’"+‘")(g(fr)<i<7.
m^O

Using the Wiener-Khinchine theorem 2ls before.

• J  — oo _ / r \ */ */—oom^O

or P* =  P  ♦ SC with

SC (/) = 1 + ^

= 1 + iî(</)P E
m^O

= 1 -  \q{tf)\^ +  l? P /)P  -  ^)- (A.3)
nGZ

Notice tha t the delta-function train characteristic of regular sampling is still present, 
so tha t aliases are not suppressed as effectively as they are when the sampling 
is additive-random. An interesting case is when q is the rectangular distribution 
on [—1 , | ] ,  which corresponds to uniform ‘1 0 0 %’ jitte r  (i.e. successive samples can 
actually touch). Then q{u) =  sine u which vanishes at all nonzero integers, and 
one is left with a delta-function at the origin, S{t f ) ,  plus a continuum given by 
1 -  sinc^?/.

Concerning the average of SC over /  G R, we can say tha t for a measurable pdf 
P-) q{f )  —>• 0  as /  -^ ±oo, and so only the first term  in (A.3) contributes. So the 
average is 1 .
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In tro d u ctio n  to  local field  
th eo ry

The reader is referred to Cassels [44] for a concise treatm ent or Schikhof [181] for a 
more extensive one. Cassels concentrates on the algebraic aspects, Schikhof on those 
related to p-adic Analysis. Elementary results on groups, rings and fields are dealt 
with by, for example, Stewart [204], while Baker’s book [9] discusses the relevant 
bits of number theory.

B .l  Valuations

Most common properties of the standard (‘archimedean’) valuation on Q are corol
laries of the following three :

VI Positivity : |x| > 0 with equality iff z =  0

V2 Multiplicativity : \xy\ =  |z ||y |

V3 Triangle inequality ; |z +  pj < |z | 4- |y|

The standard valuation is not the only one to do so; there are a family of others,
known as the p-adic valuations, which satisfy the above three conditions, and also 
this one,

V4 Ultrametric inequality : |z 4- 2/1 < m ax(|z |, jpj)

which is stronger than V3. Such valuations are said to be non-archimedean.
The ultrametric inequality gives rise to some interesting properties. Let A  be a 

field with non archimedean valuation | • j. Then we define

• 0 , the elements in K  satisfying |z| <  1. This is closed under multipHcation
and under addition, so it is a ring, called the valuation ring. It is also a local 
ring as it has a unique maximal ideal.

• m, the elements in K  satisfying jzj < 1 . It is the maximal ideal of o.
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• u, the ‘units’ of K , satisfying |x| =  1 .

• k = o/m, the residue class field of K . The mapping from o to o/m  will be
called A. It is easy to see that z E m Az =  Ot and x £ u Xx ^  (the
nonzero elements of k).

•  Pos(Ü"), the elements of K  satisfying |z —1| < I. Then x £ Pos(A') Xx = 1^. 
From this we see that Pos(üf) is a group under multiplication.

• y ,  the set of {|x| : x £ K ^}., clearly a subgroup of R"*", and called the value
group.

The following is a characterisation of Pos(üf), which will be useful later ;

L em m a 1 . Let K  be a field with a nonarchimedean valuation | • | and suppose that 
the residue class field k has p elements. If a  £ K  obeys |a | =  1 then £ Pos(Fl’).

For the proof, note that Xa £ k ^ , so A(o;P“ ^) =  (Aq:)P“  ̂ =  1  ̂ (Ferm at’s fit tie 
theorem). So £ Pos(Ji'). □

C o ro lla ry  2 . K , A;, | • | as above. If |a | = 1 and (p — 1) | m then £ Fos{K). □

T hat is the end of the algebraic content we need; we now state a remarkable ana
lytical result.

T h e o re m  3. A series converges ultrametricaUy if (!) and only if its terms tend to 
zero.

By convergent, we mean of course that the sequence of partial sums tends to a 
limit. Write a,-. Let £ > 0, and choose N  s.t. n > A  => |an| < £. Then

771 >  71 ^  N l^m ^ n | — |^^n-|-l T  ' ’ " ”1" r̂n\ ^  m a X ^ | ,  . . . ,  j^ rn l}  ^  

now use the General Principle of Convergence. □

We now introduce the p-adic numbers.

D efin ition  4. For any prime p the p-adic valuation | • jp of a rational number 
with r  and s coprime to p, is p~^.

It is easy to verify that V1-V4 are obeyed. The chief difficulty with such valu
ations is psychological : numbers are p-adically small if they contain large numbers 
of p ’s in the numerator, e.g.

(p =  2 ) 1 , 2 , 4 , 8 , . . .  ^  0 .

D efin itio n  5. The completion of a field with respect to the valuation | - 1 is defined 
as the set of all hmits of convergent (w.r.t. | • |) sequences of elements in tha t field. 
For example the completion of Q w.r.t. the standard valuation is R. Essentially the 
completion process ‘fills in the gaps’.

D efin ition  6 . The p-adic field Qp is the completion of Q w.r.t. | • |p. Its valuation 
ring is called Zp and can be identified as the set of series

ao 4- aip  -I- 0 2 p^ H  (0 < a* < p -  1)
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The maximal ideal of Zp is the set of series with ao = 0. The residue class held 
is therefore Fp, the hnite held with p elements. The value group of Qp is the set 

; r G Z}, which incidentally is the same as the value group of Q. From this 
we see that a  G Pos(Qp) |a  — 1| < as there is nothing in the value group 
between 1 and p~^.

For example — |  G Z3, for two reasons : hrst, its 3-adic value is clearly 1, and 
secondly, we have a series representation of it,

1
{p =  3) l  +  1.3 +  1 . 3^+1.3 ' "+- - -  =

1 - 3
1
2 '

T h e o re m  7 (E m b ed d in g ). Let i f  be a hnitely-generated extension of Q. Then 
K  can be embedded in Qp for inhnitely many choices of p. [In this context an 
embedding is an injective held homomorphism,]

For the proof, see [44]. This is an im portant result because it means tha t one 
ha/S the benehts of working modulo p but also tha t K  sits inside Qp in a natural way.

B .2 U ltram etric functions

In this subsection we quote an im portant result on the exponential, or power, func
tion.

D efin ition  8 . Let V  denote the set of convergent power series on 0 . Then V  
is a ring. Also let Wp be the set of functions from Z to Qp tha t are p-adically 
reconstructible, i.e.

{ * n }  €  Wp 3g e V  s.t. g{n) =  for all n G Z.

L em m a 9. For any positive integer n

1
n!

n—1
< pp-K

Proof. A well-known result of elementary number theory asserts tha t the number 
of factors of p in n! is

ordp(n!) = 

Write d = [logp(n)j. Then

n n n
-P.

+ +
y .

+

, ^ n n n n
O Tdp{n.)< - + ^  + - - - + ^ -  —

and now the result follows, because \m\p = p-oTdp{m)^ o  

L em m a 1 0 . The function n •-> is in Wp if

< n — 1

p -  1

\ a  -  l | p  <  p i - p .
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Proof. The objective is to write a '' =  (1 +  (a  — I))*" and use the binomial expansion 
of ( 1  +  x y .  Define (i/)j =  i/(u -  1 ) • • - (i/ — j  +  1 ) (for j  > 1) and {i/)o =  1 . (This 
notation is not standard.) Consider the power series

i=o

If |i/|p < 1 then |(f/)j|p < 1 and so the j th  term in the expansion is bounded by

1 X  pp-i X |o! — 1|J -> 0 as J oo

and, we recall, this is sufficient for the series to converge. So g is defined on o as a 
convergent power series. And, for integer n,

9{n) = - ly = - ly = (.1+(« - i)r =
j = o  F  j= o  V .

as required. □

T h e o re m  11 (S tra s sm a n n ) . Let g{i) be a power series convergent for  ̂ 6  o. If ^ 
has infinitely many zeros in o then g is identically zero. □

Note the connection with complex variable theory—if a function is analytic on the 
closed^ unit disc and has infinitely many zeros therein, it must be identically zero 
(the Identity Theorem). But in Ultrametric Analysis the so-called unit disc o is very 
different from what we are used to in Complex Analysis, and the results are often 
surprising :

C o ro lla ry  1 2 . If ^ is a convergent power series on o and g is periodic, then it is 
constant. For g(i) — ^(0) is zero in o infinitely many times. □

This really is rather remarkable, and caused by the fact that o contains the integers; 
the fact tha t ‘all the integers are no larger than 1 ’ is a  conceptually strange one, but 
the reader might have gained the impression tha t Ultrametric Analysis is somewhat 
more elegant than its Real counterpart, and for those classical functions to which it 
can be appUed (such as polynomials and exponentials) it can be very powerful.

^ s in ( l/ ( l  —t))  is analytic on the open disc and has infinitely many zeros therein, but their limit 
point is outside.
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